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ORIGINAL ARTICLE

Choosing where to set the threshold between low- and high-risk patients:
Evaluating a classification tool within a simulation

Christina E. Savillea , Honora K. Smitha , Katarzyna Bijaka and Pauline Leonardb�
aUniversity of Southampton, Southampton, UK; bWhittington Health NHS Trust, London, UK

ABSTRACT
Health service providers must balance the needs of high-risk patients who require urgent
medical attention against those of lower-risk patients who require reassurance or less urgent
medical care. Based on their characteristics, we developed a tool to classify patients as low- or
high-risk, with correspondingly different patient pathways through a service. Rather than
choosing the threshold between low- and high-risk patients solely considering classification
accuracy, we demonstrate the use of discrete-event simulation to find the best threshold from
an operational perspective as well. Moreover, the predictors in classification tools are often
categorical, and may be inter-dependent. Defining joint distributions of these variables from
empirical data assumes that missing combinations are impossible. Our new approach involves
using Poisson regression to estimate the joint distributions in the underlying population. We
demonstrate our methods on a practical example: setting the threshold between low- and
high-risk patients with proposed different pathways through a breast diagnostic clinic.
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1. Introduction

Healthcare budgets constantly have to address the
increased demand for the array of diagnostic tests
and treatments for patients with cancer because the
successes of research and development in care and
diagnostics have led to more people living longer.
Health service providers must balance the needs of
high-risk patients who require urgent medical atten-
tion against those of lower-risk patients who require
reassurance or less urgent medical care. Classification
methods, for example logistic regression or decision
trees, can be used to predict whether a patient is at
low or high risk of a disease. Then these patients can
be routed along low- or high-risk pathways through
health services, recognising the different needs of these
two patient groups.

When using these classification methods, manag-
ers must choose where to set the threshold between
low- and high-risk patients. Solely basing this deci-
sion on classification accuracy (for example sensitiv-
ity or specificity measures), neglects the operational
impact of implementing risk-based pathways (for
example waiting times or resource use). In this
paper, we propose using discrete-event simulation,
in addition to estimating classification accuracy, to
help choose the threshold that provides the best
results from an operational perspective.

When evaluating risk-based patient management
strategies in discrete-event simulation models, the

way in which patient characteristics are modelled
requires careful consideration. Patient characteristics
affect not only the patient’s risk group, but also the
patient’s route through the simulation, as well as
potentially their priority in queues and service
times. Patient characteristics are often categorical
and inter-dependent. Some possible combinations of
characteristics may not appear in a data sample, but
may exist in the wider population. We propose an
approach using Poisson loglinear (regression) models
for generating combinations of dependent categorical
characteristics, allowing generation of missing
combinations.

We demonstrate our approach with a case study
of a breast diagnostic clinic. The classification tools
developed, in this case logistic regression scorecards,
are built from data extracted from forms completed
by general practitioners (GPs) referring patients to
the clinic. Currently all patients follow the same
pathway through the clinic; we investigate a pro-
posal for patients classified as being at high risk of
an abnormal result, and thus needing diagnostic
tests, to take a different pathway from low-risk
patients. Our method evaluates the classification
tools in a simulation which routes patients along
low- and high-risk pathways through the clinic. Our
aim is to find appropriate threshold risk scores (cut-
off scores) above which patients should be consid-
ered high-risk. As this is a preliminary study, with
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data from a limited number (n¼ 179) of patients,
not all the possible combinations of patient charac-
teristics are present in the data. We therefore use
our method of Poisson regression to generate com-
binations of characteristics within the simulation.
We compare results in terms of clinic efficiency
(proportion of time spent in consultations or tests)
and patients’ total time at the clinic.

Although many researchers have applied oper-
ational research techniques to cancer care, oper-
ational research studies addressing cancer diagnostic
services are rare (Saville et al., 2019), aside from
tools for predicting cancer risk. Also, limited
research spans both primary and secondary cancer
care services (Saville et al., 2019).

The main contributions of this paper from a the-
oretical and practical perspective are

� Combining classification and discrete-event simula-
tion to find the best result considering both pre-
dictive accuracy and operational performance

� Poisson regression for modelling combinations of
characteristics that do not necessarily appear in
the sample

� Showing how GP referral information can be
used to triage patients while still giving all
patients the chance to have tests if a clinician
decides they are needed

The paper proceeds as follows. In Section 2, we
present a brief overview of relevant literature. In
Section 3 we describe the healthcare background and
the case study setting. Section 4 details the approach
used, including the development of the logistic regres-
sion scorecards, a description of the simulation model
and our method for generating patient labels for simu-
lation. In Section 5, we present the classification accur-
acy and operational performance of different cut-off
scores. In Section 6, we discuss the contributions and
limitations of the study, with future research direc-
tions. The conclusion is given in Section 7.

2. Literature review

Over the last two decades, several authors have
combined patient classification techniques with dis-
crete-event simulation (Bhattacharjee & Ray, 2016;
Cannon et al., 2013; Harper, 2002; Harper et al.,
2003; Huang & Hanauer, 2016). Some of these
researchers used classification to model patient
pathways accurately, by generating groups of similar
patients as simulation inputs (Harper, 2002) or pre-
dicting the occurrence of health-related events dur-
ing the simulation (Cannon et al., 2013; Harper
et al., 2003). On the other hand, Bhattacharjee and
Ray (2016) classified patients using a Classification

and Regression Tree and then used discrete-event
simulation to evaluate the potential impact of
sequencing appointments based on the patient
classes. Huang and Hanauer (2016) present a series
of logistic regression models to predict no-shows.
Each model contains information about one more
prior attendance, and can be used to decide to what
extent to overbook appointments. Here, discrete-
event simulation was used to evaluate the cost (waiting
time plus overtime plus idle time) per patient for these
different models, and so to decide how many prior
attendance variables should be included. Unlike these
papers, we describe how discrete-event simulation can
help choose the threshold score above which patients
should be classified as high-risk.

Another relevant body of literature relates to set-
ting thresholds in classification algorithms when
there are asymmetric costs (Pazzani et al., 1994,
Zhao, 2008). This is the case when misclassifying is
worse in one direction than the other, so sensitivity
may be more important than specificity or vice
versa. Many papers have built classification models
for predicting breast cancer, for example Ayer et al.
(2010), Mangasarian et al. (1995), and Pendharkar
et al. (1999). Unlike these, we are using classification
models for predicting any kind of abnormal result,
including but not limited to cancer, from imperfect
information (GP referrals). This is to help with
identifying which patients are likely to need imaging
tests. In our context, the cost of a missed abnormal
result is also not as extreme as missing a cancer
case – these misclassified patients are sent to see a
clinician who is still able to send the patient for
imaging tests (as today).

In simulation models of pathways through
healthcare services, researchers have modelled
patient characteristics in three main ways (some-
times in combination). One way is grouping patients
with similar characteristics, either by specifying the
probability of belonging to each group (Bayer et al.,
2010; Chemweno et al., 2014; Crawford et al., 2014),
or by using group-specific arrival rates (Cooper
et al., 2002; Gillespie et al., 2016; Monks et al.,
2016). The relative numbers of patients in each
group are sometimes based on expert opinion
(Chemweno et al., 2014) or assumed to be the same
as in data samples (Cooper et al., 2002; Crawford
et al., 2014). When the choice of groups is not obvi-
ous, patient data can be analysed to find appropriate
groups, for example Gillespie et al. (2016) group
patients with similar lengths of stay using Kaplan-
Meier and log-rank tests. Elsewhere, different clus-
tering (Ceglowski et al., 2007; Isken & Rajagopalan,
2002) and classification (Harper, 2002) techniques
have been used to group similar patients. These
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approaches provide insufficiently detailed character-
istics for our situation.

A second way of modelling patient characteristics
is inputting empirical data, either by putting each
real patient’s information directly into the discrete-
event simulation (Eatock et al., 2011; Khanna et al.,
2016), bootstrapping (Lord et al., 2013) or generat-
ing copies of each patient’s set of characteristics to
compare different treatment strategies on the same
cohort (Revankar et al., 2014). The drawback of dir-
ectly using empirical data is that it only includes
those patients seen in reality. This approach is
therefore most suitable when the data sample is
deemed large enough to closely resemble the under-
lying population.

A third approach to this problem is using statis-
tical distributions, either assuming independence
between characteristics (Burr et al., 2012; Crane
et al., 2013; Tran-Duy et al., 2014), or relationships
between some characteristics (Cooper et al., 2002;
Lord et al., 2013; Pilgrim et al., 2009; Vataire et al.,
2014; Wang et al., 2017). These papers either use
the empirical conditional distributions present in
their data or make assumptions about the relation-
ships when data are unavailable. Using the empirical
conditional distribution relies on the relationships
present in the sample being representative of the
wider population; combinations of characteristics
not present in the sample will not be simulated. In
contrast, we propose an approach for generating
combinations of dependent, categorical characteris-
tics, where combinations not present in the data
sample may be simulated.

3. Healthcare background and case study

Breast cancer is the most common cancer in the
UK, making up 15% of new cancer cases, with 99%
of cases affecting women (Cancer Research UK,
2016b). Survival is improving, with 85% of women
diagnosed in England and Wales surviving the dis-
ease for at least five years. However, the stage at
which a cancer is detected greatly impacts chances
of survival, with only 26% of women with final stage
disease surviving beyond 5 years (Cancer Research
UK, 2018).

The most common route to breast cancer diagno-
sis is via referral by a General Practitioner (GP) to a
specialist diagnostic clinic, accounting for 60% of
diagnoses (Cancer Research UK, 2016a). These clin-
ics are under strain; the covid-19 pandemic has
caused a backlog for cancer diagnostic services
(Hanna et al., 2020).

Currently, diagnostic clinics are organised as fol-
lows. A two-week wait target between when a
patient is referred and their attendance in clinic

(Keogh, 2009) recognises the urgency of confirming
or eliminating a cancer diagnosis for both physical
and mental reasons. One-stop clinics are recom-
mended, i.e., they should offer all necessary diagnos-
tic tests on a single day (Willett et al., 2010). Two
main options exist for organising the sequence of
services within the day. In some clinics, staff use
information provided by GPs on referral to identify
those patients who should be sent straight for imag-
ing tests. The remaining patients are sent to see a
clinician who decides whether to request imaging.
In other clinics, all patients see a clinician first. In
this case, the information provided by GPs may not
be used at all.

All patients visiting breast diagnostic clinics will
be worrying about the possibility of cancer, although
only a small proportion will receive a breast cancer
diagnosis, for example 4% of patients included in
this study. Cancer is the most feared serious illness,
with women fearing breast cancer second most after
brain cancer, according to a survey commissioned
by Cancer Research UK (2011). Clinic visits involve
multiple stages, meaning patients may wait multiple
times, with little distraction from contemplating
their potential diagnosis. Thus, it is important that
the proportion of time patients spend in consulta-
tions and tests (where appropriate), as opposed to
waiting between stages and queuing, should be as
high as possible. Moreover, it is critical that patients
receive a diagnosis confirming or excluding cancer
as quickly as possible on the day of their clinic visit.

The case study is based at the Whittington
Health NHS Trust in North London, which provides
hospital and community services to a population of
500,000 in Islington, Haringey, Barnet, and Camden
(Whittington Health NHS, 2019a). The Whittington
Hospital runs a one-stop clinic for diagnosis of
patients with breast symptoms (Whittington Health
NHS, 2019b). In this clinic, all patients see a clin-
ician first. We model the potential operational
impact of implementing risk-based pathways at
this clinic.

4. Materials and methods

Our methods and data sources are outlined here;
further details are available in the supplemen-
tal material.

4.1. Data sources

Between November 2015 and December 2016,
patients were asked to fill in questionnaires about
the time they spent in different stages of their
appointment (n¼ 99). This was complemented with
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a time and motion study where service and turn-
around times were measured by the PhD student.

Separately, between January and March 2016, we
asked for patients’ consent to use their anonymised
records to create a unique dataset linking GP refer-
ral information to clinic tests and results. This data-
set (n¼ 179) was used both for developing the
scorecards and for generating patient labels to deter-
mine each patient’s route through the simulation.

4.2. Logistic regression scorecards to predict
patient risk

As classification tools, we develop two alternative
logistic regression models that use GP referral infor-
mation to separate patients into groups at low and
high risk of having an abnormal result. For ease of
interpretability, we transform the logistic regression
models into scorecards, using the “weights of
evidence” approach common in credit scoring appli-
cations (Thomas, 2009). Scorecards can be repre-
sented on an arbitrary linear scale, are particularly
suitable when the concept of risk is involved and
make the same predictions as the original logistic
regression models. In this last respect scorecards dif-
fer from the points system method proposed by
Sullivan et al. (2004), used for example as a breast
cancer prediction rule (McCowan et al., 2011),
where the points system provides an approximation
to the original model.

We considered the following seven commonly-
reported characteristics for inclusion as predictors in
our model: “family history of cancer,” “lump,”
“unilateral pain” (one-sided pain), “other symptom,”
“urgency,” “duration of symptoms,” and “age.” The
characteristic “other symptom” refers to rarer symp-
toms (those present in 15 or fewer cases).

The outcome, a “normal” (Y¼ 1) or “abnormal”
(Y¼ 0) diagnostic result, was derived from patients’
test results. A normal result means the patient has
healthy breasts or does not require imaging.
Abnormal results cover both cancer and benign
breast diseases, including benign breast lumps such
as cysts and fibroadenomas, infections (for example
mastitis and abscesses), and congenital problems,
which cause the breast to have an abnormal external
appearance (Harvey et al., 2014). Distinguishing
between cancer and non-cancerous diseases without
imaging is difficult (Harvey et al., 2014), which is
why we propose routing patients at high risk of hav-
ing an abnormal result to imaging first.

A binary logistic regression model predicts the
probability, p, of a normal result from patient-specific
variables, X1, X2, … Xn, obtained from GP referral
information, as given in Equation 1. The parameters
b1, b2, … bn show the relative importance of each
characteristic in the prediction and b0 is the intercept.

These parameters are obtained from maximum likeli-
hood estimates. In reality, there is some error, e, that
is not captured by the model.

p :¼ Prob Y ¼ 1jX1,X2, :::,Xnð Þ ¼ 1

1þ e� b0þ
Pn

i¼1
biXi

� �
(1)

The weight of evidence, W, of a particular grouped
attribute j, for example “young,” of a characteristic i,
for example “age,” is the strength of evidence that
patients who have the attribute will have an abnormal
result. Let the number of normal (abnormal) results
with attribute j be nj (aj) and the total number of nor-
mal (abnormal) results be ntotal (atotal). Then the weight
of evidence variable, Wij, is given by the following.

Wij ¼ ln
aj

atotal
� nj
ntotal

� �
(2)

The scaled score, S, which is calculated from a
scorecard, is related to the unscaled score, b0 þPn

i¼1 biXi, which appears in the logistic regression, as
follows.

S ¼ b0 þ
Pn

i¼1 biXi
� � � factorþ offset (3)

The factor and offset are the solution to the fol-
lowing system of linear equations. This follows since
the unscaled score is equal to the log odds. The pair
(Score, Odds) is the alignment point, e.g., it is
assumed that the score 300 corresponds to odds of
12(:1) of having an abnormal result. The PDO is the
specified number of points to double the odds, e.g.,
if PDO is 20, then the odds double for every
increase in 20 points.

Score ¼ ln Oddsð Þ � factorþ offset (4)

Scoreþ PDO ¼ ln 2 �Oddsð Þ � factorþ offset (5)

Using the weights of evidence codings as the X
variables, the scaled score for a particular patient
becomes

S ¼ b0 þ
Xn
i¼1

biWij

 !
� factorþ offset (6)

where n is the number of variables and j is the attri-
bute that this patient has for characteristic i.

The points of the scaled score can be split between
the characteristics by dividing the parts of the score
that are not characteristic-specific between them.

Points for characteristic i ¼ b0
n
þ biWij

� �

� factorþ offset
n

(7)

Finally, to find the total score for a particular
patient, the points for each of the patient’s attributes
are added up.
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Models were developed in SAS Enterprise Miner
14.1 software. We developed two models: a full score-
card containing seven characteristics and a simple
scorecard containing fewer characteristics. We selected
variables for inclusion in the simple scorecard based on
their information values, which measure how much
each variable contributes to the abnormality prediction
(Thomas, 2009). The simple scorecard contains only
the two most predictive characteristics, “lump” and
“age” which are strong and medium predictors of
abnormal results, respectively (SAS, 2013). Values of the
two continuous characteristics, “duration of symptoms”
and “age” were grouped into attributes using the
Interactive Grouping feature. This feature automatically
generates groups using a decision tree algorithm aiming
to maximise patient similarity (in terms of diagnostic
results) within groups. For example, perfect similarity
(technically, zero entropy) would mean that all patients
in a group had the same diagnostic result. Such group-
ing helps build more parsimonious and robust models
that can capture non-monotonic relationships. For the
simple scorecard, the age groups were adapted to 10-
year brackets for ease of use.

Since the sample size is relatively small (n¼ 179
patients), the scorecards were estimated using the
entire dataset to make use of all the available data,
rather than removing some to use in validation.
Instead, a bootstrapping technique (sampling with
replacement), implemented in Microsoft Excel, was
used to internally validate the models.

4.3. Simulation modelling

The simulation models patients’ visits to the clinic,
from arrival to discharge (see Figure 1). Waits are

omitted from the figure but are potentially present
between each stage. Patients who are predicted
abnormal results (have scores at least as high as the
cut-off score) are sent straight for imaging tests;
otherwise patients see a clinician first. In the simula-
tion, we ignored the small numbers of patients who
are ineligible for the scorecard (males and non-GP
referrals), and assumed referral information would
be provided for all patients.

Patients have the following imaging tests. It is
assumed that imaging first patients (those that are
predicted an abnormal result) are given the same
imaging tests as those patients with actual abnormal
results in our data, dependent on age (see Table 3
in the Supplemental material). For the clinician first
patients (those patients predicted normal results),
we assume clinician behaviour in requesting tests
remains unchanged from current behaviour. That is,
we assume the same test proportions as in the data,
dependent on age and actual result (see Tables 3
and 4 in the Supplemental material). It is assumed
that patients with actual normal results never have a
biopsy. Of those patients with actual abnormal
results who have an ultrasound, we assume 44%
also have a biopsy, as in our dataset.

Patients are prioritised for tests in the simulation
in the following way. For mammograms, patients
who have had an ultrasound are prioritised in order
of waiting time. Then other patients are seen in
order of their waiting time, regardless of whether
they have come from a consultation or straight for
imaging. Similarly, for ultrasound, patients who
have had a mammogram are prioritised in order of
waiting time. Then other patients are seen in order
of their waiting time, again regardless of whether

Figure 1. Simulation process map. DNA¼Did not attend.
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they visited a clinician or imaging first. In terms of
prioritising patients to see a clinician, we observed dif-
ferent prioritisation behaviours, so experimented with
these in the simulation. It was found that the choice
of prioritisation rule has little effect on the mean aver-
age wait for the initial consultation. However, the
mean average waiting time for a results consultation is
about 12min shorter if results consultations are priori-
tised than if initial consultations are prioritised.

The objective of building the simulation model is
to test alternative scenarios that differ in the scorecard
used (simple or full) and the cut-off score between
low- and high- risk patients. For the simple scorecard,
the following scores are possible: 5, 10, 12, 14, 16, 21,
23, and 25. There are seven ways of dividing the
scores into two groups at higher and lower risk, for
example using the cut-off scores 24, 22, 17, 15, 13, 11
and 6. It is also possible to predict that all patients
will have a normal result (for example with cut-off
26), or that all patients will have an abnormal result
(for example with cut-off 4). Therefore, there are nine
possible cut-off scores. For the full scorecard, possible
scores range from 167 to 299. We test cut-off scores
at intervals of five.

At the start of the simulation, a set of initial patient
labels is assigned to each new patient. These patient
labels are age divide, predicted result, and actual result,
which all influence progress through the simulation of
breast diagnostic services. Our novel approach of
using simulation to test the operational impact of
alternative cut-off scores involves changing the pro-
portions of patients with abnormal and normal pre-
dicted results between scenarios. Since the predicted
result depends on the cut-off score, and we want to
test different cut-offs, we need to know how patients
are likely to be distributed between combinations of
risk scores, age divide, and actual result.

The age divide label takes one of two values:
below 35 years old or at least 35 years old. This label
affects which imaging tests are required, as
explained earlier. The predicted result label (either
normal or abnormal) is calculated from a scorecard
and depends on the cut-off score. When using the
simple scorecard, only two referral characteristics
are needed to calculate the predicted result, but for
the full scorecard, seven referral characteristics are
needed. The actual result label indicates whether the
clinical assessment and optional imaging tests show
a normal or abnormal result.

In order to test the impact of using the simple
scorecard to predict abnormal results and route
patients accordingly, we generate the patient labels
in the following way. For the 179 patients in our
sample, we calculated the age divide and actual
result labels. From the lump and age group charac-
teristics, we calculated each patient’s risk score

according to the simple scorecard. Each possible
combination of the age divide, actual result and risk
score was present in our dataset. In the simulation,
combinations of patient labels are sampled from the
empirical joint distributions (see Table 5 in the
Supplementary material).

For testing the impact of using the full scorecard,
we also need a joint distribution of the age divide,
actual result and predicted result for different cut-
off scores. In this case, the risk score is calculated
from seven characteristics, including the age group.
By splitting the 29–42-year-old age group category
at age 35, these amended age groups can also be
used to generate the age divide label value. Thus, we
need the joint distribution of the seven (amended)
scorecard characteristics plus the actual result. There
are 2880 possible combinations of levels (attribute
scores), with only 166 unique combinations present
in our data sample (see Table 6 in Supplementary
material for the number of levels). Thus, using
empirical proportions would not fully capture the
likely joint distribution present in the population of
patients attending the breast diagnostic clinic, so we
use an alternative approach.

4.4. Poisson regression for generating patient
labels in the simulation

Instead, our approach is fitting a Poisson loglinear
model (also known as Poisson regression), a gener-
alised linear model to predict counts in a contin-
gency table with these eight factors (Agresti, 2013).
Next, the expected counts are converted to the
expected proportions of patients with each label
combination, by dividing by the sample size. In the
simulation, when a new patient is generated, their
initial label combination is sampled from this distri-
bution. A computational advantage is that only one
sample is drawn per patient, as opposed to one sam-
ple for each patient label.

We introduce some notation to represent Poisson
loglinear models for ease of exposition. A purely illus-
trative two-way contingency table for the factors lump
(L) and urgency (U) is shown in Table 1. Here lLU is
the expected count for the cell in row i and column j
of the contingency table. For instance, l00 is the
expected number of patients with no lump who are
symptomatic. The Poisson loglinear model that
includes row effects, column effects and the row-col-
umn interaction can be summarised as (L, U, LU) and
is written in full as shown in Equation 8.

ln lLUð Þ ¼ kþ kL1L1 þ kU1 U1 þ kU2 U2

þ kLU11 L1U1 þ kLU12 L1U2

(8)

In the above equation, k is the offset parameter and
dummy variables are used to code the factor levels.
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Since lump has two levels, lump present and no
lump, this is coded using one dummy variable, L1.
Urgency has three levels, symptomatic, suspected can-
cer, and other, so is coded using two dummy varia-
bles U1 and U2. The dummy variable codings are
given in Equations 9–11. The parameter kL1 repre-
sents the effect of the level lump present, compared
to no lump, on the expected count. Similarly kU1 and

kU2 estimate the effects of suspected cancer and other
urgency compared to the reference level, symptom-
atic. The dependence between lump and urgency is

captured by the row-column interaction effects, kLU11
and kLU12 :

L1 ¼ 0 if no lump,
1 if lump present

�
(9)

U1 ¼ 0 if symptomatic or other,
1 if suspected cancer

�
(10)

U2 ¼ 0 if symptomatic or suspected,
1 if other

�
(11)

Alternative Poisson loglinear models for the same
dataset differ in which interaction effects they
include, and consequently also how many parame-
ters must be estimated. Using dummy variables
means that the number of parameters for each sin-
gle variable effect is equal to the number of levels
�1. For each two-way interaction included, the
number of parameters to estimate is equal to
the product of the number of dummy variables for
the two factors. Inclusion of higher-order interac-
tions is also possible, but the feasibility of estimating
the associated parameters depends on the size of the
dataset (Agresti, 2013).

We fitted two alternative models to predict
counts in our 8-way contingency table (see
Supplementary material Table 6) using the glm()
command in the stats package in R. This command
performs maximum likelihood estimation using
iteratively reweighted least squares (Quick-R, 2017).
We fitted firstly Model 1 which contained single
variable effects only, (A, F, L, P, O, D, U, R), and
secondly Model 2 which contained single variable
effects, as well as all two-way interactions (A, F, L, P,
O, D, U, R, AF, AL, AP, AO, AD, AU, AR, FL, FP,
FO, FD, FU, FR, LP, LO, LD, LU, LR, PO, PD, PU,
OD, OU, OR, DU, DR, UR). Fitting Model 1 using
dummy variables involved estimating 17 parameters
(for single effects) while Model 2 had 120 parameters
(for both single effects and interactions).

To test how well the models fit the data, we
simulated Pearson goodness-of-fit statistics for 3000
samples from the model distributions, in R software.
This large number of iterations gave stable results.
The simulated p-values are 0.39 for Model 1 and
0.59 for Model 2, so at the 0.05 level, we do not
reject the null hypotheses that the models fit the
data. We want a model that provides good estimates
of expected counts. Given that both models fit well,
we chose Model 2 because, in reality, characteristics
are dependent; for example, older women are more
likely to have a lump. Table 7 in the Supplementary
material shows the Model 2 joint distribution of
label combinations for the full scorecard with some
different cut-off scores.

4.5. Measuring classification and operational
performance of the scorecards

We first consider the classification performance of
the scorecards for different cut-off scores. True posi-
tives (TP) and true negatives (TN) are patients who
were correctly classified with normal and abnormal
results, respectively. On the other hand, false posi-
tives (FP) and false negatives (FN) are patients who
were wrongly predicted normal and abnormal
results, respectively. Sensitivity and specificity are the
proportions of normal and abnormal results that
were correctly predicted, respectively. Finally, classi-
fication accuracy is the proportion of all results that
were correctly predicted.

Next we look at the operational performance of
the simulated clinic when using the scorecards with
different cut-off scores. The goal is to maximise the
clinic efficiency, defined as the average proportion
of patients’ time at the clinic that is value-added,
over a set of cut-off score scenarios. Value-added
activities are consultations and tests, as opposed to
waiting and queuing. In the case of ties, we prefer
the cut-off score leading to the lowest average
patient total time spent in the clinic.

To define clinic efficiency and total time math-
ematically, first we define a patient’s start time as
the time at which the clinic’s performance for that
patient begins to be measured. For a patient arriving
on time, the start time is the scheduled appointment
time, which is the same as the registration time. For
a late patient, the start time is the registration time,
since the delay between the scheduled time and the
registration time is caused by the patient not the
clinic. For early patients there are two possibilities.
If an early patient is seen early, their start time is
the actual appointment time. If an early patient is
seen late, the start time is the scheduled appoint-
ment time. This corresponds to how waiting times
for unpunctual patients are dealt with in the

Table 1. Illustrative two-way contingency table of lump (L)
and urgency (U).

Column j 0 1 2
Row i Symptomatic Suspected cancer Other

0 No lump l00 l01 l02
1 Lump present l10 l11 l12
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literature (see for example Santib�a~nez et al., 2009).
This allows us to define a patient’s total time as the
period from the start time until the end time, when
the patient leaves the clinic.

Total time ¼ End time � Start time (12)
For each day (run) of the simulation, we calculate

the average total time. The mean average total time
is the tie-breaker when clinic efficiency is equal for
several scenarios.

We define the value-added time as the time dur-
ing which a patient is in a consultation or having
tests done.

Value�added time ¼ Time in consultations

þ time in mammogram room

þ time in ultrasound room

(13)

Hence efficiency is the proportion of time at the
clinic during which a patient is in a consultation or
having tests done.

Efficiency ¼ Value�added time
Total time

(14)

The overall clinic efficiency is the average effi-
ciency over all patients, so can be used as a perform-
ance measure on a particular day.

Clinic efficiency ¼
P

patientsEfficiency

Number patients
(15)

Following the method suggested by Banks et al.
(2010), the simulation model was run many times
to obtain a 95% confidence interval for the mean
value of each operational performance measure. The
trial run calculator feature of Simul8 was used to
find the number of runs required for the 95% confi-
dence limits to be within 10% of the estimate of the
mean (the “precision”). Since each day is independ-
ent with no patients staying overnight, the simula-
tion was run from empty with no warm-up period,
and the run length was one day.

5. Results

5.1. Scorecards

The simple and full scorecards are shown in Tables
2 and 3. The scorecards work by adding up the

points corresponding to a patient’s attributes (as
recorded in their referral). The higher the total risk
score, the greater the chance that the patient will
receive an abnormal result.

5.2. Classification performance for different cut-
off scores

Table 4 shows how well the simple scorecard sepa-
rates normal and abnormal results in the training
data for each cut-off. The best classification accuracy
is 68% and is achieved when the cut-off is set at 17.
(Currently, all patients are sent to a clinician first,
which corresponds to a cut-off of 4 and classifica-
tion accuracy of 45%; that is, for 45% of people
abnormal results are found and imaging is needed.)
Both sensitivity and specificity are greater than 60%
when the cut-off is 15. Therefore, if the only consid-
eration is that sensitivity and specificity are equally
important, then 15 would be the best choice of cut-
off. However, before finalising our choice of cut-off,
we also need to consider the classification perform-
ance of the full scorecard, as well as operational
measures for both scorecards.

For the full scorecard, there are a large number
of possible scores, so in Table 5 we present classifi-
cation performance measures for a selection of cut-
off scores only. Here, the best classification accuracy
among the cut-off scores considered is 70%, which
is achieved when the cut-off score is 220. This cut-
off also achieves the best balance between specificity
and sensitivity, with both greater than 60%. The
best classification accuracy from the full scorecard
offers a marginal improvement over the simple

Table 2. Simple scorecard.
Scorecard points

Age
Age < 30 10
30 <¼ Age < 40 3
40 <¼ Age < 50 8
50 <¼ Age 12

Lump
Yes 13
No or not recorded 2

Table 3. Full scorecard.
Scorecard points

Age
Age < 29 43
29 <¼ Age < 42 16
42 <¼ Age < 47 33
47 <¼ Age < 52 21
52 <¼ Age 64

Duration of symptoms
Not applicable or not recorded 29
Less than 2weeks 42
2weeks–2months 35
2–5months 26
Over 5months 35

Family history of cancer
No or not recorded 29
Yes 38

Lump
No or not recorded 5
Yes 54

Other symptom
No or not recorded 29
Yes 36

Unilateral pain
No or not recorded 31
Yes 33

Urgency
Suspected cancer 32
Symptomatic 31
Other or not recorded 32
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scorecard (70% versus 68%), and the cut-off with
the best balance between specificity and sensitivity
improves the specificity substantially (81% versus
72%) with a small decrease in sensitivity (61% ver-
sus 62%).

5.3. Operational performance for different cut-
off scores

When choosing the cut-off score in this situation,
the proportion of time patients are in consultations/
tests and how long they spend in the clinic are also
of importance. Initial experiments showed that
under the current appointment schedule, with two
clinicians working simultaneously, patients arrive at
the ultrasound area at a faster rate than they can be
processed. Therefore, we experimented with alterna-
tive set-ups. The best results from preliminary simu-
lation experiments (see Supplementary material,
Tables 9 and 10) were achieved using 15-minute
gaps between appointments and one clinician work-
ing at a time, so we use that set-up in our experi-
ments below.

Simulation results using the simple scorecard and
a subset of cut-offs are shown in Table 6. The best
clinic efficiency is 0.27 and is achieved with cut-off
scores 15 (where both sensitivity and specificity are
higher than 60%), 17 (where the classification accur-
acy is highest), and 22. The worst clinic efficiency is
achieved when all patients are sent straight to imag-
ing (0% sensitivity and 100% specificity). The short-
est average total time is 107min, when the cut-off
score is 15, which corresponds to sending 53% of
patients straight to imaging. A further benefit of
using 15 as the cut-off would be that it simplifies
use of the scorecard, since it is equivalent to sending
patients with a lump recorded straight to imaging,
and patients without a lump recorded to a clinician
first. A cut-off score of 15 was also the best choice
to ensure that both sensitivity and specificity were
over 60%.

Next, we investigate whether by using the full
scorecard we could further improve clinic efficiency.
The results are shown in Table 7. The highest aver-
age clinic efficiency is 0.28 compared to 0.27 with
the simple scorecard. This is achieved with a cut-off
score of 235, which corresponds to sending 32% of

patients straight to imaging, compared to 53% with
the simple scorecard. This approach has classifica-
tion accuracy of 68% compared to 66% with the
simple scorecard. The average total time at the clinic
is 113min, slightly longer than for the simple score-
card (107min). Since the full scorecard is more
complicated to use in practice, involving assessing
seven characteristics per patient rather than two, the
simple scorecard is more promising for practical
use, particularly while referral forms are on paper
rather than electronic.

6. Discussion

We have demonstrated the construction of a risk
classification tool and shown how discrete-event
simulation could be used to guide decisions on
where to set a cut-off score between low- and high-
risk patients. This enables the best cut-off to be
chosen from both classification accuracy and oper-
ational perspectives. Our unique approach combin-
ing logistic regression for classification and
simulation to select a cut-off score allows decision
makers to consider the wider implications of their
choice of cut-off. This approach is more versatile
than considering solely predictive performance
measures; any measure that can be simulated can be
used to compare cut-off scores. The practical impact
of the cut-off score may be more important than
the predictive accuracy, particularly where the classi-
fication model is being used to sequence or priori-
tise services rather than deciding whether to offer
a service.

The Poisson approach for generating combina-
tions of categorical patient characteristics that we
propose in this paper provides a statistically sound
solution to a general problem. When there are
many characteristics, small samples will not contain
all the combinations that may be present in the
population. Poisson regression is a well-established
tool for modelling count data, which we apply to
model counts of combinations of characteristics. It
enables the inclusion of inter-dependencies between
characteristics, and is appropriate for categorical
data (by using dummy variables). Unlike using
empirical distributions, the Poisson approach is able
to generate unseen combinations.

Table 4. Classification performance of simple scorecard for different cut-off scores.
Cut-off score True positives True negatives False positives False negatives Sensitivity Specificity Classification accuracy

26 98 0 81 0 100% 0% 55%
24 93 11 70 5 95% 14% 58%
22 83 31 50 15 85% 38% 64%
17 77 45 36 21 79% 56% 68%
15 61 58 23 37 62% 72% 66%
13 50 68 13 48 51% 84% 66%
11 37 72 9 61 38% 89% 61%
8 19 78 3 79 19% 96% 54%
4 0 81 0 98 0% 100% 45%
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Comparing our results to previous studies, we
have generated a scorecard that allows clinicians to
add up each patients’ risk score based on a small
number of characteristics. Alternative classification
models would have provided results in a different
format, but the best model depends on the context.

Classification and regression trees, used for example
by Bhattacharjee and Ray (2016) and Harper (2002)
are useful in situations where patients are grouped
based on a continuous variable, e.g., service time or
operation time, rather than a binary variable, e.g.,
normal or abnormal result.

Table 5. Classification performance of full scorecard for different cut-off scores.
Cut-off score True positives True negatives False positives False negatives Sensitivity Specificity Classification accuracy

290 98 0 81 0 100% 0% 55%
280 96 3 78 2 98% 4% 55%
270 95 7 74 3 97% 9% 57%
260 94 15 66 4 96% 19% 61%
250 90 24 57 8 92% 30% 64%
240 85 37 44 13 87% 46% 68%
230 76 45 36 22 78% 56% 68%
220 60 66 15 38 61% 81% 70%
210 51 69 12 47 52% 85% 67%
200 38 73 8 60 39% 90% 62%
190 28 74 7 70 29% 91% 57%
180 16 79 2 82 16% 98% 53%
170 0 81 0 98 0% 100% 45%
160 0 81 0 98 0% 100% 45%

Table 6. Operational performance of simple scorecard for different cut-off scores.
Clinic efficiency Average total time (minutes)

Cut-off score
Number runs for
5% precision

Mean [95%
confidence interval]

Number runs for
10% precision

Mean [95%
confidence interval]

26 48 0.24 [0.23,0.25] 18 143 [129,156]
24 60 0.26 [0.24,0.27] 29 134 [121,147]
22 59 0.27 [0.25,0.28] 35 124 [111,136]
17 69 0.27 [0.26,0.29] 42 116 [105,128]
15 106 0.27 [0.26,0.28] 47 107 [97,118]
13 112 0.26 [0.24, 0.27] 46 109 [98,119]
11 132 0.25 [0.24,0.26] 52 110 [99,121]
6 150 0.23 [0.22,0.24] 65 116 [104,127]
4 166 0.20 [0.19,0.22] 61 123 [110,135]

The tied best results for clinic efficiency are highlighted in bold, with the best average total time among these also highlighted in bold.

Table 7. Operational performance of full scorecard for different cut-off scores.
Clinic efficiency Average total time (minutes)

Cut-off score
Number runs

for 5% precision
Mean [95%

confidence interval]
Number runs for
10% precision

Mean [95%
confidence interval]

165 166 0.20 [0.19,0.22] 61 123 [110,135]
170 162 0.21 [0.20,0.22] 61 123 [111,135]
175 158 0.21 [0.20,0.22] 61 123 [111,135]
180 147 0.22 [0.21,0.23] 66 117 [105,128]
185 140 0.23 [0.22,0.24] 59 115 [104,127]
190 141 0.24 [0.23,0.25] 66 113 [102,124]
195 132 0.25 [0.24,0.26] 57 113 [102,125]
200 123 0.25 [0.24,0.26] 47 105 [95,116]
205 120 0.26 [0.24,0.27] 47 107 [96,117]
210 116 0.26 [0.25,0.27] 46 106 [95,116]
215 112 0.26 [0.25,0.27] 46 108 [97,118]
220 112 0.26 [0.25,0.28] 52 109 [98,119]
225 83 0.27 [0.25,0.28] 43 110 [99,121]
230 71 0.27 [0.26,0.29] 35 114 [103,126]
235 63 0.28 [0.26,0.29] 41 113 [102,124]
240 64 0.27 [0.26,0.29] 37 120 [108,131]
245 54 0.27 [0.26,0.28] 34 125 [112,137]
250 51 0.26 [0.25,0.28] 33 131 [118,144]
255 52 0.26 [0.25,0.28] 24 127 [115,139]
260 62 0.26 [0.25,0.27] 24 132 [119,144]
265 45 0.25 [0.24,0.27] 24 134 [121,147]
270 49 0.25 [0.24,0.27] 20 138 [124,151]
275 48 0.25 [0.23,0.26] 19 141 [127,155]
280 43 0.24 [0.23,0.25] 16 142 [128,156]
285 44 0.24 [0.23,0.25] 18 143 [129,156]
290 44 0.24 [0.23,0.25] 18 143 [129,156]
295 48 0.24 [0.23,0.25] 18 143 [129,156]
300 48 0.24 [0.23,0.25] 18 143 [129,156]

The best result for clinic efficiency is highlighted in bold.
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There were several limitations to this study which
could point the way to future research. When simu-
lating the impacts of using scorecards to triage
patients, we focused our attention on just two oper-
ational performance measures: clinic efficiency and
average total time. The research could be extended
by performing a cost-effectiveness analysis and by
considering additional performance measures, per-
haps in a weighted function. Another extension
could be looking at the range in performance across
different patients and across different days, for
example by calculating percentiles rather than aver-
age measures.

A limitation of the Poisson approach is that the
number of parameters to estimate increases substan-
tially when additional interactions are included. In
our example we were limited to including two-way
interactions since there were insufficient data to
estimate three-way interactions. It would be useful
to know in what situations applying the Poisson
approach is worthwhile and in which it makes little
difference to estimates of operational performance.
Future work could compare recommendations
obtained from using the Poisson model distribution
to the empirical distribution, for a series of case
studies. We suspect that situations where the rarer
combinations of characteristics correspond to higher
service use will particularly benefit from the
Poisson approach.

The problem under study can be generalised to
other contexts outside diagnostic clinics, and even
outside healthcare: Is information provided by a
non-specialist (or a patient or customer themselves)
complete and accurate enough to make decisions
related to the patient or customer (e.g., assign
resources or allow access), without first performing
a specialist assessment? The classification-discrete-
event simulation approach allows different oper-
ational measures to be considered depending on
the context.

7. Conclusion

We have demonstrated the evaluation of classifica-
tion tools within a discrete-event simulation model
and choice of a cut-off score based on operational
performance measures. Moreover, we have proposed
the use of Poisson regression to generate patient
labels for simulation when data is limited.

A simple scorecard based on just the two most
predictive patient characteristics, lump, and age, has
the advantage of simplicity of use in the clinic, and
improved accuracy and efficiency compared to cur-
rent practice. The full scorecard based on seven
characteristics only slightly improved accuracy and
efficiency, but with more complexity in use. Using a

scorecard, patients (in the simulation) spend a
higher proportion of their time in tests and consul-
tations, rather than waiting, compared to current
practice. Also, overall, the total time that patients
spend at the clinic is reduced because high-risk
patients have one less consultation, being expedited
straight to test, and waiting times are reduced.

The feasibility of using GP referral information
to plan breast clinic diagnostics has also been dem-
onstrated for the first time to the best of our know-
ledge. Based on this analysis, a larger-scale study is
recommended to validate the accuracy and effi-
ciency of using a classification tool, namely a score-
card, to direct patients on risk-based pathways
through the clinic. As part of this, the best cut-off
in different clinics and situations should be com-
pared to find out whether and how this varies, and
patients should be involved in discussions about the
fairness of routing patients differently.

Note however that using a scorecard to route
patients does not prevent them having tests: if the
scorecard misclassifies a patient as likely to have an
abnormal result, they may have tests that were
unnecessary, and vice versa, if the scorecard misclas-
sifies a patient as likely to have a normal result, the
clinician can correct the assessment and send them
for tests (as is the case for all patients today).
Simulation offers a starting point for the discussion
as different scenarios can be compared without
affecting real patients. Some clinics already operate
a split system with some patients being sent straight
to test and others to a clinician first. The potential
benefits are better use of resources (GP, clinician,
and imaging), as well as reductions in patients’ non-
value-added time, such as on-the-day waiting and
answering questions for a second time.

There has already been practical impact for the
Whittington clinic from this research project, which
has benefitted from close collaboration with clinic
staff from initial stages onwards. Suggestions for a
more efficient discharge system were tested in pre-
liminary simulation modelling and found to be effi-
cient for all types of patients (those with both
normal and abnormal results). This change has
already been fully embedded by clinic staff. Practical
suggestions on numbers of appointments offered
each day have also been made, and on balancing
numbers of clinicians working at any time with the
availability of diagnostic tests.
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