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Abstract 

In this paper I extend the work of Bernhardt and Donnelly (2019) dealing with modern explicit tontines, as a way of providing income under 
a specified bequest motive, from a defined contribution pension pot. A key feature of the present paper is that it relaxes the assumption of 
fixed proportions invested in tontine and bequest accounts. In making the bequest proportion an additional control function I obtain, 
hitherto unavailable, closed-form solutions for the fractional consumption rate, wealth, bequest amount, and bequest proportion under a 
constant relative risk averse utility. I show that the optimal bequest proportion is the product of the optimum fractional consumption rate 
and an exponentiated bequest parameter. I show that under certain circumstances, such as a very high bequest motive, a  life-cycle utility 
maximisation strategy will necessitate negative mortality credits analogous to a member paying life insurance premiums. Typical scenarios 
are explored using UK Office of National Statistics life tables. 

1. Introduction and summary of results 

In a recent paper, Bernhardt and Donnelly (2019) model an explicit modern and ideal tontine with a 
bequest motive. It is ideal in that it assumes that there are an infinite number of members of the 
tontine. It is explicit in the sense that a member receives in the interval (", " + %") a mortality credit 
of '(")((")%" where '(") is an assumed deterministic exponentially increasing mortality rate and  
((") is the size of the pension pot at age ". The mortality credit arises through the death of other 
members of the group in that time interval. When the individual dies his/her pension pot is 
distributed to other members of the tontine in such a way that the scheme is instantaneously 
actuarially fair. A distinctive feature of the Bernhardt and Donnelly paper is that it includes a bequest 
motive. Thus, a proportion 1 − + of the current pension pot is assigned to a bequest account that 
does not attract mortality credits, while the remaining proportion + is assigned to the tontine 
account. On the death of the member, the tontine account is shared out amongst members of the 
tontine. In contrast, the bequest account passes to the estate of the member. With such a bequest 
motive, the mortality credit becomes +'(")((")%". The problem is to determine an optimum 
fractional consumption rate, ,("), expressed as a proportion of the pension pot value (wealth), (("). 
At all times the amounts in the tontine and bequest accounts are respectively  +((") and (1 −
+)(("). A proportion 1 − -(")	of the pension pot is invested in a riskless asset which grows at rate / 
and the remaining proportion -(") is invested in a risky asset whose log return in (", " + %") is (0 −
0.54!)%" + 4%5(") where 0 > / and 5(") is the standard Wiener process. Transfers between the 
tontine and bequest accounts must be made continuously to maintain the proportion	+, but since 
the same investment strategy is used for tontine and bequest accounts this could be managed by 
formal declarations as to the current proportion in the bequest account.   

The individual chooses ,(") in such a way as to maximize the expected utility over a lifetime. 
Utility is discounted by a time preference rate 7. Smaller  values of 7  value future consumption  
more highly as might be the practice for persons who anticipate the extra benefit of expenditure in 
old age on  health and social care. Specifically, the utility gained through consumption (withdrawal) 
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in (", " + %") is 8[,(")(("))]%" while the contribution to the individual’s utility through death at age 
; say, is <8[(1 − +)((;)] where < ≥ 0 is a parameter that expresses the strength of the bequest 
motive. The utility function is from the constant relative risk aversion family with a power utility 
function 

8(>) =
"!
# 																				                                                              (1) 

where @ ∈ (−∞, 1)\0 . This has a constant relative risk aversion of 1 − @ . Following the approaches 
of Yaari (1965), Merton (1969, 1971), Richard (1975) and others, the objective is to find 

max
{%('),*('),+('):'-.}

GH∫ J0∫ [3(4)"
# 56]84{8[,(L)((L)] + <'(L)8[(1 − +(L))((L)]}

9
. %LN((") = >O    (2) 

subject to a wealth equation 

8:(.)
:(.) = P/ + (0 − /)-(") + +(")'(") − ,(")Q%" + 4-(")%5(").                           (3) 

In this paper I extend the work of Bernhardt and Donnelly (2019). In their paper they 
consider two models; one with  a fixed proportion + and a fixed fractional consumption rate,  
,,	throughout a member’s lifetime; the other with fixed  +	 but variable fractional consumption rate, 
,("). The approach in the present paper is to allow both these controls to be optimised dynamically 
throughout the life-cycle. Optimising the dynamic allocation +∗(") to the tontine account in this way 
leads to three key findings. Firstly, the solution is now closed-form, with dynamic proportion 

invested in the bequest account being ,∗(")<
$

$%!.		Secondly,  I am able to give explicit understanding 
of the role of the bequest parameter, b. Specifically, for a life-cycle utility-maximising investor 

< = 	 H
<=>?='.	ABC?D.

BCD=.AE4	+CD'?BF.GCD	EA.=O
EG'H	AI=E'GCD

                                               (4) 

An interesting empirical finding is that a member with very  low risk aversion will borrow to over-
invest in a risky asset. Until old age,  such a person will consume (withdraw) little and invest mainly 
in the tontine account in order to build up longevity credits. It is only in older age that more is 
switched to the bequest account to reduce the chance on death of a large tontine balance being 
distributed to tontine members. This surprising feature,  evident even  for relatively small bequest 
motives, leads to the possibility of huge bequest amounts in old age, albeit with very small 
probabilities. The third finding is that for high enough  bequest motives and for risk aversions lying in 
a specified interval,  the optimal proportion invested in the tontine account becomes negative while 
the proportion in the bequest amount exceeds 1. This corresponds to a member effectively making 
life insurance premium payments.  

For convenience, the main results are summarised below. Let 

R = / +
60E
J0# −

#
! H

K0E
L O

!
H

J
J0#O

!
                                                                (5) 

and let L denote an age of entry to the tontine. Then when 

<
$

$%!R < 1 +
<

$
$%!

∫ =%∫ [((*),
" -.]0*8?1

"
                                                                   (6) 
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the optimal strategy for " ≥ L is: 

,∗(") =
J

B(.)                                                                                      (7) 

where 

T(") = <
$

$%! + U1 − R<
$

$%!	V ∫ J0∫ [3(4),
# 5M]84%W

9
.  ,                                            (8) 

+∗(") = 1 − ,∗(")<
$

$%! ,                                                                          (9) 

-∗(") = H
J

J0#O H
K0E
L2 O .                                                                        (10) 

The wealth at age ", given ((L) = >' is 

((") =
""+∗(')=45%.-

(6%5)7∗%8.:;27∗2<(#%")=;7∗[=(#)%=(")]

+∗(.)  .                                              (11) 

Of note is that ,∗(") , +∗(") , and -∗(") are all deterministic, with the latter independent of ".  

The paper is organised as follows. In section 2, I  provide more context and review relevant 
literature. Section 3 develops the  mathematical analysis. This continues in section 4 to derive useful 
closed-form expressions for the wealth, bequest amount, monetary consumption rate, and income 
rate (mortality credit rate). I define a monetary consumption-bequest ratio, MCBR.  In section 5 the 
proportion of wealth invested in the  tontine account is forced  to be zero. Although this is generally 
sub-optimal, it corresponds to an investor following a pure decumulation strategy with bequest 
motive, and in the case of < = 0 or @ → 0,   also leads to closed-form solutions. Section 6 describes 
numerical results. Section 7 summarises and concludes.                                                                   

2. Outline review of literature on pooled annuities and tontines 

A person with a pension pot may choose to purchase an annuity from an insurance company, and 
enjoy a stream of income for the remainder of his/her life. The simplest form is a level annuity with a 
constant rate of payment. One may also purchase, at increased cost,  an annuity with escalating 
income rate. Either way the purchaser is relieved of the risk associated with his/her own 
idiosyncratic and uncertain residual life span. This risk is transferred to the insurance company who 
will reduce it through the law of large numbers assuming a large enough  number of annuitants. 
However, the insurance company also has to bear the systematic longevity risk arising from the fact 
that population mortality rates are not deterministic but are stochastic and difficult to predict. This 
will incur a risk premium that will be charged to annuitants. Other reasons why an annuity might 
appear to be poor value are the insurance company’s need to cover administration costs, make a 
profit, and cover the cost of  annuitants’ adverse selection and moral hazard. 

At the other extreme, an individual can choose to take personal responsibility for 
decumulation of a pension pot with all the inherent risks of running out of money in old age. 
However, this option does allow one more easily to satisfy a bequest motive and to follow a personal 
investment strategy. An example of attempting to combine such decumulation followed by 
annuitization at a later age in the presence of a bequest motive, is given by  Gerrard et al. (2006). 
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A half-way house between these two alternatives  is for a group of investors to collectively  
manage both idiosyncratic and systematic risks. These are pooled annuity, group self-annuitization, 
or tontine schemes. Piggot et al. (2005) design a group self-annuitization scheme. Members 
belonging to a cohort enter the scheme simultaneously with identical ages but bring heterogeneous 
wealth amounts to the pool. Each year the pay-out to surviving members is that calculated for an 
annuity based upon an agreed cohort lifetable. The pay-out is modified by a factor related to the 
ratio of actual to expected number of survivors. A pooled annuity scheme is examined by Stamos 
(2008) who considers	 a	 homogenous	 pool	 of	 annuitants	who	 are	 identical	 copies	 in	 terms	 of		
entering	 age,	 risk	 aversion,	 initial	 wealth,	 and	 investment	 strategy.	 An	 actuarially	 fair	

distribution	 of	 a	 deceased’s	 assets	 is	 simply	 to	 divide	 it	 equally	 	 between	 remaining	 pool	

members.	 There	 is	 no	 bequest	 motive.	 Sabin	 (2010)	 introduces	 a	 fair	 tontine	 annuity	 (FTA)	

tontine	 that	 allows	 heterogeneous	 membership	 with	 respect	 to	 age	 at	 entry,	 wealth,	 and	

investment	 strategy.	 Members	 can	 join	 at	 any	 time.	 On	 death	 of	 a	 member,	 each	 surviving	

member	 receives	 an	 explicit	 mortality	 credit	 that	 takes	 account	 of	 the	 surviving	 member’s	

mortality	rate	and	amount	invested,	in	such	a	way	that	the	expected	income	in	any	time	period	

is	the	same	as	that	pertaining	to	a	fair	annuity.		Bequest	motives	are	not	considered.	Donnelly	et	

al.	 (2013)	 compare	 the	pooled	annuity	of	 Stamos	with	a	mortality-linked	 fund	 (essentially	an	

annuity	with	 freedom	 to	 invest	 in	 risky	 assets)	 showing	 	 that	 unless	 the	 fund	 costs	 are	 very	

small	the	expected	return	on	the	pooled	annuity	is	better.	When	considering	consumption	in	a	

life-cycle	model,	the	expected	utility	was	usually	better	for	the	pooled	annuity.		

The	 question	 of	 actuarial	 fairness	 of	 such	 schemes	 	 is	 discussed	 in	 Sabin	 (2010)	 and		
Donnelly	 (2015).	The	 latter	 shows	 that	 the	heterogeneous	group	self-annuitization	 scheme	of	

Piggot	et	al.	 (2005)	 is	neither	actuarially	 fair	or	equitable.	This	amounts	to	some	members,	 in	

expectation,	subsidising	others,	with	the	extent	amplified	by	the	degree	of	heterogeneity.	Sabin	

(2010)	 is	 shown	 to	 be	 actuarially	 fair	 for	 some	 but	 not	 all	 heterogeneous	 groups	 while	 the	

annuity	 overlay	 fund	 of	 Donnelly	 et	 al.	 (2014)	 is	 always	 actuarially	 fair	 due	 to	 the	 deceased	

member’s	 estate	 receiving	 back	 a	 proportion	 of	 his/her	 own	 mortality	 credit	 to	 the	 group.	

Milevsky	and	Salisbury	(2015)	also	consider	a	closed	bequest-free	implicit	 tontine	comprising	

homogeneous	 membership.	 The	 group	 invests	 in	 a	 risk-free	 asset	 and	 a	 sponsor	 makes	

payments	at	a	deterministic	rate	multiplied	by	the	proportion	of	members	who	are	still	alive.	As	

in	all	these	schemes,	systematic	longevity	risk	is	borne	by	the	group.	It	appears	that	the	scheme	

is	 equitable	 in	 that	 it	 treats	 all	 members	 equally	 in	 terms	 of	 expected	 lifetime-income.	 But	

despite	 the	 homogenous	 	membership,	 it	 is	 not	 quite	 actuarially	 fair	 because	 there	will	 be	 a	

small	residual	sum	left	over	once	the	 last	member	has	died.	 In	Milevsky	and	Salisbury	(2016)	

the	authors	introduce	heterogeneous	membership.		Bernhardt	and	Donnelly	(2019)	provide	the	

focus	 for	 the	 present	 paper.	 The	 structure	 allows	 great	 flexibility.	 It	 features	 heterogeneous	

membership,	 with	 individualised	 investment	 strategies.	 On	 death	 of	 a	 member,	 explicit	

mortality	 credits	 are	 paid	 to	 surviving	 members	 in	 the	 manner	 described	 in	 section	 1.	 It	 is	

actuarially	 fair,	 both	 instantaneously	 and	 over	 each	member’s	 lifetime,	 and	 is	 therefore	 also	

equitable,	in	that	in	expectation	no	member	subsidises	another.	Crucially,	it	allows	for	a	bequest	

motive,	offering	further	flexibility	over	a	conventional	annuity.	The	purpose	of	this	paper	is	to	

show	how	the	bequest	proportion	may	be	optimised.	 In	so	doing	 it	 reveals	a	closed	 form	and	

highly	intuitive	solution.		
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3. Derivation of Optimal Consumption under instantaneous actuarial fairness 

Let Y(Z) denote a finite set of members in such a tontine with current ages Z. Let +G("G), (G("G),
'G("G) denote the tontine proportion, wealth, and mortality rate for member [ whose current age is 
"G.   Let  YJ(Z) = {[ ∈ Y(Z)|+G("G) ≥ 0}	and Y!(Z) = {[ ∈ Y(Z)|+G("G) < 0} denote two dynamically 
changing subsets of Y(Z). I propose the following rule. If [ ∈ YJ(Z) and dies in the next time 
increment %" then it generates a positive mortality credit for each  ] ∈ YJ(Z) of size 

+G("G)(G("G)
3>N.>O*>N.>O:>N.>O

∑ 3?(.?)*?(.?):?(.?)?∈A$(B)
	 . Since this happens with probability 'G("G)%", summing over all 

[ ∈ YJ(Z)  leads in the limit of infinite |YJ(Z)|  to a deterministic mortality credit rate to ] of 

'QP"QQ+QP"QQ(QP"QQ, as shown in (3). Since this is also the monetary rate of  ]  donating mortality 

credits through her own death, instantaneous actuarial fairness is established. Conversely, if  [ ∈
Y!(Z) dies, then the rule is that [ would receive mortality credits from each ] ∈ Y!(Z), of size 

−+G("G)(G("G)
3>N.>O*>N.>O:>N.>O

∑ 3?(.?)*?(.?):?(.?)?∈A2(B)
 , meaning that the terminal wealth of [ has instantaneously 

increased from (G("G) to (GP"G-Q = (1 − +G("G))(G("G), all of which is in [′L  bequest account.1 

Actuarial fairness follows in the same way as before. Note that these rules mean that mortality 
credits occur within but not between subsets and that when a member dies, he also 
donates/receives his share of the entire mortality credit associated with that death. The scheme 
guarantees instantaneous actuarial fairness in the same way as in Donnelly et al. (2014).   

Given the control problem as stated in (2) and (3), I define a value function for a member, 
similar to that in Bernhardt and Donnelly (2019), namely 

_(", >) =

max
{%('),*('),+('):'-.}

GP∫ exp	[−∫ ['(W) + 7]%W]
'
.

9
. (8[,(L)((L)] + <'(L)8[(1 − +(L))((L)])%Lb((") = >Q  

         (12) 

where the pension pot value (wealth function) follows 

8:(.)
:(.) = P/ + (0 − /)-(") + +(")'(") − ,(")Q%" + 4-(")%5(")                             (13) 

where 5(") is the standard Wiener process and where the rate of mortality credits +(")'(")((") 
will be positive or negative depending upon the sign of +(").	The control functions are constrained 
so that -(L) ≥ 0, 1 ≥ +(L), ,(L) ≥ 0 for all L ≥ ". The proportion of funds invested in the risky 
asset might exceed 1. I allow for this possibility by assuming, for theoretical expediency, that 
borrowing is possible at the risk-free rate	/. The proportion of wealth  invested in a tontine, +("), 
may be negative. Replacing the utility (1) by 8(>) = (># − 1)/@ in (2) will yield the same optimal 

control values. Since lim
#→S

"!0J
# = ln >, we identify this as the utility function for this limiting case.  

A candidate optimal strategy is obtained using a dynamic programming Hamilton-Jacobi-
Bellman approach, by solving 

 
1 There may be a practical difficulty for finite sized T!(U).  Suppose V dies. Then  W"NX"!O = W"NX"O + [#(X#)W#(X#)

$"%&"'("%&"')"%&"'
∑ $#(&#)(#(&#))#(&#)#∈%&(()

 .   

We must have W"NX"!O > 0.  Let ^"(X) =
$"%&"'("%&"')"%&"'

∑ $#(&#)(#(&#))#(&#)#∈%&(()
 . Then we must have ^"(X) <

)"%&"'
-(*(&*))*(&*)

 for all V, ` ∈ T!(U). Such a condition 

is more easily satisfied for large |T!(U)|. For small |T!(U)| one might consider prescribing bounds on cW"NX"Od. 
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['(") + 7]_(", >) = max
%,+,*

U
(+")!
# + <'(")

[(J0*)"]!
# +

ef(.,")
e. + >

ef(.,")
e" [/ + -(0 − /) + +'(") − ,] +

J
! >

!4!-! e2f(.,")
e"2 V                                                                        

(14) 

where I have now augmented the optimization to include the control +. A proof of optimality for 
these candidate policies requires a verification result along the lines of the proof that is given in 
Bernhardt and Donnelly (2019). I will leave that  for future research and here I will assume that the 
candidate policies derived below are indeed optimal and that lim

.→9
[1 − +∗(")] = 1 if < > 0. 

Taking the first and second derivatives of the expression in brackets with respect to , gives a 
maximum at 

(,∗>)#0J> − >
ef
e" = 0                                                                                                           (15) 

which, with the hope that ,∗ is independent of >, is suggestive of a trial solution of the form2  

_(", >) =
+∗!%$"!

# .                                                                                                                 (16) 

The first order condition on - gives 

>
ef
e" (0 − /) + ->

!4!
e2f
e"2 = 0.                                                                                        (17) 

From (16),  
e2f
e"2 < 0 , which implies that the stationary point is a maximum, and that consequently  

-∗(")(0 − /) = H
J

J0#O H
K0E
L O

!
.                                                                                        (18) 

Note that -∗(") is independent of " and so henceforth is expressed as -∗. Finally, the first order 
condition on + is  

−<'(")>[(1 − +)>]#0J + '(")>
ef(.,")
e" = 0.                                                             (19) 

And, differentiating again, it is seen that this is a maximum. Using (16) this gives 

1 − +∗(") = ,∗(")<
$

$%!.                                                                             (20) 

Substituting (16), (18), and (20) into (14)  

['(") + 7]_(", >) = ,∗(")_(", >) + '("),∗(")_(", >)<
$

$%! + _(", >)(@ − 1)
$

+∗(.)
8+∗(.)
8. +

@_(", >)[/ + -∗(0 − /) + +(")'(") − ,∗(")] +
f(.,")
! @(@ − 1)4!-∗!, 

(21) 

 
2 The approach differs from that  of Bernhardt and Donnelly (2019) who suggest a value function !(#, %) = ℎ(#)%! and )(#) = (*ℎ(#))

+
+,- . There 

appears to be an error in that these do not satisfy their Chini equation labelled equation (9) in their paper. However, if )(#) = (*ℎ(#))
+

-,+ that does 
lead to their equation (9). 
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Recalling (5), that is 

$
+∗(.)

d+∗
d. = ,∗(") U1 + <

$
$%!'(")V − '(") − R.                                                                        (22) 

Equation (22) is a Bernoulli differential equation with general solution 

,∗(") =
1

T(") + g,∗0J(0) − T(0)hJ∫ [3(?)5M]8?
#
8

 

                                                                                                           (23) 

where 

T(") = ∫ [1 + <
$

$%!9
. '(W)]J0∫ [3(4)5M]84,

# %W.                                                       (24) 

Now, 

T(") = i(1 + <
$

$%!

9

.
['(W) + R])J0∫ [3(4)5M]84,

# %W − R<
$

$%! 	i J0∫ [3(4)5M]84,
#

9

.
%W

= <
$

$%! + U1 − R<
$

$%!	V j(", R) 

(25) 

where 

j(", R) = ∫ J0∫ [3(4)5M]84,
# %W

9
.                                                                 (26) 

is the actuarially fair price of an annuity paying out at the rate of £1 per year from age "  to death, 
under a discount rate of R.  Note that with an exponentially increasing mortality rate, lim

.→9
j(", R) =

0, and that  j(", R) is decreasing in ".3  

Let L denote a member’s age of entry to the tontine. Since j(", R) is decreasing in ", it 

follows from (25) that if   <
$

$%!R < 1 +
<

$
$%!

h(',M)  then T(")> 0 for all " > L. When < > 0, we restrict the 

search to those solutions that satisfy a boundary condition4 that lim
.→9

[1 − +∗(")] = 1. The reason is 

that with an exponentially increasing mortality rate, in the limit, an investor will heuristically place 
everything in the bequest account, since there is no opportunity to enjoy either consumption or 
mortality credits from the tontine account. Given an exponentially increasing mortality rate, if 

,∗0J(0) − T(0) < 0,	then the denominator of (23) becomes negative for some   ", violating ,∗(") ≥

0.	If ,∗0J(0) − T(0) > 0	, then from (23), (25), and (26), lim
.→9

,∗(") = 0 leading to 

 
3	

d,
d# = −1 + [1(#) + 2]4 5"∫ [%('))*],'.

/ 67 < 	−1 + 4 [1(7) + 2]	5"∫ [%('))*],'.
/ 67 = −1 − 5"∫ [%('))*],'.

/ :
-./

0
= −	5"∫ [%('))*],'0

/
0

/
< 0	

0

/
 

4 For the case i = 0, the boundary condition is lim
&→/

m∗(X) = ∞ , which also leads to m∗-1(0) = o(0). 
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lim
.→9

[1 − +∗(")]= lim
.→9

,∗(")<
$

$%! = 0,	violating the boundary condition. It follows that ,∗0J(0) =

T(0) and that  

,∗(") =
J

B(.) .                                                                       (27) 

Thus 

,∗(") =
J

<
$

$%!5qJ0M<
$

$%!rh(.,M)
                                                                              (28) 

and 

1 − +∗(") = ,∗(")<
$

$%! =
<

$
$%!

<
$

$%!5sJ0M<
$

$%!	th(.,M)
 .                                                                      (29) 

1/,∗(") has a useful interpretation. It is the fair price of an annuity, subject to a discount rate of R, 

that pays out at the rate of £1 per year for life together with a terminal lump sum of £	<
$

$%!  . We will 

show later that £	<
$

$%! is in fact an optimising tontine member’s desired bequest : monetary 
consumption  rate ratio. 

From (28), as " → ∞,  ,∗(") →
J

<
$

$%!
  and _(", >) →

"!

#q<
$

$%!r
!%$ =

<"!
# .  When R<

$
$%! < 1, using 

(29) we deduce that +∗(") > 0. An investor, who, as an alternative to tontine membership, practices 
pure decumulation of a pension pot, is essentially a member of an infinite sized tontine who sets 
+(") = 0, a sub-optimal choice. Therefore, actuarially speaking, a utility-maximising tontine member 

does better than such an investor. If R<
$

$%! = 1, then  ,∗(") = <
$

!%$   and  from (29), +∗(") = 0. That 
is, at all times, all of the pension pot is invested in the bequest account and the tontine member’s 
utility is the same as an optimising decumulating investor. If the tontine member has a high enough  
bequest motive such that 

 1 < R<
$

$%! < 1 +
<

$
$%!

h(.,M)                                                                        (30) 

then (29) leads to +∗(") < 0 and negative mortality credits.  The tontine member, say ] ∈ Y!(Z),  
behaves rather like a life insuree, a person  who buys life insurance. In this case the premiums are at 

a rate of −+Q
∗P"QQ'QP"QQ of the member’s current wealth, (QP"QQ. On death of such a member at age ; 

say, the  wealth of the deceased  instantaneously increases by −+Q
∗(;)((;).   This is funded by 

mortality credits made at that instant by all members of Y!(Z) . The deceased member’s wealth is 
now    [1 − +∗(;)]((;), all of which resides in the bequest account.  

Rewriting (16) as _(", >) =
+∗!(.)"!
#+∗(.) =

u(+∗(.)")
+∗(.) , we see that given (28), |_(", >)| is the 

actuarially fair price of an annuity purchased at age ", under a discount rate of R, that pays out at a 

constant  rate of |8(,∗(")>)| together with a terminal lump sum of 	<
$

$%!|8(,∗(")>)|.  
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Note that with a logarithmic utility function, we set @ = 0, giving R = 7. Thus when 7 <
<0J + j(", 7)0J we find that  

,∗(") =
J

<5[J0<6	]h(.,6)                                                                                    (31) 

which is identical to result (14) stated for 7 < <0J   in Bernhardt and Donnelly (2019), who optimise 
for a fixed rather than dynamic +, and dynamic ,("). According to result (31), when  	<0J < 7 <
<0J + j(", 7)0J, the  dynamic proportion invested in the bequest account is  <,∗(") > 1.  

4. Evolution of Wealth, Discounted Bequest Value and Discounted Monetary Consumption rate 

In this section, I now obtain a closed-form solution for the wealth equation under the optimal 
strategy. Using (20) 

d((")

((")
= m/ + (0 − /)-∗ + U1 − ,∗(")<

$
$%!V '(") − ,∗(")n %" + 4-∗%5(")

= H/ + (0 − /)-∗ + '(") − ,∗(") U1 + <
$

$%!'(")VO %" + 4-∗%5("). 

(32) 

But from (22) 

 ,∗(") U1 + <
$

$%!'(")V =
dln[+∗(.)]

d. + R + '(")                                                                        (33) 

and so 

d((")

((")
= m/ + (0 − /)-∗ + '(") −

% ln[,∗(")]
%"

− '(") − Rn%" + 4-∗%5(")

= m/ − R + (0 − /)-∗ −
% ln[,∗(")]

%"
n%" + 4-∗%5(") 

(34) 

Solving this subject to an initial condition that ((L) = >' we obtain for " > L 

((") =
""+∗(')=45%.-

(6%5)7∗%8.:;27∗2<(#%")=;7∗[=(#)%=(")]

+∗(.)                                                         (35) 

and 

GP((")Q =
""+∗(')=(5%.-(6%5)7

∗)(#%")

+∗(.)   .                                                                               (36) 

The present value of the stochastic bequest amount, expressed as a proportion of the initial wealth, 
is given by 

o(") =
=%5(#%")[J0*∗(.)]:(.)

""
= <

$
$%!,∗(L)J(0M5(K0E)%

∗)(.0')JL%
∗[w(.)0w(')]0S.xL2%∗2(.0')       (37) 

while the corresponding present value of the stochastic monetary consumption rate is 
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p(") =
=%5(#%")+∗(.):(.)

""
= ,∗(L)J(0M5(K0E)%

∗)(.0')JL%
∗[w(.)0w(')]0S.xL2%∗2(.0')   .                  (38) 

If an investor wishes to aim for a level expectation of present value of monetary consumption and 
bequest amounts, we see that these are simultaneously achievable if  

R = (0 − /)-∗.                                                                                          (39) 

From (37) and (38) we see that the bequest amount on death is a fixed multiple, <
$

$%!  of the 
monetary consumption rate at all ages. So, an investor who is not sure how to set < can simply be 
asked what multiple of yearly consumption she would like to bequeath and so the model leads to a 
natural interpretation and setting of the bequest parameter through 

< = 	H
<=>?='.	ABC?D.

BCD=.AE4	+CD'?BF.GCD	EA.=O
EG'H	AI=E'GCD

    .                             (40) 

I now define a dimensionless monetary consumption-bequest ratio (MCBR) and rewrite (40) as  

qpor = <
$

!%$  .                                                                          (41) 

From (29) the proportion invested in the bequest account is 

 1 − +∗(") =
J

J5(yz{|0M)h(.,M)     .                                                          (42) 

While 1 + (qpor − R)j(", R) > 0, given that j(", R) is decreasing  in " and that  lim
.→9

j(", R) = 0 , 

it follows that 1 − +∗(") is increasing /decreasing in "  while qpor > R / qpor < R,  and that 
lim
.→9

(1 − +∗(")) = 1. The condition for an investor to remain in YJ(Z) is that qpor > R and to 

remain in Y!(Z), it is qpor < R. An investor may  change her MCBR during a life-cycle in response 
to changing her  level of risk aversion or bequest motive. A person with static MCBR is one who will 
use the tontine throughout the life cycle as providing annuity-style or life insurance-style benefits, 
but will not switch between the two.  

The fractional consumption rate is 

,∗(") = [(1 − +∗(")]qpor,                                                                   (43) 

The  expected value of the present value of the monetary consumption rate at time  ", expressed as 
a proportion of initial wealth >' is 

GPp(")Q =
+∗(.)""+∗(')=(%.-(6%5)7

∗)(#%")

""+∗(.)
= ,∗(L)J(0M5(K0E)%

∗)(.0')                      (44) 

The expected value of the present value of the bequest amount expressed as a proportion of initial 
wealth is  

                                              GPo(")Q =
}Nz(.)O
yz{|                                                                                       (45) 

The expected value of the present value of the mortality credit rate  (a positive or negative income 
rate) expressed as a proportion of initial wealth is  
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         GPs(")Q = +∗(")'(")	J(0M5(K0E)%
∗)(.0') +∗(')

+∗(.)                                                               (46) 

 

5. The problem of pure decumulation with a bequest motive 

It is relevant to consider the problem of pure decumulation (i.e., no tontine) of a pension pot under 
a bequest motive, by forcing +(") to be zero. In that case 

_(", >) = max
{%('),+('):'~.}

GP∫ exp	[−∫ ['(W) + 7]%W]
'
.

9
. (8[,(L)((L)] + <'(L)8[((L)])%Lb((") = >Q       

(47) 

subject to 

d:(.)
:(.) = P/ + (0 − /)-(") − ,(")Q%" + 4-(")%5(") .                                             (48) 

The Hamilton-Jacobi-Bellman approach gives 

['(") + 7]_(", >)

= max
%,+

t
(,>)#

@
+ <'(")

>#

@
+
u_(", >)
u"

+ >
u_(", >)
u>

[/ + -(0 − /) − ,]

+
1
2
>!4!-! u

!_(", >)
u>!

w . 

    (49) 

The first and second order conditions on , and - are as before, as is the expression for _(", >). 
Substituting these into (49) 

$
+∗(.)

d+∗
d. = ,∗(") +

<3(.)+∗(.)$%!
J0# − x(")                                                                         (50) 

where  

x(") = '(") + R +
#3(.)
J0# .                                                                                                        (51) 

Equation (50) is a Bernoulli differential equation only when @ = 0 or < = 0, so closed-form 
solutions are possible only in these cases. Stamos (2008) considers decumulation of pooled annuity 
funds with no bequest motive and has derived, for the degenerate case of only one member in the 
pool, an identical result to (50-51) for < = 0, his equation (32). Similarly, he has derived a closed-
form solution, again for < = 0, his equation (34), for the special case of a pool of infinite size, which 

is the same as my tontine solution ,∗(") =
J

h(.,M)  as in (28). When @ = 0, equations (50-51) do admit 

the closed-form solution (31) even when < ≠ 0. It is exactly the same as the tontine solution, that is 
result (22) with x(") = '(") + 7. Therefore, we conclude that for a logarithmic utility with bequest 
motive, the optimal fractional consumption rate for pure decumulation and tontine are the same. 
That is to be expected as it can be seen from the objective function that the optimization for the 
consumption rate is the same in both cases. Further, subtracting @0J from the utility function and 

taking the limit as @ → 0 gives the expected lifetime utility as  _(", >) =
�Ä	[ "+∗(.)]

+∗(.) .  
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6. Numerical Examples 

Some numerical results are shown for  a Gompertz-Makeham mortality rate 

'(") = z +	
=
#%C
D

> 		                                                                            (52) 

for a UK male, where T = 83.43, ~ = 10.94, z = −0.0052,  fitted to UK Office of National Statistics 
Life tables, for those aged 50 or more. We consider a member who enters the tontine at age L = 65. 

Figure 1 shows how the bequest proportion changes as MCBR increases, for a range of R  
values. Thus, an investor who sets MCBR to 0.01 wishes his bequest amount to be 100 times his 
yearly monetary consumption rate. For R > qpor, the member is behaving as a life insuree. The 
mortality credits are negative and represent pseudo life insurance premiums.  Expressed as a 
proportion of his wealth, they are the product of an increasing mortality  rate and decreasing  
|+∗(")| .  When R = qpor, he neither receives nor makes mortality payments as +∗(") =0. The 
entire pension pot is always invested in the bequest account and he is like an independent investor 
who is decumulating the pot with a constant fractional consumption rate. When R < qpor,  the 
member is a pseudo annuitant, receiving  mortality credits (income), which again as proportion of 
wealth, are the product of an increasing mortality rate and decreasing  +∗("). When MCBR=0.1 the 
investor wishes the bequest amount to be 10 times the monetary consumption rate. For specified 
risk aversion the bequest motive is now not so strong. As a result, for the values of R shown, the 
member behaves as an annuitant. For large R there is always a significant amount invested in the 
bequest account, increasing with age. But for low R the initial bequest proportion is low. When  
MCBR=1,  the investor has virtually no bequest motive, requiring a bequest to be the same as yearly 
monetary consumption. The member is again a pseudo annuitant and at lower ages places a small 
but increasing proportion in the bequest amount, moderately  independent of R. 
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Figure 1. Optimal bequest proportion as a function of MCBR and R 

 

  

 

 

In Figures 2-5, I take / = 7 = 0.02, 0 = 0.05, 4 = 0.2, and examine behaviour as @ and < 
change for a male who starts decumulating their pension pot at age L = 65 years. All monetary 
values are expectations and are present-valued to age 65 and expressed as a proportion of initial 
wealth. Figure 2 shows the bequest proportion, figure 3 the monetary consumption per year, figure 
4 the bequest value, and figure 5 the mortality credit rate. I  examine bequest motives in the range 
< ∈ [0,60] and constant relative risk aversions in the range	1 − @ ∈ (0,11). With these values the 
proportion of current wealth invested in the risky asset is -∗ = 8.8:%8.82

8.22($%!)) and so this does exceed 1 

when	@ > 0.25. In that case, borrowing to allow over investment in the risky asset raises the 
probability of running down the pension at an early age, alongside a small probability of large wealth 
at an advanced age. These aspects are consistent with a low relative risk aversion, 1 − @. 

For @ = 0.8, -∗ = 3.75 representing large borrowing to invest in the risky asset. In the early 
years the bequest proportion and consumption are small in order to gain mortality credits which are 
invested in the risky asset. It is only in old age that significantly more is transferred into the bequest 
account. This again is consistent with very low risk aversion and can result in huge  bequest 
amounts, albeit with infinitesimally small probabilities. Figure 6 shows an extreme example of the 
highly skewed distribution of bequest amount at age 95 where < = 3. The expected bequest amount 
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is 89. However, the most likely bequest is essentially zero, the median 0.02, and there is a 95% 
chance that the bequest amount is less than 17.  

For @ = 0.25	, -∗ = 1 and all the wealth is invested in the risky asset. For very high bequest 
motives the member behaves as a life insuree with steadily increasing life insurance premiums and 
bequest amounts (terminal pay-out on death) but low consumption. For lower bequest motives, 
consumption is increasing with age but decreasing in bequest motive. Bequest amounts increase 
with age and with bequest motive.  

For @ = −0.08225 with very high bequest motive almost all of the wealth is invested in the 
bequest account. Accordingly, income in the way of mortality credits is always very low as is 
consumption. This value of @ gives level expected and present valued bequest and monetary 
consumption as in (39), but the actual outcomes are highly variable depending upon risky asset 
performance. Figure 6 shows an example of the log-normal distribution of present value of bequest 
amount at age 95 when < = 3. The expected bequest is 0.17, the median 0.13, and the mode 0.07. 

For @ = −10  risk aversion is very high resulting in almost all of the wealth being invested 
risk-free, with low expected  bequest amounts. Unlike the other less risk averse scenarios, we see a 
gradual decrease with age in expected monetary consumption. 

Figure 2. Optimal bequest proportion as a function of < and @ for the case / = 7 = 0.02, 0 =
0.05, 4 = 0.2 
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Figure 3. Expectation of present value of monetary consumption rate as a proportion of  wealth at 
age 65 for / = 7 = 0.02, 0 = 0.05, 4 = 0.2 
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Figure 4. Expectation of present value of bequest amount as a proportion of wealth at age 65 for / =
7 = 0.02, 0 = 0.05, 4 = 0.2 
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Figure 5. Expectation of present value of mortality credit rate as a proportion of wealth at age 65 for 
/ = 7 = 0.02, 0 = 0.05, 4 = 0.2 
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Figure 6. The variability of the present value of the bequest amount at age 95 as a proportion of the 
wealth at age 65 for < = 	3	and @ = −0.08225 and 0.8 

 

 

7. Summary and Conclusions 

In this paper I have obtained closed-form solutions for the optimal fractional consumption 
rate, bequest-proportion, wealth, and risky/riskless investment ratio for a modern, ideal, explicit 
tontine with bequest motive, under a constant relative risk aversion utility function and under the 
assumption that the corresponding verification result can be proven. It is shown that the first two 
are functions of the individual’s age, independently of the wealth. The optimal bequest-proportion is 
a product of the optimal fractional consumption rate and an exponentiated bequest parameter. The 
reciprocal of the optimal fractional consumption rate turns out to be the fair price of an annuity, 
subject to a discount rate of R, that pays out at the rate of £1 per year for life together with a 

terminal lump sum of £	<
$

$%!. Some numerical results are given based upon a mortality rate fitted to 
UK Office of National Statistics life tables. 

How should an investor decide upon appropriate values for  1 − @ (risk aversion) and < 

(strength of bequest motive)? The former could be set using 1 − @ =
K0E
%∗L2 , where -∗ is the desired 

proportion in the risky asset. Alternatively, if the objective is to achieve level expected discounted 
monetary consumption rates and bequest amounts, then one would resort to result (39). The model 
leads to a natural interpretation and setting of the bequest parameter through 

< = 	 H
<=>?='.	ABC?D.

BCD=.AE4	+CD'?BF.GCD	EA.=O
EG'H	AI=E'GCD

.                                        (53) 

It is also of interest to note that a related problem of how to decumulate a pension pot (no 
tontine) under a bequest motive, is solvable by suppressing the optimization with respect to the 
bequest proportion, in favour of forcing it to be 1. In this case, closed-form solutions for the 
fractional consumption rate and wealth are now available for the following: all bequest motives with 
a logarithmic utility function; all constant relative risk aversion utilities where there is no bequest 
motive. With a logarithmic utility, the optimal fractional consumption rate is identical to that 
obtained for the corresponding tontine.  
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It is noticeable that for the case where the tontine member receives mortality credits 
(+∗(") > 0), then the bequest proportion increases with age. That might  appear to 
disproportionately  disadvantage those who die early to the benefit of those who live to a good age. 
That is also a feature of annuities, although the latter have absolutely no bequest feature. Future 
research can explore whether strategies other than pure utility maximization are more in line with 
intuitive expectations of investors. Suffice to say that in the example given, this increase in bequest 
proportion is necessary to maintain, for example, a desire for a level present value of expected 
monetary consumption rate and monetary bequest amount, and that for someone wishing to 
escape from the drawbacks of an annuity, that might seem a reasonable objective. Thus, for 
example, we see from figures 3 and 4 that, when @ = −0.0825 and < = 10,	 the expectation of  the 
present value of monetary consumption rate is at all times around 5 % of the value of the initial 
pension pot and the present value of the bequest amount is a multiple 8.4 of that, that is 42%  of the  
initial pension pot. For other scenarios, we note that the increasing bequest proportion feature 
appears to result from the finding that the monetary consumption rate should at all ages be a fixed 
multiple of the bequest amount. However, with increasing age, an investor might feel it is more 
intuitive to increase that multiple. In essence, that means that the investor prefers to specify a 
decreasing bequest profile <("), instead of a constant <.	Future research can explore such a 
variation of the model presented here.  

I do not consider some of the practical problems that will need attention in  implementing 
such a scheme. One such issue is that of adverse selection. For example, a person suffering a sharp 
reduction in life expectancy might opt to shift a large amount to the bequest account which would 
compromise the actuarial fairness of the scheme. A second example is that the behaviour  of a finite 
sized tontine (rather than the infinite sized one addressed here)  will be somewhat different and 
introduce more risk to members. This could be explored through simulation.  

Regarding the dynamic changing of bequest proportion, it is noted that that this does not 
involve physical movements of assets, merely a formal declaration as to a member’s current 
allocation. In fact, under the stated assumptions, +∗(") is dynamic, but deterministic. It could 
therefore be prescribed in perpetuity when a member enters the tontine. However, that would 
remove some flexibility (and freedom to behave sub-optimally – which does not jeopardise actuarial 
fairness) from each member. In practice, it might be  preferable to retain such flexibility, where, 
subject to  managing adverse selection, actuarial fairness prevails.  

A new finding is that for very large bequest motives, mortality credits are negative and  as a 
result a  tontine member behaves as a life insuree. For a finite sized tontine, it might be necessary to 
prescribe limits on such individuals’ wealth to avoid the possibility of exhausting the pension pot. 

A referee has suggested that the structure of the results will carry over if the main 
parameter values are deterministically time varying. Conjectured results are shown without proof in 
Appendix 1. 

Bernhardt and Donnelly’s (2019) paper breaks new ground in the theory of tontines. It is of 
practical importance given a growing interest in alternatives to both annuities and pure 
decumulation of pension pots. Compared with many pooled annuity schemes it has the considerable 
advantage of preserving  instantaneous actuarial  fairness under heterogeneous membership and 
random entry to the tontine. That paper does not consider a dynamic optimization of the bequest 
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proportion and  it transpires, fortuitously, that doing so simplifies the analysis and form of the 
solutions, and reveals the life insurance aspect of such a tontine.  
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Appendix 1 

Let L denote age of entry in tontine. Let 
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