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Abstract

For a given group G the orientably regular maps with orientation-preserving automor-
phism group G are used as the vertices of a graph O(G), with undirected and directed
edges showing the effect of duality and hole operations on these maps. Some examples of
these graphs are given, including several for small Hurwitz groups. For some G, such as
the affine groups AGL1(2

e), the graph O(G) is connected, whereas for some other infinite
families, such as the alternating and symmetric groups, the number of connected compo-
nents is unbounded.
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1 Introduction
For any group G let O(G) denote the set of (isomorphism classes of) orientably regular
maps M with orientation-preserving automorphism group Aut+M isomorphic to G. For
a given finite group G this set is finite since its elements correspond bijectively to the
orbits of AutG on certain generating sets for G. These maps are related to each other
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by the application of certain operations, described by Wilson in [40], such as duality D
and the hole operations Hj for j coprime to the valency of the vertices, since all of these
preserve the group G. One way of understanding how the various maps associated with
G are related to each other is to regard this set O(G) as the vertex set of a graph, with
directed or undirected edges indicating the actions of these operations. For example, one
can consider whether or not this graph is connected, and if not, what invariants might be
used to distinguish maps in different components. We will describe the maps M and graphs
O(G) arising for some particularly interesting groups, including several of the smallest
Hurwitz groups. We will show that for the symmetric and alternating groups, the number
of connected components of O(G) is unbounded, building on work of Marston Conder [5]
on alternating groups as Hurwitz groups in the latter case.

In addition to topological graph theory and the theory of Riemann surfaces, Grothen-
dieck’s dessins d’enfants provide motivation for this study, as a preparation for an investi-
gation of the relationship between the actions of these operations and that of the absolute
Galois group GalQ/Q on finite oriented maps, regarded as algebraic curves defined over
number fields (see [26], for example). We also see this paper as a first step towards a study
of a wider class of operations, including Petrie duality, on the set R(G) of all regular maps
with a given automorphism group G. Constraints of space and time oblige us to defer these
extensions to a later date.

2 Orientably regular maps
If M is an orientably regular map then its arcs (directed edges) can be identified with the
elements of a group G, so that its orientation-preserving monodromy and automorphism
groups are identified with the right and left regular representations of G.

Let M have type {p, q}, meaning that its faces are p-gons and its vertices have valency
q. (The term Schläfli type, or Schläfli symbol, is also used [10]). We note that later on in
this paper, we shall use the same symbols p and q for denoting a prime and a prime power,
respectively; to avoid confusion, where it is not clear from the context, the actual meaning
of these symbols will be emphasized.)

Then G has generators x, y, z satisfying

xq = y2 = zp = xyz = 1,

where x and y act (as monodromy permutations) by rotating all arcs around their incident
vertices, following the orientation, and by reversing them, so that z rotates them around
faces. Conversely any such generating triple for G defines a map M of this type, with
isomorphic maps corresponding to triples equivalent under AutG. Of course the triple,
and hence the map, is uniquely determined by any two of its members, so we will often
restrict attention to the generating pair x, y.

Map duality D, transposing vertices and faces, replaces the triple (x, y, z) with (z, y,
(zy)−1 = xy), corresponding to the dual map D(M). Then D2 sends (x, y, z) to (xy, y, zy)
= (x, y, z)y , giving a map isomorphic to M.

If j is coprime to q then another orientably regular map Mj = Hj(M), of type {p′, q}
for some p′ and with the same orientation-preserving automorphism group G as M, can
be found by applying the hole operation Hj , described by Wilson in [40], to M. This map
embeds the same graph as M, but the rotation x of arcs around each vertex is replaced with
xj , so that the faces, and hence the underlying surface, may be changed. In terms of group
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theory, Hj(M) corresponds to the generating triple (xj , y, zj) for G, where zj := (xjy)−1.
Thus the boundary of each face of Hj(M), given the orientation of the underlying surface,
follows a j-hole of M, at each vertex v taking the j-th incident edge, following the reverse
orientation around v, rather than the first; its length is the order of the element zj . (Note
that a j-hole, taken in the reverse direction, becomes an (q − j)-hole.)

Example 2.1. Figure 1 shows a 3-hole (16, 5, 6, 20, 16) of length 4 in Klein’s map K of
type {3, 7} and genus 3 with G = PSL2(7) (see Section 7 for details).

Figure 1: Klein’s map K of type {3, 7} and genus 3 represented in Poincaré’s disc model
of the hyperbolic plane. A 3-hole (16, 5, 6, 20, 16) is highlighted.

Clearly Hj = Hk whenever j ≡ k mod (q); since Hj ◦ Hk = Hjk for all j and k
coprime to q, these operations give a representation of the group Uq of units mod (q). The
operation H−1 sends each map to its mirror-image, so an orientably regular map M is
regular (has a flag-transitive full automorphism group AutM) if and only if H−1(M) ∼=
M; thus the action on regular maps gives a representation of the group Uq/{±1}.

One can also apply Hj to M when k := gcd(j, q) > 1. However, in this case the
operation is not invertible, and it does not preserve the embedded graph, since each vertex
is replaced with k vertices of valency q/k. Moreover, the orientation-preserving auto-
morphism group may also change: if G0 := ⟨xj , y⟩ is a proper subgroup of index n in
G, then Hj(M) is the disjoint union of n isomorphic connected orientably regular maps
M0, each with Aut+M0

∼= G0, and Aut+Hj(M) is isomorphic to the wreath product
G0 ≀Sn. Since our aim is to study those maps with a given orientation-preserving automor-
phism group G, we will avoid such complications by concentrating on cases where k = 1.
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A further reason for doing this is that we eventually hope to compare hole operations with
cyclotomic Galois operations, and these act by raising qth roots of unity to their jth powers
where gcd(j, q) = 1.

Another useful map operation is Petrie duality. A Petrie polygon in a map M is a closed
zig-zag path turning alternately first right and first left at successive vertices. The Petrie
dual P (M) of M embeds the same graph as M, but the faces of M are replaced with new
faces bounded by the Petrie polygons. If M is orientably regular their length r (the Petrie
length of M) is twice the order of the commutator [x, y] = x−1y−1xy = x−1yxy, so that
P (M) has type {r, q}. As in [11, 12], we will often refer to the extended type {p, q}r
of M. For instance, in Figure 1 the 3-holes (16, 5, 6, 20, 16) and (24, 17, 13, 19, 24) in K
enclose a Petrie polygon of length r = 8. (More generally, whenever p = 3 each Petrie
polygon is enclosed by two 3-holes of length r/2 in this way.)

Given any group G, one can regard O(G) as the vertex set of a graph (also denoted by
O(G)) by adding edges showing the actions of the operations D and Hj (for selected j);
they will be undirected for cycles of length 2, e.g. for involutions such as D, and directed in
the case of longer cycles for hole operations Hj . Loops, corresponding to invariant maps,
will be omitted. In particular, we will use dashed and dotted undirected edges for D and
H−1, and unbroken edges for other hole operations. Although the operation P preserves
the full automorphism group of a map, it has the disadvantage from our current point of
view of not always preserving orientability. For example, if M is the tetrahedral map on
the sphere, then P (M) is the antipodal quotient of the cube, on the real projective plane;
similarly, P (K) is a non-orientable regular map of genus 41. In this paper we will therefore
concentrate mainly on the operations D and Hj , which preserve automorphism groups and
orientability.

In general we will not draw edges labelled Hj for all j coprime to the relevant valencies
q, but merely enough to identify the connected components of O(G) by showing how
various maps can be tranformed into each other. For example, if Uq (or Uq/{±1} in the
case of regular maps) is cyclic it is sufficient to take j to be a generator.

Provided its genus g is neither too large nor less than 2, each map M ∈ O(G) can
be located in Conder’s computer-generated lists of regular or chiral orientable maps in [7].
Each entry there has the form Rg.n or Cg.n respectively, where g denotes the genus, and
n denotes the nth entry in the list of maps of that genus, ordered lexicographically by their
type {p, q}, with p ≤ q. Within each list, each entry refers either to a dual pair of maps of
types {p, q} and {q, p} or to a single self-dual map with p = q. If p < q we will denote
the maps of type {p, q} and {q, p} by Xg.na and Xg.nb respectively, where X is R or C; if
p = q and the entry denotes a non-isomorphic dual pair we will assign the labels Xg.na and
Xg.nb arbitrarily, whereas a single self-dual map will be denoted simply by Xg.n. Similar
conventions will apply to the list of non-orientable regular maps, denoted by Ng.n in [7].

2.1 Some simple examples of graphs O(G)

If G is the alternating group A4 then O(G) contains only the tetrahedral map {3, 3} of
genus 0.

If G is a dihedral group Dm for some m > 2 then O(G) consists of the dual pair of
maps {2,m} and {m, 2} of genus 0, whereas if m = 2, so that G = D2

∼= V4, then O(G)
contains only the self-dual map {2, 2} of genus 0. In either case the operations Hj for j
coprime to m act trivially on O(G).
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If G = S4 then the involution y must be a transposition: the double transpositions lie in
the normal subgroup K ∼= V4 with G/K ∼= S3 non-cyclic, so they cannot be members of
generating pairs. One can take x to be any 3-cycle or 4-cycle not inverted by y, giving the
cube {4, 3} or its dual, the octahedron {3, 4}. The operations Hj act trivially on O(G).

The graphs O(G) corresponding to these groups G are shown in Figure 2.

O(A4) O(Dn), n > 2 O(D2) O(S4)

{3, 3} {2, n} {n, 2} {2, 2} {3, 4} {4, 3}

Figure 2: The graphs O(A4), O(Dn) and O(S4)

If G is the alternating group A5 (also isomorphic to PSL2(4) and PSL2(5)) then O(G)
consists of three maps, namely the dodecahedron {5, 3}, the icosahedron {3, 5} and the
great dodecahedron {5, 5}6 of genus 4 (the self-dual map R4.6 in [7]); duality D transposes
the first two, while H2 transposes the last two, so O(G) is connected (see Figure 3).

{5, 5}6{3, 5}{5, 3}

Figure 3: The graph O(A5)

3 Isotactic polygons
Let M be an orientably regular map of type {p, q}. An isotactic polygon P of type
(d1, d2, . . . , dm)n in M is a closed path in the underlying graph of M formed by suc-
cessively taking the di-th edge at the i-th vertex vi visited, following the local orientation
around vi, using the sequence d1, d2, . . . , dm ∈ Zq repeated n times. We call di the right
degree of P at vi, and l = mn the length of P . By orientable regularity, if such a poly-
gon P exists, then it does so starting at any directed edge in M, since it is equivalent to a
relation

(xd1yxd2y . . . xdmy)n = 1

in the monodromy group G = ⟨x, y⟩ of M.
This concept is a common generalisation of the classical notions of face, Petrie polygon

and hole. In fact,

• an isotactic polygon of type (1)p or (−1)p is the boundary of a p-valent face;

• more generally, an isotactic polygon of type (j)l with j coprime to q is a j-hole of
length l;

• an isotactic polygon of type (1,−1)r/2 is a Petrie polygon of length r (provided this
length is even);

• more generally, an isotactic polygon of type (j,−j)r/2 is a Petrie polygon of order
j, where r is its (even) length.
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These well-known examples of isotactic polygons are distinguished by their roles in
the Petrie and hole operations, but other types also occur in various roles. For example,
hexagons of type (2, 4)3 occur in the polyhedral realisation of Klein’s map K of genus 3
(see Section 7) given by Schulte and Wills in [31]. On the other hand, the heuristic role of
hexagons of type (2, 4, 4)2 is emphasised in the investigation of 7-fold rotational symmetry
of the Fricke–Macbeath map F of genus 7 (see Section 8) in [3, 4]. Moreover, in this map
the 3-holes, together with three suitable triangular faces, form generalised Petersen graphs
of type GP(9, 3) (see Figure 4); the presence of such subgraphs in the underlying graph of
F confirms that this map has no polyhedral embedding in E3 with 9-fold symmetry [4].

Figure 4: A generalized Petersen graph of type GP(9,3) in the Fricke–Macbeath map F of
type {3, 7} and genus 7 (vertex labels correspond to those given in Figure 9 below).

4 Regularity
An orientably regular map M, corresponding to a generating pair x, y of G, is regular if
and only if there is an automorphism α of G inverting x and y, or equivalently inverting
x and centralising y. In this case the full automorphism group AutM is a semidirect
product G ⋊ ⟨α⟩ of G and C2, with α acting as a reflection of M. For example, the maps
in O(G) for G = A4, Dn and S4 are all regular, with AutM ∼= S4, Dn ×C2 and S4 ×C2

respectively.
We will say that a regular map M is inner or outer regular as α is or is not an inner

automorphism, that is, conjugation by some element c ∈ G. If α is inner then c2 is in
the centre Z(G) of G, so if Z(G) = 1 (as is the case with all the groups considered
here, apart from Dn for n even), then c2 = 1 and AutM ∼= G × C2 with αc = αc−1

generating the second direct factor. In this case M has a non-orientable regular quotient
map M = M/C2, of genus g + 1 where M has genus g, with automorphism group G;
then M is the canonical orientable double cover of M.
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It is easy to check that regularity, inner regularity and AutM are preserved by the op-
erations D and Hj , so they are constant throughout each connected component of O(G). In
particular, maps in O(G) with different regularity properties must lie in different connected
components of the graph.

4.1 Non-orientable regular maps

Although the emphasis of this paper is on orientably regular maps M with a given group
Aut+M ∼= G, non-orientable regular maps N with AutN ∼= G will also be detected by
the construction of O(G). (Note that if G has no subgroup of index 2, then every map in
R(G) is non-orientable.) Each such map N has a canonical orientable double cover M,
an inner regular map with AutM ∼= G × Z where Z ∼= C2, and with Aut+M ∼= G, so
that N arises as the central quotient M = M/Z of a map M ∈ O(G).

Conversely, each inner regular map M ∈ O(G) has full automorphism group AutM =
G × Z, with Z ∼= C2 reversing orientation, so it has a non-orientable regular quotient
N = M = M/Z with automorphism group G. This gives a bijection M 7→ N between
the subsets of O×(G) ⊆ O(G) and R−(G) ⊆ R(G) consisting of their inner regular and
non-orientable maps; here N has the same type as M (but half its Petrie length), and has
genus g + 1 if M has genus g. Since this bijection commutes with the operations D and
Hj , it induces an isomorphism O×(G) → R−(G) of directed graphs.

4.2 O(G) for G = S5

The earlier examples were very straightforward, involving familiar maps. This case needs
rather more thought.

If G = S5 then the involution y can be a transposition or a double transposition. In
the first case, there are possible generators x of orders 4, 5 and 6, giving rise to two dual
pairs of regular maps, the dual pair R4.2 of types {4, 5}6 and {5, 4}6 on Bring’s curve of
genus 4 (see [38], for example), and the dual pair R9.16 of types {5, 6}4 and {6, 5}4, with
H2 transposing R4.2a and R9.16b; the component of O(G) containing these four maps is
a path graph, with three edges labelled D,H2, D.

In the second case x, which must be odd, can have order 4 or 6, giving the dual pair
R6.2 of types {4, 6}10 and {6, 4}10, together with the self-dual map R11.5 of type {6, 6}6
(for this last map one can take x = (1, 5, 3)(2, 4), y = (1, 2)(3, 4)); all operations Hj

act trivially on these maps, so the pair R6.2 and the map R11.5 form two more connected
components of O(G). The graph is shown in Figure 5: the vertices are labelled with the
extended types and our extension of the notation in [7] for the corresponding maps. This
example shows that the involution y (or more precisely its orbit under AutG) is insufficient
to characterise a component of O(G).

The maps M ∈ O(G) are all regular, and since Out S5 and Z(S5) are both trivial they
are inner regular, with automorphism group S5 × C2; their non-orientable quotients M,
reading Figure 5 from left to right, are the dual pairs N5.1, N10.4, N7.1 and the self-dual
map N12.3, all with automorphism group S5.

We note that R6.2b occurs first as one of Coxeter’s regular skew polyhedra [10]. It is re-
alised as a subcomplex of the boundary complex of the dual of the 4-polytope t1,2{3, 3, 3}.
Its faces form the faces of 10 equal Archimedean truncated tetrahedra (the facets of the
polytope). The non-identity element of C2 is realised in this case as a central inver-
sion (i.e. reflection in a point) in E4 interchanging two disjoint 10-tuples of hexagons.
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R4.2b R4.2a R9.16b R9.16a R6.2a R6.2b R11.5

{5, 4}6 {4, 5}6 {6, 5}4 {5, 6}4 {4, 6}10 {6, 4}10 {6, 6}6

Figure 5: The graph O(S5).

Two triples of hexagons sharing a hole of length 3 belong to the same such 10-tuples; in
Figure 6 both the hexagonal faces and the triangular holes can clearly be seen.

Figure 6: The combinatorial structure of R6.2b [18], with one hole of length 3 highlighted.

R4.2a goes back even earlier, in fact to Gordan’s work [19]. Both the dual pairs R4.2a,
R4.2b and R6.2a, R6.2b have polyhedral realisations in Euclidean 3-space [32, 33].

5 Hurwitz surfaces, groups and maps

Many of our chosen examples of automorphism groups are Hurwitz groups. This is partly
because these groups exhibit interesting phenomena, and partly because they and their
associated maps and surfaces have been intensively studied. Here we summarise some of
their important properties.
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Hurwitz [23] showed that the automorphism group G = AutS of a compact Riemann
surface S of genus g ≥ 2 has order at most 84(g − 1), attained if and only if S ∼= H/K,
where H is the hyperbolic plane and K is a normal subgroup of finite index in the triangle
group

∆ = ∆(7, 2, 3) = ⟨X,Y, Z | X7 = Y 2 = Z3 = XY Z = 1⟩

with G ∼= ∆/K. Such surfaces and groups attaining this upper bound are called Hurwitz
surfaces and Hurwitz groups. In each case, S carries an orientably regular map M of type
{3, 7}, called a Hurwitz map, with orientation-preserving automorphism group G. This
map is regular if and only if K is normal in the extended triangle group ∆[7, 2, 3] which
contains ∆ with index 2, in which case the full automorphism group of M is isomorphic to
∆[7, 2, 3]/K; this is equivalent to G having an automorphism inverting two of its standard
generators x, y and z. Conder has written some very useful surveys on Hurwitz groups
in [6, 8].

Every Hurwitz group is perfect, since ∆ is, so it is a covering of a non-abelian finite
simple group, which is itself a Hurwitz group. Two important infinite classes of simple
Hurwitz groups are given by the following theorems [30, 5]:

Theorem 5.1 (Macbeath, 1969). The group PSL2(q) is a Hurwitz group if and only if

(1) q = 7, with a unique Hurwitz surface and map, or

(2) q = p for some prime p ≡ ±1 mod (7), with three Hurwitz surfaces and maps for
each q, or

(3) q = p3 for some prime p ≡ ±2 or ±3 mod (7), with one Hurwitz surface and map
for each q.

(Note that here we use the standard group notation, so that q denotes a prime power.)

Theorem 5.2 (Conder, 1980). The alternating group An is a Hurwitz group for each
n ≥ 168.

In [5], Conder also determined which alternating groups of degree n < 168 are Hurwitz
groups; the smallest is A15.

6 Maps with G = PSL2(q)

6.1 Properties of PSL2(q)

Later in this paper we will construct the graphs O(G) for some specific groups G =
PSL2(q). Here we briefly summarise a few of the properties of these groups which we
will need; see [13, Ch. XII] or [22, II.8] for full details.

The group G = PSL2(q) = SL2(q)/{±I}, q = pe, has order q(q2 − 1) or q(q2 − 1)/2
as p = 2 or p > 2. It is simple for all q ≥ 4.

One useful property of G = PSL2(q) is that conjugacy classes of non-identity elements
g ∈ G are determined uniquely by their traces (more precisely, trace-pairs) ±tr(g) ∈ Fq .
For example, the elements of orders 2, 3 and p are the non-identity elements with traces 0,
±1 and ±2 respectively.
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6.2 Consistent choice of y

For any group G, since the generator y is invariant (up to automorphisms) under the opera-
tions D and Hj , it makes sense to use the same element for each map in a given component
of O(G), or even for each map in O(G) when this is possible.

For example, if G = PSL2(q) then all involutions in G are conjugate to

y =

(
0 1
−1 0

)
.

(Here we identify each matrix A ∈ SL2(q) with −A.) With this as y, its zero entries make
it easier to see the traces of words such as xjy and [x, y], and hence to find their orders,
giving the extended types of various maps.

For instance, if y is as above and

x =

(
a b
c d

)
then xy =

(
−b a
−d c

)
, so z = (xy)−1 =

(
c −a
d −b

)
,

with trace ±(c − b). We will call τ = ±(a + d) and τ ′ = ±(c − b) the trace and cotrace
of the element x and of the triple (x, y, z). If this triple generates G then it corresponds to
a map M ∈ O(G) of Schläfli type {p, q}, where the pair consisting of the trace ±(a+ d)
and cotrace ±(c− b) (unique up to the action of GalFq) determine the orders q and p of x
and z and thus the type {p, q} of M, together with its genus

g = 1 +
|G|

2( 12 − 1
p − 1

q )

by the Riemann–Hurwitz formula. We also have

[x, y] = x−1y−1xy = x−1yxy =

(
−b2 − d2 ab+ cd
ab+ cd −a2 − c2

)
with trace σ = ±(a2 + b2 + c2 + d2), giving the Petrie length r (twice the order of [x, y])
and hence the extended type {p, q}r of M.

Once y is chosen, for example as above, all of this data for a map M is uniquely
determined by the generating element x, so instead of working with triples (x, y, z) it is
more efficient to work with the single elements x when applying operations such as D and
Hj .

For example, if τ = ±(a+ d) is the trace of x then

x2 =

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
has trace ±(a2 + 2bc+ d2) = ±(a2 + 2(ad− 1) + d2) = ±(τ2 − 2), and

(x2y)−1 =

(
c(a+ d) −a2 − bc
d2 + bc −b(a+ d)

)
has trace ±(a + d)(c − b) = ±ττ ′, giving the cotrace and hence the type and genus of
H2(M). Similarly, its Petrie length is determined by the trace

±((a2 + bc)2 + (b(a+ d))2 + (c(a+ d))2 + (d2 + bc)2)
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of [x2, y]. Applying H−1 or D is achieved by replacing x with

x−1 =

(
d −b
−c a

)
or z =

(
c −a
d −b

)
.

Of course, these leave r and g invariant, while D transposes p and q.
By an observation of Singerman [35], if G = PSL2(q) then all maps M ∈ O(G) are

regular, so H−1(M) ∼= M and there is no need to apply H−1. However, this allows us, if
we wish, to replace x with

z−1 = xy =

(
−b a
−d c

)
instead of z when applying D.

Of course, many of the above expressions for matrices and traces are a little simpler if
q is a power of 2.

7 G = PSL2(7)

There is a unique Hurwitz surface of genus 3, Klein’s quartic curve (see [27, 28]) given in
projective coordinates by x3

0x1 + x3
1x2 + x3

2x0 = 0. The corresponding Hurwitz map K
of type {3, 7}, Klein’s map (see Figure 1), has orientation-preserving automorphism group
G ∼= PSL2(7) ∼= GL3(2), a simple group of order 168, and has full automorphism group
PGL2(7). This is the map R7.1 in [7], discussed as a polyhedron by Schulte and Wills
in [31].

The non-identity elements of PSL2(7) have trace 0, ±1, ±2 or ±3 as they have order
2, 3, 7 or 4 respectively. For a Hurwitz triple we require x and z to have orders 7 and 3,
that is, τ = ±(a+ d) = ±2, τ ′ = ±(c− b) = ±1 and of course ad− bc = 1, so we may
take a = 1, b = 1, c = 0, d = 1; the resulting generating triple for K is

x =

(
1 1
0 1

)
, y =

(
0 1
−1 0

)
, z =

(
0 −1
1 −1

)
.

Since σ = a2 + b2 + c2 + d2 = 3, [x, y] has order 4, so K has Petrie length 8 and extended
type {3, 7}8.

Squaring x to apply H2, we obtain

x2 =

(
1 2
0 1

)
,

corresponding to the map H2(K), which has extended type {7, 7}6 and genus 19. Squaring
again, we obtain

x4 =

(
1 4
0 1

)
,

corresponding to the map H4(K) = H−3(K) = H3(K) of type {4, 7}8 and genus 10.
Since 23 ≡ 1 mod (7), applying H2 again simply returns us to K.

For D(K), of type {7, 3}8 and genus 3, we can replace x with

z =

(
0 −1
1 −1

)
,



12 Art Discrete Appl. Math. 5 (2022) #P3.01

and for D(H4(K)), of type {7, 4}8 and genus 10, we can replace x4 with(
0 −1
1 3

)
.

However, H2(K) is self-dual, that is, DH2(K) ∼= H2(K); this follows immediately from
the following result:

Proposition 7.1. There is a unique orientably regular map of type {7, 7} with orientation-
preserving automorphism group G ∼= PSL2(7).

Proof. Any such map M corresponds to a generating triple (x, y, z) for G of type (7, 2, 7).
We will use the Frobenius triple-counting formula [17], which states that if X , Y and Z
are conjugacy classes in any finite group G, then the number of triples x ∈ X , y ∈ Y and
z ∈ Z with xyz = 1 is equal to

|X | · |Y| · |Z|
|G|

∑
χ

χ(x)χ(y)χ(z)

χ(1)
, (7.1)

where the sum is over all irreducible complex characters χ of G.
In ATLAS notation [9], the conjugacy classes X , Y and Z of G = PSL2(7) containing

x, y and z are respectively 7A or 7B, 2A, and 7A or 7B. In all cases

|X | · |Y| · |Z|
|G|

=
(23 · 3) · (3 · 7) · (23 · 3)

23 · 3 · 7
= 23 · 32 = 72.

If X ̸= Z then by using the character values in [9] we find that the character sum in (7.1)
is

1 + 2 · (−1) · (−1 + i
√
7)/2 · (−1− i

√
7)/2

3
+

(−1) · 2 · (−1)

6
= 0.

Thus there are no such triples in G and hence there are no corresponding maps. If X = Z =
7A or 7B then the character sum is

1 +
(−1) · ((−1 + i

√
7)/2)2

3
+

(−1) · ((−1− i
√
7)/2)2

3
+

(−1) · 2 · (−1)

6
=

7

3
,

so, adding these contributions, the total number of such triples is

2 · 72 · 7
3
= 336.

These triples all generate G, since no proper subgroup of G has order divisible by 14.
The triples are permuted by AutG = PGL2(7), semi-regularly since only the identity
automorphism can fix a generating set. Since |PGL2(7)| = 336, AutG is transitive on
the triples, so ∆(7, 2, 7) has one normal subgroup with quotient G, and hence there is
one orientably regular map of type {7, 7} with orientation-preserving automorphism group
G.

By the Riemann–Hurwitz formula, the above map M has genus 19. By its uniqueness,
it is regular and self-dual, and is isomorphic to H2(K) and to the map R19.23 of extended
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Figure 7: The map H2(K) of type {7, 7}6 and genus 19. It is trisected, and each part is
represented in the disc model of the hyperbolic plane. A 2-hole is highlighted; this is the
same as the 3-hole in K highlighted in Figure 1.

type {7, 7}6, the only regular orientable map of this genus and type in [7]. This map is
shown in Figure 7.

Our other claims for uniqueness of maps, or enumerations of maps of a given genus and
type, can be proved in a similar way. However, in future we will not give such full details
unless there are special aspects of the calculation which need to be mentioned.

In fact the maps K, D(K), H2(K), H4(K) and DH4(K) are the only maps in O(G).
To see this, note that the face- and vertex-valencies p and q for any such map must be
orders of non-identity elements of G, so they must take the values 2, 3, 4 or 7. Since
p−1 + q−1 < 1/2 the only possible types (up to duality) are {3, 7}, {7, 3}, {4, 7}, {7, 4}
and {7, 7}; as in the case of {7, 7} it can be verified by using the Frobenius triple-counting
formula (or by inspection of [7]) that there is only one map of each type in O(G).

The graph O(G) is therefore as shown in Figure 8, where the actions of D and H2

are represented by undirected broken and directed unbroken edges; that of H3 is given by
reversing the directed edges for H2.
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K D(K)

H2(K)

H4(K)DH4(K)

Figure 8: The graph O(PSL2(7))

In Table 1 we list the maps M ∈ O(PSL2(7)). The first column shows the corresponding
entry in [7], with letters ‘a’ and ‘b’ assigned as explained earlier. The second column gives
the extended type {p, q}r of M, with p, q and r denoting the face- and vertex-valencies and
the Petrie length. The third column shows how M may be obtained from Klein’s map K by
applying duality and hole operations. The final column gives the effect of applying the hole
operation H2 to M; this is left blank if M is unchanged (as when q = 3, for example) or q
is even. Of course, duality D transposes pairs Rg.na and Rg.nb, while leaving maps Rg.n
invariant. Since the graph O(G) is connected, and K is regular with full automorphism
group PGL2(7), the same applies to every map M in O(G). These maps are all outer
regular, so we obtain no non-orientable regular maps with automorphism group G.

Entry in [7] Type Relationship to K H2(M)

R3.1a {3, 7}8 K R19.23
R3.1b {7, 3}8 D(K)
R10.9a {4, 7}8 H4(K) R3.1a
R10.9b {7, 4}8 DH4(K)
R19.23 {7, 7}6 H2(K) R10.9a

Table 1: The maps M in O(PSL2(7)).

Example 7.2. Taking subscripts mod (7) and using regularity, we see that

H3(K) ∼= H−3(K) ∼= H4(K) ∼= H2
2 (K) ∼= R10.9a,

of type {4, 7}; Figure 1 confirms this, showing that the 3-holes of K, giving the faces of
H3(K), have length 4.

8 G = PSL2(8) = SL2(8)

There is a unique Hurwitz surface S of genus 7, described by Fricke [16] in 1899 and
rediscovered by Macbeath [29] in 1965; its automorphism group G, isomorphic to the
simple group PSL2(8) = SL2(8) of order 504, is the orientation-preserving automorphism
group of a regular map F of type {3, 7} on S, the Hurwitz map of genus 7, with full
automorphism group G× C2.
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The combinatorial structure of this map is shown in Figure 9. We note that because of
the large size of the map, this representation is more suitable for studying its geometric
properties, in comparison with the examples in Figures 1 and 7 where Poincaré’s disc
model is used. For other representations, including various topological embeddings by
Carlo Sequin and by Jarke van Wijk, as well as for topological embeddings of regular maps
of large genus given by Polthier and Razafindrazaka, see [3] and the references therein.
For polyhedral realisations of the Hurwitz surface S of genus 7, see [2, 3, 4]. A detailed
summary of all the known polyhedral realizations of regular maps of genus g ≥ 2 can be
found in [4].

Figure 9: Combinatorial scheme of the Hurwitz map F of genus 7 (with vertex labels taken
from [4]). A 3-hole is highlighted.

8.1 The group G

In order to work with this group G, let us represent the field F8 of order 8 as F2[t]/(t
3 +

t+ 1), with its elements represented as polynomials in F2[t] of degree at most 2. Then the
multiplicative group of F8 consists of

t, t2, t3 = t+ 1, t4 = t2 + t, t5 = t2 + t+ 1, t6 = t2 + 1, t7 = 1.

The non-identity elements of G form the following conjugacy classes:

• one class of elements of order 2, with trace 0;

• one class of elements of order 3, with trace 1;

• three classes of elements of order 7, with traces t+ 1, t2 + 1, t2 + t+ 1;

• three classes of elements of order 9, with traces t, t2, t2 + t.

Each class is inverse-closed. The outer automorphism group of G, isomorphic to C3, is
induced by the Galois group of F8 which is generated by the Frobenius automorphism
t 7→ t2. This group permutes the three classes of elements of order 7 in a single cycle, and
likewise for those of order 9.
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Since OutG has odd order, and Z(G) is trivial, all maps in O(G) are inner regular,
with full automorphism group G× C2.

8.2 Construction of O(G)

Since all involutions in G are conjugate, in forming O(G) we can take

y =

(
0 1
−1 0

)
=

(
0 1
1 0

)
,

using the fact that F8 has characteristic 2 to eliminate minus signs. If

x =

(
a b
c d

)
then z =

(
c a
d b

)
,

with the trace τ = a + d and the cotrace τ ′ = b + c giving the type and hence the genus
of M. Also the trace σ = a2 + b2 + c2 + d2 of [x, y] gives its Petrie length and hence its
extended type. Then

x2 =

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
has trace a2 + d2 = τ2, and the trace of

(x2y)−1 =

(
c(a+ d) a2 + bc
d2 + bc b(a+ d)

)
gives the cotrace (a+ d)(b+ c) = ττ ′, giving the type and genus of H2(M). Similarly, its
Petrie length is determined by the trace

(a2 + bc)2 + (b(a+ d))2 + (c(a+ d))2 + (d2 + bc)2

of [x2, y]. Applying H−1 or D is achieved by replacing x with

x−1 =

(
d b
c a

)
or z =

(
c a
d b

)
.

Alternatively, one can replace x with

z−1 = xy =

(
b a
d c

)
instead of z when applying D.

The Frobenius triple-counting formula shows that F is the only map of type {3, 7} in
O(G). For x to correspond to such a map we require ad + bc = 1, a + d = t + 1, t2 + 1
or t2 + t+ 1 and b+ c = 1. Without loss of generality we can use the solution

a = t, b = 1, c = 0, d = t2 + 1,
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so that F is represented by the matrix

x =

(
t 1
0 t2 + 1

)
with trace τ = t2 + t + 1 and cotrace τ ′ = 1, confirming that the type is {3, 7} and the
genus is 7. Moreover, since σ = t2+12+02+(t2+1)2 = t, the Petrie length is 18, so the
extended type is {3, 7}18. This is therefore the map R7.1a in [7]. The dual map D(F) =
R7.1b of extended type {7, 3}18 is represented by the matrix

z =

(
0 t

t2 + 1 1

)
.

The map H2(F) is represented by the matrix(
t2 t2 + t+ 1
0 t2 + t+ 1

)
with trace τ2 = t+1, cotrace ττ ′ = t2+ t+1 and sum of squares t2+ t, so it has extended
type {7, 7}18 and genus 55. It must therefore be one of the dual pair R55.32 in [7]; we will
denote it by R55.32a, and its dual map DH2(F), corresponding to the matrix(

0 t2

t2 + t+ 1 t2 + t+ 1

)
and also of type {7, 7}18, by R55.32b. (See Proposition 8.1 for a proof that there are just
two maps of type {7, 7} in O(G); the fact that the matrix x2 for H2(F) has distinct trace
and cotrace shows that they are not self-dual.)

Iterating this process, we find that H2
2 (F) = H4(F) = H3(F) is represented by the

matrix (
t2 + t t
0 t+ 1

)
with trace t2 + 1, cotrace t and sum of squares t2 + 1, so it has extended type {9, 7}14 and
genus 63. It is therefore either R63.6b or R63.7b, since R63.6 and R63.7 are the only entries
of this genus and extended type in [7]. One can verify that it is R63.7b by checking that the
matrices x (given above) and z corresponding to this map satisfy the defining relations for
the full automorphism group of R63.7 given in [7], but not those for R63.6. Specifically,
the defining relations for R63.7, with generators R and S corresponding to our x and z,
and a third orientation-reversing generator T inverting them both, are given as

R−7 = S−9 = (RS)2 = (S−1R)3 = (RS−3R2)2 = 1,

T 2 = (RT )2 = (ST )2 = 1.

One can check that the matrices

x =

(
t2 + t t
0 t+ 1

)
and z =

(
0 t2 + t

t+ 1 t

)
corresponding to H3(F) satisfy these relations when substituted for R and S.
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For example,

z−1x =

(
t t2 + t

t+ 1 0

)(
t2 + t t
0 t+ 1

)
=

(
t2 + t+ 1 t2 + 1

1 t2 + t

)
has trace 1, so (z−1x)3 = 1. On the other hand, the relations for R65.6 include (RS−2R)2 =
1, and since

xz−2x =

(
t2 + 1 t
t2 + t t2 + t+ 1

)
has trace t ̸= 0 we have (xz−2x)2 ̸= 1. Thus H3(F) is R63.7b.

Proposition 8.1. There are two orientably regular maps of type {7, 7} with orientation-
preserving automorphism group G = SL2(8). They form a dual pair.

Proof. We will use the Frobenius triple-counting formula (7.1), as in the proof of Propo-
sition 7.1, to count triples of type (7, 2, 7) in G. There are three choices for the conjugacy
classes X , Z of elements of order 7 in G, each containing 23 · 32 elements, and one class
Y of 32 · 7 involutions. Using the character values in [9], we find that for each of the six
choices of X ̸= Z the number of triples (x, y, z) of type (7, 2, 7) in G, with x ∈ X and
z ∈ Z , is

(23 · 32) · (32 · 7) · (23 · 32)
23 · 32 · 7

1 +
1

9

2∑
j=0

(ζ2
j

+ ζ−2j )(ζ2
j+1

+ ζ−2j+1

)


=

(23 · 32) · (32 · 7) · (23 · 32)
23 · 32 · 7

· 7
9
= 23 · 32 · 7,

where ζ = exp(2πi/7), so the total number of such triples is

24 · 33 · 7 = 2|AutG|.

These triples all generate G, since no maximal subgroup of G contains such a triple with
non-conjugate x and z, so there are two corresponding maps.

There are also three choices of classes X = Z , and the total number of corresponding
triples in G is

3 · (2
3 · 32) · (32 · 7) · (23 · 32)

23 · 32 · 7

1 +
1

9

2∑
j=0

(ζ2
j

+ ζ−2j )2


= 3 · (2

3 · 32) · (32 · 7) · (23 · 32)
23 · 32 · 7

· 14
9

= 24 · 33 · 7.

Now G has nine Sylow 2-subgroups T , each with normaliser NG(T ) ∼= AGL1(8) ∼=
V8⋊C7 generated by 48·7 triples of type (7, 2, 7), all with conjugate x and z (see Section 10
for details). Since

9 · 48 · 7 = 24 · 33 · 7,

these account for all the triples of type (7, 2, 7) in G with x and z conjugate; thus no such
triples generate G, so they do not correspond to maps in O(G).
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We have shown that there are two maps of type {7, 7} in O(G). One map corresponds
to the pair (t+1, t2+1) of traces for x and z, together with its Galois conjugates (t2+1, t2+
t+1) and (t2+ t+1, t+1), while the other map corresponds to the pairs (t+1, t2+ t+1),
(t2 + 1, t+ 1) and (t2 + t+ 1, t2 + 1). Since the first three pairs differ from the last three
by transposition of x and z, these two maps form a dual pair.

8.3 Summary of results for O(G)

Continuing in this way, using a similar criterion to identify the other maps of extended type
{9, 7}14 or {7, 9}14, one eventually finds that there are fourteen maps M ∈ O(G); they
are described in Table 2, where the first four columns are analogues of those in Table 1 for
PSL2(7), with the Fricke–Macbeath map F replacing Klein’s map K. The final column
gives the entries in [7] corresponding to the non-orientable quotients M/C2 by the centre
C2 of the full automorphism group G× C2 of M (see Section 8.4).

Entry in [7] Type Relationship to F H2(M) M/C2

R7.1a {3, 7}18 F R55.32a N8.1a
R7.1b {7, 3}18 D(F) N8.1b
R15.1a {3, 9}14 H2DH3(F) R71.15a N16.1a
R15.1b {9, 3}14 DH2DH3(F) N16.1b
R55.32a {7, 7}18 H2(F) R63.7b N56.5a
R55.32b {7, 7}18 DH2(F) R63.5b N56.5b
R63.5a {7, 9}6 DH2DH2(F) R71.15b N64.3a
R63.5b {9, 7}6 H2DH2(F) R63.6b N64.3b
R63.6a {7, 9}14 DH3DH2(F) R63.5a N64.4a
R63.6b {9, 7}14 H3DH2(F) R55.32b N64.4b
R63.7a {7, 9}14 DH3(F) R15.1a N64.5a
R63.7b {9, 7}14 H3(F) = H2

2 (F) R7.1a N64.5b
R71.15a {9, 9}18 H4DH3(F) R63.7a N72.9a
R71.15b {9, 9}18 DH4DH3(F) R63.6a N72.9b

Table 2: The maps in O(SL2(8)).

R7.1b R7.1a R63.7b R63.7a R15.1a R15.1b

R55.32a

R55.32b

R71.15a

R71.15b

R63.5b R63.6a
R63.6b R63.5a

Figure 10: The graph O(SL2(8)), with names of maps.
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Figure 10 shows the graph O(G), with broken and unbroken edges representing the
actions of D and H2. The bilateral symmetry reveals an interesting duality between the
parameters 7 and 9 appearing in the types of the maps in O(G) (see Figure 11). However,
this does not extend consistently to the Petrie lengths: for example, R7.1b of extended type
{7, 3}18 is paired with R15.1b of extended type {9, 3}14, whereas R63.7b, of extended type
{9, 7}14, is paired with R63.7a, of extended type {7, 9}14.

{7, 3}18 {3, 7}18 {9, 7}14 {7, 9}14 {3, 9}14 {9, 3}14

{7, 7}18

{7, 7}18

{9, 9}18

{9, 9}18

{9, 7}6 {7, 9}14
{9, 7}14 {7, 9}6

Figure 11: The graph O(SL2(8)), with types of maps.

Example 8.2. H3(F) = H2
2 (F) ∼= R63.7b, of type {9, 7}; this is confirmed by Figure 9,

which shows that the 3-holes of F have length 4 + 5 = 9.

Note that for this group G an operation Hj with gcd(j, q) > 1 also transforms some
maps in O(G) into others in O(G), namely H3 for maps with q = 9, since one can check
that if x9 = 1 and ⟨x, y⟩ = G then ⟨x3, y⟩ = G also. However, since O(G) is already
connected, adding the resulting extra directed edges to the graph would not change its
connectivity properties.

8.4 Non-orientable quotients

Each map M ∈ O(G) is inner regular, with full automorphism group G× C2: this is true
for M = F since the corresponding generators x and y are both inverted by the matrix(

t+ 1 t
t t+ 1

)
∈ G;

now the graph O(G) is connected, and AutM is preserved by D and Hj , so it is true for
all M ∈ O(G). Since G, being simple, has no subgroups of index 2, every map in R(G)
is non-orientable, so as explained in Section 4.1, we obtain an isomorphism O(G) →
R(G),M 7→ N = M/C2 of directed graphs. Using their extended types to identify the
maps N in the list of non-orientable regular maps in [7] gives the final column of Table 2.

9 Some other Hurwitz groups
We have seen that if G = PSL2(7) or SL2(8) then O(G) is connected, consisting of maps
which are respectively all outer or all inner regular, with automorphism groups isomorphic
to PGL2(7) or SL2(8)× C2.
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In fact, a group G can have both inner and outer regular maps in O(G), necessarily in
different components. For instance, if G = PSL2(13) then O(G) contains three regular
Hurwitz maps R14.1, R14.2 and R14.3, of genus 14 and extended types {3, 7}12, {3, 7}26
and {3, 7}14. Calculations similar to those given earlier show that R14.2 is inner regu-
lar, with automorphism group G × C2 and non-orientable regular quotient N15.1 of type
{3, 7}13, while the other two maps are outer regular, with automorphism group PGL2(13).
This is interesting because, as shown by Streit [37], for each prime p ≡ ±1 mod (7) the
three Hurwitz dessins in O(PSL2(p)) are Galois conjugate, under the Galois group C3 of
the real cyclotomic field Q(cos 2πi/7), so although the orientation-preserving automor-
phism group of a dessin is a Galois invariant, the full automorphism group is not.

More generally, Wendy Hall [21] has shown that a Hurwitz map M with Aut+M ∼=
PSL2(q) is inner regular if and only if 3− τ2 is a square in Fq , where τ is the trace of the
canonical generator x of order 7. For primes q = p ≡ ±1 mod (7), where there are three
Hurwitz maps, her examples p = 167, 13, 43 and 181 show that none, one, two or all three
of them can be inner regular.

In order to realise alternating groups An as Hurwitz groups (Theorem 5.2), Conder [5]
constructed a sequence of planar maps Mn of type {7, 3} which have Hurwitz maps Hn

with Aut+Hn
∼= An as orientably regular covers. (Each Mn is presented as a coset

diagram for a subgroup An−1 < An = ⟨x, y⟩, but by shrinking the triangles for x to points
it can be interpreted as a cubic map with monodromy group An.) The maps Hn are all outer
regular: indeed, the bilateral symmetry in the construction of the maps Mn was designed
to show that each map Hn has full automorphism group Sn.

Example 9.1. Among the alternating groups, the smallest Hurwitz group is A15. There
are three Hurwitz maps H with Aut+H ∼= A15. Instead of drawing them (they have genus
7 783 776 001), we show their planar quotients M = H/A14 in Figure 12. On the left is
the map M15, corresponding to Conder’s diagram B from his set of basic coset diagrams
A, . . . , N in [5]; it is covered by the outer regular Hurwitz map H15. The other two maps
are covered by a chiral pair of Hurwitz maps H.

Figure 12: Three maps of type {7, 3} with monodromy group A15.

By contrast, the simple Ree groups Re(q) = 2G2(q) (q = 3e for odd e ≥ 3) are also
Hurwitz groups, but as shown in [25] the Hurwitz maps associated with them are all chiral
(the generator x of order 3 is not inverted by any automorphism). In the next section we
will consider a more straightforward example of this last phenomenon, but this time not
involving Hurwitz maps.
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10 AGL1(q), q = 2e

In this section, instead of considering individual groups such as PSL2(7) and SL2(8), we
will consider an infinite family of groups G for which O(G) exhibits uniform behaviour.

Let G be the 1-dimensional affine group AGL1(q) for q = 2e, consisting of the affine
transformations

t 7→ at+ b, (a, b ∈ Fq, a ̸= 0)

of the field Fq . This is a semidirect product T⋊S of an elementary abelian normal subgroup

T ∼= (Fq,+) ∼= Vq = (C2)
e

consisting of the translations t 7→ t+ b, by a complement

S ∼= (F∗
q ,×) ∼= Cq−1,

consisting of the transformations t 7→ at, a ̸= 0. To avoid trivial cases, we will assume
from now on that e ≥ 2. (Note that these groups G, being solvable, are not perfect, so they
are not Hurwitz groups.)

Theorem 10.1. (a) If e > 2 there are ϕ(q − 1)/e maps in M ∈ O(G), all of extended
type {q − 1, q − 1}4 and genus (q − 1)(q − 4)/4; they are all chiral, and satisfy
D(M) ∼= H−1(M) and H2(M) ∼= M.

(b) If e = 2 there is a single map M ∈ O(G), the tetrahedral map {3, 3} of genus 0,
which is outer regular with AutM ∼= AΓL1(4) ∼= S4.

(c) For each e ≥ 2 the graph O(G) is connected.

Proof. The q − 1 involutions in T are all conjugate in G, and the remaining non-identity
elements, all of order dividing q−1, form q−2 conjugacy classes of size q (the non-identity
cosets of T in G). These fuse into (q − 2)/e orbits of size qe under the action of

AutG = AΓL1(q) ∼= G⋊GalFq
∼= G⋊ Ce.

Any map M ∈ O(G) corresponds to a generating triple (x, y, z) for G, where y has
order 2 and xT generates G/T . There are ϕ(q − 1)q choices for x and q − 1 choices for
y, giving ϕ(q − 1)q(q − 1) = ϕ(q − 1)|AutG|/e triples, so there are ϕ(q − 1)/e maps
M in O(G). Since x and z have order q − 1 these maps have type {q − 1, q − 1} and
hence have genus (q− 1)(q− 4)/4. Since [x, y] is a non-identity element of T it has order
2, so the Petrie length is 4. In particular, if e = 2 there is a single map M ∈ O(G); this
is the tetrahedral map {3, 3}, which is outer regular with AutM ∼= AΓL1(4) ∼= S4. If
e > 2 then no element of GalFq inverts F∗

q , so the maps M ∈ O(G) are all chiral; since
z is conjugate to x−1 they satisfy D(M) ∼= H−1(M). Since x 7→ x2 is an automorphism
of Fq they are all invariant under H2. Since any two generators of S are powers of each
other, any two maps M,M′ ∈ O(G) satisfy M′ = Hj(M) for some j coprime to q − 1,
so O(G) is connected. (It is, in fact, a quotient of a Cayley graph for the group of units
Uq−1.)

The involutions in G all lie in the proper subgroup T , so R(G) is empty. These maps
M are instances of the orientably regular embeddings of complete graphs Kq constructed
by Biggs in [1], where he showed that Kq has such an embedding if and only if q is a prime
power; see [24] for the classification of such maps.
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10.1 Examples

The maps M arising for e = 3 are the chiral pair of Edmonds maps of type {7, 7}4,
corresponding to the entry C7.2 in [7]; these both lie on the Fricke–Macbeath surface S of
genus 7 realising the Hurwitz group SL2(8). The affine group AutM ∼= AGL1(8) is a
subgroup of index 9 in AutS = Aut+F ∼= SL2(8): it is the stabiliser of ∞ in the natural
representation of SL2(8) on the projective line P1(F8), and also the normaliser of a Sylow
2-subgroup. This inclusion lifts to an index 9 inclusion ∆(7, 2, 7) < ∆ = ∆(7, 2, 3) of
triangle groups, namely item (B) in Singerman’s list of triangle group inclusions [34].

For e = 4 we have the chiral pair C45.2 of type {15, 15}2, and for e = 5 we have the
three chiral pairs C217.45–47 of type {31, 31}4. The index 9 inclusions of automorphism
groups and triangle groups mentioned above for e = 3 do not generalise to higher powers
of 2.

When e = 5, if we take a to be a generator of F∗
32 = ⟨a | a31 = 1⟩ ∼= C31, then the

chiral pairs of maps M±i (i = 1, 3, 5) correspond to the following mutually inverse pairs
of orbits Ω±i of GalF32 = ⟨t 7→ t2⟩ ∼= C5 on F∗

32:

Ω1 = {ai | i = 1, 2, 4, 8, 16}, Ω−1 = {ai | i = 15, 30 ≡ −1, 29, 27, 23};

Ω3 = {ai | i = 3, 6, 12, 24, 17}, Ω−3 = {ai | i = 7, 14, 28 ≡ −3, 25, 19};
Ω5 = {ai | i = 5, 10, 20, 9, 18}, Ω−5 = {ai | i = 11, 22, 13, 26 ≡ −5, 21}.

Then D(Mi) = H−1(Mi) = M−i and H2(Mi) = Mi for all i, while H3 induces
a 6-cycle (1, 3, 5,−1,−3,−5) on the subscripts i. The graph O(AGL1(32)) is shown
in Figure 13, with directed edges representing the action of H3, and undirected dashed
and dotted edges the actions of D and H−1. The identification of these maps with the
entries C217.45–47 in [7] depends on the choice of a, or more precisely that of its minimal
polynomial in the action on the additive group of F32, one of the six irreducible factors of
the cyclotomic polynomial Φ31(t) = t30 + t29 + · · ·+ t+ 1 in F2[t] (see [24]).

M1

M3

M5M−1

M−3

M−5

Figure 13: The graph O(AGL1(32))

11 Groups G for which O(G) has many components
In contrast with the groups G = AGL1(2

e), for which O(G) is connected for all e, we
will now consider some families of groups G for which O(G) has an unbounded number
of connected components.
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The map operations D and Hj on orientably regular maps preserve the involution y ∈ G
in generating triples, up to the action of AutG, so if AutG has i = i(G) orbits on useful
involutions y ∈ G, where ‘useful’ means ‘member of a generating pair for G’, then the
number c = c(G) of connected components of O(G) satisfies c ≥ i. The example G = S5,
with i = 2 but c = 3 (see Section 4.2), shows that c can exceed i; the following example
shows that both can be arbitrarily large.

Lemma 11.1. If G = Sn with n ≥ 5 then each involution y ∈ G is useful.

Proof. It is sufficient to show that at least one involution in each conjugacy class of G is
useful. The result is straightforward if y is a transposition (i, j), since one can then take
x to be an n-cycle with ix = j, so we may assume that y consists of t transpositions and
n− 2t fixed points for some t ≥ 2.

First we will deal with the case n ≥ 8. Let m = ⌊n/2⌋, so that m > 3. By the
Bertrand–Chebyshev Theorem (see [36], for example) there is a prime p such that m <
p < 2m − 2, so n/2 < p ≤ n − 3. Let us take x to have cycles of length p and n − p if
n is odd, and p, n − p − 1 and 1 if n is even, so that x is odd in either case. Now x has at
most three cycles, so given any t ≥ 2 we can choose the involution y, which moves 2t ≥ 4
points, so that H := ⟨x, y⟩ is transitive. It follows that H must be primitive, for otherwise
H is contained in a wreath product Sa ≀Sb for some proper factorisation n = ab of n, which
is impossible since x has order divisible by p whereas Sa ≀ Sb has order (a!)bb! coprime to
p. Thus H is a primitive group containing a p-cycle (a suitable power of x) with n− p ≥ 3
fixed points, so by a classic theorem of Jordan (see [39, Theorem 13.9]) H ≥ An. Since H
contains the odd permutation x we must have H = Sn, as required.

The case n = 5 was considered in Section 4.2, while the cases n = 6 and n = 7 can
easily be dealt with by hand or by using GAP.

The restriction n ≥ 5 is required in this lemma: see Section 2.1.

Corollary 11.2. For each m ∈ N there exists Nm ∈ N such that if n ≥ Nm then O(Sn)
has at least m connected components.

Proof. By Lemma 11.1 the involutions in G = Sn are all useful for n ≥ 5. They have
⌊n/2⌋ possible cycle-structures, so if n ̸= 6 then AutG (= G) has ⌊n/2⌋ orbits on them.
Thus O(G) has c(G) ≥ i(G) = ⌊n/2⌋ connected components for all n ≥ 7. We may
therefore take Nm = max{2m, 7}.

By adapting Conder’s proof in [5] of Theorem 5.2 one can also prove:

Theorem 11.3. For each m ∈ N there exists N ′
m ∈ N such that if n ≥ N ′

m then O(An)
has at least m connected components containing Hurwitz maps.

Outline of proof. In [5] Conder proved that An is a Hurwitz group for each n ≥ 168 (and
also for some smaller n) by constructing coset diagrams for subgroups of index n in ∆,
and showing that the induced permutation group on the cosets is An. These diagrams are
constructed by joining copies of 14 basic cosets diagrams A,B, . . . , N of degrees between
14 and 108. An i-handle in a coset diagram for ∆ is a pair (a, b) of fixed points of y with
a = bzi, where i = 1, 2 or 3. (In this paper we have transposed Conder’s notation in [5] for
the generators x and y of ∆.) Two coset diagrams of degrees d and d′ with i-handles (a, b)
and (a′, b′) can be joined by an i-join to create a diagram of degree d + d′ by replacing a
and a′ with a transposition (a, a′) for y, and similarly for b and b′.
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Conder’s construction (simplified a little here) is as follows. His diagram G of degree
42 has three 1-handles. First use (1)-joins to form a chain of k copies of G for some k ≥ 1.
For each of the 42 congruence classes [c] = [0], . . . [41] mod (42), join two specified
combinations of basic diagrams, of total degree dc ≡ c mod (42), to the ends of the chain,
to give a coset diagram of degree n = 42k+ dc ≡ c mod (42). By taking k = 1, 2, . . . this
realises An for each sufficiently large n ∈ [c] as a quotient of ∆ and hence as a Hurwitz
group.

Each of the k copies of G in the chain has an unused (1)-handle, giving two fixed
points of y. By using these to make i further joins, for any i ≤ ⌊k/2⌋, one can reduce
the total number of fixed points of y by 4i; this does not change the fact that the resulting
permutation group is An since Conder’s proof of this still applies. We thus obtain ⌊k/2⌋+1
Hurwitz maps in O(An), with mutually distinct cycle-structures for y and hence in distinct
components of this graph. Taking k sufficiently large proves the result. □

12 The order of O(G)

One obvious problem which we have not yet addressed is to determine |O(G)| for any
finite group G; however, a method for solving this is already known. The maps in O(G)
correspond bijectively to the orbits of AutG on generating pairs x, y for G satisfying
y2 = 1. Since AutG acts semiregularly (i.e. fixed-point-freely) on all generating sets
for G, we have

|O(G)| = ϕ(G)/|AutG|,

where ϕ(G) is the number of such generating pairs x, y for G. If σ(G) denotes the total
number of pairs x, y ∈ G with y2 = 1, then by applying Philip Hall’s technique of Möbius
inversion in groups [20] to the obvious equation σ(G) =

∑
H≤G ϕ(H) we obtain

ϕ(G) =
∑
H≤G

µ(H)σ(H), (12.1)

where µ is the Möbius function for the subgroup lattice of G, defined by

µ(G) = 1 and
∑
K≥H

µ(K) = 0 for all H < G.

This applies to generating sets satisfying any given set of relations, but in our case, with
y2 = 1 the only relation, we have

σ(H) = |H|(|H|2 + 1),

where |H|2 is the number of involutions in H .
In [20] Hall determined the function µ for many groups, including PSL2(p) for primes

p. Downs [14] extended this to PSL2(q) for prime powers q = pe. Their results for
p > 2 are complicated but |O(PSL2(13))| = 33 is a simple example. If q = 2e then
|AutG| = e|G| and as in [15] we have

|O(G)| = 1

e

∑
f |e

µ

(
e

f

)
(2f − 1)(2f − 2),
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where µ now denotes the Möbius function of elementary number theory (see Sections 2.1
and 8 for the cases e = 2 and e = 3). For any q the sum in (12.1) is dominated by the
summand with H = G, so that for G = PSL2(q) we have

|O(G)| ∼ |G|(|G|2 + 1)

|AutG|
∼ q2

e
or

q2

4e
as q → ∞,

where q is respectively even or odd.
We close with a question: if G = PSL2(q), how does the number c(G) of connected

components of O(G) behave as q → ∞?
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