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Evaluating a patient risk-classification tool within a simulation: 1 

Poisson regression for generating patient characteristic combinations 2 

Health service providers must balance the needs of high-risk patients who require urgent 3 

medical attention against those of lower-risk patients who require reassurance or less 4 

urgent medical care. Based on their characteristics, we developed a tool to classify 5 

patients as low- or high-risk, with correspondingly different patient pathways through a 6 

service. Rather than choosing the threshold between low- and high-risk patients solely 7 

considering classification accuracy, we demonstrate the use of discrete-event simulation 8 

to find the best threshold from an operational perspective as well. Moreover, the 9 

predictors in classification tools are often categorical, and may be inter-dependent. 10 

Defining joint distributions of these variables from empirical data assumes that missing 11 

combinations are impossible. Our new approach involves using Poisson regression to 12 

estimate the joint distributions in the underlying population. We demonstrate our methods 13 

on a practical example: setting the threshold between low- and high-risk patients with 14 

proposed different pathways through a breast diagnostic clinic.  15 

Keywords: simulation; health services; risk; credit scoring; regression 16 

1. Introduction  17 

Healthcare budgets constantly have to address the increased demand for the array of 18 

diagnostic tests and treatments for patients with cancer because the successes of 19 

research and development in care and diagnostics have led to more people living longer. 20 

Health service providers must balance the needs of high-risk patients who require 21 

urgent medical attention against those of lower-risk patients who require reassurance or 22 

less urgent medical care. Classification methods, for example logistic regression or 23 

decision trees, can be used to predict whether a patient is at low or high risk of a 24 

disease. Then these patients can be routed along low- or high-risk pathways through 25 

health services, recognising the different needs of these two patient groups. 26 

When using these classification methods, managers must choose where to set the 27 

threshold between low- and high-risk patients. Solely basing this decision on 28 

classification accuracy (for example sensitivity or specificity measures), neglects the 29 

operational impact of implementing risk-based pathways (for example waiting times or 30 

resource use). In this paper, we propose using discrete-event simulation, in addition to 31 
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estimating classification accuracy, to help choose the threshold that provides the best 1 

results from an operational perspective. 2 

When evaluating risk-based patient management strategies in discrete-event simulation 3 

models, the way in which patient characteristics are modelled requires careful 4 

consideration. Patient characteristics affect not only the patient’s risk group, but also the 5 

patient’s route through the simulation, as well as potentially their priority in queues and 6 

service times. Patient characteristics are often categorical and inter-dependent. Some 7 

possible combinations of characteristics may not appear in a data sample, but may exist 8 

in the wider population. We propose an approach using Poisson loglinear (regression) 9 

models for generating combinations of dependent categorical characteristics, allowing 10 

generation of missing combinations.   11 

We demonstrate our approach with a case study of a breast diagnostic clinic. The 12 

classification tools developed, in this case logistic regression scorecards, are built from 13 

data extracted from forms completed by general practitioners (GPs) referring patients to 14 

the clinic. Currently all patients follow the same pathway through the clinic; we 15 

investigate a proposal for patients classified as being at high risk of an abnormal result, 16 

and thus needing diagnostic tests, to take a different pathway from low-risk patients. 17 

Our method evaluates the classification tools in a simulation which routes patients along 18 

low- and high-risk pathways through the clinic. Our aim is to find appropriate threshold 19 

risk scores (cut-off scores) above which patients should be considered high-risk. As this 20 

is a preliminary study, with data from a limited number (n=179) of patients, not all the 21 

possible combinations of patient characteristics are present in the data. We therefore use 22 

our method of Poisson regression to generate combinations of characteristics within the 23 

simulation. We compare results in terms of clinic efficiency (proportion of time spent in 24 

consultations or tests) and patients’ total time at the clinic. 25 

Although many researchers have applied operational research techniques to cancer care, 26 

operational research studies addressing cancer diagnostic services are rare (Saville, 27 

Smith, & Bijak, 2019), aside from tools for predicting cancer risk. Also, limited 28 

research spans both primary and secondary cancer care services (Saville et al., ibid). 29 

The main contributions of this paper from a theoretical and practical perspective are 30 
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• Combining classification and discrete-event simulation to find the best result 1 

considering both predictive accuracy and operational performance 2 

• Poisson regression for modelling combinations of characteristics that do not 3 

necessarily appear in the sample 4 

• Showing how GP referral information can be used to triage patients while still 5 

giving all patients the chance to have tests if a clinician decides they are needed  6 

The paper proceeds as follows. In Section 2, we present a brief overview of relevant 7 

literature. In Section 3 we describe the healthcare background and the case study 8 

setting. Section 4 details the approach used, including the development of the logistic 9 

regression scorecards, a description of the simulation model and our method for 10 

generating patient labels for simulation. In Section 5, we present the classification 11 

accuracy and operational performance of different cut-off scores. In Section 6, we 12 

discuss the contributions and limitations of the study, with future research directions. 13 

The conclusion is given in Section 7. 14 

2. Literature review  15 

Over the last two decades, several authors have combined patient classification 16 

techniques with discrete-event simulation (Bhattacharjee & Ray, 2016; Cannon et al., 17 

2013; Harper et al., 2003; Harper, 2002; Huang & Hanauer, 2016). Some of these 18 

researchers used classification to model patient pathways accurately, by generating 19 

groups of similar patients as simulation inputs (Harper, 2002) or predicting the 20 

occurrence of health-related events during the simulation (Cannon et al., 2013; Harper 21 

et al., 2003). On the other hand, Bhattacharjee & Ray (2016) classified patients using a 22 

Classification and Regression Tree and then used discrete-event simulation to evaluate 23 

the potential impact of sequencing appointments based on the patient classes. Huang & 24 

Hanauer (2016) present a series of logistic regression models to predict no-shows. Each 25 

model contains information about one more prior attendance, and can be used to decide 26 

to what extent to overbook appointments. Here, discrete-event simulation was used to 27 

evaluate the cost (waiting time plus overtime plus idle time) per patient for these 28 

different models, and so to decide how many prior attendance variables should be 29 

included. Unlike these papers, we describe how discrete-event simulation can help 30 
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choose the threshold score above which patients should be classified as high-risk.  1 

 Another relevant body of literature relates to setting thresholds in classification 2 

algorithms when there are asymmetric costs (Pazzani et al., 1994, Zhao, 2008). This is 3 

the case when misclassifying is worse in one direction than the other, so sensitivity may 4 

be more important than specificity or vice versa. Many papers have built classification 5 

models for predicting breast cancer, for example ((Ayer, Chhatwal, Alagoz, & Al, 2010; 6 

Mangasarian, Street, & Wolberg, 1995; Pendharkar, Rodger, Yaverbaum, Herman, & 7 

Benner, 1999). Unlike these, we are using classification models for predicting any kind 8 

of abnormal result, including but not limited to cancer, from imperfect information (GP 9 

referrals). This is to help with identifying which patients are likely to need imaging 10 

tests. In our context, the cost of a missed abnormal result is also not as extreme as 11 

missing a cancer case – these misclassified patients are sent to see a clinician who is 12 

still able to send the patient for imaging tests (as today). 13 

In simulation models of pathways through healthcare services, researchers have 14 

modelled patient characteristics in three main ways (sometimes in combination). One 15 

way is grouping patients with similar characteristics, either by specifying the probability 16 

of belonging to each group (Bayer, Petsoulas, Cox, Honeyman, & Barlow, 2010; 17 

Chemweno, Thijs, Pintelon, & van Horenbeek, 2014; Crawford, Parikh, Kong, & 18 

Thakar, 2014), or by using group-specific arrival rates (Cooper, Davies, Roderick, 19 

Chase, & Raftery, 2002; Gillespie et al., 2016; Monks et al., 2016). The relative 20 

numbers of patients in each group are sometimes based on expert opinion (Chemweno 21 

et al., 2014) or assumed to be the same as in data samples (Cooper et al., 2002; 22 

Crawford et al., 2014). When the choice of groups is not obvious, patient data can be 23 

analysed to find appropriate groups, for example Gillespie et al. (2016) group patients 24 

with similar lengths of stay using Kaplan-Meier and log-rank tests. Elsewhere, different 25 

clustering (Ceglowski, Churilov, & Wasserthiel, 2006; Isken & Rajagopalan, 2002) and 26 

classification (Harper, 2002) techniques have been used to group similar patients. These 27 

approaches provide insufficiently detailed characteristics for our situation. 28 

A second way of modelling patient characteristics is inputting empirical data, either by 29 

putting each real patient’s information directly into the discrete-event simulation 30 

(Eatock, Clarke, Picton, & Young, 2011; Khanna, Sier, Boyle, & Zeitz, 2016), 31 

bootstrapping (Lord et al., 2013) or generating copies of each patient's set of 32 
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characteristics to compare different treatment strategies on the same cohort (Revankar et 1 

al., 2014). The drawback of directly using empirical data is that it only includes those 2 

patients seen in reality. This approach is therefore most suitable when the data sample is 3 

deemed large enough to closely resemble the underlying population.  4 

A third approach to this problem is using statistical distributions, either assuming 5 

independence between characteristics (Burr et al., 2012; Crane, Kymes, Hiller, Casson, 6 

& Karnon, 2013; Tran-Duy et al., 2014), or relationships between some characteristics 7 

(Cooper et al., 2002; Lord et al., 2013; Pilgrim et al., 2008; Vataire et al., 2014; Wang et 8 

al., 2017). These papers either use the empirical conditional distributions present in their 9 

data or make assumptions about the relationships when data are unavailable. Using the 10 

empirical conditional distribution relies on the relationships present in the sample being 11 

representative of the wider population; combinations of characteristics not present in the 12 

sample will not be simulated. In contrast, we propose an approach for generating 13 

combinations of dependent, categorical characteristics, where combinations not present 14 

in the data sample may be simulated. 15 

3. Healthcare background and case study 16 

Breast cancer is the most common cancer in the UK, making up 15% of new cancer 17 

cases, with 99% of cases affecting women (Cancer Research UK, 2016b). Survival is 18 

improving, with 85% of women diagnosed in England and Wales surviving the disease 19 

for at least five years. However, the stage at which a cancer is detected greatly impacts 20 

chances of survival, with only 26% of women with final stage disease surviving beyond 21 

5 years (Cancer Research UK, 2018).  22 

The most common route to breast cancer diagnosis is via referral by a General 23 

Practitioner (GP) to a specialist diagnostic clinic, accounting for 60% of diagnoses 24 

(Cancer Research UK, 2016a). These clinics are under strain; the covid-19 pandemic 25 

has caused a backlog for cancer diagnostic services (Hanna, Aggarwal, Booth, & 26 

Sullivan, 2020). 27 

Currently, diagnostic clinics are organised as follows. A two-week wait target between 28 

when a patient is referred and their attendance in clinic (Keogh, 2009) recognises the 29 

urgency of confirming or eliminating a cancer diagnosis for both physical and mental 30 

reasons. One-stop clinics are recommended, i.e. they should offer all necessary 31 
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diagnostic tests on a single day (Willett, Michell, & Lee, 2010). Two main options exist 1 

for organising the sequence of services within the day. In some clinics, staff use 2 

information provided by GPs on referral to identify those patients who should be sent 3 

straight for imaging tests. The remaining patients are sent to see a clinician who decides 4 

whether to request imaging. In other clinics, all patients see a clinician first. In this case, 5 

the information provided by GPs may not be used at all. 6 

All patients visiting breast diagnostic clinics will be worrying about the possibility of 7 

cancer, although only a small proportion will receive a breast cancer diagnosis, for 8 

example 4% of patients included in this study. Cancer is the most feared serious illness, 9 

with women fearing breast cancer second most after brain cancer, according to a survey 10 

commissioned by Cancer Research UK (2011). Clinic visits involve multiple stages, 11 

meaning patients may wait multiple times, with little distraction from contemplating 12 

their potential diagnosis. Thus, it is important that the proportion of time patients spend 13 

in consultations and tests (where appropriate), as opposed to waiting between stages and 14 

queuing, should be as high as possible. Moreover, it is critical that patients receive a 15 

diagnosis confirming or excluding cancer as quickly as possible on the day of their 16 

clinic visit. 17 

The case study is based at the Whittington Health NHS Trust in North London, which 18 

provides hospital and community services to a population of 500,000 in Islington, 19 

Haringey, Barnet and Camden (Whittington Health NHS, 2019a). The Whittington 20 

Hospital runs a one-stop clinic for diagnosis of patients with breast symptoms 21 

(Whittington Health NHS, 2019b). In this clinic, all patients see a clinician first. We 22 

model the potential operational impact of implementing risk-based pathways at this 23 

clinic.  24 

4. Materials and Methods  25 

Our methods and data sources are outlined here; further details are available in the 26 

supplemental material.  27 

4.1 Data sources 28 

Between November 2015 and December 2016, patients were asked to fill in 29 

questionnaires about the time they spent in different stages of their appointment (n=99). 30 
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This was complemented with a time and motion study where service and turnaround 1 

times were measured by the PhD student.  2 

 3 

Separately, between January and March 2016, we asked for patients’ consent to use 4 

their anonymised records to create a unique dataset linking GP referral information to 5 

clinic tests and results. This dataset (n=179) was used both for developing the 6 

scorecards and for generating patient labels to determine each patient’s route through 7 

the simulation.  8 

4.2 Logistic regression scorecards to predict patient risk 9 

As classification tools, we develop two alternative logistic regression models that use 10 

GP referral information to separate patients into groups at low and high risk of having 11 

an abnormal result. For ease of interpretability, we transform the logistic regression 12 

models into scorecards, using the “weights of evidence” approach common in credit 13 

scoring applications (Thomas, 2009). Scorecards can be represented on an arbitrary 14 

linear scale, are particularly suitable when the concept of risk is involved and make the 15 

same predictions as the original logistic regression models. In this last respect 16 

scorecards differ from the points system method proposed by Sullivan, Massaro, & 17 

D’Agostino (2004), used for example as a breast cancer prediction rule (McCowan, 18 

Donnan, Dewar, Thompson, & Fahey, 2011), where the points system provides an 19 

approximation to the original model. 20 

 21 

We considered the following seven commonly-reported characteristics for inclusion as 22 

predictors in our model: “family history of cancer”, “lump”, “unilateral pain” (one-sided 23 

pain), “other symptom”, “urgency”, “duration of symptoms” and “age”. The 24 

characteristic “other symptom” refers to rarer symptoms (those present in 15 or fewer 25 

cases).  26 

 27 

The outcome,  a “normal” (Y=1) or “abnormal” (Y=0) diagnostic result, was derived 28 

from patients’ test results. A normal result means the patient has healthy breasts or does 29 

not require imaging. Abnormal results cover both cancer and benign breast diseases, 30 

including benign breast lumps such as cysts and fibroadenomas, infections (for example 31 

mastitis and abscesses), and congenital problems, which cause the breast to have an 32 
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abnormal external appearance (Harvey, Down, Bright-Thomas, Winstanley, & Bishop, 1 

2014). Distinguishing between cancer and non-cancerous diseases without imaging is 2 

difficult (Harvey et al., 2014), which is why we propose routing patients at high risk of 3 

having an abnormal result to imaging first.  4 

 5 

A binary logistic regression model predicts the probability, p, of a normal result from 6 

patient-specific variables, X1, X2,…Xn, obtained from GP referral information, as given 7 

in equation 1. The parameters β1, β2, … βn show the relative importance of each 8 

characteristic in the prediction and β0 is the intercept. These parameters are obtained 9 

from maximum likelihood estimates. In reality, there is some error, ε, that is not 10 

captured by the model.  11 

𝑝 ≔ 𝑃𝑟𝑜𝑏(𝑌 = 1|𝑋1, 𝑋2, … , 𝑋𝑛) =
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1 )

(1) 12 

The weight of evidence, W, of a particular grouped attribute j, for example ``young'', of 13 

a characteristic i, for example ``age'', is the strength of evidence that patients who have 14 

the attribute will have an abnormal result. Let the number of normal (abnormal) results 15 

with attribute j be nj (aj) and the total number of normal (abnormal) results be ntotal 16 

(atotal). Then the weight of evidence variable, Wij, is given by the following. 17 

𝑊𝑖𝑗 = ln (
𝑎𝑗

𝑎𝑡𝑜𝑡𝑎𝑙
÷

𝑛𝑗

𝑛𝑡𝑜𝑡𝑎𝑙
) (2) 18 

The scaled score, S, which is calculated from a scorecard, is related to the unscaled 19 

score, 𝛽0 + ∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1 , which appears in the logistic regression, as follows.  20 

𝑆 = (𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑛

𝑖=1

) ⋅ factor + offset (3) 21 

The factor and offset are the solution to the following system of linear equations. This 22 

follows since the unscaled score is equal to the log odds. The pair (Score, Odds) is the 23 

alignment point, e.g. it is assumed that the score 300 corresponds to odds of 12(:1) of 24 
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having an abnormal result. The PDO is the specified number of points to double the 1 

odds, e.g. if PDO is 20, then the odds double for every increase in 20 points.   2 

Score = ln(Odds) ⋅ factor + offset (4) 3 

Score + PDO = ln(2 ⋅ Odds) ⋅ factor + offset (5) 4 

Using the weights of evidence codings as the X variables, the scaled score for a 5 

particular patient becomes 6 

𝑆 = (𝛽0 + ∑ 𝛽𝑖𝑊𝑖𝑗

𝑛

𝑖=1

) ⋅ factor + offset (6) 7 

where n is the number of variables and j is the attribute that this patient has for 8 

characteristic i.  9 

The points of the scaled score can be split between the characteristics by dividing the 10 

parts of the score that are not characteristic-specific between them.  11 

Points for characteristic 𝑖 = (
𝛽0

𝑛
+ 𝛽𝑖𝑊𝑖𝑗) ⋅ factor +

offset

𝑛
(7) 12 

Finally, to find the total score for a particular patient, the points for each of the patient's 13 

attributes are added up. 14 

 15 

Models were developed in SAS Enterprise Miner 14.1 software. We developed two 16 

models: a full scorecard containing seven characteristics and a simple scorecard 17 

containing fewer characteristics. We selected variables for inclusion in the simple 18 

scorecard based on their information values, which measure how much each variable 19 

contributes to the abnormality prediction (Thomas, 2009). The simple scorecard 20 

contains only the two most predictive characteristics, “lump” and “age” which are 21 

strong and medium predictors of abnormal results, respectively (SAS, 2013). Values of 22 

the two continuous characteristics, “duration of symptoms” and “age” were grouped 23 

into attributes using the Interactive Grouping feature. This feature automatically 24 

generates groups using a decision tree algorithm aiming to maximise patient similarity 25 

(in terms of diagnostic results) within groups. For example, perfect similarity 26 

(technically, zero entropy) would mean that all patients in a group had the same 27 
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diagnostic result. Such grouping helps build more parsimonious and robust models that 1 

can capture non-monotonic relationships. For the simple scorecard, the age groups were 2 

adapted to 10-year brackets for ease of use.   3 

 4 

Since the sample size is relatively small (n = 179 patients), the scorecards were 5 

estimated using the entire dataset to make use of all the available data, rather than 6 

removing some to use in validation. Instead, a bootstrapping technique (sampling with 7 

replacement), implemented in Microsoft Excel, was used to internally validate the 8 

models. 9 

4.3 Simulation modelling  10 

The simulation models patients' visits to the clinic, from arrival to discharge (see Figure 11 

1). Waits are omitted from the figure but are potentially present between each stage. 12 

Patients who are predicted abnormal results (have scores at least as high as the cut-off 13 

score) are sent straight for imaging tests; otherwise patients see a clinician first. In the 14 

simulation, we ignored the small numbers of patients who are ineligible for the 15 

scorecard (males and non-GP referrals), and assumed referral information would be 16 

provided for all patients. 17 

[Insert Figure 1 here] 18 

Patients have the following imaging tests. It is assumed that imaging first patients (those 19 

that are predicted an abnormal result) are given the same imaging tests as those patients 20 

with actual abnormal results in our data, dependent on age (see Table 3 in the 21 

Supplemental Material). For the clinician first patients (those patients predicted normal 22 

results), we assume clinician behaviour in requesting tests remains unchanged from 23 

current behaviour. That is, we assume the same test proportions as in the data, 24 

dependent on age and actual result (see Tables 3 and 4 in the Supplemental Material). It 25 

is assumed that patients with actual normal results never have a biopsy. Of those 26 

patients with actual abnormal results who have an ultrasound, we assume 44% also have 27 

a biopsy, as in our dataset.  28 

 29 
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Patients are prioritised for tests in the simulation in the following way. For 1 

mammograms, patients who have had an ultrasound are prioritised in order of waiting 2 

time. Then other patients are seen in order of their waiting time, regardless of whether 3 

they have come from a consultation or straight for imaging. Similarly, for ultrasound, 4 

patients who have had a mammogram are prioritised in order of waiting time. Then 5 

other patients are seen in order of their waiting time, again regardless of whether they 6 

visited a clinician or imaging first. In terms of prioritising patients to see a clinician, we 7 

observed different prioritisation behaviours, so experimented with these in the 8 

simulation. It was found that the choice of prioritisation rule has little effect on the 9 

mean average wait for the initial consultation. However, the mean average waiting time 10 

for a results consultation is about 12 minutes shorter if results consultations are 11 

prioritised than if initial consultations are prioritised. 12 

The objective of building the simulation model is to test alternative scenarios that differ 13 

in the scorecard used (simple or full) and the cut-off score between low- and high- risk 14 

patients. For the simple scorecard, the following scores are possible: 5, 10, 12, 14, 16, 15 

21, 23, and 25. There are seven ways of dividing the scores into two groups at higher 16 

and lower risk, for example using the cut-off scores 24, 22, 17, 15, 13, 11 and 6. It is 17 

also possible to predict that all patients will have a normal result (for example with cut-18 

off 26), or that all patients will have an abnormal result (for example with cut-off 4). 19 

Therefore, there are nine possible cut-off scores. For the full scorecard, possible scores 20 

range from 167 to 299. We test cut-off scores at intervals of five. 21 

 22 

At the start of the simulation, a set of initial patient labels is assigned to each new 23 

patient. These patient labels are age divide, predicted result and actual result, which all 24 

influence progress through the simulation of breast diagnostic services. Our novel 25 

approach of using simulation to test the operational impact of alternative cut-off scores 26 

involves changing the proportions of patients with abnormal and normal predicted 27 

results between scenarios. Since the predicted result depends on the cut-off score, and 28 
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we want to test different cut-offs, we need to know how patients are likely to be 1 

distributed between combinations of risk scores, age divide and actual result.  2 

The age divide label takes one of two values: below 35 years old or at least 35 years old. 3 

This label affects which imaging tests are required, as explained earlier. The predicted 4 

result label (either normal or abnormal) is calculated from a scorecard and depends on 5 

the cut-off score. When using the simple scorecard, only two referral characteristics are 6 

needed to calculate the predicted result, but for the full scorecard, seven referral 7 

characteristics are needed. The actual result label indicates whether the clinical 8 

assessment and optional imaging tests show a normal or abnormal result.  9 

In order to test the impact of using the simple scorecard to predict abnormal results and 10 

route patients accordingly, we generate the patient labels in the following way. For the 11 

179 patients in our sample, we calculated the age divide and actual result labels. From 12 

the lump and age group characteristics, we calculated each patient's risk score according 13 

to the simple scorecard. Each possible combination of the age divide, actual result and 14 

risk score was present in our dataset. In the simulation, combinations of patient labels 15 

are sampled from the empirical joint distributions (see Table 5 in the Supplementary 16 

Material).   17 

For testing the impact of using the full scorecard, we also need a joint distribution of the 18 

age divide, actual result and predicted result for different cut-off scores. In this case, the 19 

risk score is calculated from seven characteristics, including the age group. By splitting 20 

the 29-42-year-old age group category at age 35, these amended age groups can also be 21 

used to generate the age divide label value. Thus, we need the joint distribution of the 22 

seven (amended) scorecard characteristics plus the actual result. There are 2880 23 

possible combinations of levels (attribute scores), with only 166 unique combinations 24 

present in our data sample (see Table 6 in Supplementary material for the number of 25 

levels). Thus, using empirical proportions would not fully capture the likely joint 26 

distribution present in the population of patients attending the breast diagnostic clinic, 27 

so we use an alternative approach. 28 

4.4 Poisson regression for generating patient labels in the simulation 29 

Instead, our approach is fitting a Poisson loglinear model (also known as Poisson 30 
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regression), a generalised linear model to predict counts in a contingency table with 1 

these eight factors (Agresti, 2013). Next, the expected counts are converted to the 2 

expected proportions of patients with each label combination, by dividing by the sample 3 

size. In the simulation, when a new patient is generated, their initial label combination is 4 

sampled from this distribution. A computational advantage is that only one sample is 5 

drawn per patient, as opposed to one sample for each patient label. 6 

We introduce some notation to represent Poisson loglinear models for ease of 7 

exposition. A purely illustrative two-way contingency table for the factors lump (L) and 8 

urgency (U) is shown in Table 0. Here 𝜇𝐿𝑈 is the expected count for the cell in row i 9 

and column j of the contingency table. For instance, 𝜇00 is the expected number of 10 

patients with no lump who are symptomatic. The Poisson loglinear model that includes 11 

row effects, column effects and the row-column interaction can be summarised as 12 

(L,U,LU) and is written in full as shown in Equation 8. 13 

[Insert Table 0 here] 14 

 15 

ln(μ𝐿𝑈) = λ + λ1
𝐿𝐿1 + λ1

𝑈𝑈1 + λ2
𝑈𝑈2 + λ11

𝐿𝑈𝐿1𝑈1 + λ12
𝐿𝑈𝐿1𝑈2 (8) 16 

In the above equation, λ is the offset parameter and dummy variables are used to code 17 

the factor levels. Since lump has two levels, lump present and no lump, this is coded 18 

using one dummy variable, L1. Urgency has three levels, symptomatic, suspected 19 

cancer, and other, so is coded using two dummy variables U1 and U2. The dummy 20 

variable codings are given in Equations 9 to 11. The parameter λ1
𝐿 represents the effect 21 

of the level lump present, compared to no lump, on the expected count. Similarly λ1
𝑈and 22 

λ2
𝑈

 estimate the effects of suspected cancer and other urgency compared to the reference 23 

level, symptomatic. The dependence between lump and urgency is captured by the row-24 

column interaction effects, 𝜆11
𝐿𝑈and 𝜆12

𝐿𝑈 . 25 

𝐿1 = {
0  𝑖𝑓 𝑛𝑜 𝑙𝑢𝑚𝑝,

1  𝑖𝑓 𝑙𝑢𝑚𝑝 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
(9) 26 
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𝑈1 = {
0  𝑖𝑓 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑜𝑟 𝑜𝑡ℎ𝑒𝑟,
1  𝑖𝑓 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑛𝑐𝑒𝑟

(10) 1 

𝑈2 = {
0  𝑖𝑓 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑜𝑟 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑,

1  𝑖𝑓 𝑜𝑡ℎ𝑒𝑟
(11) 2 

Alternative Poisson loglinear models for the same dataset differ in which interaction 3 

effects they include, and consequently also how many parameters must be estimated. 4 

Using dummy variables means that the number of parameters for each single variable 5 

effect is equal to the number of levels minus one. For each two-way interaction 6 

included, the number of parameters to estimate is equal to the product of the number of 7 

dummy variables for the two factors. Inclusion of higher-order interactions is also 8 

possible, but the feasibility of estimating the associated parameters depends on the size 9 

of the dataset (Agresti, 2013).  10 

 11 

We fitted two alternative models to predict counts in our 8-way contingency table (see 12 

Supplementary material Table 6) using the glm() command in the stats package in R. 13 

This command performs maximum likelihood estimation using iteratively reweighted 14 

least squares (Quick-R, 2017). We fitted firstly Model 1 which contained single variable 15 

effects only, (A, F, L, P, O, D, U, R), and secondly Model 2 which contained single 16 

variable effects, as well as all two-way interactions, (A, F, L, P, O, D, U, R, AF, AL, AP, 17 

AO, AD, AU, AR, FL, FP, FO, FD, FU, FR, LP, LO, LD, LU, LR, PO, PD, PU, OD, 18 

OU, OR, DU, DR, UR). Fitting Model 1 using dummy variables involved estimating 17 19 

parameters (for single effects) while Model 2 had 120 parameters (for both single effects 20 

and interactions). 21 

To test how well the models fit the data, we simulated Pearson goodness-of-fit statistics 22 

for 3000 samples from the model distributions, in R software. This large number of 23 

iterations gave stable results. The simulated p-values are 0.39 for Model 1 and 0.59 for 24 

Model 2, so at the 0.05 level, we do not reject the null hypotheses that the models fit the 25 
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data. We want a model that provides good estimates of expected counts. Given that both 1 

models fit well, we chose Model 2 because, in reality, characteristics are dependent; for 2 

example, older women are more likely to have a lump. Table 7 in the Supplementary 3 

Material shows the Model 2 joint distribution of label combinations for the full 4 

scorecard with some different cut-off scores.  5 

 6 

4.5 Measuring classification and operational performance of the scorecards 7 

We first consider the classification performance of the scorecards for different cut-off 8 

scores. True positives (TP) and true negatives (TN) are patients who were correctly 9 

classified with normal and abnormal results respectively. On the other hand, false 10 

positives (FP) and false negatives (FN) are patients who were wrongly predicted normal 11 

and abnormal results respectively. Sensitivity and specificity are the proportions of 12 

normal and abnormal results that were correctly predicted, respectively. Finally, 13 

classification accuracy is the proportion of all results that were correctly predicted. 14 

Next we look at the operational performance of the simulated clinic when using the 15 

scorecards with different cut-off scores. The goal is to maximise the clinic efficiency, 16 

defined as the average proportion of patients' time at the clinic that is value-added, over 17 

a set of cut-off score scenarios. Value-added activities are consultations and tests, as 18 

opposed to waiting and queuing. In the case of ties, we prefer the cut-off score leading 19 

to the lowest average patient total time spent in the clinic.  20 

 21 

To define clinic efficiency and total time mathematically, first we define a patient's start 22 

time as the time at which the clinic's performance for that patient begins to be measured. 23 

For a patient arriving on time, the start time is the scheduled appointment time, which is 24 

the same as the registration time. For a late patient, the start time is the registration time, 25 

since the delay between the scheduled time and the registration time is caused by the 26 

patient not the clinic. For early patients there are two possibilities. If an early patient is 27 

seen early, their start time is the actual appointment time. If an early patient is seen late, 28 
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the start time is the scheduled appointment time. This corresponds to how waiting times 1 

for unpunctual patients are dealt with in the literature (see for example Santibáñez, 2 

Chow, French, Puterman, & Tyldesley, 2009). This allows us to define a patient's total 3 

time as the period from the start time until  the end time, when the patient leaves the 4 

clinic.  5 

Total time = End time −  Start time (12) 6 

For each day (run) of the simulation, we calculate the average total time. The mean 7 

average total time is the tie-breaker when clinic efficiency is equal for several 8 

scenarios. 9 

We define the value-added time as the time during which a patient is in a consultation 10 

or having tests done.  11 

Value-added time = Time in consultations +  time in mammogram room +  time in ultrasound room(13) 12 

 13 

Hence efficiency is the proportion of time at the clinic during which a patient is in a 14 

consultation or having tests done. 15 

Efficiency =
Value-added time

Total time
(14) 16 

The overall clinic efficiency is the average efficiency over all patients, so can be used as 17 

a performance measure on a particular day. 18 

Clinic efficiency =
∑ Efficiency𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

Number patients
(15) 19 

Following the method suggested by (Banks, Carson II, Nelson, & Nicol, 2010), the 20 

simulation model was run many times to obtain a 95% confidence interval for the mean 21 

value of each operational performance measure. The trial run calculator feature of 22 

Simul8 was used to find the number of runs required for the 95% confidence limits to 23 

be within 10% of the estimate of the mean (the “precision”). Since each day is 24 



18 

 

independent with no patients staying overnight, the simulation was run from empty with 1 

no warm-up period, and the run length was one day.  2 

5. Results 3 

5.1 Scorecards 4 

The simple and full scorecards are shown in Tables 1 and 2. The scorecards work by 5 

adding up the points corresponding to a patient's attributes (as recorded in their referral). 6 

The higher the total risk score, the greater the chance that the patient will receive an 7 

abnormal result.  8 

 9 

[Insert Table 1 and 2 here] 10 

5.2 Classification performance for different cut-off scores 11 

Table 3 shows how well the simple scorecard separates normal and abnormal results in 12 

the training data for each cut-off. The best classification accuracy is 68% and is 13 

achieved when the cut-off is set at 17. (Currently, all patients are sent to a clinician first, 14 

which corresponds to a cut-off of 4 and classification accuracy of 45%; that is, for 45% 15 

of people abnormal results are found and imaging is needed). Both sensitivity and 16 

specificity are greater than 60% when the cut-off is 15. Therefore, if the only 17 

consideration is that sensitivity and specificity are equally important, then 15 would be 18 

the best choice of cut-off. However, before finalising our choice of cut-off, we also need 19 

to consider the classification performance of the full scorecard, as well as operational 20 

measures for both scorecards. 21 

[Insert Table 3 here] 22 

For the full scorecard, there are a large number of possible scores, so in Table 4 we 23 

present classification performance measures for a selection of cut-off scores only. Here, 24 

the best classification accuracy among the cut-off scores considered is 70%, which is 25 

achieved when the cut-off score is 220. This cut-off also achieves the best balance 26 

between specificity and sensitivity, with both greater than 60%. The best classification 27 

accuracy from the full scorecard offers a marginal improvement over the simple 28 

scorecard (70% versus 68%), and the cut-off with the best balance between specificity 29 

and sensitivity improves the specificity substantially (81% versus 72%) with a small 30 
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decrease in sensitivity (61% versus 62%).  1 

[Insert Table 4 here] 2 

5.3 Operational performance for different cut-off scores 3 

When choosing the cut-off score in this situation, the proportion of time patients are in 4 

consultations/tests and how long they spend in the clinic are also of importance. Initial 5 

experiments showed that under the current appointment schedule, with two clinicians 6 

working simultaneously, patients arrive at the ultrasound area at a faster rate than they 7 

can be processed. Therefore, we experimented with alternative set-ups. The best results 8 

from preliminary simulation experiments (see Supplementary Material, Table 9 and 10) 9 

were achieved using 15-minute gaps between appointments and one clinician working 10 

at a time, so we use that set-up in our experiments below. 11 

 12 

Simulation results using the simple scorecard and a subset of cut-offs are shown in 13 

Table 5. The best clinic efficiency is 0.27 and is achieved with cut-off scores 15 (where 14 

both sensitivity and specificity are higher than 60%), 17 (where the classification 15 

accuracy is highest) and 22. The worst clinic efficiency is achieved when all patients are 16 

sent straight to imaging (0% sensitivity and 100% specificity). The shortest average 17 

total time is 107 minutes, when the cut-off score is 15, which corresponds to sending 18 

53% of patients straight to imaging. A further benefit of using 15 as the cut-off would 19 

be that it simplifies use of the scorecard, since it is equivalent to sending patients with a 20 

lump recorded straight to imaging, and patients without a lump recorded to a clinician 21 

first. A cut-off score of 15 was also the best choice to ensure that both sensitivity and 22 

specificity were over 60%. 23 

[Insert Table 5 here] 24 

Next, we investigate whether by using the full scorecard we could further improve 25 

clinic efficiency. The results are shown in Table 6. The highest average clinic efficiency 26 

is 0.28 compared to 0.27 with the simple scorecard. This is achieved with a cut-off 27 

score of 235, which corresponds to sending 32% of patients straight to imaging, 28 

compared to 53% with the simple scorecard. This approach has classification accuracy 29 

of 68% compared to 66% with the simple scorecard.  The average total time at the clinic 30 

is 113 minutes, slightly longer than for the simple scorecard (107 minutes).  Since the 31 

full scorecard is  more complicated to use in practice, involving assessing seven 32 
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characteristics per patient rather than two, the simple scorecard is more promising for 1 

practical use, particularly while referral forms are on paper rather than electronic.  2 

[Insert Table 6 here] 3 

6. Discussion  4 

We have demonstrated the construction of a risk classification tool and shown how 5 

discrete-event simulation could be used to guide decisions on where to set a cut-off 6 

score between low- and high-risk patients. This enables the best cut-off to be chosen 7 

from both classification accuracy and operational perspectives. Our unique approach 8 

combining logistic regression for classification and simulation to select a cut-off score 9 

allows decision makers to consider the wider implications of their choice of cut-off. 10 

This approach is more versatile than considering solely predictive performance 11 

measures; any measure that can be simulated can be used to compare cut-off scores. The 12 

practical impact of the cut-off score may be more important than the predictive 13 

accuracy, particularly where the classification model is being used to sequence or 14 

prioritise services rather than deciding whether to offer a service. 15 

The Poisson approach for generating combinations of categorical patient characteristics 16 

that we propose in this paper provides a statistically sound solution to a general 17 

problem. When there are many characteristics, small samples will not contain all the 18 

combinations that may be present in the population. Poisson regression is a well-19 

established tool for modelling count data, which we apply to model counts of 20 

combinations of characteristics. It enables the inclusion of inter-dependencies between 21 

characteristics, and is appropriate for categorical data (by using dummy variables). 22 

Unlike using empirical distributions, the Poisson approach is able to generate unseen 23 

combinations. 24 

 25 

Comparing our results to previous studies, we have generated a scorecard that allows 26 

clinicians to add up each patients’ risk score based on a small number of characteristics.  27 

Alternative classification models would have provided results in a different format, but 28 

the best model depends on the context. Classification and regression trees, used for 29 

example by Bhattacharjee and Ray (2016) and Harper (2002) are useful in situations 30 
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where patients are grouped based on a continuous variable, e.g. service time or 1 

operation time, rather than a binary variable, e.g. normal or abnormal result.  2 

There were several limitations to this study which could point the way to future 3 

research. When simulating the impacts of using scorecards to triage patients, we 4 

focused our attention on just two operational performance measures: clinic efficiency 5 

and average total time. The research could be extended by performing a cost-6 

effectiveness analysis and by considering additional performance measures, perhaps in a 7 

weighted function. Another extension could be looking at the range in performance 8 

across different patients and across different days, for example by calculating 9 

percentiles rather than average measures.  10 

A limitation of the Poisson approach is that the number of parameters to estimate 11 

increases substantially when additional interactions are included. In our example we 12 

were limited to including two-way interactions since there were insufficient data to 13 

estimate three-way interactions. It would be useful to know in what situations applying 14 

the Poisson approach is worthwhile and in which it makes little difference to estimates 15 

of operational performance. Future work could compare recommendations obtained 16 

from using the Poisson model distribution to the empirical distribution, for a series of 17 

case studies. We suspect that situations where the rarer combinations of characteristics 18 

correspond to higher service use will particularly benefit from the Poisson approach. 19 

 20 

The problem under study can be generalised to other contexts outside diagnostic clinics, 21 

and even outside healthcare: Is information provided by a non-specialist (or a patient or 22 

customer themselves) complete and accurate enough to make decisions related to the 23 

patient or customer (e.g. assign resources or allow access), without first performing a 24 

specialist assessment? The classification-discrete-event simulation approach allows 25 

different operational measures to be considered depending on the context. 26 

7. Conclusion 27 

We have demonstrated the evaluation of classification tools within a discrete-event 28 

simulation model and choice of a cut-off score based on operational performance 29 
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measures. Moreover, we have proposed the use of Poisson regression to generate patient 1 

labels for simulation when data is limited. 2 

A simple scorecard based on just the two most predictive patient characteristics, lump 3 

and age, has the advantage of simplicity of use in the clinic, and improved accuracy and 4 

efficiency compared to current practice. The full scorecard based on seven characteristics 5 

only slightly improved accuracy and efficiency, but with more complexity in use. Using 6 

a scorecard, patients (in the simulation) spend a higher proportion of their time in tests 7 

and consultations, rather than waiting, compared to current practice. Also, overall, the 8 

total time that patients spend at the clinic is reduced because high-risk patients have one 9 

less consultation, being expedited straight to test, and waiting times are reduced.   10 

 11 

The feasibility of using GP referral information to plan breast clinic diagnostics has also 12 

been demonstrated for the first time to the best of our knowledge. Based on this 13 

analysis, a larger-scale study is recommended to validate the accuracy and efficiency of 14 

using a classification tool, namely a scorecard, to direct patients on risk-based pathways 15 

through the clinic. As part of this, the best cut-off in different clinics and situations 16 

should be compared to find out whether and how this varies, and patients should be 17 

involved in discussions about the fairness of routing patients differently.  18 

 19 

Note however that using a scorecard to route patients does not prevent them having 20 

tests: if the scorecard misclassifies a patient as likely to have an abnormal result, they 21 

may have tests that were unnecessary, and vice versa, if the scorecard misclassifies a 22 

patient as likely to have a normal result, the clinician can correct the assessment and 23 

send them for tests (as is the case for all patients today). Simulation offers a starting 24 

point for the discussion as different scenarios can be compared without affecting real 25 

patients.  Some clinics already operate a split system with some patients being sent 26 

straight to test and others to a clinician first. The potential benefits are better use of 27 
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resources (GP, clinician and imaging), as well as reductions in patients’ non-value-1 

added time, such as on-the-day waiting and answering questions for a second time.  2 

 3 

There has already been practical impact for the Whittington clinic from this research 4 

project, which has benefitted from close collaboration with clinic staff from initial 5 

stages onwards. Suggestions for a more efficient discharge system were tested in 6 

preliminary simulation modelling and found to be efficient for all types of patients 7 

(those with both normal and abnormal results). This change has already been fully 8 

embedded by clinic staff. Practical suggestions on numbers of appointments offered 9 

each day have also been made, and on balancing numbers of clinicians working at any 10 

time with the availability of diagnostic tests. 11 
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Table 0. Illustrative two-way contingency table of lump (L) and urgency (U) 1 

 Column j 0 1 2 

Row i  Symptomatic Suspected 

cancer 

Other  

0 No lump μ00 μ01 μ02 

1 Lump present μ10 μ11 μ12 

 2 

Table 1. Simple scorecard  3 

  
Scorecard 

points 

Age 
Age < 30 10 
30<= Age< 40 3 

40<=Age< 50 8 
50<=Age 12 

Lump 
Yes 13 
No or not recorded 2 

 4 
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Table 2. Full scorecard  1 

  
Scorecard 

points 

Age 
Age < 29 43 
29 <= Age < 42 16 
42 <= Age < 47 33 
47 <= Age < 52 21 

52<= Age 64 

Duration of symptoms 
Not applicable or not 
recorded 

29 

Less than 2 weeks 42 
2 weeks - 2 months 35 

2 - 5 months 26 
Over 5 months 35 

Family history of cancer 
No or not recorded 29 
Yes 38 

Lump 

No or not recorded 5 
Yes 54 

Other symptom 
No or not recorded 29 
Yes 36 

Unilateral pain 
No or not recorded 31 
Yes 33 

Urgency 
Suspected cancer 32 
Symptomatic 31 

Other or not recorded 32 
 2 

 3 

 4 

 5 

 6 

 7 

 8 
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 1 

Table 3: Classification performance of simple scorecard for different cut-off scores 2 

Cut-

off 

score 
True 

Positives 
True 

Negatives 
False 

Positives 
False 

Negatives Sensitivity Specificity 

Classification 

accuracy 

 

26 98 0 81 0 100% 0% 55%  

24 93 11 70 5 95% 14% 58%  

22 83 31 50 15 85% 38% 64%  

17 77 45 36 21 79% 56% 68%  

15 61 58 23 37 62% 72% 66%  

13 50 68 13 48 51% 84% 66%  

11 37 72 9 61 38% 89% 61%  

8 19 78 3 79 19% 96% 54%  

4 0 81 0 98 0% 100% 45%  

 3 
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Table 4: Classification performance of full scorecard for different cut-off scores 1 

Cut-off 

score 

True 

Positives 

True 

Negatives 

False 

Positives 

False 

Negatives Sensitivity Specificity 

Classification 

accuracy 

 

290 98 0 81 0 100% 0% 55%  

280 96 3 78 2 98% 4% 55%  

270 95 7 74 3 97% 9% 57%  

260 94 15 66 4 96% 19% 61%  

250 90 24 57 8 92% 30% 64%  

240 85 37 44 13 87% 46% 68%  

230 76 45 36 22 78% 56% 68%  

220 60 66 15 38 61% 81% 70%  

210 51 69 12 47 52% 85% 67%  

200 38 73 8 60 39% 90% 62%  

190 28 74 7 70 29% 91% 57%  

180 16 79 2 82 16% 98% 53%  

170 0 81 0 98 0% 100% 45%  

160 0 81 0 98 0% 100% 45%  

 2 
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Table 5: Operational performance of simple scorecard for different cut-off scores 1 

 Clinic efficiency   Average total time (minutes) 

Cut-off 

score 

Number 

runs for 

5% 

precision 

Mean [95% 

confidence 

interval] 

 Number runs 

for 10% 

precision 

Mean [95% 

confidence 

interval]  

26 48   0.24 [0.23,0.25]    18 143 [129,156] 

24 60 0.26 [0.24,0.27]  29 134 [121,147] 

22 59 0.27 [0.25,0.28]     35 124 [111,136] 

17 69 0.27 [0.26,0.29]     42 116 [105, 128] 

15 106 0.27 [0.26,0.28]     47 107 [97,118] 

13 112 0.26 [0.24, 0.27]    46 109 [98, 119] 

11 132 0.25 [0.24,0.26]    52 110 [99,121] 

6 150 0.23 [0.22,0.24]  65 116 [104,127] 

4 166 0.2 [0.19,0.22]    61 123 [110, 135] 

    2 

 3 

 4 
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Table 6: Operational performance of full scorecard for different cut-off scores 1 

 Clinic efficiency   Average total time (minutes) 

Cut-off 

score 

Number 

runs for 

5% 

precision 

Mean [95% 

confidence 

interval] 

 Number 

runs for 

10% 

precision 

Mean [95% 

confidence 

interval]  

165 166 0.20 [0.19,0.22]  61 123 [110,135] 

170 162 0.21 [0.20,0.22]  61 123 [111,135] 

175 158 0.21 [0.20,0.22]  61 123 [111,135] 

180 147 0.22 [0.21,0.23]  66 117 [105,128] 

185 140 0.23 [0.22,0.24]  59 115 [104,127] 

190 141 0.24 [0.23,0.25]  66 113 [102,124] 

195 132 0.25 [0.24,0.26]  57 113 [102,125] 

200 123 0.25 [0.24,0.26]  47 105 [95,116] 

205 120 0.26 [0.24,0.27]     47 107 [96,117]   

210 116 0.26 [0.25,0.27]    46 106 [95,116] 

215 112 0.26 [0.25,0.27]    46 108 [97,118] 

220 112 0.26 [0.25,0.28]    52 109 [98,119] 

225 83 0.27 [0.25,0.28]    43 110 [99,121] 

230 71   0.27 [0.26,0.29]    35 114 [103,126] 

235 63   0.28 [0.26,0.29]    41 113 [102,124] 

240 64 0.27 [0.26,0.29]    37 120 [108,131] 

245 54   0.27 [0.26,0.28]    34 125 [112,137] 

250 51 0.26 [0.25,0.28]  33 131 [118,144] 

255 52 0.26 [0.25,0.28]  24 127 [115,139] 

260 62 0.26 [0.25,0.27]  24 132 [119,144] 

265 45 0.25 [0.24,0.27]  24 134 [121,147] 

270 49 0.25 [0.24,0.27]  20 138 [124,151] 

275 48 0.25 [0.23,0.26]  19 141 [127,155] 

280 43 0.24 [0.23,0.25]  16 142 [128,156] 

285 44 0.24 [0.23,0.25]  18 143 [129,156] 

290 44 0.24 [0.23,0.25]  18 143 [129,156] 

295 48 0.24 [0.23,0.25]  18 143 [129,156] 

300 48 0.24 [0.23,0.25]  18 143 [129,156] 

             2 
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Figure 1: Simulation process map  1 

2 

DNA=Did not attend 3 
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