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Race conditions, which occur when compute workers do not synchronise correctly, are considered 
undesirable in parallel computing, as they introduce often-unintended stochastic behaviour. This study 
presents an asynchronous parallel algorithm with a race condition, and demonstrates that it reaches 
a superior solution faster than the equivalent synchronous algorithm without the race condition. 
Specifically, a parallel simulated annealing algorithm that solves a graph mapping problem (placement) 
is used to explore this. This paper illustrates how problem size and degree of parallelism affects both the 
collision rate caused by the race condition, and convergence time. The asynchronous approach reaches a 
superior solution in half the time of the equivalent synchronous approach. The solver presented here can 
be applied to application deployment in distributed systems, and the concept can be applied to problems 
solvable by global optimisation methods, where fitness errors can be tolerated in exchange for faster 
execution.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Race conditions are thought of as undesirable in parallel com-
puting, as they introduce often-unintended stochastic behaviour. 
To avoid race conditions, parallel algorithms typically introduce 
a resource-management mechanism (usually mutexes or locks) to 
control access to data, but these mechanisms increase execution 
time. We present a parallel simulated annealing algorithm where 
compute workers do not synchronise more than is necessary - this 
approach introduces a race condition. The algorithm exploits the 
stochastic behaviour the race condition produces, in order to find a 
superior solution faster. This paper demonstrates that consciously 
introducing a race condition, and taking advantage of the result-
ing stochastic behaviour, can yield significant performance benefits 
for certain parallel compute problems. Specifically, a Simulated An-
nealing (SA) implementation of a placement problem is considered 
here.

1.1. Simulated annealing

Simulated annealing [12,4] is an optimisation method, where 
the state of a system is repeatedly perturbed over time, gradu-
ally improving it with respect to some fitness measure. SA uses 
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stochastic behaviour to facilitate global exploration of the state-
space. Consequently, perturbations occasionally worsen the SA so-
lution to overcome undesirable local optima in its search for the 
best solution. While SA performs on a broad class of problems, it 
is frequently modified for improved performance when some prop-
erties of the problem are known [14], though such modification 
for best performance is not trivial, as the most effective fitness 
heuristics [21], problem representation and perturbation operators 
may require unusual tradeoffs [22]. The global-searching nature of 
SA, its ease of implementation and tuning, along with its near-
forty-year provenance, have made SA the subject of considerable 
research effort across a broad set of academic disciplines [5,16]. 
Many research domains employ a modified form of SA as part of 
a multistage hybrid approach, such as in power-grid monitoring 
(where measurement units must be placed optimally across the 
grid network) [11], placement in reconfigurable systems [17,20], 
and software interaction testing [21].

Top-end desktop processors of today host 64 compute cores: 
a dramatic advancement on the eight-core processors that were 
novel four years ago. Advancements in parallel computing architec-
tures are of considerable value for SA approaches, as a superior so-
lution can be more quickly identified. Parallel SA either parallelises 
fitness evaluations (single-trial parallel), or runs each iteration in 
a separate compute thread with some synchronisation (multiple-
trial parallel) [19,8,3,1,18]. The former of these is only appropriate 
when the fitness function is compute-intensive, and the latter im-
poses a severe speed limit on the processing of the problem.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Motivated by hardware advancements, much of present-day SA 
research is focused on parallel SA, though certain valuable prop-
erties of serial SA difficult to parallelise. As an example, adaptive 
annealers in parallel can be achieved by restarting each annealer 
with an initial annealing length and schedule [6]. Determinism is a 
valuable property of annealers (at the cost of performance) in cer-
tain applications, though dependency-checking and collisions can 
be “repaired” to maintain determinism [13].

Distributed-memory parallelism has been applied to SA [7], 
though communication costs between the distributed compute 
workers imposes a significant runtime penalty for problems where 
the fitness function is cheap to compute, and for problems with 
a high degree, such as in highly-connected placement problems. 
More interconnected (large) problems motivate a shared-memory 
approach, where the state of the “current iteration” is available 
to all compute workers simultaneously. Shared-memory SA ap-
proaches have been explored, but only for small numbers of paral-
lel workers on commodity desktop machines, whereas distributed-
memory SA placement approaches are commonly employed. How-
ever, recent innovations in desktop compute technology, such as in 
the AMD Ryzen Threadripper 3990X, have resulted in processors 
with as many as 64 physical 4.3 GHz (boost) compute cores, with 
access to over 512 GB of volatile memory. Such massively-parallel 
computing platforms provide an alternative to distributed-compute 
architectures, like Graphics Processing Units (GPUs) and coproces-
sors.

Due to recent innovations, and due to the rise in more highly-
connected problems to anneal, there is value in exploring shared-
memory asynchronous simulated annealing approaches, as they 
may converge more quickly than their synchronous equivalents. 
Such an asynchronous approach would consciously introduce a 
race condition, and consequently data collisions, between compute 
workers. This approach will only be of value when the conse-
quence of these collisions is small (such as in placement prob-
lems), as the effect of these collisions may become indistinguish-
able from the already-induced stochastic behaviour in SA.

1.2. Placement

The placement problem, fundamentally, is concerned with map-
ping the elements of one large graph onto another large graph. Ex-
amples of industry-relevant placement problems include the core 
affinity problem, which maps processes onto compute cores in a 
processor to maximise compute efficiency [2], and the optimisa-
tion of placement and routing of logic blocks in a system-on-
chip [17,20], though many more exist. Placement is chosen here 
as a suitable SA target problem, due to its epistatic, nonlinear na-
ture, due to the large interconnected nature of the problem, and 
due to the frequency with which placement problems are solved 
with SA in the literature [5,16,11,20]. Placement problems of in-
dustrial and academic relevance are all large, motivating the use of 
parallel computing to find superior placement configurations more 
quickly.

1.3. Objectives

Motivated by the need to perform shared-memory simulated 
annealing to solve placement problems, and improvements in ar-
chitectures supporting shared-memory desktop processing, this pa-
per introduces an asynchronously-parallel SA implementation, and 
explores how it performs on a particular class of placement prob-
lems. This implementation is run on a high-end desktop machine 
to generate results. These results are used to illustrate the trade-
offs between asynchronous and synchronous shared-memory SA 
approaches, including execution time, collision rate, and the over-
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all impact of collisions, as a function of the size of the placement 
problem, and the number of compute workers.

2. Theory: placement and parallel simulated annealing

2.1. The placement problem

The placement problem considered in this paper attempts to 
map a multiprocess application onto a distributed computing sub-
strate. This problem is of particular importance given the rise 
of off-the-shelf high-power distributed compute systems (GPUs, 
for example), and burgeoning research into more bespoke event-
based reconfigurable technologies [10,15]. These enable orders-of-
magnitude increases in the size of problems being solved by com-
puters, resulting in orders-of-magnitude savings spanning a variety 
of problem domains.

The multiprocess application can be represented as a simple 
graph A (application graph, red graph with circle nodes in Fig. 1), 
where nodes represent discretised behaviours, and where edges 
represent the interaction between the nodes. For context, the ar-
rangement of nodes could represent, a program to solve a partial-
differential equation (e.g. thermal diffusion, aerodynamics), or an 
model of agents communicating a/synchronously (e.g. computa-
tional chemistry, cellular automata).

The distributed computing substrate can also be represented 
as a simple weighted graph H (hardware graph, black graph with 
square nodes in Fig. 1), where nodes represent units of compute 
hardware in a distributed compute system (e.g. compute cores), 
and where edges represent the communication pathways between 
those nodes. Edges in this hardware graph are assigned a weight, 
which represents the “cost” of communicating between two com-
pute units (and function as an approximate aggregation of the 
effects of latency, bandwidth, and contention).

Given a hardware graph and an application graph, the task is to 
create a many-to-one map of all application nodes to some hard-
ware nodes, such that no hardware node has no more than NA,MAX, 
application nodes assigned to it. Such a mapping is a solution to 
the placement problem.

Given there are enough nodes in the hardware graph to hold 
the application graph, a solution can be obtained by mapping ap-
plication nodes chosen at random into another hardware node 
chosen at random that is not full (i.e. when the hardware node 
has less than NA,MAX application nodes), repeating until there are 
no more application nodes. However, such a solution is unlikely to 
perform well in practice, making it undesirable. Fig. 1 shows an op-
timal (a) and a sub-optimal (b) solution to an example placement 
problem. Sub-optimal solutions may result in order-of-magnitude 
slower applications, which are clearly undesirable.

2.1.1. Fitness metric
Fitness allows solutions to be compared: more fit solutions ex-

hibit properties that make them superior to less fit solutions. Fit 
solutions exhibit:

• Locality Fitness: Neighbouring nodes in the application graph 
are placed as close as possible to each other. This minimises 
the latency between two communicating nodes. If an applica-
tion requires two such nodes to synchronise with each other, 
being close together makes the synchronisation as fast as pos-
sible. If the nodes are far away, synchronisation is slow, com-
promising execution time. Given that the “locality cost” of an 
application edge is equal to the sum of the weights of the 
hardware edges it traverses, the locality fitness is minus the 
sum of the locality costs associated with all application edges 
(better solutions have a higher fitness).
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Fig. 1. Examples of placement of a gridded application graph (red circles) onto a 
gridded hardware graph (black/grey squares), where hardware nodes can contain 
at most five application nodes (NA,MAX = 5). The four hardware edges (black) each 
have weight w . (a): The application graph is placed optimally onto the hardware -
the hardware nodes are evenly loaded, and only eight application edges span mul-
tiple hardware nodes. (b): The same application graph placed randomly, resulting in 
an inefficient placement solution, because the application nodes are unevenly dis-
tributed, and cross hardware edges more than is necessary.

• Clustering Fitness: The compute hardware is loaded as evenly 
as possible. Each hardware node has to divide its time be-
tween the application nodes mapped to it. An uneven hard-
ware node loading results in some application nodes being ex-
ecuted “faster” than others. For most applications, the slowest-
executing node defines the runtime of the application, so an 
even loading is preferred. Given the “clustering cost” of a hard-
ware node is equal to the square of the number of applica-
tion nodes mapped to it, the clustering fitness is minus the 
sum of the clustering costs of all hardware nodes. The square 
term imposes a greater clustering cost on overloaded hardware 
nodes.

Note that locality fitness favours a tightly-clustered placement so-
lution, whereas clustering fitness favours a more spread-out solu-
tion. To balance these competing fitness contributions, we define 
the total solution fitness as being the sum between the locality 
and clustering fitness contributions.

2.1.2. Example fitness computation
To illustrate the conflicting nature of the different fitness contri-

butions, consider the example presented in Fig. 1, which has four 
hardware nodes connected in a two-by-two arrangement, sixteen 
application nodes connected in a four-by-four arrangement, and 
where each hardware edge has the same weight w . A grid place-
ment, such as in Fig. 1 (left), results in locality fitness −8w (as 
eight edges in the application graph each traverse one edge in the 
hardware graph), and clustering fitness −4(42) = −64 (as each of 
the four hardware nodes are loaded with four application nodes), 
resulting in a total fitness of −(8w + 64). The random placement 
in Fig. 1 (right) results in a lower locality fitness (−16w), a lower 
clustering fitness (−66), and consequently a lower fitness overall 
(−(16w + 66)). Because the random placement has a lower fitness 
than the grid placement, the grid placement solution is superior to 
the random placement solution.

An optimal solution to the problem shown in Fig. 1 is evident 
by inspection, due to the regularity of the problem. However, the 
optimum solution for similar “grid-like” hardware and application 
graphs may be irregular. For example, a regular deployment of a 
grid of application nodes onto a grid of hardware nodes is not op-
timal if the grids have different aspect ratios, if the application 
nodes do not divide evenly into the hardware nodes, or if the value 
of w in the fitness computation strongly favours a tight clustering 
of application nodes. The value of irregular solutions, coupled with 
the commonality of irregular application graphs in nature, moti-
vates an iterative numerical approach for finding suitable solutions 
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to the placement problem - inspection cannot be relied upon in 
the general case, particularly for non-gridded graphs.

2.2. Simulated annealing

SA is a stochastic global optimisation metaheuristic. It is a 
search method that allows, exploration of a solution space and se-
lection of a guaranteed local optimum, with some concession for 
global search. The canonical SA algorithm (CSA) is [12,4]:

Initialisation: Define an initial state s = s0 (for iteration n = 0).
Selection and Transformation: Select a trial state strial that is “ad-

jacent” to the current state using an atomic transformation 
δ(s). The selected state is chosen at random.

Evaluation: Evaluate the fitness of the selected state F [strial], given 
the fitness of the previous state F [s].

Determination: If the new state is fitter (F [strial] > F [s]), accept 
it without further question (s ← strial). If not, accept it subject 
to some random disorder. The effect of this disorder decreases 
slightly with each iteration.

Termination: If a termination condition has been met (e.g. maxi-
mum number of iterations, or some function of the solution), 
return the most recently accepted solution. Otherwise, loop 
back to Selection and Transformation.

The algorithm loops from Selection and Transformation to Termi-
nation repeatedly - each execution of this loop is an iteration. The 
disorder used in Determination is analogous to temperature in 
traditional annealing, and must decrease monotonically with each 
iteration, “cooling” the system. A high disorder (or temperature) 
corresponds to a higher probability of acceptance (exploratory be-
haviour), whereas a low disorder corresponds to a lower probabil-
ity (exploitary behaviour). CSA can be used to solve the placement 
problem introduced at the start of this Section. One approach is 
outlined in Fig. 2.

2.2.1. Parallel simulated annealing
The literature outlines many traditional approaches to shared-

memory-parallel SA [8,1]. Of particular note is the “error al-
gorithm”, in which multiple neighbourhood moves are evalu-
ated simultaneously [8]. A variant of this algorithm can be de-
scribed as follows, where each compute worker performs each 
non-Initialisation step asynchronously:

Initialisation: Define an initial state s = s0. All compute workers 
can view and modify this state.

Evaluation (1): Evaluate the fitness of the state F [s] before modi-
fication.

Selection and Transformation: Modify the state using an atomic 
transformation δ(s). This modification acts on the global copy 
of s, meaning each transformation affects the state visible by 
all other compute workers.

Evaluation (2): Evaluate the fitness of the transformed state (the 
new F [s], and compare it to the old fitness computed in Eval-
uation (1) as before. A race condition is introduced by the 
asynchronously-parallel selection operation.

Determination: As in canonical SA.
Termination: If a worker identifies that the termination condition 

has been met, that worker communicates with all other work-
ers to stop computation. Otherwise, loop back to Evaluation 
(1).

The “error” exists when multiple compute workers act on the same 
region of state at the same time, which results in an erroneous so-
lution fitness, which in turn may affect the outcome of Determina-
tion. Due to this race condition, implementations of this algorithm 
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Fig. 2. Three cases demonstrating how the iterative loop of CSA can operate on a placement problem, similar to the one shown in Fig. 1, but with three hardware nodes 
(black/grey squares) and four application nodes (red circles). Each case demonstrates how a single iteration of CSA can influence the state. New states are found by moving 
one application node to one hardware mode (Selection and Transformation). The fitness value of the new state is computed, which determines whether or not the state is 
accepted or rejected, subject to a disorder term (explained in the Section 3.2). Case (1) shows an iteration to a more fit state (as F is larger). Case (2) shows an iteration 
where an inferior state has been selected, where (2a) the state is rejected because it is worse, and another iteration where (2b) the state is accepted, because the disorder of 
the annealing process has influenced Determination.
have a non-deterministic (micro-scale) outcome. However, for cer-
tain classes of problems (and we count the aforementioned place-
ment problem among these), and in situations where the problem 
size is significantly greater than the number of compute workers 
(reducing the probability of a collision), we posit that the macro-scale 
outcome does not significantly change, as fitness improvements will still 
propagate.

It is possible to eliminate the aforementioned race condition by 
introducing synchronisation during the Selection operation, to pre-
vent workers from operating on the same region of the problem. 
By way of example, the placement problem demonstrates spatial 
locality in its fitness computation, as the change in locality fit-
ness and clustering fitness is only a function of the selected nodes 
in hardware graph and application graph, and their neighbours. 
This means it is sufficient to “lock” the selected nodes and their 
neighbours, preventing them from being selected by other work-
ers, avoiding the race condition. However, this locking mechanism 
imposes a runtime penalty.

3. Method: design and implementation of annealers

Three SA implementations are compared in this paper, that 
each operate on the same placement problem: a serial imple-
mentation (a performance baseline), a fully-synchronous shared-
memory-parallel implementation (that avoids race conditions, at 
performance cost), and an asynchronous shared-memory-parallel 
implementation (that introduces a race condition to go as fast as 
possible). The execution time and final fitness are compared across 
these three implementations for two sizes of placement problem. 
The effect of the race condition in the asynchronous implementa-
tion is also investigated as a function of placement problem size 
and the number of compute workers. This Section formally defines 
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these implementations, and the parameters used in this investiga-
tion.

3.1. Data structures

Each SA implementation uses a similar data structure, which 
is designed to minimise the execution time of the iterative loop 
in SA. This structure contains a set of hardware nodes and applica-
tion nodes, which does not change during annealing. Each application 
node holds a reference to each of its neighbours in the application 
graph - these references also do not change during annealing. Also, to 
encapsulate the behaviour of hardware nodes containing applica-
tion nodes, all hardware nodes hold references to the application 
nodes that are mapped to them (one to many), and application 
nodes hold a reference to the hardware node that contains them 
(one to one). These references will change during annealing. These re-
lationships perform well, as lookups are needed in both directions 
to compute clustering and locality fitness, but introduce an in-
tegrity trap: these two elements of the data structure must not 
contradict at any time. As such, a per-node lock is introduced in 
the parallel implementations, which allows transformations that 
affect these nodes to occur in sequence. These locks are used in 
both the synchronous and the asynchronous implementations to 
ensure transformations do not compromise the integrity of the 
datastructure.

The locality fitness calculation requires the sum of the weights 
of edges connecting two given hardware nodes. Storing weights on 
a per-edge basis and computing these costs during an Evaluation
step is computationally expensive. For efficiency, the data structure 
holds a matrix W of weight-sums for each pair of hardware nodes 
in the problem, which is pre-computed using the Floyd-Warshall 
algorithm prior to any annealing [9]. This approach significantly 
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reduces execution time for SA problems that require many itera-
tions to converge satisfactorily.

3.2. Determination: cooling schedule

The Determination stage of Canonical Simulated Annealing 
(CSA) contains a stochastic component to facilitate both explorative 
and exploitative search behaviours. In this study, the traditional 
exponentially-decaying disorder parameter

T (n) = nend

n

1

2 ln(2)
(1)

is used, which decays monotonically with increasing n, and where 
the nend/n co-efficient is arbitrarily chosen to best relax the system 
from observation. We also use the traditional probability function 
introduced in [12]:

P (δF , T (n)) = exp

(
δF

T (n)

)
, for δF < 0, (2)

where nend is the total number of annealing iterations, P deter-
mines the probability with which the trial solution is accepted, 
and δF = F [strial] − F [s]. Note that T is large at the start of the an-
nealing process (n � nend), encouraging exploration of the solution 
space, and is small at the end (n ≈ nend) to encourage exploitation 
of the basin of attraction. The probability function P is only evalu-
ated when strial is inferior to s (i.e. negative δF ), ensuring that its 
range is bound between zero and one.

3.3. Atomic transformation and fitness

In each iteration, a trial state strial is chosen in the Selection
stage of the CSA algorithm by applying the atomic transformation 
δ(s) to the current state. The transformation δ(s) moves a selected 
application node to a selected hardware node. This transformation 
enacts a small change upon the state, and is sufficient to allow 
the algorithm to explore the state-space of the problem in its en-
tirety. Once selected, the trial state is then compared, using fitness 
calculation, with the current state s in the Evaluation stage. In 
CSA, evaluation occurs after the state is transformed to the trial 
state. However, a fitness evaluation of a large placement prob-
lem is expensive. Also for large problems, where the state requires 
a considerable memory footprint, it is unreasonable to store two 
similar states in memory at the same time, particularly when the 
transformation only affects a small portion of the state. Further-
more, the Determination stage (as shown in the previous Section) 
only requires the difference in fitness between the two states, and 
not their absolute value. In this case, the Selection and Evalua-
tion stages can be efficiently combined by performing some of the 
comparison prior to selection:

Selection: Select an application node to move, and a hardware 
node destination (both at random).

Pre-Evaluation: Compute the locality fitness of the application 
node, the clustering fitness of the selected hardware node, and 
the clustering fitness of the hardware node that currently con-
tains the selected application node.

Transformation: Move the selected application node to the se-
lected hardware node.

Post-Evaluation: Repeat Pre-Evaluation, and use the locality and 
fitness differences to compute the total fitness change from 
the transformation.

To proceed, formal definitions for node-specific locality and 
clustering fitness contributions are required, based on their def-
initions in the Section 2.1. These definitions consider the simple 
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application graph A(NA, EA) with nodes NA and edges EA, and the 
simple weighted hardware graph H(NH, EH) with nodes NH and 
edges EH weighted on a per-edge basis. The locality fitness of a 
state is

FL[s] = −
∑
j∈EA

∑
i∈M( j)

wi, (3)

where the first sum iterates over each edge in the set of appli-
cation edges, where M( j) defines the set of hardware edges that 
application edge j overlays in the state, where wi is the weight 
of hardware edge i, and where the second sum iterates over each 
hardware edge overlaid by j, and adds its weight contribution. The 
clustering fitness of a state is

FC[s] = −
∑

k∈NH

C(k)2, (4)

where the sum considers each hardware node k, and where C(k)

denotes the number of application nodes mapped to hardware 
node k.

Equations (3) and (4) define the locality and clustering fitness 
contributions of a given state respectively. The “local” clustering 
fitness (the contribution to the clustering fitness from a single 
hardware node nH) is:

FC[s,nH] = −C(nH)2. (5)

Likewise, the “local” locality fitness of an application node nA is:

FL[s,nA] = −
∑

j∈EnA

∑
i∈M( j)

wi, (6)

where EnA denotes the set of edges connected to application node 
nA.

From the data structure, these local fitness contributions can 
be computed using only the selected nodes and their properties. 
This fitness-computation approach allows the fitness of a state to 
be computed without evaluation of the entire solution - a consid-
erable time saving. Notably, this approach allows compute workers 
in parallel annealing algorithms to segregate regions of data - es-
sential for synchronisation and for maintaining the integrity of the 
data structure.

Using Equations (5) and (6), the fitness change δF between two 
states s and strial, where the trial state is obtained by moving ap-
plication node na from hardware node nH,old to nH,new is:

δF =F [strial] − F [s] (7)

= + (
FC[strial,nH,new] + FC[strial,nH,old] + FL[strial,nA])

− (
FC[s,nH,new] + FC[s,nH,old] + FL[s,nA]) . (8)

Note that only the selected nodes, and the adjacent application 
nodes, are used in this fitness computation. This provides a means 
to compute the change in fitness brought about by the transforma-
tion of an existing solution, which is sufficient for the Determina-
tion stage.

3.4. Serial algorithm (comparator)

Given the data structure, transformation, local fitness computa-
tion, and cooling scheduled outlined in this Section, Algorithm 1
defines the serial SA algorithm used as a comparator in this paper.
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Algorithm 1 Serial SA algorithm for the placement problem (see 
text for definitions of variables).
1: Initialisation: n = 0 (iteration counter).
2: Pre-compute Hardware Weight Matrix W : NH, NH →R+ from H .
3: Randomly define an initial containment relationship between elements of NH

and NA such that |nH| < PMAX for all hardware nodes. This is the initial state.
4: Compute fitness F from the initial state.
5: Iterate: n ← n + 1
6: If n ≥ nend, then end algorithm.
7: Selection: Randomly select application node nA. Let nH,old be the hardware node 

that contains nA.
8: Randomly select hardware node nH,new such that nH,new 	= nH,old and |nH,new| <

NA,MAX − 1.
9: Pre-Evaluation: Compute the FL contribution of nA (using W and NH), and the 

FC contributions of nH,old and nH,new.
10: Transformation: Define the container of nA as nH,new via δ(s).
11: Post-Evaluation: Perform Pre-Evaluation again to determine the fitness contri-

butions of the selected nodes post-transformation.
12: Compute fitness change from the transformation δF from the fitness contribu-

tions obtained in the Evaluation steps.
13: Determination: If a random number U (0, 1) is greater than P (δF , T (n)), then 

define the container of nA as nH,old via δ(s) (Revert). Otherwise, F ← F + δF
(Accept).

14: Go to Iterate.

3.5. Synchronous-parallel algorithm (comparator)

Given the aforementioned serial algorithm, Algorithm 2 is sec-
ond comparator that anneals in shared-memory parallel. Each 
compute worker locks a set of nodes each iteration. These locks 
are claimed as part of Selection, preventing race conditions with 
other compute workers. Also note that, since Determination only 
requires a fitness difference δF , the absolute fitness is free to differ 
between compute workers - the “true” fitness can be computed by 
pausing the algorithm and computing the total fitness of the sys-
tem using Equations (3) and (4).

Algorithm 2 Synchronous parallel SA algorithm for the placement 
problem (see text for definitions of variables). All data is shared 
across workers unless otherwise stated. Changes from Algorithm 1
in red.
1: Initialisation: n = 0 (atomic iteration counter).
2: Pre-compute Hardware Weight Matrix W : NH, NH →R+ from H .
3: Randomly define an initial containment relationship between elements of NH

and NA such that |nH| < PMAX for all hardware nodes.
4: Compute fitness F from the initial state. Each compute worker holds a local 

copy of F .
5: Spawn all parallel compute workers.
6: Iterate: n ← n + 1
7: If n ≥ nend, then end algorithm.
8: Selection: Randomly select application node nA. Let nH,old be the hardware node 

that contains nA.
9: Randomly select hardware node nH,new such that nH,new 	= nH,old and |nH,new| <

NA,MAX − 1.
10: Lock: Lock nA, its neighbours, nH,new, and nH,old. If any are already locked, un-

lock all locks claimed in this way, and go to Selection.
11: Pre-Evaluation: Compute the FL contribution of nA (using W and NH), and the 

FC contributions of nH,old and nH,new.
12: Transformation: Define the container of nA as nH,new via δ(s).
13: Post-Evaluation: Perform Pre-Evaluation again to determine the fitness contri-

butions of the selected nodes post-transformation.
14: Compute fitness change from the transformation δF from the fitness contribu-

tions obtained in the Evaluation steps.
15: Determination: If a random number U (0, 1) is greater than P (δF , T (n)), then 

define the container of nA as nH,old via δ(s) (Revert). Otherwise, F ← F + δF
(Accept).

16: Unlock all nodes locked in Lock.
17: Go to Iterate.

3.6. Asynchronous-parallel algorithm

Algorithm 3 describes the asynchronous-parallel SA algorithm 
for placement, and is used to explore the trade-off between exe-
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cution time and final solution fitness when the compute workers 
are permitted to operate on the problem data structure without 
explicit choreography. The asynchronous-parallel algorithm is sim-
ilar to the synchronous-parallel variant (Algorithm 2), but does not 
lock the nodes at Selection-time. However, nodes are still locked 
during Transformation, to navigate the integrity trap described in 
the Section 3.1. Since nodes are locked for fewer instructions, com-
pute workers are blocked at locks for less time each iteration on 
average, resulting in a faster annealer. This is particularly valuable 
for placement, as the other stages of the iterative loop are fast (in 
particular, the fitness delta computation).

This speed benefit comes at a cost: since a compute worker can 
now move an application node while another compute worker is 
performing its fitness computation, Algorithm 3 introduces a race 
condition. This race condition will cause collisions, resulting in fit-
ness being computed incorrectly during Post-Evaluation, which 
will cause some states being accepted during Determination when 
they would otherwise be rejected (and vice versa).

Algorithm 3 Asynchronous parallel SA algorithm for the placement 
problem (see text for definitions of variables). All data is shared 
across workers unless otherwise stated. Changes from Algorithm 1
in red, and from Algorithm 2 in blue.
1: Initialisation: n = 0 (atomic iteration counter).
2: Pre-compute Hardware Weight Matrix W : NH, NH →R+ from H .
3: Randomly define an initial containment relationship between elements of NH

and NA such that |nH| < PMAX for all hardware nodes.
4: Compute fitness F from the initial state. Each compute worker holds a local 

copy of F .
5: Spawn all parallel compute workers.
6: Iterate: n ← n + 1
7: If n ≥ nend, then end algorithm.
8: Selection: Randomly select application node nA. Let nH,old be the hardware node 

that contains nA.
9: Randomly select hardware node nH,new such that nH,new 	= nH,old and |nH,new| <

NA,MAX − 1.
10: Pre-Evaluation: Compute the FL contribution of nA (using W and NH), and the 

FC contributions of nH,old and nH,new.
11: Transformation: If |nH,new| ≥ NA,MAX − 1, go to Selection. Define the container 

of nA as nH,new via δ(s). While transforming, lock nA, nH,old and nH,new to main-
tain data integrity. If any are already locked, wait until they are unlocked. Nodes 
are not locked outside this step.

12: Post-Evaluation: Perform Pre-Evaluation again to determine the fitness contri-
butions of the selected nodes post-transformation.

13: Compute fitness change from the transformation δF from the fitness contribu-
tions obtained in the Evaluation steps.

14: Determination: If a random number U (0, 1) is greater than P (δF , T (n)), then 
define the container of nA as nH,old via δ(s) (Revert). Otherwise, F ← F + δF
(Accept).

15: Go to Iterate.

3.7. Validation of collision rate (Monte Carlo)

The expected collision rate for a given problem and number of 
compute workers can be determined by a Monte Carlo experiment, 
which serves to validate the collision rate of the asynchronous an-
nealer. Under the assumption that all workers perform selection 
simultaneously, a worker’s selection operation will have a colli-
sion if either (a) the selected hardware node, (b) the selected 
application node, (c) the hardware node containing the selected 
application node, or (d) one of the selected application node’s 
neighbours, is selected by another worker. This process is repeated, 
until nend selection operations have been completed - one for 
each annealer iteration. The aforementioned assumption imposes 
an upper-bound on the expected collision rate, as the workers in 
the annealer may not perform selection and fitness computation 
simultaneously, which avoids some of the collisions identified by 
this validation method. Validator values are shown with collision 
rate data presented in the Section 4.
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Fig. 3. (a): How hardware nodes are arranged into a “core group”, where dashed edges have weight W = 0.1. (b): How “core groups” are arranged into a 8 × 12 grid to form 
the hardware graph for the Small problem, where dashed edges have weight W = 100, and solid edges have weight W = 800. The hardware graph for the Large problem is 
a 16 × 12 arrangement of core groups.
3.8. Parameterisation and implementation details

Implementations of the serial, synchronous-parallel, and
asynchronous-parallel algorithms (Algorithms 1, 2, and 3) are run 
for nend = 5 × 109 iterations, which is sufficient for reaching a 
local optimum in each of the cases that follow. Each implementa-
tion solves two problems, where the application graph is a square 
Manhattan grid (as in Fig. 1), where the hardware graph is a rect-
angular Manhattan grid, and where NA,MAX = 4096:

Small: |NA| = 1000 × 1000, and |NH| = 24 × 16.
Large: |NA| = 1414 × 1414, and |NH| = 24 × 32.

Fig. 3 shows how the hardware nodes are arranged, and the 
weights assigned to the edges connecting them. The topology of 
the hardware graph, and the value for NA,MAX, are chosen in 
line with a contemporary reconfigurable hardware platform [15]. 
The parallel algorithms are run with varying numbers of com-
pute workers, up to 64. Each run is executed ten times with a 
same-seed random number generator. Timing begins after initial 
fitness computation, and ends after the final iteration in the se-
rial implementation, or after all parallel compute workers have 
despawned, in the case of the parallel implementations. An in-
tegrity check is performed before and after each run, verifying that 
the data structure is not compromised (as described in the Sec-
tion 3.1). All annealing runs are performed on a single machine 
with a (multithreaded 32-core) AMD Ryzen Threadripper 3970X 
processor, and sufficient RAM (250GiB) to contain each problem 
description. Implementations are created using compiler-optimised 
C++20 using the POSIX threads parallel execution model, and are 
optimise-compiled by the GNU Compiler Collection 10.2.1-6. The 
source for these implementations are available at reference [23]. 
The Monte Carlo experiments used the validate collision rate data 
are performed in serial to maintain causality.
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4. Results and discussion

4.1. The annealing process in general

Fig. 4 (left) shows how the combination of clustering and lo-
cality fitness change as the problem is annealed for the Large
problem using the serial annealer (solid line). A similar result 
is obtained using the synchronous parallel annealer (� points). 
The locality fitness improves as the annealing process “untan-
gles” the initial random state, bringing neighbouring application 
nodes closer together in the hardware graph. The average hard-
ware weight used by an application edge starts around 2400, and 
decreases to 78 over the annealing process, resulting in an im-
proved locality fitness. The clustering fitness does not change con-
siderably, as the random initialisation results in a close-to-uniform 
initial distribution of application nodes across the hardware graph, 
and the clustering fitness component prevents the annealer from 
“overloading” hardware nodes with application nodes. The locality 
fitness does not decrease further due to SA’s inability to untangle 
knots in the mapping that require a (temporary) cost to clustering 
fitness to resolve, when disorder is low.

4.2. Asynchronous annealer performance

Recall that, with canonical simulated annealing, it is possible 
for an iteration to move an application node to a hardware node, 
and create a worse (lower fitness) solution. Also recall that the 
probability of this happening reduces with more iterations, due 
to the monotonic decrease in the disorder term. This work posits 
that collisions from the asynchronous annealer will cause the same 
behavioural effect (a fitness degradation), but this effect will not 
decrease with iteration count.

Fig. 4 (left) also shows how the fitness changes as the Large
problem is relaxed using the asynchronous parallel annealer (•
points). The 64-worker asynchronous annealer reaches its opti-
mum (F = −6.45 × 109) after around 1.25 × 109 iterations (640 
seconds), which is less than that of the 64-worker synchronous 
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Fig. 4. Total fitness as a function of iteration, for each annealing algorithm. The coloured regions show how each fitness contribution contributes to the total for the serial 
annealer. The fitness values from the parallel annealers are computed using 64 compute workers (with pauses in the annealing process to compute global fitness), as opposed 
to the serial annealer where iteration-local fitness changes (δF ) are aggregated to determine the total.
annealer, which approaches its optimum (F = −7.34 ×109) around 
2.25 × 109 iterations (1390 seconds).

Fig. 4 (right) shows the fitness change for the Small problem in 
the same way. As expected, the Small problem “relaxes” in fewer 
iterations. As with the Large problem, the asynchronous annealer 
reaches its optimum faster than the synchronous annealer, though 
the synchronous annealer finds a better solution given more time.

Each point in Fig. 4 is averaged over ten runs, with a peak 
fitness deviation of 9.16 × 108 at iteration 5 × 108 for the Large
problem, and 1.85 × 108 at the same iteration for the Small prob-
lem. This small deviation demonstrates the repeatability of the 
asynchronous annealer.

Given that the race condition introduced by the asynchronous 
algorithm causes solutions to be mistakenly accepted or rejected 
regardless of their superiority, and given that superior solutions are 
easier to identify early on in the annealing process, the overshoot 
of the asynchronous algorithm could be attributed to the higher 
proportion of superior solutions being accepted compared to the 
other annealers. This effect is observably similar to a disorder that 
decays quickly, but also one that doesn’t commit the annealer to 
exploiting a sub-optimal basin of attraction, due to the anisotropic 
nature of the race condition (it does not implicitly favour superior 
or inferior solutions, nor acceptance over rejection). This causes the 
asynchronous annealer to converge more quickly.

As iteration count increases, the fitness of the parallel-annealed 
solution begins to worsen. Since the effect of the race condition ex-
ists independently of the iteration count, and since trial solutions 
towards the end of the annealing process will typically be inferior, 
these more-frequent inferior solutions gradually get accepted over 
superior solutions, worsening the total fitness. Note that the com-
pute workers have no way to detect this without synchronisation; 
they would see only gradual fitness improvements. This effect is 
relatively minor, but demonstrates that the induced race condition 
is not an absolute benefit.

4.3. Collision rate

Fig. 5 shows how frequent collisions are using the asynchronous 
annealer, alongside the model presented in the Section 3.7. Recall 
that a worker’s selection operation will have a collision if either (a) 
the selected hardware node, (b) the selected application node, (c) 
the hardware node containing the selected application node, or (d) 
one of the selected application node’s neighbours, is selected by 
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Fig. 5. Cumulative number of collisions for the asynchronous SA implementation 
as a function of the number of compute workers for both problem sizes. Whiskers 
show deviation for each point over ten runs.

another worker. As the ratio of problem size to number of com-
pute workers decreases, collision rate increases because there is a 
higher likelihood of two workers selecting the same node in ei-
ther of the two graphs. For the problems explored in this study, 
the chance of a hardware-node collision is significantly greater 
than that of an application-node collision because, for both prob-
lems, there are significantly more hardware nodes than application 
nodes, and because application nodes have only four neighbours at 
most.

A greater collision rate (caused by having more compute work-
ers, or a smaller problem) results in convergence in fewer iter-
ations, but also a more rapid solution decay beyond that point. 
The overshoot effect shown in Fig. 4 is heavily dependent on the 
collision rate, with a fitness trajectory matching the serial and syn-
chronous cases when only one compute worker is present. The 
asynchronous annealer has a higher collision rate when applied to 
the Small problem - Fig. 4 (right) shows the exacerbated solution 
decline relative to the synchronous case, but also the more rapid 
convergence. For both problems, the collision rate levels out after 
32 compute workers as the processor becomes oversubscribed.
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Fig. 6. Speedup relative to the serial SA implementation for the synchronous and asynchronous parallel SA implementations, as a function of the number of compute 
workers. Whiskers show deviation for each point over ten runs. Measurements taken with no pauses in the annealing process to record intermediate fitness values, nor with 
any collision-detection logic.
4.4. Speedup and convergence comparisons

Fig. 6 shows the serial-relative speedup S(n) = t0/tn of both 
parallel annealers as a function of the number of compute work-
ers for both problems, where t0 and tn are the execution times of 
the serial annealer and the n-worker-parallel annealer respectively 
to nend iterations. Performance decays at the 32-compute worker 
mark and becomes less repeatable, as the processor only contains 
32 physical (64 logical), multithreaded cores. The asynchronous an-
nealer iterates slightly faster at the key 32-compute worker point; 
this demonstrates the potential gain from this method, especially 
considering that it converges at an earlier iteration than the syn-
chronous method.

5. Closing comments

Simulated annealing approaches are frequently used to solve 
high-dimensional, large problems across multiple priority research 
areas. Placement is one such problem where even minor perfor-
mance improvements yield a drastic impact on the time taken 
to, for example, deploy an application onto a distributed compute 
platform, or to arrange logic blocks in a chip. As such, it has be-
come a popular target for parallel simulated annealing approaches.

This paper investigates a technique that delivers a performance 
improvement over traditional shared-memory parallel annealing: 
allowing the workers to operate almost asynchronously on the 
problem, regardless of what the other workers are doing. This 
approach consciously introduces a race condition, and reduces ex-
ecution time as workers no longer contend for shared resources. 
The study presented here explains how such an approach may 
be implemented. It also demonstrates that, for the largest prob-
lem considered here, the race condition introduced by the asyn-
chronous annealer produces a superior solution in half the time 
of the synchronous annealer, but also that the asynchronous an-
nealer will actually worsen the solution as more time is spent 
annealing the problem. This effect is exacerbated by decreasing 
the problem size and by increasing number of compute workers, 
as the collision rate increases as a result. The result presented 
here has profound implications for stiff problems, where orders-
of-magnitude performance improvements can be realised. Further 
studies will illustrate how this method can be applied to problems 
as a function of problem stiffness (here, graph degree), as it would 
inform the design of future global search algorithms. Future work 
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may also explore how this asynchronous annealing technique ap-
plies to other problems studied with simulated annealing in the 
literature, such as labelling problems [22]. Beyond this, the idea 
of introducing a beneficial race-condition in this way can be ap-
plied to other commonly-used optimisation solving methods, like 
evolutionary algorithms and particle swarm optimisation, with sig-
nificant performance improvements.
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