
Journal of Parallel and Distributed Computing 169 (2022) 242–251

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Asynchronous simulated annealing on the placement problem:

A beneficial race condition

Mark Vousden ∗, Graeme M. Bragg, Andrew D. Brown

University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2021
Received in revised form 21 January 2022
Accepted 7 July 2022
Available online 18 July 2022

Keywords:
Optimization
High performance computing
Parallel computing
Simulated annealing
Place and route

Race conditions, which occur when compute workers do not synchronise correctly, are considered
undesirable in parallel computing, as they introduce often-unintended stochastic behaviour. This study
presents an asynchronous parallel algorithm with a race condition, and demonstrates that it reaches
a superior solution faster than the equivalent synchronous algorithm without the race condition.
Specifically, a parallel simulated annealing algorithm that solves a graph mapping problem (placement)
is used to explore this. This paper illustrates how problem size and degree of parallelism affects both the
collision rate caused by the race condition, and convergence time. The asynchronous approach reaches a
superior solution in half the time of the equivalent synchronous approach. The solver presented here can
be applied to application deployment in distributed systems, and the concept can be applied to problems
solvable by global optimisation methods, where fitness errors can be tolerated in exchange for faster
execution.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Race conditions are thought of as undesirable in parallel com-
puting, as they introduce often-unintended stochastic behaviour.
To avoid race conditions, parallel algorithms typically introduce
a resource-management mechanism (usually mutexes or locks) to
control access to data, but these mechanisms increase execution
time. We present a parallel simulated annealing algorithm where
compute workers do not synchronise more than is necessary - this
approach introduces a race condition. The algorithm exploits the
stochastic behaviour the race condition produces, in order to find a
superior solution faster. This paper demonstrates that consciously
introducing a race condition, and taking advantage of the result-
ing stochastic behaviour, can yield significant performance benefits
for certain parallel compute problems. Specifically, a Simulated An-
nealing (SA) implementation of a placement problem is considered
here.

1.1. Simulated annealing

Simulated annealing [12,4] is an optimisation method, where
the state of a system is repeatedly perturbed over time, gradu-
ally improving it with respect to some fitness measure. SA uses

* Corresponding author.
E-mail addresses: m.vousden@soton.ac.uk (M. Vousden), gmb@ecs.soton.ac.uk

(G.M. Bragg), adb@ecs.soton.ac.uk (A.D. Brown).
https://doi.org/10.1016/j.jpdc.2022.07.001
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
stochastic behaviour to facilitate global exploration of the state-
space. Consequently, perturbations occasionally worsen the SA so-
lution to overcome undesirable local optima in its search for the
best solution. While SA performs on a broad class of problems, it
is frequently modified for improved performance when some prop-
erties of the problem are known [14], though such modification
for best performance is not trivial, as the most effective fitness
heuristics [21], problem representation and perturbation operators
may require unusual tradeoffs [22]. The global-searching nature of
SA, its ease of implementation and tuning, along with its near-
forty-year provenance, have made SA the subject of considerable
research effort across a broad set of academic disciplines [5,16].
Many research domains employ a modified form of SA as part of
a multistage hybrid approach, such as in power-grid monitoring
(where measurement units must be placed optimally across the
grid network) [11], placement in reconfigurable systems [17,20],
and software interaction testing [21].

Top-end desktop processors of today host 64 compute cores:
a dramatic advancement on the eight-core processors that were
novel four years ago. Advancements in parallel computing architec-
tures are of considerable value for SA approaches, as a superior so-
lution can be more quickly identified. Parallel SA either parallelises
fitness evaluations (single-trial parallel), or runs each iteration in
a separate compute thread with some synchronisation (multiple-
trial parallel) [19,8,3,1,18]. The former of these is only appropriate
when the fitness function is compute-intensive, and the latter im-
poses a severe speed limit on the processing of the problem.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2022.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.07.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:m.vousden@soton.ac.uk
mailto:gmb@ecs.soton.ac.uk
mailto:adb@ecs.soton.ac.uk
https://doi.org/10.1016/j.jpdc.2022.07.001
http://creativecommons.org/licenses/by/4.0/

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251
Motivated by hardware advancements, much of present-day SA
research is focused on parallel SA, though certain valuable prop-
erties of serial SA difficult to parallelise. As an example, adaptive
annealers in parallel can be achieved by restarting each annealer
with an initial annealing length and schedule [6]. Determinism is a
valuable property of annealers (at the cost of performance) in cer-
tain applications, though dependency-checking and collisions can
be “repaired” to maintain determinism [13].

Distributed-memory parallelism has been applied to SA [7],
though communication costs between the distributed compute
workers imposes a significant runtime penalty for problems where
the fitness function is cheap to compute, and for problems with
a high degree, such as in highly-connected placement problems.
More interconnected (large) problems motivate a shared-memory
approach, where the state of the “current iteration” is available
to all compute workers simultaneously. Shared-memory SA ap-
proaches have been explored, but only for small numbers of paral-
lel workers on commodity desktop machines, whereas distributed-
memory SA placement approaches are commonly employed. How-
ever, recent innovations in desktop compute technology, such as in
the AMD Ryzen Threadripper 3990X, have resulted in processors
with as many as 64 physical 4.3 GHz (boost) compute cores, with
access to over 512 GB of volatile memory. Such massively-parallel
computing platforms provide an alternative to distributed-compute
architectures, like Graphics Processing Units (GPUs) and coproces-
sors.

Due to recent innovations, and due to the rise in more highly-
connected problems to anneal, there is value in exploring shared-
memory asynchronous simulated annealing approaches, as they
may converge more quickly than their synchronous equivalents.
Such an asynchronous approach would consciously introduce a
race condition, and consequently data collisions, between compute
workers. This approach will only be of value when the conse-
quence of these collisions is small (such as in placement prob-
lems), as the effect of these collisions may become indistinguish-
able from the already-induced stochastic behaviour in SA.

1.2. Placement

The placement problem, fundamentally, is concerned with map-
ping the elements of one large graph onto another large graph. Ex-
amples of industry-relevant placement problems include the core
affinity problem, which maps processes onto compute cores in a
processor to maximise compute efficiency [2], and the optimisa-
tion of placement and routing of logic blocks in a system-on-
chip [17,20], though many more exist. Placement is chosen here
as a suitable SA target problem, due to its epistatic, nonlinear na-
ture, due to the large interconnected nature of the problem, and
due to the frequency with which placement problems are solved
with SA in the literature [5,16,11,20]. Placement problems of in-
dustrial and academic relevance are all large, motivating the use of
parallel computing to find superior placement configurations more
quickly.

1.3. Objectives

Motivated by the need to perform shared-memory simulated
annealing to solve placement problems, and improvements in ar-
chitectures supporting shared-memory desktop processing, this pa-
per introduces an asynchronously-parallel SA implementation, and
explores how it performs on a particular class of placement prob-
lems. This implementation is run on a high-end desktop machine
to generate results. These results are used to illustrate the trade-
offs between asynchronous and synchronous shared-memory SA
approaches, including execution time, collision rate, and the over-
243
all impact of collisions, as a function of the size of the placement
problem, and the number of compute workers.

2. Theory: placement and parallel simulated annealing

2.1. The placement problem

The placement problem considered in this paper attempts to
map a multiprocess application onto a distributed computing sub-
strate. This problem is of particular importance given the rise
of off-the-shelf high-power distributed compute systems (GPUs,
for example), and burgeoning research into more bespoke event-
based reconfigurable technologies [10,15]. These enable orders-of-
magnitude increases in the size of problems being solved by com-
puters, resulting in orders-of-magnitude savings spanning a variety
of problem domains.

The multiprocess application can be represented as a simple
graph A (application graph, red graph with circle nodes in Fig. 1),
where nodes represent discretised behaviours, and where edges
represent the interaction between the nodes. For context, the ar-
rangement of nodes could represent, a program to solve a partial-
differential equation (e.g. thermal diffusion, aerodynamics), or an
model of agents communicating a/synchronously (e.g. computa-
tional chemistry, cellular automata).

The distributed computing substrate can also be represented
as a simple weighted graph H (hardware graph, black graph with
square nodes in Fig. 1), where nodes represent units of compute
hardware in a distributed compute system (e.g. compute cores),
and where edges represent the communication pathways between
those nodes. Edges in this hardware graph are assigned a weight,
which represents the “cost” of communicating between two com-
pute units (and function as an approximate aggregation of the
effects of latency, bandwidth, and contention).

Given a hardware graph and an application graph, the task is to
create a many-to-one map of all application nodes to some hard-
ware nodes, such that no hardware node has no more than NA,MAX,
application nodes assigned to it. Such a mapping is a solution to
the placement problem.

Given there are enough nodes in the hardware graph to hold
the application graph, a solution can be obtained by mapping ap-
plication nodes chosen at random into another hardware node
chosen at random that is not full (i.e. when the hardware node
has less than NA,MAX application nodes), repeating until there are
no more application nodes. However, such a solution is unlikely to
perform well in practice, making it undesirable. Fig. 1 shows an op-
timal (a) and a sub-optimal (b) solution to an example placement
problem. Sub-optimal solutions may result in order-of-magnitude
slower applications, which are clearly undesirable.

2.1.1. Fitness metric
Fitness allows solutions to be compared: more fit solutions ex-

hibit properties that make them superior to less fit solutions. Fit
solutions exhibit:

• Locality Fitness: Neighbouring nodes in the application graph
are placed as close as possible to each other. This minimises
the latency between two communicating nodes. If an applica-
tion requires two such nodes to synchronise with each other,
being close together makes the synchronisation as fast as pos-
sible. If the nodes are far away, synchronisation is slow, com-
promising execution time. Given that the “locality cost” of an
application edge is equal to the sum of the weights of the
hardware edges it traverses, the locality fitness is minus the
sum of the locality costs associated with all application edges
(better solutions have a higher fitness).

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251
Fig. 1. Examples of placement of a gridded application graph (red circles) onto a
gridded hardware graph (black/grey squares), where hardware nodes can contain
at most five application nodes (NA,MAX = 5). The four hardware edges (black) each
have weight w . (a): The application graph is placed optimally onto the hardware -
the hardware nodes are evenly loaded, and only eight application edges span mul-
tiple hardware nodes. (b): The same application graph placed randomly, resulting in
an inefficient placement solution, because the application nodes are unevenly dis-
tributed, and cross hardware edges more than is necessary.

• Clustering Fitness: The compute hardware is loaded as evenly
as possible. Each hardware node has to divide its time be-
tween the application nodes mapped to it. An uneven hard-
ware node loading results in some application nodes being ex-
ecuted “faster” than others. For most applications, the slowest-
executing node defines the runtime of the application, so an
even loading is preferred. Given the “clustering cost” of a hard-
ware node is equal to the square of the number of applica-
tion nodes mapped to it, the clustering fitness is minus the
sum of the clustering costs of all hardware nodes. The square
term imposes a greater clustering cost on overloaded hardware
nodes.

Note that locality fitness favours a tightly-clustered placement so-
lution, whereas clustering fitness favours a more spread-out solu-
tion. To balance these competing fitness contributions, we define
the total solution fitness as being the sum between the locality
and clustering fitness contributions.

2.1.2. Example fitness computation
To illustrate the conflicting nature of the different fitness contri-

butions, consider the example presented in Fig. 1, which has four
hardware nodes connected in a two-by-two arrangement, sixteen
application nodes connected in a four-by-four arrangement, and
where each hardware edge has the same weight w . A grid place-
ment, such as in Fig. 1 (left), results in locality fitness −8w (as
eight edges in the application graph each traverse one edge in the
hardware graph), and clustering fitness −4(42) = −64 (as each of
the four hardware nodes are loaded with four application nodes),
resulting in a total fitness of −(8w + 64). The random placement
in Fig. 1 (right) results in a lower locality fitness (−16w), a lower
clustering fitness (−66), and consequently a lower fitness overall
(−(16w + 66)). Because the random placement has a lower fitness
than the grid placement, the grid placement solution is superior to
the random placement solution.

An optimal solution to the problem shown in Fig. 1 is evident
by inspection, due to the regularity of the problem. However, the
optimum solution for similar “grid-like” hardware and application
graphs may be irregular. For example, a regular deployment of a
grid of application nodes onto a grid of hardware nodes is not op-
timal if the grids have different aspect ratios, if the application
nodes do not divide evenly into the hardware nodes, or if the value
of w in the fitness computation strongly favours a tight clustering
of application nodes. The value of irregular solutions, coupled with
the commonality of irregular application graphs in nature, moti-
vates an iterative numerical approach for finding suitable solutions
244
to the placement problem - inspection cannot be relied upon in
the general case, particularly for non-gridded graphs.

2.2. Simulated annealing

SA is a stochastic global optimisation metaheuristic. It is a
search method that allows, exploration of a solution space and se-
lection of a guaranteed local optimum, with some concession for
global search. The canonical SA algorithm (CSA) is [12,4]:

Initialisation: Define an initial state s = s0 (for iteration n = 0).
Selection and Transformation: Select a trial state strial that is “ad-

jacent” to the current state using an atomic transformation
δ(s). The selected state is chosen at random.

Evaluation: Evaluate the fitness of the selected state F [strial], given
the fitness of the previous state F [s].

Determination: If the new state is fitter (F [strial] > F [s]), accept
it without further question (s ← strial). If not, accept it subject
to some random disorder. The effect of this disorder decreases
slightly with each iteration.

Termination: If a termination condition has been met (e.g. maxi-
mum number of iterations, or some function of the solution),
return the most recently accepted solution. Otherwise, loop
back to Selection and Transformation.

The algorithm loops from Selection and Transformation to Termi-
nation repeatedly - each execution of this loop is an iteration. The
disorder used in Determination is analogous to temperature in
traditional annealing, and must decrease monotonically with each
iteration, “cooling” the system. A high disorder (or temperature)
corresponds to a higher probability of acceptance (exploratory be-
haviour), whereas a low disorder corresponds to a lower probabil-
ity (exploitary behaviour). CSA can be used to solve the placement
problem introduced at the start of this Section. One approach is
outlined in Fig. 2.

2.2.1. Parallel simulated annealing
The literature outlines many traditional approaches to shared-

memory-parallel SA [8,1]. Of particular note is the “error al-
gorithm”, in which multiple neighbourhood moves are evalu-
ated simultaneously [8]. A variant of this algorithm can be de-
scribed as follows, where each compute worker performs each
non-Initialisation step asynchronously:

Initialisation: Define an initial state s = s0. All compute workers
can view and modify this state.

Evaluation (1): Evaluate the fitness of the state F [s] before modi-
fication.

Selection and Transformation: Modify the state using an atomic
transformation δ(s). This modification acts on the global copy
of s, meaning each transformation affects the state visible by
all other compute workers.

Evaluation (2): Evaluate the fitness of the transformed state (the
new F [s], and compare it to the old fitness computed in Eval-
uation (1) as before. A race condition is introduced by the
asynchronously-parallel selection operation.

Determination: As in canonical SA.
Termination: If a worker identifies that the termination condition

has been met, that worker communicates with all other work-
ers to stop computation. Otherwise, loop back to Evaluation
(1).

The “error” exists when multiple compute workers act on the same
region of state at the same time, which results in an erroneous so-
lution fitness, which in turn may affect the outcome of Determina-
tion. Due to this race condition, implementations of this algorithm

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251

Fig. 2. Three cases demonstrating how the iterative loop of CSA can operate on a placement problem, similar to the one shown in Fig. 1, but with three hardware nodes
(black/grey squares) and four application nodes (red circles). Each case demonstrates how a single iteration of CSA can influence the state. New states are found by moving
one application node to one hardware mode (Selection and Transformation). The fitness value of the new state is computed, which determines whether or not the state is
accepted or rejected, subject to a disorder term (explained in the Section 3.2). Case (1) shows an iteration to a more fit state (as F is larger). Case (2) shows an iteration
where an inferior state has been selected, where (2a) the state is rejected because it is worse, and another iteration where (2b) the state is accepted, because the disorder of
the annealing process has influenced Determination.
have a non-deterministic (micro-scale) outcome. However, for cer-
tain classes of problems (and we count the aforementioned place-
ment problem among these), and in situations where the problem
size is significantly greater than the number of compute workers
(reducing the probability of a collision), we posit that the macro-scale
outcome does not significantly change, as fitness improvements will still
propagate.

It is possible to eliminate the aforementioned race condition by
introducing synchronisation during the Selection operation, to pre-
vent workers from operating on the same region of the problem.
By way of example, the placement problem demonstrates spatial
locality in its fitness computation, as the change in locality fit-
ness and clustering fitness is only a function of the selected nodes
in hardware graph and application graph, and their neighbours.
This means it is sufficient to “lock” the selected nodes and their
neighbours, preventing them from being selected by other work-
ers, avoiding the race condition. However, this locking mechanism
imposes a runtime penalty.

3. Method: design and implementation of annealers

Three SA implementations are compared in this paper, that
each operate on the same placement problem: a serial imple-
mentation (a performance baseline), a fully-synchronous shared-
memory-parallel implementation (that avoids race conditions, at
performance cost), and an asynchronous shared-memory-parallel
implementation (that introduces a race condition to go as fast as
possible). The execution time and final fitness are compared across
these three implementations for two sizes of placement problem.
The effect of the race condition in the asynchronous implementa-
tion is also investigated as a function of placement problem size
and the number of compute workers. This Section formally defines
245
these implementations, and the parameters used in this investiga-
tion.

3.1. Data structures

Each SA implementation uses a similar data structure, which
is designed to minimise the execution time of the iterative loop
in SA. This structure contains a set of hardware nodes and applica-
tion nodes, which does not change during annealing. Each application
node holds a reference to each of its neighbours in the application
graph - these references also do not change during annealing. Also, to
encapsulate the behaviour of hardware nodes containing applica-
tion nodes, all hardware nodes hold references to the application
nodes that are mapped to them (one to many), and application
nodes hold a reference to the hardware node that contains them
(one to one). These references will change during annealing. These re-
lationships perform well, as lookups are needed in both directions
to compute clustering and locality fitness, but introduce an in-
tegrity trap: these two elements of the data structure must not
contradict at any time. As such, a per-node lock is introduced in
the parallel implementations, which allows transformations that
affect these nodes to occur in sequence. These locks are used in
both the synchronous and the asynchronous implementations to
ensure transformations do not compromise the integrity of the
datastructure.

The locality fitness calculation requires the sum of the weights
of edges connecting two given hardware nodes. Storing weights on
a per-edge basis and computing these costs during an Evaluation
step is computationally expensive. For efficiency, the data structure
holds a matrix W of weight-sums for each pair of hardware nodes
in the problem, which is pre-computed using the Floyd-Warshall
algorithm prior to any annealing [9]. This approach significantly

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251
reduces execution time for SA problems that require many itera-
tions to converge satisfactorily.

3.2. Determination: cooling schedule

The Determination stage of Canonical Simulated Annealing
(CSA) contains a stochastic component to facilitate both explorative
and exploitative search behaviours. In this study, the traditional
exponentially-decaying disorder parameter

T (n) = nend

n

1

2 ln(2)
(1)

is used, which decays monotonically with increasing n, and where
the nend/n co-efficient is arbitrarily chosen to best relax the system
from observation. We also use the traditional probability function
introduced in [12]:

P (δF , T (n)) = exp

(
δF

T (n)

)
, for δF < 0, (2)

where nend is the total number of annealing iterations, P deter-
mines the probability with which the trial solution is accepted,
and δF = F [strial] − F [s]. Note that T is large at the start of the an-
nealing process (n � nend), encouraging exploration of the solution
space, and is small at the end (n ≈ nend) to encourage exploitation
of the basin of attraction. The probability function P is only evalu-
ated when strial is inferior to s (i.e. negative δF), ensuring that its
range is bound between zero and one.

3.3. Atomic transformation and fitness

In each iteration, a trial state strial is chosen in the Selection
stage of the CSA algorithm by applying the atomic transformation
δ(s) to the current state. The transformation δ(s) moves a selected
application node to a selected hardware node. This transformation
enacts a small change upon the state, and is sufficient to allow
the algorithm to explore the state-space of the problem in its en-
tirety. Once selected, the trial state is then compared, using fitness
calculation, with the current state s in the Evaluation stage. In
CSA, evaluation occurs after the state is transformed to the trial
state. However, a fitness evaluation of a large placement prob-
lem is expensive. Also for large problems, where the state requires
a considerable memory footprint, it is unreasonable to store two
similar states in memory at the same time, particularly when the
transformation only affects a small portion of the state. Further-
more, the Determination stage (as shown in the previous Section)
only requires the difference in fitness between the two states, and
not their absolute value. In this case, the Selection and Evalua-
tion stages can be efficiently combined by performing some of the
comparison prior to selection:

Selection: Select an application node to move, and a hardware
node destination (both at random).

Pre-Evaluation: Compute the locality fitness of the application
node, the clustering fitness of the selected hardware node, and
the clustering fitness of the hardware node that currently con-
tains the selected application node.

Transformation: Move the selected application node to the se-
lected hardware node.

Post-Evaluation: Repeat Pre-Evaluation, and use the locality and
fitness differences to compute the total fitness change from
the transformation.

To proceed, formal definitions for node-specific locality and
clustering fitness contributions are required, based on their def-
initions in the Section 2.1. These definitions consider the simple
246
application graph A(NA, EA) with nodes NA and edges EA, and the
simple weighted hardware graph H(NH, EH) with nodes NH and
edges EH weighted on a per-edge basis. The locality fitness of a
state is

FL[s] = −
∑
j∈EA

∑
i∈M(j)

wi, (3)

where the first sum iterates over each edge in the set of appli-
cation edges, where M(j) defines the set of hardware edges that
application edge j overlays in the state, where wi is the weight
of hardware edge i, and where the second sum iterates over each
hardware edge overlaid by j, and adds its weight contribution. The
clustering fitness of a state is

FC[s] = −
∑

k∈NH

C(k)2, (4)

where the sum considers each hardware node k, and where C(k)

denotes the number of application nodes mapped to hardware
node k.

Equations (3) and (4) define the locality and clustering fitness
contributions of a given state respectively. The “local” clustering
fitness (the contribution to the clustering fitness from a single
hardware node nH) is:

FC[s,nH] = −C(nH)2. (5)

Likewise, the “local” locality fitness of an application node nA is:

FL[s,nA] = −
∑

j∈EnA

∑
i∈M(j)

wi, (6)

where EnA denotes the set of edges connected to application node
nA.

From the data structure, these local fitness contributions can
be computed using only the selected nodes and their properties.
This fitness-computation approach allows the fitness of a state to
be computed without evaluation of the entire solution - a consid-
erable time saving. Notably, this approach allows compute workers
in parallel annealing algorithms to segregate regions of data - es-
sential for synchronisation and for maintaining the integrity of the
data structure.

Using Equations (5) and (6), the fitness change δF between two
states s and strial, where the trial state is obtained by moving ap-
plication node na from hardware node nH,old to nH,new is:

δF =F [strial] − F [s] (7)

= + (
FC[strial,nH,new] + FC[strial,nH,old] + FL[strial,nA])

− (
FC[s,nH,new] + FC[s,nH,old] + FL[s,nA]) . (8)

Note that only the selected nodes, and the adjacent application
nodes, are used in this fitness computation. This provides a means
to compute the change in fitness brought about by the transforma-
tion of an existing solution, which is sufficient for the Determina-
tion stage.

3.4. Serial algorithm (comparator)

Given the data structure, transformation, local fitness computa-
tion, and cooling scheduled outlined in this Section, Algorithm 1
defines the serial SA algorithm used as a comparator in this paper.

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251
Algorithm 1 Serial SA algorithm for the placement problem (see
text for definitions of variables).
1: Initialisation: n = 0 (iteration counter).
2: Pre-compute Hardware Weight Matrix W : NH, NH →R+ from H .
3: Randomly define an initial containment relationship between elements of NH

and NA such that |nH| < PMAX for all hardware nodes. This is the initial state.
4: Compute fitness F from the initial state.
5: Iterate: n ← n + 1
6: If n ≥ nend, then end algorithm.
7: Selection: Randomly select application node nA. Let nH,old be the hardware node

that contains nA.
8: Randomly select hardware node nH,new such that nH,new 	= nH,old and |nH,new| <

NA,MAX − 1.
9: Pre-Evaluation: Compute the FL contribution of nA (using W and NH), and the

FC contributions of nH,old and nH,new.
10: Transformation: Define the container of nA as nH,new via δ(s).
11: Post-Evaluation: Perform Pre-Evaluation again to determine the fitness contri-

butions of the selected nodes post-transformation.
12: Compute fitness change from the transformation δF from the fitness contribu-

tions obtained in the Evaluation steps.
13: Determination: If a random number U (0, 1) is greater than P (δF , T (n)), then

define the container of nA as nH,old via δ(s) (Revert). Otherwise, F ← F + δF
(Accept).

14: Go to Iterate.

3.5. Synchronous-parallel algorithm (comparator)

Given the aforementioned serial algorithm, Algorithm 2 is sec-
ond comparator that anneals in shared-memory parallel. Each
compute worker locks a set of nodes each iteration. These locks
are claimed as part of Selection, preventing race conditions with
other compute workers. Also note that, since Determination only
requires a fitness difference δF , the absolute fitness is free to differ
between compute workers - the “true” fitness can be computed by
pausing the algorithm and computing the total fitness of the sys-
tem using Equations (3) and (4).

Algorithm 2 Synchronous parallel SA algorithm for the placement
problem (see text for definitions of variables). All data is shared
across workers unless otherwise stated. Changes from Algorithm 1
in red.
1: Initialisation: n = 0 (atomic iteration counter).
2: Pre-compute Hardware Weight Matrix W : NH, NH →R+ from H .
3: Randomly define an initial containment relationship between elements of NH

and NA such that |nH| < PMAX for all hardware nodes.
4: Compute fitness F from the initial state. Each compute worker holds a local

copy of F .
5: Spawn all parallel compute workers.
6: Iterate: n ← n + 1
7: If n ≥ nend, then end algorithm.
8: Selection: Randomly select application node nA. Let nH,old be the hardware node

that contains nA.
9: Randomly select hardware node nH,new such that nH,new 	= nH,old and |nH,new| <

NA,MAX − 1.
10: Lock: Lock nA, its neighbours, nH,new, and nH,old. If any are already locked, un-

lock all locks claimed in this way, and go to Selection.
11: Pre-Evaluation: Compute the FL contribution of nA (using W and NH), and the

FC contributions of nH,old and nH,new.
12: Transformation: Define the container of nA as nH,new via δ(s).
13: Post-Evaluation: Perform Pre-Evaluation again to determine the fitness contri-

butions of the selected nodes post-transformation.
14: Compute fitness change from the transformation δF from the fitness contribu-

tions obtained in the Evaluation steps.
15: Determination: If a random number U (0, 1) is greater than P (δF , T (n)), then

define the container of nA as nH,old via δ(s) (Revert). Otherwise, F ← F + δF
(Accept).

16: Unlock all nodes locked in Lock.
17: Go to Iterate.

3.6. Asynchronous-parallel algorithm

Algorithm 3 describes the asynchronous-parallel SA algorithm
for placement, and is used to explore the trade-off between exe-
247
cution time and final solution fitness when the compute workers
are permitted to operate on the problem data structure without
explicit choreography. The asynchronous-parallel algorithm is sim-
ilar to the synchronous-parallel variant (Algorithm 2), but does not
lock the nodes at Selection-time. However, nodes are still locked
during Transformation, to navigate the integrity trap described in
the Section 3.1. Since nodes are locked for fewer instructions, com-
pute workers are blocked at locks for less time each iteration on
average, resulting in a faster annealer. This is particularly valuable
for placement, as the other stages of the iterative loop are fast (in
particular, the fitness delta computation).

This speed benefit comes at a cost: since a compute worker can
now move an application node while another compute worker is
performing its fitness computation, Algorithm 3 introduces a race
condition. This race condition will cause collisions, resulting in fit-
ness being computed incorrectly during Post-Evaluation, which
will cause some states being accepted during Determination when
they would otherwise be rejected (and vice versa).

Algorithm 3 Asynchronous parallel SA algorithm for the placement
problem (see text for definitions of variables). All data is shared
across workers unless otherwise stated. Changes from Algorithm 1
in red, and from Algorithm 2 in blue.
1: Initialisation: n = 0 (atomic iteration counter).
2: Pre-compute Hardware Weight Matrix W : NH, NH →R+ from H .
3: Randomly define an initial containment relationship between elements of NH

and NA such that |nH| < PMAX for all hardware nodes.
4: Compute fitness F from the initial state. Each compute worker holds a local

copy of F .
5: Spawn all parallel compute workers.
6: Iterate: n ← n + 1
7: If n ≥ nend, then end algorithm.
8: Selection: Randomly select application node nA. Let nH,old be the hardware node

that contains nA.
9: Randomly select hardware node nH,new such that nH,new 	= nH,old and |nH,new| <

NA,MAX − 1.
10: Pre-Evaluation: Compute the FL contribution of nA (using W and NH), and the

FC contributions of nH,old and nH,new.
11: Transformation: If |nH,new| ≥ NA,MAX − 1, go to Selection. Define the container

of nA as nH,new via δ(s). While transforming, lock nA, nH,old and nH,new to main-
tain data integrity. If any are already locked, wait until they are unlocked. Nodes
are not locked outside this step.

12: Post-Evaluation: Perform Pre-Evaluation again to determine the fitness contri-
butions of the selected nodes post-transformation.

13: Compute fitness change from the transformation δF from the fitness contribu-
tions obtained in the Evaluation steps.

14: Determination: If a random number U (0, 1) is greater than P (δF , T (n)), then
define the container of nA as nH,old via δ(s) (Revert). Otherwise, F ← F + δF
(Accept).

15: Go to Iterate.

3.7. Validation of collision rate (Monte Carlo)

The expected collision rate for a given problem and number of
compute workers can be determined by a Monte Carlo experiment,
which serves to validate the collision rate of the asynchronous an-
nealer. Under the assumption that all workers perform selection
simultaneously, a worker’s selection operation will have a colli-
sion if either (a) the selected hardware node, (b) the selected
application node, (c) the hardware node containing the selected
application node, or (d) one of the selected application node’s
neighbours, is selected by another worker. This process is repeated,
until nend selection operations have been completed - one for
each annealer iteration. The aforementioned assumption imposes
an upper-bound on the expected collision rate, as the workers in
the annealer may not perform selection and fitness computation
simultaneously, which avoids some of the collisions identified by
this validation method. Validator values are shown with collision
rate data presented in the Section 4.

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251

Fig. 3. (a): How hardware nodes are arranged into a “core group”, where dashed edges have weight W = 0.1. (b): How “core groups” are arranged into a 8 × 12 grid to form
the hardware graph for the Small problem, where dashed edges have weight W = 100, and solid edges have weight W = 800. The hardware graph for the Large problem is
a 16 × 12 arrangement of core groups.
3.8. Parameterisation and implementation details

Implementations of the serial, synchronous-parallel, and
asynchronous-parallel algorithms (Algorithms 1, 2, and 3) are run
for nend = 5 × 109 iterations, which is sufficient for reaching a
local optimum in each of the cases that follow. Each implementa-
tion solves two problems, where the application graph is a square
Manhattan grid (as in Fig. 1), where the hardware graph is a rect-
angular Manhattan grid, and where NA,MAX = 4096:

Small: |NA| = 1000 × 1000, and |NH| = 24 × 16.
Large: |NA| = 1414 × 1414, and |NH| = 24 × 32.

Fig. 3 shows how the hardware nodes are arranged, and the
weights assigned to the edges connecting them. The topology of
the hardware graph, and the value for NA,MAX, are chosen in
line with a contemporary reconfigurable hardware platform [15].
The parallel algorithms are run with varying numbers of com-
pute workers, up to 64. Each run is executed ten times with a
same-seed random number generator. Timing begins after initial
fitness computation, and ends after the final iteration in the se-
rial implementation, or after all parallel compute workers have
despawned, in the case of the parallel implementations. An in-
tegrity check is performed before and after each run, verifying that
the data structure is not compromised (as described in the Sec-
tion 3.1). All annealing runs are performed on a single machine
with a (multithreaded 32-core) AMD Ryzen Threadripper 3970X
processor, and sufficient RAM (250GiB) to contain each problem
description. Implementations are created using compiler-optimised
C++20 using the POSIX threads parallel execution model, and are
optimise-compiled by the GNU Compiler Collection 10.2.1-6. The
source for these implementations are available at reference [23].
The Monte Carlo experiments used the validate collision rate data
are performed in serial to maintain causality.
248
4. Results and discussion

4.1. The annealing process in general

Fig. 4 (left) shows how the combination of clustering and lo-
cality fitness change as the problem is annealed for the Large
problem using the serial annealer (solid line). A similar result
is obtained using the synchronous parallel annealer (� points).
The locality fitness improves as the annealing process “untan-
gles” the initial random state, bringing neighbouring application
nodes closer together in the hardware graph. The average hard-
ware weight used by an application edge starts around 2400, and
decreases to 78 over the annealing process, resulting in an im-
proved locality fitness. The clustering fitness does not change con-
siderably, as the random initialisation results in a close-to-uniform
initial distribution of application nodes across the hardware graph,
and the clustering fitness component prevents the annealer from
“overloading” hardware nodes with application nodes. The locality
fitness does not decrease further due to SA’s inability to untangle
knots in the mapping that require a (temporary) cost to clustering
fitness to resolve, when disorder is low.

4.2. Asynchronous annealer performance

Recall that, with canonical simulated annealing, it is possible
for an iteration to move an application node to a hardware node,
and create a worse (lower fitness) solution. Also recall that the
probability of this happening reduces with more iterations, due
to the monotonic decrease in the disorder term. This work posits
that collisions from the asynchronous annealer will cause the same
behavioural effect (a fitness degradation), but this effect will not
decrease with iteration count.

Fig. 4 (left) also shows how the fitness changes as the Large
problem is relaxed using the asynchronous parallel annealer (•
points). The 64-worker asynchronous annealer reaches its opti-
mum (F = −6.45 × 109) after around 1.25 × 109 iterations (640
seconds), which is less than that of the 64-worker synchronous

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251

Fig. 4. Total fitness as a function of iteration, for each annealing algorithm. The coloured regions show how each fitness contribution contributes to the total for the serial
annealer. The fitness values from the parallel annealers are computed using 64 compute workers (with pauses in the annealing process to compute global fitness), as opposed
to the serial annealer where iteration-local fitness changes (δF) are aggregated to determine the total.
annealer, which approaches its optimum (F = −7.34 ×109) around
2.25 × 109 iterations (1390 seconds).

Fig. 4 (right) shows the fitness change for the Small problem in
the same way. As expected, the Small problem “relaxes” in fewer
iterations. As with the Large problem, the asynchronous annealer
reaches its optimum faster than the synchronous annealer, though
the synchronous annealer finds a better solution given more time.

Each point in Fig. 4 is averaged over ten runs, with a peak
fitness deviation of 9.16 × 108 at iteration 5 × 108 for the Large
problem, and 1.85 × 108 at the same iteration for the Small prob-
lem. This small deviation demonstrates the repeatability of the
asynchronous annealer.

Given that the race condition introduced by the asynchronous
algorithm causes solutions to be mistakenly accepted or rejected
regardless of their superiority, and given that superior solutions are
easier to identify early on in the annealing process, the overshoot
of the asynchronous algorithm could be attributed to the higher
proportion of superior solutions being accepted compared to the
other annealers. This effect is observably similar to a disorder that
decays quickly, but also one that doesn’t commit the annealer to
exploiting a sub-optimal basin of attraction, due to the anisotropic
nature of the race condition (it does not implicitly favour superior
or inferior solutions, nor acceptance over rejection). This causes the
asynchronous annealer to converge more quickly.

As iteration count increases, the fitness of the parallel-annealed
solution begins to worsen. Since the effect of the race condition ex-
ists independently of the iteration count, and since trial solutions
towards the end of the annealing process will typically be inferior,
these more-frequent inferior solutions gradually get accepted over
superior solutions, worsening the total fitness. Note that the com-
pute workers have no way to detect this without synchronisation;
they would see only gradual fitness improvements. This effect is
relatively minor, but demonstrates that the induced race condition
is not an absolute benefit.

4.3. Collision rate

Fig. 5 shows how frequent collisions are using the asynchronous
annealer, alongside the model presented in the Section 3.7. Recall
that a worker’s selection operation will have a collision if either (a)
the selected hardware node, (b) the selected application node, (c)
the hardware node containing the selected application node, or (d)
one of the selected application node’s neighbours, is selected by
249
Fig. 5. Cumulative number of collisions for the asynchronous SA implementation
as a function of the number of compute workers for both problem sizes. Whiskers
show deviation for each point over ten runs.

another worker. As the ratio of problem size to number of com-
pute workers decreases, collision rate increases because there is a
higher likelihood of two workers selecting the same node in ei-
ther of the two graphs. For the problems explored in this study,
the chance of a hardware-node collision is significantly greater
than that of an application-node collision because, for both prob-
lems, there are significantly more hardware nodes than application
nodes, and because application nodes have only four neighbours at
most.

A greater collision rate (caused by having more compute work-
ers, or a smaller problem) results in convergence in fewer iter-
ations, but also a more rapid solution decay beyond that point.
The overshoot effect shown in Fig. 4 is heavily dependent on the
collision rate, with a fitness trajectory matching the serial and syn-
chronous cases when only one compute worker is present. The
asynchronous annealer has a higher collision rate when applied to
the Small problem - Fig. 4 (right) shows the exacerbated solution
decline relative to the synchronous case, but also the more rapid
convergence. For both problems, the collision rate levels out after
32 compute workers as the processor becomes oversubscribed.

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251

Fig. 6. Speedup relative to the serial SA implementation for the synchronous and asynchronous parallel SA implementations, as a function of the number of compute
workers. Whiskers show deviation for each point over ten runs. Measurements taken with no pauses in the annealing process to record intermediate fitness values, nor with
any collision-detection logic.
4.4. Speedup and convergence comparisons

Fig. 6 shows the serial-relative speedup S(n) = t0/tn of both
parallel annealers as a function of the number of compute work-
ers for both problems, where t0 and tn are the execution times of
the serial annealer and the n-worker-parallel annealer respectively
to nend iterations. Performance decays at the 32-compute worker
mark and becomes less repeatable, as the processor only contains
32 physical (64 logical), multithreaded cores. The asynchronous an-
nealer iterates slightly faster at the key 32-compute worker point;
this demonstrates the potential gain from this method, especially
considering that it converges at an earlier iteration than the syn-
chronous method.

5. Closing comments

Simulated annealing approaches are frequently used to solve
high-dimensional, large problems across multiple priority research
areas. Placement is one such problem where even minor perfor-
mance improvements yield a drastic impact on the time taken
to, for example, deploy an application onto a distributed compute
platform, or to arrange logic blocks in a chip. As such, it has be-
come a popular target for parallel simulated annealing approaches.

This paper investigates a technique that delivers a performance
improvement over traditional shared-memory parallel annealing:
allowing the workers to operate almost asynchronously on the
problem, regardless of what the other workers are doing. This
approach consciously introduces a race condition, and reduces ex-
ecution time as workers no longer contend for shared resources.
The study presented here explains how such an approach may
be implemented. It also demonstrates that, for the largest prob-
lem considered here, the race condition introduced by the asyn-
chronous annealer produces a superior solution in half the time
of the synchronous annealer, but also that the asynchronous an-
nealer will actually worsen the solution as more time is spent
annealing the problem. This effect is exacerbated by decreasing
the problem size and by increasing number of compute workers,
as the collision rate increases as a result. The result presented
here has profound implications for stiff problems, where orders-
of-magnitude performance improvements can be realised. Further
studies will illustrate how this method can be applied to problems
as a function of problem stiffness (here, graph degree), as it would
inform the design of future global search algorithms. Future work
250
may also explore how this asynchronous annealing technique ap-
plies to other problems studied with simulated annealing in the
literature, such as labelling problems [22]. Beyond this, the idea
of introducing a beneficial race-condition in this way can be ap-
plied to other commonly-used optimisation solving methods, like
evolutionary algorithms and particle swarm optimisation, with sig-
nificant performance improvements.

CRediT authorship contribution statement

Mark Vousden: Conceptualization, Data Curation, Investigation,
Methodology, Software, Verification, Visualization, Writing - Origi-
nal Draft.

Graeme M. Bragg: Investigation, Resources, Writing - Review &
Editing.

Andrew D. Brown: Funding Acquisition, Investigation, Method-
ology, Writing - Review & Editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We acknowledge financial support from EPSRC (EP/N031768/1).

References

[1] E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines, John Wiley
and Sons Inc., New York, NY, 1988.

[2] S.R. Alam, R.F. Barrett, J.A. Kuehn, P.C. Roth, J.S. Vetter, Characterization of sci-
entific workloads on systems with multi-core processors, in: 2006 IEEE Inter-
national Symposium on Workload Characterization, IEEE, 2006, pp. 225–236,
https://ieeexplore .ieee .org /abstract /document /4086151.

[3] A. Casotto, F. Romeo, A. Sangiovanni-Vincentelli, A parallel simulated annealing
algorithm for the placement of macro-cells, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 6 (5) (1987) 838–847, https://doi .org /10 .1109 /TCAD .1987.
1270327, https://ieeexplore .ieee .org /abstract /document /1270327.

[4] V. Černỳ, Thermodynamical approach to the traveling salesman prob-
lem: an efficient simulation algorithm, J. Optim. Theory Appl. 45 (1)
(1985) 41–51, https://doi .org /10 .1007 /BF00940812, https://link.springer.com /
article /10 .1007 /BF00940812.

[5] C. Chen, L.K. Tiong, Using queuing theory and simulated annealing to de-
sign the facility layout in an agv-based modular manufacturing system, Int.

http://refhub.elsevier.com/S0743-7315(22)00166-6/bibD18690A70D25021EEBB65739B496AA35s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bibD18690A70D25021EEBB65739B496AA35s1
https://ieeexplore.ieee.org/abstract/document/4086151
https://doi.org/10.1109/TCAD.1987.1270327
https://doi.org/10.1109/TCAD.1987.1270327
https://ieeexplore.ieee.org/abstract/document/1270327
https://doi.org/10.1007/BF00940812
https://link.springer.com/article/10.1007/BF00940812
https://link.springer.com/article/10.1007/BF00940812

M. Vousden, G.M. Bragg and A.D. Brown Journal of Parallel and Distributed Computing 169 (2022) 242–251
J. Prod. Res. 57 (17) (2019) 5538–5555, https://doi .org /10 .1080 /00207543 .
2018 .1533654, https://www.tandfonline .com /doi /abs /10 .1080 /00207543 .2018 .
1533654.

[6] V.A. Cicirello, Variable annealing length and parallelism in simulated annealing,
in: Tenth Annual Symposium on Combinatorial Search, 2017.

[7] R. Diekmann, R. Lüling, J. Simon, Problem independent distributed simulated
annealing and its applications, in: Applied Simulated Annealing, Springer, 1993,
pp. 17–44.

[8] R.W. Eglese, Simulated annealing: a tool for operational research, Eur. J. Oper.
Res. 46 (3) (1990) 271–281, https://doi .org /10 .1016 /0377 -2217(90)90001 -R,
https://www.sciencedirect .com /science /article /pii /037722179090001R.

[9] R.W. Floyd, Algorithm 97: shortest path, Commun. ACM 5 (6) (1962) 345,
https://doi .org /10 .1145 /367766 .368168.

[10] S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project, Proc. IEEE
102 (5) (2014) 652–665, https://doi .org /10 .1109 /JPROC .2014 .2304638, https://
ieeexplore .ieee .org /abstract /document /6750072.

[11] P. Gopakumar, M.J.B. Reddy, D.K. Mohanta, Novel multi-stage simulated anneal-
ing for optimal placement of pmus in conjunction with conventional measure-
ments, in: 2013 12th International Conference on Environment and Electri-
cal Engineering, IEEE, 2013, pp. 248–252, https://ieeexplore .ieee .org /abstract /
document /6549625.

[12] S. Kirkpatrick, D.C. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 671–680, https://doi .org /10 .1126 /science .220 .4598 .
671, https://science .sciencemag .org /content /220 /4598 /671.

[13] A. Ludwin, V. Betz, Efficient and deterministic parallel placement for FPGAs,
ACM Trans. Des. Autom. Electron. Syst. 16 (3) (2011) 1–23.

[14] J. Mingjun, T. Huanwen, Application of chaos in simulated annealing, Chaos
Solitons Fractals 21 (4) (2004) 933–941, https://doi .org /10 .1016 /j .chaos .2003 .
12 .032, https://www.sciencedirect .com /science /article /pii /S0960077903006866.

[15] M. Naylor, S.W. Moore, D. Thomas, Tinsel: a manythread overlay for FPGA clus-
ters, in: 2019 29th International Conference on Field Programmable Logic and
Applications (FPL), IEEE, 2019, pp. 375–383.

[16] S.W. Paek, S. Kim, O. de Weck, Optimization of reconfigurable satellite constel-
lations using simulated annealing and genetic algorithm, Sensors 19 (4) (2019)
765, https://doi .org /10 .3390 /s19040765, https://www.mdpi .com /1424 -8220 /19 /
4 /765.

[17] N.R. Quinn Jr, The placement problem as viewed from the physics of classical
mechanics, in: Papers on Twenty-Five Years of Electronic Design Automation,
1988, pp. 67–72.

[18] D.J. Ram, T. Sreenivas, K.G. Subramaniam, Parallel simulated annealing algo-
rithms, J. Parallel Distrib. Comput. 37 (2) (1996) 207–212.

[19] G. Rudolph, Massively parallel simulated annealing and its relation to evolu-
tionary algorithms, Evol. Comput. 1 (4) (1993) 361–383.

[20] G. Sergey, Z. Daniil, C. Rustam, Simulated annealing based placement optimiza-
tion for reconfigurable systems-on-chip, in: 2019 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), IEEE,
2019, pp. 1597–1600, https://ieeexplore .ieee .org /abstract /document /8657251.

[21] J. Torres-Jimenez, E. Rodriguez-Tello, New bounds for binary covering arrays
using simulated annealing, Inf. Sci. 185 (1) (2012) 137–152.

[22] J. Torres-Jimenez, I. Izquierdo-Marquez, A. Garcia-Robledo, A. Gonzalez-Gomez,
J. Bernal, R.N. Kacker, A dual representation simulated annealing algorithm for
the bandwidth minimization problem on graphs, Inf. Sci. 303 (2015) 33–49.

[23] M. Vousden, PSAP Software: Parallel Simulated Annealer for Placement (2.0.0),
https://doi .org /10 .5281 /zenodo .5879815, 2022.

Mark Vousden has been employed at BluPoint Ltd.
as a software engineer, and is currently a Research
Fellow at the University of Southampton, UK. He
has six journal publications in micromagnetic simula-
tion. Current research interests are event-driven high-
performance computing architectures and paradigms.

Graeme M. Bragg has previously worked for Esri
UK and is currently employed by the University of
Southampton as a Research Fellow on the POETS
project. He has three journal and eight conference
publications. His research interests include environ-
mental sensor networks, low-power networks and
many-core systems.

Andrew D. Brown has held posts at IBM Hursley
Park (UK), Siemens NeuPerlach (Germany), Multiple
Access Communications (UK), LME Design Automa-
tion (UK), Trondheim University (Norway), Cambridge
University (UK), and EPFL (CH). He is a professor of
electronics at Southampton University, UK. He is FIET,
FBCS, CEng, CITP, Eur Ing and SMIEEE.
251

https://doi.org/10.1080/00207543.2018.1533654
https://doi.org/10.1080/00207543.2018.1533654
https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1533654
https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1533654
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib4DCF2A7A1EC5CF82CDE86A086B1E4C53s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib4DCF2A7A1EC5CF82CDE86A086B1E4C53s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib452AAC8B458C701F99A96CF7F9475DA6s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib452AAC8B458C701F99A96CF7F9475DA6s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib452AAC8B458C701F99A96CF7F9475DA6s1
https://doi.org/10.1016/0377-2217(90)90001-R
https://www.sciencedirect.com/science/article/pii/037722179090001R
https://doi.org/10.1145/367766.368168
https://doi.org/10.1109/JPROC.2014.2304638
https://ieeexplore.ieee.org/abstract/document/6750072
https://ieeexplore.ieee.org/abstract/document/6750072
https://ieeexplore.ieee.org/abstract/document/6549625
https://ieeexplore.ieee.org/abstract/document/6549625
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://science.sciencemag.org/content/220/4598/671
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib82684689EBB2352DB4B567E04AD41568s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib82684689EBB2352DB4B567E04AD41568s1
https://doi.org/10.1016/j.chaos.2003.12.032
https://doi.org/10.1016/j.chaos.2003.12.032
https://www.sciencedirect.com/science/article/pii/S0960077903006866
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib6C551186288AF7961683EE5FAE476F35s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib6C551186288AF7961683EE5FAE476F35s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib6C551186288AF7961683EE5FAE476F35s1
https://doi.org/10.3390/s19040765
https://www.mdpi.com/1424-8220/19/4/765
https://www.mdpi.com/1424-8220/19/4/765
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib1F1BF387C2D3ECC2E3BC6A9CDFDF5EEBs1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib1F1BF387C2D3ECC2E3BC6A9CDFDF5EEBs1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib1F1BF387C2D3ECC2E3BC6A9CDFDF5EEBs1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bibD9AE072524FB5CA8C977411A7CC65C1Cs1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bibD9AE072524FB5CA8C977411A7CC65C1Cs1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib952F7A3867C4D71A73BAC0662E403189s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib952F7A3867C4D71A73BAC0662E403189s1
https://ieeexplore.ieee.org/abstract/document/8657251
http://refhub.elsevier.com/S0743-7315(22)00166-6/bibE8F8B5F47EC0D563D879136533F09E5As1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bibE8F8B5F47EC0D563D879136533F09E5As1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib44241A3B64BFBA7FCA9D66A784A2E983s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib44241A3B64BFBA7FCA9D66A784A2E983s1
http://refhub.elsevier.com/S0743-7315(22)00166-6/bib44241A3B64BFBA7FCA9D66A784A2E983s1
https://doi.org/10.5281/zenodo.5879815

	Asynchronous simulated annealing on the placement problem: A beneficial race condition
	1 Introduction
	1.1 Simulated annealing
	1.2 Placement
	1.3 Objectives

	2 Theory: placement and parallel simulated annealing
	2.1 The placement problem
	2.1.1 Fitness metric
	2.1.2 Example fitness computation

	2.2 Simulated annealing
	2.2.1 Parallel simulated annealing

	3 Method: design and implementation of annealers
	3.1 Data structures
	3.2 Determination: cooling schedule
	3.3 Atomic transformation and fitness
	3.4 Serial algorithm (comparator)
	3.5 Synchronous-parallel algorithm (comparator)
	3.6 Asynchronous-parallel algorithm
	3.7 Validation of collision rate (Monte Carlo)
	3.8 Parameterisation and implementation details

	4 Results and discussion
	4.1 The annealing process in general
	4.2 Asynchronous annealer performance
	4.3 Collision rate
	4.4 Speedup and convergence comparisons

	5 Closing comments
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

