Capturing nonlinear time-dependent aircraft dynamics
using a wind tunnel manoeuvre rig

Abstract

This paper considers a novel multi-degree-of-freedom dhyoananoeuvre rig,
with the aim of assessing its potential for capturing aftareodel nonlinear time
dependent dynamics in the wind tunnel. The dynamic maneetityicapabilities
are demonstrated via a series of experiments involving aefreoctraft in a closed
section low-speed wind tunnel. A series of open loop expenisishow that the
aircraft model exhibits nonlinear time dependent dynamitis nonlinear be-
haviour manifests itself as limit cycle oscillations thatiease in complexity with
the number of degrees-of-freedom in which the aircraftlswad to move. Two
real-time closed loop control experiments further illagtrthe manoeuvre rig po-
tential: first, using a pitch motion configuration, an expent is conducted to
investigate the limit cycle behaviour in more detail, aliog/the stability prop-
erties of the pitch oscillations to be assessed; secondiggua 5-DOF motion
configuration, the test motion envelope is extended by usitmmpensating feed-
back control law to track the aircraft’'s roll motion. Togeththese experiments
demonstrate the manoeuvre rig potential to reveal aira@itinear and unsteady
phenomena.

Keywords: wind tunnel, dynamic testing, limit cycle oscillationsfuoications,

nonlinear dynamics, aerodynamic hysteresis
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1. Introduction

Since the 1920’s, wind tunnel dynamic testing has been résed as an es-
sential tool for flight dynamics. Ever since, the challengs heen to capture the
behaviour of a model of the aircraft while mounted in the ®innAs an early
example, in 1922, a continuous rotation balance was degdlbp Relf and Lan-
vender at the Royal Aircraft Establishment in the UK, firat fieeasuring rolling
moment[[1] and then both the pitching and yawing moments dwgular ve-
locity of roll [2]. Another example is the work by Nicolaidesd Eikenberry
who measured the static and dynamic aerodynamic charstatenf statically sta-
ble and unstable missiles using two free oscillating rigs;[2egree-of-Freedom
(DOF) pitch motion rig and a 3-DOF roll, pitch and yaw motiog [3]. In 1981,
Orlik-Ruckemann presented a review of the existing winchalriechniques for
determining dynamic stability parameters [4], includirggtbunconstrained mod-
els capable of providing thrust in free-flight and, more coonfy, models that
have no thrust capability and hence require constraintsreMecently, Huang
and Wang presented a summary of the historic developmengramlic testing
techniques and reported the state of the art capabiliti@y@amic wind tunnel
rigs [5], concluding that novel constraining mechanisne tilow the model to
have multi-DOF motions have the potential to significantipp@nce capabilities
for dynamic testing.

Concentrating on captive models, a forced oscillation eg been used at the
14 x 22 subsonic wind tunnel at NASA Langley Research Center toystasy
unsteady aerodynamicffect aircraft flight dynamics [6] and then to estimate the
unsteady aerodynamic parameters [7] of a 10% scale F-16XdemdJsing the

techniques developed for fighter aircraft, research has taeied out to charac-
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terise the non-linear and unsteady aerodynatiiéces of large transport aircraft in
conditions beyond the normal operating envelope [8—16]d&long of post-stall
flight dynamics and spin dynamics of large transport aer@dausing data ob-
tained from static, forced oscillation and rotary balandedrtunnel experiments
has been performed by NASA [14]. Moreover, using static amded oscillation
wind tunnel experiments, a mathematical model which dessrthe longitudinal
dynamics[15] and the lateral-directional dynamics [16vpsoduced. Owens
et al. provided an overview of the dynamic testing facilities #aalie at NASA
Langley Research Centie [17].

More recently, the lift and drag forces of a generic unmargwdbat air ve-
hicle were characterised using static and forced osahaesting and then com-
pared to CFD results by Cummingsal. working at the Department of Aero-
nautics at the USAF [18]. In the Central Aerohydrodynamatilate (TSAGI) in
Russia, wind tunnel experiments were carried out to ingagtithe &ect of icing
on the longitudinal steady and unsteady aerodynamic cteaistecs of an aircraft
model [19]. In the Lu Shijia Laboratory at the Beihang Unsigrin China, the
aerodynamic characteristics of a delta wing at high andiestack were studied
through pitching oscillation experiments in a water chafi2@)]. In the German-
Dutch Wind Tunnels, a novel dynamic testing rig known as tleelM Positioning
Mechanism (MPM) was developed for standard static tesgnmynd éfect sim-
ulation, manoeuvre simulation and forced oscillationitgst The MPM allows
for 6-DOF motions of model aircraft rigidly mounted to a stiand has been used
to identify dynamic derivatives [21] and to simulate comypteanoeuvres of a
X-31 model [22]. It has also allowed the deployment trajeetof rigid bodies

launched from a generic military transport aircraft moddbé identified![23] and
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for static and forced oscillation testing of a generic sweiplg unmanned combat
air vehicle [24--29]. A rig developed at Cranfield Universatjows for dynamic
testing of aircraft models in roll, pitch, yaw and verticadrislation and has been
used to study the stability and control characteristics Hfl2 scale BAe Hawk
model for small amplitude motions [30,31]. Most of thesénteques are used for
aerodynamic characterisation utilising a relatively lamwmber of DOF. However,
modelling the dynamics of an aircraft is complicated by dastsuch as unsteady
(time-dependent)fiects, aircraft configuration dependence (particularlyamp
tant in the nonlinear regime, such as at high angle of attac#)the dificulty in
accommodating coupled (multi-DOF) motions. This resulta need for comple-
mentary wind tunnel techniques for multi-DOF aerodynanhiarecterisation and
flight control law development and evaluation.

The purpose of this type of enhanced dynamic testing is torenthat the
complex behaviour of the aircraft wind tunnel model can bseobked across a
range of conditions. The experiments would not only gereedata that can be
used to fit a mathematical model but, importantly, they wquidvide a means
of developing a sound understanding of the aerodynamic fltsmpmena under-
lying the behaviour and to explore their dependensassitivities to operating
conditions. This is a highly beneficial precursor to fittinghathematical model
to the measured responses and to subsequently designitngldaws to modify
the aircraft model response to inputs. It is this exploratibthe behaviour of the
aircraft model in the presence of nonlingarsteady aerodynamic reactions that is
the topic of this paper.

At the University of Bristol (UoB), the ‘manoeuvre rig’ hagén developed

specifically to extend ground testing capabilities ffieetive flight characteristics
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observation and prediction, control law design and evalnand increased wind-
tunnel testing productivity. Using the rig, the model isaatied via a gimbal to an
arm which itself is attached to ground via a second gimballlétvs the aircraft
model to be tested in up to five degrees of freedom with motionparted via

its own control surfaces, and with an aerodynamicallyetricompensation unit
attached to the rig arm. This unit allows forced oscillatiests and the potential
for dynamic compensation of the rig motions so that the modal behave, in
principle, as if it were in free motion under those DOFs. Tésuiting ‘physical
simulation’ allows for the observation of aircraft behawipincluding the influ-
ence of nonlinear aridr time-dependent aerodynamics such as that responsible
for the onset of upsgteparture; and the motion data from such tests — or from
forced motions driven by the rig compensator system — camlbeeused to carry
out parameter estimation for mathematical model developrdesimilar 5-DOF

rig has been developed at IIT Kanpur to simulate free flighhoeavres of a
delta-winged aircraft model in a wind tunnel and to estingteulation model
parameters [32].

In this paper, we demonstrate the potential of the manoetuyrn® observe
nonlinear time dependent flight dynamics and how, by sydiieraily realising
different DOFs, this behaviour can be measured and studiecaritigpated that
the data the novel rig can capture will enable researchebetier understand
the nonlinear aerodynamics and flight behaviour of an dircsamething that is
discussed here for a series of example tests, and allowatigniis in any numer-
ical model of the aircraft to be identified. It could also beedigo enhance or
fit a numerical model using parameter estimation, or to dater suitable feed-

back control approaches to improve the nonlinear behasiobserved but this is
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beyond the scope of the paper. Through a series of open-ludlased-loop
experiments, we illustrate how it becomes possible to efeséris nonlinear be-
haviour and to assess the dynamical structure of said #irorhighly complex
motion configurations. After presenting the rig and broatibcussing its capabil-
ities in Sectiom 2, we build on previous work obtaining agmamic data/[33] and
characterising the oscillatory longitudinal pitch and\eeaotions of an aircraft
model [34] by demonstrating how equilibria and limit-cyolecillations (LCO) in
heave and pitch can be identified along with the separattixd®n solution types
(Section(B). We demonstrate that the robustness of suchatiscis as further
DOFs are added can be investigated and reveal that for ttraimodel inves-
tigated there is a strong pitch-roll coupling (Sectidn 4gct®n[% discusses the
potential insights than can be gained when 5 DOF are unloakddooks at the
use of compensating feedback control laws for trackingmation. This discus-
sion is then extended to consider the potential for usingefaneasurements to

further enhance its control. Finally, Sectidn 6 providesatoding remarks.

2. Experimental Platform

In discussing the potential of dynamic testing of captivedeis in the wind
tunnel, we select the UoB manoeuvre rig as a case-studyamgbtyf and consider
the types of testing that can be conducted, giving some ebearapults. In this
section we introduce the manoeuvre rig and then overviewytes of testing it,
and similar rigs, can be used for and the insights these @andar.

Using the manoeuvre rig the aircraft model is supported ofD&OF gimbal,
the model gimbal, which can allow roll, pitch and yaw motioeative to the

gimbal mount. This gimbal is attached to an arm which itselfnounted — via
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another 3-DOF gimbal, the arm gimbal — on a fixed verticaltsiolted to a rigid
structure below the tunnel working section floor. This armmigal provides arm
roll, arm pitch and arm yaw (see Figurel 1a). The arm pitch andyaw pro-
vide approximate aircraft heave and aircraft sway motisstown in Figures
[2d to[2f. Note that due to the finite arm length, the model ginmbaves in an
arc; this contributes kinematic coupling between the rigioms and those of the
aircraft model. The 3-DOF model gimbal sits at the upstreathd the arm (see
Figure[1a), with the rig compensator located at the dowastrend. This gim-
bal connects the arm to the aircraft and allows for aircmaift aircraft pitch and
aircraft yaw, as shown in Figurés]2alid 2c. Whilst both giraliatorporate roll
degrees of freedom, they rotate aboutatient axes: the model body axis for the
arm gimbal and arm longitudinal axis for the arm gimbal; tagdr will make
additional contributions to the roll and yaw componentsotétion in model body
axes. Despite the availability of six rig DOFs, these aresagred to imbue the
model itself with a maximum of 5 DOFs: there is no unconsedifore-aft model
degree of freedom (its translations in this sense are coemgsrof motion along
the spherical surface prescribed by arm rotations in yawpéet). Note that the
gimbals allow for motions about individual axes to be lockedthat the rig can
be configured with DOFs ranging from zero (static) to five.

An approximate BAe Hawk aircraft model was used to carry batéxperi-
ments presented in this paper. A representation of the Hasdeirmounted on
the manoeuvre rig can be seen in Fidure 1a. Figure 1b showig tiveen installed
inthe 7 x 5 closed section wind tunnel. A safety cable system can berobde
in the background: this is used to restrict the rig’s sway la@ave motions.

The 3-DOF arm gimbal angular displacements are measured psiten-
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Figure 1: The University of Bristol's manoeuvre rig: (a) 8B manoeuvre rig schematic and (b)

rig mounted in the 7x 5’ closed section wind tunnel.

tiometers, while those of the 3-DOF model gimbal and therobsurfaces from
the compensator are measured using absolute digital erscoblee compensator
can be used to produce additional loads which can be taitoredrry out forced
rotationjoscillation tests, to reduce inertial, aerodynamic or kiaéc coupling
between the aircraft and the arm (physical simulation) andxtend the rig’s
motion envelope for control law evaluation. The aircrafieatation relative to
tunnel (Earth) axes can also be obtained from an inertiasoreanent unit (IMU)
mounted in the aircraft model. The angular displacementiefircraft model
control surfaces are measured using the potentiometermsdetatl in the servo mo-
tors. The characteristics of the rig and aircraft, kinematjuations and dynamic
model have been reported previously [33,35-38].

The rig can be used for various types of testing, which argsdiad for con-
venience as follows.

Rotational DOFs only; model gimbal free with arm gimbal locked:

e This can range from 1-DOF to 3-DOF, depending which modebgiraxes
are locked and which are free. Motions are driven by airgreftiel control
surfaces or potentially by an external disturbance suchgastgenerator.

Note that forced-oscillation experiments can be conduass#ag the model

8



Figure 2: Manoeuvre rig 6-DOF motions: (a) aircraft roll) @ircraft pitch, (c) aircraft yaw, (d)

aircraft extended roll, (e) aircraft heave and (f) aircsafty.

168 control surfaces to acquire dynamic stability derivati@ ], as well as

169 unsteady aerodynamic characteristics [19].

170 e A single-DOF pitch-only test is often a useful starting pdior dynamic

71 testing: motions reflect the approximate short period madefconven-
172 tional aircraft model configuration. Using all 3 DOFs rewehEhaviour
173 indicative of the ‘fast’ modes (short period, Dutch rollllreubsidence).

174 e Tests can examine stability of the modes and, where rollaangw are

175 free along with pitch, indicate asymmetry and coupling ofigibudinal with

176 lateral-directional dynamics. This can be done by ‘flyinge tmodel with

17 random or specified control surface inputs and recordingebponses —
178 so-called ‘physical simulation’.

179 e Aerodynamic models providing dependence of loadsrp and rotation
180 rates can be derived using parameter estimation.
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e Angular rate and stability augmentation controllers canrplemented,

evaluated and tuned.

e If a load cell is incorporated into the rig, between the endhefarm and
the aircraft gimbal mount, then static and dynamic lift ffi@gents can be

measured about fierent equilibrium (trim) points.

Rotational DOFs only; model gimbal rotational DoFs free with arm gimbal

unlocked in roll:

e The arm and gimbals are designed so that the axis of armantatiroll
passes through the model gimbal centre; therefore, frebisglegree of
freedom, in addition to any of the model-gimbal DOFs, pregién addi-
tional rotation — about the arm axis — and no associated|&i@ms of the
model. This does not add any further DOFs over and above thiode
model gimbal but, importantly, the arm can rotate contiralpwhereas the
model-gimbal rotation in roll is constrained by hard lim{ts42° at zero
pitch angle). Video 01 (see supplementary material) sho3«®&®F exam-
ple experiment in which the aircraft is free to move in roltch, and yaw,
with the motion driven by its control surfaces. The manoeuwig tracks
the roll motion using feedback control to extend the aittgabll motion

envelope![36].

¢ In this configuration, the rig compensator control surfacas be used to
drive the arm roll (forced rotatigoscillation); alternatively, where model
control surfaces are used to drive model motions, the cosgtenmust be
used to provide for roll responses larger than the model gitirbits. This

is explored in Sectionl5.

10
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e Physical simulation, aerodynamic model parameter estomaind control
law evaluation can all be conducted as in the rotation-oedyst (with the
additional option of forced motion in roll via the compermat Similarly,
if a load cell is fitted between the arm and model gimbal thenegand

moment measurements can be made.

Rotational and translational DOFs, model and arm gimbals unlocked in at
least one DOF:

The same types of testing as above can be conducted, withr toodho‘'trans-
lational’ DOFs free, namely model heave through arm pitctd arodel sway
through arm yaw. The latter introduce further options fompensator-forced
model motions or rig compensation. Application of rig comgation requires
measurement of the reaction force between the aircraft haodethe rig arm (via
a load cell); the ffect of rig geometric constraints, kinematics and inertied s
(and in principle also aerodynamic and structural dynajmnghe rig-aircraft dy-
namics are then miminised by feeding back the reaction fiortlee aerodynamic

compensator [38].

e A 2-DOF test with model-gimbal pitch and arm pitch allows asdr ap-
proximation to the short period dynamics of a free aircraftlel than rota-
tion only. It also allows for separate estimationaofndq stability deriva-
tives. Furthermore, even without a load cell, static lifads can be esti-
mated through the compensator model when the latter is odeddnce the
system|[41]. When the model is driven by its onboard contrdbses or ex-
cited by an external device such as a gust generator, thesswafor can be
used to apply compensation for the influence of the rig on rinoeleaviour

or alternatively to force model motions (e.g. for parametgimmation).

11



230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

e A 2-DOF test with model-gimbal yaw and arm sway mirrors thewein

the lateral-directional sense.

¢ All the aforementioned configurations can be combined tmfearious 2-,
3-, 4- and 5-DOF test condition. The more degrees of freedwengo
the system, the more representative the coupling betwewgitlmlinal and
lateral-directional motions and the closer the responsdhdt of a free-
flying model — including the onset of phenomena such as sgthanetry
and upset. As before, the behaviour of the aircraft modelbsaaxplored
by physical simulation and parameter estimation, conaa tlesign, etc.
carried out. An example of this is shown in Video 02 (see seimgintary
material), where the rig is set up in a 5-DOF configuratiaa,aircraft roll,
pitch, yaw and approximate heave and sway motions, witmebete rig-roll
motion. In this case the aircraft control surfaces driverti@ion, while
the aerodynamic compensator is used to compensate thdlrdynamics
via feedback control. Note that as part of the aircraft’stoater roll rate
feedback is used (measured using the IMU mounted in theaftirmodel),
and any high-frequency motion is likely to be in responsertzess (turbu-

lence) angbr measurement noise.

Recent applications of the rig have been aimed at asses$srigvel of inter-
action between the fierent DOF as nonlinear phenomena appear, exploring the
compensation of roll motion using the aerodynamic compenggigurd 18) [36],
investigating aerodynamic hysteresis utilising a fee#twamtrol law to track the
aircraft’s equilibria[41] and studying theffects of geometric constraints on the
coupled rigaircraft dynamics by feedback of load cell reaction forceasge-

ments to the compensator control surfaces [38].
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Next, Section§13 and 4 present experimental results exygjornlinear time
dependent flight dynamics and how these dynamifferdas diferent DOF con-

figurations are used.

3. Aircraft Pitch Equilibria and Limit Cycle Oscillations

This section presents results from experiments carrietboexplore the LCO
behaviour in a 1-DOF aircraft pitch configuration. Suchdestn reveal the influ-
ence of complex flow phenomena on longitudinal behaviogtuoting changes in
stability, associated bifurcation phenomena leading t®laDd resulting hystere-
sis dfects. Similar 1-DOF tests have been carried out before [@4d). but this
was prior to the rig refinements which provide more accurad@asurements of
control surface angles and model rotation rates, henceialipa more thorough
study. Then, building on these results, the investigasoextended with a series
of tests where a feedback control law is used to study thélisgatharacteristics
of the equilibria and LCO.

Pitch LCO for this aircraft model were first reported by Ky#], where a
pendulum rig in a 1-DOF pitch motion configuration was usedttaly the dy-
namics of the aircraft model. The LCO behaviour was moddde®avison [43]
using hyperbolic tangent growttecay functions to transition frgo equilibria
and sinusoidal functions to model the shape of the LCO. Sju#ssly, using the
earlier manoeuvre rig configuratH)'m 1-DOF and 2-DOF configurations, analy-
sis and modelling of the LCO behaviour was carried out byifadh using con-

tinuation and bifurcation tools [34]. This involved the idiication of parameters

This configuration did not provide direct measurements efrtiodel control surfaces and

rotational rates (and the aircraft gimbal was 2-DOF rathent3-DOF).

13
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in an unsteady aerodynamic model, along with a friction nhadeorporated in
the equations of motion so as to provide as close a match agfoio the limit
cycle characteristics and bifurcationary structure olesgin the experiments.
More recently, experimental exploration of the LCO behaviosing an up-
dated version of the manoeuvre rig was carried lout [37]. &leaperiments were
conducted to further explore the lateral-directionaliatéion between the fier-
ent degrees of freedom as nonlinear phenomena appear fEetved by Pattin-

sonet al [33], despite the absence of direct measurements of the lmadden

m
ail’

elevatorsy, and ruddew;y, or rotation rate9m, gm, rm) and to explore roll
motion compensation using the aerodynamic compensatarotsarfaces.

All the results presented throughout this paper are froneexgents carried
out in the 7 x 5’ closed circuit wind tunnel at the University of Bristol at aw
speed of 30 ifs. Note that the manoeuvre rig can be installed and opernateid i
ther the 7x 5’ closed-section tunnel or an open-jet, both available atthiger-
sity’s wind tunnel facility. The former was chosen becauss particular tunnel
has better flow quality than the open-jet one. It will be shakat the rig refine-
ments and incorporation of feedback control methods peouigproved results
than in previous studies: in particular, thiéeets of unsteady flow phenomena are
able to be observed in more detail, including separatrieésden stable solutions

and a more complex LCO structure.

3.1. 1-DOF Aircraft Pitch LCO

First consider the configuration in which the aircraft isefte move in pitch
and the arm is locked in its horizontal position, i.e. the @faircraft pitch con-
figuration (Figurd 2b). Figure Ba shows the response of thekHaodel in the

time domain when the elevator angle demand is ramped slowty Zero to-28°

14
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and then back to zero. This is a logical first step in this typesting, where a
control surface is used to provide inputs to model motioe: résponse to a suf-
ficiently slow ramp-type input can be regarded as quasdgtaad the measured
results are therefore able to be presented both as timeibstnd in a less usual
format — an experimental bifurcation diagram.

The elevator respongg, is shown in Figuré3a(i), with the aircraft pitch angle
6m and the pitch ratg, shown in Figures 3a(ii) arid Ba(iii), respectively. Notettha
in this 1-DOF configurationg,, is the model angle of attack. Five regions where
pitch LCO occur can be identified by studying #hgandq,, plots, namely in the
periodst ~ 50s,t ~ 100s, 120t <180s, 300 t < 350s and ~ 400s. In
the following discussion the first and fifth of these regionl e referred to as
low @ LCO, and the second, third and fourth regions as bidtCO. The aircraft
higha LCO response while in this configuration is presented in tippkementary
video file Video 03.

An alternative way of studying the LCO behaviour is by présgnthe system
steady state dynamics in the form a bifurcation diagram.eNloat equilibrium
(fixed-point) solutions shown in bifurcation diagrams mayrbegarded as trim-
ming points [19]. For an overview on bifurcation theory aislapplication to
aircraft dynamics analysis the reader is referred to Goehah [44], Thompson
and Macmillen (eds.).[45] and Sharregal [46]. Using the data shown in Fig-
ure[34, the aircraft elevator is taken as the bifurcatioapa&ter. Taking only the
points whergqg.| < 5°/s, i.e. where the rate can be thought of as approximately
the zero-rate points, an experimental bifurcation diagiaobtained as shown in
Figure 3b. Here, the data points represent stable eqailiodimit cycle minimum

and maximum amplitudes. By applying a smoothing post-msiog lag-free fil-
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Figure 3: 1-DOF aircraft model pitch experimental data:tif@g histories, (b) point cloud bifur-

cation diagram, (c) smoothed bifurcation diagram and (@i structure of bifurcation diagram.
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ter to this data, some of the features of the LCO are easiebderve. This is
shown in Figuré 3c. The filter used here was formulated bygdatekar and it is
based on a 15-point symmetric low-pass digital filter depetbby Spencer [47].
In Figured_ 3b an3c data in blue represent values corregppitma decreasing
aircraft elevatovy, sweep, while data in red represents values corresponding to
an increasing one. The black solid line represents stabiidilagp while the black
dashed line represents unstable equilibria; these itltigér lines were superim-
posed onto the experimental data to aid its interpretatiora{tempt was made in
this work to determine the unstable solutions experiméptal

The first of these features is a small LCO at lewver the regior-5° < 6y, < -2°
and 3°< 04 < 7°, corresponding to those observed arotindb0 s and ~ 400 s
in Figure[3&4. The second LCO, the highLCO, can be observed over the re-
gion —-22° < 63, < —10°. Aerodynamic hysteretic behaviour exhibited by the air
craft model used for this test can be observed over the reg@i < 63, < —16°
and -13° < 65, < —115°. In this region the large amplitude LCO is only ob-
served during the decreasing elevator deflection part degte When studying in
greater detail the plot corresponding to the aircraft gt@vimcreasing deflection
in the region-18° < ¢g, < —16°, evidence of an ‘inner’ LCO can be observed.
The characteristics of this LCO are discussed in Se€tigni8d2e that the inner
limit cycle might extend further in the pitching up direatidue to hysteresis. It
would be possible to investigate this by switching the expent to a pitch up
ramp at the point where this solution is reached and theaviatig it, but this was
not part of the testing schedule for this study.

Based on the features described before, the likely streatfithe bifurcation

diagram is sketched in Figurel3d. The sketch shows five fesitistable equilibria
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in solid black line, unstable equilibria in dashed blaclelistable LCO branches
in solid green line (at low and high), high @ unstable LCO branches in dashed
green line and a stable inner branch also in solid green line.

The two LCO regions — one arourttd= 5° (low ) and the other starting
atd = 15° (higha) — have been reported before [34, 42, 43]. However, a new
feature has been identified here: the results suggest thieeze of an inner LCO
within the hysteretic region of the higla LCO. The hysteresis phenomena in
this region were studied in_[41] and found to be associated am asymmetric
separated flow structure on the wings. It was shown in [35]tdsying at non-
zero model yaw angles, that this hysteretic behaviour iaswed over a range of
sideslip angles (although their extent does vary notiggatilis suggests that the
existence of these structures is robust to the flow conditioor their characteritics
are dependent on them. The lan._CO, on the other hand, disappears for larger
sideslip conditions, indicating that it may be linked toda$ longitudinal stability
due to shadowing of the tailplane. Results from a similar lves with non-zero

rig yaw angles will be shown in Sectién 4.1.

3.2. 1-DOF Aircraft Pitch: Equilibria & LCO Sability

To investigate the characteristics of the LCO in more detad to demonstrate
the manoeuvre rig’s capabilities for aircraft control laes@yn and aerodynamic
modelling, a series of closed loop tests using the Hawk moddlled on the
manoeuvre rig in a 1-DOF model pitch configuration were pentxd. In these
tests, the Hawk model elevator was used as the control Veriah feedback
control law implemented in Simulifkwas used to both set the nominal pitch
angle and then stabilise the aircraft pitch motion. A simiteethod to the one

presented here was used by Gan@l [41] to track the equilibria of pitch-only
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dynamics. In this work, the test is used to reveal the morgxexiCO structures
and the stability characteristics of both the equilibrid &&€0. The design of this
feedback control law is summarised as follows.

In a 1-DOF pitch configuration, the aircraft angle of attagkis equal to the

aircraft pitch angl@,, and the aircraft pitch dynamics can be described by

(M, + lyy) i = - f () = MGl SINEm)+ "
EpVZSmEmCM (Oms G, O) + W (1)

wheremy, is the aircraft model mass§, is the (small) vertical fiset of the model

centre of gravity (CG) from the gimbal centre of rotatidy,is the pitch moment

of inertia of the model about its C@,,, the pitch acceleratiort, (g.,) the model

gimbal pitch friction,g the acceleration due to gravity,the air densityV the

wind speedS;, andc, the aircraft model wing reference area and mean aerody-

namic chord respectivel;y, the aerodynamic pitching moment ¢beient and

w (t) the moment contribution due to wind tunnel turbulence, waitth g, and

54 previously defined in Sectidd 3. Note thaft) represents stochastic process

noise. To account for the uncertainty on this parameter aravaluate both the

robustness and repeatability of the results presentedsrséiation, perturbations

were added by means of switching/ofti the controller and via elevator step in-

puts with diferent magnitudes.

Additionally, considering the aerodynamic pitching momeoficient as a

combination of linearly independent functions, gives

CM (em, Qm, 6g|]e) = CMO (Qm) + Cqu (em, cIm) + CMﬁge (em, 6g|]e) (2)
Here,Cy,, andCMé_g|n represent the dependenceQif on g, anddg, respectively.
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Then, by collecting terms, equatidd (1) can be reformulated

(M3, + 1yy) Gm = 9 (Om) + N (B, Gn) + U (O, 65) + W(Y) (3)

where

: 1 _ .
Stlffness{ g(60m) = §,oVZSmcmCM0 (6m) — Mm@t SINErm)
. 1 _
Damplng{ h(6m, Om) = Epv2smcmC,v|qm (Om» Am) —  (Om)
Control input{ U (6m, Sge) = %pVZSmc_mCMSQ (Om: Oge)

By substitutingg,, = 0 andq,, = 0 into equation[(3) and neglecting any wind

tunnel turbulence, the equilibria of the system can be ega@ as

(B 53) = — 0(f) @

where the over bar indicates equilibrium values. Frbim (4ait be deduced that,
in the absence of external perturbations, any given atroratiel elevator deflec-
tion results in an equilibrium aircraft pitch angle.

Hence, tracking of the equilibria is achieved by definingdbetrol law

U (Om, 05e) = U(85%) + Ko Grm (5)

whered?. is the aircraft model elevator deflection demand. The teggy, in
equation [(b) fectively acts as a damper, wilfy, chosen experimentally such

that any external perturbation isfiaiently damped out.
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408 Using the control law defined inl(5) and wiky, = 0.1 N m g/rad, the stabil-
w9 ity characteristics of the equilibria, in the regions cangrboth the inner and
s0 outer higha LCO, were studied using a total of eleven nominal elevatgitpms
a1 within —21° < 87 < —12°. This range of elevator positions is of interest because
«12 the aircraft pitch dynamics exhibit multiple solutionsgdidpria and LCO), as pre-
a3 Viously discussed in Sectign 8.1 and shown in Figure 3. Refol two of these
2. tests are presented in detail, namely 8 = —15° andé., = —17.5°, followed
xs by a discussion of all the tests.

416 Figurel4&a shows the aircraft model 1-DOF pitch limit cyclptession time
«7 histories and phase portraits for a nominal inpu&"@fz —15°. Subfigurek 4ai to
«s  [4diii show the time histories for the aircraft model elevapitch angle and pitch
ne rate, respectively. Three sections are of interest: first thie controller & a pitch

=0 LCO can be observed in the regiom$<t < 10s. The controller is switched
2 on and the LCO is suppressed using the elevator in the rediex1 < 17.4s.
w2 Lastly, in the region LAs<t < 26.4 s the controller is switcheditand both the
=23 pitch angle and pitch rate start increasing until they reael.CO, indicating that
=4 the equilibrium point is unstable.

425 Figured 4hiv tg 4avi show the aircraft model pitch angle aitchgrate phase
w26 portraits for time segmentsdls<t < 84s,134s<t<174sand14s<t < 264s,
2 respectively. A fully developed pitch LCO can be observeéigure[4aiv, with
s the magnitudes of the pitch angle and pitch rate ranging b2ek 6,,, < 25° and
2 —86°/S < gm < 76 °/s, respectively. Figufe Aavi shows the controller succdlgsf
s0  Suppressing the pitch LCO, and the aircraft maintainingasition atd,, ~ 18.6°.

= Figure[4avii, shows the controller switcheé and the system returning to the

s pitch LCO, indicating that the equilibrium point is unstabl

21



433 In a similar fashion, Figure 4b shows the aircraft model 1FOgich limit cy-

s+ Cle suppression time histories and phase portraits for amadimput of?ig,"e ~ —17.5°.
s Atthe beginning of this test the controller is switchetland the nominal elevator
6 deflection is held constant. Then a series of step inputscemenanded to the air-
s craft elevator to act as perturbations to the system. Theactexistics of the first
xs  and last step inputs aresy, ~ 4° andAt ~ 0.3 s andAdg, ~ 4° andAt ~ 1.7 s, re-
w9 Spectively. The time histories for the aircraft model etevgpitch angle and pitch
uo rate are shown in Figuré€sl4bilfol4biii.

a1 With the controller switchedf, both the pitch angle and pitch rate remain
«2 bounded around the equilibrium point indicating that theildorium point is sta-
w3 ble, see Figurds 4bli, 4biii and Ubiv. Thentat 26 s, an elevator step input acting
ws @S a perturbation is applied and the system oscillates drthwnequilibrium but
»s the oscillation is damped down. Figure 4bv shows the coording phase plane
ws representation for this perturbation and a small orbit carsden, suggesting an
w7 inner LCO. Five additional step inputs are applied with amiesults. From this,
1s  We conclude that this inner LCO is unstable.

449 At t ~ 65 s a step input with the same amplitude is applied over &iaig-
s0 ration and the system transitions to a stable outer pitch .L&@Qurel4bvi shows
s the aircraft model pitch angle and pitch rate phase portmitesponding to this
»s2  perturbation.

453 The results from this experiment suggest that in the regfofy,ex 20°, the
»sa  aircraft model has at least three solutions: a stable dquiin point, a unstable
s5 inner LCO and a stable outer LCO.

456 Similar results were obtained for the remaining elevatanimal positions.

»7  An additional test was carried out in which a slow ramp inputhte aircraft ele-
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vator was commanded while the LCO-suppressing controberactive. This test
allowed the equilibrium points for fierent elevator deflections to be obtained ex-
perimentally. The data is presented in the form of a bifuocadiagram in Figure
using the aircraft elevator as the bifurcation paramédtee experimentally ob-
tained equilibria are shown (red ‘x’ markers) along with malty computed stable
equilibria (solid black line) and unstable equilibria (Hed black line). It can be
observed that the controller successfully tracked thelibgiai, except for the re-
giondy, ~ 16°. The equilibrium points are unstable in two regiord® < 55, < 0°
and-17° < &g, < —11°. Around these regions pitch LCO have been found. In the
region—22° < 65, < —12°, the stable LCO (black line with+' markers) can be
seen in Figurél5. Lastly, in the regierl9° < 6, < —16°, the unstable LCO is
shown as a dashed black line with’ ‘markers. Note that these unstable LCO
represent the boundary that separates the equilibria fnerstable LCO, i.e. the
separatrix of the system.

The results presented in this section show that the coetrsliccessfully sup-
pressed the LCO behaviour in the 1-DOF aircraft model pitqieement. The
all-moving tailplane was able to provide the necessaryrobpower to achieve
this (the flow over the tailplane is not stalled in this higlykerof-attack region).
By virtue of this technique, the stability characteristoéghe aircraft’s equilibria
and LCO were determined and the inner unstable LCO has begtifidd for this
model for the first time. From a fluid dynamics point of viewe ttauses behind
the observed LCO behaviour are not entirely understood mipossible that two
flow breakdown structures are involved at high angle of &ftacta similar vein
to the variation in lift hysteresis for the delta wing model[20]: PIV experi-

ments in a water tunnel tests suggested this behaviour Wasdado a dual-core
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Figure 5: 1-DOF aircraft model pitch experimental bifurcatdiagram.

leading-edge vortex phenomenon.

Whilst the application here is the sub-scale approximatek-tarcraft model,
the technique can be applied to any wind tunnel model whichdtauated con-
trol effectors, thus enabling similar studies of stability and eisged dynamical
structure to be revealed experimentally. The approach eaxtended to exploit
the potential of ‘control-based continuation’: a techrddor tracking the solu-
tions and bifurcations of nonlinear experiments. It aimadbieve the equivalent
of numerical continuation but applied to a physical expernin through the use
of ‘minimally invasive’ feedback control schemes — see [#88]an explanation
of the method and [49] for an example of an application to waegoelastic re-
sponses in a wind tunnel. A simplified implementation of tieishnique on the
Hawk model mounted on the manoeuvre rig has revealed additemmplexity

in its hysteretic behaviour [41].
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w6 4. Robustness of LCOsto Additional DOFs

497 Releasing additional degrees of freedom in the manoeugrallows for the
w8 Study of interaction of longitudinal phenomena, such adithi cycles and hys-
w9 teresis discussed in the previous section, with lateraetional dynamics. This
s0 IS especially important at higher angles of attack whefecés of nonlinearity
sau typically become relevant and asymmetric responses to gtrimeconditions can
sz OCcuUr: it is frequently the case that the development of staln aircraft results
sis iN roll andor yaw when no lateral-directional inputs are given.

504 Here, to explore the interaction of the Hawk longitudinal@ Gehaviour with
sos ItS lateral-directional dynamics and its evolution afetent degrees of freedom
ss are freed up, a series of multi-DOF tests was performed. dJdiiierent combi-
sv Nations of model pitch, model yaw, model roll, arm roll ancharaw degrees of
ss freedom as appropriate, inputs to the Hawk model elevatioiger and ailerons
so0 Were used to drive the motion of the model. These experirhezdalts are pre-
s0 sented in three parts: firstly a 2-DOF configuration usingdineraft pitch and
su yaw DOF is presented, secondly two further 2-DOF configaresj one using the
sz aircraft model pitch and roll DOF and another using the aiftamodel pitch and
s arm roll DOF are considered; finally a 4-DOF (no heave) coméigan is tested
s Where compensation of roll motion using the aerodynamicpesmsator is used to

sis  keep the model gimbal roll angle as close as possible to zero.

s 4.1. 2-DOF Aircraft Pitch & Yaw

517 For the 2-DOF aircraft pitch and aircraft yaw experimenig fiifferent con-
sis Stantinputs to the aircraft elevator were applied, namigly= [-2, -5, —10, —15, —20]°,

sio With a slow ramp applied to the aircraft rudder over the ranr8@° < 67,4 < 39°.
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Using the time history data from this experiment, 2-DOF ta&tion diagrams
were obtained following the procedure described in Se@idn The aircraft rud-

der was used as the bifurcation parameter and each airtaadtte@r input setting

was treated as an independent data set. The diagragis ferf—2°, -5°, -10°, -15°, —20°],

are shown in Figures ba [ol6e, respectively. The blue lineesgmts a sweep of
decreasing aircraft ruddefy,, while the red line represents an increasing one.
The black dashed lines represent the system’s approximatieia. These were
computed by taking an average of the values corresponditigtdecreasing air-
craft rudders)y, sweep in each case, represented by the blue lines.

The analysis of the nonlinear phenomena for this experinseditvided into
two: the low and highy LCO regions. The 2-DOF bifurcation diagrams for the
first region are shown in Figurés|6a dnd 6b. These show thébthe LCO per-
sists throughout the range of testgg (unlike in the tests with dierentmodel
yaw angles — not shown here [35]). Figlre 6b shows a smalliamdploscilla-
tion in yaw angle for 3%< ;)44 < 27°. This suggests that the shadowing of the
horizontal tail by the winguselage, proposed in Sectibn3.1 as the cause of the
low angle-of-attack LCO, may alsdfact the fin in this region, indicating a lack of
symmetry. Figurels 6€, 6d ahd 6e coincide with the lidCO region. In contrast
with the lowa LCO region, strong interaction between the pitch and yawadyn
ics can be observed. This interaction can be better obsémveidure[6f which
shows a phase portrait féf, = —15°, -6° < 6;1,4q < 3°. This phase portrait was
produced using data from the segment between the vertisakddines in Figure
[6d. The time history for this region shows that the numberrbfte of the LCO
pitch component is twice that of the LCO yaw component whittidates that the

pitch component has double the frequency of the yawing motio
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4.2. 2-DOF Aircraft Pitch & Roll

A series of 2-DOF aircraft roll and pitch experiments wagsiedrout to study
coupled pitch-roll interaction in the regions where LCO é&abur appears. Two
configurations were studied, one encompassing the airaiatind pitch DOFs

and a second one using the aircraft pitch and the arm roll DOFs

4.2.1. 2-DOF Aircraft Pitch & Aircraft Roll

In this experiment a slow ramp-and-hold input to the aitoebdvator was ap-
plied and the aircraft roll and pitch motion responses wecerded. It was found
that atd,, ~ 15°, the roll-pitch interaction caused the aircraft to rettee physical
limits of the roll gimbal (approximately38°). As a consequence a reduced range
of pitch motions is presented here.

Figure[7& shows the time histories for this experiment, ithaircraft model
elevator deflection, roll angle, pitch angle, roll rate artdprate shown in Figures
[7di to[7av, respectively. Note that the range of elevatouting less here than
in Section[ 3.1l due to the roll gimbal mechanical limits beregched at more
negative elevator settings. In this Figure a pitch LCO atdowan be seen in the
regions 35x t < 75s and 340 t < 380 s, with a maximum rate of 54S. In
the region 150t < 230s, it can be observed that the aircraft experiences roll
oscillations and reaches the roll gimbal limits. When threraft elevator angle
starts increasing dt~ 250s, the roll oscillations begin to damp down and the
aircraft roll angle goes back to a steady state boundedlity < ¢, < 10°.

The point at which the lowr LCO appears, at~ 35s, and disappears, at
t ~ 380s, is at a higher pitch amplitude than in the 1-DOF casesaadcompa-
nied by an @'set in average roll angle. This negative roll angle persistsugh

the LCO and after exiting the LCO at higheri.e. a roll asymmetry exists for all
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pitch angles above approx.5°. Its existence appears to be linked to the bifurca-
tion giving rise to the LCO, with zero roll angle at lower aeglof attack (before
the tailplane becomes immersed in the wing-fuselage waldcaaoll dfset when
it is immersed and when it emerges below the wake at higher

Figure[7b shows a smoothed experimental 2-DOF bifurcatiagredm ob-
tained following the procedure described in Secfiod 3.1 kglugling the data
points that correspond to motions where the aircraft reatheoll gimbal limits.
In this diagram the aircraft elevator is the bifurcationgraeter. In Figuré 7bii
the ‘jump’ in roll angle that was observed in Figlré 7a (at iHapf bifurcation
point at which the lowx LCO is borne) is evident — &ff, ~ 1° when the aircraft
model is pitching up andg, ~ 2° when pitching down. The roll angle is then
more constant at pitch angles above the tolaCO (observed in Figurle bi in the
region—2° < 6y, < 3°), although there are changes in value at higher

Figure[7t shows a detailed view of the time histories for 248 s 254 s.
Roll oscillations can be observed while the elevator deflacts held constant,
which suggest there may exist periodic solutions in thigoreg Using the data
shown in Figuré_ 7c, a phase portrait diagram was construsesel Figure_7d).
While the phase portrait shows almost no excitation of therait pitch dynamics,
several orbits can be observed in the roll motion plot, satiag the possibility
that roll oscillations may drive the onset of the pitch dstibns observed when
the gimbal roll DOF was locked.

The results from this experiment confirm the existence dfpibth interac-
tion. They suggest that the roll oscillation may delay theediof pitch oscillations
to highera, although the fact that the roll motion hits the gimbal lisnihakes it

difficult to reach definite conclusions in this respect.
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gram, (c) time histories detailed view and (d) phase pdrdiagram.
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4.2.2. 2-DOF Aircraft Pitch & Arm Roll

Whilst the above results highlight the potential benefitadiag a roll DOF,
i.e. to explore longitudinal-lateral interaction, theg@ldemonstrated the limita-
tion of relying on an aircraft-mounted gimbal with angulanstraints. Here, a
2-DOF aircraft pitch and roll experiment was carried outimikar fashion to the
one presented in the previous subsection except that relblveined through the
arm gimbal roll rather than the model gimbal: the arm gimbiaves unlimited
motion. A slow ramp input to the aircraft elevator was applénd the aircraft
pitch and arm roll motion responses were recorded.

To account for the fiset between the Hawk model CG and the arm gimbal
roll axis, the aircraft roll motion was computed using aneexted Kalman filter
(EKF) applied to signals from the IMU mounted on the aircratidel. Note that
the influence of this fiset is assumed to be negligible when considering rig heave
and sway as itis very small (approx. 14 mm).

Figured 8hi, td 8av show the time histories of the aircraftiel@levator de-
flection, the aircraft roll angle, pitch angle, roll rate gpitch rate, respectively.
Two LCO can be observed at low and highin the regions 655t < 130s,
680s<t<760s, 200 t<330s and 5005 t < 620s, respectively. This is
consistent with the experimental results presented ini@etB and 41, except
that the onset of the higla LCO is delayed to a higher angle of attack (approx.
20°). These LCO are easier to study using the 2-DOF arm rdllaancraft pitch
smoothed bifurcation diagram shown in Figlré 8b. The bétiom diagram was
obtained using the same data processing method as desiriBedtior 3.1l and
using the aircraft elevator as the bifurcation parameter.

The low and highw LCO can be observed in Figurel8bi in the regies < 65, < 3°
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and -9.5° < 6, < —23°, respectively. In Figure_8bii, it can be observed that
the roll angle decreases proportionally with the aircrédvator in the regions
3° < g, < 10° and-9° < &g, < —3°, suggesting lateral dynamics asymmetry. This
behaviour is similar to that observed in the aircraft pitonfegguration presented
in Sectior 4.2.]1. The roll angle does appear to vary more #ithobetween these
two regions, which coincides with the onset of the leWCO, without the discrete
‘jump’ evident in Figuré_7b.

The higha LCO is preceded by oscillations in roll in the region delieditoy
-12° < &g, < —9°, suggesting that roll oscillations may induce the on§gitoh
oscillations. It is also noticeable that there is an inaegasoll angle amplitude
when the LCO dies out at higher(sg, < —21°).

When compared with the 1-DOF aircraft pitch experiment tvaints are
worth noting. Firstly, the lonw LCO seems to be completely driven by lon-
gitudinal dfects. Secondly, the roll-pitch interaction in the high.CO is strong
enough to change the shape of the hysteretic behaviournrégioundsy, = —10°
to —12°), almost to the point of making it disappear. This sutgtmt, in this re-
gion, the onset of the pitch oscillations may be induced leyrtl dynamics.

The results from this experiment indicate that there isngtnmll-pitch inter-
action throughout the test space. This interaction is efeskin the form of arm
roll deflection. Given the inertia and pendulurtieet of the arm, this arm roll
deflection suggests the existence of significant rolling moi® induced by the
aircraft on the rig arm. Clearly, this configuration has tieadvantage of the air-
craft model dynamic response being modified by tfieats of arm inertia and the
offset of the rig CG from the roll axis. Whilst this can be acceuwlnfor in pro-

cessing results, it does preclude correct physical sinomatf an aircraft model
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that has no constraints on motion in its degrees of freedomth® other hand,
when testing under the approximate free-to-roll condgidiorded by the model
gimbal roll DOF, the envelope within which physical simidait could be carried
out is constrained by the roll gimbal limits (as seen in Sed#.2.1). In the case
of the Hawk model, if it were free to roll without gimbal linsiand without rig in-
ertial dfects, itis likely that the roll-pitch interaction would k& more complex
behaviour such as wing rock giod wing drop. Therefore, in the next section, we
exploit the rig compensator to attempt to eliminate the erflee of the rig arm on

the model roll dynamics.

5. Compensation of Rig Dynamics

A 4-DOF experiment was carried out to study the open loopWebaof the
aircraft model in a multi-DOF configuration where only thenagimbal pitch DOF
was locked, such that the aircraft is unable to heave. Itvgelver able to pitch,
yaw, roll (both via the aircraft and the arm gimbals) and sviayhis experiment, a
flight control stick was used to manually control the airtealierons and elevator.
The rig arm roll motion was controlled via the aerodynamioteol surfaces on
the compensator (referred to as compensator aileronslg ascontrol law with
feedback of model roll rate and roll angle relative to the.afime control objective
was to track the aircraft’s roll motion, keeping the modehbal roll angle as close
as possible to zero. Here, the model gimbal roll DOF, withats inertial load,
can be thought of as allowing for fast aircraft roll dynanwasile the arm roll
DOF allows slow dynamics over the full 360° range.

Figure[9 shows the aircraft model motion time historieshypiainels ai to aiii

showing the control inputs and the rest the aircraft modeionovariables. The
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control inputs consist of:
e compensator aileron deflection (actively controlleq), Figure9ai,
e aircraft model aileron deflectiody;, Figure[9aii and
e aircraft model elevator deflectiodf,, Figure[Qaiii.
The aircraft model motion variables are:
e roll rate, p,, Figure 9aiv,
e pitch rate g., Figure[9av,
e yaw rater,, FigureQavi,

e angle of attackeqn, (blue solid line), and pitch anglé,, (red dashed line),

shown in Figuré Qavii,

e angle of sideslipn, (blue solid line), and yaw anglé,,, (red dashed line),

shown in Figuré Gaviii,
e roll angle,¢m, shown in Figuré 9aix and
e aircraft gimbal roll anglegq, shown in Figuré Sax.

Figure[9b shows a magnification[of|9a. The aircraft angledtatk and sideslip
were computedfd-line using the arm gimbal angles, the model gimbal anglés an
the aircraft rotational rates. The equations used to coeningise can be found in
Araujo-Estrada [35].

With the aircraft in an initial trimmed state, the aircralévator is slowly de-

creased to increase the aircraft angle of attack (see E@aié and 9avii). Two
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segments are of interest. Firstly, in the regionts< 15, the lowx pitch LCO
previously identified can be observed (Figures 9av[and Palii keeping with
the previous 2-DOF tests (Sectioh 4), there seems to beilititraction between
the aircraft pitch motion and the remaining DOFs, for whiiche histories show
relatively small magnitude changes.

Secondly, more complex behaviour involving all the DOFsloambserved in
the region 19 t < 30s. Att ~ 19, an increase in the rolling moment and side
force is experienced by the aircraft (manifested viagheand ¢, time histories
in Figured 9hviii an@Qaix). A manual input &, is applied to correcpn, (Figure
[9dii). After this,sy, is decreased further and the system seems to track the equi-
libria. Att=~ 25s, the aircraft accelerates in rgl}, causing a fast change in the
gimbal roll anglegy. This rapid change in the dynamics is easier to observe in
Figured 9bix an@ 9bx. As a consequence, the compensatomraldeflect (Fig-
ure[9bi), allowind¢,,| > 100° (Figuré 9bix), without reaching the gimbal physical
limits (Figure[9bx). Att ~ 26.8 s, the aircraft accelerates once more in roll and a
sharp change iny is observed. The compensator ailerons deflect to compensate
the roll motion, allowing the aircraft to complete two ro#ivolutions (Figures
[Qdi and 9hix), before the aircraft ultimately reaches tmelbgil mechanical limits
(Figure[9bx). Finally, the aircraft aileron and elevataclstinputs are released,
and the system returns to a trimmed state.

The results from this experiment confirm that there is ndgjginteraction
between the aircraft pitch motion and the other DOFs in tleedoLCO. Also,
in the region corresponding to the previously identifiechhig-CO, complex be-
haviour involving all DOF is observed and the motion resgoissdominated by

the lateral-directional dynamics. Further insight inte tbll asymmetries respon-
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Where two lines are plotted, the first listed in the label mteld as a solid line.
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sible for the onset of the high-LCO has been developed in a separate study of

the Hawk model equilibria, using a ‘minimally invasive’ flleack controller, in
a different multi-DOF test [41]. Lastly by controlling the armlrela the com-
pensator the allowable model roll was increased substigritiefore the roll rate
results in stops being reached.

This 4-DOF test demonstrates the added capability of arhtremlking com-
pensation in revealing coupled responses of an aircrafeinddcomplementary
compensation strategy, proposed by Navaratna et. al [88%es a load cell in-
corporated in the rig just below the model gimbal and aimgtiuce the influence
of the arm dynamics on the aircraft model motions by feediackithe reaction
force between the aircraft and the rig arm to the aerodynaongpensator. Sim-
ulation results indicate that by using this approach, therait model dynamics
does more closely match equivalent free flight behaviounveosrous modes of

motion.

6. Concluding Remarks

In this paper, the potential of gaining new insights interdft behaviour us-
ing novel wind tunnel manoeuvre rigs is examined. Poss#sértg regimes are
discussed and, using an approximate BAe Hawk wind tunnekemegample re-
sults and associated insights are presented. Specificaltiie Hawk model, both
open and closed loop tests are used to reveal nonlinearibehavhich manifests
itself as LCO and were observed in all testing configurations

By releasing the manoeuvre rig DOFs incrementally in opep kExperiments
it was possible to observe the evolution of complex dynaral@viour. First, a 1-

DOF pitch test allowed two main regions where pitch LCO appehe identified:
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one around = 5° (low «) and another starting at= 15° (higha). These results
are in agreement with those previously presented by Kylg [3&vison [43] and
Pattinson![34]. Additionally, the LCO structure was foumdite more complex
than previous tests had suggested, with evidence of an ii@@rwithin the high

a LCO region. Application of a feedback controller in a 1-DOfeatel pitch

configuration allowed the stability characteristics oftinedel equilibriaand LCO
to be assessed and allowed the inner unstable LCO withinigieahLCO to be

identified.

When a 2-DOF aircraft pitch and yaw configuration was use@# found that
the lowa LCO was dominated by pitch motions. The higt.CO region is more
complex: both pitch and yaw motions are present with thehgitimponent hav-
ing twice the frequency of the yaw component. A strong rditipinteraction in
the higha LCO was identified using 2-DOF results from both the aircralitand
pitch and the aircraft pitch and arm roll. As a result of thghhioll rates induced
by this coupling, limitations arising from motions exceaggligimbal mechanical
limits were evident in the case where the model roll gimbad weed. When the
arm roll DOF was deployed instead, revealing the magnitddbeorolling mo-
ment being exerted by the aircraft model on the arm, the itngfaarm inertia and
offset CG on the model responses was also highlighted. Thdsaatibn issues
justified the deployment of the rig compensator surfacesderato allow uncon-
strained model roll motions whilst minimizing rigfects. This was demonstrated
in the last of the experiments reported in the paper, in wiggdback control
to the compensator ailerons was implemented in a 4-DOFgitwh-yaw-sway)
configuration. This confirmed the strong roll-pitch coupglicharacteristics and

allowed the roll testing envelope to increase. Howeverntioglel did ultimately
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reach its gimbal mechanical limits, thus indicating that #ircraft roll dynamics
are faster than that of the rig arm so that compensation wiafsiihypachieved in
this case.

For the Hawk model, the experimental results presented frerede a new
perspective on the nature of what was previously considirdz a pitch-only
LCO in the higha region, shedding light on the interaction between the anRgi
dinal and lateral-directional dynamics where the LCO appea

More generally, the experiments reported in this paperaleve capacity of
this novel type of wind tunnel dynamic test rig to physicalignulate the motions
of an air vehicle in multiple degrees of freedom, and to usmepnd closed-loop
testing to reveal insights into the responses arising fromlinear and unsteady
aerodynamic #ects, including evaluation of stability and hysteresisrumena.
The nature of this type of rig, where the aircraft model moti® driven by its
own control surfaces, is seen to be particularly well suitestudies of complex
or counter-intuitive behaviours such as in the initiatidramcraft upsetoss-of-
control scenarios. Future application of this techniqueldde used for evalu-
ating additional types of nonlinear phenomena such as geaodic hysteresis,
for enhanced flight characteristics modelling and for deisigg and evaluating
flight control laws. For flight characteristics modellingetrig — which has re-
cently benefitted from the addition of a load cell to measaoreds and moments
between the model and the rig arm - can be used along withitadfstandard
modelling approaches to extract stability derivativesambination with Machine
Learning methods [39], to validate longitudinal stabilitgrivatives estimates of
novel aircraft in subsonic regimes obtained via CFD simaoitet [40], to develop

and evaluate online system identification techniques taiot#erodynamic pa-
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rameters of fixed-wing aircraft in upset conditions likellsfa0], as well as to
improve understanding of flexible aircraft flight dynamiéd] and possibly also
novel concepts such as flapping-wing MAVs![62, 53] and vesdtdhrust urban air
mobility concepts, also known as Personal Aerial Trangiomn Systems (PATS)
[54]. Alternatively, new techniques (like the one presdrttere), can be used to
build experimental bifurcation diagrams and model the dyieal structure of the
aircraft. In terms of flight control law development, the cign be used to design
and evaluate controllers based on established classic addl+hased approaches
(realising DOFs one at a time and modifying the controllges appropriately)
or to test novel Machine Learning-based controllers, schtatude controllers

for fixed-wing UAVs [55, 56].
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