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Since 1950, the world’s population has shifted from being largely rural to 
majority urbanised. This trend of increasing urbanisation of population and 
increasing land use transitions promoting the growth of settlements and the 
built-environment, are expected to continue in future decades, particularly in low- 
and middle-income countries. These trends are accompanied by rapidly shifting 
subnational demographics and spatial distributions of populations, even within 
urbanised areas. Accurate and timely data is required to develop adaptive 
strategies for these shifting trends and minimising potential negative impacts. 
While multi-temporal, high-resolution datasets of built-settlement extent have 
become globally available, there remain gaps in their coverage and globally 
consistent methods of predicting future built-settlement expansion at regular 
intervals have not kept pace with these new data.  

  This thesis develops and validates a country-specific yet globally applicable 
means of annually interpolating built-settlement extents and projecting built-
settlement extents into the near future using relative changes in subnational 
population and lights at night radiance. Additionally, I demonstrate the utility of 
this modelling framework within a global population modelling context across a 
period of 13 years. This thesis improves upon previous urban growth modelling 
approaches by demonstrating that relative changes in population can be 
sufficient, in and of themselves and as causal proxies for changes in economics, 
for accurately predicting areas undergoing built-settlement expansion across time 
and space. Additionally, this thesis validates its predictions at the pixel level, 
something not done by previous global urban and settlement modelling 
approaches. By addressing the limits that exist within current global urban 
modelling approaches, such as large or specific data requirements and subjective 
assumptions of growth factors/parameters, the modelling frameworks presented 
in this thesis allows for more consistent, frequent, and accurate built-settlement 
predictions. By extension, these accurate, time-specific built-settlement 
predictions allow for better, time-specific population mapping across the globe. 
Improved knowing of where and when built-settlement appeared allows for 
further investigations into arable land use consumption in relation to population 
dynamics, temporally fine-scale changes in population distributions across space 
in relation to climate change stresses, built-settlement expansion and greenhouse 
gas emissions, and trends in built-settlement expansion in relation to sea level 
rise, to name a few. 
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Preface 

I began working with WorldPop in 2014 as a Researcher while carrying out my 

Master’s degree at the University of Louisville. During that time I had numerous 

discussions regarding the gaps in urban related data and their applications to 

population modelling with Dr. Forrest R. Stevens (University of Louisville, 

Kentucky, USA), Dr. Andrea E. Gaughan (University of Louisville, Kentucky, USA), 

and Dr. Catherine Linard (Université de Namur, Belgium). These discussions 

during my Master’s led to my conceptualisation of this body of work and the 

modelling framework – the Built-Settlement Growth Model). The papers submitted 

as a part of this three-paper thesis are the results of this work and have either 

been published or are under review for publication. They are as follows. 

1. Nieves, J. J., Sorichetta, A., Linard, C., Bondarenko, M., Steele, J. E., 

Stevens, F. R., Gaughan, A. E., Carioli, A., Clarke, D. J., Esch, T., & A. J. 

Tatem. (2020). Annually modelling built-settlements between remotely-

sensed observations using relative changes in subnational populations and 

lights at night. Computers, Environment and Urban Systems. 80. 

https://doi.org/10.1016/j.compenvurbsys.2019.101444. 

2. Nieves, J. J., Bondarenko, M. Sorichetta, A., Steele, J. E., Kerr, D., Carioli, 

A., Stevens, F. R., Gaughan, A. E., & A. J. Tatem. (2020). Annual projections 

of future built-settlement expansion using relative changes in projected 

small area population and short time-series of built-extents. Remote 

Sensing 12, 1545. doi:10.3390/rs12101545. 

3. Nieves, J. J., Bondarenko, M., Kerr, D., Ves, N., Yetman, G., Sinha, P., 

Clarke, D. J., Sorichetta, A., Stevens, F. R., Gaughan, A. E., & A. J. Tatem. 

(Under Review). Measuring the contribution of built-settlement data to 

global population mapping. Social Sciences and Humanities Open. 

In 2016, WorldPop had the “Global High Resolution Population Denominators 

Project”, more generally referred to as the “Global Project,” to construct consistent 

and comparable global maps of population distributions and demographics for 

the 1990-2020 period at 3 arc second (~100m) resolution and make these data 

openly and freely available. Such time-specific and demographically detailed data 

produced within a consistent framework was needed to better address public 

health monitoring and interventions, amongst other secondary applications, and 

https://doi.org/10.1016/j.compenvurbsys.2019.101444
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as such was funded by the Bill and Melinda Gates Foundation (OPP1134076) and 

the Institute for Health Metrics and Evaluation (IHME).  

At the time of project initiation, observed environmental covariate data, necessary 

for the population modelling, was largely unavailable past 2014 and was largely 

unavailable at annual time points between 2000-2014. This left an unfilled gap 

for important predictors of population, i.e. annual urban extents, between 2000-

2014 and prediction of those covariates’ spatial distributions and values from 

2015-2020. This project specific gap hinted at a larger temporal gap in urban 

data that could be used for better population modelling and a variety of other 

applications which may require spatio-temporally detailed urban extents that are 

globally comparable. And, so, I developed my thesis topic around addressing this 

gap. 

Looking to increase the impact of my thesis work and leverage the large amount 

(>10TeraBytes) of geospatial covariates being produced under the Global Project’s 

resources, I closely partnered with the project. In this capacity, I carried out the 

following: 

• Contributed to designing the spatial data infrastructure and spatial toolkits 

• Had input on what covariates to process and how to process them, 

specifically those regarding representation of urban and the built-

environment 

• Trained several postdocs and PhD students in disaggregative population 

modelling 

• Co-coded the revised population modelling scripts with Dr. Maksym 

Bondarenko (University of Southampton, UK) 

• Co-produced an R package, documentation, and publication with  

Dr. Maksym Bondarenko 

• Provided the Global Project with an early version of my urban growth 

model and documentation on how to scale it for production 

• Co-supervised and participated in the production of the modelled urban 

datasets and modelled population datasets with Dr. Alessandro Sorichetta 

(University of Southampton, UK) and Dr. Maksym Bondarenko (University of 

Southampton, UK) 

However, the Built-Settlement Growth Model framework, the focus of this 

thesis, was my conceptualisation and programming work.  
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Papers 1, 2, & 3 were undertaken under a ESRC Fellowship, for which I was 

Principal Investigator. I developed the initial concept, managed the 

programme of research, provided the intellectual direction of analyses, carried 

out the analyses, and led the preparation and submission of manuscripts. Dr. 

Andrea E. Gaughan, Dr. Forrest R. Stevens, and Dr. Catherine Linard were 

listed as co-authors throughout due to the large influence our early 

conversations (2014-2016) had on my final conceptualisation of the Built-

Settlement Growth Model presented in this work.  

Given the close work with the Global Project, many programmatic tools and 

frameworks for interfacing with the common geospatial data repository were 

used within my Built-Settlement Growth Model scripts. Additionally, since early 

versions of my model were utilised in the Global Project, several special cases 

and errors were found and corrected during the production process. For these 

reasons, Dr. Maksym Bondarenko, who I worked with side-by-side on Global 

Project, is listed as co-author on papers 1, 2 & 3.  

Given the interdisciplinary nature of my work, guidance on utilising splines 

and growth curves was provided to me by Alessandra Carioli (University of 

Southampton, UK); therefore, she is listed as co-author on paper 1 & 2.  

Dr. Thomas Esch (DLR, Munich, Germany) provided both data and insight into 

state-of-the-art remote sensing datasets and therefore he is listed as co-author 

on paper 1. In paper 2, David Kerr (University of Southampton, UK) provided a 

programmatic tool for efficiently extracting built-settlement population for use 

in my analyses and carried out the extraction for me.  

Given that paper 3 is a meta-analysis of population models for the globe from 

2000-2020, many people were involved in the production of those models. 

Greg Yetman (CIESIN, University of Columbia, New York, USA), Dr. Parmanand 

Sinha (University of Louisville, Kentucky, USA), Nikolaos Ves (University of 

Southampton, UK), and David Kerr produced many of the countries’ 

population and modelled urban datasets, using my Built-Settlement Growth 

Model, under the guidance and supervision of myself, Dr. Maksym 

Bondarenko, and Dr. Alessandro Sorichetta. Both Dr. Maksym Bondarenko and 

I also produced these datasets. They are all listed as co-authors for this 

reason. 

Dr. Jessica E. Steele (University of Southampton, UK) provided supervision for 

papers 1 & 2. Dr. Donna J. Clarke (University of Southampton, UK), Dr. 
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Alessandro Sorichetta, and Dr. Andrew J. Tatem (University of Southampton, 

UK) provided supervision for papers 1, 2, & 3. All first drafts of papers were 

written by myself with comments and suggestions provided by co-authors and 

supervisors. 

Additional papers under the Global Project where I am a co-author are either in 

preparation or are published as below. 

Sinha, P. Gaughan, A. E., Stevens, F. R., Nieves, J. J., Sorichetta, A. & A. J. 

Tatem. (2019). Assessing the spatial sensitivity of a random forest model: 

Application in gridded population modelling. Computers, Environment and 

Urban Systems 75: 123-145. doi: 10.1016/j.compenvurbsys.2019.01.006 

Lloyd, C. T., Chamberlain, H. Kerr, D., Yetman, G. Pistolesi, L., Stevens, F. R., 

Gaughan, A. E., Nieves, J. J., Hornby, G. MacManus, K., Sinha, P., Bondarenko, 

M., Sorichetta, A., & A. J. Tatem. (2019). Global spatio-temporally harmonised 

datasets for producing high-resolution gridded population distribution 

datasets. Big Earth Data 3(2). doi: 10.1080/20964471.2019.1625151 

Bondarenko, M., Nieves J. J. (co-primary author), Sorichetta, A., Stevens, F. 

R., Gaughan, A. E., & A. J. Tatem. (In preparation). wpRF: A package for 

random forest-informed population mapping. Journal of Statistical Software. 
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Chapter 1 Introduction to the Published Works 

1.1 Introduction 

While the global population growth rate has slowed to near 1950 levels, the total 

population is expected to increase to 9.7 billion by 2050 (United Nations, 2018, 

2019). Over half of this growth is anticipated to occur in sub-Saharan Africa and 

within 47 of the lowest-income countries (United Nations, 2018, 2019). Combined 

with this are changing demographic compositions, with all countries experiencing 

aging populations. Higher-income countries currently have larger proportions of 

their population over 65 years of age (United Nations, 2018, 2019). This has 

implications for dependency ratios, i.e. the number of "working age persons" (15-

64 years) per person under 15 and 65 years and older. This impacts the 

distribution and characteristics of labour and economics, which feeds into more 

potential migration flows (Montgomery et al., 2003; Pezzulo et al., 2017; United 

Nations, 2018, 2019). 

In 2018, 55 percent of the world's population lived in urbanised areas, but this is 

projected to increase to 68 percent in 2050 (United Nations, 2019). This growth 

is primarily due to natural population growth, continued rural to urban migration, 

and the conversion of rural to urban land (Ledent, 1982; Angel et al., 2011; 

United Nations, 2019). Similar to overall population trends, the majority of the 

urban growth anticipated to occur by 2050 will be in low- and middle-income 

countries, with 90 percent of the projected growth to occur in Asia and Africa 

(United Nations, 2018).  

As the magnitude, demographic composition, and spatial distributions of 

populations change, issues adequately addressing sustainable development and 

urbanisation are dependent upon better understanding past, current, and future 

urbanisation trends (van Vliet, Eitelberg and Verburg, 2017; Zoraghein and Leyk, 

2019; Ehrlich, Balk and Sliuzas, 2020). The rate of growth and magnitude of 

urbanisation requires greater information about urban areas and settlement, 

including higher frequency observations of urban areas (Hoalst-Pullen and 

Patterson, 2011; Acuto, Parnell and Seto, 2018; Zhu et al., 2019). However, “it 

remains very important to take a settlement-based approach in studying the 

processes and patterns of demographic, economic, and social development” 
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(Champion and Hugo, 2017, p. xxi), with many settlements contributing to larger 

urbanised areas. Having settlement data with high spatial resolution, high 

temporal frequency, and broad temporal coverage is necessary to better 

understand the spatial distribution of human activities, societal processes, and 

human environment interactions (Ehrlich, Balk and Sliuzas, 2020).Settlement data 

with high spatial resolution have only recently become available (Pesaresi et al., 

2013, 2016; Esch et al., 2013; Corbane et al., 2017; Florczyk et al., 2019). 

However, their temporal frequency and coverage are still sparse (Florczyk et al., 

2019). 

More timely predictions and greater understanding of settlement expansion and 

urbanisation trends are necessary to minimise potential adverse outcomes and 

environmental impacts, and maximising the benefits that can come from 

urbanisation (Stephenson, Newman and Mayhew, 2010; Hoalst-Pullen and 

Patterson, 2011; Sverdlik, 2011; K C Seto, Guneralp and Hutyra, 2012; Eckert and 

Kohler, 2014; United Nations, 2018; Zhu et al., 2019). Having such data could 

allow for more sustainable urbanisation via monitoring the preservation of arable 

land (Schaldach et al., 2011; van Asselen and Verburg, 2013; van Vliet, Eitelberg 

and Verburg, 2017), reduce healthcare inequalities in unplanned and “slum” 

settlements (Vlahov et al., 2007; Ezeh et al., 2017), and adapting climate change 

mitigation strategies in the face of rapidly urbanising landscapes and 

populations(McGranahan, Balk and Anderson, 2007; McDonald et al., 2011).  

 

Addressing the issues of settlement growth and urbanisation and parallel 

changes in populations and their distributions requires more frequent and 

accurate population mapping (Freire et al., 2020). Better mapping of population 

requires more frequent, consistent, and comparable mapping of the human 

footprint on earth, i.e. settlements  (Balk et al., 2006; Hoalst-Pullen and Patterson, 

2011; Freire et al., 2015, 2016; Champion and Hugo, 2017; Nieves et al., 2017; 

Reed et al., 2018; Zhu et al., 2019; Zoraghein and Leyk, 2019; Ehrlich, Balk and 

Sliuzas, 2020; Stevens et al., 2020). To achieve this, some key questions need to 

be addressed. First, to better predict these trends in population distributions and 

urbanisation, where and when urban/settlement expansion occurred across the 

globe in the past 15 years must be answered in a consistent and comparable 

manner with high temporal frequency (Hoalst-Pullen and Patterson, 2011; 

Champion and Hugo, 2017; Acuto, Parnell and Seto, 2018; Zhu et al., 2019; 

Zoraghein and Leyk, 2019). With that answered, and expanding the available time 
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series of urban/settlement extents, where and when urban growth is likely to 

occur in future years, based upon past and current trajectories, can be 

approached (Champion and Hugo, 2017; Zoraghein and Leyk, 2019). Then, how 

better predictions of the urban landscape can contribute to better population 

mapping can be investigated (Balk et al., 2006; Freire et al., 2015; Champion and 

Hugo, 2017; Nieves et al., 2017; Ehrlich, Balk and Sliuzas, 2020). 

However, the baseline data of past settlement extents and population 

distributions required to approach answering these questions in a consistent and 

comparable way across the globe do not currently exist with sufficient spatial or 

temporal detail (Acuto, Parnell and Seto, 2018; Zhu et al., 2019; Ehrlich, Balk and 

Sliuzas, 2020). Small cities and towns are expected to experience high rates of 

growth, have large differences between settlements of differing size, and are 

traditionally the least well represented in current remote sensing data (Cohen, 

2006; Champion and Hugo, 2017; Farrell, 2017; United Nations, 2018; Zhu et al., 

2019; Ehrlich, Balk and Sliuzas, 2020). Urban modelling would naturally present a 

potential answer to supplement existing urban datasets (K. C. Seto, Guneralp and 

Hutyra, 2012; Linard, Tatem and Gilbert, 2013; Zoraghein and Leyk, 2019; 

Ehrlich, Balk and Sliuzas, 2020). However, previously constructed urban 

modelling frameworks have limits, such as lack of specificity at subnational 

levels, that preclude their subsequent use to inform population mapping globally 

at high spatial resolution, particularly in data sparse low- and middle-income 

contexts (Champion and Hugo, 2017). 

Here, I will introduce a novel and flexible urban modelling framework capable of 

global application and with the intended, but not exclusive, end use of improving 

population modelling. The focus of this thesis is on addressing the 

aforementioned questions and demonstrating that modelled urban extents can be 

useful in applied population modelling. Within this introduction, I will focus on 

four key themes. By understanding “Urban and Population Dynamics” I can better 

choose from the “Digital Representations of Built-Settlement” that are best suited 

for modelling population. By utilising the recent advances in digital 

representation of built-settlement, examining the limits of previous global and 

continental “Urban Growth Modelling” frameworks, and understanding “Built-

Settlement in the Context of Modelling Populations”, I develop an urban/built-

settlement modelling framework that is optimised for better modelling 

populations. 
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1.2 Theme I: Urban and Population Dynamics 

1.2.1 Definitions of Urban 

Urban has been defined in many ways across many fields with different 

definitions existing within the same field, depending upon the specific 

application. Many countries define urban as a function of some population 

magnitude/density threshold, administrative jurisdictions, or functional economic 

areas and activities (Montgomery et al., 2003; United Nations, 2015, 2018). While 

not conducive to applications requiring global consistency in definitions (Potere 

and Schneider, 2007), none of these definitions of the concept of urban are 

objectively wrong. The formal, yet vague, definition of urban is simply “of, 

relating to, characteristic of, or constituting a city” (Merriam-Webster, 2019). And, 

typically, what is not considered urban is simply classified as rural (Montgomery 

et al., 2003; Champion and Hugo, 2017). However,  urban is a complex 

amalgamation of the physical environment, population, economics, movement 

and connectivity, and their interactions (Burgess, 1925; Hoyt, 1939; Harris and 

Ullman, 1945; Gottman, 1957; Von Thunen, 1966; Zelinsky, 1971; Ledent, 1982; 

Berechman and Gordon, 1986; Southworth, 1995; Pozzi and Small, 2005; Cohen, 

2006; Haas, 2010; Schneider, Friedl and Potere, 2010; Angel et al., 2011). As 

recently as 1970, the number of application-based definitions of urban, was as 

little as three (Champion and Hugo, 2017). While the demand for more fit-for-

purpose definitions of urban has continually grown, the geographical frameworks 

for collecting data on these definitions are often not built accordingly, risking 

misrepresentation of what is occurring and limiting future predictions of urban 

and population growth  (Champion and Hugo, 2017, p. xxiii).   

Needing an operationalised, measurable, and consistent definition of urban, 

many studies have used a definition based solely upon physical features 

observable from remotely-sensed imagery (Schneider et al., 2003; Pozzi and 

Small, 2005; Small, Pozzi and Elvidge, 2005; Cheriyadat et al., 2007; Potere and 

Schneider, 2007; Potere et al., 2009; Small, 2009, 2016; Florczyk et al., 2019). 

This has produced data that is broadly encompassed by the term “built-

environment” (Table 1). Remote sensing (RS) refers to the measurement of the 

Earth’s surface using sensors (e.g. satellite or aircraft based) that measure 

electromagnetic radiation from a distance. While the concept of urban is rich, the 

definition of urban land from a RS perspective is typically either thematic based, 

focused on anthropogenic and impervious land cover, or object based, focused 
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on the urban features that comprise the thematic urban space such as 

transportation networks and buildings. Balk et al. (2018) have shown that, in 

certain contexts, RS-based definitions of the physical aspect of urban have large 

overlap with the population and density-based facets and definitions of urban. 

Because of the complex intermarriage of contributions from various fields to the 

concept of urban, any discussion of urban within an interdisciplinary context can 

easily become confusing. For consistency and clarity, moving forward I adopt the 

words and definitions outlined in Table 1 and deviate only with explicit 

description. 

  



Chapter 1 

6 

Table 1 Terms and definitions as related to urban and built-environment. 

Terms Definition Additional Notes 

Built Environment Broad concept consisting of anthropogenic 

land covers and features  

Includes impervious surfaces, buildings, 

lights, earthen structures, etc. 

Built-Settlement “Enclosed constructions above ground 

which are intended or used for the shelter 

of humans, animals, things, or for the 

production of economic goods and that 

refer to any structure constructed or 

erected on its site” (Pesaresi et al., 2013) 

As detected by remotely sensed imagery, 

typically limited to buildings 

Land Cover The physical surface of the earth as 

observed in situ or via remotely sensed 

observations  

 

Land Use The anthropogenic activities associated 

with a given area of land 

A single land cover could have many land 

uses. While land cover is easily detected by 

remotely sensed observations, land use is 

typically not detectable or classifiable, e.g. 

how to discern between an aquaculture pond 

and a natural pond.  

Urban Broad concept incorporating the physical 

environment, population, economics, and 

movement and connectivity 

 

Urban Feature A subset of the built environment, but 

containing built-settlement, that focuses on 

anthropogenic objects found within built 

environments 

As detected by remotely sensed imagery, 

could be anything from roads, buildings, 

other infrastructure objects, etc. 

Urban Growth The growth of population within urban 

areas and the population which find 

themselves being reclassified as urban due 

to urbanisation 

Urban growth, a population focused concept, 

can occur without further urbanisation due to 

natural growth and in migration to urban 

areas 

Urbanisation The transitional process from an “agrarian 

to an industrial society” typically 

accompanied by changes in the distribution 

of economic activity, an expansion and or 

intensification of the built environment 

and, typically, a densification of the 

population distribution across space 

(Zelinsky, 1971; Ledent, 1982) 
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1.2.2 The Urban, Population, and Economics Triad 

Generally, in the 19th and 20th centuries surplus labour from rural areas migrated 

to larger settlements where this labour was applied to producing goods, 

modernising agriculture, and developing specialised services (Davis, 1965; Anas, 

Arnott and Small, 1998; Montgomery et al., 2003; Farrell, 2017). Parallel 

advances in transportation lowered the cost of moving people, goods, and 

information further facilitated growth and made the services provided by cities, 

e.g. health care and treated water, accessible to a larger population (Preston and 

van de Walle, 1978; van Poppel and van der Heijden, 1997; Montgomery et al., 

2003) 

This economic activity and advances in transportation were largely the originator 

of and sustained the growth of cities during this period, but in more 

contemporary times city and urban growth has become more detached from 

economic activity and, consequently, rural-urban migration and becoming more a 

consequence of natural population growth and increases in health sciences and 

services (Davis, 1965; Preston and van de Walle, 1978; Ledent, 1982; van Poppel 

and van der Heijden, 1997; Montgomery et al., 2003; Dyson, 2011; Farrell, 2017). 

While these factors are described at the city scale, there is an interdependence 

upon inter-city economic activity as well as the influence of regional, national, and 

international policies (Benziger, 1996; Montgomery et al., 2003; Joss, Cowley and 

Tomozeiu, 2013). Further, “urban areas” and “urban populations” are often 

growing simply due to the reclassification of non-urban areas to urban (Cohen, 

2006; Balk et al., 2018; Jones, Balk and Leyk, 2020). While urban growth, the 

absolute growth of population within urban areas, and urbanisation, the growth 

of the proportion of people living in urban areas, often occur simultaneously, 

these processes can occur without each other (Davis, 1965; Montgomery et al., 

2003; Farrell, 2017). Indeed, the footprint of cities and settlements can grow with 

little economic or demographic input, but rather be the result of an increased 

demand of services and living space (Montgomery et al., 2003; Ehrlich, Balk and 

Sliuzas, 2020). 

While cities can have benefits, they also can have costs such as higher exposure 

to pollution and crime, higher cost of property, higher commuting times, and 

more crowded living conditions (Preston and van de Walle, 1978; Glaeser, 1998). 

Some cities are actually experiencing decline across the economic, infrastructure, 
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and population spectrums (Glaeser, 1998; Oswalt, Rieniets and Schirmel, 2006; 

Hollander and Németh, 2011). However, this decline, if underlying a process of 

deconcentration of a certain city’s “primacy,” can stimulate longer term economic 

growth (Henderson, 2002). But, if an area of a city becomes depopulated, the 

physical structures, such as buildings and roads, may remain for years, decades, 

or centuries depending upon the construction, environmental factors, and if there 

is planned demolition of such structures. This is to say that once an area has 

been converted to an urban or settled land cover, it is relatively inelastic to 

changing back to a more natural environment (Verburg et al., 2002, 2004; 

Schaldach et al., 2011; van Asselen and Verburg, 2013). 

While the above factors are generally common across cities and urban areas as a 

whole, there drivers, patterns, and trajectories of cities and urban areas can vary 

quite widely across both space and time (Farrell, 2017). As shown, the factors 

that contribute to the growth of a city can also contribute to its decline or 

shrinkage and the way these factors may interact is highly context dependent and 

operates across a variety of spatial and temporal scales. Cities and urban areas 

do not exist in a vacuum; they are dependent, symbiotic, and in competition with 

rural areas with regards to land, natural resources, labour, capital, services, and 

infrastructure (Douglass, 1989; Kelly, 1998; Montgomery et al., 2003). And as 

varied as city and urban growth was, and still is, there arose numerous theoretical 

models to try and understand these complex processes between urban areas, 

economics, and populations. 

Many of the 19th and through the mid-20th century urban models were used as 

conceptual lenses through which urban development and the transition of urban 

form could be understood. In 1875, Von Thünen (1966) described land use 

through economics based upon land rent and transportation cost from a central 

market. Burgess (1925) expanded upon this and put forth the concentric zone 

model consisting of a Central Business District (CBD) surrounded by five 

concentric zones of differing utilitarian purposes: transition zone, inner suburbs, 

outer suburbs, and a commuter zone. Hoyt (1939), remaining with the idea of a 

CBD, proposed a series of wedges or sectors, as opposed to concentric rings, 

radiating from the CBD along lines of transportation/communication with 

specialised uses similar to Burgess’s model. Harris and Ullman (1945) later moved 

away from the pivotal CBD by describing an urban area as a series of nuclei, that 

develop around an existing CBD, and around which specialised activities are 

focused. This has since developed into a broader more pluralistic concept of 
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“polycentric cities” where spatially clustered, historically independent cities are 

physically connected via infrastructure and have a network of flows of people, 

goods, and ideas across various scales (Gottman, 1957; Kloosterman and 

Musterd, 2001; Parr, 2004; Green, 2007). 

Regardless of their form, these conceptual models had the common elements of 

explaining the relationships between people, the built-environment, and 

economic activity and across space (Figure 1).  

 

Figure 1 Generalised diagrams of the prominent 19th and 20th century urban conceptual 

models with (A) Von Thünen’s Agricultural Land Use Model, (B) Burgess’s 

Concentric Zone Model, (C) Hoyt’s Sector Model, and (D) the Polycentric Model. 

 Despite the utility of these conceptual models,  “…city and regional systems are 

entities far too complex to be understood through theory alone” and “…even the 

evolution of a single city presents issues of path dependence, historical lock-in, 

and agglomeration dynamics that render theoretical conclusions indeterminate. 

The difficulties involved in explaining a single city’s growth trajectory are 

magnified many times when city systems and regions are considered” 

(Montgomery et al., 2003, p. 58).  

Given that there are established, although complex, causal linkages between 

population, the built-environment, and economic activity it would follow that 
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these are factors I should consider in modelling any aspect of urban. This 

presents an issue when attempting to globally model as high-resolution, spatially 

or temporally, data on economic activity are not globally available below the 

national level (Gao and O’Neill, 2019, 2020).Logically, that leaves using available 

population data to predict the built-environment. This is because population is 

not only a driver of land cover changing from non-built to built (Ledent, 1982; 

Montgomery et al., 2003; Cohen, 2006; Dyson, 2011), but, lacking better 

information, could be sufficient to predict changes in the built-environment and 

or potentially serve as a proxy for any economic drivers of these transitions. 

Given that built-environment data is consistently important in predicting 

populations across the globe (Nieves et al., 2017), I hypothesise that the inverse 

can be true as well. In this work, I leverage the correlations, in data, that result 

from these complex and endogenous causal relationships. However, inferring the 

specific forms of these causal relationships is beyond the scope of this thesis.  

Prior to utilising these relationships, I must further define what “urban” I am 

investigating. Even restricting the definition of urban to the built-environment as 

measured from RS-based imagery, there is still plurality in the definition. I first 

need to answer how I intend to classify and measure urban consistently across 

the globe. 

1.3 Theme II: Digital Representations of Built-Settlement 

Even by reducing the definitional scope of urban, the form of the built-

environment can widely vary across space and time due to materials used, 

differences in urban morphology, and the surrounding environmental context (A 

Schneider and Woodcock, 2008; Small, 2009; Schneider, Friedl and Potere, 2010; 

Jilge et al., 2019). The built-environment broadly encompasses the anthropogenic 

physical environment (Table 1) including urban features such as buildings, roads, 

runways, other impervious surfaces, and, depending on the spatial scale of the 

dataset, can include semi-natural/managed land covers such as golf courses or 

suburban lawns and gardens. 

Currently, almost all digital past and present built-environment extent data is 

based upon RS imagery (e.g. satellite- or airplane-based imagery) or Volunteered 

Geographic Information (VGI) (e.g. OpenStreetMap), in the form of manually 

delineated areas of RS imagery. Initially, these datasets took the form of thematic 

classifications of urban land cover created from RS optical imagery, with the 



Chapter 1 

11 

 

“urban” class typically capturing the “built-environment” (Table1). Such a class 

would incorporate urban features such as buildings, roads, runways, other 

anthropogenic impervious surfaces, and, sometimes erroneously, bare soil 

(Vogelmann et al., 2001; Schneider et al., 2003; Yang et al., 2003; Bartholomé 

and Belward, 2005; Potere et al., 2009; Schneider, Friedl and Potere, 2010; 

European Space Agency, 2013; UCL Geomatics, 2017). These datasets are 

typically at 30m or coarser in resolution. Later improvement used supporting 

information about the surrounding environment and vegetation during post-

processing to help discern the true built-environment from the surrounding 

“noise” producing a global dataset at 500m resolution (Schneider, Friedl and 

Potere, 2010). Other recent development in thematic urban land cover datasets 

include a global impervious surface dataset at 30m resolution (Brown de Colstoun 

et al., 2017b). 

Coinciding with advances and availability in imagery, statistical methods, and 

computational resources, along with increases in layperson Geographic 

Information System (GIS) literacy, manually delineated urban feature data have 

become available and prevalent. These datasets include individual objects of the 

built-environment, such as building footprints and roads. Generally, manual 

delineation is too time consuming and expensive for producing urban extents at 

a global scale, much less for multiple time points. Most large delineation efforts, 

such as those undertaken by Humanitarian OpenStreetMap Team (HOT), are 

triggered by specific events, e.g. earthquakes or hurricanes (hotosm.org). 

Nevertheless, OpenStreetMap (OSM) is a large, popular, and important freely 

available repository of VGI containing manually defined vector-based urban 

feature data. However, the completeness, accuracy, and representation of the 

data in time is either unknown or variable (Haklay, 2010; Neis and Zipf, 2012; 

Linard et al., 2014). In addition to OSM, many companies, governmental 

organisations, and others have produced similar datasets, although their 

availability is not always free and open. The advent of these manually delineated 

urban feature datasets provided a rich resource of training data for feature 

extraction algorithms and initiated a series of advances in the production of 

urban feature datasets.  

While not exhaustive, I briefly cover notable recent advances in refining the 

extraction of urban features with global extent and across several time points. 



Chapter 1 

12 

• The European Commission Joint Research Centre (JRC) produced the 38m 

resolution Global Human Settlement Layer (GHSL) (Pesaresi et al., 2013, 

2016). This data set utilised a corner detection algorithm with symbolic 

learning methods to extract human-habitable and related structures from 

the entire Landsat catalogue of imagery, producing built-settlement 

extents for 1975, 1990, 2000, and 2014 at 38m resolution (Table 2) 

(Pesaresi et al., 2013, 2016). 

• The Global Urban Footprint (GUF) dataset utilised Synthetic Aperture Radar 

(SAR) imagery, along with post-processing based on OSM data, to globally 

extract vertical structures at 12.5m resolution, representing circa 2012 

(Table 2) (Esch et al., 2013). 

• The European Space Agency’s Climate Change Initiative (ESA CCI) land 

cover dataset has annual coverage at 300m from 1992-2019 (UCL 

Geomatics, 2017). It is unique in that it blends traditional multi-spectral 

thematic definitions of the built-environment, albeit only capturing for land 

cover change lasting at least two years, with the settlement extents of the 

GHSL and GUF datasets (Table 2) (UCL Geomatics, 2017). 

• Facebook used a combination of manually delineated urban feature data 

and automated machine learning methods to extract urban features and 

produce the High Resolution Settlement Layer (HRSL). The HRSL dataset 

covers 33 countries, has 30m resolution, and represents the year 2015 

(Table 2) (Facebook Connectivity Lab and Columbia University Center for 

International Earth Science Information Network - CIESIN, 2016). 

• The Center for International Earth Science Information Network (CIESIN) 

used a method similar to Facebook to extract urban features globally from 

Landsat data, representing 2010, at 30m resolution, and post-processed 

them using OSM data to create the Human Built-up and Settlement Extent 

(HBASE) dataset (Table 2) (Brown de Colstoun et al., 2017a). 

• While not global in extent, Microsoft also used an automated convolutional 

neural network process to produce publicly available vector-based building 

footprints across the entire United States and added them to the OSM 

database (Table 2) (Microsoft, 2018). 

• For 40 cities in Africa, Forget, Linard, and Gilbert (Forget, Linard and 

Gilbert, 2018) leveraged the information in OSM building footprint data to 

train a machine learning model with object based image analysis (OBIA) 

approaches (Table 2). This was used to extract urban features from a 
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combination of optical and SAR imagery at 12.5m for a series of time 

points between 1995 and 2015. 

These latter two datasets are given as further examples of the strength of 

OBIA methods in urban feature extraction used in conjunction with VGI, such 

as OSM, and possible hints of future trends in urban feature extraction 

methods. These datasets and their characteristics are detailed in Table 2.
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Table 2 Non-exhaustive list of RS thematic and feature of built-environment and built-settlement datasets with their characteristics. 

Dataset General Derivation Method Urban Representation 
Type a 

Sensor Type & 
Data Spatial Extent Spatial Resolution 

(meters)c 
Temporal 
Resolution Temporal Extent 

ESA CCI Landcover Thematic Image Classification BE-BS MS Global 300 Annual 1992-2018 

GHSL Symbolic Image Learning BS MS Global 38 Cross-sectional 1975, 1990, 2000, 
2014 

GUF Support Vector and Heuristic Post-
processing UF-BS MS & VGI Global 12.5 Single Time 

Point Circa 2012 

HBASE Convolutional Neural Network BE-BS MS Global  Single Time 
Point Circa 2015 

HRSL Convolutional Neural Network BE-BS MS   Single Time 
Point Circa 2015 

MAUPP OBIA BE-BS MS & SAR 40 African 
Cities 12.5 Every 5 years 1995-2015 

MODIS 500 Thematic Image Classification BE MS Global 500 Single Time 
Point 2000 

Microsoft Building 
Footprints 

Artificial Neural Network Feature 
Extraction UF-BS  3 countries Vector Single Time 

Point Circa 2015-2018 

a BE: Built-Environment     BS: Built-Settlement     UF: Urban Feature(s) 
b MS: Multi-spectral     SAR: Synthetic Aperture Radar     VGI: Volunteered Geographic Information 
c Approximate at the Equator 
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The primary trend in these advances is a shift towards higher spatial resolutions, 

with greater temporal frequency of the derived datasets (Florczyk et al., 2019). 

Additionally, a conceptual shift occurred, from capturing the wider construct of 

the built-environment to capturing individual urban features or urban features 

that contribute to the concept of built-settlement (Florczyk et al., 2019) (Table 2). 

This is particularly important for applications relating to human presence and  

activities as it is generally considered that a settlement based approach is the 

most appropriate for investigating demographic, economic, and societal 

processes (Champion and Hugo, 2017, p. xxi; Ehrlich, Balk and Sliuzas, 2020). 

Meyer and Turner (1992, p. 47) give “settlement” to have one of the two 

meanings, depending on the overall conceptual lens adopted: 

“The category of settlement as a land use includes areas devoted to human 

habitation, transportation, and industry. As land cover, it incorporates 

highly altered surfaces such as buildings and pavement, but such cover 

represents only a portion of the total area that a land-use classification 

might accord to settlement.” 

However, the physical realisation of settlement, i.e. the morphology, varies across 

space and time (Schneider et al., 2003; A. Schneider and Woodcock, 2008; Small, 

2009; Jilge et al., 2019). These variabilities are a result of the land use, materials 

available, and the underlying urban processes that occur across numerous spatial 

and temporal scales (Zelinsky, 1971; Berechman and Gordon, 1986; Montgomery 

et al., 2003; Dyson, 2011; Farrell, 2017; Small et al., 2018). This variability is 

particularly apparent in RS data both between and within cities, as well as across 

regional and international scales (Small, 2009; Jilge et al., 2019). See Figure 2 of 

Jilge et al. (2019) for an example of the coexistence of 24 different material 

classes, as detected by RS imagery, in a 2.4 km2 area. Additionally, including 

“highly altered” surfaces such as pavement, roads, alongside buildings in my 

adopted definition of settlements would not be useful for my stated purpose of 

expanding the data availability of where humans are typically located, i.e. 

population mapping (Pesaresi et al., 2013; Esch et al., 2013; Freire et al., 2015; 

Ehrlich, Balk and Sliuzas, 2020). Because of these two considerations, a further 

narrowing of the fit-for-purpose definition of settlement and urban features (in 

this case, buildings) I adopt is necessary. 
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Here, I adopt the definition of “built-settlement.” Built-settlement (BS) is based 

upon the concept of “built-up structure” in the Global Human Settlement Layer 

(GHSL) urban feature dataset (Table 2) and is defined as “enclosed constructions 

above ground which are intended or used for the shelter of humans, animals, 

things or for the production of economic goods and that refer to any structure 

constructed or erected on its site”  (Pesaresi et al., 2013, p. 2108). This is similar 

to the concept of “built-up land” in Balk, Leyk, et al. (2018). More broadly, the 

concept of BS is an intersection between the urban features of the built-

environment and population. Hereafter, I generalise BS to include other urban 

feature datasets that attempt to refine their thematic or feature set to better 

represent buildings associated with human activities and exclude more general 

impervious surfaces, such as roads, parking lots, and runways. 

Indeed, remotely sensed derived datasets have recently shifted away from the 

field-based concept of urban land cover towards the object-based concept of 

urban features. Determining land use from remotely sensed imagery is often 

impossible. For instance, it may be difficult to differentiate from a commercial 

use building and a residential use building. Nevertheless, there are aspects of the 

urban physical environment that can be logically inferred to allow for specific land 

use such as human habitation. As seen in the above datasets, detection of right-

angled corners is often associated with human-constructed buildings (Pesaresi et 

al., 2013; Forget, Linard and Gilbert, 2018). Additionally, backscattering from 

SAR data allows for the detection of structures that are perpendicular to the 

Earth’s surface, that is, vertical constructions such as buildings in the GUF data 

set (Esch et al., 2013). If the interest is in human settlements and human 

populations, then it is logical to adopt datasets that align with the definition of BS 

(Table 1). 

BS datasets available with global extent are relatively new, with early versions of 

GHSL being the first, circa 2014, however there are still limits to these datasets, 

their input imagery, and associated methods. While these datasets can be 

accurate and useful, in that they are pre-processed to facilitate use by end users, 

the resource cost of production is quite large. For instance, GUF utilised SAR 

imagery captured between 2011-2013 at 12.5m resolution and handled over 400 

TB of data to produce, in 2015, the single GUF time point representing 2012. This 

is a two-year time lag from having imagery to producing the final product 

involving extensive super-computing facilities (Esch et al., 2018a). As implied, 

GUF represents only a single time point, circa 2012, and GHSL has no information 
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between the four produced time points of 1975, 1990, 2000, and 2014. Even the 

follow-up dataset to GUF, the World Settlement Footprint (WSF) is predicted to 

only have observations every five years (Esch et al., 2018a) and has been delayed 

by two years due to computational burdens and ensuring a sufficiently high level 

of quality outputs (Esch, 2019). This means there are gaps in the current 

temporal coverage of BS datasets, which precludes answering some of the larger 

questions I listed in the introduction. 

There can also be gaps in the spatial coverage due to the characteristics of the RS 

sensors utilised as inputs for these datasets. For instance, cloud cover, 

suboptimal atmospheric conditions, or sensor errors, can result in missing areas 

within the resulting BS dataset. For example, in Lima, Peru (Figure 2) GHSL failed 

to detect an old area of the city at the 1975 time point and subsequently did not 

classify it as BS in later years. 

 

Figure 2 Example of GHSL built-settlement extent data (red) in Lima, Peru where a part of 

the city pre-existing 1975 was not captured (south west coast). The artefact of 

the image tile extents where there were issues (e.g. atmospheric, sensor, etc.) 

is also apparent. 

Compounding potential spatial gaps, there is generally an inverse relationship 

between the temporal resolution and the spatial resolution of global BS datasets. 

That is, the higher the temporal frequency of the BS dataset, the lower the spatial 

resolution is. 
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The ESA CCI dataset, which is BS-like, has an annual temporal resolution, but has 

a spatial resolution of 300m at the Equator (Table 2). The practical trade-off of 

this is that small settlements, or small area changes of larger settlements across 

time, are not detected by the ESA CCI dataset and there is a higher confusion of 

bare-surfaces with BS (UCL Geomatics, 2017). Which, if small to medium-sized 

settlements truly are experiencing the largest amounts of growth, this has 

significant implications of bias when using such a coarse spatial resolution. That 

is not to say a finer spatial resolution dataset like GHSL, which often identifies 

areas of turbid white water and dark objects against homogenous and relatively 

bright backgrounds as BS, or GUF, which erroneously identifies bridges and 

stacks of shipping containers as BS, are not without their own classification faults. 

Regardless of their methods or input imagery, RS-based BS datasets promise to 

continue to be a rich source of information on urban systems in the future as 

imagery, methods, and computation resources improve and become more 

accessible. Even with globally consistent RS-based datasets, there are notable 

limits with RS-based BS data currently including: 

i) Based upon the aforementioned BS data, an inverse relationship 

between spatial and temporal resolutions of the datasets 

ii) Gaps in data due to hardware errors or atmospheric conditions 

producing unusable imagery (e.g. Landsat 7 scan line error or ) (Figure 

2) (Leyk et al., 2019) 

iii) Various spectral definitions of what constitutes the urban environment 

in addition to spectral signatures of the urban environment that varies 

across space (Potere and Schneider, 2007; Potere et al., 2009; Small, 

2009; Florczyk et al., 2019; Jilge et al., 2019) 

iv) Can be computationally expensive to extract the urban extent features 

and typically requires training data that can be prohibitive to obtain on 

a global scale (Pesaresi et al., 2013; ESA CCI, 2017; Forget, Linard and 

Gilbert, 2018; Esch et al., 2018a) 

v) Most urban growth occurs at smaller spatial scales, meaning that the 

currently available high-temporal resolution (i.e. low spatial resolution) 

data is not suitable nor able to capture the urban environmental 

changes, or existence of, smaller settlements and changes (Cohen, 

2006; Champion and Hugo, 2017; Farrell, 2017; United Nations, 2018; 

Zhu et al., 2019; Ehrlich, Balk and Sliuzas, 2020) 



Chapter 1 

19 

 

Additionally, by their observational nature, satellite-based data will never be able 

to see future, or past unobserved, extents. If the existing temporal gaps in these 

datasets are to be filled in and subsequently extended to project future BS 

extents, it would need to be without relatively large computational burdens and 

imagery requirements. This is where an urban growth/expansion model would 

appear to be the most tractable solution. 

1.4 Theme III: Urban Growth Modelling 

Within the conceptual urban models of the 19th and 20th century, the common 

elements of people, resources/economics, transportation, and space (Figure 2) 

were largely treated as static and revolved around aggregate levels of macro-

economic “…relationships between various types of production and 

consumption…” (Batty, 2009, p. 52). However by the 1950s, with the advent of 

digital computers, urban models shifted from conceptual to computational in 

nature and have since spanned from macro- to micro-economic in their focus and 

from static to dynamic in their nature (Batty and Xie, 1994; Batty, 2008, 2009; Li 

and Gong, 2016a). This spectrum of urban modelling, ranging from top-down 

cross-sectional explanations of “city in equilibrium” to more bottom-up 

explanations of “urban location and behaviour” is displayed in Figure 3 (Batty, 

2008, p. 3).  



Chapter 1 

20 

 

Figure 3 Continuous spectrum of urban models from top-down aggregate conceptual 

models (far left) to the computational top-down cross-sectional “city-in-

equilibrium” models and the more bottom-up and dynamic models (far right)  

Model categories are broad and examples are non-exhaustive. Adapted from Li 

and Gong (2016a) Fig. 1 and Batty (2008) Fig. 1. 

In the 1960s, a shift began towards modelling on a smaller scale and on city 

dynamics and growth, as opposed to a static cross-sectional representation of 

cities (Batty, 2008). In simpler terms, the focus shifted towards modelling the 

process of “urbanisation”. Urbanisation, from a socio-economic view, is the 

transitional process “from an agrarian to an industrial society” (Ledent, 1982) with 

the process having three primary pathways: (1) natural growth of existing urban 

populations, (2) migration of population from rural to urban areas and, (3), the 

reclassification of rural areas to urban, due to changes in non-population aspects 

of the concept of urban such as spatial distribution of economic development and 

activities (Figure 1) (Zelinsky, 1971; Ledent, 1982). The process of urbanisation is 

not synonymous with population-centric concept of “urban growth”, with 

urbanisation occurring contemporaneously with urban growth only if urban 

population grows more rapidly than rural population (Ledent, 1982). 

With all the varying factors and drivers of urban, this eventually led to the three 

main cotemporary groups of urban growth models that incorporate both time and 

space: Land Use Transport (LUT), Agent-based, and Cellular Automata (CA) 

models (Batty, 2008; Li and Gong, 2016a). 

LUT models focus on the zonal allocation of socio-economic activities, specifically 

around the idea that  transportation networks influence location decisions of 
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residential and economic land uses, ultimately leading to larger scale land use 

configurations and zoning (Berechman and Gordon, 1986; Southworth, 1995; 

Batty, 2009). 

Agent-based models allow for individual human units or “agents” to have various 

decision making characteristics and interact with not only each other, but 

modelled aspects of the physical and socio-economic environment to make 

decisions on their spatial distribution (Sakoda, 1971; Schelling, 1971; Ferber, 

1999; Benenson, 2004; Li and Gong, 2016a). These individual interactions and 

self-organising type behaviour and decisions give rise to the larger aggregate 

urban form and the more complex dynamics (Li and Gong, 2016a). 

By the 1990s, cellular automata type models had come to the forefront of the 

urban modelling discipline (Batty, 2008, 2009). Because this thesis is global in 

extent and focuses on data that is globally available, I will focus on CA type 

models in more depth. CA models typically have less input data requirements in 

that they handle transportation in a much less nuanced manner, often do not 

directly handle economic activities, and do not generally attempt to, directly, 

model sociological factors. 

1.4.1 Urban Cellular Automata Models 

Cellular Automata (CA) models, first described by Alan Turing and later 

popularised by Von Neumann in the 1950s (Batty, 1997), are capable of 

modelling complex phenomena whose foundational components can be 

considered relatively simple (Wolfram, 1984; Batty, 1997). Tobler’s (1970) 

“Computer Movie” of Detroit can be considered the first application of CA to 

modelling urban environment growth. In the application of CA to modelling urban 

environment growth, the identical components of the CA typically take the form 

of the cells of a regular spatial grid, i.e. a raster (Sante et al., 2010). Each cell has 

an initial value which changes based upon an applied set of deterministic rules 

and the variation in the pattern of resultant values depends upon the local 

conditions of neighbouring values and the values of data in and around a given 

cell (Wolfram, 1984; Sante et al., 2010). These rules, which determine the 

transition probability of a cell, can be heuristic-based, dynamic or static across 

space, time, and scale, or determined by statistical means, such as machine 

learning methods (Clarke, Hoppen and Gaydos, 1997; White and Engelen, 1997, 
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2000; Verburg et al., 2002; Sante et al., 2010; Schaldach et al., 2011; van Asselen 

and Verburg, 2013). These different types of transition rules were grouped into 

six general categories by Sante et al. (2010), which I describe in Table 3. 

Table 3 General classes of transition rules per Sante et al. (2010) 

Transition Rule Type General Description 

I The state of a given cell is a function of the cell’s current state and its 
neighbours’ states  

II Assumes the primary driver of urban change can be captured as a “transition 
potential,” (probability of a cell changing to a given land cover), which is a 
function of the cell’s current state, its neighbours’ states, land use constraining 
factors, and, sometimes, stochastic elements. 

III Rules based upon the “urban shape” having a basis in measures of landscape 
ecology and fractal theory 

IV Rules automatically constructed using machine learning methods and 
algorithms 

V Rules based on fuzzy-logic 

VI All other methods of generating rules including logical operations based upon 
assumptions, histogram distributions, and others. 

Further, despite the variation in specificities, the influences that give rise to the 

transition rules are generalisable as compiled in Table 4 (Sante et al., 2010). 

Table 4 Common influences creating transition rules found in urban cellular-automata 

models (Sante et al., 2010). 

Influence Source Description 

Transition Rules See Table 3 

Model Objective Is the model descriptive (capturing urban dynamics as related to factors), 
predictive (projecting future urban extent), or prescriptive (attempting to find 
optimal urban configuration)? 

Cell Space Various cell sizes can be utilised, but the cell size should be chosen based upon 
the size of the objects of interest in the urban landscape. 

Cell States Is the model simulating non-urban to urban transitions or accounting for urban 
transitions to and from multiple discrete non-urban classes? 

Neighbourhood Neighbourhood size and type will have an effect on the model output and 
should be taken into consideration with study area, cell space, and time frame. 

Growth Constraint How is urban growth generated? Endogenously or exogenously? Should there be 
rate restrictions? 

Integration with other 
Models 

Is the model incorporating outputs or informing other models, e.g. population 
models that then inform the urban growth magnitude or timing? 

Calibration Procedures to adjust transition rule parameters to produce the most accurate 
modelling of past urban transitions. 

Validation Methods of assessing modelled urban extent maps to corresponding real urban 
extent maps which can influence data availability for training of model. 
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The variations and specific transition rules of CA models for urban growth 

prediction are innumerable, see Sante et al. (2010) and Li and Gong (Li and Gong, 

2016a) for a more detailed review. 

CA urban growth prediction models typically focus on the physical environment, 

as opposed to the socio-economic environment, to determine the transition or 

non-transition of a cell from non-urban to urban, although most times the 

transportation aspect is often absent from such models (Batty, 2009). The 

gridded nature of the CA and its data inputs and outputs allows for ease of 

aggregating to any spatial unit for subsequent application and more importantly, 

for the modelling aspect, allows for efficient application parallel computing 

methods to large study areas (Sante et al., 2010). 

While urban CA models have greatly furthered the field of urban modelling and 

urban planning, there is a distinct regional bias to these studies, with the majority 

of them occurring in high- to middle-income countries (Seto et al., 2011). Further, 

most models of spatial urban growth and transition have been city-specific or 

sub-national in scope, parameterisation, and data dependency (Clarke, Hoppen 

and Gaydos, 1997; White and Engelen, 1997; Clarke and Gaydos, 1998; Leao, 

Bishop and Evans, 2004; Liu and Feng, 2012), therefore lacking generalisability to 

wider areas and more variable progression scenarios. 

1.4.2 Previous Continental and Global Urban Modelling Approaches 

While most urban modelling, not just CA, have been local or regional in focus, 

there have been some notable efforts of modelling urban features at continental 

and global extents. They can be broadly separated into two groups: spatially 

explicit models, which produce spatial maps of the urban feature extents, and 

non-spatially explicit models, which do not produce spatial maps of the urban 

features. The non-spatially explicit models instead provide estimates of total 

urban feature area at some given, often large, spatial scale (Angel et al., 2011; 

Seto et al., 2011). Here, I will give an overview of the most notable spatially 

explicit models, highlight why they do not meet the current needs for producing 

annual estimates of BS for applications involving populations at high spatial 

resolutions. 
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1.4.2.1 Spatially Explicit Models 

Almost all the spatially explicit models can be Generalised as having two primary 

components: “demand quantification” and “spatial allocation”. The demand 

component determines how many target units, within a given larger source unit, 

should transition from non-urban to urban. The allocation component then 

determines which of the smaller units should undergo transition in order to 

produce the final map of urban feature extents. 

Tayyebi et al. (2013) created a hierarchical CA-based urban growth model for the 

coterminous United States which predicted growth from 2001 to 2006 and is 

summarised in Figure 4. 

 

Figure 4 Generalised urban thematic land cover model per Tayyebi et al. (2013) 
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Tayyebi et al. (2013) concluded that urban growth projections driven by local 

population change or initial local urban quantities and patterns were more 

suitable and accurate than the application of constant growth rates across the 

study area. However, they found that the strength of population change in 

relation to initial urban quantities in predicting urban growth became less clear at 

small scales (Tayyebi et al., 2013). The approach by Tayyebi et al. (2013) holds a 

lot of promise, however the reliance on land-use data for training precludes its 

use across the globe as land use data is often not available or non-existent. 

Further, the use of an Artificial Neural Network (ANN) requires a priori 

determination of the ANN structure, or structures, to search through before 

determining the final model. Strengths include the hierarchical framework for 

distributing urban growth and the allowance for local variation in determining 

suitability of transition and the amount of transitions across the period. 

Linard, Tatem, and Gilbert (2013) created a built land cover growth model for 

Africa based upon a sample of 40 cities. They trained a Boosted Regression Tree 

(BRT) on changes in built extent of those cities from 1990 to 2000, as defined by 

the Atlas of Urban Expansion (Linard, Tatem and Gilbert, 2013). The 40 individual 

BRTs were combined to then predict for all of Africa (Linard, Tatem and Gilbert, 

2013). The modelling process is Generalised in Figure 5. 
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Figure 5 Generalised process diagram for the built land cover growth model per Linard, 

Tatem, and Gilbert (2013). 

This model predicted built area growth at approximately 100m x 100m grid cells 

at ten-year intervals. The transition probability layer allows for local variation in 

suitability, but limits the demand for “urban” to what equates to a country-, or 

study area-, wide average (Linard, Tatem and Gilbert, 2013). Additionally, lacking 

other information at the time, the assumption of a constant linear decrease in 

population density was made (Linard, Tatem and Gilbert, 2013). Limits aside, 

Linard, Tatem, and Gilbert (2013) created a continentally applicable urban growth 

model which relied only on data which could be obtained globally, significantly 

advancing spatially explicit urban growth modelling and indicating the potential 

for a global model. 

Goldewijk, Beusen, and Janssen (2010) constructed a model whose time coverage 

was the Holocene, i.e. 10,000 B.C. to 2000 A.D., and was based largely on 

historical records and anthropological theories to inform model behaviour (Figure 

6) (Goldewijk, Beusen and Janssen, 2010). This model predicted urban areas, at 

approximately 10km x 10km grid cells, based upon historical population density 

information, fractional land cover percentages, and statistical distributions. 
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Within this framework (Figure 6), population data varied in both spatial 

resolution, quality, and source over the study period. Some were historical 

estimates and some were census or record based, but all were adjusted from 

their original spatial resolution to contemporary subnational units using simple 

areal reweighting (Goldewijk, Beusen and Janssen, 2010). Historical urban 

population densities were derived by fitting country specific normal distributions, 

the characteristics of which were ascertained by the LandScan-based population 

densities and the second point where the curve reaches it maximum, i.e. the first 

time where the rate of urban population decreases for the first time (Goldewijk, 

Beusen and Janssen, 2010).
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Figure 6 Generalised process diagram of the settlement model of Goldewijk, Beusen, and Janssen (2010) 
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Goldewijk, Beusen, and Janssen (2010) note that the uncertainties that 

accompany historical population data, particularly pre-1700 A.D., are large and 

the authors even refer to them as “educated guesses.” They go further to note 

that given the subnational units used in the study, this model has artifically low 

population densities, which are the result of the Modifiable Areal Unit Problem 

(MAUP) (Openshaw, 1984), and is only suitable for country level or regional 

estimates (Goldewijk, Beusen and Janssen, 2010). While innovative in its sourcing 

of historical information of population and urbanisation and ambitious in its 

scope, the applicability of the model outputs across a wide range of spatial scales 

is a large limiting factor for population mapping and projection below 

subnational units. 

Seto, Guneralp, and Hutyra (2012) constructed a spatially explicit global built land 

cover growth model, in the supplementary material of their paper, which 

predicted the built area extents for 2030 at approximately 5km x 5km grid cells 

based upon a two-step process incorporating population projection and land-

use/land-cover change model. The process is Generalised in Figure 7. Seto, 

Guneralp, and Hutyra (2012) estimated the amount of new built area in 2030 at 

the U.N. regional level by using distributions of simulated future populations and 

GDP to obtain 1000 potential realisations of built area land expansion. These 

predicted growth scenarios allocate the predicted growth within region, at the 

grid cell level, using a model (URBANMODE/GEOMOD) to distribute the transitions 

in proportion to the observed distribution of suitability values. That is, if 30 

percent of suitability values are 0.4, assumming values range between 0.0 and 

1.0, then 30 percent of urban area transitions will be allocated by the model to 

cells with suitability values of 0.4. 

While this effort could be considered the first spatially explicit urban growth 

model to create future projections on a global extent, unfortunately there are 

many limits and uncertainty, in conjunction with large spatial, temporal, and 

methods mismatch. For instance, regional population projections from one 

dataset, which uses one set of methods and base data, were combined with 

uncertainty estimates of another dataset, using another set of methods and base 

data, from 10 years prior whose regional definitions do not match the studies (K 

C Seto, Guneralp and Hutyra, 2012). Additionally, in estimating the urban 

expansion due solely to population, the Seto, Guneralp, and Hutyra made the 

strong assumption that the spatial distribution of population density does not 
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change substantially through time between 2000 and 2030. Lastly, in 

incorporating both the change in urban land per capita based upon population 

growth alone and by changes in GDP per capita alone, the model is committing an 

ecological fallacy by applying the average rate of change of urban land per capita 

as the GDP per capita changes, i.e. the slope of the regression composed of all 

regions. Not withstanding the poor fit of the model (R2 = 0.17), the fact that both 

urban land per capita and GDP per capita are treated as independent measures, 

which were added as independent vectors, is erroneous; both of these measures 

have population as their denominator and therefore are mathematically 

dependent upon population. 
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Figure 7 Generalised process diagram of the built land cover growth model per Seto, Guneralp, and Hutyra (2012) 
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As I have summarised, the previously constructed continental and global urban 

growth models were not made with modelling populations at high spatial and or 

temporal resolution in mind. Large amounts of input “expert opinion”, manually 

adjusted parameters, or lack of spatial and temporal fineness in either the model 

variation  or the output predicitons leave much opporunity for further innovation. 

Particularly with regards for leveraging more recent BS data and with the end goal 

of better population modelling in mind. 

1.5 Theme IV: Built Settlement in the Context of 

Population Modelling 

1.5.1 Why Annual Population Modelling is Important 

Areal population counts derived from decadal censuses remain a “gold standard” 

in demography as they are or are the closest data representation of a complete 

enumeration of populations. However, the quality and coverage of censuses can 

vary from country to country, can vary within a given country, and can miss or 

have biases towards informal settlements, remote areas, and mobile populations  

(Korale, 2002; Sabry, 2010; Tatem and Linard, 2011; Carr-Hill, 2013; Ebenstein 

and Zhao, 2015; Lucci, Bhatkal and Khan, 2018). More importantly, these decadal 

census-derived population counts are, by their definition, only measured every 10 

years in the best of scenarios, with some countries not having a formal census 

since the 1960s (Tatem and Linard, 2011; Wardrop et al., 2018). Further, even 

with the most recent census data, they are often not available at fine spatial 

scales due to privacy concerns. Here, survey data (Pezzulo et al., 2017), 

interpolated population counts (Doxsey-Whitfield et al., 2015), and even more 

novel data, such as mobile phone Call Data Records (Steele et al., 2017; Weber et 

al., 2018), can partially address the inter-decadal gap. However, their data are not 

always available, come with their own potential biases, and or do not have entire 

coverage for a given country or population. 

For complete coverage, applications in public health, sustainability, economics, 

and others still utilise census-derived population counts as the denominator, e.g. 

mortality rates, CO2 production per capita, gross domestic product per capita, 

water and food availability (Hay et al., 2004; Tatem et al., 2007; Hanjra and 

Qureshi, 2010; McDonald et al., 2011; Tatem, 2014; Gibson and Li, 2017). Yet, 

these areal census-based population data give no information as to the 

underlying spatial distribution of the actual population, leaving only an incorrect 
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assumption of homogenous population density within a given unit (Tatem et al., 

2007). 

For instance, in an application looking at rates of malaria prevalence, often given 

in terms of a rate of “x cases per 10,000 people”, using the census-based 

population count at the county level may give an average rate of 3 per 10,000. 

However, this may hide the fact that there are locations within the county have 

much higher, and much lower, rates, i.e. the Modifiable Areal Unit Problem 

(MAUP) (Openshaw, 1984). The corresponding spatial distribution of prevalence 

rates at sub-county levels would also be variable as some function of population. 

This has important implications as to what locations would or would not be 

targeted for intervention, e.g. villages in the county with high malaria rates, and 

spatial distribution of resources for intervention and prevention based upon the 

sub-county population sizes. 

Many have turned to top-down dasymetric disaggregative modelling to, at least 

partially, address limits of areal population data. The use of dasymetric mapping 

as applied to human populations was first popularised in 1936 (Wright, 1936). 

The volume preserving characteristic of dasymetric mapping and its ability to 

incorporate finer scale supporting information made this an attractive method for 

disaggregating coarse census-derived population counts to finer spatial scales as 

the disaggregated counts will always add up to the “gold standard” of the census 

data. With the advent of GIS, satellite-based remote sensing imagery, the 

digitisation of more datasets, and the increasing affordability of computational 

resources, dasymetric mapping of populations has increased in frequency 

(Bracken and Martin, 1989; Martin, 1989; Flowerdew, Green and Evangelos, 1991; 

Langford, Maguire and Unwin, 1991; Martin and Bracken, 1991; Deichmann, Balk 

and Yetman, 2001; Eicher and Brewer, 2001; Mennis, 2003; Balk et al., 2004; 

Mennis and Hultgren, 2006; Bhaduri, Bright and Coleman, 2007; Cheriyadat et al., 

2007; Linard et al., 2010; Gaughan et al., 2013, 2014, 2016; Linard, Gilbert and 

Tatem, 2013; Sorichetta et al., 2015; Stevens et al., 2015). 

These methods transform the irregular area-based census-derived population 

counts into regularly gridded datasets of population counts by using a weighting 

layer to redistribute the areal counts to a finer spatial scale. The primary benefit 

of this procedure being that these datasets give a more realistic and likely 

representation of the true underlying population distribution within each given 
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unit (Mennis, 2003; Mennis and Hultgren, 2006). Additionally, the gridded data 

can be subsequently aggregated to different, i.e. non-census, areal units or 

integrated with other data in different formats for further analysis and 

application. These gridded population datasets have been used in numerous end 

applications and research in fields such as sustainability (Gaughan et al., 2019), 

public health (Linard et al. 2010, 2012), and sociology (Pezzulo et al., 2017), to 

name a few. 

When producing gridded population datasets for years that do not correspond to 

a census or official estimate year, most interpolate or estimate the areal 

population counts. This is done either using subnational growth rates (Doxsey-

Whitfield et al., 2015; Freire et al., 2015), or projecting the pixel-based values 

using national level urban and rural specific growth rates at subnational levels 

(Linard et al., 2010; Gaughan et al., 2013; Sorichetta et al., 2015). However, not 

all of them modify the weighting layer used to disaggregate the interpolated or 

estimated areal population counts (Gaughan et al., 2013; Sorichetta et al., 2015; 

Stevens et al., 2015). That is, they grow the areal population, but the built-

environment, one of the key markers of human presence on the Earth’s surface 

(Meyer and Turner, 1992) is not grown with it. Not only does this ignore the 

relationships between population, the built-environment, and economic activity 

and maintain static spatial distributions of populations but, if projecting far into 

the future, could lead to unrealistic population densities. 

Estimates of gridded population at annual resolution are needed due to rapidly 

growing populations in small and medium settlements along with their growing 

built-environments (Davis, 1965; Montgomery et al., 2003; Cohen, 2006; Angel et 

al., 2011; Hoalst-Pullen and Patterson, 2011; Acuto, Parnell and Seto, 2018; Zhu 

et al., 2019). Having settlement data with high spatial resolution, high temporal 

frequency, and broad temporal coverage is necessary to better understand the 

spatial distribution of human activities, societal processes, and human 

environment interactions (Ehrlich, Balk and Sliuzas, 2020). Extremely large 

amounts of imagery are required to produce a global settlement layer and there is 

typically a large lag (multiple years) between image acquisition and processing 

(Esch et al., 2018a; Zhu et al., 2019) and this is further magnified when trying to 

produce BS features from imagery that are consistent and high in spatial 

resolution (<= 100m). These rapid changes in both population and settlements 

require corresponding data and estimates to best inform policy and planning as 

well as provide better data for understanding the correlates and drivers behind 
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human activities and societal processes (Solecki, Seto and Marcotullio, 2013; 

United Nations, 2016; Scott and Rajabifard, 2017; Acuto, Parnell and Seto, 2018; 

Zhu et al., 2019; Ehrlich, Balk and Sliuzas, 2020). 

1.6 Aims and Purpose 

Given that urban related data is the most important predictor of population 

density (Nieves et al., 2017), utilising the advances in BS data would appear to 

present an opportunity towards improving population modelling, which it has 

already for cross-sectional studies (Freire et al., 2015; Reed et al., 2018; Leyk et 

al., 2019; Stevens et al., 2020). However, there are gaps in the temporal and 

spatial continuity of state-of-the-art BS data. Modelling urban related covariates 

presents an intuitive solution to these BS data issues as well as furthering global 

population modelling efforts at annual scale while maintaining high spatial 

resolution. However, existing globally applicable urban models have notable 

limits: having strict data requirements, requiring much user input or 

assumptions, and or not allowing for substantial subnational variation. As I have 

shown, there still exists a need for a globally applicable and spatially explicit 

urban growth model that: 

(i) Only requires globally consistent and available data 

(ii) Allows for annual estimates of urban extent 

(iii) Requires few assumptions and parameter setting by the user 

(iv) Allows for subnational variation 

(v) Can interpolate and project into the future based upon observed 

trajectories, and 

(vi) Is able to utilise at and predict at high spatial resolution (<=100m). 

Addressing the above would better represent the variation seen in settlement 

size, type, and growth patterns. Better representing settlement diversity both 

across space and time can better represent the equally diverse populations that 

inhabit them. Further, having a flexible modelling framework and globally 

consistent input data allows for global applicability and comparability across 

space and time. These characteristics will enable more accurate analyses of past 

and near future population and BS spatial distributions. This can then serve as a 

platform for constructing more accurate mid- to long-term population projections 

and the corresponding settlement footprint on the Earth. 
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Here, I have developed two modelling frameworks, the Built-Settlement Growth 

Model – interpolative (BSGMi) and the Built-Settlement Growth Model – 

extrapolative (BSGMe) that meet these criteria. The following structure of this 

thesis is as follows. Building upon the concepts introduced with the preceding 

urban growth models, Chapter 2 presents overviews of key methods and 

algorithms that were utilised within the BSGMi and BSGMe frameworks. Chapter 3 

introduces the BSGMi framework and validates the accuracy of its interpolations 

in four diverse countries. Chapter 4 introduces the BSGMe framework and 

validates its extrapolations in four diverse countries. Chapter 5 presents a 

globally applied validation of the use of the BSGMi outputs for the purposes of 

population modelling, demonstrating how modelled BS can provide greater 

information to specific end uses. Chapter 6 presents the larger conclusions and 

future work based upon Chapters 3-5. 
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Chapter 2 Automatable,  Consistent, and 

Flexible Modelling Across Large Extents 

2.1 Introduction and Background 

I created the BSGMi and BSGMe frameworks with the intent of them being globally 

applicable, meaning they had to be able to run on 249 different countries. Each of 

those countries was composed of a varying number of subnational units, but 

globally there were over 14 million subnational units (Doxsey-Whitfield et al., 

2015). Given my objective of allowing subnational variation to play a large role in 

the framework, that meant having over 28 million independent sub-models for 

each subnational unit within the framework (one model for BS population and one 

for BS population density). This alone is a large volume of data to handle and is 

further compounded by the fact I utilised several gridded environmental 

covariates at 100m spatial resolution, with a single global layer having 

approximately 51,007,200,000 100m x 100m cells. And while this was a high 

volume of data storage wise, the breadth of the data was not wide (Wickham, 

2014) at all with relatively few covariates for a big data application (Chen, Mao 

and Liu, 2014). Excluding the BS extents, the only data available with consistent 

global availability was subnational areal population counts, thematic land cover, 

temporally static road data, and lights at night data. Even with the few time-

specific and (assumed) time-invariant covariates utilised here, the data required 

10 Terabytes of storage. Further, each global gridded population map occupied 

approximately 100 Gigabytes per year. This high-volume data necessitated the 

use of methods that were computationally efficient, scalable, and largely 

automatable, i.e. required little manual parameter fitting. 

Given these conditions, I adopted a top-down disaggregative framework for both 

the interpolative and extrapolative Built-Settlement Growth Models (BSGMi and 

BSGMe, respectively) across both space and time. The algorithms involved in the 

estimation of the magnitude and timing of the non-BS-to-BS transitions varies 

within each framework, but all have the commonality of using relative changes in 

subnational area population to predict BS expansion. Further, the algorithms were 

automatable and flexible in the data input requirements.  This allowed for the 

capture of a wide variety of data distributions that could be expected when 
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applying the standardised framework over numerous countries, their even more 

numerous individual subnational units, and to account for the different data 

scenarios in an interpolative scenario versus an extrapolative one. 

Generally, both frameworks can be described as having a “demand quantification” 

component and a “spatial allocation” component. For the interpolative model 

(BSGMi), the demand quantification component is informed by logistic growth 

curves and natural cubic splines for interpolating time-specific built-settlement 

populations and built-settlement population densities, respectively. The spatial 

disaggregation component is a dasymetric disaggregation of the predicted built-

settlement growth as informed by a random forest (RF) probability of non-BS-to-BS 

transition layer. In the extrapolative model (BSGMe), the future built-settlement 

populations and built-settlement population densities are predicted by either an 

Auto-Regressive Integrated Moving Average (ARIMA) model, and Error Trend 

Seasonality (ETS) model, or a log-transformed Generalised Linear Model (GLM); 

whichever of the three exhibited the least error within a rolling origin validation. 

Rolling origin validations are explained in more detail in Chapter 4. The spatial 

disaggregation of these demanded transitions is carried out identically to the 

interpolative model. 

Given that relative changes in population are, in part, being used to estimate 

changes in BS and that my intent is to predict BS to better facilitate population 

mapping (Chapter 1), concerns of endogeneity are logical. However, as I will 

describe in Chapter 3 and Chapter 4, the population and BS data are being used 

at different spatial scales, essentially forming a two-stage hierarchical modelling 

framework which mitigates this issue. Population is used here at the subnational 

level to estimate the number and timing of non-BS-to-BS transitions. Population is 

not used at all in determining where, within each subnational unit, the pixel level 

non-BS-to-BS transitions occur. Further, there is a large precedence in urban or 

settlement growth modelling where population is used to determine demand for 

new at one spatial scale and the spatial allocation of that demand is met at a finer 

spatial scale without the involvement of population (Sante et al., 2010; Schaldach 

et al., 2011; K. C. Seto, Guneralp and Hutyra, 2012; Linard, Tatem and Gilbert, 

2013; Tayyebi et al., 2013; van Asselen and Verburg, 2013; McKee et al., 2015; Li 

and Gong, 2016b; Gao and O’Neill, 2019, 2020) 

In this chapter, I describe the key structures utilised within both frameworks, 

dasymetric disaggregation, and the individual algorithmic components utilised 

within each modelling framework. How these individual components operate, 
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within the larger BSGMi and BSGMe frameworks, and rationale on their choice are 

covered in Chapters 3 and 4. 

2.2 Dasymetric Disaggregation 

Dasymetric mapping (or dasymetric disaggregation) is a special case of areal 

interpolation (Eicher and Brewer, 2001; Mennis, 2003; Mennis and Hultgren, 

2006). Areal interpolation is the process of taking a spatial dataset and 

transforming it from its original areal boundaries to another set of areal 

boundaries (Mennis, 2003). The original set of areal boundaries are referred to as 

the “source” areas and the resulting smaller or finer scale areal boundaries are 

referred to as the “target” areas (Eicher and Brewer, 2001; Mennis, 2003; Mennis 

and Hultgren, 2006). Areal interpolation disaggregates some attribute value from 

the source areas to the target areas in a manner where the sum of the 

disaggregated target values adds back up to their original source area value 

(Figure 11, top). This feature has led to the adoption of dasymetric mapping 

techniques for disaggregating census-based population counts (Martin and 

Bracken, 1991; Bhaduri, Bright and Coleman, 2007; Gaughan et al., 2013; Nagle 

et al., 2014; Sorichetta et al., 2015; Stevens et al., 2015; Freire et al., 2016; Leyk 

et al., 2019; Zoraghein and Leyk, 2019). The simplest form of areal interpolation 

is areal weighting, in which the attribute values are proportionally redistributed 

from a source area to each target area based upon the proportion of the source 

area they cover (Mennis, 2003) (Figure 8, top). 
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Figure 8 Basic diagram of areal reweighting (top) and dasymetric disaggregation (bottom), with the latter using classified land cover as the ancillary data in 
determining weights via a multivariate regression.  
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Mathematically, as adopted from Mennis and Hultgren (2006), this can be stated 

as:  

𝑦𝑦�𝑡𝑡 = ∑ 𝑦𝑦𝑠𝑠𝐴𝐴𝑠𝑠∩𝑧𝑧
𝐴𝐴𝑠𝑠

𝑛𝑛
𝑠𝑠=1              [1] 

where s represents a source zone, z represents a target zone, 𝑦𝑦�𝑡𝑡 is the estimated 

value of the target area, 𝑦𝑦𝑠𝑠 is the value of the source zone, 𝐴𝐴𝑠𝑠∩𝑧𝑧 is the area of 

intersection between the source and target zone, 𝐴𝐴𝑠𝑠 is the area of the source 

zone, and n is the number of source zones with which z overlaps. 

Dasymetric disaggregation utilises supporting variable data, known as “ancillary” 

data sources, at the scale of the target areas to generate weights used to 

disaggregate the attribute values to the target areas (Eicher and Brewer, 2001; 

Mennis, 2003). The weights corresponding to the supporting variables are 

generated by expert knowledge or by statistical relationships between the 

ancillary data and the attribute being disaggregated (Eicher and Brewer, 2001; 

Mennis, 2003; Mennis and Hultgren, 2006). In the latter case, this is referred to 

as “intelligent” dasymetric mapping (Mennis and Hultgren, 2006), with the 

statistical model determining the weights to be used in the disaggregation (Figure 

8, bottom). Mathematically, as adopted from Mennis and Hultgren (2006), this 

can be described as: 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑠𝑠 �
𝐴𝐴𝑡𝑡𝐷𝐷𝑐𝑐�

∑ (𝐴𝐴𝑡𝑡𝐷𝐷𝑐𝑐�)𝑖𝑖∈𝑠𝑠
�            [2] 

where, given a source area s an ancillary area z associated with ancillary class c, 

At is the area of the target zone, and 𝐷𝐷𝑐𝑐� being the estimated density of the 

ancillary class c. Within intelligent dasymetric mapping, 𝐷𝐷𝑐𝑐� is typically determined 

by statistical modelling. When the area of all target zones is uniform and 

identical, as with most gridded data, this equation simplifies to: 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑠𝑠 �
𝐷𝐷𝑐𝑐�

∑ (𝐷𝐷𝑐𝑐�)𝑖𝑖∈𝑠𝑠
�             [3] 

While much of the literature has focused on disaggregations across spatial scales, 

the same concept can work across temporal scales, e.g. disaggregating values 

from the decadal scale to an annual scale (Zoraghein and Leyk, 2019). The 

concept of intelligent dasymetric disaggregation is used temporally in the BSGMi 
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framework’s “Demand Quantification” component and spatially in the “Spatial 

Allocation” component. Additionally, it is used in the “Spatial Allocation” 

component of the BSGMe framework. 

2.3 Algorithms Used in Demand Quantification 

Here I will give detailed background on the statistical algorithms and curves 

utilised in the demand quantification components of both the BSGMi and BSGMe 

frameworks. These algorithms are used in interpolations, generation of 

dasymetric weights, and extrapolations of values into the near future to estimate 

demand for non-BS-to-BS transitions at the subnational level. 

2.3.1 Built-Settlement Growth Model – interpolative (BSGMi) 

An interpolative model is one that predicts within the given range of data 

observations. The BSGM-interpolative is the modelling framework where, given at 

two observed time points of data, BS extents are predicted for the years between 

the given observed time points. This is carried out by interpolating the BS 

population and the BS population density values of each subnational unit 

independently. 

2.3.1.1 Logistic Growth Curves 

Logistic growth curves are widely used and accepted for modelling populations 

within demography, ecology, and urban modelling (Austin and Brewer, 1971; 

Wilson, 1976; Ledent, 1982; Cohen, 1995; Smith, 1997). Batty (2009) 

summarised, “Constrained population growth reflecting both exponential change 

and capacity which, in turn, reflect densities and congestion are simulated using 

various kinds of logistic growth.” Elaborating on this, Sibly et al. (2005) note, 

“While environmental stressors have negative effects on population growth rate, 

the same is true of population density, the case of negative linear effects 

corresponding to the well-known logistic equation.” The use of logistic curves in 

describing this relationship between population density and population growth 

rates was put forth first by Verhulst (1838). Furthermore, Ledent (1982) showed 

that urbanisation, the process of population becoming urban, across time can be 

adequately summarised by “S-shaped curves”, specifically the functional logistic 

form. 
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If P(t) is the total population as a function of time t, then the logistic differential 

equation of total population with respect to time t is defined as: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑟𝑟(𝑦𝑦) �1 − 𝑑𝑑(𝑡𝑡)
𝐾𝐾
�           [4] 

where r is the intrinsic/per capita growth rate (Sibly, Barker, Denham, Hone and M 

Pagel, 2005) and K is the carrying capacity of the population (Oliver, 1964).The 

integrated solution of the differential equation becomes: 

𝑟𝑟(𝑦𝑦) = 𝐾𝐾𝑑𝑑𝑜𝑜
𝑑𝑑𝑜𝑜+(𝐾𝐾−𝑑𝑑𝑜𝑜)𝑒𝑒−𝑟𝑟𝑡𝑡

            [5] 

where Po is the total population when t = 0. This implies that the integral solution 

to Equation 5 must be approximately linear when given a fixed value of K such 

that: 

ln � 𝑑𝑑(𝑡𝑡)
𝐾𝐾−𝑑𝑑(𝑡𝑡)

� = 𝑟𝑟𝑦𝑦 + 𝐶𝐶            [6] 

This can be better understood by rearranging Equation 6 to: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡
𝑑𝑑(𝑡𝑡) = 𝑟𝑟 �1 − 𝑑𝑑(𝑡𝑡)

𝐾𝐾
� = 𝑟𝑟 − 𝑟𝑟𝑑𝑑(𝑡𝑡)

𝐾𝐾
          [7] 

and can be understood to indicate that the proportional rate of population 

change with respect to time is a linear function, with an average slope of −
𝑟𝑟(𝑑𝑑𝑛𝑛−𝑑𝑑𝑜𝑜)

𝑡𝑡
𝐾𝐾

 

and y-intercept equal to r, and decreases as population increases (Oliver, 1964). 

Equations 5 to 7, can be extended, simply replacing K, to include dynamic 

carrying capacities parameterised on time K(t), allowing for more complex model 

behaviour (Cohen, 1995; Meyer and Ausubel, 1999a). In applied settings, given a 

set of n known discrete population totals 𝑟𝑟𝑡𝑡 = {𝑟𝑟𝑜𝑜, … ,𝑟𝑟𝑛𝑛} and discrete carrying 

capacities 𝐾𝐾𝑡𝑡 = {𝐾𝐾𝑜𝑜, … ,𝐾𝐾𝑛𝑛} where t=0,1,…,n, this means that the value of r can be 

approximated by fitting a linear least squares regression of ln � 𝑑𝑑(𝑡𝑡)
𝐾𝐾(𝑡𝑡)−𝑑𝑑(𝑡𝑡)

� on t. 

2.3.1.2 Cubic Splines 

Splines have been previously utilised for demographic interpolations and 

forecasts of mortality, fertility, energy demand, and population counts (McNeil, 

Trussell and Turner, 1977; Ledent, 1982; Booth, 2006; De Jong and Tickle, 2006; 

Hyndman and Shahid Ullah, 2007; Ugarte et al., 2012; Li et al., 2016). I selected 

splines as an interpolative method for population density as they maintain 
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agreement with observed values, i.e. the “knots” of a spline (de Boor, 2001). 

Additionally, splines maintain a smooth rate of change (de Boor, 2001), 

something to be reasonably expected of population densities barring a 

catastrophic event such as natural disaster. Further, splines require little 

additional information other than the data points, allowing for their application to 

small datasets and requiring no additional inference or assumptions past the 

degree of the spline’s polynomial (de Boor, 2001). 

Given a set of data points (xi, yi) of length n+1, having a domain from [xo, xn], and 

having a set of points, known as knots, 𝐾𝐾 = {𝑥𝑥𝑜𝑜, … , 𝑥𝑥𝑛𝑛} such that 𝑎𝑎 = 𝑥𝑥𝑜𝑜 < 𝑥𝑥1 < ⋯ <

𝑥𝑥𝑛𝑛 = 𝑏𝑏, the natural cubic spline S(x) is a function meeting the following conditions 

(de Boor, 2001): 

1) 𝑆𝑆(𝑥𝑥) ∈ 𝐶𝐶2[𝑥𝑥𝑜𝑜, 𝑥𝑥𝑛𝑛], i.e. S(x) has second degree continuity meaning it is 

twice continuously differentiable across [xo, xn] 

2) S(x) is a third-degree polynomial between each knot [xi-1, xi], where i = 

1, …, n 

3) S(x) is an interpolative spline where 𝑆𝑆(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖 for all i =0, 1, …, n 

Conditions 2 and 3 interact where each piecewise section Ci(x) come together to 

form S(x) where: 

𝑆𝑆(𝑥𝑥)

⎩
⎪
⎨

⎪
⎧

𝐶𝐶1(𝑥𝑥),𝑥𝑥𝑜𝑜 ≤ 𝑥𝑥 ≤ 𝑥𝑥1
…

𝐶𝐶𝑖𝑖(𝑥𝑥), 𝑥𝑥𝑖𝑖−1 < 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖
…

𝐶𝐶𝑛𝑛(𝑥𝑥), 𝑥𝑥𝑛𝑛−1 < 𝑥𝑥 ≤ 𝑥𝑥𝑛𝑛

          [8] 

where every 𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑥𝑥 + 𝑐𝑐𝑖𝑖𝑥𝑥2 + 𝑑𝑑𝑖𝑖𝑥𝑥3 with 𝑑𝑑𝑖𝑖 ≠ 0 for i =1, …, n (de Boor, 2001). 

The values of the coefficients are determined by solving a series of derivative 

equations for each i and a “natural” boundary condition is assumed to be known, 

where the 2nd derivatives of the endpoints are 𝐶𝐶1′′(𝑥𝑥𝑜𝑜) = 𝐶𝐶𝑛𝑛′′(𝑥𝑥𝑛𝑛) = 0 (de Boor, 2001). 

This boundary condition implies that as the x approaches either endpoint, the 

curve of the cubic spline approximates a linear function of the form a + bx. The 

resulting spline is an unparameterised curve that produces smooth rates of 

change and avoids Runge’s Phenomena (Runge, 1901; Epperson, 1987) where, as 

data is added, the derivatives at each data point increases, resulting in large 

oscillations of rates of change between data points.  
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2.3.2 Built-Settlement Growth Model - extrapolative (BSGMe) 

An extrapolative model is one that predicts outside of the range of data it was 

provided with. The BSGM – extrapolative model is given a time series of 

subnational population count, population density, and BS extent data for 

observed time periods. The BSGMe then predicts past the last date of observation 

to provide short-term predictions of annual BS extents. 

2.3.2.1 Auto-Regressive Integrated Moving Average (ARIMA) and Error 

Trend Seasonality (ETS) Models 

I utilised ARIMA and ETS models to predict future values of BS population and BS 

population density at the subnational unit level based upon input time series of 

values preceding the prediction period. The autoregressive characteristic of 

ARIMA and ETS models was a primary reason for their use in predicting future 

populations located in areas of BS and in predicting future BS population density. 

Limiting the predictive covariates to only be previous values parameterised on 

time, limits any circular inference that may occur within the derivation of 

corresponding estimates of BS area.  

ARIMA and ETS models are two autoregressive model classes often applied to 

time series data, sometimes extended to include predictive covariates, but always 

having dependent model terms based upon preceding values in the observed 

time series. ETS models are based upon the assumption of non-stationary, i.e. the 

mean and variance of the underlying process are not constant, and can 

approximate non-linear processes (Hyndman and Khandakar, 2008). Conversely, 

ARIMA models assume stationarity and a linear correlation between the values of 

the time series, but remain a standard statistical benchmark in forecasting on 

time series (Hyndman and Khandakar, 2008; Fildes and Petropoulos, 2015). 

ETS models can be considered a form of exponential smoothing. Exponential 

smoothing methods have been around since the 1950s and can be described as 

algorithms that produce point forecasts (Pegels, 1969). These methods were later 

extended as state-space models, i.e. ETS models. This allowed for the estimation 

of forecast prediction intervals to accompany the point forecasts, the generation 

of entire forecast distributions using stochastic processes, and a formal model 

selection process, giving nine possible model types shown in Table 5. (Ord, 

Koehler and Snyder, 1997; Hyndman et al., 2002; Hyndman and Khandakar, 
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2008). ETS models are often Generalised by the form ETS(E,T,S) with E 

representing the error component, T representing the trend component, and S 

representing the seasonality component (Hyndman and Khandakar, 2008). Given 

the phenomenon of my thesis and the short prediction period, I forego utilising 

ETS models containing seasonal components and only considered non-seasonal 

ETS models (first column, Table 5).
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Table 5 Exponential smoothing methods and corresponding ETS model types. For each 

shown model there exists two possible variations: one with an additive error 

component and one with a multiplicative error component. These two variations 

are indicated by an A or an E prefixed upon the shown abbreviations, e.g. ANN. 

 Seasonal Component 

Trend Component None (N) Additive (A) Multiplicative (M) 

None (N) NN NA NM 

Additive (A) AN AA AM 

Additive Damped (Ad) AdN AdA AdM 

 

Each ETS model has an observation equation, describing the relationship between 

the observations and states, and transition equation(s), which describe the states 

such as the level, trend, and season and their evolutions across time (Table 6). 

 

Table 6 Recursive and point forecast equations for non-seasonal ETS models. 𝑦𝑦��𝑦𝑦 + ℎ�𝑦𝑦� is 

the estimated forecast of the time series 𝑦𝑦 at time t + h given the time series 𝑦𝑦𝑡𝑡, 

𝑙𝑙𝑡𝑡 is the series level at time t, 𝑏𝑏𝑡𝑡 is the slope of the series at time t, 𝛼𝛼,𝛽𝛽, and 𝜙𝜙 are 

smoothing parameters, and 𝜙𝜙ℎ = 𝜙𝜙 + 𝜙𝜙2 + ⋯+ 𝜙𝜙ℎ. 

 Seasonal Component 

Trend Component None 

None 𝑦𝑦��𝑦𝑦 + ℎ�𝑦𝑦� = 𝑙𝑙𝑡𝑡 

𝑙𝑙𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1− 𝛼𝛼)𝑙𝑙𝑡𝑡−1 

Additive 𝑦𝑦��𝑦𝑦 + ℎ�𝑦𝑦� = 𝑙𝑙𝑡𝑡 + ℎ𝑏𝑏𝑡𝑡 

𝑙𝑙𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1− 𝛼𝛼)(𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1) 

𝑏𝑏𝑡𝑡 = 𝛽𝛽(𝑙𝑙𝑡𝑡 − 𝑙𝑙𝑡𝑡−1) + (1− 𝛽𝛽)𝑏𝑏𝑡𝑡−1 

Additive Damped 𝑦𝑦��𝑦𝑦 + ℎ�𝑦𝑦� = 𝑙𝑙𝑡𝑡 + 𝜙𝜙ℎ𝑏𝑏𝑡𝑡 

𝑙𝑙𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1− 𝛼𝛼)(𝑙𝑙𝑡𝑡−1 + 𝜙𝜙𝑏𝑏𝑡𝑡−1) 

𝑏𝑏𝑡𝑡 = 𝛽𝛽(𝑙𝑙𝑡𝑡 − 𝑙𝑙𝑡𝑡−1) + (1− 𝛽𝛽)𝜙𝜙𝑏𝑏𝑡𝑡−1 
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For model selection amongst the various ETS models, Hyndman et al. (Hyndman 

et al., 2002) created an algorithm with the following steps: 

1) Apply all appropriate models 

2) Optimise parameters using maximum likelihood estimation 

3) Select the best model from step one based upon the corrected Akaike 

Information Criteria (AICc) 

4) Calculate point forecasts up to h steps past the last observation using the 

best method 

5) Calculate corresponding prediction intervals using either an analytical 

solution or approximate using bootstrap simulation utilising the 

underlying state space model (Hyndman and Khandakar, 2008). 

Following the above selection procedure, Hyndman et al. (Hyndman et al., 2002) 

demonstrated that for short-term forecasts (<= 6 time steps), ETS models out 

performed many other methods on a variety of data sets. 

ARIMA models assume that the future values of their specified outcomes are a 

linear function of current and past observations and current and normally 

distributed random errors with a mean of zero. They are essentially Auto-

Regressive Moving Average (ARMA) models that integrate differencing of the time 

series to introduce the required condition of stationarity in the time series prior 

to fitting an ARMA model; hence the “I” in ARIMA. The procedure for determining 

what specific ARIMA model, the corresponding parameters, and diagnostics was 

created by Box and Jenkins (Box and Jenkins, 1976) and advanced as a state-

space model with a single source of error and an automated fitting procedure by 

Hyndman et al. (Hyndman et al., 2002). ARIMAs can be Generalised by the form 

ARIMA(p,d,q)(P,D,Q)m where p is the order (i.e. the number of time-lags) of the 

autoregressive model, d is the number of differences (i.e. the number of times 

past values have been subtracted to achieve stationarity), q is the window size or 

order of the moving average of the model (Hyndman et al., 2002; Hyndman and 

Khandakar, 2008). P, D, Q, and m parameters are only used for models 

accounting for seasonality, which, similar to the ETS models, I exclude. 

Given a time series of observed data 𝑦𝑦𝑡𝑡 = (𝑦𝑦1, … ,𝑦𝑦𝑡𝑡) ∈ ℝ, it is sometimes necessary 

to difference the original series to obtain stationarity, such that the dth difference 

of yt can be given as:
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𝐼𝐼𝐼𝐼 𝑑𝑑 = 0:     𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡            [9] 
𝐼𝐼𝐼𝐼 𝑑𝑑 = 1:     𝑦𝑦′𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 = yt − Byt = (1 − B)yt     [10] 
𝐼𝐼𝐼𝐼 𝑑𝑑 = 2:     𝑦𝑦′′𝑡𝑡 = (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) − (𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡−2) = 

 (yt − Byt) − (𝐵𝐵𝑦𝑦𝑡𝑡 − 𝐵𝐵2𝑦𝑦𝑡𝑡) = (1 − 𝐵𝐵)2𝑦𝑦𝑡𝑡     [11] 

where B is known as the back-shift operator and in general the dth order 

difference can be written as: 

(1 − 𝐵𝐵)𝑑𝑑𝑦𝑦𝑡𝑡             [12] 

Once a series is stationary, a non-seasonal ARMA(p, q) can then be generalised 

and formally written as (Box and Jenkins, 1976): 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜙𝜙𝑡𝑡𝐵𝐵𝑦𝑦𝑡𝑡 + ⋯+ 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝𝑦𝑦𝑡𝑡 + 𝜃𝜃𝑡𝑡𝐵𝐵𝐵𝐵𝑡𝑡 + ⋯+ 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞𝐵𝐵𝑡𝑡 + 𝐵𝐵𝑡𝑡    [13] 

where c is a constant indicating model drift if greater than zero, 𝜙𝜙 represents 

optimised weights corresponding to preceding observed values of yt, and 𝜃𝜃 

represents optimised weights corresponding to preceding error values of 𝐵𝐵, which 

is a gaussian error process with zero mean (Box and Jenkins, 1976; Hyndman and 

Khandakar, 2008). Hyndman and Khandakar (2008) describe an automated fitting 

procedure for ARIMAs that relies on unit root tests, iterative step-wise parameter 

fitting, and selecting the resultant model with the lowest AIC value. 

 

2.3.2.2 Generalised Linear Models (GLMs) 

Linear regressions are often used when additional information regarding the 

shape and distribution of the response in relation to the predictive covariates are 

unknown. Given that this was the case in the BSGMe, where I had no way of 

knowing the exact relationship or distribution of BS population counts or BS 

population density to time, I included a GLM as a potential predictive model. 

There I regressed log transformed BS population and log transformed BS 

population density, separately, on a single predictive covariate: time. 

Regression-type models associated with Normal, binomial, Poisson, gamma, and 

other common statistical distributions are composed of systematic and random 

error components, with all having a linear basis for the systematic component 

(Nelder and Wedderburn, 1972). Generalised Linear Models (GLMs) provide a 
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single consistent framework for linking the systematic elements of all these 

regression models with their respective random components through an 

integrated fitting procedure based upon maximum likelihood, as opposed to the 

typical least squares method (Nelder and Wedderburn, 1972). GLMs are 

characterised by: 

(i) The random component of the model is from either a Normal 

distribution or from the exponential family of distributions 

(ii) The systematic component is comprised of a set of covariates x1,…, 

xm that produce a linear predictor 𝜂𝜂 defined as 𝜂𝜂 = ∑𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 where 𝛽𝛽𝑖𝑖 is 

the fit coefficient for the given covariate xi 

(iii) A link function 𝑔𝑔(∙) that relates the linear predictor to the value of 𝜇𝜇 

in the y datum (McCullagh and Nelder, 1989) 

A special, but familiar, case is when the link function 𝜂𝜂 = 𝜇𝜇, i.e. the “identity” 

function. This is the simple linear model with errors following a Normal 

distribution (Nelder and Wedderburn, 1972).  

The maximum likelihood fitting procedure is often equivalent to an iterative 

weighted least-squares procedure with a weight function of: 

𝑤𝑤 =
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

             [14] 

with 𝜇𝜇 being the mean of z and the dependent variable being modified as: 

𝑦𝑦 = 𝑌𝑌 + 𝑧𝑧−𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

            [15] 

where z are the given observations (Nelder and Wedderburn, 1972). In general, a 

starting point for the iteration is obtained by approximating 𝜇𝜇 = 𝑧𝑧, to then 

calculate Y, in order to calculate w, set 𝑦𝑦 = 𝑌𝑌, and obtain the first approximation 

of the 𝛽𝛽𝑖𝑖 values by regression (Nelder and Wedderburn, 1972). The parameters 

are then iteratively fit by maximising the likelihood of the given model and 

measuring the model’s deviance from the observed data. 

2.4 Algorithms Used in Spatial Allocation 

Here I will provide details on the statistical algorithms used in the “Spatial 

Allocation” components of the BSGMi and BSGMe; namely the random forest (RF), 

which is used to generate the non-BS-to-BS transition probabilities at the pixel 
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level. Further details on how these probabilities are incorporated and utilised in 

the BSGMi and BSGMe frameworks are covered in Chapters 3 and 4. 

Given that the RF is used to generate the weights used in the dasymetric 

disaggregation, I will briefly describe and justify the covariates selected for the 

generation of the weights before describing how a RF is constructed and 

operates. Details on the data source for these covariates are provided in Chapters 

3 and 4. For the RF, I utilised covariates representing accessibility to sizable 

settlements, elevation and slope, the proportion of areas that was settled within a 

given radius, distance to various thematic land cover classes, distance to the 

nearest inland water body, and the distance to the nearest coast. 

Travel time or accessibility to settlements above a certain size as a measure of 

economic “connectedness” has its roots in the “market town” or central business 

district of Verhulst (1838), Burgess (1925), and Hoyt (1939) and positioning 

settlements within the more modern polycentric city (Gottman, 1957; 

Kloosterman and Musterd, 2001, 2001; Parr, 2004; Green, 2007). Spatial 

proximity to a city or settlement is known to correspond with greater access to 

infrastructure, services, economic markets, and information (Davis, 1965; Preston 

and van de Walle, 1978; van Poppel and van der Heijden, 1997; Anas, Arnott and 

Small, 1998; Dyson, 2011). Additionally, cities have an intertwined relationship 

with their hinterlands and representing this accessibility as a continuous variable 

helps move beyond the binary urban-rural dichotomy (Douglass, 1989; Kelly, 

1998; Montgomery et al., 2003; Champion and Hugo, 2017; Farrell, 2017). This 

is somewhat related to the measures of the proportion of an area within a given 

radius that is settlement. Proximity to existing, and specifically larger, 

settlements is known to promote infill type growth (Verburg et al., 2002, 2004; 

Sante et al., 2010; K. C. Seto, Guneralp and Hutyra, 2012; Linard, Tatem and 

Gilbert, 2013; Tayyebi et al., 2013; Li and Gong, 2016a). Another proximity to 

existing settlement measure is the distance to nearest settlement edge covariate. 

Negative values of this covariate correspond to areas inside of settlement 

agglomerations and are more likely to have infill type growth where settlement 

does not already exist. Positive values are found outside the edge of settlement 

agglomerations and would be more likely to have expansion type growth. 

Landcovers were included for several reasons. First, they provide contextual 

information about the settlement via the environment surrounding it (Koning et 
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al., 1999; Verburg et al., 1999, 2002; Schaldach et al., 2011; K. C. Seto, Guneralp 

and Hutyra, 2012; Linard, Tatem and Gilbert, 2013; Tayyebi et al., 2013; van 

Asselen and Verburg, 2013). For instance, a given area that is settlement with low 

distances to the nearest cultivated crop and forested landcovers would have a 

higher probability of being a more rural agricultural settlement which, on 

average, has potential implications for migration and settlement growth rate 

(Ledent, 1982; Dyson, 2011). Secondly, different land covers have different costs 

to convert them from non-BS-to-BS (Verburg et al., 1999, 2002; Schaldach et al., 

2011; van Asselen and Verburg, 2013; van Vliet, Eitelberg and Verburg, 2017). 

For example, converting flat grassland to a suburban housing development takes 

much less energy and resources than having to cut down and clear a dense forest 

prior to erecting housing. 

Slope and elevation were included for similar reasons. Building settlement on a 

steep slope, either through sophisticated engineering or re-grading the terrain is 

much more expensive, i.e. new settlement is less likely to occur, than building on 

level terrain. Low elevation is correlated with coastal zones, deltas, and river 

valleys which are all correlated with human settlement, economic activity, and 

populations (Montgomery et al., 2003; Small and Nicholls, 2003; Small and 

Cohen, 2004; Small et al., 2018). The latter correlation is why distance to inland 

water bodies and coasts were included as covariates. 

2.4.1 Random Forests 

Non-BS-to-BS transitions are a complex phenomenon, exhibiting differences in 

spatial distribution and environmental context both within and between countries 

and across time. Compounding this complexity was the high volume of data I had 

associated with these transitions. Because I required a method which could 

handle complex, potentially non-linear interactions and was computationally 

efficient, I selected Random Forests (RFs) for calculating the non-BS-to-BS 

transition probabilities. 

RFs belong to a class of machine learning methods known as “ensemble” methods 

(Breiman, 2001a). Ensemble methods can be described as having two primary 

classes: (i) where models of different types are independently created and have 

their independent predictions combined through some means, such as majority 

vote and averaging, and, (ii) models of the same type are independently created 

and then have their independent predictions combined through some means 

(Chan and Paelinckx, 2008). If all the individual models have slightly better than 
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random accuracy, i.e. a “weak learner”, the aggregate prediction of the models is, 

on average, better than any single model (Schapire, 2013). 

RFs are a non-parametric modelling method composed of hundreds of 

Classification And Regression Trees (CARTS) (Figure 9). CARTs recursively 

subdivided each “node”, or set, of data based upon some splitting criteria, 

typically a logical statement or inequality that maximises the homogeneity or 

“information gain” of the resulting smaller sub-nodes (data subsets). RFs are 

robust to noisy data, can handle small and large data sets, able to capture non-

linear phenomena and complex interactions, and handle both categorical and 

numeric data (Breiman, 2001a; Liaw and Wiener, 2002). 

 

Figure 9 Generalised diagram of a Classification And Regression Tree (CART). 

Further, RFs require almost no manual parameter setting, are highly efficient and 

parallelisable, and are extremely robust to overfitting; more so than other 

popular methods such as boosted regression trees, and artificial neural networks, 

and support vector machines (Breiman, 2001a). RFs have also been shown in at 

least one previous study to outperform SVMs in predicting non-BS-to-BS transition 

(Kamusoko and Gamba, 2015). 

RFs are set apart from other CART and ensemble methods using CARTs by two 

key characteristics: (i) the use of bagging to select training sets for individual 

CART construction, and, (ii) the random selection of a covariate (or a linear 

combination of several random covariates) to use as splitting criteria at each 

node. Bagging, or “bootstrap aggregating”, is a procedure in which the total data 

available for training is sampled with replacement to create a training set for 

constructing a given tree (Figure 10) (Breiman, 1996, 2001a). 
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Typically, a sample equal in size to 2/3 of the total available data is taken, with 

the unsampled observations being called the “Out-Of-Bag” (OOB) sample (Breiman, 

2001a; Liaw and Wiener, 2002). A CART is then created using the bagged sample 

with a random sample of the total covariate space evaluated for use as splitting 

criteria at each node (Breiman, 2001a). The splitting criteria, defined by a single 

covariate value inequality or as an inequality of a linear combination of several 

covariates, is determined by maximising the node purity of the two sub-nodes 

resulting from the split (Figure 10) (Breiman, 2001a; Liaw and Wiener, 2002). 

Within a classification RF, node purity is measured by the Gini impurity; a 

measure of the probability of a random element being classified incorrectly if 

randomly classified by a given node’s distribution of classes (Breiman, 2001a). 

After an individual tree is constructed, the OOB sample is given to the tree to 

predict upon and the error of the tree on the OOB sample is recorded. 

Aggregating the OOB error of the individual trees gives the generalised error of 

the entire RF model and serves as an unbiased internal cross-validation (Breiman, 

2001a). 

While RFs are a “black-box” method, due to the fact that hundreds of individually 

interpretable CARTs are not interpretable as a whole, they do provide a measure 

of covariate importances (Breiman, 2001a). When used for regression, a RF will 

take the training data and, for a given covariate of interest, randomly permute the 

covariate data across the rows of data, breaking the association of the covariate 

with the outcome (Breiman, 2001a). The errors of the model are re-evaluated and 

the Percent Increase in the Mean Square Error (PER.INC.MSE) of the model, when 

compared to the intact data, is assessed (Breiman, 2001a). A higher PER.INC.MSE 

indicates a more important covariate (Breiman, 2001a). 

Figure 10 General diagram of how a random forest is constructed 
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2.5 Balancing Automation with Reliability and 

Transparency 

There is a trade-off between the automatability and scalability of methods against 

the interpretability of methods and intuitive measures of the methods’ 

consistency and reliability. Within my framework, where I am fitting models 

independently for each subnational unit resulting in the training tens of millions 

of independent models , the question naturally arises as to how accurate, reliable, 

and consistent the modelling framework, and its constituent methods, can be. 

Here, I will briefly discuss some of the practices and considerations that allow for 

the modelling framework to maintain usability and interpretability. 

2.5.1 Documenting framework output for assessment 

One of the key strengths of programmable modelling is its ability to self-

document methods through the code and the comments embedded in the code. 

This lends itself to transparency and replicability and can serve as a first point for 

understanding how the model framework operated. Further, within both the 

BSGMi and the BSGMe modelling framework, I programmed the code to save the 

fit random forest model objects which contain all the information regarding the 

parameters used in the fitting of the model, the individual tree structures, and the 

internal cross-validation measures (Liaw and Wiener, 2002). These model objects 

allow for the replication of model predictions, contain details regarding how 

covariates contribute to the model structure, and contain the internal error 

estimates of the model. Ultimately, preserving model objects promotes 

transparency and replicability. 

For each country that is run through the BSGMe framework, information allowing 

for the reconstruction of the subnational unit level ARIMA, ETS, or GLM model 

that is selected for prediction is recorded in a data table. This allows users to 

assess the type of model fit, the model parameters, and the model fit error 

against the training data during the rolling origin validation procedure. Much of 

this recorded metadata is not easily human interpretable, solely due to the 

number of records. However, should a user have a query regarding individual 

subnational units, the metadata is quite interpretable. A larger strength is that 

the metadata records are consistently and programmatically created. This means 

that they can be subsequently used for further analyses and diagnostics. Further 
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work may look at an interactive dashboard for greater manual human access and 

interpretation. 

One might naturally ask if the provided measures of uncertainty are of the final 

model output, i.e. the spatially explicit settlement extents. While the algorithms 

utilised within the modelling framework can produce measures of uncertainty, the 

dasymetric disaggregation procedure, which uses those predictions as relative 

weights within a given unit, precludes the measurement of the propagation of 

those uncertainties to the final disaggregated values and spatial extents. This is a 

noted limit of this top-down approach (Mennis, 2003; Mennis and Hultgren, 2006; 

Nagle et al., 2014; Stevens et al., 2015). However, the level at which the 

uncertainty estimates are provided are still valid. For instance, within the BSGMe 

framework and for some subnational unit and year, say there is an uncertainty 

estimate given based upon its fit ARIMA model predicting the area to transition 

from non-BS to BS. The uncertainty of the amount of area to transition at the 

subnational level is valid.  

While the random forest models in the top-down framework is capable of 

producing uncertainty estimates for its predicted pixel-level population densities, 

because those predicted population densities are then used as relative weights 

within each subnational unit, the uncertainty estimates do not propagate (Mennis 

and Hultgren, 2006; Nagle et al., 2014; Stevens et al., 2015). This means that 

uncertainty or error estimates must come from post hoc comparison to a finer 

scale (than the subnational unit values were disaggregated from) independent 

dataset. Unfortunately, these independent and time specific finer scale population 

or BS data do not often exist (Sinha et al., 2019). However, as a rule of thumb, 

greater uncertainty can be expected in areas and time periods where the source 

area/time period is much larger than the final disaggregated scale. Additionally, it 

would be logical to expect that a disaggregative model whose weight 

constructing model does not capture a high proportion of the data variance at the 

source level, e.g. low r2 value, would not be expected to provide good relative 

weights at the target level (Sinha et al., 2019). However, because the weight 

constructing model is typically trained at a higher spatial/temporal scale than it is 

predicting, i.e. it is committing an ecological fallacy, high or low variance 

explained at the source level is not a guarantee of a good or accurate 

disaggregation (Sinha et al., 2019). 

While this recording of model objects and metadata is important for replicability 

and transparency in science, they are not the focus of this thesis. I will now 
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introduce and validate the BSGMi and BSGMe frameworks and quantify how they 

can contribute to population mapping efforts. 

2.6 Guidance on Reading of the BSGM Works 

Given that this is thesis is in a three-paper format, some of the articles (Chapter 3 

and Chapter 4) are already published. Rather than modify them from their peer-

reviewed format, they are placed within this larger thesis as is. That being said, 

the ends of Chapter 3 and Chapter 4 have their own reference sections and 

accordingly any references in Chapter 3 and Chapter 4 should refer to these 

reference sections rather than the larger Bibliography at the end of this thesis. 

Chapter 5 is the exception, still being in the review process, and any references in 

Chapter 5 refer to the Bibliography. 

It is also worth noting to the reader, that Chapter 5 uses the BSGMi alpha version 

(BSGMiα), which uses exponential growth/decay curves to interpolate the BS 

population and BS population density. This was an early version of the BSGMi, 

which is validated in Chapter 3, that was produced at an accelerated rate to meet 

the project constraints of the WorldPop Global project (see Preface). The benefit 

of having a working version of the model early, meant that the Global project 

carried out modelling using the framework across 249 countries between 2000 

and 2014. However, there are some key differences between the BSGMiα and the 

BSGMi presented in Chapter 3. The BSGMi uses a logistic curve for interpolating 

BS population and natural cubic splines for interpolating BS population density as 

opposed to the aforementioned exponential growth in the BSGMiα. Additionally, 

the natural cubic splines of the BSGMi are fit across all observed BS population 

density points, 2000, 2005, 2010, 2015 in the case of Chapter 3, as opposed to 

only between two points within the BSGMi α. A brief discussion as to how these 

differences may manifest in the predicted settlement extents are provided in 

Appendix B. 
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Chapter 3 Annually modelling built-

settlements between remotely-sensed 

observations using relative changes in 

subnational populations and lights at night 

Nieves, J. J., Sorichetta, A., Linard, C., Bondarenko, M., Steele, J. E., Stevens, F. R., 

Gaughan, A. E., Carioli, A., Clarke, D. J., Esch, T., & A. J. Tatem. “Annually 

modelling built-settlements between remotely-sensed observations using relative 

changes in subnational populations and lights at night” 

The version included in this thesis is the author’s version of a work that was 

accepted for publication in Computers, Environment and Urban Systems. Changes 

resulting from the publishing process, such as peer review, editing, corrections, 

structural formatting, and other quality control mechanisms may not be reflected 

in this document. Changes may have been made to this work since it was 

submitted for publication. A definitive version was subsequently published in 

Computers, Environment and Urban Systems, 80, 2020. 
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ABSTRACT 

Mapping urban features/human built-settlement extents at the annual time step 

has a wide variety of applications in demography, public health, sustainable 

development, and many other fields. Recently, while more multitemporal urban 

features/human built-settlement datasets have become available, issues still exist 

in remotely-sensed imagery due to spatial and temporal coverage, adverse 

atmospheric conditions, and expenses involved in producing such datasets. 

Remotely-sensed annual time-series of urban/built-settlement extents therefore 

do not yet exist and cover more than specific local areas or city-based regions. 

Moreover, while a few high-resolution global datasets of urban/built-settlement 

extents exist for key years, the observed date often deviates many years from the 

assigned one. These challenges make it difficult to increase temporal coverage 

while maintaining high fidelity in the spatial resolution. Here we describe an 

interpolative and flexible modeling framework for producing annual built-

settlement extents. We use a combined technique of random forest and spatio-

temporal dasymetric modeling with open source subnational data to produce 

annual 100m x 100m resolution binary built-settlement datasets in four test 

countries located in varying environmental and developmental contexts for test 

periods of five-year gaps. We find that in the majority of years, across all study 

areas, the model correctly identified between 85-99% of pixels that transition to 

built-settlement. Additionally, with few exceptions, the model substantially out 

performed a model that gave every pixel equal chance of transitioning to built-

settlement in each year. This modelling framework shows strong promise for 

filling gaps in cross-sectional urban features/built-settlement datasets derived 

from remotely-sensed imagery, provides a base upon which to create urban 

future/built-settlement extent projections, and enables further exploration of the 

relationships between urban/built-settlement area and population dynamics. 

 

Keywords 

Built-settlements, urban features, spatial growth, random forest, dasymetric 

modelling, population 
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1. INTRODUCTION 

Having time series of regular and consistent observations of built 

settlement extents is important given that forecasted growth of populations 

within dense urban areas are expected to continue through 2050, with much of 

that increase expected to occur within Africa and Asia (Angel, Sheppard and 

Civco, 2005)(Angel, Sheppard, & Civco, 2005; United Nations, 2015b). Further, 

rapidly changing magnitudes and distributions of both built-settlements and 

populations have significant implications for sustainability (Cohen, 2006), climate 

change (McGranahan, Balk, & Anderson, 2007; Stephenson, Newman, & Mayhew, 

2010), and public health (Chongsuvivatwong et al., 2011; Dhingra et al., 2016), 

amongst others. At local and regional levels, the availability (or non-availability) 

and accuracy of built-settlement extent data affect measured population 

distributions, densities, and classified landscape types (e.g. urban, peri-urban, 

and rural) used to inform and shape policies. The 2030 Agenda for Sustainable 

Development, which have a focus on accounting for and including “all people 

everywhere”, reinforced the need for readily and globally available baseline data 

to guide efforts and measure progress toward its Sustainable Development Goals 

(SDGs) (United Nations, 2016). 

Urban has been defined in many ways across many fields with different 

definitions existing even within the same field depending upon the specific 

application. Many countries define urban as a function of some population 

magnitude/density threshold or based upon administrative jurisdictions and 

functional economic areas and activities (United Nations, 2015a, 2018). While not 

conducive to applications requiring global consistency in definitions (D Potere & 

Schneider, 2007), none of these definitions of the concept of urban are 

objectively wrong. Urban, whose formal yet vague language definition is “of, 

relating to, characteristic of, or constituting a city” (Merriam-Webster, 2019) is a 

complex amalgamation of the physical environment, population, economics, 

movements, and connectivity (Angel, Parent, Civco, Blei, & Potere, 2011; 

Berechman & Gordon, 1986; Burgess, 1925; Cohen, 2004, 2006; Dyson, 2011; 

Gottman, 1957; Haas, 2010; Harris & Ullman, 1945; Hoyt, 1939; Ledent, 1982; W. 

B. Meyer & Turner, 1992; Parr, 2004; Pozzi & Small, 2005; Schneider, Friedl, & 

Potere, 2010; Seto, Fragkias, Guneralp, & Reilly, 2011; Southworth, 1995; Von 

Thunen, 1966; Zelinsky, 1971). Figure 1, Part A gives a Generalised diagrammatic 

view of the factors contributing to the concept of urban.  
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Figure 1.  Generalised concept of “urban” (Part A), the conceptual relations and 

definition of “built-settlement” (Part B) as related to urban, and the 

broad, non-exhaustive contributing factors that make these concepts. 

As a result, many studies have turned to a definition based upon the 

remotely-sensed (RS) physical features of urban areas, i.e. the built-environment. 

However, even reducing the definitional scope of urban to its physical dimension, 

the form of built-environment can widely vary across space and time due to the 

types of materials used, differences in urban morphology, and the surrounding 

environmental context (Schneider et al., 2010; Schneider & Woodcock, 2008; 

Small, 2009). Initially, remotely sensed urban definitions were optically-based 

thematic classifications of land cover, typically capturing the “built-environment,” 

including buildings, roads, runways, and, sometimes erroneously, bare soil 

(Bartholomé & Belward, 2005; David Potere, Schneider, Angel, & Civco, 2009; 

Schneider, Friedl, McIver, & Woodcock, 2003; Schneider et al., 2010). Other 

definitions have utilised urban delineated extents and densities based upon 

Lights-At-Night (LAN) data (Elvidge, Baugh, Kihn, Kroehl, & Davis, 1997; 

Henderson, Yeh, Gong, Elvidge, & Baugh, 2003; Xue Liu, de Sherbinin, & Zhan, 

2019; Shi et al., 2014; Small, Elvidge, Balk, & Montgomery, 2011; Small, Pozzi, & 

Elvidge, 2005; Wicht & Kuffer, 2019). Later improvements using supporting 

information about the surrounding environment and vegetation during post-

processing helped better discern the true built-environment from the surrounding 

land covers (Schneider et al., 2010). Other notable advances include the use of 

high resolution orthographic imagery to detect subtle short-term built-

environment change in China (X Huang, Wen, Li, & Qin, 2017) and the use of 

Landsat imagery to create multi-temporal thematic representations of the built 

environment across the globe (Xiaoping Liu et al., 2018).  

Coinciding with advances in imagery, statistical methods, and 

computational resource availability, high-resolution datasets with global extent 

have been created either through combining multi-source optical imagery with 
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contrast detection methods (Pesaresi et al., 2016, 2013) or utilising Synthetic 

Aperture Radar (SAR) data with object-based image analysis to refine the capture 

of urban features, with a focus on vertical human-made structures (i.e. built-

settlements), while attempting to exclude other anthropogenic land covers (Esch 

et al., 2013). However, it remains a challenge to produce consistent global urban 

feature/built-settlement products while maintaining high temporal and spatial 

fidelity, meaning most of the global multi-temporal urban feature/built-

settlement data sets refer to few time points across a larger time period. Further, 

the cost of producing these data remains relatively high (Esch et al., 2018a) and 

there can be pre-existing gaps in the input data, due to selected sensor/platform 

characteristics or problems and adverse atmospheric conditions, prior to the 

other fidelity considerations. While there is now a global abundance of high-

resolution imagery, with various instruments and revisit times on various 

platforms, not all imagery are suitable for producing high-frequency global urban 

feature/built-settlement data sets. This is either because of the aforementioned 

reasons and/or because the processing cost may not be viable or the funds for 

such endeavours may not be available. 

One way to address these issues is to leverage years where RS-based urban 

feature/built-settlement extractions with high spatial fidelity are available and 

interpolate for missing time points and areas of interest by modelling between 

available years. Overall, urban feature/built-settlement growth models have 

disproportionately focused on high-income countries, which have different 

dynamics than low- and middle-income countries (Angel et al., 2005; Linard, 

Tatem, & Gilbert, 2013; Seto et al., 2011; United Nations, 2015b), and most have 

been limited to city or regionally specific models (Barredo, Demicheli, Lavalle, 

Kasanko, & McCormick, 2004; Batty & Xie, 1994; Clarke & Gaydos, 1998; Clarke, 

Hoppen, & Gaydos, 1997; Xin Huang, Hu, Li, & Wang, 2018; Leao, Bishop, & 

Evans, 2004; Linard et al., 2013; Sante, Garcia, Miranda, & Crecente, 2010; White 

& Engelen, 1997, 2000). Previous methods of modelling urban feature/built-

settlement growth across space and time at the continental and global scales 

include land cover/land use transition models (Tayyebi et al., 2013; Verburg, 

Schot, Dijst, & Veldkamp, 2004) and cellular automata models (Batty, 2009; Sante 

et al., 2010; Verburg et al., 2002), with features or thematic classes extracted 

from remotely-sensed imagery being the primary source of cross-sectional input 

for these models (Esch et al., 2013; Patel et al., 2015; Pesaresi et al., 2016, 2013; 
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Schneider et al., 2010). Readers are referred to Li & Gong (2016) and Sante et al. 

(2010) for comprehensive reviews of the wide field of cellular automata models as 

applied to urban feature/built-settlement growth modelling. Of the few models 

predicting urban feature/built-settlement growth across the globe within a 

standardised framework, almost none provided explicit spatial prediction finer 

than country level summaries (Angel et al., 2011; Seto et al., 2011). Global 

models that did provide explicit spatial predictions, did not allow local sub-

national variations to drive the modelled changes or had not been assessed 

against comparable existing datasets (Angel et al., 2011; Goldewijk, Beusen, & 

Janssen, 2010; Linard et al., 2013; Seto, Guneralp, & Hutyra, 2012).  

Building upon the previous work of these models, in this study, we 

leveraged the recently available multi-temporal global urban feature/built-

settlement datasets, global environmental datasets, subnational census-based 

population data, and computational methods to develop a flexible globally 

applicable modelling framework based upon random forest classification trees, 

population growth curves, and cubic splines. Our specific objectives were to i) 

determine if random forests can reasonably predict the probability of non-BS to 

BS transition probabilities, ii) use the predicted surface of non-BS-to-BS transition 

probabilities as input to an automated framework to annually estimate spatially 

explicit BS extents using sub-nationally driven geospatial covariates and 

population counts, iii) validate the model performance and validate the model 

outputs. 

Because the focus of this study is on modelling urban feature/built-

settlement extents that better represent where people may be located, we 

adopted the Global Human Settlement Layer (GHSL) concept of “built-settlement” 

(BS) (Figure 1), which is defined as, “…enclosed constructions above ground 

which are intended for the shelter of humans, animals, things or for the 

production of economic goods and that refer to any structure constructed or 

erected on its site.” (Pesaresi et al., 2013, p. 2013). We further Generalised the 

definition of BS to include other datasets that attempt to represent buildings 

associated with human activities while attempting to exclude more general 

impervious surfaces, such as roads, parking lots, and runways. With the adopted 

definition of BS, the analogue to the process of “urbanisation” is taken within a 

remote sensing context to be the physical transition from a non-BS area to a BS 

area.  
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2. METHODS AND DATA 

2.1 Study Areas 

 We selected four countries (Table 1) from across the globe to capture a 

variety of BS morphologies, contexts, and evolutions as well as to demonstrate 

the flexibility of the model for differing spatial detail of input census-based 

population data, as measured by the average spatial resolution (Tobler, 

Deichmann, Gottsegen, & Maloy, 1997). The countries selected here were 

Panama, Switzerland, Uganda, and Vietnam, which are located in rather 

contrasting geographies and environmental/urban biomes (Schneider et al., 

2010) and represent quite different cultural and developmental contexts (from 

low-, middle-, to high-income countries). While it is known that many urban 

feature datasets have difficulty classifying the built-environment in arid regions, 

this is more a concern of the selected representation of BS input into the 

modelling framework rather than an issue for the framework itself; an inaccurate 

or “noisy” input will always produce poor results in an interpolative model. 

Table 1.  Summary of built-settlement transition data by country and period. 

Areal units here are pixels (~100m) as that is the unit handled by the 

model which looks at relative areal changes as opposed to absolute 

areal changes. 

Country Average Spatial 
Resolution a Period Initial Non-Built Area 

(pixels) 
Period Transition 

Prevalence 
Panama 10.9 km 2000-2005 8,901,004 0.03 % 

 2005-2010 8,898,679 0.09 % 
 2010-2015 8,890,339 0.75 % 

Switzerland 3.9 km 2000-2005 6,816,510 1.56 % 
 2005-2010 6,710,069 0.08 % 
 2010-2015 6,704,973 0.01 % 

Uganda 12.2 km 2000-2005 28,231,555 0.07 % 
 2005-2010 28,210,425 0.04 % 
 2010-2015 28,200,084 0.04 % 

Vietnam 21.7 km 2000-2005 40,108,425 0.11 % 
 2005-2010 40,063,545 0.18 % 
 2010-2015 39,990,858 0.38 % 

a  Average spatial resolution is the square root of the average subnational area, in km, and can be thought of as 
analogous to pixel resolution with smaller values indicating finer areal data and vice versa (Tobler et al., 1997) 

2.2 Built-settlement Data 

We chose to use the “Urban areas” thematic class, class 190, from the  ESA 

CCI land cover 300m annual global land cover time-series from 1992 to 2015 

dataset (https://www.esa-landcover-cci.org/; hereafter ESA) for our study. It was 

selected for its annual coverage, allowing for the withholding of years in the 

https://www.esa-landcover-cci.org/?q=node/175
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model training process for validation of latter modelled outputs. For our period of 

interest, 2000 to 2015, the ESA time-series includes annual 10 arc sec resolution 

(~300m at Equator) datasets produced by looking for thematic class changes 

from a baseline land cover map, obtained using MERIS imagery, using 30 arc 

second (~1 km at the Equator) SPOT VGT imagery (1999-2013) and PROBA-V 

imagery (2014-2015) (UCL Geomatics, 2017). Prior to 2004, detected changes are 

delineated at 30 arc second resolution. Starting in 2004, if there are changes 

detected, then the individual pixels of change detected at 30 arc second are 

further delineated using 10 arc second MERIS or PROBA-V imagery (UCL 

Geomatics, 2017). To reduce false detections, changes must be observed over 

two years or more (UCL Geomatics, 2017). Furthermore, the GHSL (Pesaresi et al., 

2016, 2013) and Global Urban Footprint (GUF) (Esch et al., 2013) datasets are 

utilised in defining the extents of the ESA “Urban areas” class (UCL Geomatics, 

2017), which thus incorporate elements of two BS datasets within the larger built-

environment context. While still undergoing full validation, initial validation 

efforts estimate the 2015 “Urban areas” class user and producer accuracies 

between 86-88 percent and 51-60 percent, respectively (UCL Geomatics, 2017). 

We also tested and validated a single year, 2010 as predicted from the years 2000 

and 2015, from an alpha version of the forthcoming multi-temporal World 

Settlement Footprint (WSF) dataset, known as WSF Evolution (Esch et al., 2018a), 

and present the results in the Supplementary Material. 

2.3 Population Data 

Annual population counts from 2000 to 2015 for subnational areas were 

provided by the Center for International Earth Science Information Network 

(CIESIN) in tabular format with unique IDs corresponding to unique subnational 

unit IDs (Doxsey-Whitfield et al., 2015). Populations and areas of the subnational 

units are based upon the Gridded Population of the World, version 4 (GPWv4) and 

as such follow the methods detailed in Doxsey-Whitfield et al. (2015) for the 

interpolation and extrapolation of population between 2000 and 2015, inclusive, 

using years of official counts or estimates. The level of spatial fineness of the 

subnational units varies from country to country. Typically, all countries are at 

level 2 or finer, with some countries, such as the USA, being at the block level 

(level 5) (Doxsey-Whitfield et al., 2015). 
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2.4 Geospatial Data 

We selected a number of covariates based upon previous urban 

feature/built-environment models (Linard et al., 2013; Verburg, de Koning, Kok, 

Veldkamp, & Bouma, 1999; Verburg et al., 2002) to give the model information 

on the immediate environmental/land cover context and connectivity of urban 

feature/built-settlements. Ultimately, the model is not dependent on any specific 

geospatial covariates, retaining a level of flexibility for use in a wide variety of 

applications. For example, a minimal set of globally available predictive covariates 

to produces inputs for other modelling efforts while avoiding potential issues 

relating to endogeneity. In the case presented here, annually available covariates, 

or single time point covariates reasonably assumed to be time invariant, were 

used either in the direct calculation of transition probabilities or in the remainder 

of the disaggregative process (Table 2). As detailed in Lloyd et al. (2019), all 

covariates were pre-processed, appropriately resampled, and matched to a 

common spatial grid having a resolution of 3 arc seconds; with the latter chosen 

as a compromise between the higher resolutions of some of the covariates (Table 

2) and the ESA datasets. All data used to restrict the area of modelling and inform 

the redistribution of transitions are also detailed in Table 2. Further details on 

pre-processing of specific covariates are provided in the Appendices. 
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Table 2.  Data used for estimating the annual number of non-BS to BS transitions at the unit level (i.e. demand quantification), predicting the 
pixel level probability surface of those transitions, and performing the spatial allocation procedures of the model. 

Covariate Variable Name(s) in Random 
Forest Description Useb,d Time Point(s) Original Spatial 

Resolution(s) Data Source(s) 

Built-settlementc esa_cls190 Binary BS extents  Demand 
Quantification and 
Spatial Allocation 

2000 
2005 
2010 
2015 

10 arc sec 

(ESA CCI, 2017) 

DTE Built-settlement esa_cls190_dst_<year> 
 

Distance to the nearest BS edge Spatial Allocationd 2000 10 arc sec (ESA CCI, 2017) 

Proportion Built-settlement 1,5,10,15 esa_cls190_prp_<radius>_<year> Proportion of pixels that are BS 
within 1,5,10, or 15 pixel radius 

Spatial Allocationd 2000 10 arc sec (ESA CCI, 2017) 

Elevation Topo Elevation of terrain Spatial Allocationd 2000 – Time 
Invariant 

3 arc seconds (Lehner, Verdin, & Jarvis, 2008) 

Slope Slope Slope of terrain Spatial Allocationd 2000 – Time 
Invariant 

3 arc seconds (Lehner et al., 2008) 

DTE Protected Areas Category 1 wdpa_cat1_dst_2015 Distance to the nearest level 1 
protected area edge 

Spatial Allocationd 2015 Vector (U.N. Enviroment Programme World Conservation Monitoring Centre & IUCN 
World Commission on Protected Areas, 2015) 

Water --- Areas of water to restrict areas of 
model prediction 

Restrictive Mask  5 arc second (Lamarche et al., 2017) 

Subnational Population --- Annual population by sub-national 
units  

Demand 
Quantification 

2000 -2020, 
annually 

Vector (Doxsey-Whitfield et al., 2015) 

Weighted Lights-at-Night (LAN) ---- Annual lagged and sub-national unit 
normalised LAN 

Spatial Allocation 2000-2016, 
annually 

30 arc second 
(2000-2011) 
15 arc second 
(2012-2016) 
 

DMSP (WorldPop, Department of Geography and Geosciences, Département de 
Géographie, & Center for International Earth Science Information Network 
(CIESIN), 2018; Zhang, Pandey, & Seto, 2016) 
VIIRS(Earth Observation Group NOAA National Geophysical Data Center, 2016; 
WorldPop et al., 2018) 

Travel Time 50k tt50k Travel time to the nearest city centre 
containing at least 50,000 people 

Spatial Allocationd 2000 30 arc second (Nelson, 2008) 

Urban Accessibility 2015 urbanaccessibility_2015 Travel time to the nearest city edge Spatial Allocationd 2015 30 arc second (Weiss et al., 2018) 

ESA CCI Land Cover (LC) Class a ccilc_dst<class number>_<year> Distance to nearest edge of individual 
land cover classes 

Spatial Allocationd 

 

2000 10 arc second 
(ESA CCI, 2017) 
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Covariate Variable Name(s) in Random 
Forest Description Useb,d Time Point(s) Original Spatial 

Resolution(s) Data Source(s) 

Distance to OpenStreet Map (OSM) 
Rivers 

osmriv_dst Distance to nearest OSM river feature Spatial Allocationd 2017 Vector (OpenStreetMap Contributers, 2017) 

Distance to OpenStreet Map (OSM) 
Roads 

osmroa_dst Distance to nearest OSM road feature Spatial Allocationd 2017 Vector (OpenStreetMap Contributers, 2017) 

Average Precipitation wclin_prec Mean Precipitation Spatial Allocationd 1950 - 2000 30 arc sec (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) 

Average Temperature wclim_temp Mean temperature Spatial Allocationd 1950 - 2000 30 arc sec (Hijmans et al., 2005) 

a  Some classes were collapsed: 10-30 → 11; 40-120 → 40; 150-153 → 150; 160-180 → 160 (Sorichetta et al., 2015) 

b  Covariates involved in Demand Quantification were used to determine the demand for non-BS to BS transitions at the subnational unit level for every given year. Covariates involved in Spatial Allocation were either used as predictive covariates in the random forest 
calculated probabilities of transition  
(see d) or as a post-random forest year specific weight on those probabilities and the spatial allocation of transitions within each given unit area. Covariates used as restrictive masks prevented transitions from being allocated to these areas. 

c  The binary BS data utilised 2000, 2005, 2010, and 2015 as observed points in the dasymetric modelling process, but only derived covariates for 2000 were utilised in the random forest as predictive covariates 

d  Used as predictive covariates in the random forest calculated probabilities of transition 
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2.5 Built-Settlement Growth Model (BSGM) 

2.5.1 Overview 

Here we interpolated BS extents for every year between a set of RS-based 

observed years, T = {t0, t1, t2, …, t1} where t0 is the initial RS-based observed year, 

t1 is the final RS-based observed year, and all other times tk are years lying 

between t0 and t1 for which we had RS-based observed BS extents. The time 

between any two RS-based observed time points t is referred to as a period, p, 

with all periods being a subset of P. Within this study, T = {2000, 2005, 2010, 

2015} and P={2000-2005, 2005-2010, 2010-2015} and, therefore, we are 

modelling across three periods, estimating BS extents for 12 years, based upon 

the input of four RS-based observed years. However, the interpolative BSGM 

modelling framework can handle any regularly spaced intra-period time-step if the 

input data corresponds.  

The interpolative BSGM modelling framework has two main components: a 

demand quantification component and a spatial allocation component, as shown 

in Figure 2.
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Figure 2.  High-level example overview of the BSGM modelling framework process for interpolation using four RS-based observed 

years (2000, 2005, 2010, 2015) and predicting for all unobserved years in between. Note, example maps and numbers are not to 

scale. 
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We generalise the process to determine the number of non-BS to BS transitions for 

each year we are interpolating, i.e. demand quantification, independently for each 

subnational unit, hereafter unit, as follows: 

1. Create a population map for all years in T (2000, 2005, 2010, 2015). 

2. At all RS-based observed years t in T, for each unit, extract the time- and 

unit-specific population count within the corresponding BS extents and 

derive the corresponding unit-average BS population density, i.e. lacking 

more precise information all BS pixels in a unit have the same BS 

population density (Figure 2). 

3. On a unit-by-unit basis, interpolate the extracted BS population count and 

BS population density for all years, tk, between each RS-based observed year 

t in T (Figure 2).  

4. Estimate year- and unit-specific number of expected non-BS-to-BS 

transitions based upon the corresponding predicted BS population and BS 

population density (Figure 2).  

5. Within each unit, for each period, create annual demand weights by 

normalising the annual number of expected transitions (from step 4) by the 

sum of the period’s annual number of expected transitions (Figure 2).  

6. For each unit and period, use the annual weights (from step five) to 

dasymetrically redistribute the period’s total observed transitions to each 

year within the given period (Figure 2). Repeat for all periods. 

To spatially allocate, i.e. disaggregate, the estimated annual transitions, 

(from step 5) we first train a Random Forest (RF) model (Breiman, 2001) to 

produce a continuous surface representing the probability of a given pixel 

transitioning from non-BS to BS between t0 and t1, i.e. 2000 and 2015 (Figure 2). 

For every year, and independently for each unit, we utilised unit-normalised 

annually lagged lights-at-night (LAN) data to adjust the base RF-derived transition 
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probabilities annually. Given that the BSGM modelling framework is interpolative, 

we limited the spatial allocation component to predicting transition probabilities 

in pixels that, based upon the input data, were observed to have transitioned 

within the given period (Figure 2). For example, only pixels seen to have 

transitioned between 2000 and 2005 could be predicted as transitioning in 2001, 

2002, 2003, or 2004. With this in mind, within each unit, we selected pixels with 

the nth highest probabilities for transition, where n was equal to the number of 

pixels estimated to transition in that unit for that year. We then converted those 

pixels to BS, recorded the new BS extents, and used those extents as the basis for 

the next time-step of transitions. This resulted in a series of annual binary BS 

extent datasets. All modelling and analyses were carried out using R 3.4.2 (R Core 

Team, 2016) on the IRIDIS 4 high-performance computing cluster (see Appendices 

for the full process diagram and the Supplemental Materials for the modelling 

code). 

 2.5.2 Demand Quantification 

First, we created population distribution datasets for all years t in T by 

using available time-specific covariates (see Appendices) and the method, 

described in Gaughan et al. (2016) and  Stevens et al. (2015), to dasymetrically 

redistribute the time-specific unit-based population counts to 3 arc second grid 

pixels (Mennis, 2003; Mennis & Hultgren, 2006). Second, for each unit and year t 

in T, we extracted and summed the population counts spatially coincident with 

the BS extents, i.e. BS population counts, and derived the corresponding BS 

population density for use in the later stages of the demand quantification 

component. Third, for each year tp within a given period p, we interpolated the BS 

population count of each unit i, i.e. BSPOPi(tp), using logistic growth curves with 

year-specific total population, Ki(tp), as the dynamic carrying capacity (Booth, 
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2006; P. S. Meyer & Ausubel, 1999). See Appendices for rationale regarding the 

use of a logistic growth curve with a dynamic limiting factor. These curves were 

fitted in a piecewise manner, i.e. one curve for each period p ∈ P. This is written in 

Equation 1 as: 

𝐵𝐵𝑆𝑆𝑟𝑟𝐵𝐵𝑟𝑟𝑖𝑖�𝑦𝑦𝑝𝑝� = 𝐾𝐾𝑖𝑖�𝑦𝑦𝑝𝑝� ∗
𝑒𝑒𝑟𝑟𝑖𝑖∗𝑡𝑡𝑝𝑝+𝐶𝐶𝑖𝑖 

1+𝑒𝑒𝑟𝑟𝑖𝑖∗𝑡𝑡𝑝𝑝+𝐶𝐶𝑖𝑖
       [Eq. 1] 

where ri and Ci are determined by fitting a least-squares linear regression to the 

set of observed values corresponding the given period after having been 

transformed via Equation 2: 

ln �
𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑 𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑑𝑑

𝐾𝐾𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑑𝑑−𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑑𝑑
� = 𝑟𝑟𝑖𝑖�𝑦𝑦𝑝𝑝� + 𝐶𝐶𝑖𝑖        [Eq. 2] 

Fourth, to interpolate the unit-average BS population density for each 

unobserved year tk between the years t in T, we fit natural cubic splines (McNeil, 

Trussell, & Turner, 1977) for each unit i across all unobserved years using the 

years t  in T as the knots. Our priority being that the fit curve would match our 

values of observation, adapting to the data, i.e. non-parametric smoothing, rather 

than adapting the data to a specific distribution, i.e. parametric approach. See 

Appendices for more rationale on the use of cubic splines. 

Finally, to begin estimating number of transitions, in each unobserved year 

tk and for each unit i, we simply related the corresponding interpolated BS 

population and BS population density in Equation 3:  

𝐵𝐵𝑆𝑆𝐶𝐶𝐵𝐵𝑇𝑇𝚤𝚤(𝑦𝑦)� = 𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑𝑖𝑖(𝑡𝑡)
𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖(𝑡𝑡)            [Eq. 3] 

where BSDi(t) is the unit-average BS population density at time t. See Appendices 

for how predicted “negative growth” resulting from Equations 1-3 was handled. 
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In order to maintain agreement with the input data, i.e. the RS-based 

observed BS extents, the sum of our annual estimated transitions needed to 

match the total number of observed transitions within a given period p. So, we 

reweighted the estimated transitions of each year on a unit-by-unit basis using the 

sum of the estimated transitions in the period p. To calculate the unit-and year-

specific weight, 𝑤𝑤𝑖𝑖𝑝𝑝(𝑦𝑦𝑝𝑝), within the period p, we write the calculation in Equation 4 

as: 

𝑤𝑤𝑖𝑖𝑝𝑝(𝑦𝑦𝑝𝑝) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝚤𝚤� �𝑡𝑡𝑝𝑝�
∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝚤𝚤� �𝑡𝑡𝑝𝑝�𝑘𝑘
1

           [Eq. 4] 

where tp is again relative to the given period p, from 1 to the last year k, and all 

𝑤𝑤𝑖𝑖𝑝𝑝 for a given unit i and period p sum to one.  

Then, using these weights, we carried out a temporal dasymetric 

redistribution of the total observed transitions from the larger source period p, 

e.g. 2000-2005, to the individual unobserved years, e.g. 2001, …, 2004. To 

obtain the final temporally disaggregated transitions, 𝐵𝐵𝑆𝑆𝐶𝐶𝐵𝐵𝑇𝑇𝑖𝑖𝐹𝐹𝐹𝐹𝐵𝐵𝐴𝐴𝐹𝐹(𝑦𝑦𝑝𝑝), we 

multiplied the unit- and year-specific weight, 𝑤𝑤𝑖𝑖𝑝𝑝(𝑦𝑦𝑝𝑝), by the corresponding period 

p’s observed transitions, ∆𝐵𝐵𝑆𝑆𝐶𝐶𝐵𝐵𝑇𝑇𝑖𝑖𝑝𝑝, rounding to the nearest whole number for 

each year, as shown in Equation 5 (see Appendices for obtaining agreement with 

rounding differences). 

𝐵𝐵𝑆𝑆𝐶𝐶𝐵𝐵𝑇𝑇𝚤𝚤𝐹𝐹𝐹𝐹𝐵𝐵𝐴𝐴𝐹𝐹(𝑦𝑦𝑝𝑝)� = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑(𝑤𝑤𝑖𝑖𝑝𝑝(𝑦𝑦𝑝𝑝) ∗ ∆𝐵𝐵𝑆𝑆𝐶𝐶𝐵𝐵𝑇𝑇𝑖𝑖𝑝𝑝)     [Eq. 5] 

2.2.2 Spatial Allocation 

We utilised a RF model to accurately and efficiently model, across each 

country, the probability of each pixel transitioning from non-BS-to-BS. Importance 

of individual covariates in a classification random forest are typically measured by 

the average decrease in the Gini impurity, the probability of incorrectly classifying 
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a random selected element of the dataset if it were randomly assigned label based 

upon the distribution of classes in the dataset (Breiman, 2001). A RF model was 

selected for its robustness to noise, its automatability and efficiency, and its 

ability to capture non-linear and complex interactions c. Furthermore, Kamusoko 

& Gamba (2015) showed that RFs have been shown to perform equally to, if not 

better, than other methods, (including support vector machines and logistic 

regression) used for predicting the probability of transitioning from non-built-

environment to built-environment.  

The binary dataset of non-BS-to-BS transition constitutes an intrinsic 

"imbalanced set" (He & Garcia, 2009), i.e. there are many more non-transitions 

than transitions. So, we adopted a stratified random over/under-sampling method 

(He & Garcia, 2009), similar to (Linard et al., 2013), as follows: (i) randomly 

sample 80 percent of the pixels observed to have transitioned between 2000 and 

2015, up to 50,000 and, (ii) randomly sample an equal number of pixels that have 

not transitioned during the same time span. We then used these training sets and 

spatially and temporally coincident covariates to train a RF model for each country 

and predicted the corresponding surface of non-BS-to-BS transition probabilities. 

All covariates used were retained in the final model. These probabilities have a 

value between 0 and 1 and represent the posterior probability of a pixel being 

classified by the RF model as transitioning between t0, 2000, and t1, 2015 c. 

We then refined these probabilities to annual probabilities using annual 

ancillary information. Given that changes in LAN brightness have been found to be 

good indicators of population and urban growth (Zhang & Seto, 2011), we 

adjusted the RF-derived transition probabilities using annual weights based upon 

unit-normalised annual average LAN brightness differences prior to spatially 

disaggregating the estimated annual non-BS-to-BS transitions from the demand 

quantification component. The rationale being that larger increases in average 
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annual brightness for a given pixel, relative to all other pixels within the same 

unit, represent a higher relative probability of non-BS-to-BS transitions for that 

pixel and vice versa. 

To create these annual spatial weights, we first calculated the annual lags 

of the LAN radiance values and rescaled the differences between 0 (unit’s lowest 

value) and 1 (unit’s highest value). This rescaling was based upon the values of all 

pixels M within a given unit i for a given lag l, where the number of lags is equal 

to the number of years minus one, e.g. for 2000 to 2015 we have 14 lags 

beginning with 2001 minus 2000. This calculation for a given pixel m, where m∈M 

pixels total in the unit, can be written as: 

𝑤𝑤𝑤𝑤𝐴𝐴𝐵𝐵𝑖𝑖,𝑚𝑚,𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖,𝑚𝑚,𝑙𝑙−min (𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖,𝑀𝑀,𝑙𝑙)
max�𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖,𝑀𝑀,𝑙𝑙�−min�𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖,𝑀𝑀,𝑙𝑙�

         [Eq. 6] 

where 𝑙𝑙𝑎𝑎𝑔𝑔𝑚𝑚,𝑙𝑙 = 𝑤𝑤𝐴𝐴𝐵𝐵𝑚𝑚,𝜏𝜏 − 𝑤𝑤𝐴𝐴𝐵𝐵𝑚𝑚,𝜏𝜏−1 and 𝜏𝜏 represents the most recent year of the lag l, 

e.g. for lag 2001-2000 𝜏𝜏 would be 2001. We then calculated year specific 

transition probabilities for every pixel known to have transitioned, j, using 

Equation 7: 

𝑟𝑟𝑙𝑙𝑑𝑑𝑎𝑎(𝑦𝑦𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑡𝑡𝑦𝑦𝑡𝑡𝑟𝑟𝑟𝑟)𝑖𝑖𝑎𝑎𝑡𝑡 = 𝑤𝑤𝑤𝑤𝐴𝐴𝐵𝐵𝑖𝑖𝑎𝑎𝑡𝑡 ∗ 𝑟𝑟(𝑦𝑦𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑡𝑡𝑦𝑦𝑡𝑡𝑟𝑟𝑟𝑟)𝑖𝑖𝑎𝑎      [Eq. 7] 

where 𝑟𝑟(𝑦𝑦𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑡𝑡𝑦𝑦𝑡𝑡𝑟𝑟𝑟𝑟)𝑖𝑖𝑎𝑎 is the RF-derived transition probability for observed 

transition pixel j  in unit i and 𝑟𝑟𝑙𝑙𝑑𝑑𝑎𝑎(𝑦𝑦𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡𝑡𝑡𝑦𝑦𝑡𝑡𝑟𝑟𝑟𝑟)𝑖𝑖𝑎𝑎𝑡𝑡 is the corresponding resultant 

adjusted transition probability for year t: 

 Using these adjusted probabilities, we then spatially disaggregated the 

estimated annual transitions, from the demand quantification component, within 

each unit. Given that the non-BS-to-BS transition process is iterative in nature, we 

began by taking the extents of the previous year. Within each unit i and for each 

period p, we limited the location(s) where transitions could be allocated to pixels j 
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as defined by the RS-based observed BS extents. For all pixels j, assuming they 

were not transitioned in previously iterated years, we retrieved the adjusted 

transition probabilities and, similar to previous models (Linard et al., 2013; 

Tayyebi et al., 2013), we assumed pixels with a higher probability of transition 

were more likely to transition before pixels with lower probabilities. We selected 

the nth highest probabilities from the pixels J in unit i, where n was equal 

to 𝐵𝐵𝑆𝑆𝐶𝐶𝐵𝐵𝑇𝑇𝚤𝚤𝐹𝐹𝐹𝐹𝐵𝐵𝐴𝐴𝐹𝐹� , changed the value of those n pixels to represent a non-BS-to-BS 

transition, and output the union of the new transitions and previous BS extents as 

the predicted BS extents for that year. We repeated this procedure using the newly 

produced extents for the preceding year as the base BS extent for the next year's 

transition procedure, until all years for the given period p were processed and 

then the entire procedure was repeated until all periods p in P had been 

processed, resulting in annual modelled BS extents. 

2.6 Analyses 

 2.6.1 Validation and Comparison Metrics 

 While the RF produces its own validation estimates (Breiman, 2001), we 

tested the accuracy of the RF classifier by randomly sampling 100,000 pixels, not 

utilised in the training of the RF, for validation. We selected this sample size as we 

were able to obtain sample prevalence rates equal to the known true prevalence 

rates of each country while still maintaining efficiency. Based on this sample, we 

plotted Receiver Operator Curves (ROCs) and, given the imbalanced data (He & 

Garcia, 2009; Saito & Rehmsmeier, 2015), Precision Recall Curves (PRCs) with 

simulated perfect and random classifier curves for comparison.  

Here we validated the modelled BS extents to all withheld ESA RS-based BS 

extents corresponding to the unobserved years between 2000 and 2015, i.e. 

2001-2004, 2006-2009, and 2011-2014. Here “True” represents agreement of the 



Chapter 3 

79 

 

BSGM-based BS extents to the temporally corresponding withheld annual ESA RS-

based BS extents and vice versa. For every year of prediction, we determined 

whether a pixel was True Positive (TP), False Positive (FP), False Negative (FN), or 

True Negative (TN). Pixels used for validation of the modelled BS extents were 

limited only to pixels observed transitioning from non-BS to BS between the 

modelled periods for two related reasons:  

1) Being an interpolative model, we constrained the areas of possible 

transition to only the areas of observed transition. This limited the 

spatial uncertainty of the model between 2000 to 2005, 2005 to 2010, 

and 2010 to 2015 to no worse than the input data, although temporal 

uncertainty for any specific year between those periods remained. 

2) Given that we masked our predictions to only pixels we knew 

transitioned, if we were to have included pixels that we knew not to 

have transitioned, we would have grossly and erroneously inflated the 

error metrics. 

We calculated contingency table-based metrics to evaluate classification 

agreement based primarily on the F1 score (Table 3) which is the harmonic mean 

of recall and precision, the quantity disagreement (R.G. Pontius & Millones, 2011), 

and the allocation disagreement (R.G. Pontius & Millones, 2011). We aggregated 

the pixel level results (See Supplemental Materials), to the unit level and calculated 

the same metrics since precision, and by extension F1, is sensitive to the 

corresponding prevalence and is subject to the Modifiable Areal Unit Problem 

(MAUP) (Openshaw, 1984).The MAUP not only reduces variance in value 

distributions the more the data are aggregated from their original resolution 

(Openshaw, 1984), but will result in different prevalences within different units, 
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i.e. zonal, configurations. The equations of the metrics calculated are listed in 

Table 3. 

Table 3.  Classification agreement metrics. The F1-score is interpreted as the 

harmonic mean of precision and recall. TP is “True Positive”, FP is “False Positive”, 

FN is “False Negative”, and TN is “True Negative.” 

Metric Equation Range and Interpretation 
Recall 
(Sensitivity) 
(Rogan & 
Gladen, 1978) 

𝑇𝑇𝑟𝑟
𝑇𝑇𝑟𝑟 + 𝐹𝐹𝐵𝐵 

0 (no recall) – 1 (perfect recall) 

Specificity 
(Rogan & 
Gladen, 1978) 

𝑇𝑇𝐵𝐵
𝐹𝐹𝑟𝑟 + 𝑇𝑇𝐵𝐵 

0 (no specificity) – 
1 (perfect specificity) 

Quantity 
Disagreement 
(R.G. Pontius & 
Millones, 2011) 

� 𝐹𝐹𝐵𝐵 − 𝐹𝐹𝑟𝑟
𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝐵𝐵 + 𝑇𝑇𝐵𝐵� + � 𝐹𝐹𝑟𝑟 − 𝐹𝐹𝐵𝐵

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝐵𝐵 + 𝑇𝑇𝐵𝐵�
2  

0 (no disagreement) – 
1 (complete disagreement) 

Allocation 
Disagreement 
(R.G. Pontius & 
Millones, 2011) 

2 ∗min �
𝐹𝐹𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝐵𝐵 + 𝑇𝑇𝐵𝐵 ,
𝐹𝐹𝐵𝐵

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝐵𝐵 + 𝑇𝑇𝐵𝐵� 

0 (no disagreement) – 
1 (complete disagreement) 

F1 score 
2 ∗ 𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 ∗
𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝐵𝐵
𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 + 𝑇𝑇𝑟𝑟
𝑇𝑇𝑟𝑟 + 𝐹𝐹𝐵𝐵

 
0 (worst) – 1 (best) 

As suggested by Pontius, Shusas, and McEachern (2004), to assess the 

predictive ability of the BSGM modelling framework, we compared it to a naive 

(basic) model that randomly assigns the transitions to a year within the given 

period, with every year having an equal likelihood, and carried out predictions for 

each year within pixels that were known to have transitioned for comparability 

with our framework. Again, we determined whether each pixel was a TP, FP, FN, or 

TN and calculated metrics to compare the BSGM-based BS extents and the BS 

extents produced using the naive model for each country at the pixel level, and at 

the unit level. The naive model was bootstrapped 500 times based upon resource 

limits and prediction stability, for each year and was specific to each country. 
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3. RESULTS 

 Across all study areas, two-thirds of the modelled years correctly predicted 

between 85-99 percent of transition pixels. For all years, again at the pixel level, 

the BSGM-based BS extents displayed low quantity and allocation disagreement in 

both absolute and relative terms. Similarly, the pixel level F1 score, with few 

exceptions, was higher than the one calculated for the BS extents produced using 

the naive model, but had more variance in absolute terms of performance. 

Comparable results between were found at the unit level (See Appendices), with 

relatively higher performance in the middle and later years of the study period.  

3.1 RF Performance  

The ROC plots (left plots in Figure 3) show that the RFs approach the 

performance of the theoretical perfect model. However, given the imbalanced 

data, the PRC plots (right plots in Figure 3) show a more nuanced picture of 

performance where a maximum level of precision is quickly achieved, remains 

steady up to a certain value of recall that varies by study area, and then quickly 

decreases with increasing recall.
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Figure 3.  Receiver Operator Curve (left plots) and Precision Recall Curves (right 

plots) with the RF model performance, blue lines, against a random 

model (red lines), and a perfect model (green lines), for each modelled 

country. 

Of the covariates informing the RF models, we consistently saw that the 

most important predictors of a pixel transitioning from non-BS to BS (Figure 4) 

were covariates related to distance (“esa_cls190_dst_2000”) and local density of BS 

(“esa_cls190_prp_5_2000”, “esa_cls190_prp_10_2000”, and 

“esa_cls190_prp_15_2000”) established at the beginning of the overall study 

period, i.e. 2000. Other important predictors included connectivity of BS extents 

("tt50k_2000") at the beginning or approximately end ("urbanaccessibility_2015" 

and "osmroa_dst") of the study period (Figure 4). 
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Figure 4. Random forest covariate importance as measured by the average log 

decrease in the Gini impurity when the covariate is used as the splitting 

criteria at nodes, for Swizerland (CHE) ESA, Panama (PAN) ESA, Uganda 

(UGA) ESA, and Vietnam (VNM). Higher values indicate better predictive 

performance of covariate. Refer to Table 2 for covariate names. 

3.2 Predicted BS Extents Results 

 Examining the proportion of pixels known to transition that were predicted 

correctly (Table 4), we show that out of 48 modelled BS extents (corresponding to 

12 years across four countries), 39 of those had correctly predicted proportions 

between 0.80 and 0.99 (green) with 25 of them having proportions over 0.90. 

Modelled extents ranged from 0.57 to 0.99 of pixels predicted correctly (Table 4). 

Note that one minus the proportion correct is equal to the total disagreement of 

the predicted pixels, i.e. the sum of the quantity and allocation disagreement (R.G. 

Pontius & Millones, 2011).  
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Table 4.  Proportion of transition pixels predicted correctly by the BSGM 

modelling framework by year for Switzerland (CHE, Panama (PAN), Uganda 

(UGA), and Vietnam (VNM). Modelled extents with proportions greater 

than or equal to 0.80 are highlighted in green. 

Model 2001 2002 2003 2004 2006 2007 2008 2009 2011 2012 2013 2014 

CHE 
ESA 0.718 0.573 0.628 0.975 0.987 0.979 0.975 0.983 0.999 0.998 0.997 0.997 

PAN 
ESA 0.952 0.935 0.934 0.960 0.806 0.771 0.816 0.920 0.905 0.838 0.801 0.818 

UGA 
ESA 0.814 0.787 0.803 0.929 0.912 0.877 0.877 0.909 0.940 0.893 0.865 0.878 

VNM 
ESA 0.942 0.918 0.923 0.951 0.923 0.872 0.866 0.916 0.879 0.777 0.738 0.790 

 Further examining source of disagreement, we display the quantity and 

allocation disagreement between the BSGM-based RS extents and validation set, 

i.e. ESA RS-based BS extents, as well as the corresponding disagreements with the 

BS extents produced using the naïve model (Figure 5). We show that for all 

modelled years the total disagreement is substantially less than that of the naive 

model and the disagreement produced by the BSGM modelling framework is 

predominantly due to quantity error (Figure 5). However, there does appear to be 

a pattern of increasing disagreement due to allocation error after 2010. Identical 

analyses for the early WSF Evolution data are provided in Appendices. 
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Figure 5.  Pixel-level quantity and allocation disagreement of BSGM and naive 

models for Switzerland (CHE), Panama (PAN), Uganda (UGA), and Vietnam 

(VNM) as compared to a naive model, given in yellow and red. Full annual 

contingency data and metrics in supplemental materials. 

While our ESA RS-based  BS extents data does not give information on the 

true size of settlements on the ground, we can leverage the fact that our 

subnational units are derived from census boundaries (Doxsey-Whitfield et al., 

2015), which are known to typically be smaller in areas of larger settlements and 

larger in areas of more fragmented smaller settlements, to begin understanding 

how the framework is operating across the continuum of settlement size. Looking 

at the contour density plots of F1 unit-level scores across all years for each 

country plotted against the corresponding subnational unit area, in Figure 6, we 

can see that higher scores are clustered for units with smaller areas across each 

country, although, with the exception of Uganda, the framework shows good 

density and performance over a range of unit sizes. Less variance in performance 

for larger units is likely due to the smaller amount of transitions seen in these 
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units, decreasing the probabilities for error by the interpolative BSGM modelling 

framework. 

 

Figure 6. Contour density plot of unit-level F1 scores by country across all 

predicted years. Created using a two-dimensional kernel density 

estimation (Venables & Ripley, 2002). 

Examining examples of the annual BSGM-based BS extents against the 

corresponding annual ESA RS-based BS extents for the mid-point of each period, 

which should theoretically be the worst simply by being the furthest year from any 

observation we note a few things of interest. First, there are relatively large 

amounts of agreement whether for small or large settlements (with Visp being a 

town of less than 10,000). Second, the framework seems to predict “infill” growth, 

e.g. Kampala in 2003 and North Ho Chi Minh City in 2013, later than indicated by 

the corresponding ESA RS-based extents (Figure 7, in red). Lastly, it appears that 

the BSGM modelling framework is temporally conservative in that it is not 

predicting relatively large amounts of pixels too early (Figure 7, in blue). Of 

course, the model performance can vary from unit-to-unit and year-to-year, and we 

provide the entire annual BSGM-based BS extents in GeoTiff format in the 

Supplemental Materials. 
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Figure 7.  Selected BSGM-based BS extent and ESA RS-based BS-extent used for 

validation across the four countries for the approximate mid-point 

years of each period – 2003, 2008, 2013. “ESA Only” represents BS 

pixels in the validation dataset not classified as BS pixels in the 

corresponding BSGM-based BS extent. “BSGMi Only” represents BS 

pixels in the BSGM-based BS extent not classified as BS pixels in the 

validation dataset.  
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4. DISCUSSION 

Here we have shown that the BSGM framework is capable of filling gaps in 

time-series of built-settlement datasets by estimating the extents in between RS-

based imagery using relative changes in BS population and BS population density 

combined with environmental covariates. The BSGM modelling framework 

approximates patterns of BS growth through time with good agreement to its 

input BS extent dataset for most years, both at the pixel and unit level (Table 4, 

Figures 5 -7, and Appendices). This emphasizes the strength of incorporating the 

use of an interpolative model, such as the BSGM modelling framework, as 

opposed to solely using urban feature datasets that are largely imagery-

dependent. While still the gold standard, these imagery-based datasets may be 

affected by adverse atmospheric conditions, limited sensor revisits, or the need 

for more resource intensive imagery-based interpolation or extraction methods. 

This framework, and resultant output data, can be used for better modelling 

population distribution through time, inform future extractions of BS from 

imagery, help facilitate intervention/planning/monitoring of development goals, 

and potentially serve as a platform for simulating different transition paths 

through time and investigating correlates of BS spatial growth. 

However, this validation design has limits. The agreements and 

disagreements here are generated by how well the BSGM model replicates the 

spatio-temporal data patterns of the input ESA BS extents and does not state 

anything about the accuracy of the BSGM-predicted extents as compared to 

ground truth. Even if we possessed accurate and time-specific BS ground truth 

extents with complete spatial coverage, given that the BSGM is an interpolative 

modelling framework it would be difficult to determine if any error originated 

from the model or was propagated from the input BS extents. Performance as 

assessed by ground truth would be highly sensitive to the chosen BS extents input 
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to the BSGM. We assume if the BSGM can accurately replicate and interpolate the 

data patterns of the input dataset, then the end user can have some confidence 

that validation metrics provided by the original data producers, e.g. ESA, are likely 

to hold. However, ground truth accuracy is important for some end users, and we 

encourage them to assess the BSGM output accordingly where data allows. 

The BSGM is neither without error nor a replacement for urban 

feature/built-settlement extractions methods. Given that the BSGM modelling 

framework is interpolative, its modelled BS extents are limited by the accuracy, 

the spatial and temporal resolution of its inputs including the RS-based observed 

BS extents, the time specific subnational population data, and the spatially-explicit 

population distribution dataset. For example, the poorer model performance from 

2001 through 2003 (Table 4 and Figures 5) is likely due to the fact the ESA RS-

based BS extents were delineated at 30 arc sec resolution, due to the MERIS and 

PROBA V imagery not being available, rather than the 10 arc second resolution for 

years from 2004 through 2015 (UCL Geomatics, 2017). With regards to the total 

disagreement of the BSGM-based BS extents to the ESA RS-based BS extents 

(Figure 5), the relatively low contribution of allocation disagreement prior to circa 

2010 and corresponding increase in contribution post-2010 is possibly due to the 

switch from using coarser DMSP-based LAN data to VIIRS-based LAN data at the 

2012 time point. 

 The BSGM modelling framework is also limited by conceptual and 

mathematical assumptions. We are assuming a certain relationship between 

relative BS population and BS population density changes and drive demand for 

temporally coincident BS growth. Furthermore, we assume that BS population 

grows logistically with a time varying capacity that is temporally coincident and 

that BS population density follows a natural cubic spline across all observed 
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points. This is further predicated upon the assumption that the BS growth is 

strongly correlated by changes in population and or population density and the 

resulting demand is instantaneously filled as opposed to being delayed 

temporally. While there is support for population change being an empirical and 

theoretical driver of BS growth (Angel et al., 2011; Dyson, 2011; Linard et al., 

2013; Seto et al., 2011, 2012), there is also evidence for considering other 

drivers, not used here because of their unavailability at subnational levels globally 

through time, such as Gross Domestic Product and arable land per capita (Angel 

et al., 2011; Seto et al., 2011). Furthermore, there are other “intangibles” such as 

local, regional, and national land use or development policies, which almost 

certainly shape the BS growth, but are typically not available in an accessible 

format or not available at all. Furthermore, the BSGM modelling framework is 

relying on temporally (Doxsey-Whitfield et al., 2015) and spatially (Stevens et al., 

2015) modelled subnational population data that are used as inputs to estimate 

the BS population at each point in time. However, regardless of the modelling 

approach used to spatially disaggregate the population from the unit to the pixel-

level, since the BSGM modelling framework allocates transitions based upon 

relative changes in BS population, the errors associated with the spatial 

redistribution of the population should not affect prediction timings, as long as 

biases are consistent over times. As with any “model outputs built upon model 

outputs,” users of such datasets must be cautious of accumulated errors.  

When considering area-based metrics, the Modifiable Areal Unit Problem 

(MAUP) (Openshaw, 1984) must be considered. Indeed, the total number of pixels 

in each unit is typically larger in the less settled units, resulting in less variation of 

aggregated metric values referring to those. With dasymetric redistribution 

methods, the size and spatial arrangement of the source units, can also affect the 

quality of the disaggregation with the larger relative differences between source 
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unit and target unit sizes introducing more (Mennis, 2003; Mennis & Hultgren, 

2006). This, in part, likely led to the results in Figure 6. The MAUP could also 

explain the framework’s late prediction regarding infill growth (Figure 7), with the 

unit-averaging of the BS population density potentially obscuring the underlying 

sub-unit variation (Openshaw, 1984) in BS population density that could be more 

likely driving pixel-level non-BS-to-BS transitions. Other reasons for disagreements 

in Figure 7 could be due to less detectable light changes associated with non-BS-

to-BS transition due to light blooming. However, annual BSGM-based BS extents 

can be aggregated across years to decrease uncertainty of the interpolated 

extents, as the growth of BS extents is an incremental process, with future 

outcome dependent upon previous growth. 

 Unfortunately, for both the use of logistic curves to interpolate between 

estimates of BS population count data and the use of cubic splines to interpolate 

between estimates of BS population density data, independent data does not exist 

to evaluate the error or uncertainty of the interpolated values. This aside, we also 

cannot calculate uncertainty of these curves because they are non-parametric 

growth curves or simple fitted splines that are not conducting any statistical 

inferences. However, we are not actually using the interpolated values of BS 

population and BS population density as the predicted outcome of interest, but 

rather to derive estimated counts of non-BS to BS pixel transitions that are then 

used as relative weights for the spatial disaggregation of the actual RS-based 

observed transition counts across time (Equations 1-7). Finally, it is important to 

highlight how this dasymetric disaggregation by weights precludes the 

propagation of any uncertainties calculated before the disaggregation step (as a 

well-known characteristic of dasymetric methods), limiting us to only measuring 

absolute error of the final transitions as we have done here.  
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5. CONCLUSIONS 

 The 2030 Agenda for Sustainable Development and its SDGs have reinforced 

the importance of data to being able to account for “all people everywhere (United 

Nations, 2016). Differences in the dynamic spatial distributions of hazards 

(Carrão, Naumann, & Barbosa, 2016; Oliveira, Oehler, San-Miguel-Ayanz, Camia, & 

Pereira, 2012), the spatial variation of the effects of climate change (Ericson, 

Vorosmarty, Dingman, Ward, & Meybeck, 2006; Hanjra & Qureshi, 2010; 

Stephenson et al., 2010), spatially allocating services to ensure sufficient coverage 

(Eckert & Kohler, 2014; Sverdlik, 2011), and targeting interventions and planning 

(Linard, Alegana, Noor, Snow, & Tatem, 2010; Utazi et al., 2018) based upon local 

context with limited resources requires higher temporal resolution in the mapping 

of BS and mapping of populations, both large and small (United Nations, 2016). 

Here we described a flexible modelling framework for globally modelling BS 

extents between RS-based observed time points, with 39 of 48 validated BSGM 

predicted BS extents having over 80 percent agreement with ESA RS-based 

observed extents and 25 of those years having over 90 percent agreement (Table 

4). This framework is scalable globally, but also allows for sub-national variation 

in transition probability, population changes, and local relative LAN changes to 

drive the overall study area model. 

As global urban feature/built-settlement extent datasets such as ESA CCI, 

MAUPP, GHSL, GUF and others continue to improve both in terms of spatial 

accuracy and spatial and temporal resolutions, modelling frameworks such as the 

BSGM will likely still be useful due to imagery/extraction issues and the need to 

smooth or fill-in time-series of urban feature/built-settlement datasets (ESA CCI, 

2017; Esch et al., 2013; Forget, Linard, & Gilbert, 2018; Pesaresi et al., 2016). By 

the time annual urban feature/built-settlement extractions from currently 

available imagery will become an economically viable means of filling gaps, the 
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current demand for annual datasets, eventually becoming the standard, will be 

replaced by grown a demand for quarterly and monthly datasets. This is not to say 

that interpolative models and feature-extraction algorithms are oppositional, but 

rather that they are complementary. Should the time come where high-resolution 

global annual urban feature/built-settlement datasets become the norm, this 

would offer a wealth of information from which to improve the assumptions the 

BSGM currently makes.  

As informative as global RS-based urban feature/built-settlement datasets 

are, imagery will never see into the future and we plan on extending the BSGM 

modelling framework to allow for short-term projection of the growth of BS 

extents. We found that the primary predictors of growth BS extents were related 

to connectivity, i.e. road networks, and local, i.e. ~0.5-1.5km, settlement density 

(Figure 4) giving support to work in attempting to define “urban” based on 

contiguity, connectivity, and spatial density (Dijkstra & Poelman, 2014; Esch et al., 

2014; Pesaresi & Freire, 2016). Still mostly unknown is how the BSGM modelling 

framework would perform for smaller settlements, not captured by the coarser 

datasets such as the ESA CCI land cover, and we are looking to test this with 

forthcoming feature data sets with resolutions below 3 arc seconds. Further 

sensitivity testing of the framework to noisy or biased inputs, e.g. BS datasets in 

arid biomes, is also planned. Lastly, we plan to validate the utility of these dataset 

in an applied manner by comparing the effects of including the BSGM-based BS 

extents in annual population distribution modelling. Finally, the BSGM modelling 

framework can be adapted to run at other scales, both spatially and temporally, 

either by modifying the provided code (See Supplemental Materials) or, in many 

cases, simply by modifying the input data. Annual global interpolated datasets 

from 2000 to 2014 based on GHSL/ESA/GUF input datasets, produced with an 
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early version of this model and a reduced set of covariates, is freely available on 

the WorldPop website (worldpop.org) with the model code and results datasets 

used here provided in the Supplemental Material. 
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Abstract: Advances in the availability of multi-temporal, remote sensing-derived global built-
/human-settlements datasets can now provide globally consistent definitions of “human-settlement” 
at unprecedented spatial fineness. Yet, these data only provide a time-series of past extents and urban 
growth/expansion models have not had parallel advances at high-spatial resolution. Here our goal 
was to present a globally applicable predictive modelling framework, as informed by a short, 
preceding time-series of built-settlement extents, capable of producing annual, near-future built-
settlement extents. To do so, we integrated a random forest, dasymetric redistribution, and 
autoregressive temporal models with open and globally available subnational data, estimates of built-
settlement population, and environmental covariates. Using this approach, we trained the model on 
a 11 year time-series (2000–2010) of European Space Agency (ESA) Climate Change Initiative (CCI) 
Land Cover “Urban Areas” class and predicted annual, 100m resolution, binary settlement extents 
five years beyond the last observations (2011–2015) within varying environmental, urban 
morphological, and data quality contexts. We found that our model framework performed 
consistently across all sampled countries and, when compared to time-specific imagery, 
demonstrated the capacity to capture human-settlement missed by the input time-series and the 
withheld validation settlement extents. When comparing manually delineated building footprints of 
small settlements to the modelled extents, we saw that the modelling framework had a 12 percent 
increase in accuracy compared to withheld validation settlement extents. However, how this 
framework performs when using different input definitions of “urban” or settlement remains 
unknown. While this model framework is predictive and not explanatory in nature, it shows that 
globally available “off-the-shelf” datasets and relative changes in subnational population can be 
sufficient for accurate prediction of future settlement expansion. Further, this framework shows 
promise for predicting near-future settlement extents and provides a foundation for forecasts further 
into the future. 

Keywords: Urban; growth model; forecast; built; settlement; machine learning; time series 
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1. Introduction 

In 2018, 55 percent of the world’s population lived in urbanized areas, but this is projected to increase 
to 68 percent by 2050, due to natural population growth, continued rural to urban migration, and the 
conversion of rural to urban land [1–3]. Most of this anticipated urban growth will be in low and 
middle-income countries, specifically in small to medium sized settlements, where the majority of 
urban populations reside [1,4]. Logically, this growth, in conjunction with climate change, presents 
questions regarding sustainable development. Answers to these questions are dependent upon better 
understanding past and current urbanization trends to better predict future trends, minimize 
potential adverse outcomes and environmental impact, and maximize the benefits that can come from 
urbanization [1,4–6]. Accordingly, there is a continued need for globally comparable and 
standardized urban environment datasets and projections [4,6,7]. Particularly as internationally 
coordinated and global efforts for sustainable development, such as under the Sustainable 
Development Goals [8], are undertaken. The provision of these data needs to be transparent, 
sustainable, comparable across space and time, and available to all while being able to cope with the 
many definitions of urban, e.g. administrative-based, Remote Sensing (RS)-based, or population-
based definitions [8–10]. 

While detailed and regular data on urban areas often exists within high-income countries, middle 
and lower-income countries often lack these data, use country specific definitions of urban, or have 
data that is not easily accessible. Often, practitioners turn to RS-based global data that has consistently 
extracted urban areas and features using a definition based upon the observable human, built land 
cover. Recent advances have produced globally consistent urban feature datasets, which maintain 
relatively high spatial resolution/fidelity (<= 100m) while capturing smaller/less-dense/more-
fragmented settlements [11–15]. Specifically, the availability of urban feature datasets globally 
capturing areas of Built-Settlement (BS), above ground structures that can support human habitation 
and or related economic processes [12,16,17], have become more common, e.g. [12–15,18–20]. 
However, these datasets still have limited temporal resolution, i.e. single time observation or cross-
sectional with many years between observations. Increased temporal coverage is desirable but 
sacrificing spatial resolution to do so is problematic as most human settlements, particularly those in 
low- to middle-income countries, are relatively smaller and less densely developed [1,21–23]. 
Compounding this is the typical time lag between global image acquisitions and the resulting dataset 
of built-settlement or, more generally, urban features and the associated processing costs. Further, 
some datasets are only produced once or cease updating with additional observations in time, leaving 
users of the data without continued support for a dataset-specific definition of urban. Hereafter, we 
refer to the general concept of “urban” as such, and use the “built-environment” to refer to all areas 
characterized by the presence of anthropogenic features, and use “urban features” to refer to objects 
within the built-environment, e.g. roads, buildings, parks. Specifically, the scenario of needing to 
project built-settlement extent data past last observations would logically propose extrapolative 
modelling as a solution. 

To this regard, it is worth highlighting that the majority of the literature and existing models for 
projections of urban and built-environment growth focus on North America, Europe, and China, with 
many being city/area/regionally specific [24]. Furthermore, many of the existing continental- and 
global-extent urban future growth models are solely meant for exploring potential future scenarios 
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as opposed to projecting near future urban growth grounded upon local contemporary and past 
observed dynamics [25–27]. Other models are produced from city- or country-level samples, datasets 
with substantial definitional or spatial/temporal disagreement, or utilise arbitrary thresholds without 
validation for determining non-urban-to-urban area conversion [3,28–31] Of these, many are not 
driven by subnational variations to determine larger scale dynamics of urban growth and transition 
distributions, e.g. they are statistically "global" models. Some models do not output explicit spatial 
extents, e.g. country-level totals of projected urban area, limiting their utility [3]. Together, these 
issues combined indicate a need for methods to produce a flexible and robust method of generating 
spatially explicit regular time series of predicted future urban environment expansion across the 
globe. 

Our goal was to leverage developments in statistical methods, data availability, and computing 
resources to create a globally applicable urban expansion modelling framework to project beyond the 
last observations while addressing the above existing needs. Using observed time-series of BS extents 
and coincident small area population changes we were able to produce spatially explicit annual BS 
extent maps representing projected near-future BS expansion for multiple points in time. Here we 
introduce such a modelling framework and validate its performance against withheld time-specific 
past RS-derived observations and time-specific manual delineations of BS. 

2. Materials and Methods 

2.1. Study Areas and Data 

To test across a variety of BS morphologies, environmental contexts, and developmental contexts, in 
addition to countries with varying spatial details of the input census-based population data, we 
sample countries less present in previous spatial urban and BS modelling studies [24], including 
Switzerland, Panama, Uganda, and Vietnam (Table 1). Additionally, these countries were chosen to 
capture a variety of population magnitudes, densities, and distributions across space as well as socio-
economic, urban morphological, topographical, and data quality (e.g. spatial fineness of subnational 
population data) contexts. Given that this extrapolative framework builds off the previously fit 
interpolative Built-Settlement Growth Model (BSGMi) [16], the same set of covariates were used as 
in [16] for either predicting transition probability in the random forest (Table 2, superscript “c”) or in 
the remainder of the disaggregative process. These covariates were selected based upon previous 
literature to give immediate environmental context and information regarding settlement 
connectivity and proximity [28,32,33], e.g. negative relationship between slope and likelihood of 
transition, positive relationship between likelihood of transition and distance to existing BS. 
Covariates were time specific or assumed to be temporally invariant (Table 2), and were pre-
processed and appropriately resampled to 3 arc seconds (~ 100m at the Equator) as detailed in Lloyd 
et al. [34].
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Table 1. Summary of built-settlement transition data by country and period. Areal units here are 
pixels (~ 100m) as that is the unit handled by the model, which looks at relative areal changes as 
opposed to absolute areal changes. Adapted from Nieves et al. [16]. 

Country 
Average Spatial 

Resolution a Period 
Initial Non-Built Area 

(pixels) 
Period Transition 

Prevalence b 

Panama 
10.9 km 2000–2010 

2010–2015 
8,901,004 
8,890,339 

0.12% 
0.75 % 

Switzerland 
3.9 km 2000–2010 

2010–2015 
6,816,510 
6,704,973 

1.64% 
0.01% 

Uganda 
12.2 km 2000–2010 

2010–2015 
28,231,555 
28,200,084 

0.11% 
0.04 % 

Vietnam 
21.7 km 2000–2010 

2010–2015 
40,108,425 
39,990,858 

0.11% 0.29% 

a Average spatial resolution is the square root of the average subnational area, in km, and can be thought of as 
analogous to pixel resolution with smaller values indicating finer areal data and vice versa [35]  

b Note: the Switzerland data suffered from disproportionate, relative to manually interpreted 30 cm true-colour 
imagery, amounts of growth as indicated by the European Space Agency (ESA) Remote Sensing (RS)-derived 
extents between 2000–2005 and is thought by Nieves et al. [16] to be due to the 2003–2004 shift from delineating 
land cover changes at 300 m to using imagery to delineate at 150 m, in conjunction with the highly variable 
terrain in Switzerland compounding classification attempts.
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Table 2. Data used for estimating the annual number of non- Built-Settlement (BS) to BS transitions at the unit level (i.e. demand quantification), 
predicting the pixel level probability surface of those transitions, and performing the spatial allocation procedures of the model. Adapted from Nieves 
et al. [16]. 

Covariate Description Use b, d Time Point(s) 
Original Spatial 

Resolution DataSource(s) 

Built-settlement b Binary BS extents 
Demand Quantification 
Spatial Allocation 2000–2010 10 arc sec [36] 

Distance To nearest Edge (DTE) of 
Built-settlement 

Distance to the nearest BS edge Spatial Allocation c 2000, 2010 10 arc sec [36] 

Proportion Built-settlement 1,5,10,15 
Proportion of pixels that are BS within 
1,5,10, or 15-pixel radius 

Spatial Allocation c 2000,2010 10 arc sec [36] 

Elevation Elevation of terrain Spatial Allocation c 2000; Time Invariant 3 arc sec [37] 
Slope Slope of terrain Spatial Allocation c 2000; Time Invariant 3 arc sec [37] 

DTE Protected Areas Category 1 
Distance to the nearest level 1 protected area 
edge 

Spatial Allocation c 2010 Vector [34,38] 

Water Areas of water Restrictive Mask  5 arc sec [34,39] 

Subnational Population Annual population by sub-national units Demand Quantification 2000–2020 Vector [40] 

Weighted Lights-at-Night (LAN) d 
Annual lagged and sub-national unit 
normalised LAN 

Spatial Allocation d 2000–2016 
30 arc sec (2000-011) 
15 arc sec (2012-016) 

DMSP [34,41] 
VIIRS [34,42] 

Travel Time 50k 
Travel time to the nearest city centre 
containing at least 50,000 people 

Spatial Allocation c 2000 30 arc sec [34,43] 

ESA CCI Land Cover (LC) Class a 
Distance to nearest edge of individual land 
cover classes 

Spatial Allocation c 2000, 2010 10 arc sec [34,36] 

Distance to OpenStreetMap (OSM) Rivers Distance to nearest OSM river feature Spatial Allocation c 2017 Vector [34,44] 
Distance to OpenStreetMap (OSM) Roads Distance to nearest OSM road feature Spatial Allocation c 2017 Vector [34,44] 
Average Precipitation Mean Precipitation Spatial Allocation c 1950–2000 30 arc sec [34,45] 
Average Temperature Mean temperature Spatial Allocation c 1950–2000 30 arc sec [34,45] 
a Some land cover classes were collapsed prior to calculating distance to edge: 10–30 → 11; 40–120 → 40; 150–153 → 150; 160–180 → 160 (Sorichetta et al>, 2015)b Covariates involved in 
Demand Quantification were used to determine the demand for non-BS to BS transitions at the subnational unit level for every given year. Covariates involved in Spatial Allocation 
were either used as predictive covariates in the random forest calculated probabilities of transition (see c) or as a post-random forest year specific weight on those probabilities and the 
spatial allocation of transitions within each given unit area. Covariates used as restrictive masks prevented transitions from being allocated to these areas. 
c Used as predictive covariates in the random forest calculated probabilities of transition d See Nieves et al. [16] for details on the construction of weighted LAN
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2.1.1. Built-Settlement Data 

Our chosen representation of BS was the “Urban” class, number 190, of the annual European Space 
Agency Climate Change Initiative thematic land cover dataset (https://www.esa-landcover-cci.org/; 
hereafter, ESA). We selected the ESA RS-derived extents data for its annual coverage, at the time of 
the study, from 1992 to 2015. It has recently been extended to provide coverage for the years 2016–
2018 [46]. While ESA RS-derived extents have moderate spatial resolution, 10 arc sec resolution 
(~ 300m at Equator), its annual temporal resolution allows for the withholding of years for validation. 
In our period of interest, 2000 to 2015, the ESA data begins with a Medium Resolution Imaging 
Spectrometer (MERIS) imagery derived baseline land cover map and detects thematic class changes 
from this map using 30 arc second (~ 1 km at the Equator) SPOT VGT imagery (1999–2013) and 
PROBA-V imagery (2014–2015) [47]. Any detected changes observed over two or more years are 
delineated at 30 arc second resolution, if prior to 2004, and, beginning with 2004, are further 
delineated at 10 arc second resolution using the higher resolution MERIS or PROBA-V imagery [47]. 
Specific to the “Urban” class, ESA incorporates the Global Human Settlement Layer (GHSL) [12,18] 
and Global Urban Footprint (GUF) [13] datasets to better define the class and integrate elements of 
two BS datasets within the overall thematic built-environment context. Initial validation efforts 
estimate the 2015 “Urban” class user and producer accuracies between 86–88 percent and 51–60 
percent, respectively, but no information on the other years currently exist [47]. 

While ESA utilises the term “urban”, it is more correctly capturing aspects of the built environment. 
Given the integration of the GHSL and GUF data sets, which capture built-settlement, into the ESA 
“urban” class, we have reason to believe that the ESA “urban” class is more correctly operating on a 
functional definition of “built-settlement” or “built-settlement”-like, and refer to it as such. For a more 
detailed discussion on built-settlement and remote-sensing representations, readers are referred to 
Nieves et al. [16]. 

2.1.2. Population Data 

Annual subnational unit area (hereafter simply “unit,”) population estimates, for 2000 through 2020, 
were based upon the Gridded Population of the World version 4 (GPWv4) input data [40] were 
produced by the Center for International Earth Science Information Network (CIESIN) and spatially 
harmonized as described in Lloyd et al. [34]. To clarify, we are not using the gridded GPW product, 
which has uniform population density within a given unit, but we are using the same tabular 
population count data and the associated unit areas. These counts are based upon censuses/official 
estimates, interpolated at the subnational level per [40] to obtain annual estimates. Each unit possesses 
a unique ID, referencing a globally consistent grid (3 arc seconds), with the unit areas having globally 
harmonized coastlines and international borders. It is worth noting that the population count data 
utilised here are not adjusted to the U.N. country total population estimates, which are used to 
account for potential biases and errors. Further, the two primary sources of uncertainty in this dataset 
are linked to the census figures/official estimates and the simple regression used to obtain the annual 
estimates with few assumptions. 

2.1.3. OpenStreetMap Data 

https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/


Remote Sens. 2020, 12, 1545                   Chapter 4 

114 

OpenStreetMap (OSM) is an open database of user-contributed, edited, and curated spatial data also 
known as. While OSM offers global extent, like other Volunteered Geographic Information (VGI) [48], 
its completeness varies across space, with particular gaps in low and middle income countries, and 
has data quality that can vary both within and between countries [49,50]. Contrastingly, in the best of 
cases, OSM can approach the quality of official datasets [51]. However, agreed upon means of 
assessing VGI data quality and accuracy varies and is still debated [52]. Nonetheless, OSM data are 
used to fill data gaps where official/commercial datasets do not exist or are not publicly accessible 
and have improved or produced useful analyses and derived datasets, (e.g. [13,34,53–57]). 

For validation, we utilised the OSM building footprints around the municipalities of Visp, Brig-Glis, 
Naters, and Ried-Brig, Switzerland, where agreement between modelled extents and RS-derived 
extents were particularly large. The mountainous 119 km2 area (rectangular bounds: 7.8606508◦ 

46.2779033◦; 8.0224478◦, 46.3298123◦) had a 2015 combined mid-year population of approximately 
32,430 [58]. It contained 8,083 buildings manually delineated by OSM contributors, of which we 
contributed over an additional 1,700 buildings in an effort to have near 100 percent coverage of 
permanent vertical structures covered by the definition of BS. We inspected all building footprints in 
the area for accuracy and temporal coincidence with true colour imagery in 2015. The resource 
intensive nature of manually delineating and checking building footprints precluded us from 
carrying out more widespread validations of this nature during this study. The building footprints 
are provided in the linked data repository (https://data.mendeley.com/datasets/cm6bnzvzfj/1). 

2.2. Built-Settlement Growth Model extrapolation (BSGMe) 

2.2.1. Overview 

Here we take annual time-series of BS extents spanning 2000–2010 and estimated annual changes in 
BS population and unit-average BS population density changes to predict short-term (within five 
years) BS extents from 2011 through 2015. BS population is the population coincident with the BS 
extents and unit-average BS population density is the BS population of a unit divided by the BS area 
within the same unit. We refer to the set of years making each time series as TS where TS = {2000, 
2001, ... ,2010} and, expanding the notation from Nieves et al. [16], the first and last years of the input 
time series are referred to as t0 and t1, respectively. We test this extrapolative Built-Settlement Growth 
Model (BSGMe) framework using an annual time series of RS-based ESA BS extents from 2000–2010 
(TSESA). 

Similar to the BSGMi framework [16], the BSGMe framework has two primary components of 
“Demand Quantification” and “Spatial Allocation”, shown here in Figure 1.

https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
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Figure 1. High-level generalization of the Built-Settlement Growth Model extrapolation (BSGMe) modelling framework when predicting for 
short-term Built-Settlement (BS) expansion. Note, example maps and numbers are not to scale. Figure modified from [16].



Remote Sens. 2020, 12, 1545                   Chapter 4 

116 

We generalize the BSGMe framework with following steps: 

1. Create gridded population maps for each year in the input TS, following Stevens et al. [54]. 
2. For all years in the TS, extract the unit-specific population sum that is coincident with the year’s 

corresponding BS extents and derive the unit-average BS population density 

3. Independently for each unit, and using a rolling origin validation, select the single best fitting 
model for BS population and, separately, unit-average BS population density from three classes 
of models: 

• Auto-Regressive Integrated Moving Average (ARIMA), 

• Error, Trend, Seasonality (ETS), and 

• Generalized Linear Model (GLM) given log-transformed inputs. 

4. For each unit, use the final selected model for BS population and for unit-average BS population 
density to predict short-term annual BS population and annual unit-average BS population 
density starting with year t1+1 and ending with year t1+h, where in this case 1 ≤ h ≤ 5 and 
represents the projection horizon, in numbers of years. 

5. Use these estimates to derive the unit-specific annual quantity demand of non-BS-to-BS 
transitions by dividing the BS population by the BS population density. 

6. Create a transition probability surface using a Random Forest (RF) based upon the observed 
transitions between t0 and t1 of the input time-series and covariates corresponding to t0. 

7. Take the fit relationships between the occurrence of transitions and the predictive covariates, 
contained in the final RF model, and predict the future non-BS-to-BS transition probability 
surface using the same covariates, but corresponding to year t1, as the input. 

8. For each unit and iteratively for all years t1+1 through t1+h, spatially disaggregate the predicted 
annual unit-level transitions (steps 1–5) using the base transition probability surface (steps 5–6) 
and, if available, unit-relative weights derived from changes in lights-at-night brightness, 
similar to Nieves et al. [16]. 

These steps produce annual binary spatial predictions of BS extent in gridded format. All modelling 
and analyses were carried out using R 3.4.2 [59] and utilised the IRIDIS 4 high-performance 
computing cluster. All code is provided in the linked data repository (https://data.mendeley.com/ 
datasets/cm6bnzvzfj/1). Full process diagrams are provided in Appendix A, Figures A1 and A2. 

2.2.2. Demand Quantification 

Built-Settlement Population Estimation 

To obtain a set of annual estimated population surfaces for our study areas, we used the method 
detailed by Stevens et al. [54] to dasymetrically disaggregate [60,61] the census-based population from 
the unit-level to 3 arc second (~100m at the Equator) pixels. We independently modelled each country 
and year utilising time-specific and, assumed, time-invariant predictive covariates (see Appendix A, 
Table A1). We included the distance-to-nearest BS edge at the year 2000 and the distance-to-nearest 

BS edge for the given year as predictive covariates. This corresponded with our assumption that 
population relates to inner parts of BS agglomerations differently from the outer parts and to avoid 
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exaggerated areas of low population density relative to previously modelled years [16,62]. Annually, 
for each unit, we extracted and summed the populations from pixels that were within year-specific 
BS extents and derived the annual unit-average BS population density. This resulted in annual time-
series of BS population estimates and unit-average BS population densities for every unit in the study 
area, covering eleven years. 

Time-Series Model Fitting and Built-Settlement Population Projections 

Using these annual unit-level time-series, we predicted future unit BS population and unit-average 
BS population density using a single model fitting and selection process detailed in Figure 1. For each 
unit, this process fits three classes of models: ARIMA models, ETS models, and an identity-link GLM 
model with log-transformed input values, all using a rolling origin framework validation in the final, 
i.e. between-class, model selection process. 

ARIMA models [63–65] and ETS models [64–67] are two autoregressive model classes often applied 
to time-series data, including population forecasts [68]. Both classes have dependent model terms 
based upon preceding values in the input time-series. ETS models are based upon the assumption of 
non-stationary, i.e. the mean and variance of the underlying process are not constant, and can 
approximate non-linear processes [64]. Conversely, ARIMA models assume stationarity and a linear 
correlation between the values of the time-series, but remain a standard in forecasting time-series 
[64,69]. The best model within the ARIMA class relies on an automated fitting procedure utilising unit 
root tests, iterative step-wise parameter fitting, and the resultant lowest Akaike Information Criterion 
(AIC) value, as described in detail by Hydman and Khandakar [64]. ETS class models are selected in 
an automated fashion, as described in Hyndman et al. [65], utilising maximum likelihood parameter 
estimation, the corrected AIC (AICc), and bootstrapping simulation. For the ARIMA and ETS model 
classes only the number of years since year t0 and temporally preceding values in the input time-
series were available as predictive covariates. 

Generalized Linear Models (GLMs) provide a single consistent framework for linking the linear-based 
systematic elements of regression-type models, associated with Normal, binomial, Poisson, gamma, 
and other statistical distributions, with their respective random components through an integrated 
fitting procedure based upon maximum likelihood [70]. Here, we utilised an identity link function, 
and provided log-transformed input data with the number of years since year t0 as the sole predictive 
covariate. 

During the fitting of these model classes we utilised a rolling origin validation (Figure 2) of each 
model class in anticipation of needing to determine the final model based upon a single metric of 
error across the different number of years predicted into the future. A rolling origin validation fits a 
selected model upon an iteratively changing sample size and an inversely changing number of future 
time steps, i.e. “the rolling origin” (Figure 2) [71–73]. We used the Median Absolute Percent Error 
(MDAPE) as our forecasting error metric as opposed to the more common Mean Absolute Percent 
Error (MAPE). The MAPE, compared to other metrics, has the advantage of avoiding large errors 
when the true value is near zero [74]. The MDAPE retains the advantages of the MAPE but is less 
influenced by extreme values and is more robust than the MAPE [69,74]. It can be written as: 
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𝑀𝑀𝐷𝐷𝐴𝐴𝑟𝑟𝑀𝑀 =  𝑚𝑚𝑚𝑚𝑑𝑑𝑡𝑡𝑎𝑎𝑟𝑟 ��𝑦𝑦�−𝑦𝑦 
𝑦𝑦
∗ 100��       (1) 

where yˆ is the predicted outcome of interest and y is the withheld observed outcome. 

Given our short input time-series (Nts = 11) and our projection horizon between one and five years (1 
≤ h ≤ 5), we utilised a maximum horizon of five years in the model fitting too. This meant the model 
classes were iteratively fit with between six (i.e. 2000–2005) and ten (i.e. 2000–2009) input 
observations, with all other observations withheld, and then predicted between one and five years, 
respectively, forward of the last input year of the given iteration sample. Each iteration produced a 
set of annual absolute percent errors for the projected years, of which the median was recorded. The 
sum of MDAPE values across all iterations represents the total error of each model class for the given 
unit. Written mathematically, for a given unit i, maximum horizon length h, and a being the index of 
the given set of iterations, the MDAPE sum within the rolling origin framework can be written as 

𝑀𝑀𝐷𝐷𝐴𝐴𝑟𝑟𝑀𝑀𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚 = ∑ [𝑀𝑀𝐷𝐷𝐴𝐴𝑟𝑟𝑀𝑀𝑙𝑙] ℎ
𝑙𝑙=0 = ∑ �𝑚𝑚𝑚𝑚𝑑𝑑𝑡𝑡𝑎𝑎𝑟𝑟(��𝑦𝑦�𝑘𝑘−𝑦𝑦𝑘𝑘 

𝑦𝑦𝑘𝑘
∗ 100��

𝑘𝑘=𝑛𝑛𝑡𝑡𝑠𝑠+1

𝑛𝑛𝑡𝑡𝑠𝑠+ℎ
)� ℎ

𝑙𝑙=0     (2) 

where the sample training series for a given iteration can be written as nts = t1 + a – h and the set of 
projected years within an iteration are calculated for each year k that takes on values between 
𝑟𝑟𝑡𝑡𝑠𝑠+1, … ,𝑟𝑟𝑡𝑡𝑠𝑠+ℎ, e.g. for h = 3 and a = 3 the models are fit on years 1 to 8 with a set of predictions made 
for �𝑦𝑦�𝑛𝑛𝑡𝑡𝑠𝑠+1,𝑦𝑦�𝑛𝑛𝑡𝑡𝑠𝑠+2,𝑦𝑦�𝑛𝑛𝑡𝑡𝑠𝑠+3�. After the rolling origin framework finished, for each unit, we selected the 
best model between model classes based upon the lowest MDAPEisum and fit the selected model class 
on the entire available time series. Normally, using the entire time series is cause for concern of model 
over fitting. However, our larger concern was that excluding later observations in the extremely short 
time series could lead to excluding important information late in the series. Therefore, we assumed 
that fitting only on a subset of the time-series would be as harmful, or more so, than potentially 
overfitting any given unit. After the refitting, and independently for each unit, we predicted the final 
outcome of interest through our projection horizon, in this case 2011–2015. Full process diagram of 
this sub-procedure is provided in Appendix A, Figure A2. 

 

Figure 2. Unit-level model fitting process for fitting and selecting the final model, between 
three classes of models, used to predict short-term future BS population and future unit-
average BS population density. Here we employ a rolling origin framework, with the final 
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model selected based upon the smallest sum of the Median Absolute Percent Error 
(MDAPE). 

This time-series model selection and prediction procedure was used twice in the demand 
quantification component of the BSGMe: once for predicting future BS population and once for 
predicting future unit-average BS population density (Figure 1). For predicting future BS population, 
we first transformed, and later back-transformed, BS population to an “BS/Non-BS Ratio” to ensure 
BS population never exceeded total population [1]. We then calculated the final year and unit-specific 
number of projected non-BS-to-BS transitions by dividing the projected BS population by the 
corresponding projected BS population density. 

2.2.3. Spatial Allocation 

Projecting non-Built-Settlement (BS)-to-BS Transition Probabilities Surface 

After calculating annual unit-level demand for non-BS-to-BS transitions, we spatially allocated 
transitions to the pixel level, producing annual projected BS extents. First, we trained a RF on 
transitions observed between 2000 and 2010 with spatially coincident covariates corresponding to the 
year 2000 (Table 2). This RF was created following the sampling and training procedures in Nieves et 
al. [16] where an iterative covariate selection procedure was employed, removing covariates that did 
not improve the accuracy of the RF model. In this scenario, we were assuming that relationships 
observed between transitions and the predictive covariates persist into the near future. Therefore, we 
projected forward to estimate the probability of transition surface after 2010 by using 2010 
representative covariates as input covariates (Figure 1). The values of the resulting probability surface 
range from 0.00 to 1.00 and represent the posterior probability of a pixel being classified as 
transitioning between, originally 2000 and 2010, 2010 and 2015 [75]. We elected to use a RF due to its 
efficiency and scalability as well as its ability to model complex interactions and non-linear 
phenomenon using a non-parametric approach with minimal input [75]. Further, RFs have been 
shown in at least one study to outperform other machine learning type methods, such as support 
vector machines [76], and showed satisfactory performance in Nieves et al. [16]. 
 

Annually Adjusting non-BS-to-BS Transition Probabilities 

While many projections are “truly future” scenarios and no earth observation data would be 
available, here we are validating the framework within a scenario where the “future” projection 
period is one where the input BS extent dataset does not have coverage, i.e. as if ESA had stopped 
producing the dataset at 2010, and we have access to observed lights-at-night (LAN) data during our 
projection period (2011–2015). With this, we follow the procedure in Nieves et al. [16] of using average 
annual unit-normalized lagged LAN brightness to modify the period probability produced by the RF 
to a more annual representation of the unit-specific probabilities of transition. The assumption behind 
this process is that pixels with larger unit-relative changes in annual LAN brightness correspond to a 
larger probability of non-BS-to-BS transition occurring at those location and vice versa. That is, if a 
relatively large increase, with respect to the given subnational unit, in the LAN brightness occurred 
between years and given that the area was not already BS, we would assume this corresponded to a 
higher probability of non-BS-to-BS transition having occurred. 
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Using these annually adjusted unit-relative probabilities, we followed the procedure in Nieves et al. 
[16] to spatially disaggregate the demand quantification component-derived projected annual 
transitions from the unit-level to the pixel-level (Figure 1). Differing from Nieves et al. [16], we did 
not restrict where the transitions can occur, excluding existing BS areas and bodies of water, as, being 
the “future”, we did not know observed transition locations in the projection period. This iterative 
disaggregation began with the last observed extents in year t1 (2010) and, within each unit i, if we had 
n number of predicted transitions for our given projected year, we selected pixels in unit i with the nth 

highest annually adjusted probabilities, and transitioned them from non-BS-to-BS. This is in line with 
Nieves et al. [16], Tayyebi et al. [77], Linard et al. [28] and others where it is assumed that pixels with 
higher transition probabilities are more likely to transition than pixels with lower probabilities. We 
repeated this process for all years in the projection period, using the previously projected year as the 
prior BS extents to expand upon, and output the union of the prior extents and the new projected 
transition as the next year’s BS extents (Figure 1). All resulting and derived data are provided in the 
linked data repository (https://data.mendeley.com/datasets/cm6bnzvzfj/1). 

2.3. Analysis 

Validation and Comparison Metrics 

We validated BSGMe projected extents against the withheld ESA extents for 2011, 2012, 2013, 2014, 
and 2015. The ESA data themselves are an imperfect reference, but our goal was to replicate the 
pattern of ESA’s capture of BS relative to BS population and BS population density changes. 
Therefore, “True” in all of these validations represents agreement of the BSGMe projections with the 
temporally corresponding withheld ESA validation extents and “False,” equally, represents 
disagreement. For every year, we classified every pixel in the study areas as either True Positive, False 
Positive, False Negative, or True Negative, TP, FP, FN, TN, respectively. Using these pixel-level 
designations, we calculated classification contingency-table metrics, listed in Table 3, at the unit-level. 

Table 3. Classification metrics used in assessing the model performance. 

Metric Equation Range and Interpretation 

Recall  

(Rogan and Gladen, 

1978) 

𝑇𝑇𝑟𝑟
𝑇𝑇𝑟𝑟 + 𝐹𝐹𝐵𝐵

 

0 (no recall) – 1 (perfect recall) 

Precision (Rogan and 

Gladen, 1978) 

𝑇𝑇𝑟𝑟
𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟

 
0 (no precision) – 1 (perfect precision) 

F1 score 
2 ∗ 𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 ∗
𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝐵𝐵
𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝐹𝐹𝑟𝑟 + 𝑇𝑇𝑟𝑟
𝑇𝑇𝑟𝑟 + 𝐹𝐹𝐵𝐵

 0 (worst) – 1 (best) 

The fact that most BS land cover and non-BS land cover is in agreement from any time A to near future 
time B is simply due to the fact that most land cover remains the same, i.e. persistence, causes issues 
when looking at classification metrics [79]. Some methods exist for accounting for this [79], but 
because our input datasets assume that “once BS, always BS”, we cannot utilise these adjustments in 
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our binary classification assessment. Hence, the best alternative is to compare all results to a null or 
naïve model [79]. We utilised a conservative naïve model where we assumed that the 2010 BS extents 
remained constant through 2015, i.e. lacking any other information we assumed the BS extents remain 
approximately the same over the short-term. In end user applications, when missing year-specific BS 
extents, the last available BS extents are commonly used as a substitute. We validated the 2010 extents 
following the same procedures to compare to the modelled extents. 

We also visually compared the 2015 BSGMe modelled extents and the withheld ESA 2015 extents to 
2015 true colour imagery, available via Google Earth [80], to better understand areas of over/under 
prediction. We further carried out a quantitative classification validation of the 2015 BSGMe modelled 
extents and the withheld ESA RS-derived 2015 extents against the presence of OSM building 
footprints in Switzerland around the municipalities of Visp, Brig-Glis, Naters, and Ried-Brig, where 
relative model over prediction appeared to be exceptionally bad. 

3. Results 

Looking at the distribution of unit-level F1 scores in Figure 3, we show that all models decrease in 
performance as projection horizon increases, with Vietnam having the most rapid rate of decrease and 
largest net decrease. In all countries, it appears that the naïve model outperforms all other models to 
varying degrees, but not typically by much in all countries with the exception of Uganda (Figure 3). 

 

Figure 3. Boxplots of unit-level F1 scores across countries and years in the projection period and 
divided by the input time series to the BSGMe framework. All F1 scores were calculated by 
comparing pixel-level agreement/disagreement with withheld annual European Space Agency 
(ESA) Remote Sensing (RS)-derived extents. The median is indicated by the black line and outliers 
(outside of 1.5*the interquartile range) are given by grey circles. 

Further investigating the distributions of F1 scores, in Figure 4, we show that recall also decreases as 
the projection horizon increases with Vietnam again having the most rapid and largest net decrease 
in recall. This makes sense as, according to the ESA RS-derived extent datasets, Vietnam had the 
largest relative growth while Switzerland, whose recall distributions are near identical and perfect 
across all input series, had very little growth, i.e. recall is driven here in Switzerland largely by 
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persistence (Figure 4, Table 1). As expected, as the projection year increases, the recall of the BSGMe 
produced projections outperforms the naïve model by an increasing magnitude. Unexpectedly, 
considering Figure 4, Uganda had relatively high values of recall, although the variance of unit-level 
recall was the largest of our study countries (Figure 4). 

 

 

 

Figure 4. Boxplots of unit-level recall scores across countries and years in the projection period and 
divided by the input time series to the BSGMe framework. All recall values were calculated by 
comparing pixel-level agreement/disagreement with withheld annual ESA RS-derived extents. The 
median is indicated by the black line and outliers (outside of 1.5*the interquartile range) are given by 
grey circles. 

Looking at the distribution of precision values in Figure 5, precision values decrease as the projection 
year increases across all countries and input series, except the naïve model because false positive 
could not occur with the extents remaining static. The low and variable precision shown by Uganda 
(Figure 5) potentially explains the observed variance of its F1 scores (Figure 3). Our best guess for the 
low precision here was that the ESA RS-derived extents were not as good as the population data in 
Uganda, i.e. leading to worse demand quantification and spatial allocation in the production of the 
time-series and propagating error through the BSGMe projections. 

 

 

 



Remote Sens. 2020, 12, 1545                 Chapter 4 

123 

 

Figure 5. Boxplots of unit-level precision scores across countries and years in the projection period 
and divided by the input time series to the BSGMe framework. All precision values were calculated 
by comparing pixel-level agreement/disagreement with withheld annual ESA RS-derived extents. 
The median is indicated by the black line and outliers (outside of 1.5*the interquartile range) are 
given by grey circles. 

Examining the predicted and observed extents of even a subset of projection years and areas within 
the study countries, Figure 6, gives some context for the findings in Figures 3–5. The same temporal 
trend of increases in “false positives”, red in Figure 6, imply large areas of over-prediction relative to 
areas of agreement with ESA RS-derived extents. Areas of false negatives, blue in Figure 6, when 
examined against time-specific true colour imagery [80] seem to consistently coincide with low to 
mid-density areas of BS intermixed with trees. 

Of these examples, Kampala, Uganda appeared to have the greatest magnitude of “false positives” 
while the Visp and Brig area of Switzerland appeared to have the largest relative number of “false 
positives” to RS-based observed transitions (Figure 6). This prompted us to investigate these areas 
more with time specific true-colour imagery [80]. Looking at time-specific true colour imagery in an 
area of west Kampala, Uganda, we overlaid the observed (ESA) and predicted (BSGMe) extents at 
2015(Figure 7). We see that all extents are missing areas of BS, with ESA RS-derived extents missing 
the more fragmented and less densely settled areas (Figure 7). Within the West Kampala, Uganda 
scene (Figure 7, bottom left), the 2015 BSGMe-derived extents appear to have large numbers of false 
positives relative to the 2015 ESA RS-derived extents. Interpreting the 2015 imagery in conjunction 
with the extents, it is apparent that the BSGMe extents are exhibiting better recall of true BS extents 
(Figure 7, bottom left), suggesting that perhaps the findings of Figures 3–5 are conservative relative 
to the true BS extents. Although less dramatic, this was the generally the case in numerous other areas 
of Uganda and the other sampled countries (Figure 7, top left). However, there were examples (Figure 
7, bottom right) where the BSGMe extents underestimated the true BS extents and where false 
positives did occur. 
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Figure 6. Map of select areas from the study countries and the projection period showing the 
predicted extents derived from the BSGMe (red) as well as the withheld ESA observed extents 
(blue). Areas where the BSGMe-derived extents and the ESA RS-derived extents agreed are shown 
in yellow. 
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Figure 7. The 2015 BSGMe-derived extents (red), the 2015 ESA RS-derived extents (blue), and the 2010ESA 
RS-derived extents (transparent black areas) of BS overlain on 2015 true colour imagery via Google Earth. 
Map Imagery: Google, Maxar Technologies, Centre National D’ Etudes Spatiales CNES/Airbus. 

To begin to approach estimating how much this overestimation of false positives might be, we decided 
to compare an area of what appeared to be extreme over prediction by the2015 BSGMe extents relative 
to the 2015 ESA RS-derived extents, around Visp and Brig, Switzerland, and validate both by using 
the corresponding manually delineated building footprints (OpenStreetMap Contributors, 2019). By 
2015, the ESA RS-derived data said there was 1,477 pixels of BS while the BSGMe-derived extents 
predicted 2,557 pixels of BS (Figure 8). When we compared these extents OSM building footprint data, 
corresponding to those present in 2015 and with near 100% coverage, across 11,966 3 arc-second pixels 
in the validation area, we showed that many of the areas are, in fact, not false positives (Figure 8). In 
fact, the observed ESA data only has a recall of 41.1% compared to the BSGMe performance of 57.9%, 
but the ESA extents do retain the highest precision of 84.1% (Figure 8). Considering both recall and 
precision simultaneously, we see that the BSGMe extents have a F1 score of 0.625 which represents 
approximately a 12% increase in F1 score to the ESA data (0.552) garnered by a 50% increase in recall, 
but at the expense of a 20% decrease in precision (Figure 8). 
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Figure 8. Validation maps of 2015 Open Street Maps (OSM) and manually delineated building 
footprints of the Visp and Brig area of Switzerland as compared to the ESA RS-derived extents (top 
left), the BSGMe TSESA predicted extents (bottom left) along with their corresponding confusion 
matrices and select classification metrics (right side). 

4. Discussion 

We have shown that the BSGMe projects BS extents into the near future with, in many cases, large 
agreement with the input dataset’s withheld observations for predicted years (Figures 3–5). Beyond 
this, we found support that the validation of the BSGMe predictions, relative to the ESA RS-based 
observations, could be underestimating the true accuracy (Figures 7 and 8). We displayed this visually 
for a large proportion of Kampala, Uganda, and other example areas (Figure 7). Further, we quantified 
it by comparing against manually delineated building footprints for smaller settlements of the Visp 
and Brig area in Switzerland, showing the BSGMe having a 40 percent increase in recall and a 12 
percent increase in F1 score relative to the ESA RS-based data (Figure 8). 

Overall, there are inherent limits to the BSGMe approach. The framework is sensitive to the size and 
configuration of the subnational units used, per the Modifiable Areal Unit Problem (MAUP) [81]. We 
would expect that less certainty in the spatial allocation would accompany larger unit area, but the 
effect of unit size on demand quantification is less clear; although Nieves et al. [16] found that smaller 
unit size was associated with higher overall unit interpolative accuracy. Additionally, we believe that 
the framework would be highly sensitive to the input projected population data, yet this characteristic 
could have potential utility for exploring deterministic outcomes of various input urban population 
projection scenarios. To further clarify, while here we utilised the Stevens et al. (2015) method for 
producing unit level estimates of BS population, any unit-level estimates of BS population and BS 
population density can be provided to the BSGMe modelling framework. 
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Given the dasymetric nature of the BSGMe framework, measures of uncertainty that would otherwise 
be generated by the RF, ARIMA, ETS, and GLM models within the framework cannot be propagated 
to the end predicted BS extents [54,60,61,82]. This uncertainty propagation limit is similar to and was 
noted in the interpolative settlement modelling framework of Nieves et al. [16]. However, in general, 
it would be expected that the accuracy of BSGMe extrapolative predictions would have a positive 
relationship with any errors associated with its input datasets. For instance, if the user-selected 
representation of BS or estimates of BS population were relatively inaccurate, it would be logical to 
suppose that the framework would be tasked with sorting out noisier relationships between relative 
population change and BS extent expansion, and likely have poorer framework performance. In light 
of the framework relationships to input data error/uncertainty and the limits of propagating and 
quantifying this uncertainty, it is recommended that any user of this framework compare modelled 
outputs to the input data layers as well as the uncertainty metrics of the individual framework 
modelling components, which are recorded in tabular format by the framework code (see code in 
linked data repository https://data.mendeley.com/datasets/cm6bnzvzfj/1). 

Due to persistence, the future BS projections with the highest agreement was the naïve model (Figure 
3). Ignoring the actual ground truth, the model comparisons by metrics without potential end-user 
context are an oversimplification, with metrics like accuracy and F1 score treating a false-positive 
disagreement equally bad as a false-negative disagreement. It is more useful to interpret the results 
with a user’s defined loss function in mind [83]. Should the user want to have few disagreements of 
any type, then the naïve model extents would be logical. However, if the user-defined cost of missing 
new BS extents would be a greater loss than the alternative cost of additional false-positives, the user 
would likely avoid the naïve approach in favor of one of the BSGMe predicted extents. Combined 
with the fact the false-positives of the BSGMe validations are likely inflated (Figures 3–8), it is likely 
that the difference in precision performance from that of the naïve model is smaller than presented 
here. 

It is important to note that these validation findings are specific to the input ESA RS-derived extents 
data and the spatial scale of the input representation of BS (originally 10 arc second and then 
resampled to 3 arc seconds). More generally, the model framework presented here can accept any 
binary input of urban/built-environment/built-settlement. Although, given the framework’s strong 
reliance on relative changes in population being indicative of relative changes in urban/built-
environment/built-settlement, a functional definition of urban/built-environment/built-settlement 
that corresponds with aspects of the built-environment more likely to be spatially coincident with 
populations would be most appropriate. Whether our assumptions of population being usable as a 
proxy for the underlying drivers of BS expansion holds at other spatial scales of BS representation, 
e.g. 30m Landsat-derived, 12.5m radar-derived, or 500m Moderate Resolution Imaging 
Spectroradiometer (MODIS)-derived, remains unclear. Supplemental findings for a city-based area, 
from Nieves et al. [16], observed decreased interpolative agreement when applied to a 1 arc second 
radar-optical dataset, rescaled to 3 arc seconds. Theoretically, we would expect individual agency, 
local planning conditions, micro-economic level decision-making, and other “intangibles” from a 
country, to a global-extent application standpoint, to have a much larger role in the siting of BS at the 
average individual building scale (~ 10m–30m). However, most of this type of data, if it exists, remains 
unavailable across large extents and across time when working in low- to middle-income contexts. 

https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
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The utilization of land cover to estimate a continuous population surface, using that population 
surface to estimate BS population, aggregate the BS population to the unit level to then estimate non-
BS-to-BS transition demand at the unit level naturally raises a concern of circular reasoning or 
endogeneity. From a modelling perspective, the larger more important question is, “Why is the model 
being developed and what questions does it attempt to address?”. Our purpose here was to develop 
a modelling framework capable of accurately predicting near future built-settlement expansion and 
to answer the question of whether this could be done by looking at subnational changes in population 
counts corresponding to BS areas. With this in mind, we do not believe circular reasoning, or 
“endogeneity”, is a significant issue for the following reasons. First, our modelling framework is not 
an explanatory model [84] and endogeneity is, by definition, an issue of causality. Our framework 
falls somewhere between predictive and descriptive in nature [85] and makes no attempts at statistical 
inference of causation in any of its components; even the random forest is algorithmic in nature 
[84,86]. We were interested in utilising the correlations in our framework to create the best predictions 
possible, not to infer anything on the causal linkages. Secondly, there is precedent for using the 
hierarchical structure of population data in this manner; other model frameworks have used changes 
in population, at a spatial scales coarser than the scale of prediction, to quantify demand for urban 
area expansion [16,26–29,77,87], with one even using pixel level population to drive pixel level 
transitions [88]. Further, Angel et al. [3] also used geospatial and remotely sensed data to determine 
estimates of “urban” population and population densities that were subsequently aggregated and 
then used to predict future urban areas. However, this does raise the issue of fitness for purpose, 
similar to the discussion in Leyk et al. [11], where end users interested in causal questions and wishing 
to utilise datasets produced with certain covariates should assess how it was created to avoid the 
issue of endogeneity. 

As expected, we observed that as the time from the last observation increased, the BSGMe projection 
decreased in agreement with the withheld ESA RS-derived validation extents. This positive 
association between time from last observation and projection agreement/accuracy is inherent to 
extrapolative models but could likely be reduced by using longer input time series, should data allow. 
While the automatic fitting procedure for ARIMA and ETS class models has been shown to have 
consistently good performance in the short-term (5–6 time steps) [64], this is predicated upon 
substantially longer time series (20 to 144 observations in the cited M3 competition series data [89]) 
than are typical with current BS or urban based population datasets at subnational unit level and with 
large or global extent. Due to the growing uncertainty that accompanies longer projections, we do not 
recommend extending this framework past the short-term without longer input time series and 
without further assessment. Another reason we do not currently recommend using the framework 
for longer term predictions is the lack of including other causal aspects of non-BS -to-BS transition, 
e.g. economic and planning/zoning information. We excluded such data from the framework because 
it is typically not available globally, for multiple time points, and at subnational resolutions. 

We save unit- and year-specific 95% confidence intervals produced, via bootstrapping, by the ARIMA 
and ETS models [64], but we did not produce similar intervals for the GLM models (see linked data 
repository https://data.mendeley.com/datasets/cm6bnzvzfj/1). This was because we were only 
utilising the GLMs to capture the general linear trend and not inferring the true value bounds, due to 

https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
https://data.mendeley.com/datasets/cm6bnzvzfj/1
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an inability check for the necessary corresponding inferential assumptions for every subnational unit 
in an automatic, efficient, and robust manner. 

5. Conclusions 

Here, we have shown the BSGMe model framework to be flexible and automatable across several 
environmental, urban morphological and input-data quality contexts while maintaining acceptable 
agreement with validation data and even surpassing the performance of the input dataset’s withheld 
observations when compared to manually interpreted conditions in time-specific true-colour 
imagery. This framework is novel in that it is globally applicable, with no need for user or expert 
input parameters, and relies largely on relative changes in subnational population to determine the 
timing and magnitude of changes. While validated across four countries, this framework is scalable 
to producing global extents across different periods and with different input BS and population 
datasets. Proof in point, the WorldPop Programme (www.worldpop.org) adopted this modelling 
framework to produce global annual BS extents at 100m resolution from 2015 through 2020, using 
input time-series from 2000–2014 based upon observed and BSGMi interpolated extents 
(https://doi.org/10.5258/SOTON/WP00649) derived from Global Human Settlement Layer, ESA urban 
land cover class, and Global Urban Footprint [34]. 

Being able to produce annual datasets of near future BS extents, and the intermediate BS populations, 
have a variety of end user applications where investigating potential impacts of BS population 
changes and BS spatial expansion can have impact, such as public health, sustainability, planning and 
infrastructure, and transportation management. However, as seen in this study, users should utilise 
auxiliary data in conjunction with their expert and or local knowledge of the application/study area 
to assess whether the modelled extents are suitable for their applications and needs. Additionally, 
this framework and its open-source code can be used as a platform for further investigating 
deterministic relationships between population, population densities, and BS expansion. 

The extent predictions of the BSGMe framework can also be utilised, in a setup similar to this study, 
by producers of future BS and urban feature data sets to re-investigate areas of disagreement between 
the BSGMe and their extraction algorithm, knowing that there is a heightened probability of BS being 
truly present (Figures 7 and 8). 

As the temporal resolution of global BS and urban feature data sets catch up to their high spatial 
resolution, further investigations of this framework will become more accessible and feasible as well 
as have reduced uncertainty in their conclusions. However, as evidenced in this study, there is a 
continued need for an independent multi-temporal data set of urban features with global extent that 
can be used for training and or validation. While OSM offers global extent, it has its own biases in 
completeness [50,51] and, more significantly, lacks any temporal attributes. One potential solution 
would be for the producers of urban feature data sets to make their manually identified training and 
validation points, footprints, and sample grid cells publicly available, e.g. by some research 
collaboration akin to POPGRID Data Collaborative (www.popgrid.org) with agreed upon 
documentation, data attribute, and definitional standards. Until such a time, large scale ground 
truthing, much less temporal ground truthing, of BS or urban features will likely be limited and often 
surpass the resources of many studies with large or global extent. 

http://www.worldpop.org/
http://www.worldpop.org/
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
https://doi.org/10.5258/SOTON/WP00649
http://www.popgrid.org/
http://www.popgrid.org/
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Future work should investigate the robustness of this framework with different spatial scale 
representations of BS as inputs and differing lengths of input time-series. Additional experimentation 
with the demand forecasting methods is also a large area that remains to be explored. Further 
validation of more areas should also be prioritized, particularly in areas where urban feature datasets 
are known to have extraction issues, e.g. arid regions, in order to understand how such error may 
propagate through this framework into the resulting extents. Other desirable work would involve 
examination of the applied utility of the BS outputs produced by both the interpolative and 
extrapolative BSGM frameworks. 
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Appendix A 

 

Figure A1. Full process diagram for the Built-Settlement Growth Model—extrapolation (BSGMe) 

as broken down into the “Demand Quantification” procedure and the “Spatial 
Allocation Procedure”. For details on the “Spatial Transition Disaggregation 
Procedure”, readers are referred to Nieves et al. [16]. For details on the 
“Subnational Temporal Model Fitting and Prediction Procedure”, readers are 
referred to Appendix A, Figure A2. 
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Figure A2. Full process diagram of the “Subnational Temporal Model Fitting and Prediction 

Procedure” referenced in Appendix A, Figure A1. Readers are directed to the main 

text for acronym references and details on the rolling origin framework. 

Table A1. Table of time specific, or assumed temporally invariant, covariates used in the modelling 

of the population surfaces following the procedure from Stevens et al. [55]. 
Covariate Time Point(s)a Original Source Source Resolution 

DTE Cultivated landcover 
2000–2010 ESA CCI Landcover [36] 

classes 10–30 10 arc seconds 

DTE Woody, Herbaceous, Shrub 
landcover 2000–2010 ESA CCI Landcover [36] 

classes 40–120 10 arc seconds 

DTE Grassland landcover 
2000–2010 ESA CCI Landcover [36] class 

130 10 arc seconds 

DTE Lichens and Mosses 
landcover 2000–2010 ESA CCI Landcover [36] class 

140 10 arc seconds 

DTE Sparse Vegetation 
landcover 2000–2010 ESA CCI Landcover [36] 

classes 150–153 10 arc seconds 

DTE Aquatic Vegetation 
landcover 2000–2010 ESA CCI Landcover [36] 

classes 160–180 10 arc seconds 

DTE Bare Areas 2000–2010 ESA CCI Landcover [36] class 
200 10 arc seconds 
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Table A1. Cont. 

Covariate Time Point(s)a Original Source Source Resolution 

DTE Built-settlement 2000–2010 ESA CCI Landcover [36] class 
190 

 

Distance to Inland Water 
Bodies 2015, assumed invariant MERIS-based water bodies 

[39] 5 arc seconds 

Distance to Roads 
Downloaded 2017, 

assumed invariant as 
temporally specific road 

data unavailable 
OpenStreetMap [44] Vector 

Distance to Rivers Downloaded 2017, 
assumed invariant OpenStreetMap [44] Vector 

Distance to Coastline 
Based upon boundaries of 

GPWv4, assumed 
invariant 

CIESIN GPWv4 [40] Vector 

Slope 2000, assumed invariant 
World Wildlife Fund 

Void-filled Hydrosheds [37] 3 arc seconds 

Elevation 2000, assumed invariant 
World Wildlife Fund 

Void-filled Hydrosheds [37] 3 arc seconds 

DTE: Distance To nearest Edge a Note, for any covariate derived from land cover or built-
settlement, only one year-specific covariate was used corresponding to the desired population 
surface (e.g., for a 2000 population surface only covariates corresponding to 2000, or those 
assumed temporally invariant, were used as covariates).
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ABSTRACT 

Top-down population modelling has gained applied prominence in public health, 

planning, and sustainability applications at the global scale. These top-down 

population modelling methods often rely on remote-sensing (RS) derived 

representation of the built-environment and settlements as key predictive 

covariates. While these RS-derived data, which are global in extent, have become 

more advanced and more available, gaps in spatial and temporal coverage 

remain. Here we have modelled built-settlement extents between 2000 and 2012 

and demonstrate the applied utility and information provided by these annually 

modelled data for the application of annually modelling population across 172 

countries. We demonstrate that the modelled built-settlement data are 

consistently the 2nd most important covariate in predicting population density, 

behind annual lights at night, across the globe and across the study period. 

Further, we demonstrate that this modelled built-settlement data often provides 

more information than current annually available RS-derived data and last 

observed built-settlement extents.  

 

Keywords: 

Urban; population; growth model; built; settlement; machine learning; meta-

analysis 
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1. Introduction 

It is projected that, by 2050, an additional 13 percent of the world’s population 

will live in urbanized areas, with most of this growth occurring in low- to middle-

income countries (Angel et al., 2011; United Nations, 2018). Further, much of this 

projected growth will not occur in the largest cities, but rather it will occur in 

small to medium sized settlements (Cohen, 2004). This projected growth logically 

has implications for sustainable development. This has been noted in the 2030 

Sustainable Development Goals (SDGs), particularly in SDG 11 for “Sustainable 

Communities and Cities” (United Nations, 2016). Further, the SDGs aim to make 

sure “no one is left behind” (United Nations - Economic and Social Council, 2016), 

which applies to traditionally underrepresented, overlooked, or excluded persons. 

This includes those small settlements that have been often missed in various 

measures and counts including censuses (Tatem et al., 2007; Leyk et al., 2019) 

and remotely-sensing (RS)-derived representations of settlements (BS) (Pesaresi et 

al., 2013; Kuffer, Barros and Sliuzas, 2014; Kuffer, Pfeffer and Sliuzas, 2016; 

Weber et al., 2018; Nieves et al., 2020a). More generally, a key SDG goal is to 

expand the availability and accessibility of base data to help facilitate the 

planning, implementation, and assessment of programs to achieve the 2030 

SDGs (United Nations, 2016; Scott and Rajabifard, 2017). 

 

Since 2010, a new type of global consistent datasets of RS-derived 

representations of built-settlement (BS), defined as above ground structures that 

can support human habitation and related economic phenomena (Pesaresi et al., 

2013; Florczyk et al., 2019; Nieves et al., 2020a), have become available at single 

and multiple time points (Pesaresi et al., 2013, 2016; Esch et al., 2013, 2018; 

Facebook Connectivity Lab and Columbia University Center for International Earth 

Science Information Network - CIESIN, 2016; Corbane et al., 2017; Microsoft, 

2018). These data, which are better able to capture small settlements due to 

having spatial resolutions typically ranging from the representation of individual 

buildings to 40m, have been found to be highly important in top-down population 

modelling applications (Patel et al., 2015; Nieves et al., 2017; Reed et al., 2018; 

Leyk et al., 2019; Stevens et al., 2020). However, this new generation of BS 

datasets is not without limits. Like most RS-derived products, they are limited by 

the quality and availability of imagery, training and validation data, atmospheric 

conditions, and sensor/platform errors (Pesaresi et al., 2013, 2016; Esch et al., 

2013, 2018; Corbane et al., 2017). While these new datasets have leveraged 
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advances in imagery availability, computational resources, and statistical 

methods, the processes to produce these finished BS datasets are still 

computationally expensive (Cheriyadat et al., 2007; Esch et al., 2018a, 2018b), 

with a single 185km x 180km Landsat 8 scene at the equator containing 

approximately 2.96 ∙ 1010 30m pixels across 8 multispectral bands (excluding the 

thermal and panchromatic bands).  

 

The lack of time specific and/or comparable built-environment data has not 

allowed larger questions to be addressed, such as what are the relationships 

between population distributions and the built environment and the temporal and 

spatial changes of population in relation to changes in built-environment 

distribution and built-environment morphology across large extents. Further, 

more direct applications require time-specific and consistently defined built-

environment data, e.g. to define urban or rural (Henderson et al., 2003; Gaughan 

et al., 2016), and equally time-specific population distributions for planning 

purposes and to monitor progress of interventions or policy effects (McGranahan, 

Balk and Anderson, 2007; Patel et al., 2015; Bharti et al., 2016; Linard et al., 

2017; Juran et al., 2018; Tatem, 2018). These needs for time specific applications 

and research, combined with the current temporal limits of BS datasets, have 

prompted some to interpolate BS extents in a globally consistent manner, 

producing annually estimated BS extents and expanding the temporal coverage of 

these BS datasets while maintaining its dataset specific definition of BS (Nieves et 

al., 2020a).  

 

A larger question accompanying any application, even if modelled extents were 

found to be accurate within their validation framework, is how these modelled 

built-environment extents contribute to subsequent modelling applications. To 

the best of our knowledge, no large-scale assessment of the potential 

contribution, informative or not, of an urban growth model has been undertaken. 

This is particularly so for assessing the potential impact of utilising modelled 

built-environment extents in time-specific modelling population distributions. 

Lacking time specific built-environment extent data, top-down, i.e. 

disaggregative, population modelling applications typically utilise the last 

observed RS-derived built-environment extents (Balk et al., 2004, 2006). 

 

This prompts us to ask whether modelled built-environment extents are more 

informative than the last observed built-environment extents within a population 

modelling context. More generally, we want to know if time-specific modelled 
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built-environment extents contribute meaningful information to population 

models and if this varies across region and time. Additionally, we also want to see 

the relative contribution of time-specific modelled extents to time-specific RS-

derived extents and see if this varies by region and across time. 

 

2. Materials and Methods 

To begin to examine how modelled BS could contribute meaningfully to 

population modelling applications, we examine 2,236 year-and country-specific 

model objects of the WorldPop “Global Project” (WorldPop - School of Geography 

and Environmental Science - University of Southampton; et al., 2018), which were 

used in disaggregative modelling census-based population counts and estimates 

from 2000-2020. Specifically, we look at a scenario where BS extents were 

annually interpolated (Nieves et al., 2020a) globally between 2000-2012 and 

subsequently used as a covariate to predict corresponding annual gridded 

population surfaces. These models included time-specific modelled BS extents 

covariate, time-specific RS-derived BS extents covariate, and a BS extents 

covariate corresponding to the year 2000, allowing us to address our research 

questions posed. We perform a meta-analysis (Nieves et al., 2017) of the 

covariate importance of the time-specific modelled BS extents covariate, relative 

to all other covariates, in modelling population density through a top-down 

disaggregative framework. 

 

2.1 Study Area 

Here we examine 222 countries across the years 2000-2012. Countries were 

excluded from analysis because they either did not have the BSGM model run 

(due to resource limitations) or they were modelled using a regional model 

parameterization, similar to Gaughan et al. (Gaughan et al., 2014), resulting in 

172 countries for analysis across 13 years. Regional parametrization precludes 

any analysis of the country specific importance of any covariates due to the 

merging of random forest model objects (Table 1) (Nieves et al., 2017). Of 

specific note was the exclusion of the USA. We excluded it from this analysis 

because the BS model was not run on its 10 million plus subnational units and 

large spatial extent due to project resource limitations. For analyses we adopted a 

regional grouping of countries initially based upon the World Bank’s regional 

groupings (The World Bank, 2020), but modified in some areas based upon 
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economic, historical, developmental, and urbanisation context 

similarity/dissimilarity (Figure 1). Because the “North American” region only 

included two modelled countries (Canada and Greenland), we excluded it from 

further analyses. A full list of countries that were modelled and their region 

grouping is in Appendix A, Table 1 and a list of countries excluded from our 

analysis, and the corresponding reason, are in Appendix A, Table 2. 

 

Figure 1. Map of countries included in the meta-analysis and the regional groups 

used in analyses. See Appendix A, Table 2 for a list of countries excluded 

from analyses and corresponding exclusion criteria. 

 

2.2 Population Data 

Annual estimates of subnational population across the globe were provided by 

the Center for International Earth Science Information Network (CIESIN) and are 

based upon the work of Gridded Population of the World, version 4 (GPW, v4). 

Population counts are based upon censuses and/or official estimates which were 

interpolated to estimate annual counts, following Doxsey-Whitfield et al. (Doxsey-

Whitfield et al., 2015). The subnational unit areas (hereafter simply “unit”) were 

spatially harmonized and assigned a unique identifier corresponding to a globally 

consistent grid of harmonized coastlines and international borders, as described 

in Lloyd et al. (2019).  

 

2.3 Built-Settlement (BS) Data 

Built-settlement (BS) (Nieves et al., 2020a) is based upon the definition put forth 

by Pesaresi et al. (2013, p. 2108), “...enclosed constructions above ground which 



 

Chapter 5 

146 

are intended for the shelter of humans, animals, things or for the production of 

economic goods and that refer to any structure constructed or erected on its 

site.” This was further generalised by Nieves et al. (2020a) to include any datasets 

attempting to better capture buildings and structures within the above definition 

while attempting to exclude general impervious surface land cover which lacks a 

vertical dimension (e.g. roads, runways, parking lots), whether this is achieved 

through a feature extraction process or from post-processing. 

 

Here we selected a combination of the Global Human Settlement Layer (GHSL) 

38m settlement extents for the year 2000 (Pesaresi et al., 2013; Corbane et al., 

2017), the “Urban areas” thematic class, class 190, from the ESA CCI land cover 

300m global time series for the year 2000 (hereafter ESA) (ESA CCI, 2017), and 

the Global Urban Footprint (GUF) 72m settlement extents representing circa 2012 

(Esch et al., 2013). These data were resampled to 100m and spatially harmonized 

as detailed in Lloyd et al. (2019), with the ESA data used, in conjunction with the 

information supplied by the GUF 2012 information, to systematically back-fill 

missing portions within large settled areas due to imagery availability and 

atmospheric conditions. The resulting BS extents, for 2000 and 2012, were used 

as is to derive covariates for use in predicting the annual interpolated BS extents, 

2001 through 2011, and for predicting gridded population surfaces, for their 

corresponding year of representation. 

 

2.4 Geospatial Covariates 

We utilised a suite of geospatial covariates in interpolating the annual BS extents 

as well as disaggregating the annual unit-area population counts into annual 

gridded population surfaces. All covariates were produced as described in Lloyd 

et al. (2019), with categorical covariates converted to a continuous covariate, by 

calculating the Distance-To-nearest-Edge (DTE), for areal type covariates and 

distance-to-nearest feature calculated for linear and point type covariates. A list of 

covariates, their original resolution, their source, and a description of them are 

given in Tables 2 and 3. 
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Table 2. Table of geospatial covariates used in the modelling of annual BS using the interpolative Built-Settlement Growth Model (BSGMi) per 
Nieves et al. (2020). Here, representation of BS here is a combination of ESA, GHSL, and GUF as described in Lloyd et al. (2019). 

Covariate Description Use a, c Time 
Point(s) 

Original Spatial 
Resolution(s) 
(arc seconds) 

Data Source(s) 

Built-settlement b Binary BS extents 
Demand 
Quantification 
Spatial Allocation 

2000 
2012 10, 2, & 1 (Pesaresi et al., 2013; Esch et al., 2013; ESA CCI, 2017) 

DTE Built-settlement Distance to the nearest BS edge Spatial Allocation 
c 2000 10, 2, & 1 (Pesaresi et al., 2013; Esch et al., 2013; ESA CCI, 2017) 

Proportion Built-
settlement 1,5,10,15 

Proportion of pixels that are BS 
within 1,5,10, or 15 pixel radius 

Spatial Allocation 
c 2000 10, 2, & 1 (Pesaresi et al., 2013; Esch et al., 2013; ESA CCI, 2017) 

Elevation Elevation of terrain Spatial Allocation 
c 2000 e 3 (Lehner, Verdin and Jarvis, 2008) 

Slope Slope of terrain Spatial Allocation 
c 2000 e 3 (Lehner, Verdin and Jarvis, 2008) 

DTE Protected Areas 
Category 1 

Distance To the nearest Edge 
(DTE) of level 1 protected area  

Spatial Allocation 
c 2012 Vector (U.N. Enviroment Programme World Conservation Monitoring 

Centre and IUCN World Commission on Protected Areas, 2015) 
Water Areas of water Restrictive Mask 2015 e 5 (Lamarche et al., 2017) 

Subnational Population Annual population by  
sub-national units  

Demand 
Quantification 

2000 -
2020 Vector (Doxsey-Whitfield et al., 2015) 

Weighted Lights-at-
Night (LAN) d 

Annual lagged and sub-national 
unit normalised LAN Spatial Allocation 2000-

2011 30 DMSP (Zhang, Pandey and Seto, 2016; Lloyd et al., 2019)  
a  Covariates involved in Demand Quantification were used to determine the demand for non-BS to BS transitions at the subnational unit level for every given year. Covariates involved in Spatial Allocation were 
either used as predictive covariates in the random forest calculated probabilities of transition  
(see c) or as a post-random forest year specific weight on those probabilities and the spatial allocation of transitions within each given unit area. Covariates used as restrictive masks prevented transitions from 
being allocated to these areas. 
b  The binary BS data utilised 2000 and 2012 as observed points in the dasymetric modelling process, but only derived covariates for 2000 were utilised in the random forest as predictive covariates 
c  Used as predictive covariates in the random forest calculated probabilities of transition 
d  Readers are referred to Nieves et al. [5] for details on the lagging, normalizing and weighting procedure. 
e.  Assumed time-invariant 
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Table 3. Table of geospatial covariates used in the disaggregative modelling of gridded population surfaces. 

Covariate Variable Name(s) in 
Random Forest Description Time Point(s) 

Original Spatial 
Resolution(s) 
(arc seconds) 

Data Source(s) 

DTE Built-settlement a, b 

ghsl_esa_dst; 
bsgm_wpgp_dst 
ghsl_guf_dst; 
ghsl_esa_dst_2000 

Distance To the nearest Edge (DTE) of BS 

2000; 
2001-2011; 
2012; 
2001-2012 

10, 2, &1 (Pesaresi et al., 2013; Esch et al., 2013; ESA CCI, 
2017; Lloyd et al., 2019) 

Elevation Topo Elevation of terrain 2000 e 3 (Lehner, Verdin and Jarvis, 2008; Lloyd et al., 
2019) 

Slope Slope Slope of terrain 2000 e 3 (Lehner, Verdin and Jarvis, 2008; Lloyd et al., 
2019) 

Lights At Night (LAN) dmsp; 
viirs 

Annual average of LAN atmospheric 
radiance 

2000-2011; 
2012 

30 
 

(Earth Observation Group, 2013; Lloyd et al., 
2019) 

DTE Protected Areas Category 1 wdpa_cat1_dst Distance To the nearest Edge (DTE) of 
level 1 protected area 2000-2012 Vector 

(U.N. Enviroment Programme World 
Conservation Monitoring Centre and IUCN World 
Commission on Protected Areas, 2015; Lloyd et 
al., 2019) 

Water cciwat_dst 
Areas of water to mask areas of model 
prediction and, for inland bodies of water, 
as a DTE covariate 

--- 5  (Lamarche et al., 2017; Lloyd et al., 2019) 

Subnational Population --- Annual population by sub-national units  2000 -2020 Vector (Doxsey-Whitfield et al., 2015) 

ESA CCI Land Cover (LC) Class c ccilc_dst<class 
number>_<year> 

Distance To nearest Edge (DTE) of 
individual land cover classes 2000 10 (ESA CCI, 2017; Lloyd et al., 2019) 

Distance to OSM d Rivers osmriv_dst Distance to nearest OSM river feature 2017 Vector (OpenStreetMap Contributers, 2017; Lloyd et al., 
2019) 

Distance to OSM d Road 
Intersections osmint_dst Distance to nearest OSM road intersection 

feature 2017 Vector (OpenStreetMap Contributers, 2017; Lloyd et al., 
2019) 

Distance to OSM d Roads osmroa_dst Distance to nearest OSM road feature 2017 Vector (OpenStreetMap Contributers, 2017; Lloyd et al., 
2019) 

Average Precipitation wclin_prec Mean Precipitation 1950 - 2000 30 (Hijmans et al., 2005; Lloyd et al., 2019) 
Average Temperature wclim_temp Mean temperature 1950 - 2000 30 (Hijmans et al., 2005; Pezzulo et al., 2017) 
a  ghsl_esa_dst was only used in the year 2000 population model; bsgm_wpgp_dst was derived from the BSGM predicted extents and used for years  

2001-2011; ghsl_guf_dst was used for the year 2012 
b  ghsl_esa_dst_2000 is identical to ghsl_esa_dst, but was included as a covariate in all models from 2001 onward to avoid unrealistic population distributions as seen in multitemporal modelling within 
Gaughan et al. (2016) 
c  Some classes were collapsed: 10-30 → 11; 40-120 → 40; 150-153 → 150; 160-180 → 160 (Sorichetta et al., 2015) 
d  OpenStreetMap (OSM) 
e  Assumed time-invariant 
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2.5 Methods 

2.5.1 Built-Settlement Growth Model interpolation (BSGMi) 

The BSGMi is a top-down modelling framework which disaggregates observed 

numbers of non-BS-to-BS transitions from coarser spatial and temporal 

resolutions to finer spatio-temporal resolutions using ancillary data (Nieves et al., 

2020a). It can be generally thought of as having two primary components: a 

Demand Quantification component and a Spatial Allocation component (Figure 2) 

(Nieves et al., 2020a). 

 

 

Figure 2. Generalised BSGMi process diagram from Nieves et al. (2020). 

 

Assume we are given a time period of with at least two observations of BS 

extents, typically derived from remote sensing imagery, and corresponding 

estimated time- and unit-specific population found spatially coincident with the 

BS extents (Nieves et al., 2020a). At regularly spaced intervals between the two or 

more observations, we can interpolate the BS population using unit-specific 

logistic growth curves estimate unit-level BS population (Figure 2) (Nieves et al., 

2020a). Similarly, we can use natural cubic splines to interpolate unit-level 

changes in BS population density (Figure 2) (Nieves et al., 2020a). We then use 

the relative unit-level changes in interpolated BS population and BS population 

density to derive time- and unit-specific weights (representing unit-level non-BS-

to-BS transition demand) which we use to temporally disaggregate the observed 

non-BS-to-BS transitions from the larger time period to the finer regularly spaced 

intervals, in this case years, between the two or more observations (Figure 2) 
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(Nieves et al., 2020a). This has the benefit of preserving agreement with the 

observed points (Mennis, 2003; Mennis and Hultgren, 2006; Nieves et al., 2020a). 

 

Once the number of transitions at the desired temporal level have been 

estimated, we move to the Spatial Allocation component of the modelling 

framework (Figure 2) (Nieves et al., 2020a). Here we utilised a Random Forest (RF) 

model (Breiman, 2001a; Liaw and Wiener, 2002), using predictive covariates listed 

in Table 2, to predict the pixel level probability of a non-BS-to-BS transition 

occurring between any two observed extent points (Nieves et al., 2020a). This 

represents the period level probability of transitioning and is further modified by 

using annual differences in lights-at-night (LAN) radiance values that are rescaled 

based upon the value distribution within their respective subnational units 

(Nieves et al., 2020a). The values are rescaled in such a way that pixels with 

greater unit-relative increases in LAN brightness are thought to indicate a higher 

probability of transitioning and vice versa (Nieves et al., 2020a). Multiplying the 

RF pixel probabilities by the corresponding LAN weights produces year-specific 

probability surfaces which are then used, on a unit by unit basis, to iteratively 

disaggregate the year-specific predicted transitions (from the Demand 

Quantification component) across space (Figure 2) (Nieves et al., 2020a). This 

produces a gridded time series of BS spatial extents between every observation 

given (Figure 2).  

 

Validation of the BSGMi framework across four sample countries at 100m pixel 

resolution, given 4 observed years and predicting for twelve years, showed 

consistent performance across a variety of environments and contexts with the 

majority of interpolated years having a pixel level accuracy of greater than 80 

percent (range 57 to 99 percent) (Nieves et al., 2020a). However, the BSGMi 

framework utilised by the Global Project was an early version and differed from 

the version validated by Nieves et al. (2020a) in two systemic ways: both the BS 

population and BS population densities were interpolated using unit-specific 

exponential growth/decay curves and the model was fit using only information 

from two time points at a time. This would likely result in an increased likelihood 

of overfitting for the BS population density across time, i.e. interpolated using 

information from two points rather than more than two, and a shifting of 

transitions to later in the time period due to the exponential shape. Nieves et al. 

(2020a) found the model tended to predict transitions late so the latter, 
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speculated, effect of having exponential assumption might mitigate this, but the 

magnitude and effect are unclear without further work. Additionally, given that 

the BSGMi is an interpolative method, it is highly sensitive to the selected 

representation of BS selected as input. Nieves et al. (2020a) utilised the, 

originally, coarser 300m ESA CCI “urban” land cover dataset given its annual 

coverage allowed for holdout samples for validation whereas, here, we are using a 

combination of the relatively, originally, finer resolution 38m GHSL and 72m GUF 

data products that have been backfilled by the ESA CCI land cover data per Lloyd 

et al. (2019). 

Despite these differences, the binary representation of the annual BS extents 

produced using the BSGMi were then converted into a continuous representation 

of the Distance-To-nearest-Edge (DTE) of BS. This conversion to continuous 

distances and the fact the population models examined in this study are at the 

subnational unit-level, requiring us to take the unit-average DTE of BS, this does 

effectively smooth any of the more frequent and smaller differences that would 

likely result, at various scales, due to the aforementioned differences between the 

validated BSGMi framework (Nieves et al., 2020a) and the early BSGMi framework 

we utilise here.  

 

2.5.2 Top-down RF Population Disaggregation 

The Global Project utilised a top-down RF informed dasymetric population 

disaggregation to distribute unit-level census-based population counts to pixel 

level (100m) population count estimates (Gaughan et al., 2014, 2016; Sorichetta 

et al., 2015; Stevens et al., 2015). RFs were chosen due to their automatability, 

scalability, ability to capture complex interactions and non-linear phenomena, 

and robustness to small samples and noise (Farror and Glauber, 1967; Breiman, 

2001a; Rodriguez-Galiano et al., 2012). This modelling approach was applied on 

a country-by-country basis using a suite of globally harmonized and time-specific, 

or assumed temporally invariant, geospatial covariates which were aggregated by 

calculating the average of values within each subnational unit prior to being input 

to the RF (Figure 3) (Gaughan et al., 2014, 2016; Sorichetta et al., 2015; Stevens 

et al., 2015). 
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Figure 3. Generalised diagram of the RF-informed dasymetric disaggregation of 
population counts from subnational units to a given pixel level. Figure from 
Nieves et al. (2017). 

 

While trained at the unit-level, the RF is then used to predict population density at 

the pixel level (100m); we use these predictions as unit-relative weights to 

disaggregate the corresponding unit population count to pixel-level population 

counts while ensuring that the sum of pixel-level values sums up to the original 

unit-level count (Figure 3) (Gaughan et al., 2014, 2016; Sorichetta et al., 2015; 

Stevens et al., 2015). Each year’s population disaggregation was done 

independently of the others. 

 

RF models are a class of ensemble model where many “weak” classification and 

regression trees are combined through voting or averaging to produce more 

robust predictions (Breiman, 2001a). In this study, we utilised the tunerf function 

(Liaw and Wiener, 2002) to determine the optimal number of covariates to 

examine at each iterative split and carry out an iterative covariate selection 
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process, per Stevens et al. (2015), to remove any covariates with an average 

Percent Increase in the Mean Squared Error (Per.Inc.MSE) less than or equal to 

zero (Stevens et al., 2015). The Per.Inc.MSE is an internal cross validation metric 

of covariate importance that is calculated by permutating the covariate 

information, preserving all other covariate information, and averaging the percent 

increase in the mean squared error across all trees in the RF when withheld “Out 

of Bag” (OOB) (Breiman, 1996, 2001a) data is compared to the RF predictions. For 

further details on constructing RF models, bagging, and covariate selection and 

splitting in a random forest we refer readers to (Breiman, 1996, 2001a; Liaw and 

Wiener, 2002; Strobl et al., 2007, 2008).  

 

However, Per.Inc.MSE is a relative, model specific, measure of importance that is 

highly conditional upon the other present covariates (Breiman, 2001a), presenting 

a challenge for using this metric when attempting to compare, even with a static 

set of covariates, the covariate importances across models (Nieves et al., 2017). 

Additionally, while it is generally understood that predictions produced by a RF 

are resilient to the issue of multi-collinearity, it does not preclude multi-

collinearity from affecting the relative covariate importances within a given 

model. For instance, as is the case with the models examined here, if you have 

multiple representations of BS covariates in the model, with each covariate having 

partially overlapping fields of capture in the information space (i.e. multi-

collinearity), and all are retained in the model, then the magnitude of the 

Per.Inc.MSE of will be “stolen” from the most important covariate (Breiman, 

2001a).  However, the relative ranking of the correlated covariates will be 

proportional to their frequency of utilization as splitting criteria across all trees, 

i.e. the most important covariate of the correlated covariates will still have the 

highest Per.Inc.MSE, it will just be of a smaller magnitude than without the 

inclusion of the correlated covariates in the RF. 

 

2.6 Analyses 

Given the potential difficulties of comparing covariate importance across 

independent RF models, we adopt the Weighted Importance Rank (WIR) from 

Nieves et al. (2017) to facilitate our comparison of covariate importance across 

country- and time-specific RF population models. The WIR accounts for the 

potentially different number of covariates in each model, resulting from the 

covariate selection, by taking the ranking covariates within a given model by 

descending importance and dividing this rank by the total number of covariates in 

the model (Equation 1) (Nieves et al., 2017). 



 

Chapter 5 

154 

 

𝑊𝑊𝐼𝐼𝑊𝑊 = 𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑛𝑛−𝑚𝑚𝑜𝑜𝑑𝑑𝑒𝑒𝑙𝑙 𝑟𝑟𝑙𝑙𝑛𝑛𝑘𝑘𝑒𝑒𝑑𝑑 𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑟𝑟𝑡𝑡𝑙𝑙𝑛𝑛𝑐𝑐𝑒𝑒
𝑡𝑡𝑜𝑜𝑡𝑡𝑙𝑙𝑙𝑙 𝑛𝑛𝑠𝑠𝑚𝑚𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑐𝑐𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑡𝑡𝑒𝑒𝑠𝑠 𝑖𝑖𝑛𝑛 𝑚𝑚𝑜𝑜𝑑𝑑𝑒𝑒𝑙𝑙

        [1] 

 

This results in a value between 0 and 1, with the most important covariate having 

a value of 0 and the least important having a value of 1(Nieves et al., 2017). 

Hereafter, when referring to covariate importance, we are referring to the WIR as 

opposed to Per.Inc.MSE. 

 

We collected all the RF model objects (n = 2236) produced in the modelling of 

population for the years 2000-2012, extracted the covariate importances 

(Per.Inc.MSE) into a data table, transformed the importances to WIR values, and 

assigned each country a label corresponding to their region (Figure 1). Similar to 

Nieves et al. (2017), we discovered the non-normal distributions of covariate 

importance data and, accordingly, adopted non-parametric statistical methods in 

conjunction with visual analyses. Using Kruskall-Wallis tests (Kruskal and Wallis, 

1952; Rosner, 2011), we tested for significant differences in the variable 

importance distributions of the BSGMi derived covariate: (i) between years 2001-

2011 across all countries and, (ii), between countries grouped by regions (Figure 

1), across all years 2001-2011. Additionally, to determine if the year-specific 

BSGMi-derived covariate was adding additional information to the models for 

years 2001-2011, we calculated the differences in WIR distributions: (i) between 

the BSGMi-derived covariate and the BS extents at the year 2000 (GHSL-ESA 2000), 

(ii) between the BSGMi-derived covariate and the annual RS-derived “urban areas” 

extents (ESA Annual), and, (iii) between the GHSL-ESA 2000 covariate ad the ESA 

Annual covariate. We then carried out one-sample Wilcoxon rank sum tests 

(Wilcoxon, 1945) to determine if there was a significant difference in the 

distributions of the WIR difference and a zero-median difference. 

 

All Kruskall-Wallis and Wilcoxon rank sum tests were carried out with α = 0.05 

and, if significant results were found for the Kruskall-Wallis tests, these were 

followed up with post hoc Dunn tests with Holm correction for multiple outcomes 

(Dunn, 1964; Holm, 1979). Wilcoxon rank sum tests were adjusted for multiple 

outcomes as well using Holm’s correction. All models were carried out using the 

R statistical environment 3.4.2 (R Core Team, 2017) and analyses were produced 
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using the R statistical environment 3.6.0 (R Core Team, 2019). All code, tabular 

data, and full test results are included in the supplementary materials. 

 

3. Results 

Globally, across all years in the study period, we can see very consistent patterns 

of covariate importance. For clarity, we focus on five years (2000, 2003, 2006, 

2009, 2012) and the four most important covariates (Lights-At-Night covariates, 

the BSGMi-derived covariate, the ESA Annual covariate, and the GHSL ESA 2000 

covariate), hereafter. Based on the median WIR value, the lights-at-night (LAN) 

covariate is the most important covariate across all years (Figure 4). For 2001 

through 2011, the second, third, and fourth most important covariates are, 

respectively, the BSGMi-derived covariate (BSGMi), the annual RS-derived ESA 

covariate (ESA Annual), and the RS-derived covariate representing 2000 BS extents 

(GHSL-ESA 2000) (Figure 4). For the BSGMi covariate, we show that the variance 

decreases, and the median importance increases (smaller WIR value) with time, 

converging towards the 2012 GHSL GUF covariate’s distribution, which is what we 

would expect if the BSGMi model is interpolating accurately. Further, the 

distribution of the WIRs of the BSGMi-derived extents covariate appear to show 

consistency from one year to the next with an overall trend of decreasing WIR 

variance as the year becomes closer to 2012. At the global level, between years, 

there is no significant difference in the WIR distributions of the BSGM derived 

covariate (Χ2 = 15.1, df = 10, p = 0.13; full results in supplementary materials).
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Figure 4. Boxplots of the weighted importance rank (WIR) of the four most 
important covariates in each year’s random forest model. WIR value distributions 
are shown for all countries by year with the median shown as a black line dividing 
the interquartile range (IQR, shown as the boxes) and 1.5 * the IQR being 
represented by the “whiskers” of the plots. 
 

Looking only at the distributions of the BS-related covariates, we plotted the WIR 

boxplots by year and region in Figure 5. Within a given region, it would appear 

that there is generally consistent performance of the BSGMi-derived covariate with 

some regions exhibiting a slight temporal trend between 2000 and 2012, 

showing the large differences in GHSL dominated information (2000) and GUF 

dominated (2012) information provided to the RF (Figure 5). A commonality, 

within most regions, would appear to be that the highest variance in WIR is seen 

near the midpoint of the interpolation period (2006) where we would expect 

performance of the BSGMi to be the worst or most variable (Figure 5).  
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Figure 5. Boxplots of the weighted importance rank (WIR) of BS-related covariates 
in each countries’ random forest model, grouped by region and plotted by year 
with the median shown as a black line dividing the interquartile range (IQR, 
shown as the boxes) and 1.5 * the IQR being represented by the “whiskers” of the 
plots. The BS-related covariate represented in 2000, 2003-2009, and 2012 are, 
respectively, the GHSL-ESA 2000 covariate, the BSGMi-derived covariate, and the 
GUF-GHSL covariate.  
 

We plotted the WIR difference between all pairwise combinations of the three 

covariates of interest and tested their distributions, across all years for each 

region, to determine if they were significantly different from a distribution with a 

median WIR difference of 0, i.e. the covariates contribute the same amount of 

importance (Figure 6, Table 5). When testing for significance, data were 

aggregated across years 2001-2011 and grouped by region. We show that across 

all regions the year-specific BSGMi covariate was contributing significantly more 

importance (p < 0.00 for all regions) to the RF model than the last observed GHSL-

ESA 2000 covariate. The largest difference for this is seen in the “South Asia” and 

“East Asia & the Pacific” regions. When compared to the ESA Annual covariate, the 

BSGMi covariate is contributing significantly more importance to the RF model in 
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all regions (p < 0.00) except “Europe” (p = 0.99). Examining the differences 

between the GHSL-ESA 2000 and the ESA Annual WIR values, we see that the ESA 

Annual data is contributing significantly more importance in all regions (p < 0.00) 

except the “East Asia & the Pacific” (p = 0.14) and the “West Asia & North Africa” 

regions (p = 0.77).  

 
Figure 6. Box plot of WIR difference between the GHSL-ESA 2000 covariate and 
the year-specific BSGMi-derived covariate, the ESA Annual covariate and the year-
specific BSGMi-derived covariate, and the GHSL-ESA 2000 covariate and the ESA 
Annual covariate. For each comparison, positive WIR differences indicate that the 
former of the pair was less important than the latter and negative values indicate 
the opposite. Results for all years are included in the supplementary materials. 
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Table 5. Adjusted p-values of Wilcoxon one sample test with Holm correction for 
examining significant differences in covariate importance as measured by the 
Weighted Importance Rank (WIR). Data was aggregated across years 2001-2011 
and grouped by region. Null hypothesis being that the median WIR difference of a 
given comparison was equal to zero. Significant differences are shaded for 
emphasis. Full results are provided in the supplementary materials. 

WIR Differences 
East Asia & the 

Pacific 
Europe 

Latin America& the 

Caribbean 

Southern 

Asia 

Sub-Saharan 

Africa 

West Asia & 

North Africa 

GHSL ESA 2000 minus 
BSGMi 

< 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 

ESA Annual minus 

BSGMi 
< 0.00 0.99 < 0.00 < 0.00 < 0.00 < 0.00 

GHSL ESA 2000 minus 
ESA Annual 

0.14 < 0.00 < 0.00 < 0.00 < 0.00 0.77 

 

4. Discussion 

We have shown that interpolated year-specific BS-extent data, using the BSGMi 

framework, is a consistently important predictor of population density globally 

and across time. Specifically, the BSGMi-derived covariate was consistently second 

most important, behind year-specific lights at night data. Even though both the 

lights at night data and the BSGMi data are given to the model as continuous 

covariates. essentially, the BS-derived covariates only indicate presence and 

absence of BS while lights at night can capture presence, absence, and intensity 

of BS presence (Small et al., 2011). However, the year-specific RS-based BS 

representation (ESA Annual) and the previously observed RS-based BS covariate 

(GHSL-ESA 2000) are still important (Figures 4 & 5) and can give relative 

indications of how the chosen BS representation and the BSGMi perform within 

regions. However, for any given region, these differences in importance were 

stable across time (Figure 6). Overall, BSGMi interpolated extents increase the 

information in these population models and, with the other RS-derived covariates, 

likely better capture the BS-information space as related to population density 

than any one covariate does alone. 

 

Regardless of the magnitude of the importance or relative importance, a key 

point is that the BSGMi-derived covariate was always retained in models that it 

was introduced to and consistently contributed significantly more importance to 

the models than the other BS representations, across most regions. The fact that 

all of the representations of BS were consistently the 2nd through 4th most 

important covariates across all years supports previous importance findings 

(Nieves et al., 2017) and reemphasizes that utilising multiple representations of 
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BS results in more accurate disaggregative population modelling (Reed et al., 

2018). 

 

We would expect a year-specific BS covariate to contribute significantly more 

information than a previously observed BS covariate, which was largely supported 

by the findings in Figure 6 and Table 5. The exceptions in “East Asia & the Pacific” 

and “West Asia & North Africa” could be explained by several factors: (i) large and 

or few subnational units, (ii) lack of suitable, e.g. cloud free imagery for these 

optically based datasets, and/or, (iii) greater difficulty in urban feature extraction 

within arid regions (i.e. similar radiometric signature between buildings and bare 

soil) contributing to greater noise in the population density-BS relationship fit by 

the RF. This could potentially explain the relatively poorer importance 

contribution of the BSGMi covariate in the “East Asia and the Pacific” and the 

“South Asia” regions (Figure 5). Additionally, it is important to note that this study 

uses the original GHSL as a part of its input BS representation and, therefore, it is 

currently unclear if the newer versions (Corbane et al., 2017), which leverage the 

increased resolution and different radiometric capture of the Sentinel platforms, 

would change these findings (Figure 6 and Table 5). The other notable result of 

Figure 6 and Table 5, the lack of significant difference between the ESA Annual 

covariate and the BSGMi covariate, could be potentially explained by: (i) the ESA 

data does rather well within Europe’s dense and well-defined BS extents, and, (ii) 

those BS extents do not change as much as other regions, i.e. the non-BS to-BS 

transition prevalence is low so the BSGMi model does relatively worse than in a 

high transition area (Nieves et al., 2020a). Regardless, it is important to note that 

the results of Figure 6 and Table 5 are relative and that all the covariate 

representations of BS were found to be highly important to the RF model of 

population density. 

 

From previous work (Nieves et al., 2020a), there is little doubt that the BSGMi is 

picking up true BS extents that, in turn, drives this increased importance. 

However, the regional differences can more generally be attributed to the chosen 

RS-derived BS extents input into the BSGMi framework, the quality of the input 

population data, and the size and configuration of the subnational units used in 

both the BSGMi and the population modelling method used here (Openshaw, 

1984; Stevens et al., 2015; Nieves et al., 2017; Nieves et al., 2020a). To 

investigate if different underlying structures of causal relationships between 
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population and BS exist, and to then quantify them, a different research 

framework and modelling approach would be necessary, i.e. an explanatory 

modelling framework as opposed to a predictive one (Breiman, 2001b; Shmueli, 

2010), would be necessary. 

 

Nieves et al. (2020a) suggested that end users of the BSGMi modelling framework 

check the model outputs for end use suitability and accuracy. The regional 

differences in the WIR of the BSGMi-derived covariates (Figure 5) reinforce that it 

is important that users of any modelled BS extents examine them for their use-

specific and study area-specific suitability as no model framework is likely to 

excel in all scenarios. These observed WIR differences can be due to pre-existing 

differences in the suitability of the input BS representation or due to model-

induced uncertainty and error, but in an applied context, the origin is of 

secondary importance to knowing of its existence. 

 

These findings are for these specific representations of BS and the importances 

are contingent upon the set of covariates provided (Breiman, 2001a). We would 

hypothesize that if we were to include the BSGMi-derived covariate as the only 

representation of BS in the RF models, acknowledging that within a RF correlated 

variables “take” importance away from each other, there is a possibility that it 

could surpass the LAN covariate for most important. But, this awaits further 

study. Further, while here we explored the importance of the BSGMi-derived and 

other BS-based covariates at the subnational unit level, how this translates into 

the modelled population distributions and their accuracies remains an open 

question. We would like to think that having more important covariates at the 

subnational level would result in more accurate pixel-level disaggregations, but 

the issues of scale and other inputs into the model make any speculation 

tenuous, at best. Lastly, the Nieves et al. (2020) validation of the BSGMi 

framework  was with an originally coarser representation of BS (300m ESA CCI 

landcover) and the authors queried whether the assumed relationships of the 

framework would hold with originally finer scale input BS extents given their 

findings and previous findings under a different framework (Tayyebi et al., 2013). 

While this study does not perform a pixel-based validation of the BSGMi, here we 

have shown that using originally finer scale input BS extents can produce derived 

data products that were found to be informative for applications, causing us to 

speculate that that the framework assumptions do hold. However, whether that 

indicates the pixel-level BSGMi outputs can be utilised without aggregation, as we 

have done here for our end use, remains unclear. 
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Within the population models analysed here, the “last observed” time specific RS-

derived BS extents that was originally high-resolution (≤100m) was limited to the 

year 2000. Therefore, our findings related to importance as compared to the “last 

observed” would likely change, at a minimum, in magnitude were the “last 

observed” year to be different, dynamic, or to include multiple “last observed” BS 

extents. While Gaughan et al. (2016) found that including previous BS extents 

were important in creating temporally comparable population surfaces when 

performing top-down modelling, there is no current information regarding at 

what temporal lag the information contributed is maximized and how many 

previous representations should be included. 

 

5. Conclusions 

Here we tested the utility of the modelled BS extents in a population-modelling 

scenario across 172 countries and 13 years. Globally, we found that modelled BS 

extents are consistently the second most important predictor of population 

density, even when the previous RS-derived BS extents and time-specific BS-

extents were included in the model. However, regional variation exists in the 

importance of the modelled BS extents, but its cause is multifactorial and still 

unclear. Additionally, there were many cases where the time-specific RS-derived 

covariate, originally having a coarser spatial resolution, was more important than 

the high-resolution modelled BS extents and/or the high-resolution previously 

observed RS-derived extents. Combined with the fact that all covariates were 

retained in the final models, this would suggest that while modelled BS extents 

are informative, they are best used in conjunction with other representations of 

BS when modelling population.  

These findings are specific to the spatial scale and zonal configuration of the 

subnational units used. Future work examining the impact of the scale of the 

subnational units on both the BS modelling and RF-informed dasymetric 

modelling should be conducted, although some previous work would indicate 

that smaller units leads to more accurate models (Andrea E. Gaughan et al., 

2014). While this study has shown that the BS modelled extents are important at 

the subnational unit level, future work should examine how the BS modelled 

extents affect the pixel level predictions and smaller area population predictions 

in this top-down modelling framework. Additionally, research into the number of 
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previous extents to include in the population modelling as well as the effect of its 

temporal lag on population predictions should be investigated.  
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Chapter 6 Conclusions 

The Built-Settlement Growth Model (BSGM) framework provides time-specific and 

spatially explicit predictions of built-settlement (BS) expansion by leveraging 

information within subnational changes in population and population density and 

corresponding environmental covariates. This thesis provides the conceptual and 

programmatic framework for interpolating and extrapolating BS extents by using 

relative changes in population at the subnational level (Chapter 3 and Chapter 4). 

It presents evidence of the accuracy of this framework across a diverse set of 

physical, socio-cultural, historical, and urban morphological environments. The 

interpolation framework filled in temporal gaps of the global measurement of BS, 

which then allowed for the quantification of BS and BS population trajectories 

(Chapter 3). The quantification of these tens of millions of subnational 

trajectories allowed for data-driven, subnational extrapolation of near-future BS 

extents (Chapter 4). Further, this thesis shows that these modelled near-future BS 

extents, in some situations, can outperform the RS-derived BS extent validation 

dataset (Chapter 4). And, lastly, this thesis demonstrates that these modelled BS 

extents have applied utility in informing disaggregative population modelling 

(Chapter 5). 

A significant finding of this thesis is that relative changes in subnational 

population can be sufficient for predicting the timing and magnitude of BS 

expansion at high spatial resolutions (Chapter 3 and Chapter 4). Previous urban 

growth models have largely focused upon economic measures in predicting the 

demand for urban expansion (Chapter 1). Furthermore, the few previous 

global/continental urban growth models that incorporated population within their 

demand quantification components either did not assess the accuracy of 

predictions at the level of prediction, i.e. pixels (Chapter 1). While the role of 

economic factors should not be ignored, subnational economic data are typically 

not available in low- to middle-income contexts, much less at multiple time 

points. Therefore, quantitatively supporting the finding that relative changes in 

population can produce accurate predictions of BS expansion greatly expands the 

applicability of my framework (Chapter 3 and Chapter 4). Additionally, this thesis 

presents evidence that these findings are globally applicable (Chapter 5). 

This thesis also demonstrates that these modelled built-settlement extents are 

useful and informative for population modelling end applications (Chapter 5). The 

modelled BS covariates were consistently the second most important predictor of 
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population density across the globe, regularly outperforming time-specific RS-

derived BS covariates (Chapter 5). This likely is due to population data better 

predicting the presence and or expansion of settlement in areas where the 

extraction of built features from imagery is difficult or imagery availability/quality 

is limited. 

In a technical sense, this thesis represents a significant step forward in urban 

growth modelling. It introduces the first globally applicable BS modelling 

framework that: 

i) Allows for subnational variation to drive the larger scale model 

ii) Has very little data requirements, i.e. only binary extents and 

subnational population data at a minimum 

iii) Requires no user assumptions, “expert knowledge”, or other a priori 

parameters 

iv) Has undergone explicit pixel level validation of the extent predictions 

v) Allows for any binary representation of urban and any subnational 

population dataset as input. 

These technical advances presented in this thesis provide foundations for further 

advances in urban growth modelling which in turn can drive better understanding 

of urban and population dynamics, such as per capita built land use (Verburg and 

Overmars, 2009; Angel et al., 2011; Seto et al., 2011; Balk et al., 2018), 

population density changes in settlements over time, and trends in population 

and settlement distribution in response to climate change (McGranahan, Balk and 

Anderson, 2007). Specifically, the emphasis of this modelling framework on 

preserving subnational variation and using empirical subnational trajectories 

provide a data set rich with possibilities for secondary analyses. One such 

analysis could include better determining, at finer spatial and temporal scales, if 

urbanised areas are generally experiencing a decrease in population density 

(Angel et al., 2011). Another could simply investigate what environmental 

covariates were the most important predictors of areas transitioning from non-BS 

to BS; potentially giving insight into larger land use dynamics across time. 

This thesis puts forth and explicitly validates these novel modelling frameworks 

(Chapter 3, Chapter 4, and Chapter 5); something that is not always possible or 

done with past urban modelling work (Goldewijk, Beusen and Janssen, 2010; 

Angel et al., 2011; Seto et al., 2011; K C Seto, Guneralp and Hutyra, 2012; Linard, 

Gilbert and Tatem, 2013; Tayyebi et al., 2013) (Chapter 1). Moreover, I exhibited 
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the practicality of scaling such flexible frameworks by modelling BS expansion 

globally over a 20-year period, producing outputs that demonstrated informative 

utility in population modelling and other applied contexts (Chapter 5). 

The data set outputs from this thesis include annual 100m resolution global BS 

extents from 2000 through 2020, used to produce an annual 100m resolution 

global population maps for the same time period. These data have already had 

substantial use in the humanitarian response and development community. With 

over 7,900 downloads of the BSGM modelled datasets since March 2019 and over 

34,000 downloads of the population datasets that utilised the BSGM modelled 

outputs as covariates. Outside of these downloads directly from the WorldPop 

website, the modelled BS extents and derived population datasets are also 

distributed on the Humanitarian Data Exchange (HDX) where data is often used in 

research, disaster response (e.g. building damage assessment, internally 

displaced persons and refugee monitoring), and humanitarian development. 

These datasets are also utilised by the Institute for Health Metric and Evaluation 

(IHME) in better estimating the denominators of rates of disease and disease 

burden, such as the “Local Burden of Disease” project 

(https://www.healthdata.org/lbd). Most recently, the IHME have used the 

WorldPop Global Project’s 2020 population density projections, which are largely 

driven by the BSGMe projections, in their COVID-19 model (Institute for Health 

Metrics and Evaluation, 2020), further emphasising the real need for globally 

consistent short-term forecasts of population and built-settlement. Additionally, 

the GRID3 project (https://grid3.org/) uses the BS extents in their efforts for 

modelling country populations in the absence of a census and the GridSample 

tool (https://gridsample.org/) uses the BS extents in its effort to better guide 

representative survey sampling. Academic researchers and governmental 

institutions in other countries, including Belgium (MAUPP project, 

https://maupp.ulb.ac.be/) and South Africa (South African National Space 

Agency), have requested the BSGM framework for further applications and 

research related to better mapping spatial population changes over time and 

applications of the models to their own urban and BS datasets. 

6.1 Limitations and Caveats 

Considering these accomplishments, these works still have limits and caveats that 

need to be considered. Many of the limits of the frameworks, methods, and 

https://www.healthdata.org/lbd
https://grid3.org/
https://gridsample.org/
https://maupp.ulb.ac.be/
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analyses are presented in the individual papers, but some key general limits are 

discussed here. 

In this thesis, the BSGM framework uses BS population estimates derived from 

modelled population, which uses environmental covariates, to estimate changes 

in the built-environment. This process leverages correlations between population 

and the built-environment to make predictions about both populations and, 

separately, about the built-environment. While the two-stage hierarchical nature 

of the framework, where population is used to estimate demand at one spatial 

scale and the demand is met at a finer spatial scale with no input from 

population, limits concerns of endogeneity, the concerns are not entirely absent. 

In the configurations used here, these modelling frameworks are not suited for 

making inferences about causality of these changes. Models either explain (i.e. 

infer causality) or predict (Breiman, 2001b; Shmueli, 2010). Issues of endogeneity 

or “circular inference” become a cause of concern when a model is meant to be 

predictive but is used to infer something about the causal relationships between 

covariate and outcome, e.g. the shape (linear, quadratic, etc.) or magnitude of the 

causal effect between a covariate and outcome. When multi-collinearity or other 

modelling assumptions necessary for inference are not accounted for, logical 

fallacies occur due to the tool. This all revolves around the idea of “fitness for 

purpose” and communicating the limits of methods and data and their likely best 

uses (Leyk et al., 2019). More formally, this is a question of the epistemological 

fitness of a specific modelling framework for the question being asked. The 

question of whether these BSGM frameworks are best suited for causal inferential 

purposes, regardless of configuration, remains and should be compared against 

other potential frameworks. Within the BSGM frameworks, if one is using 

modelled disaggregative BS populations, created with covariates also used in 

determining BS transitions, the outputs of the BSGM modelling frameworks are 

more appropriate for end-use tasks such as further predictive modelling or more 

direct non-inferential applications (e.g. used as a spatial aggregating filter for 

healthcare access data). 

The work in this thesis can look at and quantify patterns of BS change, but, 

themselves, can provide little insight into the causes of change, only the 

correlates of change. However, the framework has potential for producing 

outputs suitable for inferential end uses. Because the framework takes tabular 

estimates of BS population at some subnational level, the user is free to provide 

these estimates as produced by some means other than disaggregative 
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population modelling. Additionally, the BSGM frameworks allow for covariates to 

be removed or added should a covariate normally used in the disaggregative 

modelling or in the spatial allocation portion of the BSGM frameworks be of 

causal interest. Here, I utilised disaggregative population modelling due to the 

absence of globally available subnational BS population estimates and 

corresponding BS extent data. In Chapter 5, the BSGM models were run with a 

reduced set of covariates limited to BS extent-derived covariates, topographic 

covariates, and information on protected areas. These reduced covariate versions 

are also the BS datasets that are publicly distributed, leaving as many possible 

end-uses available. 

Here, I chose to create annual gridded population estimates and estimated BS 

extents as opposed to, say, seasonal or day/night largely because of the global 

coverage of this work and the resulting data availability. Official estimates of 

seasonal or day/night populations at the subnational level simply do not currently 

exist with global coverage. There is potential that novel datasets from Facebook 

or another social media platform (regarding app user location data) or Call Data 

Records could be used in the future, but this entails cooperation from numerous 

(if not hundreds of) companies, has ethical concerns regarding privacy, and a 

single device/login does not equate to a single person (Steele et al., 2017; Weber 

et al., 2018). Meanwhile, the Gridded Population of the World, version 4 (GPWv4) 

is the most complete subnational population count database with global coverage 

and it only provides annual estimates of population (Doxsey-Whitfield et al., 

2015). Further, high resolution (<= 100m resolution) maps of BS extent with 

global coverage were available at only at a few, i.e. five cross-sectional years, with 

only 3 of those years being within my study period of 2000 to 2020 (Pesaresi et 

al., 2013, 2016; Esch et al., 2013). No sub-annual BS extents estimates exist with 

global coverage. Given that I was interpolating between these 3 BS years, with an 

average of 7 years between them, to interpolate finer than annual would be 

implying a precision that the existing data could not support. With any dasymetric 

modelling technique there is a balancing act between the input and output 

spatial/temporal resolution of the modelling. That is, the greater the spatial or 

temporal scale difference between the source unit and the target unit, the greater 

the uncertainty in the disaggregation (Mennis and Hultgren, 2006; Schroeder, 

2007; Nagle et al., 2014; Zoraghein and Leyk, 2019). Temporally, I was 

disaggregating from periods of between 2 to 12 years down to single years. 

Spatially, I was disaggregating from subnational areas, with sizes ranging from a 

couple 100m2 tens of thousands of 100m2, to 100m2 pixels. So, in summary, I 
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didn’t opt for producing sub-annual estimates of BS nor population given that the 

available data, e.g. large gaps between observations and lack of sub-annual 

specific data that was globally available and comparable, and prioritising creating 

a flexible and automatable modelling method as well as data output that was 

globally applicable and comparable. As more data becomes available, refinements 

to the temporal and spatial scale of predictions can be explored. 

The findings of this thesis are limited to the chosen BS data representations 

utilised here. There are different built-environment and BS data sets with differing 

radiometric and operational definitions, especially if we open the scope to non-

global datasets, with all covering some aspects of the physical component of 

urban. As computational resources and software become more available and 

accessible, these types of datasets are becoming more and more available and 

their characteristics, definitions of the built-environment, accuracy, and quality 

become more varied. How generalisable the BSGM framework is to this variety of 

definitions is largely unknown. However, in this thesis, I have utilised three of the 

most prominent and contemporary global BS datasets (ESA Annual, GHSL, and 

GUF) with consistent results. 

The validations of Chapter 3 and Chapter 4 were done across entire countries. 

While the unit of measures were either pixels or subnational, there was variation 

in the model performance. While detailed examination of the validations within 

subregions of countries have not been done, visual examinations give some 

indications as to how the models perform within countries. Much like the input BS 

data, the model frameworks have a bias near established BS agglomerations, i.e. 

in urban and peri-urban areas. Consequently, the model frameworks are more 

likely to display infill and expansive type growths as opposed to “leapfrog” or 

spontaneous type growth. This is not to say that the model is incapable of 

spontaneous growth scenarios. When the subnational units are relatively 

moderate to fine in spatial resolution and lights at night data are available, 

spontaneous growth does become modelled. However, if the input BS data does 

not capture, say, a small settlement, then the BSGMi, due to its interpolative 

nature, cannot predict the small settlement occurring. However, when 

extrapolating, the annual weighting of the RF-derived period transition 

probabilities by the time lagged lights at night data, e.g. a scenario where it is 

2020, you are predicting forward from 2015 and you have lights data through 

2019, becomes very important for near future spontaneous settlement prediction. 
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Other ways to address the current urban-centre bias in the BSGM frameworks 

could take several forms. While the current framework models each subnational 

unit independently, the “Demand Quantification” component could be reworked 

to utilise a spatial hierarchical modelling framework, e.g. using the Integrated 

Nested Laplace Approximation (INLA) package (Illian, Sørbye and Rue, 2012). This 

would have the drawback of added computational time and more manual model 

fitting, but the information contained in the spatial arrangement of the 

subnational units could be leveraged and subnational units could even be 

classified as urban, rural, and peri-urban for further differentiation. Another 

potential is to classify the units a priori based upon their urbanity and stratify the 

BSGM framework to work independently on each class of units. Of course, 

deciding on an applicable classification scheme, especially one that is globally 

applicable, could be difficult. These potential modifications would also lend 

themselves to providing more informed future projections as well. 

A further limit is that this model only produces short-term, i.e. up to five years, 

future predictions of BS extents. This is partially due to the generalised guidance 

on ARIMA and ETS model use (Chapter 2, Section 2.3.2.1), but more so due to the 

short time-series of data I had for BS extents. Referring to the GHSL-GUF BS 

representation partially discussed in Chapter 5, I had only 3 years of observed 

data: 2000, 2012, and 2014. Using the BSGMi, I was able to fill in the temporal 

gaps between these observations to have annual estimates of BS extent from 

2000-2014, resulting in a time series of 15 years. However, even though 

validation, using a different BS dataset (Chapter 3), showed the BSGMi had the 

potential to be highly accurate, the error of the BSGMi when using the GHSL-GUF 

data was unknown due to the small sample precluding withholding data for 

validation. If substantial errors exist in the interpolated BS extents, then this error 

would continue to propagate and grow the further the BSGMe would extrapolate. 

Even assuming to have 15 years of observed data, 15 observations is a very small 

sample for time-series methods like ARIMA and ETS models. Therefore, limiting 

the end use to near-future projections can serve as a simple conservative limit on 

the error in the predicted future extents, as demonstrated in the findings of 

Chapter 4.  

There is potential for longer term future projections, e.g. 20, 30, 50-years, of BS 

expansion using the BSGMe framework. The best conditions for this to occur 

would be in the scenario where population data and the corresponding 

subnational units are relatively fine in spatial resolution and there are numerous 

time points upon which to fit the logistic growth/decay curves and the natural 
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cubic splines. Ideally, the projected population numbers would be independently 

derived from demographic models (Booth, 2006; Hyndman and Booth, 2008), 

utilising fertility and mortality as inputs as opposed to the simple, yet global in 

coverage, exponentially extrapolated population data used here (Doxsey-Whitfield 

et al., 2015). Many of these demographic models produce “scenarios” with “low” 

to “high” population growth that could facilitate the production of corresponding 

low-to-high BSGMe predictions, similar to contemporary long term urban growth 

forecasts (Gao and O’Neill, 2019, 2020). Remaining with the current BSGMe 

framework, the predictions are relatively simplistic. While this allows great 

flexibility and minimal data requirements, it could result in less than nuanced 

long-term predictions. For instance, the performance bias of predictions near 

established BS agglomerations also means that predicting for small settlements 

are relatively poorer, especially in data poor contexts, e.g. few and large 

subnational units or few timepoints informing the extrapolation. Further, it is still 

unknown how well the future predictions do or do not capture the origination of 

new, isolated settlements. If the BSGMe were to be further developed for longer-

term predictions a separate module, in addition to the existing Demand 

Quantification and Spatial Allocation modules, would need to be developed. Such 

a module would predict the number of new isolated settlements occurring, 

possibly as a Poisson point process (Diggle, 2014). It would also have a separate 

suitability layer determining where these new, isolated settlements should occur. 

Alternatively, land-use transition models can provide a more nuanced simulation 

of land use change. This class of models look at land use interaction, land use 

conversion costs, and other drivers of land change conversion, but they require 

more user input, expert defined parameters, and have higher base data 

requirements (Verburg et al., 2002; Verburg and Overmars, 2009; Schaldach et 

al., 2011; van Asselen and Verburg, 2013; van Vliet, Eitelberg and Verburg, 

2017). 

These points being said, there are no mathematical reasons that the current 

BSGMe forecasting methods cannot predict subnational BS demand cannot predict 

indefinitely into the future. The forecasting methods estimating the magnitude 

and timing of the BS growth at the subnational level, i.e. the ARIMA, ETS, and GLM 

models within the “Demand Quantification” component of the BSGMe (Chapter 4), 

are strictly autocorrelative. That is, they are not dependent upon any external 

covariate values and only rely on their previous values to predict their future 

values. Of course, as with any extrapolative prediction, the prediction uncertainty 

increases the further one predicts from the last observation. 
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The RF models within the “Spatial Allocation” component of the BSGMe, which are 

used in partially determining where the predicted subnational level BS growth is 

distributed to pixels within the subnational unit, and the framework surrounding 

them limit future predictions much more. This is in part due to data constraints, 

such as covariates input into the RF not being available or easily modelled into 

the future, and partially due to the way I implemented the RF.  

For discussion, let us assume the RF was made using a minimum set of covariates 

including distance to nearest BS edge, proportion BS within several radii, 

elevation, and slope. These variables are either capable of being modelled by the 

BSGMe or assumed time invariant (elevation and slope). Let us also assume that 

we have a RF trained to predict the probability of non-BS-to-BS transitions 

between 2010 and 2020 and that we are interested in predicting BS extents from 

2020 to 2030. Giving the RF covariates corresponding to 2020, we make 

predictions of the pixel level probability of non-BS-to-BS transition occurring. 

However, this probability is based upon the assumption that the 2010 to 2020 

period’s relationships between the covariates and the probability of transition 

remain the same for the 2020 to 2030 period. Further, because the RF was 

trained to predict the probability of transition over a ten-year period, it is only 

appropriate to predict for another 10-year period. For instance, if we were 

interested in predicting across the period of 2020 to 2035, a RF trained over a 

10-year period would not be providing 15-year probabilities. In this scenario, the 

10-year RF would likely be underestimating the probabilities of transitioning, due 

to less years or “opportunities” of transitioning. Conversely, if a 10-year RF were 

used to predict over a 5-year period, the probabilities would likely be 

overestimated. 

If the BSGMe framework were to be applied to produce more medium and long-

term estimates of future BS change, e.g. 15, 20, or 50 years, great consideration 

would need to be given to the way the RFs were constructed and applied. I would 

speculate that having many RFs covering smaller periods would be the most 

useful scenario, but this would require an expansion of the coverage and 

periodicity of the input BS time series of data, e.g. coverage over a greater period 

of time and BS extents every 5 years as opposed to, say, 10 years. That is, 

because of RFs ensemble nature several small period RFs can be naturally 

combined to produce a RF representative of a larger period. Alternatively, a small 

period RF could be reused iteratively. For example, assuming we are still using 

the minimum set of covariates, a 5-year RF (trained from 2015 to 2020) can be 

used within the BSGMe framework to produce predictions of BS extent across 
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2020 to 2025. The predicted 2025 BS extents can be used to derive new BS 

covariates to input back into the same 5-year RF to then produce predictions from 

2025 to 2030 and so on. This is, of course, still predicated on the assumption 

that the relationships between the covariates and the probability of non-BS-to-BS 

transition remain static; something that still requires exploration. 

 

6.2 Future Work 

Having expanded the globally available time series of BS extent data, larger 

scientific and methodological questions can begin to be addressed or addressed 

with greater detail and in a globally consistent and comparable manner. For 

instance, an expanded consistent time series of BS extents could be used to 

investigate temporal relationships to other human influenced land use patterns, 

e.g. rates of conversion for various land cover classes to BS. Similarly, identifying 

rates, locations, and spatial patterns of BS expansion could allow for better 

classifying types of settled areas, types of general urban expansion, and 

exploring the implications for sustainability of such expansion. Such implications 

that could be investigated include water and food security, loss of arable land, 

and increased human-wildlife interaction, a potential vector for novel diseases. 

Additionally, this time series of consistent binary BS extents could be adopted 

under an urban definitional framework, e.g. the REGIO model (Dijkstra and 

Poelman, 2014) and integrated with other data for creating a time series of 

broader urban classification(s). This could then be used for describing changes in 

urban intensity over time and space as well as examining their relationship to 

environmental impacts, such as the emission of greenhouse gases. 

This type of globally consistent, comparable, and applicable BS modelling 

framework also has ready applications in other recent population and urban 

research efforts, such as the GRID3 project (https://www.grid3.org) and the GHS-

Settlement Model (GHS-SMOD; https://ghsl.jrc.ec.europa.eu/ghs_smod2019.php)  

projects. 

GRID3 is carrying out bottom-up population mapping and is heavily dependent on 

survey data and knowing where settlements are. Settlement data is being 

provided to them by commercial data providers at one or two time points, which 

may or may not temporally align with the survey data. Or the settlement data may 

line up temporally with the survey data, but forward or back projection of the 

https://www.grid3.org/
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spatial population distributions are needed. GRID3 is also carrying out top-down 

population modelling where which is also strongly informed by settlement related 

data (Nieves et al., 2017; Stevens et al., 2020; Reed et al., 2018). The BSGM 

frameworks can expand the temporal coverage of the settlement data they are 

provided without sacrificing the spatial resolution and maintaining the 

radiometric definition of the input settlement data. This in turn facilitates 

population modelling and or projections while maintaining a comparable and 

consistent BS definition, capturing small settlements, and growing settlement 

with population. 

GHS-SMOD is a framework that uses the Global Human Settlement Layer (GHSL) 

extents, gridded population, and the Degree of Urbanisation (DEGURBA) 

framework (European Commission and Statistical Office of the European Union, 

2019) to define various degrees of urban intensity across the globe using a 

comparable definition. However, GHSL only has 4 time points of coverage in 

1975, 1990, 2000, and 2014. The BSGM could be utilised to interpolate between 

these years and further facilitate the application of the GHS-SMOD framework to 

the interpolated years. This would provide greater opportunity to examine how 

urban areas under the GHS-SMOD framework have evolved over time and how 

these evolutions have correlated with other land use, economic, and population 

drivers. And insights into the drivers and correlates of settlement and urban 

expansion gathered from GHS-SMOD could stratify and refine the BSGM modelling 

approaches. 

On a more technical note, future explorations of temporally extending and 

validating the BSGMe framework are a logical next step. As the time series of 

globally available BS extents become longer, providing more input to the 

modelling framework, BS extent predictions would be assumed to become more 

accurate and or less uncertain. At the very least, such an increase in the BS extent 

time-series data would allow for larger training sets. The BSGM framework can 

provide a foundation for translating this increase in information into more 

medium- and long-term BS extent forecasts. Similarly, repurposing the BSGMe to 

extrapolate backwards in time from a last observation would be useful, for 

example in extending estimated BS extents to pre-Landsat (pre-1975) coverage, 

and should be investigated. Overall, future technical work related to built-

settlement expansion modelling should focus on five key areas: 

• Extending the future and past projections as new time series of BS extents 

become available 
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• Further exploration of the limits of using relative population change as an 

indicator of non-BS-to-BS transitions at finer spatial scales 

• More explicit, and potentially time specific, incorporation of transportation 

networks in the modelling framework and process 

• More explicit incorporation of the spatial arrangement of the data, e.g. a 

spatial weights matrix, in the modelling process thereby leveraging 

information from the “neighbourhood”,  

• Attempts to better quantify the uncertainty in the model outputs either 

through a different modelling approach or maps providing quality 

assessments of the input data and, 

• Exploring hierarchical or stratified approaches to modelling wherein 

different subnational areas and or settlements are grouped or classified 

and modelled accordingly 

More broadly, the expanded and consistent global BS datasets produced under 

this framework provide future opportunities to address larger scientific 

questions. These expanded datasets can be used to examine the trends in 

settlement expansion in low lying coastal regions, the impacts of settlement 

expansion on air pollution and greenhouse gas emissions, and the impacts of 

settlement expansion and exposure to vector borne diseases. Having a consistent 

time-series of BS extents allows for the examination of how human settlement 

evolve over space and time, the correlations with migration, various scales of 

economy, and in relation to conflicts. By examining the spatial and temporal 

variations of these BS data, better guidance on balancing policy recommendations 

can be developed across scales, from global to national to local. 

Future work should also investigate the effect of scale regarding the assumptions 

of the BSGM frameworks while maintaining a consistent RS-based definition of BS. 

In the supplemental material of paper 1 (Appendix A), I showed that using a fine 

scale BS representation, GUF Evolution with an original resolution of 72m 

performed poorly in validation, relative to the 300m original resolution of the ESA 

Annual data. Direct comparison between the GUF Evolution and the ESA Annual 

BSGM model performances was not possible due to differences in model extent 

and BS definitions of the datasets. However, whether the assumptions of the 

BSGM modelling framework hold when using finer scale and/or different 

definitions of BS is an interesting one with, currently, mixed evidence. Error! 

Reference source not found. demonstrated that using a combination of the 

GHSL (38m native resolution) and GUF (72m native resolution) to produce BSGM-



 Chapter 6 

177 

derived predictions were important for predicting population density at the 

subnational level. However, Tayyebi et al. (2013) investigated modelling urban 

growth in the USA and found that at finer spatial resolutions, accuracy of 

predictions decreased.  

Given that urban accessibility, a covariate derived from road network data, was 

found to be one of the most important covariates in predicting where BS 

expansion would be spatially located (Chapter 3), future work should look at 

improving road/transportation data and connectivity of settlements. Time-specific 

road and transportation networks would likely be invaluable in predicting the 

location of BS expansion.  

To quote the band Arcade Fire’s song “Wasted Hours,” “First they built the road, 

then they built the town.” While Arcade Fire was describing North American 

suburban expansion in the late 20th century, there is some generalisability to this 

statement. Any development of structures or settlement will require 

transportation of goods to the development site, which typically requires 

transportation infrastructure in the shape of roads or paths. If such infrastructure 

change can be captured, then new development and BS expansion may be better 

identified and is certainly worth further investigation.  

At another scale, utilising the contemporary road data could be used to assess 

the connectivity of settlements and the spatial configuration of that network. In 

conjunction with demographic and other BS data, this would allow for the 

establishment of typologies of settlements based upon their spatial arrangement, 

spatial linkages, and characteristics. These typologies could then be used to 

better understand BS expansion and or intensification, economic developments, 

demographic transitions, and disease transmission, to name a few applications. 

The modelling framework I presented here treats every subnational unit 

independently. Future work could explore the utilisation of spatial weights, e.g. 

as in a geographically weighted regression, to leverage information from 

neighbouring subnational units in the modelling process. This could help improve 

predictions in units with little or noisy information and smooth out the 

predictions. If settlements were able to be classified, e.g. by population or area 

size or functional purpose, or grouped in a hierarchical manner, stratified or 

hierarchical modelling approaches could be utilised to “share” information across 

the model. 
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Although datasets of contemporary and past measures of the extents of 

urbanised areas, the built-environment, and settlements continue to grow at a 

rapid rate, the demand for predictions of these phenomena into the future will 

remain. As long as that demand exists, models capturing the spatio-temporal 

trends of these extents will have predictive and explanatory utility and should 

similarly grow and evolve.
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Appendix A Supplemental Document for 

Chapter 3 

Section A1 – Covariates Used in Population Map Creation and Their Sources  

Table A1.  Covariates utilised in the production of the population maps that were 
used as inputs into the built-settlement growth model  

  
Covariate  Time Point(s)a  Original Source  Source Resolution  
DTE Cultivated landcover  2000, 2005,2010,  

2015  
ESA CCI Landcover (ESA CCI, 
2017) classes 10-30  

10 arc seconds  

DTE Woody, Herbaceous, 
Shrub landcover  

2000, 2005,2010,  
2015  

ESA CCI Landcover (ESA CCI, 
2017) classes 40-120  

10 arc seconds  

DTE Grassland landcover  2000, 2005,2010,  
2015  

ESA CCI Landcover (ESA CCI, 
2017) class 130  

10 arc seconds  

DTE Lichens and Mosses 
landcover  

2000, 2005,2010,  
2015  

ESA CCI Landcover (ESA CCI, 
2017) class 140  

10 arc seconds  

DTE Sparse Vegetation 
landcover  

2000, 2005,2010,  
2015  

ESA CCI Landcover (ESA CCI, 
2017) classes 150-153  

10 arc seconds  

DTE Aquatic Vegetation 
landcover  

2000, 2005,2010,  
2015  

ESA CCI Landcover (ESA CCI, 
2017) classes 160 - 180   

10 arc seconds  

DTE Bare Areas  2000, 2005,2010,  
2015  

ESA CCI Landcover (ESA CCI, 
2017) class 200  

10 arc seconds  

DTE Built-settlement  2000, 2005,2010,  
2015  

ESA CCI Landcover (ESA CCI, 
2017) class 190  

  

Distance to Inland Water 
Bodies  

2015, assumed invariant  MERIS-based water bodies 
(Lamarche et al., 2017)  

5 arc seconds  

Distance to Roads  Downloaded 2017, assumed 
invariant as temporally 
specific road data 
unavailable  

(OpenStreetMap 
Contributers, 2017) 
(OpenStreetMap 
Contributers, 2017)  

Vector  

Distance to Rivers  Downloaded 2017, assumed 
invariant  

(OpenStreetMap 
Contributers, 2017)  

Vector  

Distance to Coastline  Based upon boundaries of 
GPWv4, assumed invariant  

CIESIN GPWv4 (Doxsey-
Whitfield et al., 2015) 

Vector  

Slope  2000, assumed invariant  World Wildlife Fund Voidfilled 
Hydrosheds (Lehner, Verdin 
and Jarvis, 2008)  

3 arc seconds  

Elevation  2000, assumed invariant  World Wildlife Fund Voidfilled 
Hydrosheds (Lehner, Verdin 
and Jarvis, 2008) 

3 arc seconds  

DTE: Distance To nearest Edge  
a  Note, for any covariate derived from land cover or built-settlement, only one year-specific covariate was 
used corresponding to the desired population surface (e.g., for a 2000 population surface only covariates 
corresponding to 2000, or those assumed temporally invariant, were used as covariates). 

 

 

For every population year modelled, we included the distance to nearest BS edge 

for the year 2000, as population relates to older parts of a BS agglomeration 

differently from younger ones (Andrea E. Gaughan et al., 2016). For example, if 

we were to model the population map of 2010 we would include the distance to 
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nearest observed BS edge for 2010 as one of the predictive covariates as well as 

the distance to nearest BS edge corresponding to the observed 2000 BS extents. 

This was done to avoid centres of agglomerations being assigned artificially low 

population densities relative to the preceding modelled time point (Andrea E. 

Gaughan et al., 2016). 

Section A2 – Full Process Diagram and Additional Rationale  

 

Figure A1.  Overview of the generalised modelling process for a case of only 
two observed timepoints, t0 and t1, with references to utilised 
equations.   

The choice for equal sampling of each stratum was determined by testing 
different relative proportions and samples sizes until finding the most 
consistent and best model results, balancing performance and efficiency.  

Logistic growth curves are widely used and accepted for modelling populations 

within demography, ecology, and urban modelling (Austin and Brewer, 1971; 

Wilson, 1976; Ledent, 1982; Cohen, 1995; Smith, 1997). Batty (2009) 

summarised, “Constrained population growth reflecting both exponential 

change and capacity which, in turn, reflect densities and congestion are 
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simulated using various kinds of logistic growth.” because, as Sibly et al. (2005) 

note, “While environmental stressors have negative effects on population growth 

rate, the same is true of population density, the case of negative linear effects 

corresponding to the well-known logistic equation.” as put forth first by Verhulst 

(1838). Furthermore, Ledent (1982) showed that urbanisation, the process of 

population becoming urban, across time can be adequately summarised by “S-

shaped curves”, specifically the functional logistic form. We followed this same 

underlying conceptual logic using a logistic curve with a dynamic limiting factor 

(Equation 1), i.e. the total population of an area is the theoretical limit of the 

temporally coincident BS population count.  

For each unit, we interpolated the corresponding unit-average BS population 

densities, referring to the years t in T, across all unobserved years tk. Because 

there is a lack of literature and data on the actual or theoretical limits of human 

population density, we selected natural cubic splines to interpolate each unit’s 

BS population density while avoiding the sharp rates of change, that would be 

seen with piece-wise linear interpolation, or large oscillations seen with higher 

order polynomials (i.e. Runge’s phenomenon). Cubic splines have a long history 

in demographic interpolation, including interpolation of rates associated with 

urbanisation processes (McNeil, Trussell and Turner, 1977; Ledent, 1982). Here 

we are assuming that the trend of population density change of a given 

subnational unit is smooth and continuous across time, because short of some 

drastic (and unlikely and largely unaccountable “population shocks” such as 

wars or natural catastrophes) event, at the annual time scale we would not 

expect to see “cliffs” of population density change.  
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Section A3 - Handling of Negative or “Decay” Transition Cases  

The process resulting from Equations 1-3 can produce "negative" predicted 

growth, hereafter decay, in any given year, and that the input built-settlement 

extent data assumes that once an area has transitioned to built-settlement it 

remains built-settlement. To account for this, we used the input data to limit the 

model to show "stagnation," i.e. no growth, or growth. We managed three case 

types of decay according to the information presented in Table A3. Case I (A 

and B) included situations where the observed transitions were greater than 

zero and some or all estimated transitions were negative. Case IIs included 

situations where the observed extent transitions were zero and the estimated 

transitions were negative. For full details, read comments in model code. 
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Table A2.  Case types of predicted built-settlement decay and how they were handled in the model.  
Case 
Type  

Sub 
type  Description  Origin  Implication  Handling  

I  

A  

All predicted 
years < 0; 
observations  
> 0  

Built population decreases, built settlement increases because of 
differences in imagery and sensitivity of original datasets or because 
relationship between population and built settlement area are inverse of 
what would be expected.  

Lacking any other information, we 
will assume that the greatest built 
settlement changes occurred circa 
the biggest population  
magnitude changes  
  

The reweighting scheme makes all 
the weights positive by virtue of all 
individual differences being 
negative; no special action is 
necessary.  

 

B  

Some  
predicted years < 
0; observations  
> 0  

Comes about from population decreasing for a year while outpacing the 
predicted decrease in built settlement population density  

Built settlement growth during 
this period is unlikely compared to 
other years in the total transition 
period.  

Set the predicted difference for 
that year, and therefore its 
weighted difference, to zero.  

II  ---  

Some, but  
not all, 
predictions <  
0;  
Observations  
= 0  

Relationships between population and built settlement counts are not 
straightforward and not necessarily stationary through time and or space. 
Further, inaccuracies exist in the original built settlement data and the 
popA6ulation estimates. Any of these errors, in conjunction with model 
assumptions, could combine to result in this.  

Continue with the base 
assumption that the input built-
settlement data is the best we 
have in knowing if any transition 
occurred.  

Set all predicted differences to zero 
in order to match the observed 
changes  
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Section A4 – Stochastic Process for Obtaining Agreement After Rounding of 

Predicted Transitions  

After the negative values were handled (See Supplemental Material, section A3) 

and the observed transitions were dasymetrically redistributed, sometimes there 

remained discrepancies, i.e. over or under estimations, between the sum of 

predicted transitions and the observed changes due to rounding during the 

weighting procedure. Here, we obtained agreement between the predicted and 

observed transitions by way of a stochastic process where, as long as the 

predicted number of transitions of a given administrative unit did not equal the 

corresponding observed transitions, we randomly selected a time point within 

the modelling period. We then added or subtracted, whichever was appropriate, 

one transition to the total predicted transitions for that year, 𝐵𝐵𝑆𝑆𝐶𝐶𝐵𝐵𝐵𝑇𝑇𝑦𝑦𝑡𝑡. This 

"salting" continued until agreement between the predicted and observed counts 

for a given admin unit was obtained. When we performed subtraction to correct 

for overestimation, we did not subtract from years that we already predicted to 

have no transitions.  

Section A5 – Additional Results Based Upon ESA Input to BSGM   

Overall, at the subnational unit level, we found results similar to the pixel-level 

results, including poor performance in absolute terms between 2001 to 2003, 

but some units were obviously performing worse than others as compared to 

the naive model. Plotting the ESA-informed model distributions of unit-level F1 

scores by study area and year against the corresponding naive model 

performance, we show that the BSGM generally performs better in the majority 

of subnational units from which the transitions were disaggregated from (Figure 

A3). At worst, e.g. Vietnam 2002, approximately half of the units were still 

performing better than the naive model (Figure A3). For quantity disagreement 

(Figure A4) and allocation disagreement (Figure A5), results similar to pixel level 

results were found.   
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Figure A3.  Unit level F1 score box plots, by dasymetric period, of Switzerland (CHE), 
Panama (PAN), Uganda (UGA), and Vietnam (VNM) ESA informed models as 
compared to a naive model, given by a red “x”. Number of units exhibiting 
any transitions for each period and a defined metric value is given above 
the x-axis.  

 

Figure A4.  Unit level quantity disagreement box plots, by dasymetric period, of 
Switzerland (CHE), Panama (PAN), Uganda (UGA), and Vietnam (VNM) ESA 
informed models as compared to a naive model, given by a red “x”. Number of 
units exhibiting any transitions for each period and a defined metric value is 
given above the x-axis.  
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Figure A5.  Unit level allocation disagreement box plots, by dasymetric period, of 
Switzerland (CHE), Panama (PAN), Uganda (UGA), and Vietnam (VNM) ESA 
informed models as compared to a naive model, given by a red “x”. Number of 
units exhibiting any transitions for each period and a defined metric value is 
given above the x-axis.  

Plotting the unit-level metrics for all models as choropleth maps (see 

Supplementary Material for select maps and shape files containing contingency 

data), shows that years of generally good performance, the units of lesser 

performance are those that correspond to areas of less densely settled areas 

and the peripheries of established urban areas. Other years, such as Uganda 

2001, performed poorly across many units with no apparent pattern.  

Examining the year-specific study area F1 scores (Figure A6), we show that the 

BSGM modelling framework had low absolute performance and near naive 

model performance between 2001 and 2003 across all countries. After 2003, 

the F1 score notably, with values approaching 1.0 in some cases, and the BSGM 

modelling framework dramatically outperforms the naive model (Figure A6). 
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Figure A6.  Pixel-level F1 score by year for the BSGM-based BS extents and BS extents 
produced using the naïve model for Switzerland (CHE), Panama (PAN), 
Uganda (UGA), and Vietnam (VNM) Full annual contingency data and 
metrics in supplementary material     

Section A6 – BSGM Results with GUF Evolution  

To demonstrate the flexibility of the modelling framework and its applicability 

to higher resolution, e.g. sub-100m, urban feature data, we also tested an alpha 

version, of the forthcoming World Settlement Footprint multi-temporal dataset, 

known as WSF Evolution (Esch 2018a), hereafter WSF Evo. Starting in 2018 with a 

release of the WSF 2015 (equivalent of binary GUF, based on a joint analysis of 

multi-temporal Sentinel-1 and Landsat-8 data for the year 2015), the WSF-Evo 

product provides detailed information about the spatio-temporal development 

from 1985–2015 for each human settlement identified in the WSF-2015. The 

corresponding analysis is based on a processing of multitemporal collections 

derived from the Landsat archive using an implementation of the TimeScan 

approach (Esch, 2018b) at the Google Earth Engine (Gorelick et al., 2017) to 

generate the baseline layer for the classification. This classification starts by 

using the WSF 2015 as training data for the identification of the built-up area in 

2010, and the using the resulting WSF 2010 as training input for classifying the 

2005 data, and so on. The WSF Evo. Data used here covers a 50km x 50km 

rectangular area centred over Ho Chi Minh City for the dates of 2000, 2010, and 

2015. The data was resampled to 3 arc seconds using nearest neighbor 

resampling and derived covariates were calculated from this. For the purposes 

of modelling, we only utilised areas that completely covered the subnational 
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units in the population data. Summaries of the study areas with regards to BS 

transitions as defined by WSF Evo. are given in Table A3.  

Table A3.  Descriptive summary of the WSF Evolution dataset where areal units are 
pixels pixels (~100m) as that is the unit handled by the model which looks at 
relative areal changes as opposed to absolute areal changes.  

 

Dataset 
Country 
a Period 

Initial Non-Built Area 
(pixels) 

Observed 
Transitions 

WSF 
Evo. 

Vietnam 
2000-
2015 

3,295,142 10.43% 

a Ho Chi Minh City and immediate surroundings 

 

The RF using WSF Evo. Data, out of all the models, has the largest area under its 

PRC curve, but the precision begins to decrease, albeit less sharply, at lower 

recall levels than the ESA models (Figure A7).  

  

  

  

Figure A7  Receiver Operator Curve (left plots) and Precision Recall Curves (right plots) 
with the RF model performance, blue lines, against a random model, red lines, 
and a perfect model, green lines, for each modelled country and input dataset  

Covariate importances for the WSF Evo. (listed as GUF or GUF+ in Figure A8) 

model were comparable to that seen in the ESA models (Figure A8).  
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Figure A8. Random forest covariate importance as measured by the average log 
decrease in the Gini impurity when the covariate is used as the splitting 
criteria at nodes; higher values indicate better performance of covariate. 
Model for Swizerland (CHE) ESA, Panama (PAN) ESA, Uganda (UGA) ESA, 
Vietnam (VNM) ESA, and Vietnam WSF Evo. (GUF+) are shown. Refer to Table 
1 for covariate names.  

Overall, at the pixel level WSF Evo. Model performed much poorer than the ESA 

models with an overall accuracy of 0.518 (Table A4).  

Table A4.  Proportion of transition pixels predicted correctly by the BSGM by year. 
Note that 1 – the proportion correct is equal to the overall disagreement, 
i.e. the sum of the quantity and allocation disagreement.  

 
Model  2001 2002 2003 2004 2006 2007 2008 2009 2010 2011 2012 2013 2014 
CHE ESA  0.718 0.573 0.628 0.975 0.987 0.979 0.975 0.983 --- 0.999 0.998 0.997 0.997 

PAN ESA  0.952 0.935 0.934 0.960 0.806 0.771 0.816 0.920 --- 0.905 0.838 0.801 0.818 

UGA ESA  0.814 0.787 0.803 0.929 0.912 0.877 0.877 0.909 --- 0.940 0.893 0.865 0.878 
VNM  
ESA  
VNM  

0.942 0.918 0.923 0.951 0.923 0.872 0.866 0.916 --- 0.879 0.777 0.738 0.790 

WSF  
Evo.  --- --- --- --- --- --- --- --- 0.518 --- --- --- --- 

For the single compared year modelled using WSF Evo. data, the F1 score 
performance is low both in absolute terms, approximately 0.33, and in relative 
terms, having a score approximately 0.05 higher than the null model (Figure 
A9).  
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Figure A9.  Pixel-level F1 score by year for Switzerland (CHE), Panama (PAN), Uganda 
(UGA), and Vietnam (VNM) as compared to a null model.   

  

For the year modelled using WSF Evo., the total disagreement due to the BSGM 

is only slightly less than the null model primarily due to less allocation error 

(Figure A10).  

  

 

Figure A10.  Pixel-level quantity and allocation disagreement of BSGM and null models 
for Switzerland (CHE), Panama (PAN), Uganda (UGA), and Vietnam (VNM) as 
compared to a null model, given in red. Full annual contingency data and 
metrics in supplementary material  
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For the WSF Evo. model, most of the units perform better than the null model in 

terms of F1 score and allocation disagreement (Figure A11). Conversely, many 

units have higher quantity disagreement than the null model, pointing to the 

underlying model performance issue being related to the population and 

population density interpolation as related to the assumed relationships with 

the input BS data rather than the RF and LAN allocation portion of the model.  

  

 

Figure A11.  Using WSF Evo data, unit level distributions of F1 score, quantity 
disagreement, and allocation disagreement.  

  

The poor performance of the BSGM with the WSF Evo. data (Figures A9-11; Table 

A4) was surprising considering the excellent performance with the ESA-informed 

models (Table A4; Figures A9-10). There could be many reasons for this, but we 

believe it originates because of a dissonance between the assumed population 

growth relationships and the input data in the form of one or the more of the 

following:  

i) temporally differing biases in the modelled RF-informed 

population surface  

ii) less observed points to base the model upon  

iii) given the experimental nature of the WSF Evo. data, it is unvalidated 

and therefore how well it is capturing the BS extents at any given time 

point is largely unknown (but assumed to be better than the ESA class 

190)  

iv) the WSF Evo data is capturing things perfectly, but the relationships 

the model can currently capture and describe are not sufficient to 

match the relationships between this spatial scale of data and the 

phenomenon.   
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More sensitivity analyses and validation testing is needed with finer scale input 

data across a larger time period of observations and a nested model, with 

varying behaviour for small type BS agglomerations and large type 

agglomerations of BS, should be carried out.  

Section A7 –Training and Validation Sets of the Random Forest  

Table A5.  Descriptive statistics of pre-existing prevalence of BS in the training 

and validation datasets used for measuring the performance of the RF 

models.  

  

  

Section A8 – Modelling Times by Country  

Given the 20 covariates detailed in the paper and predicting with four observed 

points the following were the computational times for the model as run on a 

local computer with 32GB RAM and an 8 core i7-6700 3.4GHz processor.  

Table A6.  Descriptions of the number of units (pixels) in given sample countries 

and the computational efficiency of the modelling runs.  

Country  Total Pixels in Extent a  
Total NonNA Pixels  Average Time per 100k 

non-NA pixels (secs)b  
Total Time HH:MM:SS  

(secs)  
Panama  20,700,555  8,924,809  71.6  01:46:27   (6,387)  
Switzerland  13,056,459  7,010,449  13.9  01:05:30   (3,930)  
Uganda  44,666,840  28,258,386  18.3  01:26:23   (5,183)  
Vietnam  156,409,044  40,254,685  16.0  01:47:07   (6,427)  

a Note: some of this pixels contain no data based upon the difference between the boundaries of the country and the rectangular extent of 
the raster  
b The Panama times is much larger than other runs due to an unoptimized parameter that determines the number of blocks to divide the 
rasters into for the parallel prediction using the random forest. This parameter value has to be adjusted for a variety of considerations (total 
pixels, number of covariates, amount of no data values in raster extent, number of resulting blocks that can be skipped because they contain 
all no data values, etc.) with each model run. We did not optimize for Panama and Switzerland due to their small size and relative speed even 
when unadjusted. 
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Appendix B BSGMi versus BSGMα 

Considerations 

The Global Built-Settlement Growth (GBSG) dataset 2 is a raster-based data product 
representing observed, interpolated, and projected global annual built-settlement 
(BS)3 extents from 2000 through 2020 at 0.0008333 arc second resolution (~ 
100m at the Equator). The GBSG was produced using an early version of the Built-
Settlement Growth Model interpolation (BSGMi) and extrapolation (BSGMe) 
frameworks, which differ in a few significant ways from the BSGM framework 
validations presented in Nieves et al. (2020)4 and Nieves et al. (2020). For the rest 
of the document, I refer to this early version of the BSGMi framework as the 
“BSGMi-α”. 

The BSGMi-α is largely similar to the BSGMi presented in Nieves et al. (2020), but 
with three key framework differences: 

1. Only interpolating using information from two observed time points 
2. The use of exponential growth/decay curves interpolating BS population 

counts and BS population density across time 
3. When projecting forward, failure to account for edge cases which can 

result in uncontrolled BS growth in units with little to no BS at the last time 
of observation 

Further, there are two model input parameter choices used in the generation of 
the GBSG that influence the resultant dataset and warrant keeping in mind when 
and before using the GBSG data products.  

In this document, I cover the framework and input parameter differences, how 
they likely affect the datasets for end users, and recommended best practices in 
light of this. Here I do not cover the details of the entire BSGMi modelling 
framework and readers are referred to Nieves et al. (2020) and their 
corresponding supplementary materials for those details. 

Framework Differences in Alpha Version 

 Interpolative Model Alpha (BSGMi- α): GBSG Data for 2000-2014 

The BSGMi- α differs from the methods detailed in Nieves et al. (2020) in two key 
ways: 

1. The use of exponential growth/decay curves to interpolate BS population 
and BS population density 
 

2. The use of only two observed time points to interpolate BS population and 
BS population density 

 
2 https://www.worldpop.org/project/categories?id=15 
3 Built-settlement having the urban physical environment-based definition of “enclosed constructions above 
ground which are intended for or used for the shelter of humans, animals, things or for the production of 
economic goods and that refer to any structure constructed or erected on its site” per (Pesaresi et al., 2013, p. 
2108) 
4 Preprint currently available under DOI: 10.20944/preprints201812.0250.v2 
 

https://www.worldpop.org/project/categories?id=15
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As described in Nieves et al. (2020), for every subnational unit i, the BS Pop is 
independently interpolated between every two observed BS time points, referred 
to as a “period,” with t0 representing the first observed time point and t1 
representing the end observed time point of the period. This is where the 
procedure for the BSGMi- α diverges. First, the estimated BS population at the 
observed time points of the given period are transformed into an Urban Rural 
Ration (URR) using Equation 1: 

 

𝑈𝑈𝑊𝑊𝑊𝑊𝑖𝑖 = 𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑𝑖𝑖
𝑑𝑑𝐵𝐵𝑑𝑑𝑖𝑖−𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑𝑖𝑖

         [Eq. 1] 

 

with the BS population for unit i represented by 𝐵𝐵𝑆𝑆𝑟𝑟𝐵𝐵𝑟𝑟𝑖𝑖 and the total population 
for unit i represented by 𝑟𝑟𝐵𝐵𝑟𝑟𝑖𝑖. For all time points t between t0 and t1, the URR 
values are interpolated using an exponential growth/decay formula, written in 
Equation 2 as: 

 

𝑈𝑈𝑊𝑊𝑊𝑊𝑖𝑖(𝑦𝑦) = 𝑈𝑈𝑊𝑊𝑊𝑊𝑖𝑖(𝑦𝑦0) ∗ 𝑚𝑚𝑟𝑟𝚤𝚤�∗𝑡𝑡        [Eq 2.] 

 

where the URR of the given unit i is given as a function of time t by 𝑈𝑈𝑊𝑊𝑊𝑊𝑖𝑖(𝑦𝑦), 𝑟𝑟𝚤𝚤� is 
the unit-average exponential rate of change across the number of evenly spaced 
time points between the two observed period end points, and t is the number of 
time points from the period initial time point t0. 𝑟𝑟𝚤𝚤� is calculated using Equation 3: 

 

𝑟𝑟𝚤𝚤� = ln(𝑈𝑈𝑈𝑈𝑈𝑈(𝑡𝑡1)/𝑈𝑈𝑈𝑈𝑈𝑈(𝑡𝑡0))
(𝑡𝑡1−𝑡𝑡0)

         [Eq. 3] 

 

The interpolated URR values are then back-transformed into BS population counts 
by the relationship given in Equation 4: 

 

𝐵𝐵𝑆𝑆𝑟𝑟𝐵𝐵𝑟𝑟𝑖𝑖(𝑦𝑦) =  𝑟𝑟𝐵𝐵𝑟𝑟𝑖𝑖(𝑦𝑦) ∗
𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖(𝑡𝑡)

1+𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖(𝑡𝑡)
       [Eq. 4] 

 

prior to being used in the calculation of the time specific demand weights as 
detailed by Nieves et al. (2020). 

 

Contrastingly, if provided more than two observed points in time, e.g. multiple 
periods, the procedure in Nieves et al. (2020) interpolates using a logistic 
growth/decay curve whose average unit-rate is determined using the information 
from all periods. Specifically, for each unit i, a logistic curve with a temporally 
dynamic carrying capacity is used, as shown in Equation 5: 
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𝐵𝐵𝑆𝑆𝑟𝑟𝐵𝐵𝑟𝑟𝑖𝑖(𝑦𝑦) = 𝐾𝐾𝑖𝑖(𝑦𝑦) ∗
𝑒𝑒�𝑟𝑟𝚤𝚤���+𝐶𝐶𝑖𝑖�∗𝑡𝑡

1+𝑒𝑒�𝑟𝑟𝚤𝚤���+𝐶𝐶𝑖𝑖�∗𝑡𝑡
       [Eq. 5] 

 

where 𝐾𝐾𝑖𝑖(𝑦𝑦) is the carrying capacity that varies with time, i.e. the time-specific unit 
total population, and the unit average logistic rate of change across all provided 
periods is represented by 𝑟𝑟𝚤𝚤� + 𝐶𝐶𝑖𝑖. 𝑟𝑟𝚤𝚤� + 𝐶𝐶𝑖𝑖 is estimated by fitting a linear regression 
across all observed BS population values for the given unit based upon the 
assumption, of the logistic growth curve with constraints, that the relationship in 
Equation 5 holds: 

 

{ln � 𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑𝑖𝑖({𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂} 
𝐾𝐾𝑖𝑖({𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂})−𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑𝑖𝑖({𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂})�} ≅ 𝑟𝑟𝚤𝚤� + 𝐶𝐶𝑖𝑖       [Eq. 6] 

 

where {𝑦𝑦𝐵𝐵𝐵𝐵𝐵𝐵} is the set of observed time points. Note how the left hand side of Eq. 
6 is actually equal to a log transformed version of the URR in Eq. 1 given our 
choice of the total population to be the carrying capacity. 

The first difference to note, is the manner in which the rate is calculated; with the 
BSGM-α using an exponential growth/decay function and only calculating the 
average rate based upon two observations, as opposed to the BSGMi method 
fitting a logistic growth/decay function over two or more observations. 
Additionally, the carrying capacity term in Eq. 5 and 6, allowing for the 
characteristic “s-shaped curve” of the logistic function, provides further 
differences in the estimates. With the logistic curve, if the ratio of BS population 
to the total population remains relatively small, then the resulting curve across 
time should be approximately exponential, i.e. concave upwards, in shape, but 
would undoubtedly have a different rate than if we were to fit across all observed 
points using the BSGM-α exponential approach. The fact that the carrying capacity 
term K in Eq 5 and 6 varies with time allows for potentially more complex 
outcomes of the interpolation, as seen in (Meyer and Ausubel, 1999b). Without 
delving too far into the numerous potential ways in which these terms can come 
to interact across both approaches, just looking at how a logistic curve with a 
static carrying capacity, we would expect the largest differences between the two 
methods for units that have relatively large proportions of BS population, i.e. 
highly urbanized areas, as the exponential (BSGM-α) approach assumes limitless 
growth, whereas the logistic approach assumes growth is constrained by some 
specified capacity. Whether the differences are meaningful in the output 
predicted extents, after being turned into weights and disaggregating the 
observed period changes across time, is highly locally dependent and would need 
to be investigated further. 
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