

ENIGMA-TS: A worldwide platform for collaboration on the study of Tourette Syndrome genetics and neuroimaging

Peristera Paschou^{1*}, Yin Jin², Kirsten R. Müller-Vahl³, Harald E. Möller⁴, Renata Rizzo⁵, Pieter J. Hoekstra⁶, Veit Roessner⁷, Nanette Mol Debes⁸, Yulia Worbe⁹, Andreas Hartmann⁹, Pablo Mir¹⁰, Danielle Cath⁶, Irene Neuner¹¹, Heike Eichele¹², Chencheng Zhang¹³, Katarzyna Szamburska-Lewandowska¹⁴, Alexander Munchau¹⁵, Julius Verrel¹⁵, Richard L. Musil¹⁶, Tim J. Silk¹⁷, Colleen A. Hanlon¹⁸, Emily Bihun¹⁹, Valerie C. Brandt²⁰, Andrea Dietrick⁶, Natalie Forde²¹, Christos Ganos²², Deanna Greene¹⁹, Chu Chunguang¹³, Michel Grothe²³, Tamara Hershey¹⁹, Piotr Janik¹⁴, Jonathan Koller¹⁹, Juan Francisco Martin Rodriguez¹⁰, Karsten Mueller⁴, Stefano Palmucci⁵, Adriana Prato⁵, Shukti Ramkiran¹¹, Federica Saia²⁴, Natalia Szejko¹⁴, Renzo Torrecuso⁴, Zeynep Tumer⁸, Anne Uhlmann²⁵, Tanja Veselinovic¹¹, Tomasz Wolanczyk¹⁴, Jace J. Zouki¹⁷, Pritesh Jain², Apostolia Topaloudi², Mary Kaka², Zhiyu Yang², Petros Drineas²⁶, Sophia Thomopoulos²⁷, Tonya J. White²⁸, Dick J. Veltman²⁹, Lianne Schmaal³⁰, Dan J. Stein³¹, Sophia I. Thomopoulos²¹, Barbara Franke²¹, Odile van den Heuvel²⁹, Neda Jahanshad²⁷, Paul M. Thompson²⁷, Kevin J. Black¹⁹

¹Department of Molecular Biology and Genetics, Purdue University, United States, ²Purdue University, United States, ³Hannover Medical School, Germany, ⁴Max Planck Institute for Human Cognitive and Brain Sciences, Germany, ⁵University of Catania, Italy, ⁶University of Groningen, Netherlands, ⁷TU Dresden, Germany, ⁸Herlev Hospital, Denmark, ⁹Hôpitaux Universitaires Pitié Salpêtrière, France, ¹⁰Institute of Biomedicine of Seville, Spanish National Research Council (CSIC), Spain, ¹¹RWTH Aachen University, Germany, ¹²University of Bergen, Norway, ¹³Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, China, ¹⁴Medical University of Warsaw, Poland, ¹⁵University of Lübeck, Germany, ¹⁶Ludwig Maximilian University of Munich, Germany, ¹⁷Deakin University, Australia, ¹⁸Wake Forest University, United States, ¹⁹Washington University in St. Louis, United States, ²⁰University of Southampton, United Kingdom, ²¹Radboud University Nijmegen, Netherlands, ²²Charité Universitätsmedizin Berlin, Germany, ²³Department of Immunology, Institute of Biomedicine of Seville (IBIS), Spain, ²⁴Department of Medical Surgical Sciences and Advanced Technologie, Radiology Unit 1, University of Catania, Italy, ²⁵Technical University Dresden, Germany, ²⁶Dept of Computer Science, Purdue University, United States, ²⁷University of Southern California, United States, ²⁸Erasmus Medical Center, Netherlands, ²⁹VU Amsterdam, Netherlands, ³⁰The University of Melbourne, Australia, ³¹University of Cape Town, South Africa

Submitted to Journal: Frontiers in Psychiatry

Specialty Section: Child and Adolescent Psychiatry

Article type: Perspective Article

Manuscript ID: 958688

Received on: 31 May 2022

Revised on: 09 Jul 2022

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

.PP designed the study and experiments, coordinates the study and data integration and analysis, wrote the manuscript; YJ performed experiments, analyzed and interpreted data and wrote the manuscript; KMV, BF, OVDH, NJ, PMT, KJB designed the study and experiments, contributed data, interpreted results, wrote the manuscript; all authors contributed data and methods, contributed to results interpretation, analyzed data, wrote the manuscript.

Keywords

Tourette Syndrome, Neuroimaging, Genetics, ENIGMA, brain MRI

Abstract

Word count: 247

Tourette Syndrome (TS) is characterized by multiple motor and vocal tics and high comorbidity rates with other neuropsychiatric disorders. Obsessive Compulsive Disorder (OCD), Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders (ASD), Major Depressive Disorder (MDD) and Anxiety Disorders (AXD) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the ENIGMA-TS Working Group (Enhancing Neuroimaging Genetics through Meta-Analysis for TS). ENIGMA-TS is an international collaborative effort bringing together a large network of investigators aiming to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with genomic data as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, as well MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights towards understanding brain structure and function and genetic effects in TS and related disorders as well as biomarkers that could help inform improved clinical practice.

Contribution to the field

Here, we present the scientific premise, perspectives, and key goals that have motivated the recent establishment of the ENIGMA-TS Working Group (Enhancing Neuroimaging Genetics through Meta-Analysis for TS). ENIGMA-TS is an international collaborative effort bringing together a large network of investigators aiming to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with genomic data as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, as well MDD, and AXD. ENIGMA-TS will help close major gaps in understanding brain structure and function in TS, dissect the basis of the heterogeneity of its clinical presentation and explore the underlying links between TS and its frequently comorbid disorders.

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: No human studies are presented in this manuscript.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

Data availability statement

Generated Statement: Publicly available datasets were analyzed in this study. This data can be found here: https://www.med.unc.edu/pgc/.

ENIGMA-TS: A worldwide platform for collaboration on the study of Tourette Syndrome genetics and neuroimaging

Peristera Paschou^{1*}, Yin Jin¹, Kirsten Müller-Vahl², Harald E. Möller³, Renata Rizzo⁴, Pieter Hoekstra⁵, Veit Roessner⁶, Nanette Mol Debes⁷, Yulia Worbe⁸, Andreas Hartmann⁹, Pablo Mir¹⁰, Danielle Cath⁵, Irene Neuner^{11,12,13}, Heike Eichele ¹⁴, Chencheng Zhang¹⁵, Katarzyna Lewandowska¹⁶, Alexander Munchau¹⁷, Julius Verrel¹⁷, Richard Musil¹⁸, Tim J. Silk¹⁹, Colleen A. Hanlon²⁰, Emily D. Bihun²¹, Valerie Brandt²², Andrea Dietrich⁵, Natalie Forde²³, Christos Ganos²⁴, Deanna J. Greene²¹, Chunguang Chu¹⁵, Michel J. Grothe⁹, Tamara Hershey²¹, Piotr Janik¹⁶, Jonathan M. Koller²¹, Juan Francisco Martin-Rodriguez⁹, Karsten Müller³, Stefano Palmucci⁴, Adriana Prato⁴, Shukti Ramkiran^{11,12,13}, Federica Saia⁴, Natalia Szejko¹⁶, Renzo Torrecuso³, Zeynep Tumer⁷, Anne Uhlmann⁶, Tanja Veselinovic¹¹, Tomasz Wolańczyk¹⁶, Jade-Jocelyne Zouki¹⁹, Pritesh Jain¹, Apostolia Topaloudi¹, Mary Kaka¹, Zhiyu Yang¹, Petros Drineas²⁵, Sophia I. Thomopoulos²⁶, Tonya White²⁷, Dick Veltman²⁸, Lianne Schmaal²⁹, Dan J. Stein³⁰, Jan Buitelaar²³, Barbara Franke²³, Odile van den Heuvel³¹, Neda Jahanshad²⁵, Paul M. Thompson²⁵, Kevin J. Black²¹ on behalf of the ENIGMA-TS Working Group.

- 1. Department of Biological Sciences, Purdue University, West Lafayette, USA
- 2. Hannover University Medical School, Hannover, Germany
- 3. Max Planck Institute for Human Cognitive and Brain Sciences. Leipzig, Germany
- 4. Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit 1, University of Catania, Catania, Italy
- 5. University Medical Center Groningen, Groningen, Netherlands
- 6. Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
- 7. Department of Pediatrics, Herlev University Hospital, Denmark
- 8. Sorbonne University, Department of Neurohysiology, Pitié-Salpêtrière Hospital, Paris, France
- 9. Pitié-Salpêtrière Hospital, Paris, France
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- 11. Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Germany
- 12. Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Germany
- 13. JARA BRAIN Translational Medicine
- 14. Department of Biological and Medical Psychology, Univeristy of Bergen, Norway
- 15. Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
- 16. Medical University of Warsaw, Warsaw, Poland
- 17. University of Lübeck, Lübeck, Germany
- 18. Ludwig-Maximilians-University of Munich, Munich, Germany
- 19. Deakin University, Geelong, Australia
- 20. Wake Forest School of Medicine, Winston-Salem, USA
- 21. Washington University in St. Louis, St. Louis, USA
- 22. University of Southampton, Southampton, UK
- 23. Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
- 24. Charité, University Medicine Berlin, Berlin, Germany
- 25. Department of Computer Science, Purdue University, West Lafayette, USA
- 26. Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
- 27. Erasmus University Rotterdam, Rotterdam, Netherlands
- 28. VU University Amsterdam, Amsterdam, Netherlands
- 29. Centre for Youth Mental Health, University of Melbourne, VIC, Australia
- 30. SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- 31. Dept. Psychiatry, Dept. Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience

*Corresponding author

Peristera Paschou, ppaschou@purdue.edu

Abstract

Tourette Syndrome (TS) is characterized by multiple motor and vocal tics and high comorbidity rates with other neuropsychiatric disorders. Obsessive Compulsive Disorder (OCD), Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders (ASD), Major Depressive Disorder (MDD) and Anxiety Disorders (AXD) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the ENIGMA-TS Working Group (Enhancing Neuroimaging Genetics through Meta-Analysis for TS). ENIGMA-TS is an international collaborative effort bringing together a large network of investigators aiming to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with genomic data as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, as well MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights towards understanding brain structure and function and genetic effects in TS and related disorders as well as biomarkers that could help inform improved clinical practice.

Introduction

Tourette Syndrome (TS) is characterized by multiple, persistent motor and vocal tics and affects approximately 0.6-1% of children worldwide (1). Tics are often preceded by premonitory urges and resemble voluntary actions but are patterned and repetitive and may also be voluntarily suppressed. These characteristics suggest that neural networks and brain regions associated with both voluntary and involuntary motor behavior as well as affective processes may be involved. There is no cure for TS and efforts to develop novel pharmacological treatments are hampered by our limited understanding of the neurobiology and brain structural and functional deficits that underlie the disorder. With 90% of TS patients presenting comorbid with other neuropsychiatric disorders, our efforts to understand and treat this disorder are further complicated. Most frequent comorbid disorders in TS are found along the impulsive-compulsive spectrum and include Obsessive Compulsive Disorder (OCD up to 50% of TS patients), Attention Deficit Hyperactivity Disorder (ADHD up to 54%), and Autism Spectrum Disorders (ASD up to 20%). Major Depressive Disorder (MDD up to 26%) and Anxiety Disorders (AXD up to 36%) are also often found comorbid with TS, especially in clinical settings (1–3).

From a genetic perspective, TS is a complex disorder; multiple genes interact with environmental factors to lead to the onset of symptoms (4,5). Recent multi-site studies have identified genome-wide significant susceptibility variants and pathways that implicate ligand-gated ion channel signaling (highlighting the role of GABA), immune, cell adhesion and transsynaptic signaling processes in TS (6–9). From a pathophysiology perspective, the quest for the anatomical structure and brain circuits that underlie TS and tackle its clinical heterogeneity has proven challenging, impeded by low sample size and efforts mostly fragmented across

multiple sites (10,11). Here, we present the scientific premise, perspectives, and key goals that have motivated the recent establishment of the ENIGMA-TS Working Group (Enhancing Neuroimaging Genetics through Meta-Analysis for TS). Leveraging an international network of collaborators, existing collections of data, and established infrastructure and pipelines for large-scale neuroimaging and genetics studies, ENIGMA-TS will help close major gaps in understanding brain structure and function in TS, help dissect the basis of the heterogeneity of its clinical presentation and explore the underlying links between TS and its frequently comorbid disorders.

Leveraging the power of international collaboration to understand brain structure and function in TS.

To date, structural and functional neuroimaging studies for TS have been limited in size and have produced mixed results that are sometimes not replicated across studies (reviewed in (1,5,12–16). In general, abnormal development and/or maintenance of cortico-striato-thalamo-cortical (CSTC) circuits are implicated (1.11.17). Several studies report lower prefrontal cortical thickness in patients with TS (12,18–22). Beyond the prefrontal cortex, structural alterations have been documented in many other brain areas, involving most brain structures associated with sensorimotor processing (13,16,23-29). The largest multicenter structural magnetic resonance imaging (MRI) study of TS to date (103 TS patients and 103 matched controls), found lower white matter volume bilaterally in the orbital and medial prefrontal cortex and larger gray matter volume in the posterior thalamus, hypothalamus, and midbrain in TS patients (12) (Figure 1A). Similarly, studies of the functional neuroanatomy of tic disorders have been very limited in size. Resting state functional MRI (rsfMRI) can be used to assess an idle "ticcing" state and inform on the brain networks associated with the manifestation of tics, irrespective of specific cognitive (task-related) demands (11). TS rsfMRI studies show reduced long-range connectivity and increased short distance connectivity associated with motor processing (30,31). Overall, these findings could reflect the aberrant or "immature" brain development of individuals with TS. However, these reports are based on a handful of patients and controls and much larger studies are required to provide definitive evidence.

Small sample sizes have entailed low statistical power and hampered the dissection of TS subtypes (on average less than 30 cases and 30 controls as reviewed in 11). Furthermore, differences in analytic approaches have also contributed to inconsistent findings and limited reproducibility. ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) (32) is an unprecedented worldwide initiative to tackle the crisis of reproducibility that comes from underpowered studies. Analyzing diverse worldwide samples (more than 40 countries and 1,400 investigators), ENIGMA has pioneered the identification of genetic markers that underlie cortical measures and subcortical volumes through neuroimaging genome-wide association studies (GWAS) (33,34). Disorder-focused ENIGMA working groups have identified brain profiles for multiple psychiatric disorders and conditions based on analysis of large worldwide datasets (32). These include the largest neuroimaging studies for multiple disorders that are highly correlated to TS: OCD (N = 5,423) (35–38) ADHD (N = 3,762) (39)(40), ASD (N = 3,222) (41), and MDD (N = 10,327) (42,43). (Figure 1A)

The ENIGMA-TS working group was formed to address the need for large-scale studies to understand brain structure and function in TS and tackle clinical heterogeneity. The effort was motivated not only by ENIGMA but also TS-EUROTRAIN, an earlier collaborative consortium funded by the European Union (2012-2016), which represented an international network of researchers from 12 different sites from academia and industry aiming to understand the neurobiology of TS (5,44–50). With strong basis of collaboration, already investigators from 23 sites and 12 countries (including Australia, Germany, Denmark, France, Italy, the Netherlands, Norway, Poland, Spain, the UK, China, and the US) have joined ENIGMA-TS and are currently working to pool and harmonize previously collected TS neuroimaging data with an initial goal of analysis for 1,000 TS individuals and a corresponding number of controls. The data mostly represent diverse European and European American ancestry as well as one cohort from China. There is an open and ongoing call for additional investigators to join ENIGMA-TS and information on how to join is available on the ENIGMA-TS website (https://enigma.ini.usc.edu/ongoing/enigma-ts/). Indeed, through our publications, conference presentations, our website, and access to the ENIGMA network, our goal is to draw additional membership, further expanding our sample size as well as representation of diverse populations in our studies.

ENIGMA-TS is using standardized protocols for the processing and analysis of imaging data, to determine reliability of effects across datasets, and identify common trends of low effect size that may not reach statistical significance in any individual study (37,51,52). We will use previously standardized methods to harmonize structural MRI, diffusion tensor imaging (DTI), and rsfMRI data across different sites, scanners, and imaging protocols (41,53–55). In addition to greatly enhanced statistical power, data pooling allows novel comparisons across demographics (e.g., sex). Importantly, our proposed analyses will have sufficiently large sample sizes to examine effects of comorbidity and uncover different TS brain phenotypes or dimensions. Integrating with genetics, we will shed light on the links between TS and related disorders and underlying brain structure and function (Figure 1B).

We can specify some hypotheses based on prior work, especially for structural MRI, which was the only case where sample sizes have exceeded 100. The two largest previous structural studies in TS both found evidence for increased thalamic volume, especially in posterior thalamus (12,15). Several studies identified lower gray or white matter in the orbito-frontal cortex in TS (12,18–20,22,56,57). Others identified case-control differences in TS relating to primary motor cortex (13). Studies of striatal volumes in TS have shown inconsistent results (12,15), as have white matter DTI and functional connectivity rsfMRI results, but mostly included much smaller sample sizes compared to what we will achieve (13). However, rsfMRI has been demonstrated to contain diagnostically relevant information in TS (58). Several structural MRI reports suggest effects of age, sex, and comorbidity, supporting our plans to include such information in our models. In addition, both similarities and differences have been noted with the spectrum of childhood onset disorders that often occur comorbid with TS. For example, higher thalamic volume was also noted in pediatric OCD (36,59–62), whereas lower thalamic volume has been reported in ADHD (63–65). Lower gray or white matter volume in the orbito-frontal cortex was seen in TS (9,31,58,66–69) as well as in ADHD and OCD (18). Our hypotheses strongly motivate cross-disorder analyses, which we will also present later here.

Genetics versus brain structure and function in TS.

TS has a complex and heterogeneous genetic basis, with both common and rare variants contributing to risk (6-9, 70–78) (Figure 2A). The largest TS Copy Number Variant (CNV) analysis performed to date (2,434 TS cases and 4,093 matched controls) (9), identified the first two genome-wide significant rare loci for TS (including *NRXN1* deletions and *CNTN6* duplications) (9). The largest family exome-sequencing study for TS to date (800 trios), also pointed to *de novo* mutations that contribute to TS risk (8)(70), implicating two high-confidence TS risk genes, *WWC1* and *CELSR3*. On the other hand, focusing on common genetic variants, a large GWAS by Yu et al. (6) and follow-up studies showed that ligand-gated ion channel signaling, immune, cell adhesion and transsynaptic signaling processes are involved in TS (7). Analysis of an even larger GWAS for TS bringing together all major consortia working on TS genetics in a study of more than 12,000 patients is currently underway, promising novel insights into the genetics of TS by uncovering additional genes and pathways that underlie disease risk. Already, intermediate results point to two additional novel candidates for TS (79).

Bringing together TS GWAS and ENIGMA data, Mufford et al. performed the first study aiming to map TS genes to brain structure (80). Using summary statistics from the Yu et al. TS GWAS (6) as well as the ENIGMA GWAS of subcortical volumes (30,717 individuals), we examined genetic pleiotropy (the same SNP affecting two traits) and concordance (the agreement in SNP effect directions across these two traits). We found significant pleiotropy between TS and putaminal and caudate volumes, independent of direction of effect, and significant concordance between TS and lower thalamic volume. It should be noted that this analysis associates TS with smaller thalamus, whereas the two largest previous studies in TS suggested an opposite effect. This discordance emphasizes the need for a much larger TS neuroimaging study, such as the one to be undertaken by ENIGMA-TS.

Further preparing for the ENIGMA-TS analysis, we asked whether polygenic risk score (PRS) based on the recent Tsetsos et al. TS GWAS (79) correlates with brain structures in neuroimaging data from 29,798 individuals from the UK Biobank (UKB) (Figure 2B). We observed that increase in the genetic risk of TS was significantly associated with decrease in right putamen (beta: -0.0175, adj.p: 0.0069) and left pallidum (beta: -0.0137, adj.p: 0.043) volumes. We also found significant correlations between TS PRS and bilateral thalamic volume (beta: -0.0132 to -0.038). ENIGMA-TS will pursue further analysis based on the most up-to-date TS GWAS as well as the latest ENIGMA and UKB MRI GWAS datasets. In ENIGMA, more than 50,000 people from diverse populations from around the world have been assessed and analyzed with GWAS and whole-brain MRI, including over 10,000 with DTI and over 10,000 with rsfMRI. UKB data on approximately 10,000 individuals have also been recently integrated with ENIGMA (34,81) while an even larger UKB dataset is now available. ENIGMA has now identified multiple genetic variants determining brain structure, including intracranial volume (ICV) (82) and the subcortical volumes (33,34,83,84). Our recent work also provides genetic determinants for regional and global measures of cortical surface area and thickness (34,85). These rich datasets will be leveraged to gain insights into brain structural measures that correlate with TS genetic risk.

More than just tics: Understanding the genetic basis of frequent comorbidities in TS.

With 90% of TS patients presenting with additional neuropsychiatric comorbidities, understanding the molecular, pathophysiological and neuroanatomical underpinnings of TS should also extend to investigating relationships to other comorbid disorders, with ADHD, ASD, OCD, MDD, AXD being among the most prevalent (1-3). We recently performed the largest cross-disorder meta-analysis for TS, ADHD, ASD, and OCD, analyzing 124,000 samples and 6.8 million single nucleotide polymorphisms (SNPs) (66,86). We showed that the hypothalamus-pituitary-adrenal gland (HPA) axis - and thus stress response - plays an important role in the shared pathophysiology of the studied disorders. Given the high comorbidity of TS to MDD and AXD, ENIGMA-TS will extend cross-disorder analysis to include these additional comorbidities. Figure 2C shows our exploratory factor analysis of the genetic correlation matrix produced from multivariable LD Score Regression (LDSR), across the TS, ADHD, ASD, OCD datasets described in Yang et al. (66) as well as large-scale GWAS on MDD and AXD (142,646 and 17,310 individuals respectively) (87,88). To do this, we used the R package, GenomicSEM (89). Identified factors highlight shared genetic liability across the studied disorders. We would like to point out the existence of a TS+OCD factor that is anticorrelated to ADHD and a shared liability factor with contributions across TS, ADHD, ASD, and MDD. Based on such analyses, we will pursue additional GWAS meta-analysis aiming to identify genetic susceptibility loci of different genetic factors along this phenotypic spectrum. We will then seek to correlate brain structure differences for the studied disorders to the genetic variants that underlie brain structure in ENIGMA and UKB GWAS.

Insights into TS pathophysiology from neuroimaging cross-disorder analysis.

At a pathophysiological level, the association of tics with psychiatric comorbidities may result from the disruption of several cortico-basal ganglia loops. For instance, several behavioral and neuroimaging studies suggest the involvement of partly overlapping, albeit still separate, fronto-striatal circuits in both TS and ADHD (18,22,90). Although studies that compare TS to OCD have not been reported so far, the presence of OCD in TS patients was found to be associated with volume reduction in the caudate nucleus (14), as well as lower cortical thickness in the ventromedial prefrontal cortex and hippocampus (22).

ENIGMA recently created pipelines that allowed a first cross-disorder analysis of cortical and subcortical brain structure across three of the disorders that appear often comorbid in TS (ADHD, ASD, OCD) (54). Structural T1-weighted brain MRI scans of controls (n=5,827) and individuals with ADHD (n=2,271), OCD (n=2,323) and ASD (n=1,777) from 151 datasets worldwide were analyzed using standardized ENIGMA processing protocols. Subcortical volume and regional cortical thickness differences were examined in a mega-analytical framework (54). Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models controlling for age, sex, and site (and ICV for subcortical measures). Lifespan dynamics were found in the pairwise findings: Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD had

smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to controls and other clinical groups. No OCD-specific alterations across age-groups - or surface area alterations among all disorders in childhood and adulthood - were observed. Furthermore, differences between medicated and unmedicated patients, and effects of duration of illness and age of onset were identified (54). Through collaboration with the relevant ENIGMA working groups, ENIGMA-TS will extend this work across TS, as well as ADHD, OCD, ASD, MDD, and AXD analyzing a combined worldwide dataset of unprecedented power. Our work will yield brain maps of the main effects of each disorder, in children, adolescents and adults, ranking brain metrics for effect sizes, and detection of metrics with common and disease-specific brain alterations.

Validating TS genetic and neuroimaging biomarkers in population-based cohorts.

Recent work supports a continuity of behavioral disorders-related traits across the population, with patients being at one extreme of the distribution. For instance, Demontis et al. found that ADHD symptoms in the general population are determined by largely the same genetic factors as those associated with a clinical diagnosis of ADHD (91). Robinson et al. showed that similar continuity from the general population to the clinical phenotype exists for ASD-related traits (92); also confirmed by others (93) and for OCD symptoms (94). In a similar fashion, a recent study showed that PRS from the Yu et al. TS GWAS (6) predicted the presence of tics in a general population cohort (95). Such continuity thus allows us to extend the case-control findings to large population cohorts and to study the underlying mechanisms in more detail in terms of the roles of specific symptom domains and brain regions. More broadly, it also allows us to move towards the identification of diagnostic and prognostic biomarkers. ENIGMA-TS will seek to explore the value of the TS genetic and neuroimaging biomarkers that will be identified based on our studies to predict related symptoms in population-based cohorts. To do this, we will analyze large population studies (ABCD and Generation R cohorts) (96–100) for which symptoms and behavioral traits related to TS and its highly comorbid disorders of interest as well as genomic and MRI measures are available.

Discussion

We have presented background, rationale, and perspectives that support the establishment of the ENIGMA-TS Working Group and motivate our mission. Our large-scale, high-powered studies, integrating data from multiple countries, have the potential to offer a major breakthrough in the quest to understand brain structure and function and genetic effects in TS and correlated disorders. ENIGMA's global approach offers higher power to detect factors that underlie TS onset and disease progression and test the generalizability of brain biomarkers in diverse samples across the globe. ENIGMA-TS already has partnerships with 12 countries while the ENIGMA reference neuroimaging GWAS includes samples from more than 40 countries from around the world.

For the first time, ENIGMA-TS will undertake a large-scale cross-disorder study of brain structure and function as well as genetic susceptibility across TS and often comorbid OCD, ADHD, ASD, MDD, and AXD. We aim

to identify biomarkers for disease subtypes that cut across diagnostic boundaries, lifting a major barrier in truly understanding factors that drive high comorbidity in TS patients. Although our initial studies include mostly European datasets, we will make every effort to extend analyses to include representation from more diverse datasets through ENIGMA-available resources, public databases, and through our open call for additional collaborations.

To date, all major progress in understanding the genetics of TS and other neuropsychiatric disorders has been realized thanks to international collaborative efforts. Through ENIGMA-TS we will seek to replicate this success to understand brain structure and function in TS and related disorders bringing together investigators working on the genetics and neuroimaging of these common disorders. Our joint work can offer far-reaching implications for future research, including the identification of robust multimodal markers of disease burden and may ultimately lead to new therapies, improved patient management, and improved quality of life for patients and their families.

Funding information:

This work is supported by NIMH grant 1R01MH126213-01A1 to PP, Innovative Medicines Initiative 2 Joint Undertaking (No 777394) to NF, NIH grants R01MH18217, K01MH104592 to DG, NIH grants R01MH126213, R01MH116147, P41EB015922 to NJ, VI-PPIT-US from the University of Seville (USE-18817-A) to JFMR, Lundbeck Foundation, the Dagmar Marshall Foundation, the Bøhmske Foundation, the Carpenter Jørgen Holm and wife Elisa born Hansen Memorial Foundation, the Queen Louise's Children's Hospital Foundation, and the King Christian X Foundation to NMD, NIH grants R01MH126213, R01MH116147, P41EB015922 to PT and ST,

References

- Robertson MM, Eapen V, Singer HS, Martino D, Scharf JM, Paschou P, Roessner V, Woods DW, Hariz M, Mathews CA, et al. Gilles de la Tourette syndrome. *Nat Rev Dis Prim* (2017) doi: 10.1038/nrdp.2016.97
- Robertson MM. A personal 35 year perspective on Gilles de la Tourette syndrome: Prevalence, phenomenology, comorbidities, and coexistent psychopathologies. *The Lancet Psychiatry* (2015) doi: 10.1016/S2215-0366(14)00132-1
- Hirschtritt ME, Lee PC, Pauls DL, Dion Y, Grados MA, Illmann C, King RA, Sandor P, McMahon WM, Lyon GJ, et al. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in tourette syndrome. *JAMA Psychiatry* (2015) doi: 10.1001/jamapsychiatry.2014.2650
- Paschou P. The genetic basis of Gilles de la Tourette Syndrome. *Neurosci Biobehav Rev* (2013) doi: 10.1016/j.neubiorev.2013.01.016
- Georgitsi M, Willsey AJ, Mathews CA, State M, Scharf JM, Paschou P. The genetic etiology of tourette syndrome: Large-scale collaborative efforts on the precipice of discovery. *Front Neurosci* (2016) doi: 10.3389/fnins.2016.00351

- Yu D, Sul JH, Tsetsos F, Nawaz MS, Huang AY, Zelaya I, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, et al. Interrogating the genetic determinants of Tourette's syndrome and other tiC disorders through genome-wide association studies. *Am J Psychiatry* (2019) doi: 10.1176/appi.ajp.2018.18070857
- Tsetsos F, Yu D, Sul JH, Huang AY, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, Greenberg E, Muller-Vahl KR, et al. Synaptic processes and immune-related pathways implicated in Tourette syndrome. *Transl Psychiatry* (2021) doi: 10.1038/s41398-020-01082-z
- Wang S, Mandell JD, Kumar Y, Sun N, Morris MT, Arbelaez J, Nasello C, Dong S, Duhn C, Zhao X, et al. De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis. *Cell Rep* (2018) doi: 10.1016/j.celrep.2018.08.082
- Huang AY, Yu D, Davis LK, Sul JH, Tsetsos F, Ramensky V, Zelaya I, Ramos EM, Osiecki L, Chen JA, et al. Rare Copy Number Variants in NRXN1 and CNTN6 Increase Risk for Tourette Syndrome. Neuron (2017) doi: 10.1016/j.neuron.2017.06.010
- Paschou P, Müller-Vahl K. Editorial: The neurobiology and genetics of Gilles de la Tourette syndrome: New avenues through large-scale collaborative projects. *Front Psychiatry* (2017) doi: 10.3389/fpsyt.2017.00197
- 11. Martino D, Ganos C, Worbe Y. "Neuroimaging Applications in Tourette's Syndrome,." *International Review of Neurobiology.* (2018) doi: 10.1016/bs.irn.2018.09.008
- 12. Greene DJ, Williams AC, Koller JM, Schlaggar BL, Black KJ. Brain structure in pediatric Tourette syndrome. *Mol Psychiatry* (2017) doi: 10.1038/mp.2016.194
- Greene DJ, Black KJ, Schlaggar BL. "Neurobiology and Functional Anatomy of Tic Disorders.," *Tourette Syndrome*. (2013) doi: 10.1093/med/9780199796267.003.0012
- Bloch MH, Leckman JF, Zhu H, Peterson BS. Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. *Neurology* (2005) doi: 10.1212/01.wnl.0000180957.98702.69
- Miller AM, Bansal R, Hao X, Sanchez-Pena JP, Sobel LJ, Liu J, Xu D, Zhu H, Mallar Chakravarty M, Durkin K, et al. Enlargement of thalamic nuclei in tourette syndrome. *Arch Gen Psychiatry* (2010) doi: 10.1001/archgenpsychiatry.2010.102
- Wan X, Zhang S, Wang W, Su X, Li J, Yang X, Tan Q, Yue Q, Gong Q. Gray matter abnormalities in Tourette Syndrome: a meta-analysis of voxel-based morphometry studies. *Transl Psychiatry* (2021) doi: 10.1038/s41398-021-01394-8
- 17. Mink JW. Neurobiology of basal ganglia and Tourette syndrome: basal ganglia circuits and thalamocortical outputs. *Adv Neurol* (2006)
- Draganski B, Martino D, Cavanna AE, Hutton C, Orth M, Robertson MM, Critchley HD, Frackowiak RS. Multispectral brain morphometry in Tourette syndrome persisting into adulthood. *Brain* (2010) doi: 10.1093/brain/awq300

- Fahim C, Yoon U, Das S, Lyttelton O, Chen J, Arnaoutelis R, Rouleau G, Sandor P, Frey K, Brandner C, et al. Somatosensory-motor bodily representation cortical thinning in Tourette: Effects of tic severity, age and gender. *Cortex* (2010) doi: 10.1016/j.cortex.2009.06.008
- Müller-Vahl KR, Kaufmann J, Grosskreutz J, Dengler R, Emrich HM, Peschel T. Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: Evidence from voxel-based morphometry and magnetization transfer imaging. *BMC Neurosci* (2009) doi: 10.1186/1471-2202-10-47
- 21. Sowell ER, Kan E, Yoshii J, Thompson PM, Bansal R, Xu D, Toga AW, Peterson BS. Thinning of sensorimotor cortices in children with Tourette syndrome. *Nat Neurosci* (2008) doi: 10.1038/nn.2121
- Worbe Y, Gerardin E, Hartmann A, Valabrégue R, Chupin M, Tremblay L, Vidailhet M, Colliot O, Lehéricy S. Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome. *Brain* (2010) doi: 10.1093/brain/awq293
- 23. Ganos C, Roessner V, Münchau A. The functional anatomy of Gilles de la Tourette syndrome. *Neurosci Biobehav Rev* (2013) doi: 10.1016/j.neubiorev.2012.11.004
- 24. Greene DJ, Schlaggar BL, Black KJ. Neuroimaging in Tourette Syndrome: Research Highlights from 2014 to 2015. *Curr Dev Disord Reports* (2015) doi: 10.1007/s40474-015-0062-6
- Hashemiyoon R, Kuhn J, Visser-Vandewalle V. Putting the Pieces Together in Gilles de la Tourette Syndrome: Exploring the Link Between Clinical Observations and the Biological Basis of Dysfunction. *Brain Topogr* (2017) doi: 10.1007/s10548-016-0525-z
- Liu Y, Wang J, Zhang J, Wen H, Zhang Y, Kang H, Wang X, Li W, He H, Peng Y. Altered Spontaneous Brain Activity in Children with Early Tourette Syndrome: A Resting-state fMRI Study. *Sci Rep* (2017) doi: 10.1038/s41598-017-04148-z
- 27. Neuner I, Schneider F, Shah NJ. "Functional neuroanatomy of tics.," *International Review of Neurobiology*. (2013) doi: 10.1016/B978-0-12-411546-0.00002-0
- 28. Worbe Y, Lehericy S, Hartmann A. Neuroimaging of tic genesis: Present status and future perspectives. *Mov Disord* (2015) doi: 10.1002/mds.26333
- Kim S, Greene DJ, D'andrea CB, Bihun EC, Koller JM, O'reilly B, Schlaggar BL, Black KJ.
 Hippocampal volume in provisional tic disorder predicts tic severity at 12-month follow-up. *J Clin Med* (2020) doi: 10.3390/jcm9061715
- Church JA, Fair DA, Dosenbach NUF, Cohen AL, Miezin FM, Petersen SE, Schlaggar BL. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. *Brain* (2009) doi: 10.1093/brain/awn223
- Worbe Y, Malherbe C, Hartmann A, Pélégrini-Issac M, Messé A, Vidailhet M, Lehéricy S, Benali H. Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome. *Brain* (2012) doi: 10.1093/brain/aws056
- 32. Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, Baune BT, Bertolín S, Bralten J, Bruin WB, et al. ENIGMA and global neuroscience: A decade of large-scale

studies of the brain in health and disease across more than 40 countries. *Transl Psychiatry* (2020) doi: 10.1038/s41398-020-0705-1

- Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin G V., et al. Genetic architecture of subcortical brain structures in 38,851 individuals. *Nat Genet* (2019) doi: 10.1038/s41588-019-0511-y
- Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Ching CRK, McMahon MAB, et al. The genetic architecture of the human cerebral cortex. *Science* (80-) (2020) doi: 10.1126/science.aay6690
- Boedhoe PSW, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Bose A, et al. Distinct subcortical volume alterations in pediatric and adult OCD: A worldwide meta- and mega-analysis. *Am J Psychiatry* (2017) doi: 10.1176/appi.ajp.2016.16020201
- Weeland CJ, Kasprzak S, de Joode NT, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Balachander S, Banaj N, et al. The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder. *Transl Psychiatry* (2022) doi: 10.1038/s41398-022-01823-2
- 37. van den Heuvel OA, Boedhoe PSW, Bertolin S, Bruin WB, Francks C, Ivanov I, Jahanshad N, Kong XZ, Kwon JS, O'Neill J, et al. An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. *Hum Brain Mapp* (2022) doi: 10.1002/hbm.24972
- Boedhoe PSW, Heymans MW, Schmaal L, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Batistuzzo MC, Benedetti F, et al. An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group. *Front Neuroinform* (2019) doi: 10.3389/fninf.2018.00102
- 39. Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, van Hulzen KJE, Medland SE, Shumskaya E, Jahanshad N, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. *The Lancet Psychiatry* (2017) doi: 10.1016/S2215-0366(17)30049-4
- Postema MC, Hoogman M, Ambrosino S, Asherson P, Banaschewski T, Bandeira CE, Baranov A, Bau CHD, Baumeister S, Baur-Streubel R, et al. Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets. *J Child Psychol Psychiatry Allied Discip* (2021) doi: 10.1111/jcpp.13396
- 41. Van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Busatto GF, Calderoni S, Daly E, Deruelle C, Di Martino A, et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. *Am J Psychiatry* (2018) doi: 10.1176/appi.ajp.2017.17010100
- 42. Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, Cheung JW, Van Erp TGM, Bos D, Ikram MA, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. *Mol Psychiatry* (2017) doi: 10.1038/mp.2016.60

- 43. Opel N, Thalamuthu A, Milaneschi Y, Grotegerd D, Flint C, Leenings R, Goltermann J, Richter M, Hahn T, Woditsch G, et al. Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders: Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group. *Mol Psychiatry* (2021) doi: 10.1038/s41380-020-0774-9
- 44. Forde NJ, Kanaan AS, Widomska J, Padmanabhuni SS, Nespoli E, Alexander J, Rodriguez Arranz JI, Fan S, Houssari R, Nawaz MS, et al. TS-EUROTRAIN: A European-wide investigation and training network on the etiology and pathophysiology of Gilles de la Tourette Syndrome. *Front Neurosci* (2016) doi: 10.3389/fnins.2016.00384
- Kanaan AS, Gerasch S, García-García I, Lampe L, Pampel A, Anwander A, Near J, Möller HE,
 Müller-Vahl K. Pathological glutamatergic neurotransmission in Gilles de la Tourette syndrome. *Brain* (2017) doi: 10.1093/brain/aww285
- Forde NJ, Ronan L, Zwiers MP, Alexander-Bloch AF, Faraone S V., Oosterlaan J, Heslenfeld DJ, Hartman CA, Buitelaar JK, Hoekstra PJ. No association between cortical gyrification or intrinsic curvature and attention-deficit/hyperactivity disorder in adolescents and young adults. *Front Neurosci* (2017) doi: 10.3389/fnins.2017.00218
- 47. Fan S, van den Heuvel OA, Cath DC, van der Werf YD, de Wit SJ, de Vries FE, Veltman DJ, Pouwels PJW. Mild white matter changes in un-medicated obsessive-compulsive disorder patients and their unaffected siblings. *Front Neurosci* (2016) doi: 10.3389/fnins.2015.00495
- Gerasch S, Kanaan AS, Jakubovski E, Müller-Vahl KR. Aripiprazole improves associated comorbid conditions in addition to tics in adult patients with Gilles de la Tourette Syndrome. *Front Neurosci* (2016) doi: 10.3389/fnins.2016.00416
- Haense C, Müller-Vahl KR, Wilke F, Schrader C, Capelle HH, Geworski L, Bengel FM, Krauss JK, Berding G. Effect of deep brain stimulation on regional cerebral blood flow in patients with medically refractory tourette syndrome. *Front Psychiatry* (2016) doi: 10.3389/fpsyt.2016.00118
- 50. Lessov-Schlaggar CN, Rubin JB, Schlaggar BL. The fallacy of univariate solutions to complex systems problems. *Front Neurosci* (2016) doi: 10.3389/fnins.2016.00267
- Hoogman M, van Rooij D, Klein M, Boedhoe P, Ilioska I, Li T, Patel Y, Postema MC, Zhang-James Y, Anagnostou E, et al. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure. *Hum Brain Mapp* (2022) doi: 10.1002/hbm.25029
- 52. Kong XZ, Mathias SR, Guadalupe T, Abé C, Agartz I, Akudjedu TN, Aleman A, Alhusaini S, Allen NB, Ames D, et al. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA consortium. *Proc Natl Acad Sci U S A* (2018) doi: 10.1073/pnas.1718418115
- Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP, Jahanshad N, Sudre G, Wolfers T, Earl EA, et al. Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. *Am J Psychiatry* (2019) doi: 10.1176/appi.ajp.2019.18091033

- 54. Boedhoe PSW, van Rooij D, Hoogman M, Twisk JWR, Schmaal L, Abe Y, Alonso P, Ameis SH, Anikin A, Anticevic A, et al. Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: Findings from the ENIGMA ADHD, ASD, and OCD working groups. *Am J Psychiatry* (2020) doi: 10.1176/appi.ajp.2020.19030331
- 55. Schmaal L, Veltman DJ, Van Erp TGM, Smann PG, Frodl T, Jahanshad N, Loehrer E, Tiemeier H, Hofman A, Niessen WJ, et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. *Mol Psychiatry* (2016) doi: 10.1038/mp.2015.69
- 56. Cheng B, Braass H, Ganos C, Treszl A, Biermann-Ruben K, Hummel FC, Müller-Vahl K, Schnitzler A, Gerloff C, Münchau A, et al. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome. *NeuroImage Clin* (2014) doi: 10.1016/j.nicl.2013.11.011
- Peterson BS, Staib L, Scahill L, Zhang H, Anderson C, Leckman JF, Cohen DJ, Gore JC, Albert J, Webster R. Regional brain and ventricular volumes in Tourette syndrome. *Arch Gen Psychiatry* (2001) doi: 10.1001/archpsyc.58.5.427
- Greene DJ, Church JA, Dosenbach NUF, Nielsen AN, Adeyemo B, Nardos B, Petersen SE, Black KJ, Schlaggar BL. Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI. *Dev Sci* (2016) doi: 10.1111/desc.12407
- 59. Atmaca M, Yildirim H, Ozdemir H, Tezcan E, Kursad Poyraz A. Volumetric MRI study of key brain regions implicated in obsessive-compulsive disorder. *Prog Neuro-Psychopharmacology Biol Psychiatry* (2007) doi: 10.1016/j.pnpbp.2006.06.008
- 60. Kim J, Myung Chul Lee, Kim J, In Young Kim, Kim SI, Moon Hee Han, Chang K, Jun Soo Kwon. Grey matter abnormalities in obsessive-compulsive disorder: Statistical parametric mapping of segmented magnetic resonance images. *Br J Psychiatry* (2001) doi: 10.1192/bjp.179.4.330
- Weeland CJ, Vriend C, van der Werf Y, Huyser C, Hillegers M, Tiemeier H, White T, van den Heuvel OA. Thalamic Subregions and Obsessive-Compulsive Symptoms in 2,500 Children From the General Population. *J Am Acad Child Adolesc Psychiatry* (2022) doi: 10.1016/j.jaac.2021.05.024
- Weeland CJ, White T, Vriend C, Muetzel RL, Starreveld J, Hillegers MHJ, Tiemeier H, van den Heuvel OA. Brain Morphology Associated With Obsessive-Compulsive Symptoms in 2,551 Children From the General Population. *J Am Acad Child Adolesc Psychiatry* (2021) doi: 10.1016/j.jaac.2020.03.012
- Ivanov I, Bansal R, Hao X, Zhu H, Kellendonk C, Miller L, Sanchez-Pena J, Miller AM, Chakravarty MM, Klahr K, et al. Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. *Am J Psychiatry* (2010) doi: 10.1176/appi.ajp.2009.09030398
- Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, Kaiser J, Spencer T, Faraone S V., Makris N. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. *Biol Psychiatry* (2011) doi: 10.1016/j.biopsych.2010.09.053
- Xia S, Li X, Kimball AE, Kelly MS, Lesser I, Branch C. Thalamic shape and connectivity abnormalities in children with attention- deficit/hyperactivity disorder. *Psychiatry Res - Neuroimaging* (2012) 204:161–167. doi: 10.1016/j.pscychresns.2012.04.011

- 66. Yang Z, Wu H, Lee PH, Tsetsos F, Davis LK, Yu D, Lee SH, Dalsgaard S, Haavik J, Barta C, et al. Investigating Shared Genetic Basis Across Tourette Syndrome and Comorbid Neurodevelopmental Disorders Along the Impulsivity-Compulsivity Spectrum. *Biol Psychiatry* (2021) doi: 10.1016/j.biopsych.2020.12.028
- 67. Hatton SN, Huynh KH, Bonilha L, Abela E, Alhusaini S, Altmann A, Alvim MKM, Balachandra AR, Bartolini E, Bender B, et al. White matter abnormalities across different epilepsy syndromes in adults: An ENIGMA-Epilepsy study. *Brain* (2020) doi: 10.1093/brain/awaa200
- Fortin JP, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K, Roalf DR, Satterthwaite TD, Gur RC, Gur RE, et al. Harmonization of multi-site diffusion tensor imaging data. *Neuroimage* (2017) doi: 10.1016/j.neuroimage.2017.08.047
- Adhikari BM, Jahanshad N, Shukla D, Glahn DC, Blangero J, Reynolds RC, Cox RW, Fieremans E, Veraart J, Novikov DS, et al. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline. *Pacific Symposium on Biocomputing*. (2018) doi: 10.1142/9789813235533_0029
- Willsey AJ, Fernandez T V., Yu D, King RA, Dietrich A, Xing J, Sanders SJ, Mandell JD, Huang AY, Richer P, et al. De Novo Coding Variants Are Strongly Associated with Tourette Disorder. *Neuron* (2017) doi: 10.1016/j.neuron.2017.04.024
- Nag A, Bochukova EG, Kremeyer B, Campbell DD, Muller H, Valencia-Duarte A V., Cardona J, Rivas IC, Mesa SC, Cuartas M, et al. CNV Analysis in Tourette Syndrome Implicates Large Genomic Rearrangements in COL8A1 and NRXN1. *PLoS One* (2013) doi: 10.1371/journal.pone.0059061
- 72. Liu S, Tian M, He F, Li J, Xie H, Liu W, Zhang Y, Zhang R, Yi M, Che F, et al. Mutations in ASH1L confer susceptibility to Tourette syndrome. *Mol Psychiatry* (2020) doi: 10.1038/s41380-019-0560-8
- 73. Sundaram SK, Huq AM, Wilson BJ, Chugani HT. Tourette syndrome is associated with recurrent exonic copy number variants. *Neurology* (2010) doi: 10.1212/WNL.0b013e3181e0f147
- 74. Castellan Baldan L, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, et al. Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice. *Neuron* (2014) doi: 10.1016/j.neuron.2013.10.052
- 75. Karagiannidis I, Dehning S, Sandor P, Tarnok Z, Rizzo R, Wolanczyk T, Madruga-Garrido M, Hebebrand J, Nöthen MM, Lehmkuhl G, et al. Support of the histaminergic hypothesis in tourette syndrome: Association of the histamine decarboxylase gene in a large sample of families. *J Med Genet* (2013) doi: 10.1136/jmedgenet-2013-101637
- 76. Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O'Roak BJ, Mason CE, Abbott T, Gupta A, King RA, Pauls DL, et al. L-Histidine Decarboxylase and Tourette's Syndrome. N Engl J Med (2010) doi: 10.1056/nejmoa0907006
- 77. JF A, KY K, BJ O, DY B, AA S, TM M, CA M, DL P, MR R, M G, et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. *Science (80-)* (2005)
- 78. Karagiannidis I, Rizzo R, Tarnok Z, Wolanczyk T, Hebebrand J, Nöthen MM, Lehmkuhl G, Farkas L, Nagy P, Barta C, et al. Replication of association between a SLITRK1 haplotype and Tourette Syndrome in a large sample of families. *Mol Psychiatry* (2012) doi: 10.1038/mp.2011.151

- Tsetsos F, Topaloudi A, Jain P, Yang Z, Yu D, Kolovos P, Tumer Z, Rizzo R, Hartmann A, Depienne C, et al. Genome-wide Association Study identifies two novel loci for Gilles de la Tourette Syndrome. *medRxiv* (2021)
- Mufford M, Cheung J, Jahanshad N, van der Merwe C, Ding L, Groenewold N, Koen N, Chimusa ER, Dalvie S, Ramesar R, et al. Concordance of genetic variation that increases risk for tourette syndrome and that influences its underlying neurocircuitry. *Transl Psychiatry* (2019) doi: 10.1038/s41398-019-0452-3
- Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, Marchini J, Smith SM. Genomewide association studies of brain imaging phenotypes in UK Biobank. *Nature* (2018) doi: 10.1038/s41586-018-0571-7
- Adams HHH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Rentería ME, Trompet S, Arias-Vasquez A, Seshadri S, Desrivières S, et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. *Nat Neurosci* (2016) doi: 10.1038/nn.4398
- Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N, Toro R, Wittfeld K, Abramovic L, Andersson M, et al. Common genetic variants influence human subcortical brain structures. *Nature* (2015) doi: 10.1038/nature14101
- Hibar DP, Adams HHH, Jahanshad N, Chauhan G, Stein JL, Hofer E, Renteria ME, Bis JC, Arias-Vasquez A, Ikram MK, et al. Novel genetic loci associated with hippocampal volume. *Nat Commun* (2017) doi: 10.1038/ncomms13624
- Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann Ø, et al. Identification of common variants associated with human hippocampal and intracranial volumes. *Nat Genet* (2012) doi: 10.1038/ng.2250
- Yang Z, Wu H, Lee PH, Tsetsos F, Davis LK, Yu D, Lee SH, Dalsgaard S, Haavik J, Barta C, et al. Cross-disorder GWAS meta-analysis for Attention Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, Obsessive Compulsive Disorder, and Tourette Syndrome. *bioRxiv* (2019) doi: 10.1101/770222
- Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, Adams MJ, Agerbo E, Air TM, Andlauer TMF, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. *Nat Genet* (2018) doi: 10.1038/s41588-018-0090-3
- Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, Bigdeli T, Aggen SH, Adkins D, Wolen A, et al. Meta-analysis of genome-wide association studies of anxiety disorders. *Mol Psychiatry* (2016) doi: 10.1038/mp.2015.197
- 89. Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD, Ip HF, Marioni RE, McIntosh AM, Deary IJ, et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. *Nat Hum Behav* (2019) doi: 10.1038/s41562-019-0566-x
- 90. Plessen KJ, Royal JM, Peterson BS. Neuroimaging of tic disorders with co-existing attention-deficit/ hyperactivity disorder. *Eur Child Adolesc Psychiatry* (2007) doi: 10.1007/s00787-007-1008-2

- Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, Baldursson G, Belliveau R, Bybjerg-Grauholm J, Bækvad-Hansen M, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. *Nat Genet* (2019) doi: 10.1038/s41588-018-0269-7
- 92. Bralten J, Van Hulzen KJ, Martens MB, Galesloot TE, Arias Vasquez A, Kiemeney LA, Buitelaar JK, Muntjewerff JW, Franke B, Poelmans G. Autism spectrum disorders and autistic traits share genetics and biology. *Mol Psychiatry* (2018) doi: 10.1038/mp.2017.98
- 93. Robinson EB, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, Maller J, Samocha KE, Sanders SJ, Ripke S, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. *Nat Genet* (2016) doi: 10.1038/ng.3529
- 94. Bralten J, Widomska J, Witte W De, Yu D, Mathews CA, Scharf JM, Buitelaar J, Crosbie J, Schachar R, Arnold P, et al. Shared genetic etiology between obsessive-compulsive disorder, obsessive-compulsive symptoms in the population, and insulin signaling. *Transl Psychiatry* (2020) doi: 10.1038/s41398-020-0793-y
- 95. Abdulkadir M, Mathews CA, Scharf JM, Yu D, Tischfield JA, Heiman GA, Hoekstra PJ, Dietrich A. Polygenic Risk Scores Derived From a Tourette Syndrome Genome-wide Association Study Predict Presence of Tics in the Avon Longitudinal Study of Parents and Children Cohort. *Biol Psychiatry* (2019) doi: 10.1016/j.biopsych.2018.09.011
- 96. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco D V., Garavan H, et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. *Dev Cogn Neurosci* (2018) doi: 10.1016/j.dcn.2018.03.001
- 97. Barch DM, Albaugh MD, Avenevoli S, Chang L, Clark DB, Glantz MD, Hudziak JJ, Jernigan TL, Tapert SF, Yurgelun-Todd D, et al. Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. *Dev Cogn Neurosci* (2018) doi: 10.1016/j.dcn.2017.10.010
- Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ, Pérez-Stable EJ, Riley WT, Bloch MH, Conway K, et al. The conception of the ABCD study: From substance use to a broad NIH collaboration. *Dev Cogn Neurosci* (2018) doi: 10.1016/j.dcn.2017.10.002
- Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IJzendoorn MH, de Jongste JC, Klaver CCW, van der Lugt A, Mackenbach JP, et al. The Generation R Study: design and cohort update 2017. *Eur J Epidemiol* (2016) doi: 10.1007/s10654-016-0224-9
- 100. White T, Muetzel RL, El Marroun H, Blanken LME, Jansen P, Bolhuis K, Kocevska D, Mous SE, Mulder R, Jaddoe VWV, et al. Paediatric population neuroimaging and the Generation R Study: the second wave. *Eur J Epidemiol* (2018) doi: 10.1007/s10654-017-0319-y

Figure 1. Brain regions that have been implicated in TS and related disorders. (A) Volumetric MRI studies of key brain regions for TS and related disorders. TS was associated with larger subcortical volumes of thalamus and hypothalamus (12,29). OCD in children was associated with larger subcortical volumes of thalamus, while OCD in adults was associated with larger subcortical volumes of pallidum and smaller subcortical volumes of hippocampus (35). ADHD was associated with smaller subcortical volumes of the caudate, putamen, amygdala, and nucleus accumbens (39). ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (41). MDD was associated with smaller subcortical volumes of hippocampus (55). (B) TS-ADHD-ASD GWAS and TS-OCD GWAS cross-disorder tissue specificity analysis, testing 30/53 tissue types from GTEx v7 tissue expression atlas (61). Significant enrichment of gene expression in corresponding tissue under Bonferroni correction (p < 1.67 x 10⁻³ for 30 tissues tested and p < 9.43 x 10⁻⁴ for 53 tissues tested). Green label indicates enrichment of gene expression in TS-ADHD-ASD Tissue Specificity Analysis. Red label indicates enrichment of gene expression in TS-ADHD-ASD Tissue Specificity Analysis (Credit for biorender)

Figure 2. Genetics versus brain structure in TS (A) Network of the GO: Biological Processes (GO:BP) terms from key genes previously implicated in TS as reviewed in text. Enrichment analysis of the genes implicated in TS was performed with the ToppFun function in Toppgene. Terms with p<0.05 after FDR correction were considered as statistically significant. Related GO:BP terms including the same genes were collapsed into a single term. Cytoscape was used for network visualization. The following genes were included: ASH1L (72), CD180 (7), CDH26 (7), CELSR3 (8,70), CNTN6 (9), COL8A1 (71), CTNNA3 (93), FLT3 (7), GABBR2 (7), GABRG1 (7), GRIK4 (7), HCN1 (7), HDAC9 (7), HDC (74-76), IL12A (7), KIF26B (72), NCAM2 (7), NCR1 (7), NLRP7 (7), NRXN1 (9), NTM (7), ROBO2 (7), SLITRK1 (77-78), WWC1 (8,70). **(B)** Associations between TS PRS calculated based on latest TS GWAS meta-analysis (79) and volume of 14 sub-cortical brain structures in UK Biobank. Each part was measured separately in the left hemisphere and the right hemisphere of the brain. Linear regression was performed with Age, Sex, Genotyping batch, and top 10 PCs used as covariates in the analysis. The (*) indicates significant association after multiple testing correction using the FDR method (p<0.05). **(C)** Exploring genetic architecture of TS and related comorbidities via genomic structural equation modeling. Path graph shows loads and corresponding standard errors in parenthesis.