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Not only are Casimir interaction entropies not guaranteed to be positive, but also, more strikingly,
Casimir self-entropies of bodies can be negative. Here, we attempt to interpret the physical origin
and meaning of these negative self-entropies by investigating the Casimir self-entropy of a neutral
spherical nanoparticle. After extracting the polarizabilities of such a particle by examining the
asymptotic behavior of the scattering Green’s function, we compute the corresponding free energy
and entropy. Two models for the nanoparticle, namely a spherical plasma δ-function shell and a
homogeneous dielectric/diamagnetic ball, are considered at low temperature, because that is all that
can be revealed from a nanoparticle perspective. The second model includes a contribution to the
entropy from the bulk free energy, referring to the situation where the medium inside or outside the
ball fills all space, which must be subtracted on physical grounds in order to maintain consistency
with van der Waals interactions, corresponding to the self-entropy of each bulk. (The van der Waals
calculation is described in Appendix A.) The entropies so calculated agree with known results in
the low-temperature limit, appropriate for a small particle, and are negative. But we suggest that
the negative self-entropy is simply an interaction entropy, the difference between the total entropy
and the blackbody entropy of the two bulks, outside or inside of the nanosphere. The vacuum
entropy is always positive and overwhelms the interaction entropy. Thus the interaction entropy
can be negative, without contradicting the principles of statistical thermodynamics. Given the
intrinsic electrical properties of the nanoparticle, the self-entropy arises from its interaction with
the thermal vacuum permeating all space. Because the entropy of blackbody radiation by itself
plays an important role, it is also discussed, including dispersive effects, in detail.

I. INTRODUCTION

When an electromagnetic quantum field coexists in thermal equilibrium with bodies or boundaries, the entropy of
the system will be altered by their presence, which may lead to nontrivial phenomena implying novel physics and
applications. This additional entropy, known as Casimir entropy, was recognized as a physical quantity in the debate
on how to model a metal within a finite-temperature environment, when evaluating the Casimir force between metal
plates. Initially, there were claims that the Drude model resulted in Casimir entropies inconsistent with the third law
of thermodynamics [1–4], but it has been shown that this does not occur for real materials [5, 6]. Experimentally,
results favoring both the plasma model [7–11], which does not include dissipation, and the Drude model [12, 13],
which does, have been reported. This inconsistency with the physically motivated Drude model has not yet been
resolved, but the subject of Casimir entropy by itself has drawn much attention.

Casimir interaction entropy, caused by the interactions between two or more bodies via the fluctuating quantum
electromagnetic field, has been intensively investigated for many years due to its fascinating properties, such as its
negativity [14–21]. Less investigated, however, is the Casimir self-entropy, resulting from the self-interaction of a
single body, which provides us with further intriguing possibilities and puzzles to be understood. We will concentrate
on a new approach to this problem in this paper.

In Ref. [22], we evaluated the Casimir self-entropy of a plasma δ-function plate (PDP), with the aim of justify-
ing the widely accepted hypothesis that the negative Casimir interaction entropy would always be compensated by
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corresponding positive self-entropies. We obtained analytic formulas for the transverse electric (TE) and transvese
magnetic (TM) contributions to the PDP self-entropy. They both satisfy the third law of thermodynamics, in that
the entropy vanishes as the temperature goes to zero, and indeed the total self-entropy is positive, although the
TE contribution is always negative. But, in the strong-coupling limit, which is the perfectly conducting (PC) case,
the total self-entropy approaches zero, which eliminates the possibility that it can cancel the negative interaction
entropy between a PC sphere and a PC plate. In Refs. [21, 22], we showed, however, that the Casimir self-entropy
of a PC sphere precisely cancels the most negative part of the interaction entropy between a sphere and a plate.
Then we generalized our study of Casimir self-entropy to the model of a plasma δ-function spherical shell (PDS).
Various regularization schemes were employed to evaluate the TE and TM self-entropies of a PDS in limiting cases
in Ref. [23]. It was especially surprising to find that, when the coupling was weak enough, both the TE and TM
self-entropies are negative—See Eq. (1.1). Bordag and Kirsten examined the same plasma-shell model [24, 25], but
obtained somewhat different results; their results were technically equivalent to those in Ref. [23], differing only in
certain subtractions. For more detailed comparisons, please refer to Ref. [26]. Most recently, we utilized a numerical
method, based on the Abel-Plana formula, to elucidate general behaviors of PDS self-entropies [27], which confirms
the results in Ref. [23] and clearly demonstrates the existence of negative self-entropy. So, in contrast to the naive
hypothesis, Casimir self-entropy can be quite nontrivial, and its negativity needs to be better understood.

According to Ref. [23], the leading terms of TE and TM PDS self-entropies are negative and of the first order in
the coupling λ0, specifically,

STE
(1) = −λ0

(
t

6
+

1

2t
− 1

2
coth t

)
, STM

(1) = −λ0

(
t

18
− 1

2t
+

1

2
coth t

)
, (1.1)

in which t = 2πaT , a is the radius of the spherical shell, and T is the temperature. The terms linear in λ0 might be
supposed to originate from the self-interaction of each point in the material, in analogy with λϕ4 theory, although here
the coupling refers to the entire surface of the sphere. It is conventional wisdom that this kind of self-interaction should
be subtracted off, as a “tadpole” term; doing so here, however, would destroy the passage to the perfectly-conducting
limit. The appearance of negative Casimir self-entropy and its linear dependence on the coupling in PDS imply the
necessity of investigating the influence of the self-interaction more delicately, so that the meaning of negative Casimir
self-entropy and the remaining divergences encountered in spherical systems, or even of their consequences in reality,
could be clarified.

For a homogeneous dielectric ball (DB), it is known that the bulk contributions must be subtracted [28], but even
with this so-called bulk subtraction, the zero-temperature calculations are plagued with ambiguous divergences [29],
except for special cases where the speed of light is the same inside and outside the spherical boundary [30, 31].
Recently, Avni and Leonhardt [32] claimed that their subtracted physical Casimir stresses on a dielectric ball yields
an energy, depending linearly on the susceptibility in the weak-coupling limit, and thus violating the interpretation
in terms of van der Waals forces. Some of us have argued that their conclusions are erroneous [28]. This matter is
still being disputed [33]. Here, we will extend the calculations of Ref. [28] to finite temperature.

We focus on a system composed of a nanoparticle that interacts with a thermal electromagnetic background (black-
body radiation) and that is characterized by macroscopic polarizability parameters, inferred from the large-distance
behavior of the Green’s functions describing electromagnetic scattering. As it is viewed from far away, the particle
appears as a point. The entropy can be calculated directly in terms of these polarizabilities in a standard way. In
this manner, we hope to shed light on the self-interaction influences alone. In Sec. II, we extract the polarizabilites,
expressed in terms of the reflection coefficients in the scattering Green’s function. We consider two models for the
nanoparticle, the PDS model mentioned above, and the homogeneous nondispersive dielectric/diamagnetic ball. We
compute the corresponding entropies in Sec. III. The contributions depending linearly on the polarizability are clearly
identified. In Sec. IV, we show the necessity, in the DB case, for subtracting the bulk contributions to achieve con-
sistency with known results, and with the interpretation in terms of the van der Waals interactions between the
constituents of the nanoparticle. This bulk subtraction corresponds to removal of the entropy change due to the
replacement of a volume of vacuum by a corresponding volume of dielectric material. In Appendix B we show that
negative self-entropies correspond to what we call interaction entropies, which can be of any sign, and are overwhelmed
by the positive blackbody entropy. Because the interaction with the blackbody radiation field plays an important role,
in Sec. V, we examine the entropy of the background, with and without permittivity/permeability, including disper-
sion described by the plasma model. The blackbody entropy is well-known in vacuum, but less so in a homogeneous
medium. Especially interesting is the behavior of the entropy in the presence of a dispersive background. Conclusions
are presented in Sec. VI. Appendix A provides evidence that the bulk subtraction for the dielectric sphere is required
for all temperatures. Appendix A also supplies a derivation of the low-temperature free energy of a dilute dielectric
sphere, based on summation of van der Waals interactions, applying a variation of a method used two decades ago
by Barton [34]. The results for the entropy agree with those found in the main text. The results are also confirmed
by the analysis presented in Appendix B. Appendix C shows that our results for the low-temperature self-entropy
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for a dielectric/diamagnetic sphere follow immediately by extending the zero-temperature self-energy derived long
ago [35–37] to finite temperature. Natural units ℏ = ε0 = µ0 = c = kB = 1 are used throughout. That is, we use
rationalized Heaviside-Lorentz units, where the relation between Gaussian and Heaviside-Lorentz polarizabilities is
given by αHL = 4παG.

II. EXTRACTION OF CLASSICAL POLARIZABILITIES

In this paper, we work with macroscopic electromagnetic theory, written in terms of Euclidean frequencies. Firstly,
to see that bulk materials and point-like particles could be dealt with on the same footing, here we show how a small
spherical particle of material behaves as a microscopically large but macroscopically small object, which we will refer
to as a “nanoparticle” for short.

A. Classical Polarizabilities

The Green’s dyadic, Γ, for a given Euclidean frequency, ζ, satisfies[
−ε(ζ, r)− ∇× µ−1(ζ, r) ·∇× 1

ζ2

]
· Γ(ζ; r, r′) = 1δ(r− r′). (2.1)

Without losing much generality, suppose the permittivity and permeability of the system are both isotropic and
inhomogeneous only in the radial direction. For points outside the object, the Green’s dyadic, Γ(ζ; r, r′), is written
simply as [36]

Γ(ζ; r, r′) =

∞∑
l=1

l∑
m=−l

[
−∇× gHζ,l(r, r

′)Xm
l (Ω)Xm∗

l (Ω′)×
←−
∇′ − ζ2gEζ,l(r, r

′)Xm
l (Ω)Xm∗

l (Ω′)
]
, (2.2a)

in which the vector spherical harmonics are defined as

Xm
l (Ω) =

LY m
l (Ω)√
l(l + 1)

, L = r× 1

i
∇. (2.2b)

The reduced Green’s functions gEζ,l, gHζ,l satisfy the equations[
−r d

dr

1

(µ, ε)

d

dr
r +

l(l + 1)

(µ, ε)
+ (ε, µ)ζ2r2

]
g
(E,H)
ζ,l (r, r′) = δ(r − r′). (2.2c)

The solutions for the TE and TM Green’s functions in vacuum outside a spherical particle of radius a are (κ = |ζ|)

gE,H
ζ,l (r, r′) =

1

κrr′

[
sl(κr<)el(κr>) +RE,H

l (κa)el(κr)el(κr
′)
]
, r, r′ > a, (2.3)

in terms of the appropriate reflection coefficients (Mie coefficients) for the particle, where sl and el are modified
Riccati-Bessel functions. Explicit examples will be given in the following. We refer to the terms in the Green’s
function proportional to the reflection coefficients as the scattering parts.

Imagine that source and field points are far from the particle, r, r′ ≫ a. Then, the reflection coefficients are to be
evaluated for small values of κa. In general, this means that only the l = 1 term in the scattering Green’s dyadic needs
to be retained, since R1 ≫ Rl ̸=1 in this limit. This follows from the behavior for small arguments of the modified
Riccati-Bessel functions,

el(x) ∼
1

xl

2lΓ(l + 1/2)√
π

, sl(x) ∼ xl+1

√
π

2l+1Γ(l + 3/2)
, x≪ 1. (2.4)

On the other hand, suppose the permittivity and permeability of the particle are written in terms of electric and
magnetic polarizabilities, α and β, as ε(ζ, r) = 1 + α(ζ)δ(r) and µ−1(ζ, r) = 1 − β(ζ)δ(r). Then, based on a
generalization of the method given in Ref. [38], pp. 277–8, we can identify the polarizabilities of the particle, by
analyzing the above Green’s dyadic, (2.2). As shown in Fig. 1, the free Green’s dyadic, Γ0(ζ; r, r

′), is represented
by the line going directly from r′ to r. The scattering part has a propagator going from r′ to the nanoparticle,
Γ0(ζ; r

′′, r′), and a second one going from the nanoparticle to the observer at r, Γ0(ζ; r, r
′′). The interaction is

effected via the polarizability of the nanoparticle, located at r′′ = 0. The sum of these two contributions gives the
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FIG. 1. Sketch of the scattering process used to extract the polarizability of the nanoparticle.

total Green’s dyadic. Because the particle is small, the single scattering approximation is sufficient. The scattering
part of the TE part of the Green’s dyadic can be written in terms of Γ0 and the polarizabilities of the particle as

ΓE
Sc(ζ; r, r

′) = −Γ0(ζ; r, r
′′)×

←−
∇′′ · β(ζ)

ζ2
·∇′′ × Γ(ζ; r′′, r′) + Γ0(ζ; r, r

′′) ·α(ζ) · Γ(ζ; r′′, r′), r′′ → 0, (2.5)

where the magnetic polarizability, β, couples to the magnetic field, given by Faraday’s law, ∇×E = −ζB, while the
electric polarizability, α, couples to the electric field. (Γ represents a vacuum expectation value of the product of
electric fields.) In Eq. (2.5) we have assumed that the particle has no extent. Schematically, the effective polarizabilities
α and β satisfy the following relation

ΓE
Sc = −Γ0

[
×
←−
∇ β

ζ2
∇×−α

]
Γ0, (2.6)

where we have noted that, because the polarizabilities are small, we may replace Γ by Γ0 on the right.
Now we use the orthonormality properties of the vector spherical harmonics,∫

dΩX∗
lm(Ω) ·Xl′m′(Ω) = δll′δmm′ , (2.7a)

∫
dΩ[f(r′)Xlm(Ω)]∗ · [∇× g(r)Xlm(Ω)] = 0, (2.7b)

∫
dΩ [∇′ × f(r′)Xlm(Ω)]∗ · [∇× g(r)Xlm(Ω)] =

1

rr′

[
d

dr′
(r′f(r′)∗)

d

dr
(rg(r)) + l(l + 1)f(r′)∗g(r)

]
δll′δmm′ .(2.7c)

Then, because l = 1 dominates for a small particle, we see that only the magnetic polarizability term contributes to
the TE scattering Green’s dyadic, which we take to be isotropic:1

βE =
3

2

4π

κ3
RE

1 , αE = 0. (2.8)

Similar arguments apply to the TM contribution. The TM part of ΓSc is

ΓH
Sc(ζ; r, r

′)

∣∣∣∣
l=1

= −RH
1 ∇× e1(κr)e1(κr

′)

κrr′

∑
m

X1m(Ω)X∗
1m(Ω′)×

←−
∇′. (2.9)

The decomposition in terms of scattering with the electric and magnetic polarizabilites of the particle is

ΓH
Sc(ζ; r, r

′) ∼
∑
m,m′

{
∇× e1(κr)s1(κr

′′)

κrr′′
X1m(Ω)X∗

1m(Ω′′)×
←−
∇′′ · αH ·∇′′ × s1(κr

′′)e1(κr
′)

κr′′r′
X1m′(Ω′′)X∗

1m′(Ω′)×
←−
∇′

− 1

κ2
∇× e1(κr)s1(κr

′′)

κrr′′
X1m(Ω)X∗

1m(Ω′′)×
←−
∇′′ ×

←−
∇′′ · βH ·∇′′ ×∇′′ × s1(κr

′′)e1(κr
′)

κr′′r′
X1m′(Ω′′)X∗

1m′(Ω′)×
←−
∇′
}
.

(2.10)

1 We might anticipate that the polarizabilities are not isotropic, but that β = β(1− r̂r̂). But it is easily checked that any radial component
of β does not contribute to Eq. (2.5).
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Each double curl can be replaced by −κ2, and then it is evident that the second term above vanishes in the r′′ → 0
limit. Employing the averaging over solid angles as above for the first term, and using the identity (2.7c), we see
immediately that the electric polarizability arises from the TM scattering Green’s dyadic:

αH =
3

2

4π

κ3
RH

1 , βH = 0. (2.11)

B. Examples

To be more specific, we now turn to particular models.

1. δ-Function Spherical Shell

To get a first indication of how the microscopic structure of a nanoparticle influences its macroscopic behavior, let
us consider an example previously investigated in Ref. [23], namely the δ-function spherical shell of radius a. Suppose
the permittivity and permeability of the system are ε = 1 + λea(1 − r̂r̂)δ(r − a) and µ = 1 + λma(1 − r̂r̂)δ(r − a),
respectively. According to the arguments in Ref. [39], we have required that the polarizabilities normal to the shell
surface are zero. The TE reflection coefficient is given by [39, 40]

RE
l =

λmaκs′2l (κa)− λeaκs
2
l (κa)

1− λmaκe′l(κa)s
′
l(κa) + λeaκel(κa)sl(κa) +

λeλma2κ2

4

, (2.12a)

and the corresponding TM coefficient, RH
l , can be obtained with the substitution λe ↔ λm as

RH
l =

λeaκs
′2
l (κa)− λmaκs2l (κa)

1− λeaκe′l(κa)s
′
l(κa) + λmaκel(κa)sl(κa) +

λeλma2κ2

4

. (2.12b)

For simplicity, consider the case in which λe ̸= 0, λm = 0, so that RE and RH reduce to

RE
l = − λeaκs

2
l (κa)

1 + λeaκel(κa)sl(κa)
, RH

l =
λeaκs

′2
l (κa)

1− λeaκe′l(κa)s
′
l(κa)

. (2.13)

This means that in the point approximation, a → 0, where the small argument approximations (2.4) are applicable,
the effective polarizabilities of the nanoparticle, dominated by l = 1, are expressed as

β = βE = − λe(κa)
2/6

1 + λe(κa)2/3
4πa3, α = αH =

2λe/3

1 + 2λe/3
4πa3. (2.14)

Particularly, as in the model used in Refs. [22, 25], consider dispersion as given by a plasma model, i.e., λe = λ0/(κa)
2.

Then, from Eqs. (2.14), the nonzero polarizabilities for the δ-function sphere are

βE = − λ0/6

1 + λ0/3
4πa3, αH =

2
3

λ0

(κa)2

1 + 2
3

λ0

(κa)2

4πa3. (2.15)

As expected, αH → 4πa3 in the strong-coupling limit, while in that limit βE → − 1
24πa

3. The electric polarizability
possesses dispersion in general.

If we keep both λe, λm nonzero, then, in the point approximation, κa→ 0, RE
1 and RH

1 are approximated as

RE
1 ≈

4
9λm(κa)3 − 1

9λe(κa)
5

1 + 2
3λm + ( 13λe +

λeλm

4 )(κa)2
, RH

1 ≈
4
9λe(κa)

3 − 1
9λm(κa)5

1 + 2
3λe + ( 13λm + λeλm

4 )(κa)2
, (2.16)

which lead us to the magnetic and electric polarizabilities

βE =
2
3λm − 1

6λe(κa)
2

1 + 2
3λm + ( 13λe +

λeλm

4 )(κa)2
4πa3, αH =

2
3λe − 1

6λm(κa)2

1 + 2
3λe + ( 13λm + λeλm

4 )(κa)2
4πa3. (2.17)

We will not pursue the effects of λm further here.
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2. Dielectric Ball

As a second and more realistic example, we study a homogeneous dielectric ball of radius a with nondispersive
permittivity ε and permeability µ, immersed in vacuum. The reflection coefficients are [36]

RE
l = −

sl(κ̃a)s
′
l(κa)−

√
ε
µsl(κa)s

′
l(κ̃a)

sl(κ̃a)e′l(κa)−
√

ε
µel(κa)s

′
l(κ̃a)

, RH
l = −

√
ε
µsl(κ̃a)s

′
l(κa)− sl(κa)s

′
l(κ̃a)√

ε
µsl(κ̃a)e

′
l(κa)− el(κa)s′l(κ̃a)

. (2.18)

Here κ = |ζ|, while κ̃ =
√
εµκ. We proceed as above, and require the small a limit, where

RE
1 =

2

3

µ− 1

µ+ 2
(κa)3 +O

[
(κa)5

]
, RH

1 ∼
2

3

ε− 1

ε+ 2
(κa)3 +O

[
(κa)5

]
, κa≪ 1, (2.19)

Only the terms of order (κa)3 will survive, so it follows that the TE contribution to the magnetic polarizabilities is
nonzero, if the ball is permeable,

αE = 0, βE =
µ− 1

µ+ 2
4πa3, (2.20)

while the TM part yields an electric polarizability depending on the permittivity,

αH =
ε− 1

ε+ 2
4πa3, βH = 0. (2.21)

This electric polarizability is just that found in electrostatics [38]. Again, in the perfectly conducting limit, the
polarizabilities tend to their expected values,

αH → 4πa3, βE → −1

2
4πa3, ε→∞, µ→ 0. (2.22)

For both the δ-function spherical shell and dielectric ball examples, the point-approximated polarizabilities are
proportional to the volume of the nanoparticle, which is consistent with the small-polarizability assumption adopted
in Eq. (2.5). Furthermore, although the constituents of the dielectric ball interact, as explicitly demonstrated in
Appendix A, the Clausius-Mossotti equation, which in our approximation incorporates those interactions, means that
the polarizabilities are linearly related to their corresponding microscopic counterparts; that is, the polarizability of
the nanoparticle is simply the sum of the polarizabilities of its microscopic constituents. This is discussed in detail in
Appendix B.

III. PARTICLE DESCRIPTION OF CASIMIR SELF-ENTROPY

Now we arrive at the main topic of this paper, namely the Casimir self-entropy, which is just the additional entropy
of the thermal field induced by a single object in it, when the effects of the thermal blackbody field have been properly
removed. As has been stated in Sec. I, we saw interesting contributions from self-interaction, which we would like to
investigate with the illustrative particle models here.

Because of the different frequency dependencies, the contributions to the free energy can have quite different behavior
for small polarizabilites. We compute the free energy from the sum over Matsubara frequencies (ζm = 2πTm)

F =
T

2

∞∑
m=−∞

eiζmτ Tr ln(1− Γ0V) ≈ −T

2

∫
(dr′)

∞∑
m=−∞

eiζmτ trΓ0(ζm; r, r′)V(ζm, r′)

∣∣∣∣
r=r′+ρ

, (3.1)

which has been regulated by point-splitting in time, τ , and in space, ρ. (See Ref. [41] for derivation of this formula.)
Here, we treat the potential of the isotropic polarizable point particle as

Ve(ζm, r′) = 1α(ζm)δ(r′), Vm(ζm, r′) = 1β(ζm)δ(r′). (3.2)

The reason for retaining only the first order in the potential is that the particle is small, not that the coupling, λ,
ε− 1, or µ− 1, is weak. The trace of the Green’s dyadic is

trΓ0(ζ;ρ,0)
∣∣
ρ→0

= tr(∇∇− 1∇2)
e−|ζ|r

4πr

∣∣∣∣
r=ρ→0

= −2ζ2 e
−|ζ|ρ

4πρ
, ρ = |ρ| → 0, (3.3)
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which uses the scalar Green’s function equation(
−∇2 + ζ2

) e−|ζ|r

4πr
= δ(r). (3.4)

It is important that the spherical symmetry be respected by the regulator, in this case the distance between the two
points, ρ.

In addition to dispersion, anisotropy of the particle could also play a significant role. Here, however, we cannot
contradict the spherical symmetry requirement, but it might be expected that the particle could have a polarizability
of the form α = α(1− r̂′′r̂′′). However, it is easily seen that the radial-radial component of the Green’s dyadic is zero,
so this is without effect.

A. δ-Function Spherical Shell

We first consider the δ-function spherical shell model above. Using the polarizability βE in Eq. (2.15), if we only
employ spatial point-splitting, that is, set τ = 0, we find, as ρ→ 0

FE = −1

6

λ0

1 + λ0/3
a3
(

2

πρ4
− 2π3T 4

15

)
, aT ≪ 1, (3.5)

where the restriction on T emerges from the point-particle limit. In contrast, αH has nontrivial frequency dependence.
For the weak-coupling TM contribution, there is an additional 1/ζ2 factor, so the behavior is given by

FH =
2

3

λ0

a2
a3
(

1

πρ2
+

π

3
T 2

)
, λ0 ≪ 1, aT ≪ 1. (3.6)

For strong coupling, the TM contribution is the same form as the TE, except for the replacement of βE = − 1
24πa

3

by αH = −2βE = 4πa3. The divergent terms for both the TE and TM contributions are independent of temperature,
so the weak-coupling, low-temperature entropies are with t = 2πaT

SE = −λ0
t3

90
, SH = −2

9
λ0t, (3.7)

which are exactly the results found in Ref. [23]. The strong coupling limits are given by

SH
∞ = −2SE

∞ =
t3

15
, (3.8)

which are consistent with the well-known perfectly-conducting sphere results for low temperature [42]. Note that in
weak coupling, the total self-entropy is negative, while it is positive in strong coupling.

B. Dielectric/Diamagnetic Ball

We now turn to the homogeneous dielectric/diamagnetic ball. Following the same procedure, we find for the free
energies, assuming the absence of dispersion [see Eq. (2.21) and Eq. (2.20)],

FH,E =
1

4π

(
αH

βE

)(
2

πρ4
− 2π3T 4

15

)
. (3.9)

If we use the point-splitting in time rather than in space,that is, keep τ ̸= 0, but set ρ = 0, we encounter
∞∑

m=−∞
eiζmτ trΓ0(ζm) = − 1

2π

∞∑
m=−∞

eiζmτζ2m

(
1

ρ
− |ζm|

)
, (3.10)

where we have expanded Eq. (3.3) for small ρ. The first term here is proportional to a second derivative of a δ-function
in τ [see Eq. (5.24)], so is to be omitted, while the second is

i

2π

(
∂

∂τ

)3 [
1

1− ei2πTτ
− 1

1− e−i2πTτ

]
. (3.11)



8

Carrying out the differentiation and expanding now in τ , we obtain

FH,E =
1

4π

(
αH

βE

)(
− 6

πτ4
− 2π3T 4

15

)
, (3.12)

where the −3 ratio in the coefficients of the divergence is expected on general grounds [43]. [See, for example,
Eq. (5.4).] Both Eqs. (3.9) and (3.12) have the same finite part, which yields the total self-entropy (t = 2πaT )

S = SH + SE =

(
ε− 1

ε+ 2
+

µ− 1

µ+ 2

)
t3

15
. (3.13)

This has the correct strong-coupling (perfectly-conducting) ε→∞, µ→ 0 limit in Eq. (3.8). Comparing Eq. (3.7) and
Eq. (3.13), we see how different models of the nanoparticle can lead to entirely disparate behaviors of the self-entropy.
In particular, this entropy is positive for ε > 1, µ > 1, although it could be of either sign if one of these inequalities
is violated.

For dilute constituents of the dielectric/diamagnetic ball, we evidently see terms depending linearly on the sus-
ceptibilities ε − 1 and µ − 1 in Eq. (3.13). This is extraordinary and seems, at first sight, inexplicable, considering
well-established understandings. We showed [28], at zero temperature, that the free energy should begin, in the dilute
limit for a pure dielectric ball, as (ε− 1)2, which is understood as originating from the pairwise summation of van der
Waals interactions. The free energy was also calculated many years ago by Nesterenko, Lambiase, and Scarpetta [44],
and by Barton [34, 45]2

F =
23

1536

(ε− 1)2

πa
+

7

270
(ε− 1)2π3a3T 4. (3.14)

The first term, corresponding to zero temperature, was first calculated by Milton and Ng (by summing van der Waals
interactions) [46] and by Brevik, Marachevsky, and Milton (by expanding the Casimir energy) [47]. The authors of
Ref. [44] seem not to remark that the corresponding entropy is negative,

S = − 7

540
(ε− 1)2t3, |ε− 1| ≪ 1. (3.15)

So, the initial linear behavior in ε − 1 seen in Eq. (3.13) is not present. Although there might be some differences
between Casimir entropies of a nanoparticle and a bulk dielectric ball, it is still puzzling to see this discrepancy, which
will be dealt with in the following section.

IV. BULK FREE ENERGY

Hitherto, we have been considering a point particle. The conundrum mentioned at the end of the preceding section
arises when we recognize that an extended object appears as a point far away from the object. The formula obtained
for the additional free energy resulting from the insertion of the particle into the thermal bath therefore includes
everything. However, when one looks at the ball in the near field and considers it as an extended object, one must
recognize that an additional part of the free energy comes from the replacement of a point particle (of zero volume)
by a medium of finite volume—in effect, this finite volume of the medium “displaces” what was previously considered
the same volume of vacuum in the far field, point particle, perspective. This part of the additional free energy
must therefore be subtracted in order to be left with the true additional free energy due to the interaction, and this
subtraction is the finite temperature bulk subtraction. The need for this subtraction here is simply because the initial
setup regarded the particle as a point, and the finite extension of the particle itself contributes a change to the free
energy of that volume, which is in a sense extraneous to what is being sought here, and so must be subtracted.

This way of extracting a meaningful self-free energy for the dielectric ball is what is conventionally done, in order
to obtain consistency with van der Waals interactions. That is, we subtract the contribution that would be obtained
if either the interior or the exterior medium filled all of space. This was discussed recently in detail in Ref. [28],
but only at zero temperature. We can follow the method articulated in Appendix A of that reference. The most
unambiguous way to proceed is to start with the pressure on the sphere, which is the discontinuity, across the surface,
of the radial-radial stress tensor component,

p(0)(ε, µ; ε′, µ′; a) = T (0)
rr (ε, µ; a−)− T (0)

rr (ε′, µ′; a+), (4.1)

2 Barton gets an extra term, besides the two displayed in Eq. (3.12), proportional to the area of the sphere: ∆FB = − 1
4
(ε− 1)2ζ(3)a2T 3.

This discrepancy seems not to have been resolved. We rederive this result, without this discrepant term, by a variation of Barton’s
method in Appendix A. That Appendix further discusses the origin of this discrepancy.
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where the two stress tensors refer to a homogeneous medium, either ε, µ, or ε′, µ′ filling all space, and a± means the
corresponding stress tensor is evaluated just outside or just inside the spherical boundary of the dielectric/diamagnetic
sphere. (In our case, ε′ and µ′ are both set equal to unity.) Here, in each region, using the Matsubara frequency
decomposition at finite temperature T , the use of which is equivalent to that of the fluctuation-dissipation theorem)3

T (0)
rr (ε, µ, a−) =

1

2a4
aT

∞∑
m=−∞

eiζmτ
∞∑
l=1

2l + 1

4π
fl(xm), (4.2)

with xm = 2π|m|aT√εµ, with the summand being

fl(x) = 2x[s′l(x)e
′
l(x)− s′′l (x)el(x)] = 2

∂

∂r

(
∂

∂s
− ∂

∂r

)
sl(rx)el(sx)

x

∣∣∣∣
s>r>1,s→1

. (4.3)

Now using the addition theorem, with s > r,
∞∑
l=0

(2l + 1)sl(rx)el(sx) =
xrs

s− r
e−x(s−r), (4.4)

we see that the bulk stress tensor is

T (0)
rr (ε, µ; a−) =

T

4πa3

∞∑
m=−∞

eiζmτ ∂

∂r

(
∂

∂s
− ∂

∂r

)(
rs

s− r
− 1

2xm

)
e−xm(s−r)

∣∣∣∣
s>r>1,s→1

=
T

4πa3
∂

∂r

(
∂

∂s
− ∂

∂r

){
rs

s− r

[
1

1− e−x(s−r)+iτ̂
+

1

1− e−x(s−r)−iτ̂
− 1

]
+

1

2x
ln

[(
1− e−x(s−r)+iτ̂

)(
1− e−x(s−r)−iτ̂

)]}∣∣∣∣
s>r>1,s→1

. (4.5)

Here, we have abbreviated x = x1 = 2πaT
√
εµ and τ̂ = 2πTτ . When the differentiations, and the s → 1 limit is

carried out, and the result is expanded for small temporal cutoff τ , we find

T (0)
rr (ε, µ; a−) =

1

π2
(εµ)3/2

1

τ4
+

π2

45
(εµ)3/2T 4. (4.6)

The corresponding free energy is determined from the principle of virtual work:

p(0)(ε, µ; 1, 1; a) = − 1

4πa2
∂

∂a
F (0)(T, a), (4.7)

where the bulk free energy is

F (0)(T, a) = −4a3

3

(
1

πτ4
+

π3T 4

45

)[
(εµ)3/2 − 1

]
. (4.8)

The first term here is the expected quartic divergence seen in Ref. [28] (apart from the erroneous sign there), while
the second gives an entropy4

S(0) =
2

135
t3
[
(εµ)3/2 − 1

]
. (4.9)

As stated at the beginning of this section, this is just the entropy change due to the replacement of the vacuum by
the dielectric/diamagnetic medium in the volume enclosed by the spherical boundary of the nanoparticle. When this
(for µ = 1) is subtracted from the entropy computed in Eq. (3.13), and the result expanded in powers of ε − 1, it is
seen that the linear terms cancel (this occurs for the divergent contributions to the free energy as well in (3.12)), and
the quadratic terms combine to

SH − S(0) = − 7

540
(ε− 1)2t3, |ε− 1| ≪ 1, (4.10)

3 Note that the formula for the stress tensor in Ref. [28] is inccorect by a minus sign.
4 It might be noted that the entropy of the thermal vacuum (blackbody radiation) confined to the volume of the nanosphere is Sa

vac =
2t3/135. See Eq. (5.6); the corresponding entropy for the dielectric medium is given in Eq. (5.12).
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exactly the result (3.15) found in Refs. [34, 44, 45].
We thus recognize that the deviations from the scattering contribution (3.13) stem from the subtraction of the bulk

contribution. Intuitively, it makes sense that the linear ε− 1 terms in Eq. (3.13) and Eq. (4.9) are the same, as they
arise from the self-interaction of the medium, which has always to be subtracted to obtain a physically measurable
quantity, such as Casimir-Lifshitz force, as was recognized by Lifshitz and co-workers in mid-1950s [48] at arbitrary
temperatures.

There is no doubt that at zero temperature, the bulk Casimir energy of the medium is divergent and should be
properly “renormalized,” or at least subtracted, to extract physics. But perhaps a system with a particular geometry
at finite temperature provides us with a chance to unveil the physics hiding in the nontriviality of the divergent bulk
Casimir energy. It is a necessary condition for a quantity to be considered physical that this quantity should be
unchanged no matter which regularization scheme is employed. As shown above, Eq. (4.6) is obtained by carrying
out the s → 1 limit first and then keeping the leading orders of the temporal cutoff. Alternatively, we could change
the order of limits, i.e., take τ → 0 first, then set r = 1, and finally seek the asymptotic behavior as s goes to 1, With
this approach, the stress T

(0)
rr takes the form

T (0)
rr (ε, µ; a−) = −

1

π2a4
√
εµ

[
3

(s− 1)4
+

4

(s− 1)3
+

1

(s− 1)2

]
+

π2

45
(εµ)3/2T 4. (4.11)

This spatial point-splitting yields a different divergence structure, but the temperature-dependent term is just the
same as in Eq. (4.6), which gives us some confidence in that result. (A still different divergence structure emerges
if, for example, we take the limit r → s(1 − ϵ), ϵ → 0, and then set s = 1, but the temperature dependence remains
unchanged.)

For further discussion of the meaning of the bulk subtraction, the interaction entropy, and the sign of the latter,
see Appendix B.

V. BLACKBODY ENTROPY

We now turn to the entropy of the background with which the nanoparticle interacts.

A. Vacuum entropy

This initial discussion follows that in Ref. [22]. For a more complete discussion, see Sec. V C. We start with the
free scalar Green’s function in empty space, at temperature T , which follows from Eq. (3.4):

G(τ, ρ) =
T

4πρ

∞∑
m=−∞

eiζmτe−|ζm|ρ, (5.1)

in terms of the Euclidean time difference τ and the spatial separation ρ, which we will regard as temporal and spatial
regulators, tending to zero. The Matsubara sum is immediately carried out:

G(τ, ρ) =
T

4πR

(
−1 + 1

1− e−2πT (ρ−iτ)
+

1

1− e−2πT (ρ+iτ)

)
. (5.2)

To find the energy density, we apply a differential operator:

u = T 00 =
1

2
(∂0∂0′ +∇ ·∇′)G(τ, ρ) =

1

2

(
∂2

∂τ2
− ∂2

∂ρ2
− 2

ρ

∂

∂ρ

)
G(τ, ρ), (5.3)

where we have used translational invariance and noted that t− t′ = iτ . We can further replace the radial Laplacian
by a second τ derivative, because of the differential equation satisfied by the Green’s function. Thus we simply obtain

u =
1

2π2

3τ2 − ρ2

(τ2 + ρ2)3
+

π2T 4

30
. (5.4)

This is to be multiplied by two for electromagnetism, since the divergenceless Green’s dyadic for electromagnetism is

Γ′(τ, ρ) = (∇∇− 1∇2)G(τ, ρ). (5.5)
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Thus the electromagnetic free energy density and entropy density are (f = u− Ts).

fem =
1

π2

3τ2 − ρ2

(τ2 + ρ2)3
− π2T 4

45
, sem =

4π2T 3

45
. (5.6)

The divergence structure is that found by Christensen [49].

B. Homogeneous nondispersive background

What happens if the vacuum is replaced by a uniform medium made of a homogeneous dispersionless fluid charac-
terized by permittivity ε and permeability µ? Then, since the Euclidean-frequency Green’s dyadic satisfies(

−ε− 1

µζ2
∇×∇×

)
Γ(ρ; ζ) = 1δ(ρ), (5.7)

we see that εΓ(ρ; ζ
√
εµ) satisfies the free Green’s dyadic equation. And since the energy density is

u =
1

2
(εE2 + µH2), (5.8)

and, from Maxwell’s equations, the contributions from the two terms are identical, we see that the effective scalar
Green’s function in space and Euclidean time is obtainable from Eq. (5.1) by the substitution |ζm| → |ζm|

√
εµ:

εG(τ, ρ) =
T

4πρ

∞∑
m=−∞

eiζmτe−|ζm|√εµρ. (5.9)

Apart from the leading factor of T , this looks like the vacuum formula (5.1) with T → T
√
εµ and τ → τ/

√
εµ. Thus,

multiplying by 2, we obtain the vacuum energy density

uem = − 1

π2

1
√
εµ

ρ2 − 3τ2/εµ

(ρ2 + τ2/εµ)3
+

π2

30
(εµ)3/2T 4. (5.10)

For a purely spatial cutoff, τ = 0, this yields for the divergent part:

udiv = − 1

π2√εµρ4
, (5.11a)

while for a temporal cutoff (ρ = 0):

udiv =
3(εµ)3/2

π2τ4
. (5.11b)

In any case, the entropy density is

sem = (εµ)3/2
4π2T 3

45
, (5.12)

as we already saw in Eq. (4.9). [The apparent discrepancy between the divergent terms in Eqs. (5.11b) and (4.8) is
explained at the end of this section.]

C. Dispersion

Now, suppose the background is described by a permittivity given by the plasma model, without dissipation,
ε = 1 + ω2

p/ζ
2, where ω2

p = ne2/m is the square of the plasma frequency, in terms of charge carriers of charge e,
mass m, and number density n. Realistically, in the universe, n is very small, say 1–10−4 cm−3 [50], so for electrons,
ωp ∼ 10−10–10−13 eV, and the number would be much smaller if we considered hadronic matter. The 3 K CMB
radiation corresponds to an energy of order 10−4 eV, so ωp is much smaller than the lowest Matsubara frequency.
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The above treatment must be improved in order to describe dispersion. We can follow Ref. [39], which says that
the internal energy of an object characterized by dispersive isotropic permittivity and permeability is

U = T

∞∑
m=−∞

Tr

[
ε+

1

2
ζm

dε

dζm
− 1

2ζm
∇× 1

µ2

dµ

dζm
∇×

]
Γ. (5.13)

Here we consider a nonmagnetic material so the last term is not present. Now consider a plasma model for the
dispersion, ε = 1 + ω2

p/ζ
2
m; remarkably, then, the first two terms collapse to

U = T

∞∑
m=−∞

TrΓ. (5.14)

So the only appearance of the plasma frequency is in the Green’s dyadic.
The differential equation satisfied by Green’s dyadic is(

− 1

ζ2m
∇×∇×−1−

ω2
p

ζ2m

)
Γ(ρ; ζm) = 1δ(ρ). (5.15)

This is solved by the following construction:

Γ = (1 + ω2
p/ζ

2
m)−1Γ̃, (5.16)

where, apart from a δ-function term (contact term),

Γ̃ = Γ̃′ − 1, (5.17)

the divergenceless Green’s dyadic Γ̃′ is built from a scalar Green’s function,

Γ̃′ = (∇∇−∇21)G, (5.18)

which satisfies

(−∇2 + ζ2m + ω2
p)G(ρ; ζm) = δ(ρ). (5.19)

All of this leads immediately to the following expression for the internal energy density

u = − T

2πρ

∞∑
m=−∞

ζ2meiζmτe−
√

ζ2
m+ω2

pρ, (5.20)

as one might have anticipated. (Here, we are inserting a time-splitting regulator in the same naive manner as before;
however, see Eq. (5.65) below—cutoffs in the energy and free energy have different structures.)

We now expand this to first order in ω2
p, in view of the remarks at the beginning of this subsection, and then carry

out the Matsubara sum:

u = − T

2π

(
1

ρ

∂2

∂ρ2
+

ω2
p

2

∂

∂ρ

)(
−2 + 1

1− e−2πT (ρ−iτ)
+

1

1− e−2πT (ρ+iτ)

)
=

1

π2

3τ2 − ρ2

(τ2 + ρ2)3
+

π2

15
T 4 −

ω2
p

4

(
1

π2

τ2 − ρ2

(τ2 + ρ2)2
+

1

3
T 2

)
. (5.21)

For ωp = 0, we recover twice the previous scalar vacuum result (5.4). The resulting entropy density, including the
plasma correction, is ( ∂u

∂T = T ∂s
∂T )

s =
4π2

45
T 3 −

ω2
p

6
T. (5.22)

The correction is indeed very small if T ≫ ωp.
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1. Weak-coupling, high-temperature, expansion

It is easy to carry out this calculation to all orders in x = ωp/ζ1. For simplicity, let us suppose τ ≫ ρ, so we can
expand the exponential in Eq. (5.20):

u = − T

2πρ

∞∑
m=−∞

ζ2meiζmτ
(
1− ρ

√
ζ2m + ω2

p

)
. (5.23)

The first term is just the derivative of a δ function,
∞∑

m=−∞
ζ2meiζmτ = −(2π)(2πT )2δ′′(2πTτ), (5.24)

so may be omitted since we take the limit as τ → 0. So with only temporal regulation,

u =
T

π

∞∑
m=1

ζ2m

√
ζ2m + ω2

p cos ζmτ. (5.25)

For ωp ≪ ζ1, we expand the square root in a binomial series,

u =
T

π

∞∑
m=1

ζ3m

∞∑
k=0

(
1
2
k

)(
ωp

ζm

)2k

cos ζmτ. (5.26)

The first two terms in this series are displayed above in Eq. (5.21). The third term is just the expansion of a logarithm,

u(2) =
ω4
p

32π2

[
ln
(
1− e−i2πTτ

)
+ ln

(
1− ei2πTτ

)]
=

ω4
p

16π2
ln 2πTτ. (5.27)

The remaining terms in the series are finite, so in terms of x = ωp/(2πT ),
∞∑
k=3

u(k) = 4π5/2T 4
∞∑
k=3

ζ(2k − 3)

Γ(k + 1)Γ(3/2− k)
x2k. (5.28)

In fact, the finite (temperature-dependent) parts of u are given by this expression for k = 0 and 1, while for k = 2
with the replacement ζ(1)→ − ln 2πTτ gives the appropriate lnT dependence, seen in Eq. (5.27). Then using

∂u

∂T
= T

∂s

∂T
, (5.29)

we deduce the following expression for the entropy density:

s = 4π5/2T 3
∞∑
k=0

(2− k)ζ(2k − 3)

Γ(k + 1)Γ(5/2− k)
x2k + s0, (5.30)

where s0 is a constant independent of T . Evidently, the radius of convergence of this series is 1. We can combine
Eqs. (5.28) and (5.30) to give the free energy density,

f = u− Ts = −2π5/2T 4
∞∑
k=0

ζ(2k − 3)

Γ(k + 1)Γ(5/2− k)
x2k − Ts0, (5.31)

where again the divergent ζ(1) term is to be interpreted as a logarithmic divergence.

2. Nonperturbative resummation

Although the above series only converges for x < 1, it can be analytically continued to all positive x by use of the
representation for the Riemann zeta function,

ζ(s) =
1

Γ(s)

∫ ∞

0

dt
ts−1

et − 1
, (5.32)
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FIG. 2. Comparison of the vacuum entropy density (5.6) (red curve)with the entropy density including plasma-model dispersion,
(5.35), (blue curve). These are plotted as functions of x−1 = 2πT/ωp. Both entropy densities tend to zero at zero temperature,
and are everywhere positive. The inset shows the behavior for low temperature, and reveals that the plasma-model entropy
drops exponentially to zero for relatively large values of the temperature.

which then yields

s =
ω3
p

90πx3

{
1− 15

2
x2 − 45

4
x4 + 90x3

∫ ∞

0

dt

t

1

et − 1
J3(xt)

}
+ s0, (5.33)

where J3 is a Bessel function. The limit of s− s0 for large x (temperature low compared to the plasma frequency) is

s− s0 ∼ −
ω3
p

6π
, x→∞, (5.34)

so the requirement of the third law of thermodynamics (Nernst’s heat theorem) is that s0 = ω3
p/(6π).

In fact, if we now make appropriate additions and subtractions to the integrand in Eq. (5.33), we can write the
entropy density as

s =
ω3
p

π

∫ ∞

0

dy

y

(
1

ey/x − 1
− x

y
+

1

2
− y

12x
+

y3

720x3

)
J3(y), (5.35)

where the last term in the integral is defined by analytic continuation. (For numerical purposes, only the first three
subtractions should be employed, leaving the first term in Eq. (5.33).) Numerically, it appears that the entropy is
exponentially small in the x → ∞ limit, that is, there are no power corrections. Consistent with this, this limit is
actually achieved very early, in the perturbative region, as Fig. 2 shows. This exponential damping is precisely what
is expected in a massive theory—note, here, that the plasma frequency plays the role of a mass.

Formal verification of this can be obtained by constructing a strong-coupling (low-temperature) expansion for the
quantity in parentheses in Eq. (5.35) by the rest of the Bernoulli expansion,

s =
ω3
p

π

∫ ∞

0

dy

y

∞∑
k=3

B2k

2k!

(y
x

)2k−1

J3(y). (5.36)

We use analytic continuation to define the y integrals:∫ ∞

0

y2k−2J3(y) = 22k−2Γ(1 + k)

Γ(3− k)
, (5.37)

which vanishes for k ≥ 3. Thus, the low-temperature expansion of Eq. (5.35) is zero.
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3. Strong-coupling, low-temperature, expansion

To verify this limiting behavior, let us try to extract directly the low-temperature (large x) limit. The Euler-
Maclaurin formula should be effective in this regard:

∞∑
m=0

′f(m) =

∫ ∞

0

dmf(m)−
∞∑
k=1

B2k

(2k)!
f (2k−1)(0), (5.38)

where the prime means that the m = 0 term is counted with half weight. For variety’s sake, let’s now set τ = 0, and
keep only the spatial cutoff. Then the energy density (5.20) is

u = − T

πρ

∞∑
m=0

ζ2me−ρ
√

ζ2
m+ω2

p = − T

πρ

(
∂2

∂ρ2
− ω2

p

) ∞∑
m=0

′e−ρ
√

ζ2
m+ω2

p . (5.39)

The integral term in the Euler-Maclaurin formula gives∫ ∞

0

dme−ρ
√

(2πmT )2+ω2
p =

1

2πTρ

∫ ∞

ωpρ

du
u√

u2 − ω2
pρ

2
e−u =

ωp

2πT
K1(ωpρ). (5.40)

Applying the differential operator in Eq. (5.39),(
∂2

∂ρ2
− ω2

p

)
ωp

2πT
K1(ωpρ) =

ω2
p

2πTρ
K2(ωpρ), (5.41)

and then using the small argument expansion of the modified Bessel function, we obtain for the integral contribution
to the internal energy density

uint = −
1

π2

1

ρ4
+

1

4π2

ω2
p

ρ2
+

ω4
p

64π2
(−3 + 4γ + 4 ln(ωpρ/2)) . (5.42)

This agrees with the τ = 0 divergences displayed in Eq. (5.21), while the logarithmic divergence in ρ is the same as
that in τ seen in Eq. (5.27).

But now it is apparently that f(m) is an even function of m, which means that all the odd derivatives vanish. Thus,
there is no temperature dependence of the internal energy in the low temperature limit. (That is, the dependence is
exponentially small, and nonperturbative in the temperature.) This is consistent with the zero value of the entropy,
without power corrections, found in this limit above.5

4. Low-temperature asymptotics

In fact, we can readily obtain the asymptotic behavior for low temperature. We rewrite Eq. (5.39) as

u =
T

2π3/2ρ

(
∂2

∂ρ2
− ω2

p

)
∂

∂ρ
ρ

∫ ∞

0

dt t−3/2e−te−ρ2ω2
p/(4t)

∞∑
m=0

′e−ρ2ζ2
m/(4t). (5.44)

Now, using the Poisson summation formula, we can recast the m sum into [51]

1

2

∞∑
m=−∞

e−ρ2π2T 2m2/t =
1

ρT

√
t

π

∞∑
m=0

′e−m2t/(ρ2T 2). (5.45)

5 In fact, the Euler-Maclaurin formula is exact if only n terms are kept in the Bernoulli sum, and the remainder term is added:

1

(2n)!

∞∑
k=0

∫ 1

0
dtf (2n)(t+ k)B2n(t), (5.43)

where B2n is the Bernoulli polynomial. Even for n = 1 it is easily seen numerically that the contribution to the energy (5.39) is extremely
small if T is moderately large and ρ is small.
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FIG. 3. The exact entropy of the blackbody radiation in the plasma model (upper blue curve) compared with the leading
low-temperature asymptotic expression (5.50) (lower red curve) and the numerical integration of the m = 1 term in Eq. (5.47),
dotted magenta curve. Even for x = 0.2, a rather large value of T , the latter is less than 5% low. The cruder approximation
(5.50) is only good for rather small values of x−1 = 2πT/ωp.

Then the t integration gives a Macdonald function:

u =
ω4
p

2π2

1

δ

(
∂2

∂δ2
− 1

)
∂

∂δ

∞∑
m=−∞

K0(
√
δ2 + (2πmx)2), (5.46)

where δ = ωpρ. For m = 0 this yields exactly the divergent structure (5.42) as δ → 0. However, for m ̸= 0, the small
δ limit is finite:

um̸=0 =
ω4
p

π2

∞∑
m=1

[
K1(z)

z
+

3K2(z)

z2

]
, z = 2πmx. (5.47)

For large z, low temperature, this is dominated by the m = 1 term,

u(1) ∼
ω4
p

4π3
x−3/2e−2πx, x→∞. (5.48)

The entropy is obtained by integrating

∂s

∂x
=

2πx

ωp

∂u

∂x
, (5.49)

which yields the leading asymptotic approximation

s(1) ∼
ω3
p

2π2

e−2πx

√
x

, T ≪ ωp. (5.50)

Comparisons with the exact results obtained from Eq. (5.33) are shown in Fig. 3. The exponential suppression of the
entropy for temperatures low compared to the “mass,” the plasma frequency, is thus unambiguously established.

5. Free energy

The above argument is defective in one sense: Because it was based on the internal energy, it did not determine the
constant s0 in the entropy, which had to be fixed by hand, by requiring that the entropy vanishes at zero temperature,
the third law of thermodynamics. Therefore, it would appear more satisfactory to start with the free energy. However,
this is more complex, as we now see.

The free energy is defined by (again, for example, see Ref. [41])

F = −T

2
Tr lnΓ, (5.51)
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where the trace now includes the sum over Matsubara frequencies. Now from Eq. (5.15), we see that

0 =
∂

∂ω2
p

(
Γ−1Γ

)
= − 1

ζ2m
Γ+

∂

∂ω2
p

lnΓ, (5.52)

which says that

lnΓ(ω2
p) = −

1

ζ2m

∫ ∞

ω2
p

dω′2
p Γ(ω′2

p ). (5.53)

Now the internal energy is proportional to the trace of Γ, so the free energy can be immediately given after integration
on ω′2

p as

f = − T

πρ2

∞∑
m=0

′
(√

ζ2m + ω2
p +

1

ρ

)
e−ρ
√

ζ2
m+ω2

p . (5.54)

When ω2
p = 0, this directly implies Eq. (5.6).

In general, we have to consider m = 0 separately from the higher Matsubara terms. (Recall, m = 0 does not
contribute to the internal energy.) That is

fm=0 =
T

2πρ2

(
∂

∂ρ
− 1

ρ

)
e−ρωp ∼ − T

2πρ3
+

Tω2
p

4πρ
−

Tω3
p

6π
, ρ→ 0. (5.55)

The T -dependent divergent terms must be cancelled by the remainder of the Matsubara series. As before, we can
proceed perturbatively in powers of ωp. The zeroth order term is

f
(0)
m ̸=0 =

T

πρ2

(
∂

∂ρ
− 1

ρ

) ∞∑
m=1

e−2πmTρ ∼ − 1

π2ρ2
+

T

2πρ3
− π2T 4

45
, ρ→ 0 (5.56)

where the first and last terms reproduce Eq. (5.6) and the middle term cancels the ωp-independent term in Eq. (5.55).
The term of order ω2

p is

f
(1)
m ̸=0 =

ω2
pT

2πρ

∞∑
m=1

e−ρζm ∼
ω2
p

4πρ2
−

ω2
pT

4πρ
+

ω2
pT

2

12
, ρ→ 0. (5.57)

The second term here cancels the second term in Eq. (5.55), and we are left with the structure seen in Eqs. (5.21)
and (5.22). As for the term of order ω4

p, we have

f
(2)
m̸=0 = −

ω4
p

16π2

∞∑
m=1

1

m
e−δm/x ∼

ω4
p

16π2
ln 2πTρ, (5.58)

again as anticipated.
Since this approach seems a bit complicated, we will reinsert a temporal regulator, which simplifies the calculation.

But we have already achieved our goal: It is clear that the perturbative expansion for m ̸= 0 contributions involves
only even powers of ωp, so the only term of order ω3

p is that remaining in Eq. (5.55). This term, linear in the
temperature, corresponds to the constant term in the entropy, undetermined by the previous analysis:

s0 =
ω3
p

6π
. (5.59)

Naively inserting the temporal regulator into Eq. (5.54), we write

f =
T

2πρ2

(
∂

∂ρ
− 1

ρ

) ∞∑
m=−∞

e−ρ
√

ζ2
m+ω2

peiζmτ . (5.60)

Now with τ ̸= 0, we can expand in ρ, and after omitting terms involving δ functions in τ , find

f = − T

6π

∞∑
m=−∞

(ζ2m + ω2
p)

3/2eiζmτ . (5.61)
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Now, this is readily expanded in powers of x = ωp/ζ1. Following the by-now familiar procedure, we find the first three
divergent terms:

f (0) = − 1

π2τ4
− π2T 4

45
, (5.62a)

f (1) =
ω2
p

4π2τ2
+

ω2
p

12
T 2, (5.62b)

f (2) =
ω4
p

16π2
ln 2πTτ. (5.62c)

The remaining terms are finite. The only odd term in ωp comes from the m = 0 term:

fm=0 = −
ω3
pT

6π
, (5.63)

which corresponds precisely to the constant term in the entropy. Then, the higher terms in ωp are

f (k≥3) =
8π2T 4

3

Γ(5/2)ζ(2k − 3)

Γ(k + 1)Γ(5/2− k)
x2k, (5.64a)

corresponding to the entropy term

s(k≥3) = 4π5/2T 3 (2− k)ζ(2k − 3)

Γ(k + 1)Γ(5/2− k)
x2k. (5.64b)

The temperature-dependence of f , and the entropy are precisely those found previously in Sec. V C 1. The cutoff
terms, however, are off by − 1

3 and −1 for the quartically divergent and quadratically terms, respectively. This is due,
as explained in Ref. [39], to the fact that an exponential temporal cutoff in the free energy corresponds to a more
elaborate form for the internal energy:

eiζτ → eiζτ − 1

iζτ
(5.65)

This precisely accounts for the discrepant factors in the zero-temperature divergences.

VI. CONCLUSIONS

Previously [23, 26, 27], we analyzed the self-entropy of a macroscopic sphere. But viewed from far away, a compact
object appears to be a particle. So, in this paper, we examine the question of self-entropy from the nanoparticle
perspective. By nanoparticle, we mean that the size of the particle is small compared to any other length scale, such
as the inverse temperature. This self-entropy exhibits surprising features, especially its negativity for weak coupling to
the electromagnetic field. We approach this question by first extracting the polarizabilities of a nanoparticle through
consideration of its effect on the scattering of the electromagnetic field. From these polarizabilities, expressed in terms
of the reflection coefficients, we can compute the free energy and entropy by summing over Matsubara frequencies.
The results apply to low temperatures, compared to the inverse size of the nanoparticle. (For a 100 nm particle, the
temperature for which aT = 1 is 24,000 K.)

Specifically, we illustrate these ideas by investigating two models. First, for a δ-function spherical shell in which the
permittivity on the surface is transverse and represented by the plasma model, we obtain results for the self-entropy
which give the leading low-temperature response, linear in the coupling, for the TE and TM modes; these self-entropies
are precisely those found earlier [23]. The second model, a dielectric/diamagnetic ball without dispersion, involves
more subtleties. The scattering-derived polarizabilities give a contribution to the free energy which is linear in the
susceptibility, in the dilute limit, which therefore violates the expected connection between Casimir and van der Waals
forces [28].

This discrepancy is resolved by the subtraction of the “bulk contribution,” which is the contribution to the Casimir
free energy corresponding to the nonscattering Green’s functions due to the medium either inside or outside the
spherical boundary filling the whole space. (Such a contribution only removes the vacuum contribution for a hollow
spherical shell.) Performing this subtraction, we remove the linear term, and recover the negative self-entropy found
two decades ago [34, 44, 45]. That self-entropy is reproduced again in Appendices A–C.



19

However, the reader might well object to the fact that the known energies at zero temperature are not reproduced
by the procedure proposed here. After all, in second order in the susceptibility, the finite part of the energy of the
dielectric ball is as given by the first term in Eq. (3.14). But here the only finite terms in the free energy are those
going like a power of the temperature, yielding a finite self-entropy. Furthermore, the divergent term found here for
the dielectric ball is the difference between the τ -dependent terms in Eqs. (3.12) and (4.8),

Fdiv =
7a3

6πτ4
(ε− 1)2, (6.1)

while the energy found some forty years ago [35] is less singular,

Ediv =
a2

8τ3
(ε− 1)2. (6.2)

One might think that the reason for not seeing the temperature-independent finite terms is that extraction of these
requires more sophisticated analytic continuation techniques, such as zeta-function regularization, which sweep di-
vergences under the rug.6 Apparently, the point-particle viewpoint is only effective in extracting the temperature-
dependent part of the free energy, and therefore the entropy, but not the finite or divergent parts. As argued in
Appendix B, it would be anticipated that the point-particle viewpoint being explored here is only effective in extract-
ing extensive quantities, proportional to the volume of the particle, and not contributions to the free energy going
like lower powers of the radius of the particle.

On the other hand, we now understand the appearance of negative self-entropies found for objects, be they macro-
scropic dielectric balls or small nanoparticles. The approach presented here reveals the negative entropy as arising
from an interaction between the nanoparticle and the blackbody radiation. As discussed in Appendix B, the free
energy of the blackbody radiation in vacuum, and in the material of the dielectric ball, both without interaction (that
is, the “nonscattering” part), must be subtracted from the total free energy to obtain the self-free energy, or the
interaction free energy. This precisely corresponds to our bulk subtraction. The resulting interaction entropy can be,
in fact, negative. (It bears a resemblance to, but in general, is not the same as, the negative of the relative entropy
discussed in Ref. [52].) The total entropy, of course, has the bulk, blackbody entropies included, so is always positive.

ACKNOWLEDGMENTS

The work of KAM was supported by a grant from the US National Science Foundation, grant number 2008417.
It is a pleasure to acknowledge the collaborative assistance of Stephen Fulling and Iver Brevik. This paper reflects
solely the authors’ personal opinions and does not represent the opinions of the authors’ employers, present and past,
in any way.

Appendix A: Bulk Subtraction at Finite Temperature

It might be thought that the bulk subtraction, which we used to derive the entropy of the dielectric/diamagnetic ball,
need only be employed at zero temperature. After all, the bulk divergences occur only at zero temperature. But this
is not correct, because the reason for the subtraction is not primarily to remove divergences, but to remove the effects
of a homogeneous medium, the non-scattering contribution of the Green’s function to the internal energy. We see this
in the general formula (5.13), from which the zero-temperature form for the energy is obtained, for example, by the
Euler-Maclaurin summation formula. This involves all m, so the replacement of the Green’s dyadic by its scattering
part must be applied universally. The subtraction is not required in order to make the energy finite (which it is not,
even after this truncation of the Green’s function), but because it is necessary physically: the Casimir-Lifshitz energy
must arise, at least in the dilute approximation, from the summation of van der Waals or Casimir-Polder interactions,
which are quadratic in the polarizability, so the Casimir-Lifshitz free energy at arbitrary temperature must start from
order (ε− 1)2 for a dilute dielectric sphere. All of this was recognized by Dzyaloshinskii, Lifshitz, and Pitaevskii [48],
and constitutes the “Lifshitz subtraction.”

6 Both the zero-temperature free energy of the dilute dielectric ball, and its first temperature correction, are rederived in Appendix A.
But again, the magic of analytic continuation plays an essential role.
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1. Casimir-Polder Free Energy of Two Dilute Dielectric Slabs

We can demonstrate this explicitly by considering the classic Lifshitz configuration [53] of two parallel dielectric
slabs separated by a vacuum region of width a. In the limit where the two dielectric media are dilute, we can compute
this in two ways: either by summing the van der Waals interactions between the various atoms constituting the slabs,
or by taking the dilute limit of the Lifshitz free energy. Let’s consider the high-temperature limit, and suppose that
the Casimir-Polder interaction [54] between atoms with polarizability α1 and α2 separated by a distance r is in the
classical limit

V = −CT
α1α2

r6
, (A1)

a structure required dimensionally, where C is a dimensionless constant to be determined. The free energy of the two
slabs is obtained by summing the interactions between the two slabs, which are supposed to be homogeneous, with
number densities N1 and N2. The free energy is

FCP = −CTN1α1N2α2

∫ 0

−∞
dz

∫ ∞

a

dz′
∫
(dr⊥)(dr

′
⊥)
[
(r⊥ − r′⊥)

2 + (z − z′)2
]−3

. (A2)

The integrations are elementary, leading to the free energy per unit area

FCP

A
= −CT

π

12

N1N1α1α2

a2
. (A3)

The bulk-subtracted Lifshitz pressure between the two slabs is [53, 55]

p = − T

8π

∞∑
m=−∞

∫ ∞

0

dk2 2κ3

(
1

∆E
+

1

∆H

)
, (A4)

for the configuration where the top and bottom slabs are denoted 1 and 2, and the intermediate vacuum region is
denoted 3. The denominators are, in terms of the inverses of the reflection coefficients at the interfaces,

∆E =
κ3 + κ1

κ3 − κ1

κ3 + κ2

κ3 − κ2
e2κ3a − 1, (A5a)

∆H =
κ3/ε3 + κ1/ε1
κ3/ε3 − κ1/ε1

κ3/ε3 + κ2/ε2
κ3/ε3 − κ2/ε2

e2κ3a − 1, (A5b)

where

κ3 = κ =
√
k2 + ζ2m, κ1,2 =

√
k2 + ε1,2(ζm)ζ2m. (A6)

When ε1,2 − 1 are both small, this is readily expanded to the leading order: introducing the variable u = κ/ζm, we
have

p = − T

16π

∞∑
m=0

′ζ3m(ε1(ζm)− 1)(ε2(ζm)− 1)

∫ ∞

1

du

u2
[1 + (1− 2u2)2]e−2ζmua. (A7)

Now we are interested in high temperature, which corresponds to m = 0, so we take the limit of small ζm. In that
limit, the u integral is asymptotically (ζma)−3, and then the m = 0 term in the free energy, obtained by integrating

p = − ∂

∂a

F

A
(A8)

is, in terms of the static dielectric constants

F

A
= − T

64π
(ε1 − 1)(ε2 − 1)

1

a2
, aT ≫ 1. (A9)

These two expressions, Eq. (A9) and Eq. (A3), should be identical. They are, when we recall the connection between
the dielectric constant and the polarizability:

ε = 1 +Nα, (A10)

and this determines the constant in the van der Waals potential to be C = 3/(4π)2.
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2. Casimir-Polder Free Energy of Dilute Dielectric Ball

We can straightforwardly extend this argument to sum the Casimir-Polder energies of the atomic constituents of a
dilute dielectric sphere. This should correspond to the free energy of such an object. Such a calculation, in fact, is
the same idea as that exploited by Barton [34], although the calculational details are different, as are the results.

The free energy of interaction between the constituents of isotropic polarizability α is given by [19]

FCP = −1

2

N2α2

(4π)2

∫
(dr)(dr′)

1

4πρ7
f(y), (A11)

where y = 4πρT , ρ =
√
r2 + r′2 − 2r · r′, and

f(y) = yDT coth
y

2
, (A12a)

with

DT = 3− 3T∂T +
5

4
T 2∂2

T −
1

4
T 3∂3

T +
1

16
T 4∂4

T . (A12b)

(Note, at high T , where coth y/2 tends to 1, this yields Eq. (A1) with C = 3/(4π)2.) Here N is the number density of
polarizable constituents. The integrals extend over the volume of the sphere wherein the constituents reside. Since ρ
never gets large, to extract the low-temperature behavior, we can expand the hyperbolic cotangent for small argument:

coth z =
1

z
+

z

3
− z3

45
+

2z5

945
+ . . . . (A13)

Consider the first term in the expansion. Since the differential operator DT applied to 1/T yields 23
2T , we are left with

evaluating the radial integral ∫
(dr)(dr′)

1

ρ7
. (A14)

This integral is divergent, because the coordinates can be coincident, but a method of extracting the finite part was
described in Refs. [37, 46]. Let’s consider the generic integral

I(γ) =

∫
(dr)(dr′)

1

ργ
. (A15)

The result is, for γ < 3,

I(γ) =
128π22−γ

(6− γ)(4− γ)(3− γ)
a6−γ . (A16)

This integral is well defined if γ is 7, so by analytic continuation we immediately obtain the zero temperature free
energy

E0 =
23

1536

(ε− 1)2

πa
, (A17)

where we identify ε− 1 = Nα. This is the well-known result [46], seen in Eq. (3.14),
As for the low temperature corrections, it is apparent that the differential operator DT annihilates a term linear in

T , so the O(z) term in the expansion of the cotangent is without effect because I(5) is finite. DT has the same effect
on the T 3 term. But that corresponds to γ = 3, where the volume integral (A16) has a pole, so we must take a limit.
Write y3 → y3−s where s→ 0. So then

DTT
3−s → −7

8
sT 3, s→ 0, (A18)

while

I(3 + s)→ −16π2

3s
a3, (A19)
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so the product is finite as s→ 0, and supplying the other factors, we obtain for the temperature correction to the free
energy

∆FT =
7

270
(ε− 1)2(πa)3T 4, (A20)

precisely the result (3.14) given by Nesterenko et al. [44] but without the additional T 3 term found by Barton [34].
In fact, it is very hard to see how such a term could arise. The method described here has the same starting point
as Barton’s, and the structure (A12) is exactly the same as his. That structure is manifestly even in T , so unless the
method of regularization or renormalization involves the temperature somehow, the discrepant term could not arise.
For more on the difference between different regularization techniques in this context, although at zero termperature,
see Ref. [56]. In particular, the interatomic-spacing cutoff λ used by Barton could correspond to significant physics.

After detailed examinination, we find there is nothing technically wrong with Barton’s calculation. The discrepancy
arises from the subtraction of a term proportional to the area, which he calls renormalization of the surface tension.
That subtraction term contains a term cubically divergent in 1/λ, but also a term independent of λ and proportional
to T 3; it is precisely because that term is subtracted, that the corresponding negative of that quantity appears in
the renormalized free energy. It is true, as Barton himself notes, that a similar subtraction of a energy density term,
proportionial to the volume of the ball, is responsible for the T 4 in the free energy (A20). But we insist on the validity
of the bulk free energy subtraction, as detailed in the main text, while we see no necessity for a surface tension
subtraction. Indeed, doing so does not yield a finite free energy in Barton’s case anyway, there still being a remaining
1/λ cutoff-dependent term. In any case, this seems to isolate the source of the discrepancy.

Appendix B: Sign of the Interaction Entropy for a Dielectric Ball

In this appendix, we explore the sign of the interaction entropy for a dielectric ball, using the Clausius-Mossotti
relation [38]. We begin with a critical appraisal of the approximation of the finite-size nanoparticle by a point particle
with the same polarizability, and an appreciation of the limitations of this approximation.

The use of Eq. (3.2) in Eq. (3.1) implies a resummation of the usual perturbative expansion to all orders in
ε − 1, to extract all contributions to leading order in the particle size, which, in total, give rise to its polarizability.
By construction, therefore, this procedure can only produce the extensive contribution to the free energy of the
nanoparticle, that is, that part of the free energy that is proportional to the volume of the nanoparticle. It cannot
capture any other contributions to the free energy that are not extensive, such as the surface term obtained by
Barton [45], or the zero-temperature term displayed in Eq. (3.14), which is proportional to the inverse radius of the
nanoparticle [34, 44–47], or, indeed, any contributions that are of higher order in the polarizability. Likewise, only
the extensive contribution to the corresponding derived entropy can result. This is a fundamental limitation of the
approximation employed.7

In this approximation, the free energy, F , of the nanoparticle may be regarded as a linear function of the extensive
variable, V , the volume of the nanoparticle, and a possibly nonlinear function of the intensive variable, N , the number
density of its polarizable constituents. Below, we explore the assembly of the nanoparticle from its initially widely-
dispersed constituents, and so are interested in how the free energy changes with the volume, while keeping the number
of constituents fixed. Since

dF

dV
=

∂F

∂V
− N

V

∂F

∂N
=

F

V
− N

V

∂F

∂N
, (B1)

it follows that dF
dV = 0, that is, the free energy of the nanoparticle is invariant under this change in volume, if and

only if it is also a linear function of N . In fact, this is the case for the Clausius-Mossotti relation, which expresses the
polarizability of a dielectric ball as a linear function of the number density, and polarizability, of its constituents. It
should be noted that linearity in the number density of the constituents does not preclude interaction between these
constituents. Indeed, the Clausius-Mossotti relation derives from the inclusion of the effect on the induced dipole
moment of each constituent of the induced electric field due to the induced dipole moments of the other constituents.
This interaction between the constituents is reflected in the nonlinear dependence of the polarizability on ε− 1.

To be specific, let us therefore assume that the permeability µ = 1 and that the system consists of a dielectric ball,
B, of radius a and permittivity ε, which is composed of polarizable constituents of number density N and polarizability

7 In Section II, we considered only the single-scattering approximation. It may be possible to capture information about the shape of the
nanoparticle, rather than just its size, by extending the approach to include successively higher orders of scattering. This may reveal
the dependence on its surface area, its mean extrinsic curvature, etc..
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αc, and which is surrounded by vacuum. Let us also consider the corresponding reference system which consists of the
dilated ball, Bλ, of radius λa and permittivity ελ, wherein the polarizable constituents have number density Nλ ≡ N

λ3 ,
where λ > 1, which is also surrounded by vacuum. From the Clausius-Mossotti relation, we immediately obtain the
relation between the corresponding permittivities:

ε− 1

ε+ 2
=

Nαc

3
=

λ3Nλαc

3
= λ3

(
ελ − 1

ελ + 2

)
. (B2)

The total free energy of the original system may be constructed from three components,

Ftot = FR3

vac +
(
FB

med − FB
vac
)
+ FB

int, (B3)

using an obvious notation: FB
med − FB

vac is the change in the bulk free energy of the ball resulting from replacement
of vacuum by medium in its interior, which arises from the corresponding change in the non-scattering part of the
Green’s function, and FB

int is the interaction free energy between the interior of the ball (medium) and its exterior
(vacuum), which arises from the scattering part of the corresponding Green’s function. Likewise, the total free energy
of the reference system may be written as

Fλ
tot = FR3

vac +
(
FBλ

med − FBλ
vac

)
+ FBλ

int . (B4)

The change in the bulk free energy of the dilated ball is

FBλ

med − FBλ
vac =

∫
Bλ

dr
(
ε

3
2

λ − 1
)
f0(τ, T ) =

4

3
πa3λ3

(1 + 2Nαc

3λ3

1− Nαc

3λ3

)3
2

− 1

 f0(τ, T ), (B5)

which becomes, in the limit λ→∞,

lim
λ→∞

(
FBλ

med − FBλ
vac

)
=

4

3
πa3

9

2

(
ε− 1

ε+ 2

)
f0(τ, T ), (B6)

where

f0(τ, T ) ≡ −
1

π2τ4
− π2T 4

45
(B7)

is the vacuum free energy density (5.62a) under the temporal regulator τ . As expected, this is simply the sum over
the finite number, 4

3πa
3N , of the then infinitely separated and therefore non-interacting polarizable constituents, each

of which contributes 3
2αcf0(τ, T ) to the free energy. Correspondingly, in this limit, the interaction free energy of the

dilated ball must vanish, as it then fills all space and has no exterior, so limλ→∞ FBλ
int = 0. (See below.)

Thus,

(
FB

med − FB
vac
)
− lim

λ→∞

(
FBλ

med − FBλ
vac

)
=

4

3
πa3

[
ε

3
2 − 1− 9

2

(
ε− 1

ε+ 2

)]
f0(τ, T ). (B8)

This expression represents the change in the total bulk free energy when the ball is assembled from its initially
maximally dispersed constituents, and its sign is determined from that of

g(ε) ≡ ε
3
2 − 1− 9

2

(
ε− 1

ε+ 2

)
. (B9)

It is easily verified that g(1) = 0 and g(ε) > 0 for ε > 0, ε ̸= 1. Therefore, the change in the total bulk free energy is
negative, and, correspondingly, from Eq. (B7), the change in the total bulk entropy is positive.

However, Eq. (B8) may also be written as
(
Ftot − FB

int
)
−
(
F∞

tot − limλ→∞ FBλ
int

)
= −FB

int, since limλ→∞ FBλ
int = 0

and Ftot = F∞
tot, the latter because of the linear dependence of the free energy of the dielectric ball on the number

density of its polarizable constituents, inherited from the Clausius-Mossotti relation, as described in Eq. (B1). Thus,

FB
int =

4

3
πa3

[
9

2

(
ε− 1

ε+ 2

)
−
(
ε

3
2 − 1

)]
f0(τ, T ) = −

4

3
πa3g(ε) f0(τ, T ) > 0 (B10a)
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and, correspondingly,

SB
int =

[
9

2

(
ε− 1

ε+ 2

)
−
(
ε

3
2 − 1

)] 2t3

135
= −g(ε) 2t

3

135
< 0, t = 2πaT. (B10b)

That is, the ball has a positive interaction free energy and a corresponding negative interaction entropy.
From Eq. (B10a), we can demonstrate self-consistency by noting that the interaction free energy of the dilated ball

vanishes as the dilation factor goes to infinity:

FBλ

int = −4π(λa)3

3

[
ε
3/2
λ − 1− 9

2

ελ − 1

ελ + 2

]
f0(τ, T )→ −

πa3

2

N2α2
c

λ3
f0(τ, T )→ 0, λ→∞. (B11)

The important point to note here is that, because, under the Clausius-Mossotti relation, the total free energy of the
system is unchanged when the ball is assembled from its initially maximally dispersed and therefore non-interacting
constituents, the decrease in the total bulk free energy resulting from the assembly is exactly offset by a corresponding
increase in the initially vanishing interaction free energy, resulting here in a positive interaction free energy and a
corresponding negative interaction entropy for the ball. The assembly of the ball from its constituents would otherwise
be a spontaneous process, decreasing the total bulk free energy and increasing the total bulk entropy. However, the
assembly itself creates the differentiation between the interior (medium) and the exterior (vacuum) of the ball, and
the resulting macroscopic inhomogeneity in the permittivity gives rise to the scattering part of the Green’s function
and the corresponding inhibiting positive interaction free energy and negative interaction entropy. In this point of
view, the appearance of a negative interaction entropy is seen as a natural and inevitable consequence of the creation
of the scattering contribution to the Green’s function through the assembly process. (Of course, this conclusion only
holds for µ = 1.)

In spite of the negative interaction entropy, insertion of the particle into the vacuum always decreases (if ε > 1) the
total free energy and increases the total entropy of the system:

Ftot − FR3

vac =
(
FB

med − FB
vac
)
+ FB

int = 6πa3
(
ε− 1

ε+ 2

)
f0(τ, T ) < 0 (B12a)

and

Stot − SR3

vac =
(
SB

med − SB
vac
)
+ SB

int =

(
ε− 1

ε+ 2

)
t3

15
> 0. (B12b)

More generally, the interaction entropy could be of either sign. If the ball has permeability as well as permittivity,
the interaction entropy becomes

Sint = −g(ε, µ)
2t3

135
, g(ε, µ) = (εµ)3/2 − 1− 9

2

(
ε− 1

ε+ 2
+

µ− 1

µ+ 2

)
. (B13)

A perfectly conducting spherical shell corresponds to ε→∞, µ→ 0 so that εµ→ 1. (The latter corresponds to the
interior of the shell being vacuum as in the exterior.) In this way the familiar result (3.8) emerges,

SPCS =
t3

30
, (B14)

which is positive. But it is not necessary to go to the limit to see the change in sign. Although the interaction entropy
(B13) is nonpositive whenever ε and µ are both ≥ 1, if one of these is less than unity, there is a region of positive
entropy, as illustrated in Fig. 4.

Appendix C: Direct Calculation of Low-Temperature Correction to Interaction Free Energy

It is easy to obtain the general results for the low-temperature correction to the free energy, and the low-temperature
entropy, directly from the zero-temperature expressions derived many years ago [35–37]. The pressure on a dielec-
tric/diamagnetic ball is given there by

p =
1

2a3

∫ ∞

−∞

dζ

2π
eiζτ

∞∑
l=1

2l + 1

4π

[
fl(x)− f

(0)
l (x)

]
, (C1)
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FIG. 4. The entropy given in terms of −g(ε, µ) in Eq. (B13) for ε and µ between 0 and 2. The contour lines denote the
boundaries of regions where the function has values between the designated integers. The positive entropy region is colored
lightest (yellow), roughly following the εµ = 1 hyperbola shown in red.

where the contribution from the bulk subtraction is

f
(0)
l (x) = 2x[s′l(x)e

′
l(x)− el(x)s

′′
l (x)]− 2x′[s′l(x

′)e′l(x
′)− el(x

′)s′′l (x
′)], (C2a)

where x = |ζ|a, x′ =
√
εµx, and the scattering contribution is

fl(x) = x
d

dx
Dl(x), Dl(x) = [sl(x

′)e′l(x)− s′l(x
′)el(x)]

2 − ξ2[sl(x
′)e′l(x) + s′l(x

′)el(x)]
2, (C2b)

with

ξ =

√
ε
µ − 1√
ε
µ + 1

. (C3)

To extend these old results to finite temperature, we simply replace the integral over Euclidean frequencies by a
sum over Matsubara frequencies: ∫ ∞

−∞

dζ

2π
→ T

∞∑
m=−∞

, ζ → ζm = 2πmT. (C4)

For low temperatures, we can evaluate the sum by using the Euler-Maclaurin sum formula (5.38). The integral there,
of course, corresponds to the original zero-temperature result, which contains all the divergences. The sum over
Bernoulli numbers contains the finite temperature corrections, which must be understood as an asymptotic series. So
we need the odd derivatives of fl and f

(0)
l at zero to find the temperature corrections, which requires computing the

odd terms in the power series expansion of these functions about the origin. The leading power, as would have been
anticipated [23], occurs only for l = 1:

f1(x) ∼ −2x3

(
ε− 1

ε+ 2
+

µ− 1

µ+ 2

)
, f

(0)
1 (x) ∼ 4

9
x3
(
1− (εµ)3/2

)
, x≪ 1. (C5)
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Supplying the remaining factors, we immediately obtain the small temperature correction to the pressure,

∆P = −π2T 4

45
g(ε, µ). (C6)

Since 4πa2p = − ∂
∂aF , the temperature correction to the free energy is just as found above,

∆F =
4πa3

3

π2T 4

45
g(ε, µ), (C7)

and the entropy (B13) follows. This elementary calculation should have been done 40 years ago.
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