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Partially twisted boundary conditions are widely used for improving the momentum resolution in
lattice computations of hadronic correlation functions. The method is however expensive since
every additional twist requires computing additional propagators. We propose a novel variance
reduction technique that exploits statistical correlations to reduce the overall cost for computing
correlators with additional twist angles. We explain and demonstrate the method for meson 2pt
and 3pt functions.
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1. Introduction

In a finite size cubic volume with periodic boundary conditions, the hadronic momenta 𝒑 are
quantized in each spatial direction 𝑖 = 𝑥, 𝑦, 𝑧 as 𝑝𝑖 = 2𝜋

𝐿
𝑛𝑖 , where 𝐿 is the spatial extent of the

lattice and 𝑛𝑖 takes integer values. This implies that accessible values of 𝒑 in a lattice simulation
are limited. In view of lattice QCD simulations for SM phenomenology this often constitutes a
limiting factor, e.g. when a fine momentum resolution in the computation of hadronic form factors
is required. A way to overcome this limitation is to impose partially twisted boundary conditions
[1, 2] on a valence quark field 𝑞 as

𝑞(𝑥𝑖 + 𝐿) = 𝑒𝑖 \𝑖𝑞(𝑥𝑖) , 0 ≤ \𝑖 ≤ 2𝜋 , 𝑖 = 1, 2, 3 , (1)

where \𝑖 is the twisting angle. For a meson with one quark twisted with angles 𝜽 = (\1, \2, \3) and
the other one untwisted, the twist has the effect of shifting the corresponding meson momentum as

𝑝𝑖 =
2𝜋
𝐿
𝑛𝑖 +

\𝑖

𝐿
,

thereby extending the accessible range of momenta [3, 4].

2. General idea

In this work we propose a novel technique to reduce the overall cost for computing correlators
with additional twist angles. From a computational point of view, twisting comes with an extra cost
since every momentum requires computing additional quark propagators. The goal of this work is
to induce momentum into hadrons through twisted boundary conditions with less computational
effort.

We assume that all the untwisted correlation functions 𝐶0(𝑡) have already been computed on a
given ensemble of gauge configurations. The idea is to exploit these correlators in order to reduce
the resources needed to obtain twisted correlation functions from propagators evaluated on 𝑁src

source planes with the same precision. We construct a new twisted correlator 𝐶𝛼
\
(𝑡) as

𝐶𝛼\ (𝑡) = �̃�\ (𝑡) + 𝛼(𝑡) (𝐶0(𝑡) − �̃�0(𝑡)) , (2)

where the expressions with tilde are obtained with a reduced number of source planes, and 𝛼(𝑡)
is an optimisation parameter, which in general depends on the time 𝑡. In particular, for a generic
correlator 𝐶 (𝑡) we use the notation

𝐶 (𝑡) = 1
𝑁src

𝑁src∑︁
𝑖=1

〈𝐶𝑖 (𝑡)〉 , �̃� (𝑡) = 1
𝑛src

𝑛src∑︁
𝑖=1

〈𝐶𝑖 (𝑡)〉 , 𝑛src < 𝑁src ,

where the sum is running over the source planes and 〈·〉 denotes the ensemble expectation value.
Expressions with 𝛼 as superscript refer to the improved case built with the new correlators (2). We
will often omit the 𝑡 depence in 𝛼 for simplicity. The case where 𝛼 = 0 corresponds to the standard
twisted scenario with a reduced number of sources.
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Assuming the measurements on a given time slice to be normally distributed, the expression for the
variance (𝜎𝛼

\
)2 = 〈(Δ𝐶𝛼

\
)2〉 is

(𝜎𝛼\ )2 =𝛼2(𝜎2
0 + �̃�2

0 − 2cov[𝐶0, �̃�0]) + 2𝛼(cov[𝐶0, �̃�\ ] − cov[�̃�0, �̃�\ ]) + �̃�2
\ ,

where cov[·, ·] is the corresponding covariance for that time slice. The extrema under variation of
𝛼 are determined through

𝜕

𝜕𝛼

(
𝜎𝛼\

)2����
𝛼𝑚𝑖𝑛

=2𝛼𝑚𝑖𝑛 (𝜎2
0 + �̃�0

2 − 2cov[𝐶0, �̃�0]) + 2(cov[𝐶0, �̃�\ ] − cov[�̃�0, �̃�\ ]) = 0 .

The value

𝛼𝑚𝑖𝑛 =
cov[�̃�0, �̃�\ ] − cov[𝐶0, �̃�\ ]
𝜎2

0 + �̃�2
0 − 2cov[𝐶0, �̃�0]

(3)

is therefore expected to optimise the variance, which now reads

(𝜎𝛼\ )2
𝑚𝑖𝑛 = �̃�

2
\ −

(
cov[�̃�0, �̃�\ ] − cov[𝐶0, �̃�\ ]

)2
𝜎2

0 + �̃�2
0 − 2cov[𝐶0, �̃�0]

. (4)

From this last expression we see that the optimized variance for the new correlator 𝐶𝛼
\

is always
smaller than the variance of the initial correlator �̃�\ .

3. Numerical setup

We tested the above construction on a 243 × 64 lattice using RBC/UKQCD DWF C1 ensemble
[5], which has a pion mass of 𝑚𝜋 ' 330 MeV and a lattice spacing 𝑎 ' 0.11 fm. In particular, we
considered 2pt pion (𝐶𝜋 (𝑡)) and kaon (𝐶𝐾 (𝑡)) correlators. In addition, we also computed 𝐾 → 𝜋

3pt correlation functions 𝐶`,𝐾 𝜋 (𝑡) (see [6, 7] for definitions), where ` labels the component of the
light-strange current, as required for the computation of the 𝐾 → 𝜋 semileptonic form factors [6, 7].
For the 3pt functions we used a source-sink separation of 𝑡/𝑎 = 20. The twist has been applied on
the light quark in all the three spatial directions; in particular, we set

𝜽1 = 0.1 × (2𝜋, 2𝜋, 2𝜋) ,
𝜽2 = 0.2 × (2𝜋, 2𝜋, 2𝜋) ,
𝜽3 = 0.3 × (2𝜋, 2𝜋, 2𝜋) ,
𝜽4 = 0.4 × (2𝜋, 2𝜋, 2𝜋) ,

(5)

which correspond to a total induced momentum of

| 𝒑1 | = 0.1
√

3
2𝜋
𝐿

' 0.17
2𝜋
𝐿
,

| 𝒑2 | = 0.2
√

3
2𝜋
𝐿

' 0.35
2𝜋
𝐿
,

| 𝒑3 | = 0.3
√

3
2𝜋
𝐿

' 0.52
2𝜋
𝐿
,

| 𝒑4 | = 0.4
√

3
2𝜋
𝐿

' 0.69
2𝜋
𝐿
.

(6)
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In the next sections, we will indicate the twisting angle simply as \ = 0.1, 0.2, 0.3, 0.4 for simplicity,
with obvious reference to the actual twist in (5).
We generated a total of 𝑁src = 32 sources on 39 gauge configurations, and we considered a subset
of 𝑛src = 4, 8, 16 sources to test the method. The simulations have been carried out on the DiRAC
Extreme Scaling service at the University of Edinburgh using the Grid[8, 9] and Hadrons[10]
software packages.

4. Results

In this section we present some of the results obtained. We start with the results for basic
quantities such as 2pt and 3pt correlators. We then present some further optimization on the
observables built from these correlators, i.e. the 𝐾 → 𝜋 semileptonic form factors, which involve
a combination of the former correlators.

4.1 Correlators

Figure 1: Improvement for a pion correlator with twist 𝜽 = 0.1(2𝜋, 2𝜋, 2𝜋). The blue points correspond
to the ratio of the improved correlator and the non-improved correlator with reduced statistics, whereas the
orange points correspond to the ratio of the improved correlator and the non-improved correlator with full
statistics.

In figure (1) we show the first results for a pion correlator using the smallest twist \ = 0.1.
In the plot, we compare the error 𝜎𝛼

\
of the improved correlator 𝐶𝛼

\
(𝛼 = 𝛼𝑚𝑖𝑛) with the standard

correlator (𝛼 = 0) with reduced (blue) and full (orange) statistics. The plots show that already for
4 or 8 sources out of the total 32 there is a quite significant improvement. Indeed, the closer the
orange points are to 1, the closer the error of the improved correlator is to the full-statistics one.
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The blue crosses keep track of how much better we do with respect to the case 𝛼 = 0 at reduced
number of sources. In short, the method is successful as long as the blue dots move towards 0 and
the orange dots move towards 1 (or lower). Looking at figure (1), a good compromise would be the
case with 8 sources: at 1/4 of the total computational cost we manage to get an error which is only
few percent worse than the one with full statistic, but around 20% better than what we would get
without improving the correlator in the range where the ground-state dominance starts setting in.

Figure 2: Relative error ratio �̃�𝑟𝑒𝑙/𝜎𝑟𝑒𝑙 as a function of the number of sources for improved (orange dots)
and not improved (blue crosses) correlators.

Let us now take a look at the physical quantities one can extract from this correlator, namely
mass and amplitude. We fit the correlator using the ansatz

𝐶𝜋 (𝑡) = 2𝐴𝑒−𝐸
𝑇
2 cosh

[
𝐸

(
𝑇

2
− 𝑡

)]
. (7)

The results are shown in figure (2). There, the vertical axis represents the ratio of the relative errors
�̃�𝑟𝑒𝑙/𝜎𝑟𝑒𝑙 obtained from the fits as a function of the number of sources on the horizontal axis. The
blue crosses correspond to the non-improved correlators, whereas the orange dots correspond to the
improved correlator with 𝛼 tuned. The plots show that our new correlator (2) performs better than
the non-improved one, as the values of the orange points are almost always smaller than the blue
crosses. However, one could argue that in some cases the value with a reduced number of sources
is already good enough even with 𝛼 = 0. While this is true, it is also true that this is not known a
priori; in every case, the improved correlators give better results regardless, and it is then preferred
to the non-improved one.

For what concerns larger twists, we observed that the improvement 𝜎𝛼
\
/𝜎\ is controlled by the

correlation Corr[�̃�0, �̃�\ ] between twisted and untwisted correlators, as shown in figure (3). The
smaller the twist, the higher the correlation and the better is the improvement 𝜎𝛼

\
/𝜎\ . The points

in the plot are taken from the range 𝑡 ∈ [2, 18], which covers the range where one would perform
fits. This observation, in principle, could provide a guidance to estimate the possible gain a priori
and could therefore help to plan the computational setup. We see a similar behaviour also in the
case of 3pt functions.
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Figure 3: Improvement 𝜎𝛼
\
/𝜎\ as a function of the correlation Corr[�̃�0, �̃�\ ] for every twists.

4.2 Form factors

We now present some results on the 𝐾 → 𝜋 form factors 𝑓+(𝑞2) and 𝑓−(𝑞2) defined in terms
of the hadronic matrix elements

𝑀` = 〈𝜋(𝑝𝜋) |𝑉𝑅` |𝐾 (𝑝𝐾 )〉 = 𝑓+(𝑞2) (𝑝𝐾 + 𝑝𝜋)` + 𝑓−(𝑞2) (𝑝𝐾 − 𝑝𝜋)` , (8)

where 𝑉𝑅` = 𝑍𝑉𝑉` is the renormalised vector current with 𝑍𝑉 computed from the 𝜋 → 𝜋 vector
form factor at 𝑞2 = 0 as, e.g., in [11]. We can extract the matrix element from the Euclidean time
dependence of 2pt correlators 𝐶𝐾 (𝑡), 𝐶𝜋 (𝑡) and 3pt correlators 𝐶`,𝐾 𝜋 (𝑡), 𝐶`,𝜋𝐾 (𝑡) as

𝑀`
𝑡𝜋�𝑡�𝑡𝐾

= 4𝑍𝑉
√︁
𝐸𝐾𝐸𝜋

√︄
𝐶`,𝐾 𝜋 (𝑡)𝐶`,𝜋𝐾 (𝑡)

𝐶𝐾 (𝑡)𝐶𝜋 (𝑡)
, (9)

and we can then express the form factors as
𝑓+(𝑞2) = 1

2𝐸𝐾

(
𝑀0 +

𝐸𝐾 − 𝐸𝜋
𝑝𝜋

𝑀𝑠

)
,

𝑓−(𝑞2) = 1
2𝐸𝐾

(
𝑀0 −

𝐸𝐾 + 𝐸𝜋
𝑝𝜋

𝑀𝑠

)
,

(10)

where 𝑀𝑠 is the average over the 3 spatial matrix elements 𝑀𝑖 , 𝑖 = 1, 2, 3. We recall that the twist
is applied on the light quark in 𝐶𝜋 (𝑡) and in the 3pt correlators, but not in 𝐶𝐾 (𝑡). We then consider
each correlator as a function of a different 𝛼𝑖

𝑀` (𝛼1, 𝛼2, 𝛼3) ∝

√︄
𝐶
𝛼1
`,𝐾 𝜋

(𝑡)𝐶𝛼2
`,𝜋𝐾

(𝑡)
𝐶𝐾 (𝑡)𝐶𝛼3

𝜋 (𝑡)
, (11)

such that the error 𝜎𝛼
𝑓

of the form factor is a function of 𝜶 = (𝛼1, 𝛼2, . . . , 𝛼𝑛), i.e. 𝜎𝛼
𝑓
= 𝜎 𝑓 (𝜶).

The values of 𝜶 are then determined by minimizing numerically the error 𝜎 𝑓 (𝜶), i.e. by imposing
∇𝜶𝜎 𝑓 (𝜶) = 0. In particular, since the denominator of 𝑀` is always the same and the numerator is
always different for every values of `, we have in total 9 parameters 𝛼𝑖 . We will refer to this 𝜶 as
the optimized 𝛼 (indicated as 𝛼𝑜𝑝𝑡 in the plots), as opposed to the analytical value 𝛼𝑚𝑖𝑛 in (3).

In figure (4) we show the results for the 𝑓+(𝑞2) and 𝑓−(𝑞2) 𝐾 → 𝜋 form factors. In the top left
corner, we show the time dependence of the form factors (10) between source and sink. In the main
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Figure 4: Form factor 𝑓+ and 𝑓− in the range 𝑡 ∈ [7, 10], where the fit is performed. The tables on the
right show the ratio between the error with reduced and full statistics (central column) and the ratio with the
optimized technique and the full statistics (right column).

plot, we zoom on the subset of points we are using for the final fits. From the plot, it is evident that
the optimization technique is successful. The numbers are reported in the table on the right: for
every time slice, the central column correspond to the ratio �̃�\/𝜎\ and it is compared to the new
ratio 𝜎𝛼𝑜𝑝𝑡

\
/𝜎\ . We can clearly see that already with 8 sources out of 32 we get a smaller error

than the one with full statistics. In other words, we can achieve a better result at only 1/4 of the
computational cost, similarly to what happened with the bare correlators.

We finally show in figure (5) the values of 𝑓+ and 𝑓− obtained from the fit to a constant. In the
top plots, we show the values of the form factors as a function of the number of sources, whereas
in the bottom plots we report the ratio between relative errors, corresponding to �̃�𝑟𝑒𝑙/𝜎𝑟𝑒𝑙 (blue
points) and 𝜎𝛼𝑜𝑝𝑡

𝑟𝑒𝑙
/𝜎𝑟𝑒𝑙 (orange points). Again, the plots show that our technique allows us to do

better even than the full statistics case for at least 1/4 of the total number of sources.

7



Variance reduction for partially twisted boundary conditions Alessandro Barone

Figure 5: Form factor 𝑓+ and 𝑓− fit in the range 𝑡 ∈ [7, 10].

5. P±A boundary condition

We applied the very same technique also in a different condition, namely the case with Periodic
± Antiperiodic boundary conditions [12] in time direction. Given a field 𝜙(𝑡) with period 𝑇 , we can
choose Periodic boundary conditions (P) or Antiperiodic boundary conditions (A) in time direction.
For the corresponding fields the following relations will hold

𝜙𝑃 (𝑡 + 𝑇) = 𝜙𝑃 (𝑡) , 𝜙𝐴(𝑡 + 𝑇) = −𝜙𝐴(𝑡) .

We can then combine these two fields into 𝜙(𝑡)𝑃±𝐴 = 𝜙𝑃 (𝑡) ±𝜙𝐴(𝑡): both choices of boundary con-
ditions have the effect of doubling the period of the field and have thus the advantage of eliminating
the effect of the around-the-world contributions arising from the finite-volume formulation. In fig-
ure (6) the correlators with Antiperiodic (A) and Periodic+Antiperiodic (P+A) boundary conditions
are shown together: we can clearly see that the period of (P+A) is different and that in this case the
around-the-world effects are subtracted. On the right, we plot the relative difference between the
two correlators: this shows where the around-the-world effects become significant, which is around
𝑡/𝑎 = 25.

Coming now to the new variance reduction technique, we build a new correlator as in (2)

𝐶𝛼𝑃±𝐴(𝑡) = �̃�𝑃±𝐴(𝑡) + 𝛼(𝑡) (�̃�𝑃/𝐴(𝑡) − 𝐶𝑃/𝐴(𝑡)) , (12)

where in this case we could use either the Periodic (P) or the Antiperiodic (A) as the full statistics
correlator. We will mainly consider 𝐶𝛼

𝑃+𝐴(𝑡) improved with the Antiperiodic case (A).

8
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Figure 6: Comparison between correlators with Antiperiodic boundary conditions (A) and Peri-
odic+Antiperiodic (P+A) boundary conditions. On the left, the two correlators are plotted together: (P+A)
has period 2T, so only half of it appears. On the right, the relative difference between the two is shown.

Figure 7: Improvement of the new correlator compared with the reduced statistics correlator (on the right).
Relative error ratio of the fit results as a function of the number of sources (on the left).

In figure (7) we show the results obtained on a 2pt pion correlator with 4 sources out of a total
of 16, in analogy with what we did for the twisted case. On the left, the plot shows that the ratio
𝜎𝛼/𝜎 built from the improved correlator is much smaller than the ratio �̃�/𝜎. The fit on the right
is performed using the ansatz (7), and it shows that the new correlator gives the same results as the
full statistics correlator for every number of sources. This is not surprising, as the fit range lies
typically in the first half of the lattice, where the (A) correlator and (P+A) correlator are almost
the same, as shown in figure (6). Overall, even with these boundary conditions we obtain similar
results as in the twisted case.

6. Summary and outlook

We have shown in this work that it is possible to obtain precise twisted correlators at a reduced
computational cost, starting from the knowledge of the full untwisted correlator. In particular, we
have shown that we can define a new twisted correlator (2) using a reduced number of sources for

9
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the twisted case and exploiting the untwisted correlator; a parameter 𝛼, determined analytically,
is also introduced to minimize the error. The method works well for small twist angles, with a
computational cost roughly equal to 1/4 of the total one; the improvement is controlled by the
correlation between the untwisted and twisted correlators. A similar analysis can be performed also
for the Periodic±Antiperiodic boundary conditions case.
For generic observables, such as the form factors, we can apply the same strategy by tuning a larger
number of parameters 𝛼𝑖 , which can be determined numerically. Even in this case, the technique is
giving very promising results, indicating again that we can achieve high precision results at 1/4 of
the total cost.

To complete the analysis, one also needs to take into account possible biases introduced in the
new correlators. For the level of statistical errors obtained here, the results seem to suggest that the
new constructed correlator leads to unbiased central values, but a complete analytical understanding
of the process is required. Also, the Periodic±Antiperiodic case needs to be tested for physical
calculations, for example the 𝐾 − 𝜋 scattering [13], where the control of around-the-world effects
plays a crucial role.
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