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Abstract
We present a new method for showing that groups are virtually special. This is done by
considering finite quotients and linear characters.We use this to show that an infinite family of
groups, related to Bestvina-Brady groups and branching, provides new examples of virtually
special groups outside of a hyperbolic context.
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1 Introduction

Given a simplicial graphΓ , the associated right-angled Artin group (RAAG) is the group AΓ

with generators the vertices of Γ , and relations being commutators between vertices joined
by an edge. Complete graphs give free abelian groups and empty graphs give free groups.
Subgroups of RAAGs have many rich properties, such as being residually finite [5].

Consider the Bestvina-Brady group from [2], corresponding to the minimal flag triangu-
lation L of the circle. The associated group AL splits as F2 × F2 in this case, and we can get
a presentation:

G =
〈
x1, x2, x3, x4

∣∣ xi1xi2xi3xi4 for i ∈ Z

〉
.

The group G is defined as the kernel of a map from AL to Z (more on this in Sect. 3),
therefore is naturally a subgroup of a RAAG.

We askwhat happens ifwe vary the number of generators, and replace some of the relations
by their powers. The resulting groups would have torsion, so cannot be subgroups of RAAGs.
Nonetheless, we could look at torsion-free finite-index subgroups, and see if we can embed
those into RAAGs. Certain properties of subgroups of RAAGs, such as residual finiteness,
pass between finite-index subgroups.
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It was originally conjectured by Baumslag that one-relator groups with torsion are resid-
ually finite. This was proven by Wise, through showing that they are virtually special, hence
have finite-index torsion-free subgroups embedding into RAAGs [10].

Theorem 1 For each integer m ≥ 4 and prime k ≥ 2, the group

Gk
m :=

〈
x1, x2, . . . , xm

∣∣
xi1x

i
2 · · · xim(

xi1x
i
2 · · · xim

)k for i ∈ kZ

for i ∈ Z\kZ

〉
(1)

is virtually special. In particular, it is residually finite.

Special cube complexes were introduced by Haglund and Wise in [6]. They are nonpos-
itively curved cube complexes whose fundamental groups embed into RAAGs. We say that
a group is virtually special if it has the fundamental group of a special cube complex as
a finite-index subgroup. Note that traditionally, the cube complex is taken to be compact,
ensuring the corresponding RAAG is finitely generated. We will deal with non-cocompact
actions, however our actions will still be cofinite (see the introduction in [7]), leading to
embeddings in finitely generated RAAGs just like in the compact case.

A lot of progress concerning special cube complexes has been surrounding hyperbolic
groups (such as Agol’s theorem [1]), however in our case the virtually special groups cannot
be finitely presented (see Sect. 7), hence are not hyperbolic. Furthermore, we have explicit
presentations for our groups. While Bestvina-Brady groups may be used to construct at most
one special group per flag complex as input, we obtain an infinite family for each fixed flag
triangulation of the circle (fixing m) by varying the branching (varying k).

Bestvina-Brady groups have classifying spaces which are special cube complexes. The
groups in Theorem 1 arise from branched covers of classifying spaces of Bestvina-Brady
groups corresponding to different flag triangulations of the circle. In particular, the group
Gk

m corresponds to a generalisedBestvina-Brady groupGM
L (S) by takingM → L to be the k-

regular covering of the regularm-gon by the regular km-gon (thought of as flag triangulations
of the circle), with branching set Z \ kZ (more on this in Sect. 3). This kind of construction
was first introduced in [9]. The study of branched covers of special cube complexes is of
wider interest; see for example [4], where it is shown that certain cyclic branched covers of
special cube complexes are again special.

The idea of the proof of Theorem 1 first came from the author representing edges in
complexes by matrices, using representations of finite quotients and height functions to work
in some GLn(V ) ⊕ Z. This allows us to turn geometric information about hyperplanes into
algebraic statements. After noticing that considering determinants of these matrices can be
useful, linear characters entered the picture. While the complexes involved are not compact,
there are still finitely many orbits of hyperplanes.

The paper is structured as follows. Sections 2 and 3 contain the relevant background on
special cube complexes and Bestvina-Brady groups, respectively. Section 4 describes the
action of the groups Gk

m on the associated CAT(0) complexes Xk
m in terms of fundamental

domains (as well as the appendix). Section 5 shows that the groups are virtually torsion-free
and introduces specific quotients. The quotient complex is considered, and the structure of
hyperplanes is examined. Section 6 showcases the method of utilising linear characters to
prove that the quotient complex is special, and proves Theorem 1. Section 7 distinguishes
the groups, examines particular infinite behaviour of the hyperplanes and considers further
generalisations.
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I would like to thank Ian Leary, my PhD supervisor, for the support and great conversa-
tions full of helpful suggestions. I would also like to thank the anonymous referee for their
comments, particularly with regard to improving exposition and context.

2 Background on special cube complexes

We will only need to consider 2-dimensional square complexes in this paper. Let I = [0, 1]
be the unit interval. An n-cube for n > 0 is a copy of I n and a 0-cube is just a vertex. A cube
complex is a cell complex where every cell is some n-cube, with the attaching maps being
combinatorial on cubes. This means that the attaching maps must send n-cubes isometrically
to n-cubeswhenwe consider the boundaries of cubes as being the union of lower-dimensional
cubes. In our case, squares will be glued together by sending vertices to vertices and edges
to edges.

The link of a vertex v is a complex whose vertices correspond to ends of 1-cubes attached
to v, and these are joined by an n-simplex for each corresponding (n + 1)-cube having a
corner at v. In our case, links will be simplicial graphs.

A flag complex is a simplicial complex where any collection of (k + 1) vertices that are
pairwise joined by 1-simplices span a k-simplex.We say that a cube complex is nonpositively
curved if the link of every vertex is a flag complex. In our case, this means that every link is
triangle-free. We refer to simply connected nonpositively curved cube complexes as CAT(0)
cube complexes.

Let X be a nonpositively curved cube complex. ‘Square’ will refer to a 2-cube in X , and
‘edge’ will refer to a 1-cube. For edges u, v which are opposite each other in some square of
X , we write u ∼ v and say that u and v are elementary parallel. This induces an equivalence
relation on the edges. By abuse of notation, we write u ∼ w if edges u, w lie in the same
equivalence class and say they are parallel. We denote the equivalence class of u by [u], and
we call this a hyperplane. If we induce an orientation on edges, we can insist that elementary
parallelism keeps track of orientation. We say that a hyperplane [u] is not two-sided if there
exists an edge v such that v ∼ u as well as v ∼ −v, and we say the hyperplane is two-sided
otherwise. We can write [u] = [v] if u, v lie in the same hyperplane.

Definition 1 (Hyperplane interactions, [6]) If two edges u, v are adjacent in a square (inter-
sect at a corner of the square), we write u ⊥ v. We write [u] ⊥ [v] and say that hyperplanes
[u], [v] cross if there exist edges u′, v′ such that u′ ⊥ v′ and u′ ∼ u, v′ ∼ v. If two edges
w, x share a vertex (intersect at a 0-cell), but there does not exist a square that contains both
of them where they are adjacent (i.e. w 	⊥ x), we write w � x . We write [w] � [x] and say
that hyperplanes [w], [x] osculate if there exist edges w′, x ′ such that w′ � x ′ and x ′ ∼ x ,
w′ ∼ w.

One can define a special cube complex in terms of avoiding certain configurations of
hyperplane interactions. Note that while � and ⊥ are relations, only ∼ is an equivalence
relation.

Definition 2 (Special Cube Complex, [6]) If X is such that there exists an orientation of the
edges with [u] two-sided for every edge, and for any pair of (not necessarily distinct) edges
u, v, we have at most one of the relations ∼, ⊥, � holding between [u] and [v], then we say
that X is a special cube complex.

If ∼ and ⊥ hold, then a hyperplane crosses itself, so is not an embedded hyperplane. If
∼ and � hold, then a hyperplane self-osculates. If both ⊥ and � hold between a pair of
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hyperplanes, they inter-osculate. There are essentially 4 components to Definition 2, we will
refer to them in Section 6.

Theorem 2 (Haglund and Wise, [6]) If X is a special cube complex, then π1(X) embeds
into a right-angled Artin group. In particular, if X contains finitely many hyperplanes, then
π1(X) embeds into a finitely generated right-angled Artin group.

Having finitely many hyperplanes is important, as a finitely-generated RAAG in particular
embeds into SLn(Z) for some finite n, see [8].

3 Background on Bestvina-Brady Groups

Bestvina-Brady groups (introduced in [2]) are by definition normal subgroups of Right-
Angled Artin Groups (RAAGs), hence they are linear over Z and enjoy properties such as
being residually finite. If a space has fundamental group G and has contractible universal
cover, we say that space is a classifying space for G.

Definition 3 (Salvetti complex) Let AΓ be a RAAG defined by a graph Γ . Then AΓ has a
natural classifying space, called the Salvetti complex, formed from one vertex, one loop for
each Artin generator, and an n-torus for each n-clique in Γ , glued appropriately.

The link of the vertex in the Salvetti complex corresponding to AΓ is a “spherical double”
of the flag complex with 1-skeleton Γ . This is formed by taking each vertex v and replacing
it with two vertices v+, v−, such that a set of vertices form a simplex if the corresponding
vertices formed a simplex when forgetting about the superscripts. Note that this remains a
flag complex if the original complex was flag. We will focus on the case when these links
are finite complexes.

Definition 4 (Bestvina-Brady Group) Let L be a connected finite flag complex. Define BBL

to be the kernel of the homomorphism from the RAAG AL (associated with the 1-skeleton
of L) to Z, which sends every Artin generator to 1 in Z.

The finiteness properties of BBL are controlled by the choice of complex L . Note that
there is a natural correspondence between flag complexes L and their 1-skeletons Γ , hence
we can refer to a group AL . One can think of the naturally associated classifying space BL

either as the quotient of the universal cover of the Salvetti complex of AL by BBL , or as a
Z-cover of this Salvetti complex (which gives us a natural height function f ). Notice that the
ascending and descending links (which are the induced subcomplexes of the link on edges
pointing either up or down, respectively) of vertices in BL are all isomorphic to L . Since
there are only countably many finite connected flag complexes, there are at most countably
many groups BBL .

This construction was generalised by Leary in [9], to give uncountably many more such
groups for each finite connected flag complex.

Definition 5 (Generalised Bestvina-Brady Group) Let M → L be a regular cover. Following
the start of section 21 in [9], define GM

L (S) to be the group of deck transformations of
the branched cover XM

L (S) of the classifying space BL of BBL . The branching occurs at
vertices with heights not in S, when the BBL -orbits of vertices in the universal cover of BL

are naturally labelled with the integers (consider the height function f , mentioned above).
The branching is such that the ascending and descending links of branching vertices are
isomorphic to M .
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The existence of such a branched cover is Theorem 9.1 in [9].
When the group does not coincidewith aBestvina-Brady group, it does not act specially on

its associatedCAT (0) complex (using language from [7], seeDefinition 3.4 there), because of
the action of the point stabilisers at the branching vertices. Indeed, those where this complex
is locally finite (call these groups “of finite ramification”) contain torsion, hence cannot be
subgroups of RAAGs.

Definition 6 (Finite Ramification) When the group of deck transformations of M → L is
finite, we say that GM

L (S) is of finite ramification (i.e. [π1(L) : π1(M)] < ∞). To avoid this
group coinciding with a Bestvina-Brady group, we insist that S 	= Z and π1(L)/π1(M) is
not the trivial group.

In particular, this means that we study the case when L is not simply connected and
M 	= L . Note that when M is the universal cover of L and π1(L) is finite, we get finite
ramification of the group in the main statement of [9] without any modification, as long as
S 	= Z. We have decided to exclude Bestvina-Brady groups from this definition, because
they are special by definition, and we are interested in new virtually special groups.

For the rest of the paper, let m > 3 be an integer and k a prime number. We will focus
on the case when L is the m-vertex flag triangulation of the circle, and M is the mk-vertex
flag triangulation of the circle. In Sect. 4, we will give specific names to vertices, edges and
squares in XM

L in this case.
Let R be the set of generalised Bestvina-Brady groups of finite ramification which are

virtually special, up to isomorphism. We conclude this sect. by showing thatR is countably
infinite.

Theorem 3 Assume GM
L (S) is of finite ramification, then it is virtually torsion-free only if S

is periodic.

Proof Assume that GM
L (S) is virtually torsion-free. Then there exists H<̇GM

L (S) which is
torsion-free, and in particular H 	= GM

L (S) because S 	= Z, as we are assuming the group is
not a Bestvina-Brady group. This implies that there is torsion in GM

L (S), coming from finite
point stabilisers, as the group of deck transformations M → L is finite and non-trivial. Let
X = GM

L (S)/H denote the set of left cosets of H in GM
L (S). There is a left GM

L (S)-action
on X :

GM
L (S) × X → X , g′ · (gH) = (g′g)H , ∀ g′, g ∈ GM

L (S).

Because H is of finite index in GM
L (S), we have r = |X | < ∞. The action gives a

homomorphism

φ : GM
L (S) → SymX ∼= Sr .

Since gH = H �⇒ g ∈ H , we get ker φ ≤ H .
Let p be a prime number dividing the order of the group of deck transformations M → L

and let γ be a loop in L whose representative in this group has order p. Choose an edge loop
a1, . . . , am in L corresponding to γ .

Utilising the presentation of Definition 1.1 in [9] which is the same as presentation (1) in
Theorem 1, we get group generators from edges, so consider φ(a1), . . . , φ(am). These are
finite group elements in the finite group Sr . As φ is a homomorphism, denoting the order of
an element g by o(g),we get the infinite sequence
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Fig. 1 Part of the descending link of Xi

J = . . . , o
(
φ(a1)

−1 · · · φ(am)−1) , o
(
φ(a1)

0 · · · φ(am)0
) = 1,

o (φ(a1) · · · φ(am)) , o
(
φ(a1)

2 · · · φ(am)2
)
, . . .

This is now a periodic sequence with each term in {1, p}, with some finite period. Now H
being torsion-free implies that ker φ is also torsion-free. For i /∈ S, ai1 · · · aim is a torsion
element, and hence cannot belong to ker φ, therefore o

(
φ(a1)i · · · φ(am)i

) = p. But for
i ∈ S, we have ai · · · aim = 1, and since φ is a homomorphism, o

(
φ(a1)i · · · φ(am)i

) = 1
too. This means that if S is not periodic, then J is not periodic. Hence:

GM
L (S) virtually torsion-free �⇒ J periodic �⇒ S periodic.

��
Since there are countablymany periodic subsets ofZ, and countablymany finite connected

flag complexes, there are at most countably many generalised Bestvina-Brady groups of
finite ramification which are virtually torsion-free. Groups which are virtually special must
be virtually torsion-free. Hence R is at most countable. It is not finite because Theorem 1
provides infinitely many examples, which all have different abelianisations (see Sect. 7).

4 Fundamental domain

We apply Definition 5 to L being an m-vertex triangulation of the circle and M being an
mk-triangulation of the circle, as well as S = kZ. We refer to the resulting group as Gk

m , and
to the branched cover as Xk

m . Using the presentation in [9], we get generators x1, . . . , xm and
relations (1) as stated in Theorem 1.

The group Gk
m acts (on the left) on the square complex Xk

m which admits a height function
f : Xk

m → R such that vertices of the complex lie at integer heights. There is one orbit of ver-
tices at each height i , with a distinguished base vertex Xi , which has stabiliser

〈
xi1x

i
2 · · · xim

〉
.

Other vertices will have stabilisers being the appropriate conjugate of this.
Every edge joins two vertices of heights differing by 1. The edges are labelled by the

heights of the top vertex. There are m free orbits of edges at each height, with distinguished
orbit representatives uij at height i for 1 ≤ j ≤ m, such that ui1 joins X

i−1 to Xi .
Every square has a top vertex of height i + 1, a bottom vertex of height i − 1 and two

vertices of height i . We say such a square has height i .
Denote by Orb (u) the orbit of an edge. There are m free orbits of squares at each height,

with distinguished orbit representatives sij at height i for 1 ≤ j ≤ m. They are chosen such

that sij contains edges in Orb
(
ui+1
j

)
, Orb

(
ui+1
j+1

)
, Orb

(
uij

)
, Orb

(
uij+1

)
, in that order,

having picked an appropriate direction to read around the square (using cyclic indexing,
which will also be used later on, which means that j + 1 denotes 1 for j = m, for example).
In order to complete the convention for labelling the edges and squares, we use Fig. 1 to order
the edges and squares. Note that the labels on the edges in the link refer to which squares in
the complex Xk

m contribute towards this.
Note further that in Fig. 1, when i ∈ S, the element xi1 · · · xim is the identity, so this forms

a complete loop, isomorphic to L .
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Each square is made up of two parallel copies of two types of edges, where we can think
of the type of the edge as being the generator of the underling RAAG it corresponds to.
Each such square is then contained in a unique plane made up of squares of only those two
types of edges (see Sect. 12 in [9]). Given a vertex of positive height, we can consider all the
squares which have this vertex as their top vertex, and form a pyramid by continuing each
plane corresponding to each square, down to the 0-level.

Vertex Xi , for positive i , contains the following vertices around the base of its correspond-
ing pyramid at the 0-level: (see Lemma 14.3 in [9])

X0,

x1 · X0, x21 · X0, . . . , xi1 · X0,

xi1x2 · X0, xi1x
2
2 · X0, . . . , xi1x

i
2 · X0,

...

xi1x
i
2 · · · xim−1xm · X0, xi1x

i
2 · · · xim−1x

2
m · X0, . . . , xi1x

i
2 · · · xim · X0

in that order (when reading in an appropriate direction). Note that when i ∈ kZ, then
xi1x

i
2 · · · xim is the identity element, hence xi1x

i
2 · · · xim · X0 = X0 and the elements above

are a complete loop and go around the entire base of the pyramid. We can do the same for
vertices of negative height, by projecting planes upwards rather than downwards, towards
the 0-level. Vertex Xi , for negative i , has the following vertices around the base of its corre-
sponding pyramid at the 0-level:

X0,

x−1
1 · X0, x−2

1 · X0, . . . , xi1 · X0,

xi1x
−1
2 · X0, xi1x

−2
2 · X0, . . . , xi1x

i
2 · X0,

...

xi1x
i
2 · · · xim−1x

−1
m · X0, xi1x

i
2 · · · xim−1x

−2
m · X0, . . . , xi1x

i
2 · · · xim · X0.

The faces of the pyramid are parts of embedded planes in Xk
m , consisting of two types of

edges each. When i ∈ S, this pyramid will have m faces and it will have mk faces otherwise.
We can now use this to determine what every square in the complex looks like. For

example, Fig. 2 shows one face of the pyramid with apex Xn+2 which is used to understand
square sn+1

1 .
Since edges and squares are in free orbit, we will refer to the group element acting as the

coefficient.

Lemma 1 Given the above notational conventions, the complex Xk
m and the action of Gk

m on
it can be fully described in Fig. 3.

In Fig. 3, the following shorthand is used: (note that here, xi for i < 1 should be thought
of as the identity element, for example α(i, 0) is just the identity element)

α(i, j) := xi+1
1 · · · xi+1

j−1 x j x
−i
j−1 · · · x−i

1

β(i, j) := xi+1
1 · · · xi+1

j−1 x j x
1−i
j−1 · · · x1−i

1

γ (i, j) := xi+1
1 · · · xi+1

j
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Fig. 2 One face of a pyramid with base at the 0-level

(a) (b)

Fig. 3 Gk
m -orbit representatives of 2-cells in Xk

m in layer i

The proof of this involves unwrapping the notation by induction and can be found in the
appendix. Much of the proof of Theorem 1 will involve translating around patches of the
fundamental domain to understand the structure of hyperplanes, using the fact that edges or
squares of a fixed height and type are in free orbit.

5 Hyperplane stabilisers in a quotient

We show that Gk
m is virtually torsion-free by exhibiting an explicit surjection onto a finite

group with torsion-free kernel as follows:

φk
m : Gk

m → Ḡk
m

∼=
m copies︷ ︸︸ ︷

Z/kZ × · · · × Z/kZ
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(a) (b)

Fig. 4 Ḡk
m -orbit representatives of 2-cells in X̄ k

m in layer i

xi �→ (0, . . . , 0, σi�⏐⏐
i th position

, 0, . . . , 0),

where σi is a generator of Z/kZ. We can see that is a homomorphism from (1) since each σi
has order k. The only torsion elements come from point stabilisers of the action on Xk

m , which
are conjugates of the torsion elements in the presentation (or their powers). This is because
any torsion element must fix some vertex (see Proposition 6.7 of Chapter II.6 in [3]), and the
action is by deck transformations of a branched cover, hence each torsion element must be
conjugate to a stabiliser of one of the Xi . Since these do not map to the identity (neither do
their powers, as k is prime) in Ḡk

m , we get that ker φ
k
m is a torsion-free subgroup of Gk

m of
indexmk. Note that Ḡk

m is abelian.We could have used a smaller target group to get a torsion-
free kernel, however this larger group will be useful for defining linear characters later. If
k were not prime, this would be false, as then an intermediate power of a torsion element
(which is a torsion element itself) would still lie in the kernel, due to some factorisation of k.

We can now turn our attention to the quotient complex X̄ k
m := Xk

m/ ker φk
m . We denote

images by placing a bar over the notation. From Lemma 1, we obtain the new fundamental
domain in Fig. 4.

In Fig. 4, the following shorthand is used:

ᾱ(i, j) := φk
m (α(i, j)) = σ1 · · · σ j

β̄(i, j) := φk
m (β(i, j)) = σ 2

1 · · · σ 2
j−1σ j

γ̄ (i, j) := φk
m (γ (i, j)) = σ i+1

1 · · · σ i+1
j

Given a hyperplane [u], we define the hyperplane stabiliser as
Stab ([u]) :=

{
g ∈ Ḡk

m

∣∣ g · u ∼ u
}

.

Note that hyperplane here refers to a hyperplane of the quotient complex, not in the
CAT(0) cube complex. We can compute the hyperplane stabilisers by observing which Ḡk

m-
coefficients of an edge type in a particular layer lie in the same hyperplane. This is done by
first observing that in order to “move” to a different layer and remain in the same hyperplane
(for edge ūij , say), we must utilise squares s̄ j and s̄ j−1 (using cyclic indexing), as they are
the only ones to contain an edge of this type. We can think of the hyperplane stabilisers as
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Fig. 5 Moving between edges of
different heights in the same
hyperplane of type ū j

(a) (b)

fundamental groups of graphs where the vertices represent heights and edges represent how
the coefficient changes when “jumping” across a square to change height, as shown in Fig.
5. These edge labels are calculated from the coefficients on the edges in Fig. 4. The direction
of the arrow shows the direction in which the edge label is multiplied (take the inverse for the
opposite direction). For example, by looking at the top left and bottom right edges of square
g · s̄i1, we can deduce that using this square to drop down to layer i , the coefficient of edge
g · ūi+1

1 will be multiplied by ᾱ(i, 1) = σ1, resulting in the edge gσ1 · ūi1, which is still in the
same hyperplane as g · ūi+1

1 . Note that this multiplication should be thought of as occurring
on the right, but Ḡk

m is abelian, so we do not need to worry about this.
We can read off elements of the hyperplane stabiliser from Fig. 5 by multiplying along

based loops, such as in the case 1 < j ≤ m we can go down one layer using the left side of
the graph and return up using the right side, resulting in the element

σ1σ2 · · · σ j · (
σ1σ2 · · · σ j−2

)−1 = σ j−1σ j .

From this, (using cyclic indexing) we can determine:

Stab
(
[ūij ]

)
= 〈

σ j−1σ j
〉
.

Note that because squares of a fixed type are in free orbit and our group of coefficients
is abelian, it does not matter which particular hyperplane we are in: the stabiliser will only
depend on the type of edge. So we can ignore the coefficient or height of an edge when
considering its hyperplane stabiliser, which will be mirrored in the notation from now on.

Lemma 2 For integers a, b and elements g, h ∈ Ḡk
m, we have:

g · ūaj ∼ h · ūbj �⇒ h ∈ g
(
σ1 · · · σ j

)a−b Stab
([ū j ]

)
.

Proof Consider which ū j -type edges lie on layer b and are part of the hyperplane [g · ūaj ].
Their Ḡk

m-coefficient will be g multiplied by
(
σ1 · · · σ j

)a−b from moving to layer b, by
moving along the left side of the graph in Fig. 5, and then maybe also moved around in the
layer by multiplication by an element from the stabiliser, giving the result. It did not matter
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that we chose to take the left side, as the stabiliser is the fundamental group of the graph we
used to compute it. ��

6 Linear characters

Fix a primitive kth root of unity μ in C. For each 1 ≤ j ≤ m, consider the homomorphism:

D( j) : Ḡk
m → C

σi �→
{

μ if i = j
1 else

This defines a linear character.Wewill show that X̄ k
m is a special cube complex byworking

with Ch(Ḡk
m), the abelian group of linear characters (under pointwise multiplication). In

particular, we can multiply and take inverses. The main idea is to come up with characters
constant on certain sets. Cyclic indexing will again be used in this section, so for example,
D( j − 1) for j = 1 will refer to D(m).

We will proceed by checking each of the 4 conditions for a special cube complex:

1. (∼,⊥) Every square in X̄ k
m is such that every corner consists of two edges of different

types meeting, hence a hyperplane can never cross itself.
2. (2-sided) We choose an orientation for each edge by deciding to make each edge point

upwards. Now each square takes positively oriented edges to positively oriented edges or
negatively oriented edges to negatively oriented edges, so we can never have the situation
ūij ∼ −ūij .

3. (∼,�) Next we investigate whether a hyperplane can self-osculate. In order for this to
occur, we must have two distinct edges g · ūaj and h · ūbj for some integers a, b, some

1 ≤ j ≤ m and g, h ∈ Ḡk
m , for which we have

g · ūaj ∼ h · ūbj and also g · ūaj � h · ūbj .
We already know from Lemma 2 that the first condition implies that

h ∈ g
(
σ1 · · · σ j

)a−b Stab
([ū j ]

)
.

Consider the second condition. Since the two edges in question osculate, they must share
a common vertex. This implies that b ∈ {a − 1, a, a + 1}. We consider each in turn:

Case 1: (b = a − 1) From the fundamental domain in the previous section, we know
that edge σ−1

1 · · · σ−1
j−1 · ūi+1

j is attached to vertex X̄ i and so is edge ūij . By translation, this

means that to get at all the edges of type ūa−1
j which osculate with g · ūaj , the coefficient is

multiplied by σ1 · · · σ j−1 and also possibly by some stabiliser of the vertex (note that since
Ḡk

m is abelian, the stabiliser of a vertex is determined only by its height). This implies that

h =
(
σ a−1
1 · · · σ a−1

m

)c
σ1 · · · σ j−1g

for some integer c. So in order for the self-osculation to be possible, it must be true that
(
σ a−1
1 · · · σ a−1

m

)c
σ1 · · · σ j−1 ∈ (

σ1 · · · σ j
)a−b Stab

([ū j ]
)
.

However, the characterD( j −1)D( j)−1 takes the value 1 on the set on the right and takes
the value μ on the element on the left, hence this is not possible.
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Case 2: (b = a + 1) Reasoning similarly to above, we have that, for some integer c,

h = (
σ a
1 · · · σ a

m

)c
σ−1
1 · · · σ−1

j−1g.

This implies that for self-osculation, we need
(
σ a
1 · · · σ a

m

)c
σ−1
1 · · · σ−1

j−1 ∈ (
σ1 · · · σ j

)a−b Stab
([ū j ]

)
.

However, the characterD( j −1)D( j)−1 takes the value 1 on the set on the right and takes
the value μ−1 on the element on the left, hence this is not possible.

Case 3: (b = a)Here we can have two further possibilities: the two edges could be joined
at a vertex of height a or a − 1. Note that in either case, this requires this vertex to be a
branching vertex, hence the respective heights are not divisible by k.

In the former case, we get h from g by multiplying by a stabiliser of a vertex of height a,
so for some integer c /∈ kZ (because we want the two edges to be distinct) we have:

h = (
σ a
1 · · · σ a

m

)c
g.

This implies that for self-osculation, we need
(
σ a
1 · · · σ a

m

)c ∈ (
σ1 · · · σ j

)a−b Stab
([ū j ]

)
.

However, since a = b, this is the same as asking for
(
σ a
1 · · · σ a

m

)c to be in 〈
σ j−1σ j

〉
. Since

m > 2, the characterD( j + 1) evaluates to 1 on the stabiliser, however it takes the value μac

on
(
σ a
1 · · · σ a

m

)c. These do not agree, as k is prime and neither of a or c are divisible by k.
In the latter case, we get h from g by multiplying by a stabiliser of a vertex of height a−1.

Similarly, we obtain, for some integer c /∈ kZ,

h =
(
σ a−1
1 · · · σ a−1

m

)c
g.

Just as in the previous case, this is the same as asking for
(
σ a−1
1 · · · σ a−1

m

)c
to be in〈

σ j−1σ j
〉
. The characterD( j + 1) evaluates to 1 on the stabiliser, but takes the value μc(a−1)

on the element. These again do not coincide as k is prime and neither of c or a − 1 are
divisible by k in this case.

Therefore we have showed that no hyperplane self-osculates in X̄ k
m .

4. (⊥,�) Finally, we investigate whether two hyperplanes H, H′ can inter-osculate. In
order for this to occur, we must have two distinct hyperplanes which cross. This can only
occur between one of type [ū j ] and one of type [ū j+1] (using cyclic indexing). In fact, since
an intersection of hyperplanes can only happen at a square, it does not matter which corner of
the square or which edges of that square are considered, since each edge in a pair of parallel
edges represents the same hyperplane. Hence without loss of generality we may assume that
it is the top corner. Now we proceed according to the two ways this corner can be, according
to the fundamental domain in Fig. 4 from Sect. 5.

Case 1: (1 ≤ j < m) In this situation, H ⊥ H′ comes from edges g · ūaj and g · ūaj+1

for some integer a and g ∈ Ḡk
m . As when dealing with the self-osculation, we now have 4

possible sources of osculation to deal with:

– Sub-case 1.1: (joined at the top vertex) From the top corner of the fundamental domain
we can deduce that osculation comes from edges h ·ūbj and h

(
σ b
1 · · · σ b

m

)c ·ūbj+1, for some
integers b, c /∈ kZ (because we are attached at a branching vertex and the edges are not
meeting at the corner of a square, respectively) and some h ∈ Ḡk

m . We now need to check
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if h · ūbj ∼ g · ūaj and h
(
σ b
1 · · · σ b

m

)c · ūbj+1 ∼ g · ūaj+1 are both possible simultaneously.
By Lemma 2, this implies:

g ∈
(
h

(
σ1 · · · σ j

)b−a Stab
([ū j ]

)) ∩
(
h

(
σ b
1 · · · σ b

m

)c (
σ1 · · · σ j+1

)b−a Stab
([ū j+1]

))
,

so we need
((

σ1 · · · σ j
)b−a 〈

σ j−1σ j
〉) ∩

((
σ b
1 · · · σ b

m

)c (
σ1 · · · σ j+1

)b−a 〈
σ jσ j+1

〉)

to not be empty, which is the same as

〈
σ j−1σ j

〉 ∩
(
σ b
1 · · · σ b

m

)c
σ b−a
j+1

〈
σ jσ j+1

〉

not being empty. However, as m > 3, the character D( j + 2) evaluates to 1 on the left
set and to μbc 	= 1 on the right set, so the intersection is empty.

– Sub-case 1.2: (joined at the bottom vertex) From the bottom corner of the fundamental
domain we can deduce that osculation comes from edges hσ j · ūb+1

j and h
(
σ b
1 · · · σ b

m

)c ·
ūb+1
j+1 for some integers b, c /∈ kZ and some h ∈ Ḡk

m . Similarly to above, this implies
that

σ j
〈
σ j−1σ j

〉 ∩
(
σ b
1 · · · σ b

m

)c
σ b−a+1
j+1

〈
σ jσ j+1

〉

is not empty. However, as m > 3, the character D( j + 2) evaluates to 1 on the left set
and to μbc 	= 1 on the right set, so the intersection is empty.

– Sub-case 1.3: ( j above j + 1) From the left corner of the fundamental domain we can
deduce that osculation comes from edges h

(
σ b
1 · · · σ b

m

)c · ūb+1
j and hσ1 · · · σ j−1 · ūbj+1

for some integers b, c /∈ kZ and some h ∈ Ḡk
m . Similarly to above, this implies that

(
σ b
1 · · · σ b

m

)c
σ j

〈
σ j−1σ j

〉 ∩ σ b−a
j+1

〈
σ jσ j+1

〉

is not empty. However, as m > 3, the character D( j + 2) evaluates to 1 on the right set
and to μbc 	= 1 on the left set, so the intersection is empty.

– Sub-case 1.4: ( j below j + 1) From the right corner of the fundamental domain we can
deduce that osculation comes from edges h

(
σ b
1 · · · σ b

m

)c · ūb+1
j+1 and hσ1 · · · σ j · ūbj for

some integers b, c /∈ kZ and some h ∈ Ḡk
m . Similarly to above, this implies that

(
σ b
1 · · · σ b

m

)c
σ b−a+1
j+1

〈
σ jσ j+1

〉 ∩ 〈
σ j−1σ j

〉

is not empty. However, as m > 3, the character D( j + 2) evaluates to 1 on the right set
and to μbc 	= 1 on the left set, so the intersection is empty.

Case 2: ( j = m, “ j + 1" = 1) In this situation, H ⊥ H′ comes from edges g · ūam and
gσ a

1 · · · σ a
m · ūa1 for some integer a and g ∈ Ḡk

m . Once again we have 4 possible sources of
osculation to deal with:

– Sub-case 2.1: (joined at the top vertex) From the top corner of the fundamental domain
we can deduce that osculation comes from edges h

(
σ b
1 · · · σ b

m

)c · ūbm and hσ b
1 · · · σ b

m · ūb1
for some integers b, c /∈ kZ and some h ∈ Ḡk

m . From Lemma 2, in order for this to occur,
we need both of

g ∈ h
(
σ b
1 · · · σ b

m

)c
(σ1 · · · σm)b−a 〈σm−1σm〉
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and

gσ a
1 · · · σ a

m ∈ hσ b
1 · · · σ b

mσ b−a
1 〈σ1σm〉

to hold simultaneously. This is the same as

σ b−a
1 〈σ1σm〉 ∩

(
σ b
1 · · · σ b

m

)c 〈σm−1σm〉
not being empty. However, since m > 3, the characterD(2) evaluates to 1 on the left set
and to μbc 	= 1 on the right set, so the intersection is empty.

– Sub-case 2.2: (joined at the bottom vertex) From the bottom corner of the fundamental
domain we can deduce that osculation comes from edges h

(
σ b
1 · · · σ b

m

)c · ūb+1
m and

hσ b+1
1 · · · σ b+1

m−1σ
b
m · ūb+1

1 for some integers b, c /∈ kZ and some h ∈ Ḡk
m . Similarly to

above, this implies that
(
σ b
1 · · · σ b

m

)c
σm 〈σm−1σm〉 ∩ σ b−a+1

1 〈σ1σm〉
is not empty. However, since m > 3, the character D(2) evaluates to 1 on the right set
and to μbc 	= 1 on the left set, so the intersection is empty.

– Sub-case 2.3: (1 above m) From the right corner of the fundamental domain we can
deduce that osculation comes fromedgeshσ b+1

1 · · · σ b+1
m ·ūb+1

1 andh
(
σ b
1 · · · σ b

m

)c
σ1 · · · σm ·

ūbm for some integers b, c /∈ kZ and some h ∈ Ḡk
m . Similarly to above, this implies that

σ b−a+1
1 〈σ1σm〉 ∩

(
σ b
1 · · · σ b

m

)c 〈σm−1σm〉
is not empty. However, since m > 3, the characterD(2) evaluates to 1 on the left set and
to μbc 	= 1 on the right set, so the intersection is empty.

– Sub-case 2.4: (1 belowm) From the left corner of the fundamental domainwe can deduce
that osculation comes from edges h

(
σ b
1 · · · σ b

m

)c · ūb+1
m and hσ b+1

1 · · · σ b+1
m−1σ

b
m · ūb1 for

some integers b, c /∈ kZ and some h ∈ Ḡk
m . Similarly to above, this implies that

(
σ b
1 · · · σ b

m

)c
σm 〈σm−1σm〉 ∩ σ b−a

1 〈σ1σm〉
is not empty. However, sincem > 3, the characterD(2) evaluates to 1 on the right set and
to μbc 	= 1 on the left set, so the intersection is empty. Hence there is no inter-osculation
between hyperplanes in X̄ k

m .

Hence X̄ k
m is a special cube complex. ��

Proof of Theorem 1 Wehave that ker φk
m is torsion-free and Xk

m is simply-connected, therefore
ker φk

m = π1
(
X̄ k
m

)
. We also have that ker φk

m is a finite-index subgroup of Gk
m , hence Gk

m

is virtually special. By Theorem 2, ker φk
m embeds into a finitely generated RAAG, so is

residually finite. Finally, as ker φk
m is a finite-index subgroup, Gk

m is also residually finite. ��

7 Remarks

1. Note that the abelianisation of Gk
m is

Gk
m
ab = Z

m/ 〈(k, k, . . . , k)〉 .
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Using Smith Normal Form, we get

(k, k, . . . , k)︸ ︷︷ ︸
m

�→ (k, 0, . . . , 0︸ ︷︷ ︸
m−1

) �⇒ Gk
m
ab ∼= Ck × Z

m−1

and hence Gk
m are distinct up to isomorphism for different integer pairs (m, k).

2. The action of Gk
m on the CAT(0) cube complex Xk

m is interesting, because even though
there are only finitely manyGk

m-orbits of hyperplanes, we get infinitely many Stab (H)-orbits
of hyperplanes crossing a given hyperplane H. This makes it difficult to apply existing tools
such as Theorem 4.1 in [7] for proving that the group is virtually special.

For an explicit example, consider the hyperplane [u02]. From the fundamental domain in
sect. 4, we have u02 ∼ ui2 ∀ i ∈ Z and also ui2 ⊥ ui3 ∀ i ∈ Z. Similarly to Sect. 5 we can
compute the hyperplane stabilisers

Stab
([u02]

) = 〈
xa1 x

a
2 | ∀ a ∈ Z

〉
, Stab

([u03]
) = 〈

xa2 x
a
3 | ∀ a ∈ Z

〉
,

as well as ui3 ∼ xi1 · u03. This implies that the set of coefficients g for which [u02] crosses[g · u03] contains the set I = {xi1 | i ∈ Z}. Two elements a, b of I give the same hyperplane
in the Stab

([u02]
)
-orbit of hyperplanes which cross [u02] in the following way: if one can get

from a to b by multiplying on the left by an element from Stab
([u02]

)
and on the right by an

element from Stab
([u03]

)
. So let us see how many such hyperplanes there are by seeing how

many elements of I are different up to such equivalence. If, after this identification, there
were only a finite list of elements left, there would also be a finite list of such elements in

the abelianisation. However, in Gk
m
ab

this consists of all elements of the form xi+a
1 xa+b

2 xb3
for some integers a, b, i . To remain within I , we require b = a = 0, so actually there are
infinitely many elements in the abelianisation after identification.

This means that there are infinitely many Stab
([u02]

)
-orbits of hyperplanes crossing [u02].

Similar infinite behaviour can occur with other hyperplanes and with osculation.
3. The groups in Theorem 1 are not finitely presented because of Corollary 14.5 in [9].

Lemma 14.4 applies with the modification that a relation xi1 · · · xim becomes
(
xi1 · · · xim

)k
when i /∈ S.

4. The special groups which are the finite index subgroups can be naturally thought of as
kernels of maps to Z in the following way.

In a more general setting of a virtually torsion-free generalised Bestvina-Brady group G
of finite ramification with associated locally finite CAT(0) cube complex X , we have the
following short exact sequence:

1 → ker φ → G → Ḡ → 1,

where Ḡ is some finite group and ker φ is torsion-free. From Theorem 3, the associated
branching set is periodic, hence the complex X is periodic. Therefore X/ ker φ is a Z-cover
of some finite cube complex χ and we also get a short exact sequence

1 → ker φ → π1(χ) → Z → 1.

The finite complex χ can be thought of as a branched Salvetti complex, because in the
case of a Bestvina-Brady group, this would actually be a Salvetti complex and ker φ the
associated Bestvina-Brady group. It is the author’s intention to study properties of such
complexes further, as well as classify groups in R, the set of generalised Bestvina-Brady
groups of finite ramification which are virtually special.
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Fig. 6 Part of the descending link of Xi
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Appendix

Recall the following facts from Sect. 4:

(1) A part of the descending link of Xi is shown in Fig. 6.
(2) Vertex Xi , for positive i , has the following vertices on the boundary of its pyramid:

X0,

x1 · X0, x21 · X0, . . . , xi1 · X0,

xi1x2 · X0, xi1x
2
2 · X0, . . . , xi1x

i
2 · X0,

...

xi1x
i
2 · · · xim−1xm · X0, xi1x

i
2 · · · xim−1x

2
m · X0, . . . , xi1x

i
2 · · · xim · X0.

(3) Vertex Xi , for negative i , has the following vertices on the boundary of its pyramid:

X0,

x−1
1 · X0, x−2

1 · X0, . . . , xi1 · X0,

xi1x
−1
2 · X0, xi1x

−2
2 · X0, . . . , xi1x

i
2 · X0,

...

xi1x
i
2 · · · xim−1x

−1
m · X0, xi1x

i
2 · · · xim−1x

−2
m · X0, . . . , xi1x

i
2 · · · xim · X0.

We prove Lemma 1 by induction on j .
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Fig. 7 Figuring out the square s11

Base case: ( j = 1) Applying (2.) to vertex X1 in combination with (1.) yields:

Applying (3.) to vertex X−1 and keeping in mind that edge u01 joins X−1 to X0 yields:

for some μ, λ ∈ Gk
m . Since 0 is not a branching layer, X0 has a unique edge from Orb

(
u02

)
in its descending link. From (1.) we know that this is u02, which means that μ = x−1

1 . This
also means that λ = x−1

1 , since square s01 has edge u
0
2 attached underneath X0. Hence square

s01 is as claimed in Lemma 1. We now proceed to proving the general form of square si1 by
induction, depending on whether i is positive or negative.

Case 1: (i positive) Claim: Square si1 is as in Lemma 1 for i > 0.

Proof Base case: (i = 1) Considering the pyramid with apex X2 and applying (2.) along
with (1.) gives Fig. 7.

Now by considering which translate of the square s01 fits in the bottom-right, we determine
that δ = γ = x1. This completes the square s11.

Inductive step: (i > 1) Assume that the claim has already been proven for all i up to and
including n ≥ 1. Consider the pyramid with apex Xn+2. Applying (1.) gives the top half
of square sn+1

1 . Applying (2.) gives the vertices in layer 0 at the bottom of the face of the
pyramid, and working upwards using the inductive hypothesis completes square sn+1

1 (also
see Fig. 2). ��
Case 2: (i negative) Claim: Square s−i

1 is as in Lemma 1 for i > 0.

Proof Base case: (i = 1) Consider the pyramid with apex X−2 and apply (2.). Note that we
knowwhat the line from X−2 to X0 (where two faces of the pyramidmeet) looks like, because
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Fig. 8 Figuring out the square s−1
1

Fig. 9 A part of the full link of
vertex X−1 x−1

1 · s01

x−1
1 · s−1

1

s−1
1

u−1
1 u−1

2

x−1
1 · u0

2u0
1

by convention this is a series of edges of type u1. By also considering which translates of
s01-squares go at the top, we get Fig. 8.

Now by applying (1.) to vertex X0, we can determine that α = x−1
1 . In order to compute

μ, we must take into account the full link of vertex X−1. Using (1.) applied to vertex X0, the
square x−1

1 · s01 and Fig. 8, we can deduce a part of the full link of vertex X−1, shown in Fig.
9. Note that labels on the edges in the link signify which squares these edges of the link are
originating from.

From [9], the full link of vertex X−1 is isomorphic to either the spherical double of L
(when −1 ∈ S), or the spherical double of a cover of L (otherwise). Either way, there must
be an edge between vertices u01 and u−1

2 in Fig. 9. By translation, this means that in the full
link of x−1

1 · X−1, the edge x−1
1 · u01 is joined to the edge x−1

1 · u−1
2 . Therefore we deduce

μ = x−1
1 . This completes the square s−1

1 .
Inductive step: (i > 1) Assume that the claim has already been proven for all i up to and

including n ≥ 1. Consider the pyramid with apex X−(n+2). Applying (1.) gives the top half
of square s−(n+1)

1 . Applying (2.) gives the vertices in layer 0 at the bottom of the face of the
pyramid, and working downwards using the inductive hypothesis, along with a consideration
of the full link of vertex X−(n+1) as above, completes square sn+1

1 . ��
This completes the proof of Lemma 1 for j = 1.
Inductive step: (1 < j < m) Suppose that Lemma 1 has already been proven for n up

to and including j − 1. Then, using exactly the same method of proof as above, we can also
deduce the general form of the square sin+1. The onlymodification is that we use the inductive
hypothesis to deduce what the line from X0 to X−i looks like, on the appropriate corner of
the pyramid (where two faces of the pyramid meet).
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Final step: ( j = m) Once we have deduced what the squares sin for 1 ≤ n ≤ m − 1
look like, we can do exactly the same for the squares sim . This time the coefficients break the
pattern because of the new factor in (1.), resulting in a different form for the square sim in
Fig. 3. Note that because xi1 · · · xim · Xi = Xi , the vertex coefficients in any of the squares of
the fundamental domain in Fig. 3 are not necessarily unique.

This completes the proof of Lemma 1. ��
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