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Vegetation phenological stages are important indicators for monitoring vegetation 

growth, evaluating climate change impacts on vegetation, control atmospheric 

general circulations and carbon sequestration. Traditional phenology observations 

rely on fixed-point visual inspection. However, this method is labour-intensive and 

subjective, and often limited to few species. Remote sensing technology using 

vegetation indices provides a more objective, long-term, continuous and efficient 

way to monitor land surface phenology from regional to world wide scale. The 

European Space Agency (ESA)’s Medium Resolution Imaging Spectrometer 

(MERIS) data in red/NIR (near infrared) were used to produce the level-2 product 

of MERIS Terrestrial Chlorophyll Index (MTCI). The MTCI, is strongly linked 

with the red edge position (REP) in vegetation spectra, and in turn the foliar 

chlorophyll content, making the MTCI a useful product of vegetation phenology 

indicator. 

In this thesis the MTCI data with different resolutions were applied to monitor 

vegetation phenological variables over mainland China, namely onset of greenness 

(OG) and end of senescence (ES). Then they were correlated with climatic factors 

of temperature and precipitation, demonstrated the main drives for major vegetation 

types in climate zones. Both MTCI and NDVI time-series captured the growth 

patterns for major vegetation types, the OG estimates were more consistent than the 

ES, and overall the NDVI gave later ES estimates than the MTCI. 9-year phenology 

maps showed that the OG was advanced and the ES was delayed in general. The 

OG was more related with latitude than the ES especially in the north China, while 
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it was the opposite for the ES. And it was found in north China, the temperature 

was the main driver for the earlier OG, while in the south precipitation played a 

prominent role in advancing the OG. For the ES, both precipitation and temperature 

influenced partially. In Qinghai-Tibet Plateau, the precipitation was the main driver 

for both shifting OG and ES of grass, while less influenced by temperature. Among 

the vegetations that were examined, the broadleaf forest had the strongest 

correlation with climatic factors; the needle leaf forest was also greatly influenced 

by climate in cold temperate zone; the grass was highly affected by climate, while 

the mixed forest and crops were at moderate level. 

In the light of the abilities of MTCI in monitoring vegetation phenology, MTCI was 

applied into specific situations to test the performance on phenology-based 

applications, including mapping paddy rice in northeast China and predict rice yield. 

The results were well consistent with the statistical data on the prefectural level and 

county level in spatial distribution and quantity from 2007 to 2011. The crop yield 

regression models indicated that the maximum value of MTCI time-series has a 

better correlation with rice yield. 

In summary, MTCI has its own advantages than popular index such as normalised 

difference vegetation index (NDVI). It is more sensitive to high values of 

chlorophyll content and less sensitive to spatial resolution and atmospheric effects. 

Although the MERIS was not in operation anymore in May 2012, the successor, the 

Sentinel satellites were launched, with a wider range of wavelength from blue to 

shortwave infrared, including red edge bands. Therefore, index for estimating foliar 

chlorophyll can be produced to combine with other Sentinel products in agricultural, 

biological, and ecological studies.  
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1.1  A definition of phenology 

Phenology is defined by the International Biological Program (IBP) as “the study 

of the timing of recurrent biological events, the causes of their timing with regard 

to biotic and abiotic forces, and the interrelation among phases of the same or 

different species” (Lieth 1974). Phenology as a word was introduced in 1853 by the 

Belgian botanist Charles Morren and derived from the Greek word phaino, which 

means to show or to appear (Fenner 1998; Haggerty 2008; Koch et al. 2007; 

Schwartz 2013). In practical terms, phenology is the study of measuring the timing 

of periodic biological events in the animal and plant lifetime, and how they are 

influenced by the environment. For example, sprouting and flowering of plants in 

the spring, colour changes of leaves in the autumn, bird migration and nesting, 

insect hatches, and animal hibernation are all phenological events (Dube et al. 1984). 

In the case of flowering plants, more specifically, the life cycle events or 

phenophases include leaf budburst, first flower, last flower, first ripe fruit, and leaf 

shedding, among others. Therefore, phenologists record the dates of the event 

occurrences or phenophases to study how environmental conditions such as 

temperature and precipitation affect their timing. 

Phenology has strong links with human knowledge and its studies may be as old as 

civilisation itself. As a result of agriculture farmers started to reside in one place 

with continuous agricultural activities such as planting seeds, observing crop 

growth, and carrying out the harvest year after year. In ancient periods, phenology 

was recorded as empirical knowledge and stories up to 3000 years ago in China as 

well as in the Christian Bible (Schwartz 2013). However, this empirical knowledge 

could not be translated into systematic data which provide the impetus for the early 

development of phenology to become an integrated scientific endeavour and 

discipline, while for a long time the field remained in agricultural applications and 

generally it was only deemed practical on the local scale. 

Ancient inhabitants in China and Europe recorded the activities of plants and 

animals to mark the seasons (Battey 2000). A large quantities of fragmentary 

phenology related information was delivered in Chinese folk, poetry, chronicles, 

almanacs, and monographs on agriculture or herbalism, and also similar forms of 
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literature are found in European history, especially on agriculture, demonstrating 

the early origin of phenological knowledge is linked closely with agriculture 

practices closely (Liang 2009). The longest written phenological record originated 

in Japan at the Royal court of Kyoto, since the 8th century, as a part of the national 

festival tradition to record cherry flowering time (Aono and Kazui 2008), and the 

most vital and broadest tradition of phenological observation is found in Europe in 

light of long-term data sets in numerous European countries (Menzel 2002). 

Modern phenological studies are thought to have been initiated in Europe in the 

mid-18th century. In 1736 Robert Marsham constantly recorded the “indications of 

Spring” on his family estate in Norfolk, Britain, to improve timber production by 

learning more about the timing of plant and animal life cycles such as the first 

occurrence of leafing, flowering, and insect emergence. After he passed away, his 

descendants kept making these records until 1947, making it one of the longest 

phenological monitoring records in Europe (Haggerty 2008). Today, phenology 

becomes an integrating scientific discipline. Many recent phenological studies are 

carried out by scientists from various fields including population biologists, 

community ecologists, climatologists, hydrologists, and specialists of remote 

sensing (Haggerty 2008). However, as phenology is being paid more and more 

attention by individuals from many different scientific backgrounds, the full 

benefits of disciplinary combination still need to be demonstrated and realised in 

the future (Schwartz 2013). 

1.2  The role of vegetation phenology 

Phenology has a long traditional history in agriculture. Historical interest in 

phenology came from an interest in the development of farming and its relation to 

the climate (Ruml and Vulić 2005). Knowledge of the timing of phenological events 

and their variability can be helpful for improving stable crop quality and yields by 

implementing suitable and sustainable crop management including timely irrigation, 

fertilising and crop protection. Complex environmental interactions and genetic 

factors determine the dynamics of phenology. Among the vegetation phenological 

phases such as germination, vegetative, flowering, fruiting, and senescence, 

flowering time is the most often considered, for it is simple to record and easy to 
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interpret. It has been found that temperature is the dominant reason for the dynamics 

of flower time and other phenological phases. Nevertheless, temperature is not the 

only reason for explaining all the variation in plant growth. Photoperiod, rainfall, 

and solar radiation have all been reported as important factors often modifying the 

phenology of plants (Günter et al. 2008; Richardson et al. 2013a; Ruml and Vulić 

2005; Schwartz 2013). Although the soil plays a less important role in influencing 

plant growth than climate (Wielgolaski 2001), sometimes soil temperature, water 

content, soil type and nutrient supply can also be significant for plant growth 

(Wielgolaski 1999).Recently, there has been an increase in interest in phenology 

primarily due to changes in the timing of different phenological phases in plants 

and animals, connected to climate change (Menzel and Fabian 1999; Peñuelas et al. 

2002) Moreover, phenology can contribute to various scientific disciplines from 

biodiversity, agriculture, and forestry to human health. For example, phenology 

studies provide significantly valuable data for land-use planning, crop zonation, 

agricultural, forestry and domestic pest species control, conservational species 

protection and pollen release information (Khwarahm et al. 2017), and their 

relations to human health. 

It is becoming widely documented that earlier onset of spring phenological events 

and a lengthening of the growing season is occurring at many locations across the 

globe because of global warming (Menzel 2000; Menzel 2002). For example, 

Menzel and Fabian (1999) found an average lengthening of the growing season of 

about 11 days for tree species in Europe, from the early 1960s to the end of the 20th 

century. The IPCC (International Panel on Climate Change) in its Third Assessment 

Report (2002) concluded that many physical and biological systems were already 

reacting to changing temperatures, such as hydrology, glaciers and ice, vegetation, 

insects, birds and mammals. Vitasse et al. (2011) predicted that the dates of tree 

flushing would advance from 0 to 2.4 days per decade, and the senescence would 

delay from 1.4 to 2.3 days per decade. Guo et al. (2013) found that the first 

flowering dates of chestnut in Beijing advanced by 1.6 days per decade and the 

growing season expanded by 4.3 days per decade, during 1963 to 2008. All of these 

studies demonstrate that climate change is changing the seasonality of our 

ecosystems significantly, especially in the middle and higher northern latitudes 

(Smetacek and Nicol 2005; Tucker et al. 2001; Zhang et al. 2004).  
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The importance of phenology lies in its ability to monitoring effectively the impacts 

of climate change on plants and animals. Records on observations of plant 

phenological events such as leaf unfolding, flowering, fruit ripening, leaf colouring, 

and leaf fall, provide an indication that climatic change is advancing event 

occurrences by about 2.3 to 5.2 days per decade in the last 30 years, according to 

(Alcamo and Olesen 2012). Sparks and Menzel (2007) suggested that some effects 

on vegetation would happen in the future including (i) ranges extending towards 

the Polar Regions and higher altitudes; (ii) changes in land cover density and 

vegetation composition; (iii) longer growing seasons; and (iv) more shifting 

phenological events such as earlier plant flowering, earlier breeding times, earlier 

egg laying in the year. Among these, changes of growing seasons and phenological 

events can be well depicted by phenology, which is in close relation to climate and 

weather conditions, especially temperature in spring and summer (Sparks et al., 

2001). Unlike range extension or ecosystem composition change, which can be 

confounded by other factors such as land use change, temperature is the dominant 

influence. In addition, changes in the cycle of phenological events and lengthening 

of the growing season can significantly affect: (i) the global carbon and water cycle 

(Baldocchi et al. 2005; Churkina et al. 2005; Piao et al. 2007); (ii) shifts in 

agricultural zoning (Fischer et al. 2005; Fischer et al. 2002); (iii) changing response 

of vegetation to the atmospheric boundary layer (Schwartz and Crawford, 2001); 

(iv) plant competition and biodiversity (Rathcke and Lacey, 1985; Schwartz 2003); 

(v) pest and disease control (Schwartz, 2003); and (vi) pollen flight forecasts 

(Tormo et al., 2011). Phenology, therefore, has been suggested by Sparks and 

Menzel (2003), and Walther et al. (2002) as the simplest and most effective means 

of observing the influence of temperature change which, in turn, makes phenology 

a significant tool in global change research. 
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Figure 1 Climate change impacts on vegetation and its responses to the environment. 

1.3  The role of remote sensing 

The vegetation phenology including bud burst, leaf development, senescence, and 

growing season length, can be used to document and evaluate the effect of climate 

change impacts on phenological events. Therefore, long-term observation and 

recording of vegetation phenological changes is valuable for monitoring and 

understanding the trends in regional and global climate changes, providing 

opportunities for reconstructing past climate variation, evaluating the magnitude of 

climate change impacts on vegetation growth, and predicting biological responses 

to future climate scenarios (Zhang et al. 2012b). 

Conventional long-term observations of species level have been used widely in 

revealing local and regional climate change for decades (Chen et al. 2005b). For 

example, budburst and flowering dates could be recorded and associated with air 

temperature for finding variation in climate over the long-term period. Land surface 

phenology (LSP) is usually defined as the seasonal variation in vegetated land 

surface, which is measurable by earth observation satellites (de Beurs and Henebry 

2010; Han and Xie 2014; Helman 2018; Jones et al. 2014; Luo et al. 2014; Moody 
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and Johnson 2001; White and Nemani 2006). It is distinguished from the traditional 

vegetation or plant phenology that usually is monitored by species in-situ, because 

LSP is based on regional-to-global scale observations of phenology, which can be 

directly compared with regional climate information. Therefore, LSP remote 

sensing data is able to serve as key biological indicators for detecting the response 

of terrestrial system to climate change. Spectral vegetation indices derived from 

satellite sensor data are usually used to extract LSP information, such as the 

Normalised Difference Vegetation Index (NDVI), provide an indication for leaf 

chlorophyll content, leaf area, canopy cover, and structure, which constitutes 

canopy greenness. However, the NDVI had been demonstrated to saturate at high 

level of greenness biomass and concentrations of chlorophyll (Dash et al. 2010b; 

Huete et al. 2002; Mutanga and Skidmore 2004). Therefore, more accurate 

chlorophyll-based vegetation indices such as MERIS Terrestrial Chlorophyll Index 

(MTCI) have been developed to overcome the problem. 

By using satellite sensor image derived vegetation indices, remote sensing provides 

an opportunity to study plant growing conditions and observe vegetation covering 

large areas over time, and to understand the effects of climate change from local to 

global scales. For example, Botta et al. (2000) combined leaf onset dates retrieved 

from NOAA/AVHRR satellite NDVI with climate data and a land cover map to 

identify appropriate models for predicting the onset date of leaf growth for the 

decade 1983 to 1993. Maignan et al. (2008) used AVHRR NDVI data to monitor 

the inter-annual variation of vegetation phenology globally for 18 years from 1982 

to 1999. Zhang et al. (2006b) used the enhanced vegetation index (EVI) derived 

from NASA’s Moderate Resolution Imaging Spectroradiometer to study global 

vegetation phenology including green-up, maturity, senescence, and dormancy, for 

the period 2001 to 2003. Zhang et al. (2012b) used a two-band enhanced vegetation 

index (EVI2) derived from the AVHRR and MODIS Climate Modelling Grid (CMG) 

records to represent global vegetation phenology for three decades (1982-1989, 

1990-1999, and 2001-2009). 

Many phenology studies were also conducted in China at local to regional scales. 

Conventional ground observations were often used within conservation or forestry 

regions for specific species, to study the phenological variation caused by climate 
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change (Du et al. 2010; Luo et al. 2007; Zhang et al. 2006a; Zhang et al. 2010). 

However, such conventional approaches are commonly limited by the number of in 

situ observation sites and labour intensity; therefore, it is very hard to obtain 

information on vegetation response to climate change at the biomes scale. In 

addition, phenological stations and conventional phenological data are 

comparatively scarce (Chen and Pan 2002). 

1.4  Aims and objectives 

The overall aim of this research was to test the performance of the MTCI in 

monitoring phenology and phenology-based agricultural applications over China at 

a range of temporal and spatial resolutions. The specific objectives are proposed as 

follows: 

1. To investigate the performance of using the MTCI to monitor vegetation 

phenology at large and regional scales for different vegetation types. 

2. To estimate vegetation phenology over a 9-year period across mainland 

China by using the MTCI data. 

3. To quantify vegetation phenological variation at the regional scale and 

investigate the drivers of this variation. 

4. To evaluate the potential of using phenological information derived from 

MTCI in specific applications such as agricultural mapping and crop yield 

forecasting, in conjunction with other indices. 

1.5  Thesis structure 

After Chapter 1 (Introduction), Chapter 2 reviewed the use of remote sensing in 

monitoring vegetation phenology. Including sources of remote sensing data, 

processing data, and phenological extraction techniques. 

Chapter 3 (compare MTCI with NDVI) computed MTCI from 2010 MERIS 300 m 

8-day data, and extracted phenological metrics including Onset of Greenness (OG) 

and End of Senescence (ES) at the regional level within mainland China, for four 

major vegetation types. The chapter concluded with a summary of the advantage 

and disadvantage for the MTCI in monitoring vegetation phenology, compared to 

widely used NDVI. 
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Chapter 4 (mapping vegetation phenology over mainland China) adopted 4.6 km 

MTCI data from 2003 to 2011 to extract key phenological variables including OG, 

ES, and LGS at the national level of mainland China. By the end of this chapter, the 

produced phenology maps were ready to be used for further analysis. 

Chapter 5 (analyse phenology change with climate change) studied phenology 

changes in related to climatic factors of precipitation and temperature over a period 

from 2003 to 2011 based on the phenology maps produced in the last chapter, for 

eight vegetation-climate zones in mainland China. 

Chapter 6 (use MTCI and other vegetation indices to map paddy rice in northeast 

China) utilised 1km MTCI data from 2007 to 2011, coupling with MODIS NDVI 

and LSWI1640, by using a combined conditions method to map paddy rice fields 

distribution at northeast China. At the end of this chapter, rice maps were generated 

for the year 2007 to 2011. These rice maps were validated with NLCD 2010 dataset 

and statistical records from the yearbook. 

Chapter 7 (using rice map to predict yield) established a linear regression 

relationship between phenological variables extracted from MTCI time-series data 

and yield records from the statistical yearbook. This was validated by using leave-

one-year-out-approach. 

Chapter 8 (discussion) reviewed the findings from the previous chapters, and 

discussed the benefits of the MTCI in land surface phenology-based applications, 

as well as the limitations.  

Chapter 9 (conclusions and future work) summarised the novel contributions made 

in this thesis, discussed the advantages and disadvantages of using MTCI in 

monitoring land surface phenology, and in phenology-based applications.  
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2.1  Climate change and vegetation phenology 

There is a substantial body of evidence showing Earth has warmed since the middle 

of the 19th century, it can result from natural causes, human activities through the 

emission of greenhouse gases such as CO2 and methane, and land use. (Wheeler 

and von Braun 2013). Climate warming has brought the spring earlier and delayed 

the arrival of winter (Menzel et al. 2006; Peñuelas et al. 2009). It changes the 

growing cycle of plants between years, which leads to many consequences for 

ecological processes, agriculture, forestry, human health, and the global economy 

(Myneni et al. 1997). Studies on the impact of plant responds to climate change 

suggest that the phenological shifts in turn affect climate (Fang et al. 2002; 

Ganjurjav et al. 2016; Menzel et al. 2006; Richardson et al. 2013b; Vitasse et al. 

2011; Wang et al. 2017b; White et al. 2005). Longer growing seasons have effects 

on biochemical processes and physical properties of vegetated land surfaces. CO2 

uptake is the main biochemical process in photosynthesis, in which plant traps CO2 

from the atmosphere to produce glucose for growth and respiration (Polgar and 

Primack 2011). An extended plant growing season increases the amount of 

biospheric CO2 uptake and thus decreases the concentration of CO2 in the 

atmosphere, which contributes to the greenhouse effect. Furthermore, the extended 

plant activity increases the total emission amount of biogenic volatile organic 

compounds (BVOCs), which may also contribute to the complex processes 

associated with global warming (Delbart et al. 2008; Hollister et al. 2005). In 

addition, the shifts in all the phenophases have impacts on regional microclimate, 

by altering surface albedo, CO2 fluxes and evaporation, and in the longer term, 

global climate (Menzel 2002).  

The scientific discipline of phenology has a long history, it was firstly known as 

records of how and when plants and animals responded to seasonal changes by early 

farmers (Demarée and Rutishauser 2009). In recent decades, many modelling and 

empirical studies demonstrating that plant phenology can serve as an indicator of 

the long-term biological impacts of climate change on ecosystems, especially 

temperature on the timing of plant phenophases (Donnelly and Yu 2017; Richardson 

et al. 2013b). Further, not only are plant phenophases impacted by climate change, 

but also plant growth responds to climate system with, for example, influences on 
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carbon flux to the atmosphere (Richardson et al. 2013b). Menzel et al. (2006) 

highlighted the impacts on the environment by using long-term (1971-2000) pan-

European (21 countries) phenological data. They found that 78% of all leafing, 

flowering, and fruiting records advanced and only 3% were significantly delayed, 

while the average advance of spring/summer was 2.5 days decade-1 in Europe. Piao 

et al. (2006b) examined the effects from climate changes on vegetation phenology 

during 1982 to 1999 in temperate China. The results showed that a warming in the 

early spring by 1°C would cause an earlier green-up date of 7.5 days, whereas a 

delayed dormancy of 3.8 days in autumn. Guo et al. (2013) evaluated long-term 

(1963-2008) climate responses of chestnut phenology season from Beijing, China. 

The results showed that the first flowering date in Beijing was advanced by high 

temperature, but delayed during autumn and winter in warm conditions. Leaf 

colouring was advanced by warm weather, but delayed by high temperature in 

autumn. 

Climate change has a direct impact on food security by altering the global patterns 

of precipitation and temperature that determine the location of arable land and the 

quality and quantity of crops (Ostberg et al. 2018). Global warming also increases 

the probabilities of extreme weather events, such as droughts, floods, and heat 

waves, which may increase the variability in crop yields and trigger the fluctuations 

in crop price (Mendelsohn et al. 2007; Tadesse et al. 2014). Anthropogenic 

emissions of greenhouse gases influence crop yield in several ways. On the one 

hand, climate changes alter the length of growing season, water availability, and 

heat stress (Eyshi Rezaei et al. 2014; Lobell et al. 2012; Schlenker and Roberts 

2009); and on the other hand, higher concentrations of atmospheric CO2 increase 

the water use efficiency and enhance the photosynthesis rate in wheat, rice, and 

maize (Darwin and Kennedy 2000). Therefore, it is necessary to monitor and 

evaluate the impacts from global warming to crops. 

2.2  The means to observe vegetation phenology 

As phenology provides significant evidence of climate impacts, showed in IPCC 

reports 2001 and 2007, time-series-data of phenological events at different scales, 

are crucially important to be collected for a greater understanding of how vegetation 
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systems respond to climatic fluctuations, and to develop new or improved strategies 

for effective management. Traditional plant phenological observations are based on 

direct measurements, record specific phenophases such as flowering or fruiting, and 

are commonly carried out by a limited number of observers over a limited 

geographic area or at one specific site (Ricotta and Avena 2000). On the other hand, 

remotely sensed satellite sensor data are used to quantify the seasonal patterns 

derived from plants’ development and senescence, at a coarse spatial and temporal 

resolution over a regional or global scale (White and Nemani 2006). Moreover, the 

use of inexpensive digital cameras for proximal sensing of phenological events is 

becoming more common (Zhao et al. 2012). 

2.1.1 Conventional ground observation of vegetation phenology 

Field phenological observations provide details of plant seasonal development for 

specific species. In fact, phenological ground observations have a long history, 

some up to centuries (Rutishauser et al. 2007). For example, it can be extended back 

for thousands of years in China (Zhu and Wan 1963), and traced back to the early 

1700s in Europe (Sparks and Carey 1995), and 1800s in Japan (Lauscher 1978). 

Traditionally, plant phenological observations are mainly about recording the 

occurrence dates for key events such as first leaf opening, first flowering, full bloom, 

and end of bloom, by long-term observations. There are several networks of 

phenology observation in the world. The most notable are the PlantWatch in Canada 

(https://www.naturewatch.ca/plantwatch/), the National Phenology Network in the 

USA (NPN, https://www.usanpn.org/usa-national-phenology-network), the 

Nature’s Calendar in the UK (https://naturescalendar.woodlandtrust.org.uk/), and 

the Japan phenological Eyes Network (PEN, 

http://pen.agbi.tsukuba.ac.jp/index_e.html). 

To acquire accurate dates for the key events, frequent observations over the whole 

growing season are needed. As a result, ground-based recording phenological dates 

is relatively labour intensive and costly (Sparks et al. 2006). Furthermore, in the 

interest of obtaining reliable observation series and comparable data, a standardised 

protocol is required. However proficient skills and the effort of observers largely 

determines the quality of the phenology data, but it increases the susceptibility to 

subjective inaccuracy (Booth et al. 2006; Menzel 2002). Although phenological 
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time-series data can be collected by single or multiple observers at a specific 

location or via phenological networks for different locations on the same species 

(Bertin 2008), direct observations of plant phenology are sometimes discontinuous 

for many reasons such as weather and climatic reasons and observer personal 

reasons, and sometimes the observations are also geographically limited so that 

there is a significant decline in long-term observation sites. 

2.1.2 Remote sensing techniques of land surface phenology 

observation 

Satellite sensor imagery also has been used for a wider spatial scale, primarily based 

on the normalised spectral reflectance in the red and near-infrared regions of the 

electromagnetic spectrum, for delineating phenological patterns of key events such 

as the so-defined ‘leafing out’ in spring (Botta et al. 2000; Studer et al. 2007). For 

example, the satellite-derived NDVI can be used to estimate the amount of actively 

transpiring vegetation, which increases during the green-up phase. This widely used 

index provides a measure of the extent, density, and vigour of land vegetation 

(Schwartz and Karl 1990). Compared with a labour-intensive ground observation, 

a satellite-based method can provide estimated data for a large area with relatively 

lower cost. However, remotely sensed satellite sensor data still depend on ground 

observation data for validation. Nevertheless, it is hard to correlate ground 

observations with satellite sensor observations, primarily because the data are at a 

different scale for ground (fine scale) and satellite (coarse scale) observations 

(Fisher and Mustard 2007). Moreover, satellite sensor observations are affected by 

other factors such as clouds, aerosols and other atmospheric characteristics as well 

as sensor-related reasons, all of which result in limited temporal and spatial 

coverage for satellite sensor images (Ahl et al. 2006; Fisher and Mustard 2007; 

Studer et al. 2007; Zhang et al. 2006b; Zhang et al. 2004). 

Non-commercial satellite sensors in use for monitoring land surface phenology 

The advantages of applying remote sensing techniques for phenology are the ability 

to capture continuous phenology events at large scale in an economic way (Langley 

et al. 2001; Nordberg and Evertson 2005; Xie et al. 2008) and the ability to 

retrospectively estimate the phenology from archived satellite sensor data from the 
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present time to over several decades back (Xie et al. 2008). Therefore, many 

approaches adopting a variety of satellite remote sensing products has been used to 

monitor the timing of phenology events.  

Over the past half-century, several airborne and space-borne sensors (multispectral 

or hyperspectral) with a wavelength ranging from the visible to the microwave, 

spatial resolutions ranging from sub-metre to kilometres, temporal resolutions from 

30 min to weeks or months have been used in phenological studies (Xie et al. 2008). 

Since different sensors have their own spatial, temporal, spectral and radiometric 

characteristics, it is significant to choose appropriate sensors for mapping 

vegetation phenology. Generally, it can be summarised into four major related 

factors: (I) the mapping objective. Normally the species of vegetation and the 

expected mapping accuracy need to be considered first. In general, coarse resolution 

images are usually adopted when higher level of vegetation class needs to be 

identified, while the finer resolution images are commonly used for fine-detailed 

classification of vegetation. (II) The cost of images. Under normal conditions, 

remote sensing imagery may be expensive especially for fine spatial and temporal 

resolution remote sensing composites which are often sold by retailers authorised 

by satellite companies. For example, a Canadian company, Prairie Geomatics, 

usually produces NDVI vegetation maps derived from India IRS-1D, French SPOT, 

or U.S. Landsat satellite photos for approximately 47 per acre. However, more and 

more free satellite sensor imagery is available online, including data from the 

European Space Agency’s Sentinel series of satellite sensors (III) The climate 

conditions (especially atmospheric conditions). Sometimes, to obtain cloud-free 

time-series images, different sources of satellite images need to be considered 

because of their various spatial, temporal and radiometric characteristics (Soudani 

et al. 2006). (IV) The technical issues for image interpretation. Technical specifics 

need to be paid attention to regarding image quality, pre-processing, and 

interpretation when choosing suitable sensors.  

Many onboard sensors carried by satellites with various spectral, spatial, and 

temporal characteristics have been utilised for vegetation phenology studies, as 

shown in table 1.
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Table 1 Characteristics of low or no- cost satellite sensors utilised for vegetation phenology studies.

Satellite Sensor Operation Resolution Frequency

MSS (Landsat 1-3) 1972–1983 80m 18 day

TM (Landsat 4 and 5) 1982–1993(4) 30 m for multispectral bands 16 day

1984–2013(5) 120 m for the thermal infrared band

ETM+ (Landsat 7) 1999–present 15 m for panchromatic bands 16 day

Landsat 30 m for multispectral bands

60 m for the thermal infrared band

OLI and TIRS (Landsat 8) 2013-present 15 m for panchromatic bands 16 day

30 m for multispectral bands

10 0m for the thermal infrared band

NOAA AVHRR 1978–present 1.1 km 1 day

SPOT Vegetation (SPOT 4 and 5) 1998–present 1 km 1 day

Terra MODIS 1999–present 250 m (Band1-2), 500 m (Band3-7), 1 km (Band8-36) 1-2 day

Aqua MODIS 2002–present 250 m (Band1-2), 500 m (Band3-7), 1 km (Band8-36) 1-2 day

Envisat MERIS 2002–2012 300m 3 day

C-SAR (Sentinel-1) 2014-present SM: 5×5 m, IW: 5×20 m, EW: 25×100 m, WV: 5×20 m 12 day

Sentinel MSI (Sentinel-2) 2015-present 10 m (VNIR), 20 m (REP & SWIR), 60 m (atmospheric correction bands) 5 day

OLCI(Sentinel-3) 2016-present 300 m (FR), 1.2 km (RR) 0.5-2 day
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Landsat 

The Landsat sensor images might be the most widely adopted products to offer the 

world longest continuous and consistent Earth monitoring satellite sensor imagery 

(Droogers and International Water Management 2002; Xie et al. 2008). The first 

Landsat satellite was launched in 1972, and afterwards a series of more 

sophisticated multispectral imaging sensors, named MSS (Multispectral Scanner) 

and TM (Thematic Mapper) were equipped onto Landsat 4 (1982), 5 (1984), 6 

(1993, launch failed), 7 (1999 with Enhanced Thematic Mapper Plus, ETM+), 8 

(2013 with Operational Land Imager, OLI, and Thermal Infrared Sensor, TIRS), 

and 9 is planned to launch in late 2020. The Landsat TM and ETM+ imaging sensors 

have archived millions of images with medium-to-coarse spatial resolution since 

they were incepted. For example, Landsat TM imagery has a spatial resolution of 

30 m for the multispectral bands and 120 m for the thermal infrared band; while 

Landsat ETM+ imagery has a spatial resolution of 30 m for multispectral bands and 

60 m for the thermal infrared band, and the latest Landsat 8 has a finer resolution at 

15 m for the panchromatic bands. 

The Landsat series of satellites offer two primary advantages: a finer spatial 

resolution at 30 m which is appropriate for landscape characterisation and a long-

term observation time-series back to the 1970s. However, Landsat’s 16-day revisit 

cycle is relatively too long and misses some details for observation during rapidly 

changing phenological stages such as leaf unfolding or flowering. Since Landsat 

data are free for download from the U.S. Geological Survey (USGS) website, which 

makes Landsat imagery accessible to all researchers and developers, researchers are 

developing new methodologies that fuse Landsat data with other satellite remote 

sensing data, to potentially overcome the shortcomings of low temporal frequency 

of Landsat series. For instance, Schmidt et al. (2012) applied STARFM (Spatial and 

Temporal Adaptive Reflectance Fusion Model) to long-term MODIS and Landsat 

TM/TM+ data from February 2000 to September 2007 at a test area within the North 

Queensland Savannas in Australia. Tewes et al. (2015) applied the ESTARFM 

(Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) algorithm to 

MODIS 250 m and RapidEye 5 m for monitoring rangeland dynamics in a semi-

arid environment located in South Africa. He et al. (2015a) merged the MODIS and 
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Landsat TM data to create a dataset of vegetation dynamics with both fine spatial 

resolution and temporal resolution, for two ranches in southwestern Texas. 

Landsat products have been adopted for vegetation mapping mainly at a regional 

scale. Because of the long time-series of Landsat dataset, it is very helpful and 

convenient to map long-term vegetation distributions and study spatiotemporal 

vegetation changes over the time (Xie et al. 2008). For example, Fisher et al. (2006) 

compiled 57 Landsat scenes from southern New England from 1984 to 2002 to 

extract phenological metrics by a logistic-growth simulating sigmoid curve, and the 

accuracy was qualified with direct field measurements. The results indicated that 

the variability of local satellite-derived phenological metrics was close with 

multiple springtime ground observation with r2=0.91, and the deciduous forest in 

the Providence leaf out 5-7 days earlier than comparable rural areas; Bhandari et al. 

(2012) synthesised Landsat TM images through 2003 to 2008 using the STARFM 

for assessing vegetation phenology in Eucalyptus woodland and open forest 

environments in Australia. The results showed no significant difference in trend and 

less than 16 days for key phenological parameters, compared with MODIS NDVI; 

Kovalskyy et al. (2012) compared NDVI data derived from three-year flux tower 

data with Landsat NDVI, and MODIS nadir bidirectional reflectance distribution 

function-adjusted reflectance (NBAR) NDVI data to assess the suitability of freely 

available satellite sensor data for phenological monitoring, at two flux tower sites 

in the United Sates. The results suggested that the 30 m Landsat NDVI data had a 

larger correlation with the flux tower NDVI data than the MODIS 500 m NBAR 

NDVI data, and the derived vegetation green-up and maximum-greenness onset 

dates from Landsat were closer to those derived from the flux tower NDVI data 

than from MODIS NDVI; Dong et al. (2015a) developed an automated Landsat-

based paddy rice mapping system (Landsat-RICE) that used time-series Landsat 

images and a phenology-based algorithm identifying paddy rice fields during the 

transplanting/flooding period, in northeast China from 1986 to 2010. The results 

showed overall accuracies from 84% to 95%, and the Kappa coefficients ranged 

from 0.6 to 0.9. 

SPOT 

The SPOT (Satellite Pour l’Observation de la Terre, in French) Earth Observation 
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satellite sensor imagery has been widely used for studying, monitoring, forecasting, 

and managing natural resources and human activities (Xie et al. 2008). SPOT 1 to 

5 were launched, respectively, in the years of 1986, 1990, 1993, 1998, and 2002, 

with a full range of resolution of 1 km at the global scale (SPOT vegetation imagery) 

down to 2.5 m at the local scale. HRV (High Resolution Visible) imaging 

instruments are equipped on SPOT 1, 2, and 3 and HRVIR (High Resolution Visible 

and Infrared) is on SPOT 4, and HRG (High-Resolution Geometry) is on SPOT 5. 

Moreover, the SPOT vegetation (VGT) instrument was installed onto SPOT 4 and 

5 as a second imaging instrument. SPOT-VGT imagery is included for scientific 

studies at both regional and global scales over long time periods at a spatial 

resolution of 1 km and a temporal resolution of 1 day. Therefore it is very helpful 

to use SPOT-VGT products to observe and analyse the evolution of land surfaces 

and understand land cover changes over a large area (Saint 1994). 

With multiple onboard sensors and high revisit frequencies, the SPOT satellite 

sensors can capture an image of any place on the Earth every day and especially 

suitable for mapping vegetation at various scales (regional, national, continental, or 

global). For example, Kaptué Tchuenté et al. (2011) proposed a new classification 

of ecosystems based on an 8-year (2000-2007) analysis of NDVI datasets from 

SPOT VGT at the African continental scale; Cong et al. (2012)  performed a multi-

method investigation of the spring vegetation growth onset phenology for temperate 

China  (north of 30°N) at the regional scale with NDVI data produced from SPOT 

satellites over the period 1999-2009. 

AVHRR 

The first Advanced Very High-Resolution Radiometer (AVHRR) was a 4-channel 

radiometer, carried aboard TIROS-N (launched October 1978), one of NOAA’s 

Polar Orbiting Environmental Satellite series. It was subsequently improved to a 5-

channel instrument (AVHRR/2) initially carried on NOAA-7 (launched June 1981), 

while AVHRR/3 is the latest 6-channel instrument carried on NOAA-15 (launched 

May 1998). One of the primary advantages of AVHRR is its relatively long-term 

continuity. It has been providing data since the 1980s and it is planned to continue 

to be on duty into the 2020s with National Oceanic and Atmospheric Administration 

(NOAA) and the European Organisation for the Exploitation of Meteorological 
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Satellites (EUMETSAT) sharing operations. AVHRR provides pre-processed data 

for Earth surface observations. Several products are available nowadays for 

vegetation phenology studies at no charge. For example, twice monthly (15-day 

composite) data at 8 km spatial resolution at a global scale are available for free 

download from 1982 to 2012; weekly and bi-weekly composites at 1 km resolution 

at the country scale for the United States are available since 1989, according to the 

USGS (U.S. Geological Survey); and recently, Pinzon and Tucker (2014) 

constructed the “third generation” GIMMS (Global Inventory Monitoring and 

Modelling System) NDVI. The latest version (3g.v1) of the NDVI3g dataset has a 

temporal coverage from July 1981 to December 2015, a regular 1/12°×1/12° spatial 

resolution (about 8 km), and contains maximum NDVI values at 15-day intervals. 

However, AVHRR imagery has a limitation in calibration, geometry, orbital drift, 

limited spectral coverage and variation in spectral coverage, especially in the early 

period of application, which may bring in substantial errors (Hastings and Emery 

1992; Huh 1991; Xie et al. 2008). 

Because of the long history image archive (since 1978 when the first AVHRR was 

launched), it is very useful to study long-term vegetation change. For example, 

Duchemin et al. (1999) monitored two key phenological stages of deciduous 

forests—budburst and senescence—using NDVI derived from NOAA/AVHRR in 

France for the period of 1989 to 1994; Sehgal et al. (2011) used NOAA/AVHRR 

NDVI data from 1981 to 2001 to derive the spatial patterns of temporal trends in 

phenology metrics and productivity of crops, in the Indo-Gangetic Plains of India 

(IGP); Wang et al. (2016) investigated the spatial variability and temporal trends of 

vegetation phenology including beginning of growing season (BGS), end of 

growing season (EGS), and length of growing season (LGS), over the Northern 

Hemisphere by using AVHRR NDVI data from 1982 to 2012. 

MODIS 

Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument on 

the Terra (EOS AM, launched 1999) and Aqua (EOS PM, launched 2002) satellites, 

collecting data in 36 spectral bands between 0.405 µm and 14.385 µm, with the first 

seven bands designed for land surface observation (in visible and infrared regions). 

MODIS has a 250 m, 500 m or 1000 m spatial resolution over Earth’s surface every 
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1-2 days, and it is processed into a variety of data products including surface 

reflectance, vegetation indices, land surface temperature and others (Justice et al. 

1998). Terra's orbit around the Earth is timed so that it passes from north to south 

across the equator in the morning, while Aqua passes south to north over the equator 

in the afternoon, therefore Terra MODIS and Aqua MODIS together can observe 

the entire earth’s surface every 1 to 2 days. Due to the relatively coarse spatial 

resolution and a long-term data range (from 2002 to present), MODIS is commonly 

used for vegetation mapping and monitoring at large scales. For example, Zhang et 

al. (2003) developed a new method by using a series of piecewise logistic functions 

to monitor vegetation phenology from time-series satellite sensor data at large scale, 

on the basis of MODIS data, tested in the northeast United States. Multiple indices 

were calculated from MODIS surface reflectance data including EVI, NDVI, Land 

Surface Water Index (LSWI), to map paddy rice planting area in Southern China 

and Northeast Asia (Xiao et al. 2006; Xiao et al. 2005). Ahl et al. (2006) calculated 

NDVI and EVI from MODIS, also Leaf Area Index (LAI) and Fraction Intercepted 

Photo-synthetically Active Radiation (FIPAR) MODIS products were used to 

monitor spring canopy phenology for a deciduous broadleaf forest in northern 

Wisconsin. Ren et al. (2008) estimated crop yield in Jining, Shandong Province, 

China, based on 250 m spatial resolution MODIS NDVI data. Le et al. (2014) 

derived multi-cropping information in China, based on MODIS EVI data, by 

adopting a smoothing method of adaptive Savitzky-Golay filter first and then 

identifying the cropping cycles with an iterative moving-window method. 

As mentioned before, image fusion by combining finer spatial resolution data such 

as Landsat satellite sensor data can possibly improve mapping results. For example, 

Cammalleri et al. (2013) generated a fine resolution daily evapotranspiration (ET) 

map by fusing daily MODIS 1 km and 30 m biweekly Landsat imagery. The 

accuracy of the fused Landsat-MODIS daily ET maps was evaluated over Iowa 

using observations collected from eight flux towers, which were in corn and 

soybean fields in 2002. A significant increase was founded in ET accuracy 

(reducing errors from 0.75 to 0.58 mm d-1 on average), compared to the Landsat-

only case. The increase was further evident at the seasonal timescale, where a 3% 

error was obtained using Landsat-MODIS fusion versus a 9% Landsat-only case. 
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MERIS 

Medium Resolution Imaging Spectrometer (MERIS) was a passive imaging sensor 

flying on Envisat which was launched in 2002 by ESA (European Space Agency) 

and was in orbit until 2012. MERIS has 15 spectral bands within the visible and 

near-infrared range, each capable of gathering data at a resolution of 260 m across 

track × 300 m along track. The narrow bands of MERIS make it possible to derive 

more accurate land cover classes and vegetation indices than other sensors such as 

AVHRR and SPOT VGT. The standard products available through MERIS include 

radiance, reflectance, and two vegetation indices known as the MERIS Global 

Vegetation Index (MGVI) and the MERIS Terrestrial Chlorophyll Index (MTCI). 

Products at a reduced resolution (1040 m x 1160 m) can usually be obtained free of 

charge over the internet, while full resolution products (260 m x 300 m) usually 

must be requested. The primary mission of MERIS is to monitor oceans and coastal 

areas but also has many land applications. Its land mission is to study the role of 

terrestrial surfaces in climate dynamics and biogeochemical cycles for climate 

change. For example, Meng et al. (2009) developed a model to estimate certain 

phenological stages such as the start of season and end of season, for winter wheat, 

based on MERIS NDVI data, in Fengqiu, Henan Province and Yucheng, Shandong 

Province, in China. Dash et al. (2010b) used the MTCI to investigate the annual and 

inter-annual variation in vegetation phenology in India. O’Connor et al. (2012) 

derived the start of the season (SOS) metric to indicate vegetation seasonality across 

the island of Ireland, by utilising 10-day MERIS Global Vegetation Index (MGVI) 

composites, and highlighted how SOS varied according to land cover type. MERIS 

is replaced by the Ocean and Land colour Imager (OLCI) sensor on board of the 

Sentinel 3 mission to provide data continuity (Hu and Campbell 2014).  

Sentinel 

Sentinel satellites, launched in the Copernicus programme, are designed to provide 

continuous long-term data flow to allow monitoring of environmental parameters 

with high accuracy (Toming et al. 2017).   

Sentinel-1A was launched in April 2014 and Sentinel-1B was in April 2016, by the 

ESA on a SOYUZ rocket from the Guiana Space Centre in French Guiana, Sentinel-
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1 is the first one of the series of earth observation satellites of Copernicus 

programme. The Sentinel-1 synthetic aperture radar (SAR) operates at a centre 

frequency of 5.4GHz, offering a 12-day repeat cycle at the equator with 175 satellite 

orbits per cycle. With Sentinel-1A and 1B operating, a 6-day repeat cycle at the 

equator will be achieved. Sentinel-1 operates in four exclusive acquisition modes: 

Stripmap (SM), Interferometric Wide swath (IW), Extra-Wide swath (EW), and 

Wave mode (WV). Each mode can produce products at SAR level-0, Level-1 single 

look complex (SLC), Level-1 ground range detected (GRD) and Level-2 Ocean 

(OCN). 

Sentinel-2 programme consists of Sentinel-2A and Sentinel-2B satellites, which 

were launched in June 2015 and March 2017 respectively. Sentinel-2 carries two 

multispectral instruments (MSI). The MSI has four bands at 10 m, six bands at 20 

m, and three bands at 60 m spatial resolution, and it has a swath width of 290 km 

by applying a total field of view of approximately 20°. It covers the visible and 

near-infrared (VNIR) and the shortwave-infrared (SWIR) spectral region, 

incorporating two spectral bands in the red-edge region, centred at 705 nm and 740 

nm with a band width of 15 nm and a spatial resolution of 20 m, which are important 

for the retrieval of chlorophyll content (Dash and Curran 2004; Delegido et al. 

2011).  

Sentinel-3A was launched in February 2016 and Sentinel-3B was in April 2018. 

Both satellites were taken into orbit on a Rockot launcher from the Plesetsk 

Cosmodrome in northern Russia. The Ocean and Land Colour Instrument (OLCI) 

on board Sentinel-3 satellites is the successor of MERIS mission (2002-2012) with 

improved capabilities for measuring sea-surface topography, sea- and land-surface, 

ocean colour and land colour (Toming et al. 2017). The revisit time of the twin 

constellation will be less than two days and the full spatial resolution is 300 × 300 

m, which is a high temporal and moderate spatial resolution for monitoring coastal 

areas and water quality. 

Vegetation Indices and Plant Monitoring 

Remote sensing on vegetation is mainly performed by obtaining the 

electromagnetic wave (EMR) reflectance information from canopies using passive 
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sensors. It is well known that the reflectance of light spectra from plants changes 

with plant type, water content within tissues, and other intrinsic factors, as the EMR 

spectrum reflected from vegetation is determined by chemical and morphological 

characteristics of the surface of organs or leaves (Liu et al. 2016a). Leaves absorb 

the blue and red wavelengths and reflect the green wavelength of sunlight (Khamala 

2017). After NIR radiation passes through the first layer of the leaf (the palisade 

tissue), it reaches the mesophyll and the internal leaf cavities, being reflected by the 

internal mesophyll structure of leaves upwards (reflected radiation) or downwards 

(transmitted radiation) (Homolová et al. 2013). The reflection of visible radiation is 

mainly because of the function of leaf pigments. A healthy plant will absorb blue 

and red light energy for photosynthesis and generate chlorophyll, while reflecting 

green light energy. A healthy plant with more chlorophyll reflects more NIR than 

an unhealthy one (Gitelson and Merzlyak 1998). 

The main spectral light in use falls into the visible spectral range of 400 – 700 nm, 

which is strongly absorbed by chlorophyll in plant leaves during photosynthesis. It 

contains blue (450 – 495 nm), where the canopy reflectance is minimal and 

atmospheric aerosol diffusion effects are maximal; green (495 – 570 nm), where it 

covers the reflectance peak from leaf surfaces (hence the colour green can be seen), 

and red (620 – 750 nm), which is the most important region for vegetation analysis, 

and has a higher chlorophyll absorption than other bands. In addition, the near and 

mid infrared (850 – 1700 nm) is also commonly used, because of its strong 

reflectance by the cell structure of the leaves. Their usages are shown in Table 2.  

 

Table 2 The wavelength (mm) and usage in remote sensing of spectral bands. 

Spectral transformations have been commonly used to process remotely sensed data 

for monitoring vegetation phenology. The transformations are designed to enhance 

Band name Wavelength (nm) Uses

Visible blue 450 - 495 Penetration of water, smoke plumes detection

Visible green 495 - 570 Measuring plant vigour

Visible red 620 - 750 Vegetation discrimination

Near infrared 850 - 900 Biomass mapping

Middle infrared 1500 - 1700 Moisture content within plants
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the spectral reflectance characteristics of vegetation or environmental conditions 

that are in relation to phenological development (Reed et al. 2009), which include 

changing leaf area, soil moisture, and vegetation water content. Vegetation indices 

normally utilise the reflective characteristics of vegetation through adopting band-

ratio or differencing of the red and the NIR bands or other reflective wavelengths 

for the purpose of reducing the effects of atmospheric aerosols or soil ground 

reflectance (blue) as well as for highlighting leaf water content (shortwave infrared) 

(Reed et al. 2009).  

Common vegetation indices 

The Normalised Difference Vegetation Index (NDVI) probably is one of the most 

widely used and implemented index for vegetation studies. It is a satellite-derived 

global vegetation indicator obtained from the red to near-infrared (NIR) ratio of 

vegetation reflectance in the electromagnetic spectrum. The formula is as following 

(Myneni and Hall 1995; Reed et al. 1994): 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹−𝑹𝑬𝑫

𝑵𝑰𝑹+𝑹𝑬𝑫
  (1) 

The NDVI is strongly coupled to red reflectance, which is related to the 

photosynthetic capacity of vegetation and biophysical variables such as the fraction 

of photosynthetically active radiation (FPAR) and fractional green cover (Huete et 

al. 1997). A direct use of NDVI is to characterise canopy growth or vigour. Thus, 

the NDVI has been compared to the LAI and other biophysical variables (Fan et al. 

2009). Although NDVI has been used widely in many phenological studies to 

extract phenological variables for quantifying ecosystem response to climate 

change over continents and decades (eg. Bradley et al. 1994; Maignan et al. 2008; 

Mašková et al. 2008; Piekielek 2012; White et al. 2009; Zhang et al. 2003; Zhang 

et al. 2012b). However, NDVI is affected by a number of different sources of noise 

possibly attributed to image misalignment, sensor miscalibration (Vermote and 

Kaufman 1995) and unstable atmospheric conditions such as cloud, water, snow or 

shadow. Therefore, it is challenging to extract phenological variables routinely and 

reliably from raw NDVI time-series data (Reed et al. 1994). Furthermore, the NDVI 

varies with both the amount of green vegetation biomass and the concentration of 

chlorophyll and saturates at high levels of both (Gitelson and Merzlyak 1998; Huete 
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et al. 2002; Mutanga and Skidmore 2004).  

Other vegetation indices such as the Soil Adjusted Vegetation Index (SAVI) (Huete 

1988) and the Soil and Atmospherically Resistant Vegetation Index (SARVI) 

(Kaufman and Tanre 1992) were developed for reducing canopy background effects 

and atmospheric contamination. The SAVI and SARVI are tightly linked to near-

infrared reflectance and to structural parameters such as leaf area index (LAI) and 

biomass (Huete et al. 1997). However, applications of these vegetation indices in 

phenological studies are limited. 

The Enhanced Vegetation Index (EVI) is another widely used vegetation index, 

which was designed to reduce soil and atmospheric effects, improve sensitivity in 

high biomass regions, and to reduce the canopy background signal and atmospheric 

influences It is described as: 

𝑬𝑽𝑰 = 𝑮
𝝆𝑵𝑰𝑹− 𝝆𝒓𝒆𝒅

𝝆𝑵𝑰𝑹+𝑪𝟏𝝆𝒓𝒆𝒅−𝑪𝟐𝝆𝒃𝒍𝒖𝒆+𝑳
  (2) 

Where 𝜌𝑏𝑙𝑢𝑒 , 𝜌𝑟𝑒𝑑, 𝑎𝑛𝑑 𝜌𝑁𝐼𝑅 are reflectance values in the corresponding bands 

respectively; L (=1) is the canopy background adjustment, C1 (=6) and C2 (=7.5) 

are aerosol resistance coefficients, and G (=2.5) is a gain factor. The EVI includes 

the blue band to correct the influence of atmospheric aerosols on red reflectance, 

while it remains sensitive to variation in canopy density where NDVI becomes 

saturated (Huete et al. 2002). For example, Yu et al. (2014) used MODIS EVI data 

from 2000—2009 to extract forest phenological variables including start of growing 

season (SOS), end of growing season (EOS), and length of growing season (LGS) 

in Northeast China by adopting a threshold method. Suepa et al. (2016) used 

MODIS EVI time-series data, along with field survey data, to quantify phenological 

patterns and trends in the monsoon in Southeast Asia during 2001—2010 period 

and assessed their relationship with climate change in the region. 

However, there exists requirement for reflectance information in the blue band, 

which is not available on some satellite sensors such as AVHRR and SPOT-VGT. 

Therefore, to keep EVI’s advantage Jiang et al. (2008) developed a two band 

(without blue band) EVI (EVI2), which is described as: 
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𝑬𝑽𝑰𝟐 =
𝑮(𝝆𝑵𝑰𝑹−𝝆𝒓𝒆𝒅)

𝝆𝑵𝑰𝑹+𝑪𝟑𝝆𝒓𝒆𝒅+𝑳
  (3) 

Where C3 is a coefficient with a value of 2.4. The EVI2 inherits the function from 

EVI, which is less sensitive to background reflectance, hence it is very suitable to 

utilise EVI or EVI2 to monitor vegetation following fire, because canopy 

reflectance is also influenced by other factors affecting background reflectance 

including bright soils and non-photosynthetically active vegetation (i.e. litter and 

woody tissues) (Rocha and Shaver 2009). EVI2 has a stronger sensitivity to aerosol 

noise than EVI, which can be overcome with improved atmosphere correction 

(Zhang et al. 2012b). Studies based on EVI2 have been conducted. For example, 

Rocha and Shaver (2009) adopted both EVI2 and NDVI derived from MODIS to 

resolve differences in surface greenness and Leaf Area Index (LAI) among three 

sites located along a burn severity gradient in arctic tundra. The results indicated 

that EVI2 had several advantages over NDVI including the ability to resolve LAI 

differences for vegetation with different background soil reflectance. 

The MERIS Terrestrial Chlorophyll Index (MTCI) 

Chlorophyll is one of the most important biochemicals of the leaf, and it is in a 

highly positive relation to both the productivity of vegetation and the depth and 

width of the chlorophyll absorption features in the reflectance spectra. The long 

wavelength (red) edge of this absorption feature moves to even longer wavelengths 

with an increase in chlorophyll content (Curran et al. 1990; Filella and Penuelas 

1994; Munden et al. 1994). The red edge position (REP) can be defined as the point 

of maximum change in reflectance along this edge (Horler et al. 1983). However, 

the methods designed for estimating REP were based on continuous spectra without 

consideration for standardisation or automation (Dawson and Curran 1998) and due 

to the asymptotic relationship between REP and chlorophyll content, REP cannot 

become an accurate indicator of chlorophyll content at high chlorophyll contents 

(Jago et al. 1999).  

The MERIS on the European Space Agency (ESA) Envisat satellite has a fine 

spectral resolution at 1.8 nm, moderate spatial resolution at a full resolution 300 m 

and a reduced resolution 1200 m, and a 3-day repeat cycle, making MERIS a 

potentially valuable sensor to measure and monitor terrestrial environments at 
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regional-to-global scales. Two techniques have been used to estimate chlorophyll 

content using the red edge position based on MERIS spectra (band centre at 665, 

681.25, 708.75 and 760.625 nm, where wavebands are discontinuous): Lagrangian 

interpolation (Dawson 2000; Dawson and Curran 1998) and linear interpolation 

(Clevers et al. 2002). However, both two techniques could not provide an automated 

and one-step procedure which were quite important and necessary for processing a 

large quantity of data. A new easy-to-use index, MERIS Terrestrial Chlorophyll 

Index (MTCI), therefore, was developed for estimating chlorophyll content from 

MERIS data (Dash and Curran 2004).  

The MTCI was developed according to two criteria: At first, it needed to be easy to 

calculate from MERIS data recorded at the standard band setting; second, it should 

be sensitive to a wide range of chlorophyll contents (Dash and Curran 2007). The 

MTCI is calculated as the ratio of the difference in reflectance (R) between band 10 

and band 9 and the difference in reflectance between band 9 and band 8 of the 

MERIS standard band setting, formula as following: 

𝑴𝑻𝑪𝑰 =
𝑹𝑩𝒂𝒏𝒅𝟏𝟎−𝑹𝑩𝒂𝒏𝒅𝟗

𝑹𝑩𝒂𝒏𝒅𝟗−𝑹𝑩𝒂𝒏𝒅𝟖
=

𝑹𝟕𝟓𝟑.𝟕𝟓−𝑹𝟕𝟎𝟖.𝟕𝟓

𝑹𝟕𝟎𝟖.𝟕𝟓−𝑹𝟔𝟖𝟏.𝟐𝟓
  (4) 

Where R753.75, R708.75, and R681.25 are the reflectance in the centre wavelengths of 

bands 8, 9 and 10, in the MERIS standard band setting. 

The MTCI is designed based on the red-edge position (REP), making it one of few 

related directly to canopy chlorophyll concentration and leaf area index (LAI) 

(Dash et al. 2010b), and it has limited sensitivity to atmospheric effects as well as 

soil background and view angle (Dash et al. 2009a). Therefore, the MTCI is also 

suitable for monitoring vegetation dynamics. Boyd et al. (2011) used MTCI data to 

construct the phenological profile and extract key phenological event dates from 

woodland and grass/heathland in Southern England for the period 2003 to 2008. 

They also compared the results with MERIS global vegetation index (MGVI), 

MODIS NDVI, and MODIS EVI. Close correspondence between MTCI and 

canopy phenology as indicated by ground observations and climatic proxy was 

evident. Differences between MTCI-derived results and those from MGVI, NDVI, 

and EVI were also observed. Viña et al. (2011) evaluated several vegetation indices 
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for the remote estimation of the green leaf area index (Green LAI) of two crop types 

(maize and soybean). The results indicated that among the indices test, Green 

Chlorophyll Index (Clgreen), Red-edge Chlorophyll Index (Clred-egde), and MTCI 

exhibited a large and significant linear correlation with Green LAI, and were 

sensitive across the entire range of Green LAI evaluated.  

Although the ESA’s Envisat mission ended on 08 April 2012, the MTCI now is still 

available from Sentinel-3 OLCI level-2 products, known as Terrestrial Chlorophyll 

Index (OTCI) (https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-

olci/product-types/level-2-land). 

2.1.3 Methods for deriving vegetation phenological variables from 

satellite measurements 

It is more and more popular to use high frequency satellite sensor data (e.g. NOAA-

AVHRR NDVI and Terra/Aqua-MODIS NDVI or EVI) to detect phenological 

events, for the use of ecological and climate change studies at large scales. Various 

methods have been developed for capturing important phenological information 

from remote sensing data. The common methods usually contain two steps: (1) 

transform vegetation indices data derived from satellite sensor images into time-

series; (2) detect phenological parameters from the time-series data based on 

different rules. 

Time-series satellite sensors data smoothing techniques 

A general problem with satellite optical sensor observation is that the data are 

sometimes affected by atmospheric dust and aerosols, gaseous absorbers, and 

clouds, leading to reflectance values altered or missing (Atkinson et al. 2012). 

Therefore, several techniques were applied to estimate the invalid values by making 

use of valid observed values, for the purpose of reconstructing the plant growth 

profile. More than 20 techniques have been developed for reducing the noise of 

time-series vegetation index data from different satellite sensors. Generally, all the 

techniques can be divided into four categories according to the algorithm they use: 

(1) Threshold-based approaches, which controls the smoothness of the 

reconstructed time-series profile by setting a threshold. Typical methods include the 

Best Index Slope Extraction Algorithm (BISE) (Viovy et al. 1992) and the modified 
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BISE (M-BISE) (Lovell and Graetz 2001); (2) Filter-based methods, which apply a 

defined filter to fill the gaps in a moving window according to the valid observations. 

Common approaches include the Running Medians (Velleman 1980), the Savitzky-

Golay (S-G) filter (Chen et al. 2004), the Mean Value Iteration (MVI) (Ma and 

Veroustraete 2006), the Changing Weight (CW) filter (Zhu et al. 2012), and the 

adapted local regression filter (Moreno et al. 2014); (3) Curve-fitting methods, 

which fit the vegetation growing profile with a mathematical curve, such as the 

harmonic analysis of time-series (HANTS) (Roerink et al. 2000), the double logistic 

function (DL) (Beck et al. 2006), the Asymmetric Gaussian function (A-G) 

(Jonsson and Eklundh 2002); (4) Other approaches, such as the wavelet transform 

(Lu et al. 2007), the data assimilation (Gu et al. 2009), and the Whittaker Smoother 

(WS) (Atzberger and Eilers 2011). 

Many studies have been conducted in testing all the gap-filling/smoothing 

techniques under different circumstances, for the purpose of finding their 

advantages and disadvantages. Atkinson et al. (2012) assessed four techniques 

including Fourier analysis, asymmetric Gaussian model, double logistic model and 

the Whittaker filter for smoothing the vegetation growing profile on major 

vegetation types in India. It was found that the double logistic and asymmetric 

Gaussian models did not return good results in areas with multiple growing seasons 

and also demonstrated that independent parameters for each model were necessary. 

Geng et al. (2014) tested eight time-series reconstruction techniques including the 

modified best index slope extraction (M-BISE) technique, the Savitzky-Golay (S-

G) technique, the mean value iteration filter (MVI) technique, the asymmetric 

Gaussian (A-G) technique, the double logistic (D-L) technique, the changing-

weight filter (CW) technique, the interpolation for data reconstruction (IDR) 

technique, and the Whittake smoother (WS) technique. Four types of time-series 

NDVI data were used: AVHRR, Pathfinder AVHRR, SPOT-VGT, and MODIS. 

These techniques were evaluated by calculating the root mean square error (RMSE), 

the Akaike Information Criterion (AIC), and the Bayesian Information Criterion 

(BIC). The result indicated that S-G, CW, and WS techniques performed best, while 

IDR, M-BISE, and MVI returned less accurate results. Therefore, it is important to 

select the appropriate data smoothing method before extracting phenological 

information from time-series satellite sensors data. Wang and Tao (2014) compared 
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three smoothing methods were compared for simulating the spatial pattern of the 

start of season of cropland in Northeast China, using NDVI data produced from 

SPOT Vegetation satellites. The results showed that Asymmetric Gaussians 

produced the most approximative results of all, followed by Double Logistic 

algorithm, and Savizky-Gloay algorithm produced earliest estimates. 

Phenology extraction techniques 

Many approaches to deriving phenological metrics have been addressed since the 

early 1990s. Reed et al. (1994) identified the onset-of-greenness metrics at the point 

of time-series AVHRR NDVI data, where the smoothed data crossed the moving 

average in an upward direction and remained above it for the greatest sustained 

increase. Schwartz and Reed (1999) used an updated version of the technique 

reported by Reed et al. (1994) to process AVHRR NDVI into start-of-season dates, 

and compared with modelled phenology. Schwartz and Chen (2002) employed a 

simple method of Seasonal Midpoint NDVI (SMN) in which a SMN threshold is 

defined to determine the start and end of season in case of broad leaf forest. Zhang 

et al. (2003) identified key phenological phases of vegetation by fitting a continuous 

logistic function to time-series of MODIS VI data and estimating phenological 

transition dates based on inflection point of the curve. They used the same approach 

to produce global maps of annual ecosystem phenology, and compared with in-situ 

measurements. The results demonstrated that realistic estimates of phenological 

dates were identified (Zhang et al. 2006b). White and Nemani (2006) used region-

specified NDVI threshold to analyse the phenological behaviour of group of pixels. 

Many methods for retrieving phenological metrics from satellite sensors data have 

been developed, since remote sensing has been used widely for monitoring 

vegetation (Wang et al. 2017a). The methods for deriving phenological parameters 

from satellite sensors data can be generally classified into two categories: the 

threshold method and the profile-based derivative methods. 

The threshold method has been applied in a range of applications, it sets the 

threshold for identifying a vegetative growing cycle. For example, Lloyd (1990) 

used the NDVI threshold method in classifying phenological terrestrial vegetation. 

Fischer (1994) adopted it in modelling seasonal variation of vegetation. Markon et 
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al. (1995) employed this method in detecting the characteristics of vegetation 

phenology with the assumption of a single threshold being applicable across all the 

vegetation covers, by rescaling the NDVI value range to multiply by 100 then 

adding 100 (values greater than 100 represented vegetative surfaces). White et al. 

(1997) determined the onset and end of growing season according to a set threshold 

of the normalised NDVI ratio, instead of the original NDVI values. The NDVI ratio 

was developed based on the method of Reed et al. (1994), and then a threshold of 

0.5 was set to identify the growing season length. Similarly, the normalised NDVI 

ratio method is arbitrary relative to the NDVI threshold method, and therefore this 

method was only used in the north-eastern DBF and some other similar canopy 

conditions. However, it had been demonstrated by Huete et al. (1997) that the 

threshold method was limited by the variation in background reflectance of 

different vegetation types. Therefore, it was not possible to establish a single, 

meaningful threshold to signify the onset or end of vegetation activity for a range 

of vegetation covers at large scales.  

Comparing with the threshold method, the profile-based derivative methods have a 

better ability to handle multiple growing cycles and can be applied to range of 

vegetation types. It is based on the changing derivative before and after the start or 

end point of a growing season. Moulin et al. (1997) used the time derivative of 

NDVI to detect three phenological events of a growing season: beginning, 

maximum and end. It defined that the time derivative before the beginning date 

should be zero, after the beginning date should be positive and at the end date should 

be similar with the beginning date. However, this algorithm is quite sensitive to the 

weight of the derivative term: a larger term would have many short-term signal 

variations because of residual noise and a small weight of the derivative term, the 

algorithm would fail for pixels which partly remain green during the year. 

Duchemin et al. (1999) found that the temporal variation of NDVI during budburst 

and senescence was nearly linear. The linear segments method is sensitive to a 

change in the rate of NDVI variation which could be attributed to a temperature 

fluctuation during budburst in spring, or a severe drought in summer accelerating 

the senescence. Zhang et al. (2003) identified phenological event dates based on the 

curvature-change rate of a logistic model for time-series of MODIS vegetation 

indices. This method has been widely adopted in many studies (Ahl et al. 2006; 



Literature Review 

 

34 
 

Peckham et al. 2008; Zhang et al. 2004). This curvature-change method has an 

ability to handle multiple growth cycles and is more flexible for study periods such 

as multi-year growing seasons. However, in the research, it was found that this 

method still had a challenge: it was hard to determine a single sustained increase 

and decrease period before the MODIS measurements could be fitted by the logistic 

model. Studer et al. (2007) compared maximum slope and threshold approach for 

deriving start-of-season (SOS) metrics, using EFAI-NDVI dataset from the 

NOAA/NASA Pathfinder NDVI dataset. The result showed that the threshold 

method was better able to represent the temperature dependent temporal pattern of 

observed phenology, while the slope method did not reflect several years with a 

very early spring onset due to little snow and warm temperature. 

2.1.4 Automated vegetation phenology observation 

Traditional phenological observation is operated by an individual person, recording 

specific phenophases such as budburst or flowering. Such observations are typically 

limited to the number of individuals, located within a limited geographic area or a 

specific site. On the other side, remote sensing observation usually operates at 

coarse spatial and temporal resolutions, and at a regional or large scale (White and 

Nemani 2006). 

To address the issues of the gap between the direct ground-based and remote 

sensing phenological monitoring, in recent years, the use of inexpensive visible 

spectrum digital cameras for proximal sensing of phenological events has become 

more common. Digital cameras, although not certified as calibrated instruments, 

can be used successfully, as relatively inexpensive multi-channel imaging sensors 

(Ahrends et al. 2008; Crimmins and Crimmins 2008; Graham et al. 2006; Graham 

et al. 2009; Richardson et al. 2009; Richardson et al. 2007). One of the advantages 

of repeated photography is that it allows samples to be obtained at very high 

temporal resolutions, often at daily or hourly intervals, for monitoring vegetation 

phenology. Moreover, mounting these systems on towers or other platforms 

provides data at an intermediate scale of observation, allowing a contrast between 

field-based observations and satellite-derived measures (Richardson et al. 2009).  

Earlier applications of camera system technologies in phenological studies took 
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place in the agriculture field: the observation of phenological phases was first tested 

by Adamsen et al. (1999) to analyse wheat senescence, and by Purcell (2000) to 

detect changes in wheat and soybean canopies over the growing seasons. Digital 

camera images, phenology, and satellite-based data were jointly analysed by Fisher 

et al. (2006), who used multiple photographs, visually classified by independent 

observers, as validation data for satellite model estimates of phenological 

development. 

The link between leaf pigmentation and digital images was found by Kawashima 

and Nakatani (1998) who estimated the chlorophyll content in leaves using a video 

camera. Net CO2 uptake of moss was analysed by Graham et al. (2006) with a 

camera based upon the changes in reflected visible light (VIS) during moss drying 

and hydrating. More recently, commercially available digital web camera systems 

were installed on CO2 flux towers across North America to observe deciduous 

vegetation green-up and to make comparisons to changes in the fraction of the 

photosynthetically active radiation absorbed by the canopy (Keller et al. 2008). 

Digital webcam images were used for spring green-up tracking of forests and jointly 

analysed with FAPAR (fraction of incident photosynthetically active radiation 

absorbed by the canopy), broadband NDVI and the light-saturated rate of canopy 

photosynthesis, inferred from eddy covariance measurements at a flux tower site 

(Richardson et al. 2007). A similar study was carried out by Ahrends et al. (2008), 

which conducted phenological observation using digital visible-light cameras for a 

managed mixed forest in northern Switzerland, to identify leaf unfolding dates of 

the dominant tree species. Dates of leaf emergence were estimated based on the 

levels of the extracted red, green and blue colours. Comparison on the performance 

of digital camera and satellite sensor data for canopy greenness observation also 

was undertaken by Brown et al. (2017). The relationships between the green 

chromatic coordinate (GCC) derived from near-surface remote sensing and a range 

of vegetation products derived from MERIS throughout the growing season were 

investigated. The results indicated that moderate-to-strong relationships were found 

at deciduous forest sites, and small correlations were found over evergreen forest 

sites. 
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2.3  Phenology studies in China 

Modern phenological observation and research in China can be traced back to the 

1920s, starting with Dr. Kezhen Zhu (Coching Chu) (1890-1974), who is commonly 

regarded as the founder of modern Chinese phenology. He summarised 

phenological knowledge from the last 3000 years in China in 1931 and introduced 

phenological principles such as species selection, phenological observation 

methods from Europe and the United States from the mid-18th to early 20th century. 

Moreover, Dr. Coching Chu organised and established the first phenological 

observation network in China, in 1934. Observations of some 21 species of wild 

plants, 9 species of fauna, some crops, and several hydro-meteorological events 

ceased in 1937 due to World War II in China (1937-1945). In the 1970s, the Chinese 

Academy of Sciences (CAS) established a phenological network nationwide at the 

first time, under the guidance of Dr. Zhu. The observation began in 1963 and 

continued until 1996. It resumed in 2003, but with a reduced number of stations, 

species, and phenophases. In addition, the Chinese Meteorological Administration 

(CMA) established a countrywide phenological network in the 1980s. 

The observation programme of the CAS network includes a total of 173 observed 

species, of which 127 species of woody and herbaceous plants had a localised 

distribution. Since 1973, several stations added phenological observations of major 

crops. These observations were carried out mainly by botanical gardens, research 

institutes, universities and middle school according to uniform observation criteria. 

The phenophases of woody plants included bud-burst, first leaf unfolding, 50% leaf 

unfolding, flower bud or inflorescence appearance, first bloom, 50% bloom, the end 

of blooming, fruit or seed maturing, fruit or seed shedding, first leaf coloration, full 

leaf coloration, first defoliation, and the end of defoliation. 

The Institute of Geography at the Chinese Academy of Sciences took responsibility 

for collecting the phenological data and publishing them. Changes to the stations 

and in observers over the years resulted in data that were spatially and temporally 

inhomogeneous. The number of active stations has varied over time. The largest 

number of stations operating was 69 in 1964 and the smallest number occurred 

between 1969 and 1972 with only four to six stations active. The phenological data 
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from 1963 to 1988 were published in the form of Yearbooks of Chinese Animal and 

Plant Phenological Observation. 

The CMA phenological network is affiliated with the national-level agro-

meteorological monitoring network and came into operation in 1980. The 

phenological observation criteria for woody and herbaceous plants and fauna were 

adopted from the CAS network. There are 28 common species of woody plants, one 

common species of herbaceous plant and 11 common species of fauna. The main 

phenophases are the same as those of the CAS network. In addition to the natural 

phenological observations, the network also carries out professional phenological 

observation of crops based on a specific observation criterion. The main crop 

varieties include rice, wheat, corn, grain sorghum, millet, sweet potato, potato, 

cotton, soybean, rape, peanut, sesame, sunflower, sugarcane, sugar beet, and 

tobacco. 

The CMA network is the largest phenological observation system in China at 

present. There were 587 agro-meteorological measurement stations in 1990. Of 

these, about 400 stations were undertaking phenological observations. As the 

phenological and meteorological observations are parallel in this network, the data 

are especially valuable for understanding phenology-climate relationships. These 

data can also be used to provide agro-meteorological service and prediction on: crop 

yield, soil moisture and irrigation amounts, plant diseases and insect pests, and 

forest fire danger. 

Studies based on ground observation 

A variety of applications demonstrate the utility of phenological ground observation 

over China. Lu et al. (2006) observed four species of trees in Northeast China, the 

North China Plain and the lower and middle reaches of the Yangtze River, Inner 

Mongolia Plateau in North China, the Loess Plateau in central China, and Yunan-

Guizhou Plateau in the southwest, in a period during 1963 to 1988. To determine 

the significant period of temperature influence on flowering dates, linear regression 

analysis was applied in their research. The results indicated that the period during 

which temperature influences flowering time varies from 60 to 90 days for Robinia 

pseudoacacia in the south to 30 to 40 days in the north, due to the shorter warm 
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period before flowering in the north. The three other species showed similar trends 

of changes with latitude in the length of the period of temperature influence. Zhang 

et al. (2010) observed 24 plant species in 14 families at the North Slope of Mt. 

Qomolangma (Mt. Everest) in Tibet, western China, from early May to late August 

in 2005. To test the relationship between onset of flowering and fruiting, first dates 

of flowering and fruiting were converted to calendar days and then analysed by 

linear regression. The results showed that the species have evolved various 

phenological strategies as adaptations to the short growing season with limited 

resources and pollinators in this harsh alpine environment at extremely high 

elevations. Ma and Zhou (2012) observed 13 woody plant species via 20 

observation sites across China from the 1960s to 2000s. By performing linear 

regression analysis, the existence of linear temporal trends was tested, and t-test 

was applied for the significance testing of regression parameters. The results 

showed that spring in China had started 2.88±2.33 days earlier per decade since the 

early 1980s, and on average 4.93±0.26 days earlier per degree Celsius in spring. 

Tao et al. (2012) observed wheat phenology at more than 100 national agro-

meteorological experiment stations throughout China from 1981 to 2007. 

Accumulated thermal development unit (ATDU) during a development period such 

as wheat growing period (GP), vegetative growing period (VGP), and reproductive 

growing period (RGP) was calculated as the methods used by the 

CROPSIM/CERES-Wheat version 4.0 model in DSSAT 4.0. The results showed 

that besides the complex influences of agronomic factors, climate change 

contributed substantially to the shift of wheat phenology. Mean day length during 

the vegetative growing period had a decreasing trend at most of the investigated 

stations owing to delay of sowing date or/and advancement of heading date, which 

counterbalanced the roles of temperature in controlling the duration of the 

vegetative growth period. In-depth analyses showed that thermal requirements from 

sowing to almost each development stage increased. However the thermal 

requirements to complete each single development stage changed differently, which 

tended to increase yield and adapt to ongoing climate change. Xiao et al. (2013) 

observed crops at 36 agro-meteorological stations in the North China Plain from 

1981 to 2009. A linear regression model was used to determine the time trend in 

each investigated phenological event of winter wheat. The results showed the dates 
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of sowing, emergence, and dormancy (start of dormancy) delays on the average by 

1.5, 1.7 and 1.5 days decade-1, respectively. On the contrary, the dates of green-up 

(end of dormancy), anthesis (BBCH 61) and maturity (BBCH 89) occurred early, 

on average by 1.1, 2.7 and 1.4 days decade-1, respectively. 

Studies based on remote sensing 

Applications usually focus on vegetation phenology monitoring, vegetation 

mapping, crop acreage estimation, crop yield prediction, and so on. Wu et al. (2008) 

investigated variation in the start of growing season (SGS) in China’s cropland from 

1983 to 2002, using AVHRR NDVI. The results showed that the average date of 

SGS in China’s cropland become progressively later from south to north in China 

during the past 20 years, corresponding well with the temperature and precipitation 

gradients. Ren et al. (2008) used MODIS-NDVI data to establish a linear regressive 

relationship between the spatial accumulation of NDVI and the production of winter 

wheat in Shandong Province, in China, by using a stepwise regression method. The 

results showed that the relative errors of the predicted yield ranged from -4.62% to 

5.40% and the whole RMSE was 214.16kg ha-1 lower than the RMSE (233.35kg 

ha-1) of agro-climate models in the same study region. Cai et al. (2012) investigated 

the spatio-temporal dynamics of deciduous broadleaf forest (DBF) in the Khingan 

Mountain region in northeast China and its phenology changes in relation to climate 

change and elevation, based on MODIS EVI data. Four phenological variables were 

extracted. The results showed that the DBF has generally degraded and over 65% 

of DBF has a shortened growing season, over the past decade. Wei et al. (2012) 

used AVHRR NDVI data from 1982 to 2006 across China and the TIMESAT 

program to quantify annual vegetation production and its changing trend. Results 

identified great spatial variability in vegetation growth and its temporal trend across 

China in the study period. Ding et al. (2013) analysed spatial-temporal changes in 

alpine grassland phenology in the terrestrial ecosystem in Qinghai-Tibetan Plateau 

from 1999 to 2009, based on NDVI data from SPOT VGT. The results showed that 

the phenology of alpine grassland was closely related to water and heat conditions. 

Pan et al. (2014) used the TIMESAT program to extract phenology parameters of 

croplands from Chinese HJ-1 NDVI data, at Guanzhong Plain, China. The results 

showed that the crop season start and end derived from HJ-1 A/B NDVI time-series 
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data was comparable with agro-metrological observation based on the small-scale 

test. 

In summary, remote sensing provides an ideal way of observing vegetation 

phenology. It is less labour intensive and time consuming than the conventional 

field survey, and it also provides the only feasible means of observing a large 

portion of Earth’s surface at a high temporal frequency in a consistent manner 

(Almond 2009). Therefore, remote sensing is an important technology for 

understanding the dynamics of the landscape. MTCI provides crucial information 

on chlorophyll content, and it has its own advantages compared to the use common 

NDVI. Therefore, it is important to find its application in monitoring vegetation 

phenology. Although there are many phenological studies across China, they are 

mostly concentrated in specific regions or species. Therefore, a detailed 

understanding of country-scale phenology is needed. 

2.4  Mapping rice area and forecasting its yield using 

remote sensing 

Rice the one of the most important crop and staple food for more than 50% of the 

world population (Khush 2005b). In recent decades, with the increase of world 

population and changing climate, great pressure was put on the global food demand 

and its production (Wheeler and von Braun 2013), especially in the heavy rice 

consuming regions, Asia, where has 60% of the World population and about 90% 

of the World’s total rice production (Mosleh et al. 2015). Under such circumstances, 

reliable and timely estimates of rice planting area and its yield and production are 

critical for decision makers to plan for food security. 

2.4.1 Review of estimating crop areas 

Timely monitoring of rice agriculture is crucial for yield estimation, agricultural 

resource management and environment sustainability in China and worldwide (Li 

et al. 2017). In addition, methane (CH4) is the second important greenhouse gas 

(GHG) after carbon dioxide (CO2), and rice paddies have been regarded as one of 

the major anthropogenic sources of atmospheric CH4 (Wassmann et al. 1993). The 

most common and traditional ways for estimating crop cultivated areas are normally 
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done through seasonal fields surveys based on many sample clusters. Then all the 

surveys are constituted from county-to-national scale for the measuring cultivated 

areas during the crop growing season. Each cluster needs to be visited many times 

and recorded, and then processed for aggregating regional-to-national statistics. 

This method can reflect invaluable historic trends in rice producing regions. 

However, it is extremely time-consuming, labour-intensive, less precise, and high 

cost. In addition, the survey result is easily influenced by human factors (Prasad et 

al. 2006; Reynolds et al. 2000). For rice yield and production forecasting, it also 

presents three major weaknesses: (i) it is time-consuming, subjective, and prone to 

discrepancies because of insufficient field surveys that lead to poor crop yield and 

production estimation (Mosleh et al. 2015). (ii) the estimations are often available 

after the harvest to the government and public, and thus less helpful for food 

security purposes (Mosleh et al. 2015). (iii) Field surveys need huge finance to 

support, especially when it is implemented at large scales (Bouvet and Le Toan 

2011). 

In this context, remote sensing-based methods were adopted as effective alternative 

for mapping crop area. It can provide long-lasting surface information with high 

frequencies, has a spatial coverage over large geographic area, and its cost is 

relatively low, some satellite sensors data are freely available (i.e., MODIS, SPOT-

VGT, Landsat). Normally, two main kinds of satellites sensors are used to map rice 

paddies and forecast the yield and production: microwave and optical. Microwave 

sensors can penetrate through clouds because of the long wavelength; thus, they are 

suitable for mapping crops in long-term cloudy and rainy weather regions (Bouvet 

and Le Toan 2011; Miyaoka et al. 2013; Shao et al. 2001; Zhang et al. 2018b; Zhang 

et al. 2009). However, the available synthetic aperture radar (SAR) imagery is 

limited (Zhang et al. 2009) and expensive (Li et al. 2012). Frequently used optical 

satellite sensors include the Multispectral Scanner System/Thematic 

Mapper/Enhanced Thematic Mapper Plus/Operational Land Imager and Thermal 

Infrared Sensor (MSS/TM/TM+/OLI and TIRS) (Dong et al. 2015a; Dong et al. 

2016; Fang et al. 1998; Jackson et al. 2004; Jin et al. 2015; Kontgis et al. 2015; Liu 

et al. 2005; Qin et al. 2015; Wang et al. 2015; Zhang et al. 2018a; Zhou et al. 2016), 

the Moderate Resolution Imaging Spectroradiometer (MODIS) (Clauss et al. 2016; 

Fontana 2005; Huang et al. 2012; Mkhabela et al. 2011; Shi et al. 2013; Sun et al. 
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2009; Xiao et al. 2006; Xiao et al. 2005; Zhang et al. 2015a; Zhang et al. 2012a), 

NOAA’s Advanced Very High Resolution Radiometer (AVHRR) (Doraiswamy and 

Cook 1995; Esquerdo et al. 2011; Fang et al. 1998; Huang et al. 2013; Mkhabela et 

al. 2005; S. Mkhabela et al. 2005), and SPOT High Resolution Geometrical/High 

Resolution Visible Infrared/VEGETATION (HRG/HRVIR/VGT) . In addition, to 

overcome the cloud, a number of studies have explored the advantages of 

integrating optical and microwave datasets for more efficient and accurate crop 

monitoring (Mansaray et al. 2017; Onojeghuo et al. 2018; Wang et al. 2015; Zhang 

et al. 2018b; Zhou et al. 2016). 

Mapping crop areas and monitoring crop growth using optical satellite sensor data 

is primarily based on the crop’s physical feature of apparent reflectance in the 

visible near infrared (VNIR) portions of the electromagnetic spectrum. As crop 

grows, the reflectance in the near infrared (NIR) reaches the highest value, while in 

the visible region it reaches the lowest (Kawamura et al. 2018; Mansaray et al. 

2017). On the other hand, using microwave (radar) satellite sensor data for 

agricultural purposes is based on the backscatter response, mainly including surface 

scattering, volume scattering, and surface scattering attenuated by the vegetation 

volume (Bouvet and Le Toan 2011; Shao et al. 2001; Shen et al. 2009). 

Many studies have been undertaken in China to map paddy rice using satellite 

sensor data. Only a few studies focused on mapping rice paddies at the national 

scale with most studies were concentrated on mapping at the regional scale in the 

main rice-producing regions in northern or southern China. Common methods 

based on satellite sensor data can be generally divided into two categories: image-

based methods and pixel-based methods. Image-based methods normally compare 

all the pixels in one image for classification or object detection, based on the 

similarities or differences among them. For these methods, it is still a challenge to 

collect yearly ground reference data (Zhong et al. 2014). Such methods are often 

represented by the supervised classification methods that are learning an established 

classification from the training dataset containing the predictor variables measured 

in the sample crop fields (Černá and Chytrý 2005). Pixel-based methods usually 

focus on the time-series data for a single pixel, correlated with the spectral 

characteristics of different crops. These methods focus on the phenological change 



Literature Review 

 

43 
 

of one vegetation type, using remote sensing data to provide phenology information 

of land surface (Wang et al. 2015). For these methods, sometimes the sub-pixel 

phenology information of small crop fields cannot be captured, due to the relatively 

coarse spatial resolutions. For example, MODIS has a finest 250 m spatial 

resolution, while in Southern China there are lots of heterogeneous and fragmented 

agricultural landscapes (Bridhikitti and Overcamp 2012).   

2.4.2 Review of forecasting crop yield 

Numerous approaches are available for estimating or forecasting crop yield with 

remotely sensed data, including statistics models (i.e. regression models) and 

simulation models (i.e. agro-climate models and crop growth models). They are 

combined with satellite sensors data for more efficient, accurate and real-time crop 

yield forecasting. 

The most common approach to forecast crop yield is to develop direct empirical 

relationships by generating regression models, between long-term crop yield 

records and satellite sensors data derived crop parameters such as LAI (Leaf Area 

Index), NDVI, fPAR (fraction of Photosynthetically Active Radiation), and NPP 

(Net Primary Production) (Du et al. 2014; Esquerdo et al. 2011; Li et al. 2011b; 

Mkhabela et al. 2011; Wall et al. 2008; Wei et al. 2013). This approach is based on 

the capacity that many growing conditions can be reflected by the parameters, 

which are assumed to be directly related to crop yield (Tucker et al. 1980). However, 

the actual crop yield depends on many more factors than the ones that parameters 

can capture (Bastiaanssen and Ali 2003). Tucker et al. (1980) for the first-time 

identified relationships between NDVI and crop yield using experimental fields and 

ground-based spectral radiometer measurements. Grain yields were found to be 

strongly correlated with the NDVI values around the dates of maximum greenness. 

From then on, a few studies have been conducted based on NOAA AVHRR data. 

Ramussen (1992, 1997, 1998) established a linear correlation between the time 

integral of the NDVI and millet yield. Das et al. (1993) found that NDVI measured 

between flowering and milking stages gave the best prediction for the grain yield. 

Quarmby et al. (1993) built simple linear relationships between NDVI and yield of 

wheat, corn, rice, and maize crops. Maselli et al. (1993) tested NDVI maximum 

value during rainy season and yield of millet and sorghum in the Sahel, and Smith 
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et al. (1995) reported the relationship between NDVI and wheat yield in Western 

Australia. More recent, with the development of satellite and remote sensing 

technologies, remotely sensed data with improved radiometric calibration and finer 

spatial and temporal resolution are available for example the MODIS. Ren et al. 

(2008) found the largest correlation between wheat production and accumulated 

MODIS-NDVI about 40 days ahead the harvest time, in Shandong Province, China. 

Bolton and Friedl (2013) used satellite sensors data from MODIS to develop 

empirical models for maize and soybean yield forecast in central United States. 

Dempewolf et al. (2014) used Landsat data that was about six weeks before harvest, 

to test four different peak-season MODIS-derived vegetation indices against 

reported yield values for deriving wheat yield. Qader et al. (2018) used MODIS 

with official crop statistics to develop an empirical regression-based model to 

forecast winter wheat and barley production in Iraq. Although most of the results of 

remote sensing in crop yield estimation and prediction are encouraging and 

promising, the challenge still exist in small crop fields that are smaller than the 

spatial resolution of the remotely sensed data used (Khamala 2017). Further, 

because the empirical regression model is often established between local crop yield 

records and a satellite-derived VI, the model is not suitable for generalising to other 

areas (Qader et al. 2018).  

Simulation models were developed in the late 1960s for the first time, to emulate 

the main physiological process of crop growth on daily basis, these models try to 

integrate multiple factors affecting crop growth, such as water, temperature, etc 

(Ahmad et al. 2018; Zhou et al. 2017). Nevertheless, in the beginning, the losses 

caused by pests and disease were not taken into account, which were assumed to be 

controlled in such models (Lobell 2013). The advantage of these simulation models 

lies in their ability in simulating the soil-environment-plant interaction, but they are 

restricted by a number of physiological and pedological parameters are required 

that are not available or cannot be calibrated in some countries and regions (Zhang 

et al. 2012a; Zhou et al. 2017). To overcome these problems, the remote sensing is 

used as a useful method. VIs that derived from satellite sensors data are used to 

establish relationships with Above Ground Biomass (AGB) of crops, to generate 

remote sensing-based crop growth models. Examples of the models include the 

World Food Studies (WOFOST) (de Wit et al. 2019), Simulaterur 
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mulTIdisciplinaire pour les Culture Standard (STICS) (Brisson et al. 2003), and 

Crop Systems Simulation (CROPSYST) (Stöckle et al. 2003). 

In conclusion, the importance of monitoring plant phenology and its related 

applications is increasing under the circumstances of climate change these days. 

Vegetation phenology is an important indicator for monitoring changes in the 

climate and natural environment (Richardson et al. 2013b). Therefore, it is great 

significant to study vegetation phenology for understanding the trend of changing 

natural phenomena and serve for agricultural applications and global change 

studies(Tang et al. 2015; Wang et al. 2017b). 

Since the 1980s, the NDVI has been used widely to evaluate phenological 

characteristics over large areas. Although NDVI is one of the most common VI for 

studying vegetation phenology dynamics, however, NDVI is not suitable for the 

tropical zone due to variations of atmospheric conditions associated with aerosols 

and clouds (Kobayashi and Dye 2005), and high biomass region with large values 

of LAI (Mutanga and Skidmore 2004). MTCI is more sensitive to high values of 

chlorophyll content (Dash and Curran 2004), which is different from NDVI. 

Because MTCI is derived from the narrow bands in the red-edge-position that is 

highly related to the chlorophyll content. Therefore, MTCI has a great potential to 

be used in monitoring vegetation dynamics. However, the amount of literature about 

applying MTCI in vegetation phenology studies is still limited. How will the MTCI 

perform in describing vegetation phenology dynamics and how accurate the MTCI 

can be in agricultural applications, are still need to be tested and verified. 
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3.1  Background 

Phenology is the study of recurring biological events in plants and animals, such as 

the leafing and flowering of plants, maturation of agricultural crops, the emergence 

of insects and migration of birds (Haggerty 2008; Schwartz and Chen 2002). 

Vegetation phenology has a strong association with Earth’s climate and hydrologic 

regimes which can affect the exchange of carbon, water and, the energy between 

the vegetation and the atmosphere. Therefore, it can be regarded as one of the key 

indicators that reflect the response of the Earth’s biosphere to climate change 

(Chuanfu et al. 2012; Reed et al. 1994; Xu and Liu 2007; Zhang et al. 2003). 

Vegetation phenology can be derived from ground measurements or satellite remote 

sensing data. Ground-based methods have practical weaknesses such as being 

subjective, time-consuming and difficult to measure large-scale regions (Dash et al. 

2010b); while satellite remotely sensed data have a wider coverage and repeated 

temporal frequency from daily to monthly, providing an opportunity to measure 

vegetation phenology at large scales (Zhang et al. 2003). Since the rapid 

development of satellite technology and use of new sensors, there has been an 

increasing interest in extracting vegetation phenology from remote sensing data. 

Many studies used the NDVI derived from long-term remote sensing data such as 

NOAA AVHRR, Landsat TM/TM+, TERRA MODIS, and SPOT VEGETATION to 

measure vegetation phenology from regional to global scales (Mašková et al. 2008; 

Piekielek 2012; White et al. 2009; Zhang et al. 2003; Zhang et al. 2012b). However, 

those datasets were derived from different satellites and processed by different 

methodologies. As a result, vegetation phenology data extracted for the same region 

varied from each other.  

The NDVI, calculated from red and infrared band results in a trend of saturation at 

high levels of vegetation biomass and chlorophyll concentration (Gitelson and 

Merzlyak 1998; Huete et al. 2002; Mutanga and Skidmore 2004). Unlike NDVI the 

MERIS Terrestrial Chlorophyll Index (MTCI) is more sensitive to large values of 

chlorophyll content. It has been applied in many regional to global scale 

applications as it is the only chlorophyll content product providing an indication of 

terrestrial vegetation condition. The MTCI provides combined information on both 
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the LAI (area of leaves per unit area of ground) and the chlorophyll concentration 

of leaves (the amount of chlorophyll per unit weight of leaf) (Dash et al. 2009a; 

Dash and Curran 2007; Dash et al. 2010b). The MTCI has been validated at the 

MERIS spatial resolution with different vegetation types as well as across different 

regions. The results showed there was a positive relationship between MTCI and 

chlorophyll content, and they are strongly linked with each other (Almond 2009; 

Boyd et al. 2011; Dash and Curran 2007; Dash et al. 2010a; Dash et al. 2010b; Dash 

et al. 2007; Harris and Dash 2010; Jeganathan et al. 2010). Moreover, MTCI is easy 

to calculate and yet it is sensitive to all notably large values of chlorophyll content 

(Dash and Curran 2004). It is highly suitable for monitoring vegetation function 

and condition reliably as the only presently available chlorophyll index from a 

spaceborne sensor. 

Many studies focused on evaluating vegetation phenology extracted from different 

remote sensing datasets. Huete et al. (1997) evaluated the differences and 

similarities in sensitivity to vegetation condition by comparing several vegetation 

indices from Landsat TM and MODIS data. The NDVI showed a high sensitivity 

to the highly absorbing red band, while other indices were more sensitive to the 

near-infrared band. Kawamura et al. (2005) compared MODIS NDVI and AVHRR 

NDVI time-series data and found that the MODIS NDVI time-series depicted the 

seasonal changes in grassland with a greater fidelity. Soudani et al. (2006) assessed 

the potential use of IKONOS, Landsat ETM+, and SPOT HRVIR data for 

estimating LAI in forest, and five vegetation indices were tested. The result 

indicated that a -10% offset was needed for dense vegetation land cover when using 

IKONOS NDVI, while no corrections were needed when focusing on bare soils or 

sparse vegetation regions. Zeng et al. (2011) compared MODIS NDVI and AVHRR 

NDVI time-series and discovered that the phenology extractions from those two 

datasets were significantly distinctive, from 2000 to 2008 over the northern high 

latitudes; Tang et al. (2015) adopted both AVHRR NDVI and MERIS MTCI for 

extracting phenological metrics including OG and ES at nine regions in China for 

different land covers. The results showed that both indices performed very well in 

capturing the vegetation growing patterns, but NDVI detected a later ES than MTCI. 

Very few studies have compared the uncertainty in estimating phenological 
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variables from use of different spectral vegetation indices. Moreover, the ability of 

MTCI to derive phenological information and any potential advantage compared to 

the well-established NDVI based method has not been studied. Therefore, the 

purpose of this chapter was to compare the vegetation phenology extracted from 

MERIS NDVI and MERIS MTCI at different regions across China, attempt to find 

the advantages and disadvantages for the MTCI to NDVI for the example. To do so, 

the ability of the NDVI and the MTCI time-series of capturing the growth pattern 

for different vegetation types in different regions needs to be investigated and the 

phenological metrics including OG and ES extracted from the NDVI and the MTCI 

compared. 

3.2  Study Area 

The main climate in China is dominated by dry seasons and wet monsoons on one 

hand, resulting in significant temperature differences in winter and summer. In 

winter, cold and dry winds come from northern high latitude areas, while in summer 

warm and moist winds come from lower latitude sea areas. Considering the great 

latitudinal variation, coastal and continental regions, and orographic variation, 

climates differ from region-to-region (Chen et al. 2005b). The climate zone changes 

from tropical, subtropical, warm-temperate, temperate, to cold-temperate from 

south to north in the eastern part of the country. On another hand China is affected 

by the continental climate. The climate zone changes from humid to arid from east 

to west, and it is dry in northwest China. The precipitation declines gradually from 

the south-eastern part of China to the north-western part. In south-eastern coastal 

areas, it reaches over 1,500 mm per year, while in the north-western desert areas it 

drops to below 200 mm per year (Gao et al. 2006). At the same time, China is a 

mountainous country, with more than half of the territory occupied by mountains 

and plateaus. The various climate, along with the complicated physiognomy, results 

in heterogeneous biomes in China. 

3.3 Data 

3.3.1 Remote sensing data 

Zhang et al. (2010) indicated that time-series data with a temporal resolution 
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between 6 and 16 days could be used to estimate vegetation phenology precisely, 

even if some uncertainties exist in the daily data. Therefore, in this research three 

data sources were used: (a) 300 m weekly MERIS L3 surface reflectance data from 

Oct 2009 to Mar 2011 (18 months) to capture the full growing season patterns 

(requested from http://maps.elie.ucl.ac.be/CCI); (ii) 2010 global land cover map 

from ESA in 300 m spatial resolution (downloaded from 

http://maps.elie.ucl.ac.be/CCI/viewer/); (iii) shape file of vegetation regionalisation 

map of China (obtained from http://www.resdc.cn/data.aspx?DATAID=133). 

The surface reflectance (SR) products of MERIS span from 2003 to 2012, the 

spectral content consists of 13 surface reflectance channels (the atmospheric band 

11 and 15 were removed), at a spatial resolution of 300 m for the Full Resolution 

(FR) and 1000 m for the Reduced Resolution (RR). The dataset is available at 7-

day temporal resolution in 5°x5° tiles such as to composite global time-series 

datasets. The original MERIS L3 surface reflectance data are in NetCDF format. 

Each file contains variables for 13 bands (except band 11 and 15) and uncertainties 

for each spectral band, number of observations with clear sky land coverage, water 

coverage, clear sky snow and ice coverage, cloud coverage and cloud shadow 

coverage for each pixel during the 7 days. In addition, the data also contains a pixel-

level classification including the classes: clear land, clear water, clear snow, cloud, 

and cloud shadow. Corresponding variables were extracted to calculate MTCI 

according to Dash and Curran (2004):  

𝑴𝑻𝑪𝑰 =
𝑹𝑩𝒂𝒏𝒅𝟏𝟎−𝑹𝑩𝒂𝒏𝒅𝟗

𝑹𝑩𝒂𝒏𝒅𝟗−𝑹𝑩𝒂𝒏𝒅𝟖
=

𝑹𝟕𝟓𝟑.𝟕𝟓−𝑹𝟕𝟎𝟖.𝟕𝟓

𝑹𝟕𝟎𝟖.𝟕𝟓−𝑹𝟔𝟖𝟏.𝟐𝟓
  (5) 

NDVI was already calculated and stored as a variable in the original NetCDF file, 

and they were extracted separately. After that all tiles were mosaicked. 76 time-

series files for each of the MTCI and NDVI were prepared, and clear land in the 

current pixel status variable was made as a land mask. However, because of clouds 

and other reasons, not enough valid data were retrieved to make the required 

complete time-series datasets. Therefore, a Maximum Value Composite (MVC) 

procedure was employed to obtain MTCI and NDVI composites for 18 months, 

with bi-weekly temporal resolution, which created 38 layers from Oct 2009 to Mar 

2011. 
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3.3.2 China climate regionalisation map 

The dataset was acquired from the Data Centre for Resources and Environmental 

Sciences, Chinese Academy of Sciences (RESDC) 

(http://www.resdc.cn/data.aspx?DATAID=133). The original dataset was divided 

into 36 sub-zones for more specific vegetation types and climate zones, based on 

the zonation of vegetation and its related climatic factors. Only the major climate 

zones were taken into consideration, therefore, it was categorised into six major 

climate zones (Figure 2). 

 

Figure 2 Climate regionalisation map of mainland China. 

3.3.2 Land cover map 

The land cover map used in this research was derived from ESA’s global land cover 

project using 12 months’ worth of data collected from 1 January to 31 December, 

from Envisat’s MERIS instrument at a resolution of 300 m (available from 

https://www.esa-landcover-cci.org/). The map projection is WGS84 and the 

classification uses the UN Food and Agriculture Organisation’s (FAO) Land Cover 

Classification System (LCCS) (http://www.esa.int/esaCP/). ESA’s land cover map 

http://www.resdc.cn/data.aspx?DATAID=133
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had an overall accuracy of 73% weighted by area for its 22 land cover classes. 

Vegetation types in China differ from region-to-region in response to temperature, 

precipitation and soil type. The major vegetation types are composed broadly of 

deciduous, semi-deciduous, and evergreen. The phenology of these vegetation types 

is often controlled by climatic condition. Therefore, to compare vegetation 

phenology extracted from NDVI and MTCI under different climatic conditions 

within different regions, four major types of vegetation were selected: cropland, 

broadleaf deciduous, mixed evergreen (broadleaf or needle leaf), and grassland 

(Figure 3). Each vegetation type was investigated across five climate zones 

including the warm temperate zone, subtropical zone, tropical monsoon zone, 

temperate zone, and Qinghai-Tibet plateau zone (Figure 4), cold temperate zone 

was not included due to MERIS 300m data was not available in this region. 

 

Figure 3 Major land cover types extracted from ESA 2010 Global Land Cover Map: (a) 

broadleaf deciduous forest; (b) grassland; (c) major cropland (d) mixed evergreen 

(broadleaf and needle leaf) forest. 
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Figure 4 Vegetation distributions and climate zones investigated in this study (non-

coloured regions are not available for the MERIS 300 m data). 

3.4  Method 

In this chapter, three procedures were applied for extracting phenological metrics 

from both the MTCI and NDVI time-series data. The flowchart of Figure 5 shows 

the steps: (1) data cleaning; (2) data smoothing; (3) phenological metrics extraction.  
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Figure 5 Flowchart of procedures for data processing, phenological metric extraction, 

and comparison. 

3.4.1 Data cleaning 

To remove the missing data or outliers, a data cleaning procedure was required after 

applying the MVC method, which obtained the valid maximum value for every two 

dates, and transformed the raw data into biweekly interval. Although valid MTCI 

values range from 1 to 6, and NDVI values from -1 to 1, there may exist erroneous 

values or missing data creating data dropouts (MTCI=0) and data gaps due to cloud, 

local climate fluctuations and other atmospheric noise, and residual 

atmospherically-related noise (Atkinson et al. 2012; Wu et al. 2009). Therefore, the 

data anomalies and useless data from the temporal data series were also removed. 

The outcomes of data cleaning were shown in Figure 6. 
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3.4.2 Data smoothing 

A data smoothing procedure aimed at minimising errors existing in the raw MTCI 

and NDVI data. There are many different techniques applicable for reducing noise 

in time-series datasets, such as best index slope extraction (BISE) (Viovy et al. 

1992), the asymmetric Gaussian (Jönsson & Eklundh, 2002), Savitzky–Golay 

(Chen et al. 2004), double logistic functions (Zhang et al. 2004), the Mean Value 

Iteration (MVI) (Ma and Veroustraete 2006), the Changing Weight (CW) filter (Zhu 

et al. 2012) and so on. However, most of these techniques require an iterative 

approach to adjust the model parameters such as a noise-threshold and size of the 

temporal neighbourhood to achieve reliable smoothing. Comparing with these 

methods, Dash et al. (2010b) pointed out that Fourier transform-based approaches 

have the advantage of minimal user input (only need to decide the number of 

harmonics to reconstruct the time-series) and have been applied successfully to 

regional-to-global AVHRR time-series datasets (Cui et al. 2010; Loyarte et al. 2008; 

Moody and Johnson 2001; Roerink et al. 2000). In this research, the discrete Fourier 

transformation (DFT) was applied, and the smoothed time-series are shown in 

Figure 6. 

The DFT decomposes any complex waveform into a series of sinusoids of different 

frequency. Individual sinusoids and their frequencies can be combined into a 

complex waveform for which noise has been removed. The DFT is calculated as 

follow: 

𝑭(𝒖) =
𝟏

𝑵
∑ 𝒇(𝒙) × 𝒆−𝟐𝝅𝒖𝒙/𝑻𝑵−𝟏

𝒙=𝟎  (6) 

Where 𝑓(𝑥)  is the xth value in the time-series, u is the number of Fourier 

components, x is the dekad number, T is the length of time period cover (number of 

dekad), and T is equal to N. 

Eq. (6) consists of two parts: cosine (real) and sine (imaginary), where the cosine 

part is: 

𝑭𝒄(𝒖) =
𝟏

𝑵
∑ 𝒇(𝒙) ∗ 𝐜𝐨𝐬 (𝟐𝝅

𝒖𝒙

𝑻

𝑵−𝟏
𝒙=𝟎 )  (7) 
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And the sine part is: 

𝑭𝒔(𝒖) =
𝟏

𝑵
∑ 𝒇(𝒙) ∗ 𝐬𝐢𝐧 (𝟐𝝅

𝒖𝒙

𝑻
𝑵−𝟏
𝒙=𝟎 )  (8) 

Using Eqs. (7) and (8), the Fourier magnitude (Fm) can be calculated as: 

𝑭𝒑(𝒖) = 𝒂𝒕𝒂𝒏𝟐 (
𝑭𝒄(𝒖)

𝑭𝒔(𝒖)
) (9) 

The first two harmonics of the Fourier transform usually account for 50-90% of the 

variability in a dataset (Jakubauskas et al. 2001). However, the first two harmonics 

can only represent annual and semi-annual cycles, which is not enough to represent 

all the phenological cycles in China. Jakubauskas et al. (2001; 2002) demonstrated 

that the first four harmonics could adequately represent unimodal vegetation growth 

patterns. Dash et al. (2010b) tested the first four harmonics for vegetation in India. 

It was found that if only the first four harmonics were used, local oscillations could 

be avoided during the growing season, which were detected by higher harmonics. 

And six harmonics were used for detecting the double cropping patterns, which is 

common in India. Therefore, in this study, six harmonics were used in the inverse 

DFT to generate a smoothed MTCI time-series. 
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Figure 6 Data cleaning and smoothing examples for four major land cover types: 

broadleaf deciduous forest, cropland (including single and double cropping), mixed 

evergreen forest, and grassland. 

3.4.3 Estimating phenological metrics  

There are several available methods to estimate phenological variables from 

smoothed time-series vegetation data. According to Reed et al. (1994), these 

methods generally fall into three categories: threshold-based methods, trend 

derivative methods, and inflection point methods. A threshold is defined or referred 

for each pixel to define phenology transition dates in threshold-based methods 

(Lloyd 1990); departure points are identified between temporal data and a 

derivative curve in trend derivative methods; maximum curvature occurrences are 

detected in plotted time-series vegetation data in the inflection point-based methods 

(Zhang et al. 2003). However, each method has its own advantages and 

disadvantages; the choice of technique, therefore, depends on the purpose of the 

study. In this chapter, the inflection point-based method was applied for the reason 

that it is easy to implement and able to discriminate multiple growing seasons for 

vegetation such as crops (Reed et al. 1994). The inflection point method was 

employed here to extract two key phenological metrics: Onset of Greenness (OG) 
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and End of Senescence (ES).  

By taking an MTCI time-series data as an example (Figure 7), OG can be detected 

at a valley point at the start of the season, and the ES can be detected also at a valley 

point where is a decaying end in a phenology season. Also, the rate of green-up and 

senescence can be derived (not calculated in this chapter). It can also be clearly seen 

that it is easy to extract the phenological metrics if the phenology season is in a 

simple and smooth sinusoidal pattern. However, the ecosystem exhibits more 

complex patterns, sometimes because of multi-growth seasons or local climatic 

fluctuation. Therefore, OG and ES must be defined for each year independently 

rather than empirically. In fact, the ecosystem can be complex and diverse 

especially in a vast country such as China, since its territory crosses and stretches 

about 50° longitude and latitude. Hence, many of the ecosystems’ phenological 

cycles may span across years. As a result, this can lead to the absence of OG or ES 

data in one single year of vegetation data. 

The second growing season was not considered have as the major double cropping 

area is the east coastal provinces, which were not covered by MERIS 300 m data. 

Some areas in mid-east China also had a double cropping system. However, due to 

the poor coverage of MERIS 300 m data, the second growing season could not 

always be detected correctly. Therefore, only one growing season was considered 

in this study. 
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Figure 7 Phenological metrics extraction example. 

The inflection point method for extracting phenological metrics (i.e., the OG and 

ES), starts from the dominant peaks and searches both forwards and backwards, 

checking the derivative at the same time. When the derivative changes from positive 

to negative or from negative to positive, it may indicate a valley point which might 

be assigned as OG or ES. However, because of local climatic fluctuations or 

stabilization or multi-growth seasons of vegetation types, the valley point may be 

located at a different place rather than the ideal theoretical place, resulting in a 

fluctuation to be determined as a growing cycle. To deal with this, the algorithm 

sets a rule that the difference between the maximum value and valley value is 

greater than one fifth of the maximum vegetation time-series signal value, for the 

valley point to be accepted as a phenological variable until a definite valley point is 

detected. 

3.4.4 Comparison of phenological patterns and metrics 

Time-series profiles of different vegetation types in different vegetation-climate 

zones were presented to test the performance of the MTCI and NDVI in 

characterising the variation of vegetation growing season. Furthermore, the OG and 
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ES derived from the MTCI and NDVI were calculated by 𝐷 = 𝑀𝑁𝐷𝑉𝐼 − 𝑀𝑀𝑇𝐶𝐼, 

where MNDVI is OG(ES) derived from NDVI, and MMTCI is OG(ES) derived from 

MTCI. Therefore, when D is positive that means the OG(ES) extracted from NDVI 

is delayed more than that extracted from MTCI. 

3.5  Results 

3.5.1 Comparison between MTCI and NDVI patterns 

Figure 8 presents the profiles of the average value of MTCI and NDVI for the 

vegetation growing season in different vegetation-climate zones from Oct 2009 to 

Mar 2011. Comparing the broad MTCI and NDVI phenological patterns, it can be 

observed that the valley points of the OG and ES are clearly represented, except 

when then NDVI depicts the mixed evergreen forest in the subtropical evergreen 

broadleaf forest zone. It is also worth noting that the NDVI has two peaks around 

its maximum value, it is because of the missing values in the raw data that cause 

the fluctuations (e.g. the broadleaf deciduous forest and mixed evergreen forest).  

For broadleaf deciduous vegetation, in both the subtropical and temperate zones, it 

can be noticed that the NDVI time-series shows two peaks, while the MTCI only 

one peak. For mixed evergreen vegetation (including broadleaf evergreen forest and 

needle leaf evergreen forest), a clear growing pattern was revealed by the MTCI 

while the NDVI failed in the subtropical evergreen broadleaf forest vegetation-

climate zone, which has a higher annual temperature and less clear seasonality. The 

MTCI time-series produced a smooth growing pattern in the warm temperate 

deciduous broadleaf forest, and the NDVI showed more dramatic fluctuations than 

the MTCI, the NDVI had a flatter peak with fluctuation while the MTCI had a clear 

peak. For grassland, both the MTCI and the NDVI in the vegetation-climate zones 

of temperate steppe, subtropical evergreen broadleaf forest, Qinghai-Tibet Plateau 

alpine vegetation, and temperate desert, describe the growing patterns very clearly. 

And similarly, however, it can be noticed that the MTCI had an early OG and ES, 

and shorter lengths of growing season than the NDVI. For cropland, the NDVI was 

more able to depict double cropping seasons, and had a similar ability with the 

MTCI when there was only one growing season. 
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Figure 8 Growing patterns of NDVI and MTCI for broadleaf deciduous, cropland, 

grassland, mixed evergreen land covers in different climate zones, left y axis is the MTCI 

value, and the right axis is the NDVI value. 

3.5.2 Comparison between phenological metrics extracted from 

MTCI and NDVI 
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Figure 9 Distributions of OG for MTCI and NDVI for the year 2010. 
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Figure 10 Distributions of ES for MTCI and NDVI for the year 2010. 
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Figures 9 and 10 show the distribution of OG and ES of the year 2010 derived from 

the MTCI and the NDVI of the first growing season, using the inflection point 

method. In general, the NDVI showed more variation regionally than the MTCI. 

The OG started earlier for the MTCI than the NDVI, especially in regions which 

have a cold and snow-covered winter. The spatial patterns of ES generally 

correspond with the latitudinal gradient. Overall, ES became earlier from south to 

north. Except for the middle-east part of the study area with a large area of cropland, 

the NDVI detected earlier OG and ES than the MTCI. In the northern part 

dominated by grassland, later OG and ES were detected by the NDVI.  

 

Table 3 Differences between the onset of greenness and end of senescence for different 

vegetation types extracted from MTCI and NDVI time-series for the year 2010. 

MTCI NDVI D MTCI NDVI D

warm_temperate_deciduous_broadleaf_forest 137.71 144.66 6.95 355.56 332.42 -23.14

subtropical_evergreen_broadlleaf_forest 146.84 130.99 -15.85 359.47 308.57 -50.90

tropical_monsoon_rain_forest 139.76 144.34 4.58 349.80 321.19 -28.61

temperate_steppe 152.05 160.46 8.42 345.51 349.45 3.94

temperate_desert 147.97 172.20 24.24 340.50 354.39 13.89

qinghai_tibet_plateau_alpine_vegetation 129.66 131.63 1.97 338.20 341.25 3.05

warm_temperate_deciduous_broadleaf_forest 116.30 118.97 2.67 340.30 330.71 -9.59

subtropical_evergreen_broadlleaf_forest 123.14 123.31 0.16 364.42 332.55 -31.87

tropical_monsoon_rain_forest 110.86 131.86 20.99 364.80 314.93 -49.87

temperate_steppe 136.16 144.22 8.06 344.03 355.31 11.28

temperate_desert 132.38 143.96 11.59 348.19 349.39 1.21

qinghai_tibet_plateau_alpine_vegetation 141.14 155.08 13.93 334.60 346.43 11.83

warm_temperate_deciduous_broadleaf_forest 131.08 144.65 13.57 351.37 355.01 3.64

subtropical_evergreen_broadlleaf_forest 139.26 144.13 4.87 345.31 346.46 1.14

tropical_monsoon_rain_forest 135.41 135.35 -0.06 345.55 341.86 -3.69

temperate_steppe 143.88 147.36 3.48 344.97 359.19 14.23

temperate_desert 137.12 151.93 14.80 342.65 352.24 9.59

qinghai_tibet_plateau_alpine_vegetation 148.78 161.34 12.55 339.13 347.06 7.93

warm_temperate_deciduous_broadleaf_forest 150.30 139.97 -10.34 351.65 331.68 -19.98

subtropical_evergreen_broadlleaf_forest 156.78 135.96 -20.81 355.67 328.98 -26.69

tropical_monsoon_rain_forest 145.79 137.05 -8.74 349.41 313.89 -35.52

temperate_steppe 157.35 148.26 -9.09 342.93 354.97 12.03

temperate_desert 154.55 137.03 -17.52 342.52 357.83 15.31

qinghai_tibet_plateau_alpine_vegetation 153.08 136.32 -16.75 340.28 353.29 13.00
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Figure 11 Plots of the differences between MTCI and NDVI of phenological metrics in 

the year 2010 for vegetation types of BD (broadleaf deciduous), CL (cropland), GL 

(grassland), and MIX (mixed evergreen), in different vegetation-climate zones. A positive 

value means NDVI delayed, in contrast, a negative value means NDVI advanced. 

Table 3 and Figure 11 present the phenological differences between the MTCI and 

the NDVI in different vegetation-climate regions of the year 2010. OG and ES 

extracted from the NDVI and MTCI were different for vegetation types in most 

vegetation-climate zones. Generally, in the subtropical evergreen broadleaf forest 

and tropical monsoon rainforest zones, the NDVI and MTCI showed the largest 

differences for broadleaf deciduous, mixed evergreen, and grassland vegetation 

types. For broadleaf deciduous and cropland, the NDVI showed a shortened 

growing length (delayed in OG and advanced in ES), while for the other vegetation 

types in the remaining zones OG and ES showed the same shifting trend and more 

consistent than that in other zones resulting in a similar length of growing season. 

The reasons for the variation between OG and ES extracted from MERIS NDVI 

and MTCI could be attributed to: (i) NDVI and MTCI are theoretically calculated 

based on different spectral bands. The NDVI is based on the red (560 nm) and near-

infrared (NIR) (865 nm), band 8 and band 13 in normal MERIS band settings and 

MTCI is calculated from band 8 (681.25 nm), band 9 (708.75 nm), and band 10 

(753.75 nm). The MTCI is calculated from narrower bands (band width 7.5 nm to 

10 nm) than the NDVI (band width 10 nm to 20 nm), which could lead to a higher 

sensitivity to the minor changes (small reflectance variations) during vegetation 

growing season (Jensen et al. 2007); (ii) the Maximum Value Composite (MVC) 

technique dissolved some neighbouring data, which might give rise to some 

advances or delays when extracting phenological metrics. 
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3.6  Discussion 

Several studies were undertaken to characterise vegetation phenology by remote 

sensing techniques in China (Chen et al. 2005b; Guo et al. 2013; He et al. 2015a; 

Le et al. 2014; Li et al. 2011a; Pan et al. 2012; Piao et al. 2006a; Wu et al. 2009; 

Wu et al. 2008). These studies highlighted variation in key phenological events such 

as start of season, end of season and length of season, at local or regional scales 

within China. Most of these studies used single vegetation indices such as NDVI 

from different data source like SPOT-VGT, MODIS, and AVHRR, focused on 

specific single or multi vegetation types at spatial and temporal resolutions from 

fine to coarse. Although relatively small regional studies are helpful to understand 

the impact on vegetation of climate changes, it is still far from enough to provide 

information for building bio-geochemical models at country to global scales. In 

addition, few studies employed the MTCI to investigate vegetation phenology in 

China. It is, therefore, necessary to apply the MTCI in extracting vegetation 

phenological metrics to compare with existing studies which were mainly based on 

NDVI. 

This chapter employed the MTCI and MERIS NDVI to produce smoothed 

phenological patterns for the year 2010 for investigating the ability of phenology to 

describe and extract two key phenological metrics (OG and ES) for the purpose of 

making a comparison. Compared to the NDVI, the MTCI is more suitable for 

determining phenological events in situations with a high chlorophyll content such 

as mixed evergreen vegetation in the subtropical zone. The MTCI resulted in 

smoother and more conspicuous phenological profiles which made it easier to 

identify the OG and ES dates than the NDVI. In contrast, the NDVI is more 

sensitive to green biomass and will respond to the aggregated changes through 

seasons. The reason for this phenomenon could be attributed to saturation: when 

the vegetation cover has a high saturation in a large biomass ecosystem or during 

peaks of the growing season, the use of NDVI as a tool for phenological monitoring 

will be limited (Zarco-Tejada et al. 2001). On the contrary, the MTCI is based on 

the relationship between chlorophyll content and red-edge position, which has a 

large correlation with biomass (Dash et al. 2009a; Mutanga and Skidmore 2004). 

In addition, the NDVI had more fluctuations occurring during the growing season, 
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while the MTCI did not. Dash et al. (2010b) mentioned the same problem that some 

studies adopted NDVI suffered from unexplained variation in a smooth curve, it 

could because of image misalignment, sensor miscalibration, and a changing 

atmosphere including changing coverage of cloud, water, snow or shadow.  

Because of poor data quality of the MERIS 300 m data, and to select the 

comparative quantity of pixels for comparison, the Maximum Value Composite 

(MVC) technique was employed to reduce the amount of missing data. However, 

replacing missing data with neighbouring ones might change the phenology 

patterns and timing of the onset and senescence of growing season. Therefore, it 

added potential sources of the uncertainty. 

In summary, the MTCI captured the key phenological events in a similar fashion to 

the much more commonly used NDVI. If remote sensing data at finer spatial and 

temporal resolutions were available in the future, with other methods employed to 

derive the phenological event date, this would be advantageous. Additionally, since 

local climates will affect phenological events such as drought, cold and hot (Hwang 

et al. 2011), it is imperative to correlate phenological metrics extracted from remote 

sensing data with related time-series weather data, for studying the impacts of 

climate change. 

3.7  Conclusion 

Phenological metrics such as OG and ES are important for understanding the 

response of the vegetation system to climatic change (Tamstorf et al. 2007). 

Numerous studies have been undertaken to measure phenological metrics extracted 

from remote sensing data. However, few studies focused on the MTCI. In this 

chapter, a comparative analysis of phenological metrics extracted from MERIS 

NDVI and MTCI was undertaken for four vegetation types locating at different 

regions over mainland China for the year 2010. 

Generally, MTCI captured an earlier OG than NDVI in western China and Inner 

Mongolia, dominated by grassland. In central China where there was mainly 

broadleaf deciduous forest, MTCI represented a later OG than NDVI. In southern 

China, dominated by broadleaf and needle leaf mixed evergreen vegetation, MTCI 
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captured less detail than NDVI but NDVI had more variation than MTCI. For the 

major agricultural area located in mid-east China, NDVI reflected more detail than 

MTCI. However, this ability cannot always be on the same level when applying the 

MTCI to different vegetation types at different locations. In conclusion, the MTCI 

is more suitable for mixed vegetation species land cover types while the NDVI is 

more efficient for dealing with low saturation biomass. Nonetheless the differences 

between MTCI-derived phenological profiles and those from the NDVI, introduced 

uncertainties as large as the climatic perturbations induced. At last, because lacking 

ground reference data for validating the accuracy of the MTCI and NDVI in 

extracting key phenological metrics, this chapter only compared the results of both 

indices and showed the differences and strong points for each index. 

The use of remote sensing data in phenological studies is increasingly recognised. 

Time-series remote sensing data provide a mechanism to move from plant-specific 

to regional scale studies of phenology. However, it is still necessary to apply readily 

available MTCI data along with understanding the physical processes and 

computational approaches which determine the index values and how they vary 

from those obtained from other vegetation indices.  
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4.1  Background 

Vegetation phenological metrics are significant indicators for biological life stages, 

driven by environmental factors, and are considered to be sensitive and accurate 

parameters for indicating climate change (Piao et al. 2006a). Recently, there has 

been an increasing interest in phenology, primarily due to changes in the timing of 

different phenological phases in plants and animals, connected to climate change 

(Richardson et al. 2013a; Ruml and Vulić 2005). Phenological variation can affect 

terrestrial ecosystems and human societies. For instance, changes in phenology may 

alter global carbon, water, and nitrogen cycles; affect crop production by 

unexpected frost damage; and also change the duration of pollination seasons as 

well as seasonal disease distribution (Piao et al. 2006a). Moreover, phenology can 

contribute to various scientific disciplines from biodiversity, agriculture, and 

forestry to human health. For example, phenology studies provide significantly 

valuable data for land-use planning, crop zonation, agricultural, forestry and 

domestic pest species control, conservational species protection and pollen release 

information, and their relations to human health (Ruml and Vulić 2005). 

Most previous studies on vegetation phenology in China adopted conventional 

ground observation, within conservation or forestry regions for specific species, to 

study the phenological variation caused by climate changes. However, such 

approaches are limited by the number of in situ observation sites and, therefore, it 

is very hard to obtain information vegetation response to climate change at the 

biome scale. Moreover, in China, phenological stations and conventional 

phenological data are comparatively scarce (Chen and Pan 2002). Satellite remote 

sensing provides a powerful technique with which to observation vegetation 

phenology changes at a large scale in a long-term period, particularly by vegetation 

index satellite sensor imagery (White et al. 2005; White et al. 1997; Zhang et al. 

2003).  

During the last three decades, remote sensing satellite sensors data have been used 

at both regional and global geographic scales for monitoring the activity of 

vegetation. In particular, the Normalised Difference Vegetation Index (NDVI) has 

been widely used to measure phenological variation and thereby, analyse the 
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response from ecosystems to climate changes. However, because China has a vast 

territory and diverse terrestrial vegetation and climate conditions, most remote 

sensing studies in China on phenology were focused on natural vegetation types 

such as woodland, broadleaf forest, coniferous forest, shrublands, and grassland and 

mostly at a regional scale (Cai et al. 2012; Chen et al. 2000; Ding et al. 2013; Le et 

al. 2014; Meng et al. 2009; Pan et al. 2012; Pan et al. 2014; Piao et al. 2006a; Wu 

et al. 2010; Xin et al. 2002; You et al. 2013). 

In the last few years, many studies focused on China adopted NDVI datasets derived 

from National Oceanic and Atmospheric Administration (NOAA)/advanced very 

high-resolution radiometer (AVHRR), TERRA/moderate resolution imaging 

spectrometer (MODIS), and SPOT/VEGETATION, to quantify annual vegetation 

phenological variation and its changing trend across China (Pan et al. 2012; Piao et 

al. 2006a; Wei et al. 2012; Wu et al. 2010; Wu et al. 2008; You et al. 2013). In this 

chapter, the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial 

Chlorophyll Index (MTCI) was adopted rather than the NDVI to assess its potential 

for observing the inter-annual variation of vegetation phenology over China 

mainland. MTCI is directly related to canopy chlorophyll content, which is a 

function of chlorophyll concentration and leaf area index (LAI) (Dash and Curran 

2004). ESA’s Sentinel-3 mission aims to provide data continuity from Envisat’s 

launch in 2002. The Sentinel-3 payload includes the Ocean and Land Colour 

Instrument (OLCI), and the level 2 land product OLCI Terrestrial Chlorophyll Index 

(OTCI) is based on the MTCI. 

4.2  Study area 

In this chapter, mainland China was investigated. China occupies a vast territory 

with a diverse climate, varied topography and great variety of flora. Mainland China 

extends over 5,000 kilometers from west to east (73°E to 135°E); it spans from a 

distance of 5,450 kilometres from north to south (53°N to 4°N). The varied climates 

span across frigid, temperate, subtropical, and tropical zones from north to south, 

and the distribution of climate regions determine China’s vegetation patterns. 

Within China’s territory, about one-third of the landmass is mountainous, with 

plateaus and high mountains dominating the west, while lower lands and plains lace 
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the eastern region. 

4.3 Data 

Three data sources were used: (i) 8-day and 10-day temporal composite of MTCI 

with 4.6 km spatial resolution (ii) ESA’s 2009 global land cover map and (iii) 

ground observation data, collected from previous published research used for 

validation.  

4.3.1 MTCI Data 

MTCI data for 2002 – 2012 with a spatial resolution of 4.6 km and temporal 

resolutions of 8-day (2002 – 2007) and 10-day (2008 – 2012) were obtained from 

the NERC Earth Observation Data Centre (NEODC), to make time-series MTCI 

datasets of 18 months from 2003 to 2011 to detect all possible growing seasons. For 

2002 and 2012, three months data each year were employed. 

4.3.2 ESA’s land cover map 

ESA’s 2009 global land cover map was used (Figure 12). The map was produced 

using 12 months of data from Envisat’s Medium Resolution Imaging Spectrometer 

at a spatial resolution of 300m. The map projection is WGS1984 and the 

classification uses the UN Food and Agriculture Organisation’s (FAO) Land Cover 

Classification System (LCCS). ESA’s 2009 global land cover map was used to 

locate major vegetation types within China for investigation in the later analysis. 

 

Figure 12 Land cover map of mainland China derived from ESA’s 2009 Global Land 

Cover map (http://esamultimedia.esa.int/images/EarthObservation/globcover). 
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4.3.3 Ground observation data  

Because of a lack of freely available first-hand ground observation data from the 

Chinese Phenological Observation Network (CPON), an inter-comparison of 

satellite derived phenological variables was undertaken based on data reported from 

previous studies (Chang et al. 2012; Chen et al. 2005b; Chen et al. 2000; Liu et al. 

2011; Luo et al. 2007; Xiao et al. 2013; Zheng et al. 2006), the information of the 

ground data are in table 4. 

4.3.4 Gridded phenology dataset of Fraxinus Chinensis  

The gridded dataset of spring phenology of Fraxinus Chinensis in China from 2003 

to 2007 (Figure 13) was used for validation with the onset of greenness extracted 

from MTCI data for the broadleaved forest, and the gridded data had a spatial 

resolution of 1°×1°. The dataset was acquired from the Institute of Geographic 

Science and Natural Resources Research, Chinese Academy of Sciences. It was 

established by adopting UniChill phenology model (Chuine 2000), with phenology 

records from the Chinese Phenological Observation Network at 12 stations located 

in eastern China (23°-45°N) and climatic data from the China Meteorological Data 

Service Centre (CMDC) at corresponding stations as input data. The dataset was 

validated with ground observation records. The results showed the r2 = 0.873 (p < 

0.0001), and RMSE was 6.1 days.  

 

Figure 13 Distribution and average date for spring phenology of Fraxinus Chinensis in 

China from 2003 to 2007, with a gridded resolution of 1°×1°. 
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4.4  Method 

To determine and extract the phenological variables of vegetation throughout China 

for nine years, three steps presented in the flowchart in Figure 14 were needed: at 

first, the raw MTCI data was pre-processed to acquire high-quality 18-month MTCI 

time-series for all pixels from 2003 to 2011; after that, phenological variables 

including Onset of greenness (OG), end of senescence (ES), and length of growing 

season (LGS) were extracted for each year. At last, the gridded phenology data and 

ground observation data collected from literatures were used to compare with 

extracted variables for an inter-comparison. 

 

Figure 14 Flowchart showing data processing, phenology extraction, and validation 

processes. 
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4.4.1 Data pre-processing 

The noise in the annual time-series is mainly due to cloud cover, atmospheric effects, 

and snow cover (Zhang et al. 2012b). A moving average function was applied to 

remove the missing data or erroneous values (MTCI=0) (valid MTCI values are 

from 1 to 6), by replacing incorrect data points with the mean of the neighbouring 

data points. To further reduce noise, the discrete Fourier transform (DFT) was used 

to smooth the time-series data. In this research, six harmonics are utilised to 

generate a smoothed time-series, as shown in Figure 15. 

 

Figure 15 18-month time-series MTCI raw and smoothed data: (a) single growing 

season; (b) double growing seasons. 

4.4.2 Phenological variables extraction 

The inflection point method was adopted to extract phenological variables. The 

inflection point method for extracting phenological variables starts from the 

dominant peaks and checks the derivative both forwards and backwards at the same 

time. When the derivative changes from positive to negative or from negative to 

positive, a valley point might be assigned as OG or ES. However, because of local 

climatic variation or multi growth seasons, the valley point may not be located at 

the ideal theoretical place but somewhere has a larger value. To deal with this, a 

threshold of one-fifth of the maximum vegetation time-series signal value was 

applied for the valley point to be accepted as a phenological variable, until a definite 

valley point is detected (Dash et al. 2010b). 

After the phenological variables were extracted, the mean values for OG, ES, and 

LGS were calculated for each pixel for the nine years (2003 – 2011), and phenology 
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maps of mainland China were produced as 9 year averages to present the general 

pattern of phenology over mainland China in the last decade. 

To study the phenological variation within and across major vegetation types, the 

ESA’s 2009 land cover map of the China sub-continent was resampled from the 

original 300 m to 4.6 km spatial resolution, by using the majority method, to match 

the MTCI data. After that, major vegetation types in mainland China were masked 

out: needle-leaved, broadleaved, shrub/grassland, and crop regions (Figure 16). 

 

Figure 16 Major vegetation types masked out from land cover map: Needle leaf 

(including close/open needle leaf evergreen/deciduous forest), shrub/grassland (including 

close to open shrub and grassland), cropland (including irrigated and rain-fed cultivated 

and managed cropland), and broadleaf (including close/open broadleaf evergreen, 

deciduous/semi-deciduous forests). 

4.4.3 Statistical analysis 

Statistical analyses were done including: (1) average timing of OG, ES, and LGS 

were calculated to show the general distribution of vegetation phenology in 

mainland China. (2) Standard deviation of OG and ES were calculated for two 
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growing seasons, to show the variations of phenological variables during 2003 to 

2011. (3) Average timing of OG and ES (the first growing season) of four major 

land cover types (needle-leaved forest, broadleaved forest, crop, and shrub/grass) 

were calculated to examine the effect of the latitude. (4) Inter-annual changes of 

phenological variables within mainland China were investigated, to represent the 

changes of the major vegetation types at country scale. 

4.4.4 Comparison and validation 

An inter-comparison was performed with ground observation data reported from 

previous studies in China (Chang et al. 2012; Chen et al. 2005b; Chen et al. 2000; 

Liu et al. 2011; Luo et al. 2007; Xiao et al. 2013; Zheng et al. 2006). A table was 

created to show the similarities and differences between ground observation dates 

from other works and the onset of greenness and end of senescence dates retrieved 

from single pixels of the MTCI data. As the spatial resolution of the MTCI is 

relatively coarse (4.6 km), therefore, the nearest pixels or the pixels cover the 

observation stations were selected on investigation. In addition, stations had been 

checked to make sure not locating in urban areas. 

The gridded dataset of spring phenology of Fraxinus Chinensis in China from 2003 

to 2007 was used for validation with the OG extracted from MTCI data for the 

broadleaved forest. Statistical analysis was done to evaluate the consistency and 

accuracy.  

4.5 Results 

4.5.1 Spatial distribution patterns of OG and ES over mainland 

China from 2003 to 2011. 
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Figure 17 The distribution map for mainland China’s average timing of OG and ES from 

2003 to 2011: (a) mean OG of the 1st growing season; (b) mean ES of the 1st growing 

season; (c) mean OG of the 2nd growing season; (d) mean ES of 2nd growing season. The 

colour legend is the number of Julian days. 

The spatial distribution of the 9-year averages of three key phenological variables 

(OG, ES, and LGS) of two growing seasons over mainland China are represented 

in Figures 17 and 18. Some tropical regions in Southern China, for example, Hainan 

Province, have a triple cropping scheme. However, due to the coarse resolution and 

a relatively small area. Therefore, only a few values could be retrieved which were 

not necessarily representative and hence the triple cropping regions were not 

considered in this chapter. 

For the first growing season it can be seen from Figure 17a that the mean date of 

OG varied significantly over mainland China, and generally, the OG in northeast 

(April to May) and middle-west (May) China was later than most of the other parts 

of mainland China, which were dominated by rain fed crops. In mid-east China 

some parts also had a later OG (May to June), which is also an agricultural area. In 

southern China, there was less cropping area because most regions are mountainous 

and hilly, with a sub-tropical climate. Therefore, the OG was earlier than cropping 

regions (March to April). It also can be noticed that regions had the earliest OG 

(January to February) mostly scattered from central to east China and in Chongqing 

and Guizhou Province, most of which were grasslands and shrubs in the central 

region, and winter crops in the east. 

Figure 17b shows the pattern of the ES of the first growing season, it can be seen 

clearly that northern China experiences an earlier senescence than southern China 

while southeast China had the earliest ES where there is a major double cropping 
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region (Shanghai, Jiangsu, Anhui, Zhejiang, Hunan and Hubei Provinces). However, 

comparing with the OG in southern China, the corresponding ES was towards the 

end of the year or the beginning of next year (from December to March next year). 

This indicates that southern China has no clear phenological pattern or the 

phenological variables are hard to detect. This might be because the land cover in 

southern China is dominated by deciduous broadleaved forest. However, due to the 

mountainous landscape, needle-leaved forest exists at high altitude and especially 

is widely distributed on the plateau (Yunnan and Guizhou Provinces). In addition, 

the needle-leaved forest is also widely distributed in east coastal Provinces with low 

altitude, where there is more plantation. 

The second growing season was mainly detected in mid-east China (Figures 17c 

and 17d), dominated by double cropping paddy rice agricultural regions in Henan, 

Hebei, Shandong, Jiangsu, and Anhui Provinces. It can be inferred that the second 

growing season was about five to six months long (from October to February next 

year). Within these regions, the start of greenness for the second crop was detected 

very late in the year (from June to July). It was also observed that most of these 

regions have an OG date in June, except most parts in Hebei Province, some parts 

in Shandong Province and northern Jiangsu Province which have a later OG date in 

June. Finally, for most of the area that had an early OG, the ES was also detected 

earlier (October), except for southern Jiangsu Province where the OG was early 

(June) but had a late ES (December to January next year). Moreover, in northern 

Jiangsu Province, the OG was in July but the ES varied from December to next 

February. This might because of the different crop types grown in these areas. 
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Figure 18 The distribution map of average LGS for mainland China from 2003 to 2011: 

(a) mean length of the 1st growing season; (b) mean length of 2nd growing season (double 

cropping area). The colour legend is the number of Julian days. 

Figure 18 suggests the broad patterns of the mean length of the first and second 

growing seasons. Figure 18a shows that the vegetation in the mid-east double 

cropping agricultural region had the shortest 1st LGS, while northeast and southwest 

China had a moderate LGS. Southern China had the longest LGS almost lasting the 

whole year, indicating low variations of vegetation phenology in southern China, 

because the evergreen vegetation did not have obvious seasonality in humid tropics 

and subtropics (Cong et al. 2013; Piao et al. 2006a). Figure 18b showed double 

cropping agricultural areas had a growing length of about four to four and half 

months (107 to 138 days), except in Jiangsu Province where it lasts up to five and 

half months. This might be the result of different crops being grown in Jiangsu 

Province. 
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Figure 19 The variation (standard variation) for mainland China from 2003 to 2011: (a) 

variation of OG of 1st growing season; (b) variation of ES of 1st growing season; (c) 

variation of OG of 2nd growing season (double cropping area); (d) variation of ES of 2nd 

growing season (double cropping area). The colour legend is the number of Julian days. 

Figure 19 sets out the mean variation in OG and ES over mainland China from 2003 

to 2011. Figure 19a shows the mean variation in OG is limited in southern, 

southwest and northeast China of the first growing season. In northeast China, the 

standard deviation of OG was less than 8 days for most of the area, although there 

were some locations with a standard deviation of about 16-30 days, mainly 

dominated by broadleaved deciduous forest. The reason for this can be attributed to 

the different OG dates among diverse agricultural areas and broadleaved forests. In 

southern China, where there is a lack of clear seasonality, small variations were 

found as expected (8 to 15 days). A large standard deviation, more than 40 days, 

was found in Inner Mongolia, where the major land cover classes were shrub and 

grass. Except for the major agricultural region in mid-east China with a high 

standard deviation more than 40 days, there was also another notable area with a 

standard deviation more than 40 days in Sichuan Province, southwest China. For 

these agricultural areas mixed vegetation types and a changing farming plan might 

be the cause of high variation. Compared to the OG, Figure 19b showed that the 
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notably large deviation of more than 40 days of the first growing season in the main 

agricultural region in mid-east China and Sichuan Province. Mixed vegetation in 

southern China and grassland in west Inner Mongolia had standard deviations of 

about 11-30 days. From northeast China to southwest plateau, a low standard 

deviation of 4-6 days was found. 

Figures 19c and 19d represents the variation of the second growing season in the 

major double cropping region. The standard deviation was less than 8 days for the 

OG, and less than 15 days for the ES. The reason for the smaller deviation for the 

second growing season in the agricultural region maybe because limited types of 

crops were planted compared to the first growing season. 

4.5.2 Spatial and annual variation of OG and ES in mainland China 

from 2003 to 2011. 

 

Figure 20 Changes in the average timing of onset of greenness (OG) (a) and end of 

senescence (ES) (b) of four major land cover types of the first growing seasons during 

2003-2011 along the latitude of mainland China. 

Four vegetation types (needle-leaved forest, shrub/grassland, cropland, and broad-

leaved) were selected as major vegetation types to be investigated to quantify the 

effect of latitude in this chapter. As the double cropping region covers a relatively 
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small area, the second growing season in mid-east China was not examined.  

The dependence of the four major vegetation types on latitude across mainland 

China are shown for both OG and ES are in Figure 20. It can be seen that from 

south to north, the OG gradually delayed and the ES gradually advanced, which 

reflects the latitudinal differences of climate. Broadly, the ES for the four major 

vegetation types was more like each other than for the OG. 

It is notable that around the middle latitude (32ᵒN to 34ᵒN) there were obvious drifts 

for the OG and ES of grassland/shrub as well as slight changes of other vegetation 

types. This might be because this latitude zone stretched across four different 

climatic zones (sub-tropical zone, warm temperate zone, Qinghai-Tibet Plateau 

vertical temperature zone, and mid-temperature zone). In addition, within this 

latitude zone, landscapes varied from east to west, including plain, basin, plateau, 

and meadow, leading to local climate differences. Moreover, comparatively single-

species for some pixels and misclassification in the land cover map may result in 

these significant fluctuations. 
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Figure 21 Changes in the average timing onset of greenness (OG) and end of senescence 

(ES) of the 1st growing season for (a) needle-leaved forest, (b) shrub/grassland, (c) 

cropland, and (d) broadleaved forest, along with the latitude during the year 2003 to 2011. 

In Figure 21, the distribution of the average timing of OG and ES for the first 

growing season of each major vegetation type is plotted. For the OG of major 

vegetation types, it is generally more latitudinally correlated in south China than in 

north China, while it is the reverse for the ES. In north China, crops (Figure 21c) 

had a large positive correlation with latitude (r2=0.7254), this can be attributed to 

limited crop types and unified management at large scales than in the south. Needle-

leaved forest (Figure 21a) and broadleaved forest (Figure 21d) had smaller positive 

correlations with latitude (r2=0.6196 for needle-leaved forest and r2=0.6139 for 

broadleaved forest), while shrub/grassland (Figure 21b) had the smallest positive 

correlation with latitude (r2=0.4058). In south China, needle-leaved forest had the 

largest positive correlation with latitude (r2=0.8293), shrub/grassland and crops had 

a smaller correlation (r2=0.7696 for shrub/grassland and r2=0.7254 for crops), and 

broadleaved forest had the smallest correlation (r2=0.6983). This indicates that the 

OG delayed at higher latitudes. However, the magnitude of this delay was highly 

linked with vegetation types and their distribution as well as the local climate. 

Comparing with the OG, the ES was more related with latitude in north China while 

less pronounced in the south. This could be because of various mixed vegetation 
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types in south China, and the ES itself was a much more complex phenomenon than 

the OG, which is highly relevant to plant species and light conditions. However, for 

needle-leaved forest (r2=0.8184 at north and r2=0.6276 at south) and 

shrub/grassland (r2=0.6906 at north and r2=0.6000 at south), the ES were more 

related with latitude than for crops (r2=0.1552 at north and r2=0.2746 at south) and 

broad-leaved forest (r2=0.6591 at north and r2=0.1178 at north). This might be 

because croplands are much more manufactured and broadleaved forest had an 

uneven distribution in south China. 

4.5.3 Inter-annual changes of phenological variables within 

mainland China. 

Figure 22 exhibits the inter-annual phenological change characteristics at the 

country scale, for the five major land cover types. Overall, the timing of OG for all 

the land cover types in mainland China advanced and the timing of the ES delayed 

from 2003 to 2011. The largest advance of the OG occurred in the broadleaved 

forest (2.2 days year-1), and the longest delay of the ES occurred in the mixed 

evergreen forest (4.3 days year-1). The smallest advance of the OG occurred in the 

needle-leaved forest (1.0 day year-1), and the shortest delay of the ES occurred in 

the broad-leaved deciduous forest (1.3 days year-1). The mean OG over mainland 

China from 2003 to 2011 of broadleaf deciduous forest (r2=0.44), crops (r2=0.47 

and 0.47), needle leaf deciduous forest (r2=0.34), and grassland (r2=0.45) had 

significant advances over 9 years. With an annual advance of 2.2 days yr-1, delay of 

1.3 days yr-1 for broadleaf deciduous forest. 1.8 days yr-1 advance and 2.0 days yr-1 

delay for crops in the first growing season and 1.61 days yr-1 advance and 2.5 days 

yr-1 delay in the second growing season. 1.0-day yr-1 advance and 2.1 days yr-1 delay 

for needle leaf deciduous forest. Moreover, 1.5 days yr-1 advance and 1.1 days yr-1 

delay for grassland. The mixed evergreen and needle leaf deciduous forest did not 

show a clear trend. The variation in crop phenology was influenced by many factors 

including climate, farming schemes, fertilisers, agricultural management, and so on 

(Meng et al. 2009; Wu et al. 2008; Xin et al. 2002). Therefore, the OG and ES, 

especially the second growing season, could be influenced significantly. 
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Figure 22 Changes in the average day of different land cover types in mainland China, 

during 2003 to 2011. Error bars show the standard error. 

4.5.4 Inter-comparison with the literature 

An inter-comparison between ground observation dates from other phenology 

studies about China and satellite-retrieved phenological variables from above 

analysis is provided in Table 4. 

Chen et al. (2000) analysed statistically 50-70 types of species in deciduous broad-

leaved and coniferous mixed forests at Mudanjiang, deciduous broad-leaved forests 
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at Beijing, and Luoyang station during 1983 to 1990. Deciduous forests at Beijing 

and Luoyang station had a slight difference between ground observation onset of 

greenness and satellite-retrieved dates. The satellite retrieved ES date was 44 days 

late at Beijing station. At Mudanjiang station, the satellite retrieved OG date was 

25 days later than the ground observation date. This can be attributed to the mixed 

species forests at this station, where dominant species were not clarified. 

Chen et al. (2005b) observed the dominant vegetation types at seven stations located 

from 32°N to the northern border (53°31'N) including conifer forest in the cold 

temperate zone, deciduous broad-leaved and coniferous mixed forest and steppe in 

the middle temperate zone, deciduous broadleaved forest in the warm temperate 

zone, and various inter-zonal crops from 1982 to 1993. However, Xi’an station was 

excluded, as it was in an urban area. For the OG at Gaixian, Beijing and Luoyang 

stations the remotely sensed data were earlier than ground observed data, while at 

Harbin and Xingtai stations were later. At Mudanjiang station, it had a similar day 

for both remotely sensed and ground observed OG. The satellite-retrieved dates of 

ES at these stations were all later than ground observed dates while Beijing station 

had the latest end of senescence date about two months later. Zheng et al. (2006) 

selected 16 stations from North to South China. Two species were observed at each 

station and different phenophases were examined over the period from 1980 to 1989. 

First bloom dates were compared with the MTCI retrieved dates. At Shengyang, 

Liaocheng and Luoyang station shared similar OG dates, while the values differed 

at most of the stations which were located at lower latitudes less than 34°N in South 

China. This might be because in South China vegetation types are usually mixed 

and a few species were selected which could not represent local dominant species. 

Luo et al. (2007) analysed the phenological dataset from 1962 to 1992 for three 

woody plant species, including Prunus davidiana (Carr.) Franch, Hibiscus syriacus 

L., and Cercis Chinensis Bunge, which were all common ornamental plants in the 

Beijing Metropolis. All three species are broadleaved and winter deciduous. P. 

davidiana and C. chinensis are both small trees that blossom in spring with OG 

dates of day 67 and 88, whilst H. syriacus is an ornamental shrub that blossoms 

most of the summer had an OG date of day 102 that was later than the satellite 

retrieved OG date of day 67. However, all these three species had similar ES dates 
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(318 for P. davidiana, 312 for H. syriacus, and 312 for C. chinensis) with a satellite-

retrieved date of day 358. 

Liu et al. (2011) selected 40 woody plant species of 13 families’ trees and shrubs as 

sample plants in the plot constituting 75% of total woody plant species, at 

Meihuashan National Nature Reserve, Fujian Province, southeast China, in 2006 

throughout the entire growing season from early March to mid-June. Shrubs and 

trees had OG dates of day 37 and 47, while the satellite-retrieved date was day 55. 
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Table 4 An inter-comparison between ground observation dates and satellite-retrieved phenological variables in this study.

Reference Location Species 
Sample 

Points/Sources
Study Period

OG from 

LR 

(DoY)

Derived 

OG 

(DoY)

ES from 

LR 

(DoY)

Derived 

ES  

(DoY)

Mudanjiang (44°26'N, 129°40'E, 300m) Deciduous broad-leaved and coniferous mixed forests 98 123 286 287

Beijing (40°01'N, 116°20'E, 50m) Deciduous broad-leaved forest 75 67 314 358

Luoyang (34°40'N, 112°25'E, 155m) Deciduous broad-leaved forest 61 66 320 311

Harbin ( 45°45'N, 126°40'E, 146m) 127 177 269 299

Mudanjiang (44°26'N, 129°40'E, 300m) 124 123 268 287

Gaixian (40°26'N, 122°20'E, 45m) 112 64 287 327

Beijing (40°01'N, 116°20'E, 50m) 105 67 298 358

Xingtai (37°04'N, 114°30'E, 77m) 103 154 292 311

Luoyang (34°40'N, 112°25'E, 155m) 100 66 295 311

Shengyang (42°05'N, 123°00'E, 50m) Salix babylonica L. 104 133 /

Liaocheng (36°28'N, 115°58'E, 31-32m) Salix matsudana Koidz. 84 85 /

Luoyang (34°40'N, 112°25'E, 155m) Salix babylonica L. 75 66 /

Yangzhou (32°25'N, 119°25'E, 8m) Salix babylonica L. 82 39 /

Yinxian (29°52'N, 121°30'E, 5m) Salix babylonica L. 73 54 /

Changde (28°40'N, 110°20'E, 43.9m) Melia azedarach L. 100 79 /

Guiyang (26°25'N, 106°40'E, 1095m) Firmiana simplex W.F.Wight 98 47 /

Guilin (25°11'N, 110°12'E, 155m) Melia azedarach L. 90 65 /

Ganzhou (25°52'N, 115°00'E, 110m) Melia azedarach L. 73 60 /

Prums davidiana 67 67 318 358

Hibiscus syriacus 102 312

Cercis chinensis …...more than 20 88 312

Liu et al., 2011
Meihuashan National Nature Reserve  

(25°25 Ń, 116°50 É, 1200m)
40 woody plant species 

For each species at least 8 

individuals were located and 

five random branches with 

tips on the outer edge of the 

plant crown were selected

March to June, 

2006
47 55 /

Chang et al., 2012
Minqin Desert Botanical Garden (102°59'E, 

38°34'N, 1378m)
22 species

3-5 individuals observed for 

each species
1974-2009 85 70 300 304

Xiao, 2013
North China Plain (Hebei, Henan, Shandong, 

and Shanxi Provinces.)
winter wheat

Phenological data acquired 

from Chinese Meteorological 

Administration (CMA)

1981-2009 54 50 /

Conifer forest in the cold temperate zone, deciduous 

broad-leaved and coniferous mixed forest, and steppe in 

the middle temperate zone, deciduous broad-leaved 

forest in the warm temperate zone, and various interzonal 

crops.

Chen et al., 2005.

Chen et al., 2000.
50-70 kinds of trees and 

shrub for each station
1983-1988

1982-1993

Phenological data acquired 

from Chinese Yearbooks of 

Animal and Plant 

1962-1992

1980-1989
Phenophase records of two 

species at each station
Zheng et al., 2006.

Beijing (40°01'N, 116°20'E, 50m)

a permanently marked group 

of more than 10Luo, 2007.
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Chang et al. (2012) carried out phenological observations in the Minqin Desert 

Botanical Garden for 22 species (8 trees or small trees, 10 shrubs and semi-shrubs, 

and 4 herbs) from 1974 to 2009 with complete observation data. All observed 

vegetation had been divided into two groups, xerophytes, and mesophytes. The 

mean OG date of mesophytes was day 85 and day 97 for xerophytes, while the 

remotely sensed data for this location was day 70; the mean ES date of mesophytes 

was day 300 and day 303 for xerophytes, while the remotely sensed date was day 

304.  

Xiao et al. (2013) observed winter wheat in the NCP (North China Plain) including 

Hebei, Henan, Shandong, and Shanxi Provinces, and also Beijing and Tianjin 

Municipalities. Within the NCP, 36 stations were selected and investigated over the 

period 1981 to 2009. A vast region was observed, and therefore, 10 pixels of each 

Province were selected to calculate a mean onset of greenness date. This was day 

50 while the observed date was day 54, which were very close to each other. 

In summary, from Table 4, it can be seen that the mixed vegetation type did not 

have a clear trend when comparing the last decade satellite-retrieved phenological 

dates with previous ground observation dates, in South China. Winter wheat, under 

human management, had a similar onset of greenness date since 1981 to 2011 in 

the North China Plain. 

4.5.5 Validation with the gridded dataset of spring phenology 

Fraxinus Chinensis in China from 2003 to 2007. 

By using the gridded data of Fraxinus Chinensis as a reference, which is a kind of 

broadleaf species, the relationship between extracted OG and reference data was 

plotted. Figure 23 shows that the OG for broadleaf deciduous extracted from MTCI 

from 2003 to 2007 correlated well with Fraxinus Chinensis gridded data 

(correlation coefficients r2 of 0.7276, 0.7542, 0.8199, 0.7223, and 0.7493 for the 

year 2003, 2004, 2005, 2006, and 2007, respectively). The results demonstrate the 

whole phenology extraction process and methodology had the ability to monitor 

vegetation phenology at large scale with the MTCI dataset. 
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Figure 23 Validation between the Fraxinus Chinensis gridded data of spring phenology 

and the extracted spring phenology from MTCI dataset. 

4.6  Discussion 

Although many ground-based phenological observations were carried out across 

mainland China for different vegetation types or crops, ground observations are 

usually limited to single or a few species at the local scale, and sometimes can be 

discontinued due to weather or human factors. Remote sensing can measure the 

phenology from regional to global scales with even a daily repeat at different spatial 
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resolutions from metres to kilometres (Bradley et al. 1994). Therefore, in the last 

decade, remote sensing measurements for phenology have been used widely. A few 

studies have so far employed various remote sensing data to analyse plant 

phenology in China. Those studies mainly focused on the variation in major 

phenological variables over a short or long period and the response from vegetation 

to changing climatic conditions. However, due to China’s complex climatic, 

geographical, and environmental conditions, most previous studies focused on 

single species (Ding et al. 2013; Le et al. 2014; Meng et al. 2009; Pan et al. 2012; 

Pan et al. 2014; Ren et al. 2008; Wu et al. 2010; Wu et al. 2008; Xin et al. 2002; 

You et al. 2013) and the regional scale (Cai et al. 2012; Chen et al. 2005b; Chen 

and Pan 2002; Dai et al. 2011; Lee et al. 2001; Li et al. 2011a; Piao et al. 2006a; 

Wang and Tao 2014; Xu and Liu 2007), by using NDVI. 

This chapter provides an innovative attempt to use the time-series MTCI remote 

sensing data to present the phenological variation of vegetation during the last 

decade over whole mainland China. Mean and standard deviation maps of three key 

phenological variables (OG, ES, and LGS) over mainland China were produced. 

The results exhibited large standard deviation of OG in Inner Mongolia, dominated 

by grass, which was consistent with the findings from Cong et al. (2012), suggesting 

the grassland’s OG is strongly connected with regional environment. However, the 

standard deviation of ES in the region was smaller. This can be attributed to regional 

climatic variation. Large standard deviation values of OG and ES of first growing 

season were also detected in the double-cropping agricultural region in mid-eastern 

China, which is affected by human management. In south China which is humid 

and temperate with mixed vegetation types, the standard deviation of both OG and 

ES were moderate. This might be because although vegetation types were complex 

in this area the temperature and precipitation were sustained and abundant. In 

northeast China and Qinghai-Tibet Plateau, the smallest standard deviation for both 

OG and ES were found. This can be a reason of relatively homogeneous vegetation 

covers in both areas. 

The methodology presented in this study has some desirable properties. It processes 

each pixel individually for the time-series remotely sensed data, without any 

thresholds or empirical constants, therefore, it can be applied on a large scale. 
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Moreover, it can capture multiple growing seasons within a full growing cycle, 

which is common for crops and plants in tropical zones. The inflection points at the 

beginning and end of the growing period were assumed to be the timing of OG and 

ES by applied algorithm. However, it is common for time-series of remotely sensed 

data to have unexpected curves after smoothing, due to missing data, cloud, and 

other atmospheric contamination including dust, ozone or aerosols (Julien and 

Sobrino 2010). Therefore, the inflection point method may cause inaccuracy. It is 

also important to note that the spatial resolution of 4.6 km MTCI data were used. 

Therefore, sometimes satellite-retrieved phenological variables were less accurate 

in representing dominant vegetation types within each single pixel, comparing to 

ground observation results. In addition, climatic reasons were not considered in this 

chapter. As China has different climatic zones from south to north and increasing 

elevation from east to west, climatic conditions are complex. Further, altitude 

factors were not considered in this study. However, elevation was demonstrated to 

have distinct effects on vegetation. For example, the alpine grassland produced 

significant differentiation at different elevation and natural zones in the Qinghai-

Tibetan Plateau, as reported by Ding et al. (2013). The ES shows a significant 

pattern with elevation changes in eastern China, as concluded by Han and Xie 

(2014). 

The OG for most of the vegetation followed a latitudinal pattern with earlier OG at 

lower latitude (Figure 20 and 21), while the ES has a later date at lower latitude. 

However, more fluctuations shown for the OG, especially around 35°N, whereas it 

shows more consistencies for the ES. It is also worth notifying the ES was earlier 

at higher latitudes and around 28°N to 30°N the ES starts showing more variants, 

where is close to the boundary between subtropical zone and warm temperate zone. 

The phenomenon indicates the plants phenology are controlled by complex zonal 

and regional factors. Wu et al. (2016) examined the vegetation phenology at north 

China and also found it showed high spatial heterogeneity for all land surface 

metrics, which were highly depended on the climate, the plant functional type and 

even soil characteristics. 

Although China has a phenological observation network established in the early 

1960s (Lu et al. 2006), the ground observation data were not obtained which could 
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be utilised to undertake validation with remote sensing results from this study. 

Therefore, the one-to-one relation could not be established which may demonstrate 

the accuracy of our satellite retrieved phenological variables. However, the overall 

results detected from the MTCI data set in this chapter broadly match with the 

ground observation results reported from previous studies, although there are still 

many differences especially for stations located in South China, where has vast 

mixed vegetation types. Generally, an advancing OG and a delaying ES was found. 

4.7  Conclusion 

Based on the MTCI 8-day and 10-day time-series data, with a spatial resolution of 

4.6 km, key phenological variables were extracted from 2003 to 2011 by using the 

inflection point method. The discrete Fourier transform method was used to smooth 

the signal while keeping the main phenological patterns. Four major vegetation 

types were obtained from ESA’s 2009 land cover map, to investigate spatial 

variation on phenology with latitude. The results showed the phenological metrics 

had strong regional characteristics irrespective of vegetation types. The OG was 

more related with latitude than the ES, and generally, in north China vegetation had 

weaker links with latitude than in south China for the OG. The opposite was the 

case for the ES. However, in the study, the situation could be more complex if the 

elevation was considered. Further, the timing of OG for all the vegetation types in 

mainland China advanced from 1.0 to 2.2 days year-1 and the timing of the ES 

delayed from 1.3 to 4.3 days year-1, during 2003 to 2011. 

As the MTCI is more sensitive to chlorophyll with fewer effects from other 

disturbances, investigation on the relationship between phenology and climate will 

help us understand how vegetation response to climate changes, and thereby, more 

precise predictions of future phenology variations and global carbon cycle 

modelling are available (Piao et al. 2006a). Due to the lack of corresponding ground 

observation data, this work still has further potential for accurate validation.  
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5.Drivers of Phenology Variation in 

Mainland China  
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5.1  Background 

It has been found that the vegetation-growing season has been extending in the 

northern high latitudes (Chuanfu et al. 2012; Menzel and Fabian 1999; Myneni et 

al. 1997; Yu et al. 2017; Zhang et al. 2012b). As a result of the noteworthy 

advancing start of the growing season, and to a less extent by the delay of vegetation 

senescence (Linderholm 2006). Shifts of vegetation phenology can profoundly 

affect terrestrial ecosystems and human societies, for example, by altering the 

global carbon, water, and nitrogen cycles, surface albedo and roughness, pollination 

season, crop production and disease distribution (Menzel 2002; Peng et al. 2013; 

Peñuelas and Filella 2001; Piao et al. 2006a; Richardson et al. 2013a; Walther et al. 

2002). Therefore, it is crucial to understand the relationship between vegetation 

phenology and climate (e.g. temperature and precipitation drivers). Water is critical 

for vegetation growth. Therefore, the amount and timing of precipitation play a vital 

role in plant phenology changes. Temperature also is a significant factor in the 

vegetation green-up stage. The temperature difference between winter and spring 

results in a start of growing season, and sufficient winter chilling is essential for 

plants to release bud dormancy, initiate growth and flowering in spring (Pagter et 

al. 2015; Saure 1985; Wang et al. 2017c). Insufficient chilling during winters 

usually leads to serious consequences such as reduction of flower quality, 

abscission of flower buds, protraction of the flowering process, and a reduced fruit 

set; in sub-tropical and tropical areas it results in prolonged dormancy which can 

cause poor blooming, strong apical dominance, unsynchronised growth patterns, 

and low yields (Melke 2015). In cold and temperate regions, accumulated 

temperature which is also known as thermal time (i.e. the sum of daily mean 

temperature above a certain threshold value during a plant life cycle) is also 

important for plant green-up because plants need store a certain amount of heat to 

break the dormancy and trigger spring leaf onset (Piao et al. 2015). In summary, 

warm springs after cold winters (a large temperature difference), tend to bring about 

early initiation of the plant growing season.  

Many studies have been conducted in China investigating the relationship between 

vegetation phenology and climatic factors. However, most of the studies were 

focused on limited locations or regions, even specific plants. For instance, Chen 
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and Pan (2002) used AVHRR NDVI data from 1982 to 1993 to investigate the 

response of the growing season of local plant communities to climate change at 

three sample stations in eastern China. The results showed that the mean air 

temperature and Growing Degree Days (GDDs) above 5°C during the late winter 

and spring, and precipitation in autumn, were the most important controls on the 

OG and ES. Piao et al. (2006b) used AVHRR NDVI data from 1982 to 1999, and 

concurrent mean precipitation and temperature data to investigate the possible 

impact of recent climate changes on growing season duration on the temperate 

vegetation of China. The results suggested that an earlier OG and later ES were 

observed. The OG was most significantly related with the mean temperature during 

the preceding 2-3 months. A warming in the early spring by 1°C could cause an 

earlier OG of 7.5 days, whereas the same increase of mean temperature during 

autumn could lead to a delay of 3.8 days of ES. Dai et al. (2011) used GIMMS 

NDVI data to analyse the spatial-temporal variation of vegetation cover and the 

driving factors in northwest China during 1982 to 2006. The results indicated that 

in the area natural vegetation change was mainly influenced by climate change, 

while planting vegetation was affected by human activities. It also showed that in 

the last 25 years in the area temperature rose significantly by an average rate of 

0.67°C per decade and precipitation increased by an average rate of 8.15 mm per 

decade. A positive relation was detected between vegetation cover, temperature, and 

annual precipitation changes. Guo et al. (2015) evaluated the temperature response 

of apricot bloom at five climatically contrasting sites in China, to test the effects of 

increasing temperature in spring and autumn/winter on advancing spring phases. 

The results showed warmer spring temperatures lead to an earlier apricot bloom in 

cold areas, and chilling temperatures were the main driver of bloom, implying a 

warm autumn/winter caused delayed spring phases. 

The MERIS Terrestrial Chlorophyll Index (MTCI) 4.6 km 8-day and 10-day 

interval dataset and gridded (0.5°×0.5°) monthly climate records were used to 

investigate the connections and relationships between climatic factors and dates of 

regional vegetation phenology over the whole mainland China from 2003 to 2011, 

to find the main drivers for each region at the country level. 
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5.2  Study area 

In this chapter, mainland China was divided into eight vegetation-climate zones for 

later analysis of how vegetation responds to climate change. Mainland China 

extends over 3,200 miles from west to east (73°E to 135°E); it spans 3,400 miles 

from north to south (53°N to 4°N). China probably has the most diverse climates 

and landscapes in the world. The country spans across frigid, temperate, subtropical, 

and tropical zones from north to south, and within the territory, about one third of 

it is mountainous. Plateaus and high mountains dominate the west, while lower 

lands and plains lace the eastern region. Generally, the altitude increases from -150 

m at east China to around 1500 m in mid China, and up to around 5000 m in west 

China (Tibet) (Figure 24). The temperature decreases along this direction (around 

25°C to -10°C) (Figure 28), while the precipitation decreases from southeast to 

northwest (from 2000 mm year-1 to less than 50 mm year-1) (Figure 28). The huge 

differences in elevation, temperature, and precipitation from east to west, and from 

south to north, result in diverse vegetation land covers and various kinds of 

landscapes. 

 

Figure 24 Elevation map of mainland China. 
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5.3  Data 

Four data sources were used in this study: (i) OG and ES phenology maps derived 

from 8-day and 10-day temporal composites of MTCI with 4.6 km spatial resolution 

(produced in Chapter 4); (ii) ESA’s 2009 global land cover map (downloaded from 

http://maps.elie.ucl.ac.be/CCI); (iii) China’s climatic monthly data including 

precipitation (mm) and average temperature (°C) from 2003 to 2011 (obtained from 

China Meteorological Data Service Centre (CMDC) (http://data.cma.cn/en); (iv) 

climate zone map of mainland China (Figure 25). 

 

Figure 25 Climate zone map of mainland China. 

5.3.1 Remote sensing data 

Based on the extracted phenological variables in the last chapter, the onset of 

greenness (OG) and end of senescence (ES) of each year from 2003 to 2011 were 

prepared for later statistical analysis. Figure 26 shows the average Julian days OG 

and ES distribution during the year 2003 to 2011 across mainland China. 
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Figure 26 Average onset and senescence time of vegetation growing season map of 

mainland China, derived from 4.6 km MTCI dataset. 

5.3.2 Land cover map 

ESA’s global land cover map of 2009 was used. The original resolution was 300 m, 
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and it had been resampled to meet the same resolution with MTCI data, which was 

4.6 km. The land cover map of mainland China was clipped, and values were 

reclassified in order to select five major vegetation types including broadleaf 

deciduous (BD), cropland (CL), grassland (GL), mixed evergreen (Mix), needle leaf 

deciduous (ND), in mainland China (Figure 27). 
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Figure 27 Five major selected vegetation types (broadleaf deciduous, cropland, 

grassland, mixed evergreen, and needle leaf deciduous) and their distribution in mainland 

China. The plot represents the number of pixels for different vegetation types. 

5.3.3 Climatic data 

Two climatic factors – temperature and precipitation – that greatly influence plant 

growth and geographic distribution were taken into consideration. Surface 

temperature and precipitation monthly gridded data (0.5°×0.5°) in ASCII format 

from 2003 to 2011 were downloaded from http://www.cma.gov.cn/ and then 

transformed into projected raster data. Both datasets were generated by the National 

Meteorological Information Centre, based on records from 2472 national 

meteorological stations, and spatially interpolated by using the Thin Plate Spline 

(TPS) method with a DEM extracted and resampled to 0.5°×0.5° from Global 30 

Arc-Second Elevation (GTOPO30) (0.05°×0.05°). Figure 28 shows the average 

annual temperature and accumulative precipitation during the study period. 
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Figure 28 Maps showing annual average temperature and annual average precipitation in 

mainland China. 
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5.4  Method 

Two phenological variables were extracted from the MERIS Terrestrial Chlorophyll 

Index (MTCI) dataset, OG and ES, and their relationships with meteorological 

parameters (temperature and precipitation) were investigated. Mainland China was 

divided into six climate zones (cold temperate zone (CT), temperate zone (Tm), 

warm temperate zone (WT), subtropical monsoon zone (StM), tropical monsoon 

rain forest (TrM), and Qinghai-Tibet Plateau zone (QTP)). The correlations between 

vegetation and climatic parameters were shown for each zone. 

5.4.1 Remote sensing data preparation 

Before extracting phenological metrics (OG and ES), procedures were needed to be 

undertaken for cleaning the missing values within the time-series, which were 

commonly caused by cloud cover, atmospheric effect, and snow cover (Zhang et al. 

2012b). There were many methods for data filling. A moving average function was 

applied to remove missing values with a mean neighbourhood of two values 

(windows size = 3). After that, the Fourier transformation was utilised to smooth 

the cleaned time-series data, with a parameter of six harmonics. 

5.4.2 Phenological metrics extraction 

Many methods were available for extracting phenological metrics through time-

series remote sensing data. Generally, there are two main approaches to finding the 

dates of growing onset and senescence from time-series data. One sets a threshold 

for a vegetation index such as NDVI, to identify the initiation of photosynthesis of 

leaves in spring (Chen et al. 2000; Fischer 1994; Lloyd 1990; White et al. 1997). 

Another approach is monitoring the derivative variation of time-series, to find the 

great change period to mark the growing seasons (Ahl et al. 2006; He et al. 2015b; 

Li et al. 2011a; Piao et al. 2006b; Zhang et al. 2003). The inflection point method 

was used to monitor the maxima and minima curvature rate changes that can 

possibly exhibit the timing of a growing season (Zhang et al. 2004). 

5.4.3 Statistical analysis 

Correlation analysis is commonly used to analyse the relationship between inter-
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annual vegetation phenological changes and climatic factors. The correlation 

coefficient (Pearson), referred to as r, is a value between -1 to 1, where 1 is a total 

positive relationship, 0 is no linear correlation, and -1 is a negative relationship. 

After phenology extraction, climatic data and phenological dates during 2003 to 

2011 over mainland China were analysed to find quantitative relationships. Along 

with the phenological variables (OG and ES) retrieved from 9-year MTCI imagery, 

in spatial and temporal respects, remotely sensed phenological variables will be 

related to meteorological factors. The correlation coefficients (r) were calculated 

for phenological season month (m) (the month OG or ES happened), sum of 

preseason month to phenological season month (pm1), and sum of two month 

before preseason month to phenological season month (pm2), to investigate the 

relationships between phenological metrics and accumulative climatic effects. 

To explore possible driving factors of the lengthened growing season of major 

vegetation types distributed in eight climate-vegetation zones, the dominant 

vegetation in zones was summarized according to the land cover maps, shown in 

Table 6. 

 

Table 5 Major vegetation distributions in climate zones. 

5.5  Results 

To analyse the variation of vegetation phenology with climatic factors, including 

temperature and precipitation, correlations were established between changing 

vegetation phenology and climatic factors in the corresponding months, at both the 

country level and vegetation-climate regional level. Furthermore, as plant 

phenological events are cumulative, the results of climatic effects over the certain 

period ahead of the timing of phenological dates were analysed (Piao et al. 2006b; 

Yu et al. 2003). Therefore, ‘pre-season’ climatic factors were taken into 

consideration by investigating two months climatic changes before OG and ES. 

Broadleaf Deciduous Cropland Grassland Mixed Evergreen Needleleaf Deciduous

1.cold temperate zone (CT)

2.temperate zone (Tm)

3.warm temperate zone (WT)

4.subtropical monsoon zone (StM)

5.tropical monsoon zone (TrM)

6.qinghai tibet plateau zone (QTP)



Drivers of Phenology Variation in Mainland China 

 

111 
 

5.5.1 Vegetation phenology variation in mainland China 

Table 6 lists the average onset and senescence dates by vegetation with 

corresponding average monthly precipitation and temperature in the phenological 

months from 2003 to 2011. Broadleaf deciduous forest, grassland, and cropland 

showed early OG in April, with the temperature around 8°C and precipitation 

around 38 mm. ES occurred from mid-to-late October when precipitation was less 

than 30 mm and temperature lower than 8°C. The OG of needle leaf deciduous 

forest varied from late April to early May with higher average precipitation of 47 

mm and temperature of 9.4°C, and the ES occurred around late September to early 

October. Mixed evergreen forest did not show any seasonality with a full growing 

period around the whole year.    
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Table 6 Average parameters of the OG and ES by vegetation type over mainland China from 2003 to 2011, with corresponding average monthly precipitation 

and temperature in the phenological months. 

Average Monthly 

Precipitation (mm)

Average Monthly 

Tempareature (°C)

Broadleaf deciduous OG 112.4 Late Apr 105.0 Mid Apr 98.0 Early Apr 105.2 Mid Apr 96.7 Early Apr 97.9 Early Apr 104.0 Mid Apr 101.3 Mid Apr 92.6 Early Apr 38.5 8.4

ES 288.1 Mid Oct 299.1 Late Oct 297.7 Late Oct 297.4 Late Oct 299.5 Late Oct 297.4 Late Oct 299.2 Late Oct 297.2 Late Oct 296.6 Late Oct 29.7 7.8

Cropland OG1st 104.1 Early Apr 98.1 Early Apr 95.5 Early Apr 91.1 Late Mar 88.0 Early Apr 92.2 Early Apr 95.0 Early Apr 90.0 Late Mar 91.9 Late Mar 37.5 7.6

ES1st 291.3 Late Oct 305.5 Late Oct 301.7 Late Oct 300.6 Late Oct 287.3 Mid Oct 296.2 Late Oct 304.5 Late Oct 289.0 Mid Oct 301.7 Late Oct 26.9 7.1

OG2nd 180.3 Late Jun 178.8 Late Jun 177.7 Late Jun 179.6 Late Jun 172.9 Late Jun 173.1 Late Jun 175.9 Late Jun 172.4 Late Jun 176.3 Late Jun 94.7 18

ES2nd 298.8 Late Oct 299.4 Late Oct 303.5 Late Oct 304.5 Late Oct 299.2 Late Oct 303.6 Late Oct 309.2 Early Nov 291.7 Late Oct 314.0 Mid Nov 26.5 6.2

Grassland OG 112.9 Late Apr 109.0 Mid Apr 99.5 Early Apr 99.6 Early Apr 99.2 Early Apr 105.1 Mid Apr 103.4 Mid Apr 99.0 Early Apr 97.9 Early Apr 38.5 8.4

ES 276.0 Early Oct 282.1 Mid Oct 283.7 Mid Oct 283.2 Mid Oct 282.1 Mid Oct 284.4 Mid Oct 285.5 Mid Oct 282.5 Mid Oct 286.1 Mid Oct 29.7 7.8

Mixed evergreen OG 97.6 Early Apr 93.2 Early Apr 89.5 Late Mar 89.5 Late Mar 87.9 Late Mar 87.5 Late Mar 83.9 Late Mar 82.0 Late Mar 85.6 Late Mar 28.7 4.6

ES 344.4 Late Dec 380.1 Mid Jan 380.7 Mid Jan 374.2 Early Jan 376.0 Early Jan 383.6 Mid Jan 379.7 Mid Jan 382.7 Mid Jan 380.9 Mid Jan 10.5 -8

Needle leaf deciduous OG 125.1 Early may 116.9 Late Apr 116.2 Late Apr 120.2 Late Apr 117.4 Late Apr 116.2 Late Apr 120.2 Late Apr 121.9 Late Apr 116.6 Late Apr 47 9.4

ES 268.5 Late Sep 276.4 Early Oct 278.0 Early Oct 276.8 Early Oct 277.8 Early Oct 287.2 Mid Oct 280.4 Early Oct 281.1 Early Oct 276.9 Early Oct 32.9 8.5

2009 2010 20112003 2004 2005 2006 2007 2008
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5.5.2 Phenology variation in relation to precipitation and 

temperature in the climate zones 

Figure 29 (a-l) shows the CCs between OG and ES and two climatic factors in 

different regions. It can be seen that generally the OG had a great number of positive 

correlations with precipitation and temperature than negative correlations, 

suggesting that the increase in temperature or precipitation results in advancing OG. 

Conversely, the ES was more negatively related to precipitation and temperature. 

The cold temperate zone (CT), the most northern region in China. For the OG, the 

large correlations were negative (r ranged from -0.703 to -0.376 for BD and from 

-0.715 to -0.376 for ND). It can be clearly noticed that there were declines in 

correlations for accumulative precipitation with the OG for both vegetation in the 

last two months before the seasonal month (r ranged from -0.571 to -0.290 for BD 

and from -0.666 to -0.376 for ND). For the ES, it was found that the relationships 

between BD and ND and two climatic factors during the three months were high 

positively consistent (r ranged from 0.723 to 0.843 for broadleaf deciduous and 

from 0.766 to 0.886 for needle leaf deciduous). This suggests that a sufficient 

store of precipitation before the seasonal month was critical for the spring 

phenology stage in this region. Therefore, in northern China, temperature 

contributed more to the OG and ES than precipitation in CT, and both of 

precipitation and temperature were the main causes of an earlier OG for the crops. 

However, for the grass and broadleaf forest, it did not show any clear relationships 

with precipitation and temperature. For the ES, both precipitation and temperature 

were highly positive related with all three vegetation types. 

In the temperate zone (Tm), for the OG, the CL was high negatively correlated 

with two climatic factors, while the BD and GL were less affected. It might be 

because the needle leaf deciduous vegetation itself was less influenced by the 

severe growing environment (Fu et al. 2012). For the ES, the CL was more related 

with accumulative precipitation and temperature (r ranged from 0.589 to 0.657 for 

precipitation and from 0.570 to 0.690 for temperature). The BD was also strongly 

related with the two climatic factors during all three months. Thus  
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In the warm temperate zone (WT), which has sufficient rainfall all year round, the 

temperature determined the OG for the CL after the crops had stored sufficient 

water since the month before preseason months (pm2=0.267). The BD showed a 

similar reaction of being influenced by temperature after storing enough water 

since the preseason months. Therefore, it can be said that the summer temperature 

was the main factor driving the delay in the OG for the CL and BD in this region, 

and precipitation was partly responsible for the variation in triggering the OG. For 

the ES, both climatic factors influenced the BD greatly in this region, compared to 

the CL. It can be concluded in central China, temperature was the main driver of 

earlier OG for broadleaf forest and crops in the WT, while precipitation had a 

weaker impact on them. For the ES, both precipitation and temperature cause an 

earlier date for the BD, whereas the crops were positively correlated with the 

temperature during the three months. 

In the subtropical monsoon zone (StM) and tropical monsoon (TrM) zone, there 

were four major vegetation covers. The temperature had more impact on the OG, 

while the precipitation was relatively more important for vegetation dormancy, as 

the higher absolute value of r for all vegetation could be found. In southern China, 

in StM and TrM zones, the situation was more complex than other regions. 

Generally, temperature determined the OG while temperature contributed to the 

ES mostly with precipitation partly contributing. Among the vegetations in StM 

zone, the ND was controlled by temperature, while the other vegetations were 

heavily influenced by precipitation. For the ES, grass and mixed forest showed 

positive correlation with both precipitation and temperature as expected, but the 

broadleaf forest and crops showed the opposite. 

In the Qinghai-Tibet Plateau zone (QTP), the land cover is dominated by grass. It 

can be seen that the OG in the QTP was influenced by both precipitation and 

temperature negatively, and in the seasonal month, they had the most significant 

effect on the OG. The ES in this region was mainly affected by precipitation 

started in the preseason month (pm1=0.214). The accumulative temperature from 

two months before seasonal month had a higher positive impact on the OG 

(pm2=0.140), and negative impact in the seasonal month (m=-0.095).  
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In summary, the results showed that generally, the relationship between OG and 

climatic factors was negative, while the relationship between ES and climatic 

factors was positive. In north China including cold temperate and temperate 

zones, temperature was the main driver for the earlier OG and both of the two 

factors were responsible for the later ES. In central China the main driver is not 

clear for the green-up onset but both precipitation and temperature were the 

drivers for later ES in the warm temperate zone. In south China, precipitation was 

the main driver for the earlier OG in subtropical zone, while it is not clear for the 

ES. In tropical zone, both precipitation and temperature impact on the timing of 

green-up and senescence. In Qinghai-Tibet Plateau, the precipitation was the main 

driver for both shifting OG and ES of grass, while temperature influenced less. 
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Figure 29 Correlation coefficient between OG(ES) and precipitation(temperature) in 

season month (m), preseason month to season month (pm1), and one month before 

preseason month to season month (pm2). For different vegetation types, include broadleaf 

deciduous forest (BD), cropland (CL), grassland (GL), mixed evergreen forest (Mix), and 

needle leaf deciduous forest (ND). In climate zones, include cold temperate zone (CT), 

temperate zone (Tm), warm temperate zone (WT), subtropical monsoon zone (StM), 

tropical monsoon zone (TrM), and Qinghai-Tibet Plateau zone (QTP). 

5.6  Discussion 

Many studies have suggested that climate change has caused variation in vegetation 

phenology. In this study the major climatic factors affecting the vegetation 

phenology were summarised, and temperature was suggested to be a more 

correlated climatic factor rather than precipitation in north and central China, 

although precipitation was significant in preseason months occasionally. In most 

cases the OG of crops was affected by climate but the ES were more influenced by 

human activities (Dai et al. 2011). Warmer winters and springs may advance the 

OG of major vegetation in most regions in mainland China. Leaf development of 

most plants is sensitive to temperature (Polgar and Primack 2011) and needs a 

certain amount of winter chilling (Saure 1985) followed by adequate thermal time 

to trigger leaf unfolding (Hänninen and Kramer 2007). In addition, winter and 

spring precipitation could allow the well-developed root system to store sufficient 

water earlier in the growing season to advance the growth (Li et al. 2011a). Large 

negative correlations between the OG and precipitation and temperature of major 

vegetation including BD and ND in the cold temperate zone were found (Figure 
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29a), showing a warmer winter tend to advance the OG in northeast China. The 

same situation was found in other temperate zones for major vegetation. Except for 

the BD in the temperate zone showed most correlations were positive (Figure 29c), 

further investigation on understanding chilling and thermal requirement mechanism 

in BD is still needed. 

Increases in summer and autumn temperature and precipitation possibly delay the 

ES of most vegetation types. Most major vegetation in main regions showed 

positive correlations with climatic factors, except BD in the warm temperate and 

subtropical zones. Warming tends to accelerate the photosynthetic process (Shi et 

al. 2014), and at same time slow down chlorophyll degradation in autumn (Liu et 

al. 2016b). Warmer nights also tend to protect vegetation from frost damage 

(Hoffmann et al. 2010). On the other hand, increase in summer day time 

temperature may also  cause more evapotranspiration and soil moisture stress 

(Wang et al. 2017c), and then an earlier ES will take place because of the poor water 

supply such as grass in Figure 32. 

Few studies have focused on the southern part of China, as it has no obvious 

seasonality (Piao et al. 2006b). It can be indicated from our results that in south 

China, temperature and precipitation might not be sufficient factors to explain the 

change of vegetation phenology. It can be also highly related to other factors such 

as solar radiation as well.  

Additionally, it is important to be aware that the phenological dates of OG and ES 

were determined by remote sensing data. Although effective corrections have been 

done, missing values and errors caused by clouds, aerosols, etc. still exist in MTCI 

data (Tang et al. 2015). Therefore, the OG and ES could be possibly under or 

overestimated, leading to differences comparing with other studies. 

The trends in vegetation phenology were investigated at national scale rather than 

regional scale, as China is a large country. The only simple relationship was 

investigated between regional vegetation phenology and climate parameters 

including precipitation and temperature, to find the major drivers of phenology 

changes. Further, the research was based on a vegetation-climate region map rather 

than pixel level. Therefore, factors such as effects of latitude, solar radiation 
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changes, land use and land cover changes, that influencing vegetation phenology in 

many ways (Tang et al. 2015), were not taken into account in this study. 

5.7  Conclusion 

In this chapter, based on the 4.6 km MTCI time-series data, the phenological 

metrics OG and ES of vegetation were extracted, and the phenological trends in 

different vegetation types were estimated during 2003 to 2011. Moreover, with 

concurrent monthly precipitation and temperature gridded dataset, the 

relationships between phenological metrics and climate parameters were 

investigated. The results showed that the OG and ES in different regions had main 

climatic driving factors and they varied from regions and vegetation types. In cold 

temperate zone and temperate zone, temperature was the main driver for the 

earlier OG and both precipitation and temperature were driving the ES to be late. 

In warm temperate zone the OG was not driven specifically by climatic factor but 

both precipitation and temperature were the drivers for later ES. In subtropical 

zone, precipitation was the main driver for the earlier OG but the ES had no clear 

driver. In tropical zone, both precipitation and temperature advanced the timing of 

green-up and senescence. In Qinghai-Tibet Plateau zone, the precipitation was the 

main driver for both shifting OG and ES of grass, while less influenced by 

temperature. Among the vegetation that were investigated, broadleaf forest was 

more influenced by temperature to the OG in north China (CT, Tm and WT) and 

precipitation to the ES in south China (StM and TrM). Grass phenology was 

mainly controlled by temperature both Tm and QTP, and precipitation played an 

important role in QTP for the ES. The mixed forest was mostly driven by 

temperature but the precipitation in seasonal month had a great correlation with 

the OG. Crops were greatly affected by temperature in central China (WT) while 

affected by precipitation in southern China (StM and TrM). Further studies with 

more specific quantitative analysis will be helpful for understanding the 

relationship between vegetation growth and climate variables.  
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6.1  Background 

Rice is the second largest, but the most important staple food in the world, it feeds 

more than half the population on the planet. In 2016, paddy rice fields accounted 

for more than 10% of global cropland area, and the fields have increased about 3.4% 

in 2017 compared to 2010, according to FAOSTAT. More than 90% of the rice is 

grown and consumed in Asia where 60% of the world population live (Khush 

2005a). China is the world’s largest rice producer and consumer, rice makes up 

almost half of the country’s total grain output, and it plays a very important role in 

the China’s economy and food security. However, in recent years, with the 

urbanisation, natural degradation and hazards, challenges have emerged for 

growing demands of rice, due to an increasing population (Zhang et al. 2018a). 

Paddy rice plays an important role in water use, climate change, and disease 

transmission. Firstly, rice is the most water-intensive staple grain. Approximately 

95% of global rice is cultivated on flooded lands (Belder et al. 2004). In Asia, 

agricultural water consumption accounts for about 84% of total water withdrawal, 

with major emphasis on flooded rice irrigation (Loucks et al. 2005). Therefore, the 

high water demands of irrigation have an important impact on water quality. 

Secondly, paddy rice fields have been recognised as one of the most significant 

sources of greenhouse emissions, particularly methane (CH4), while they provide 

essential food for billions of people in the world (Li et al. 2004). CH4 is the second 

important greenhouse gas following CO2, with the capacity as 28 times as CO2 

(Dong and Xiao 2016). Lastly, paddy rice is correlated to the transmission of disease 

such as highly pathogenic avian influenza A (H5N1) virus, because paddy fields are 

common breeding sites for free-range ducks (Gilbert et al. 2008). In sum, map rice 

at fine spatial resolution is critical for food production and security, water resource 

management, environmental sustainability, disease control and governmental 

decision-making. 

The traditional way of paddy rice areas monitoring requires massive ground survey 

and statistical analyses, which is time consuming, labour intensive, and less 

accurate (Zhang et al. 2018b). Remote sensing has been used widely as an efficient 

tool for monitoring crops for the past decades, providing timely spatial and temporal 
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information on crop distribution area and their growing conditions. Unsupervised 

(Fang 1998; Okamoto 1999) and supervised classification such as the maximum 

likelihood classifier (MLC) were used widely for paddy rice classification in early 

studies, mainly with Landsat data (Fang et al. 1998; Kurosu et al. 1997; McCLOY 

et al. 1987; Parihar 1992; Tennakoon et al. 1992). Since 2000, new classification 

approaches were developed such as the Neural Network (NN) (Chen and McNairn 

2006; Kussul et al. 2017; Lu et al. 2017; Zhang et al. 2018a), the Support Vector 

Machine (SVM) (Dou et al. 2017; Hu et al. 2017; Li et al. 2014; Tan et al. 2007; 

Zhang et al. 2009), and Random Forest (RF) (Kontgis et al. 2015; Son et al. 2018), 

with MODIS, Landsat 8, Sentinel and other data sources. Although these new 

methods (e.g., NN, SVM, RF) have improved the accuracies compared to the early 

classification methods (e.g., MLC), however, they still rely on: (i) the amount of 

training samples, which normally ranges from hundreds to thousands depending on 

the size of study area, results in high labour intensity and time-consuming; (ii) 

sample acquisition time window, which can be affected by different farming 

schemes, especially at large scales; (iii) spatial resolution of remotely sensed data, 

which can overestimate the paddy fields area due to sub-pixel vegetation. Therefore, 

an alternative way for identifying rice paddies is based on the phenological 

characteristics of paddy rice. 

 A unique physical characteristic of paddy rice is that during the transplanting 

period paddy fields are a mixture of open water and rice seedlings. According to 

Xiao et al. (2006), pixels within the flooding area can be tracked using vegetation 

indices which are sensitive to changes in the land surface water content and the 

growing canopy. In this chapter, the MERIS Terrestrial Chlorophyll Index (MTCI), 

Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) are used 

to detect the changes of paddy fields during the transplanting period. 

EVI is constructed to overcome the shortage of NDVI, it takes all the advantages 

of MODIS. It is calculated similarly to the NDVI, but includes the blue band to 

correct distortions in the reflected light caused by particles in the air as well as the 

ground cover below the vegetation (Matsushita et al. 2007). In addition, the EVI 

does not saturate as easily as the NDVI, when processing high biomass situations 

(Li et al. 2010). 
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The LSWI was also known as normalised difference water index (NDWI), was first 

proposed by Gao (1996), and uses a shortwave infrared (SWIR) band centered at 

1240nm for the purpose of estimating vegetation liquid water from remote sensing 

data. The SWIR band based indices have been widely adopted in identifying 

flooding period during the rice growing cycle. Xiao et al. (2002) used the near-

infrared and middle-infrared bands to generate NDWIVGT by SPOT-VGT data to 

test the ability of detecting flooding and rice transplanting across the landscape. 

Chen et al. (2005a) tested both SWIR bands at 1640 nm and 2130 nm to calculate 

NDWI for estimating the vegetation water contents of corn and soybean. Xiao et al. 

(2006; 2005) adopted the same principle of NDWI but named as LSWI, centred at 

1640 nm to identify water properties during the flooding and transplanting period 

of paddy rice farming, by applying the conditions of 𝐿𝑆𝑊𝐼 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑁𝐷𝑉𝐼 

or 𝐿𝑆𝑊𝐼 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝐸𝑉𝐼 . Sun et al. (2009) based on Xiao’s method, set 

ranges for NDVI and EVI in order to detect early and late rice all over China. Ying 

et al. (2015) tested NDVI, NDWI or LSWI at different SWIR bands (1240 nm, 1640 

nm, and 2130 nm) for estimating Vegetation Water Content (VWC), according to 

historical studies on VWC. The results show that NDWI1640 and NDVI have greater 

accuracy for VWC estimation, while NDWI1240 lacks supportive literature. Due to 

the unique flooding period in paddy fields during the transplanting period, soil 

moisture becomes an important fact for consideration. Moreover, according to 

Parinussa et al. (2011), the retrieval error of soil moisture value is generally larger 

at higher microwave frequencies. Therefore, LSWI1640 were adopted to detect 

paddy rice fields in this chapter. 

The objective of this study was to test the ability of MTCI to detect flooding paddy 

fields with EVI and LSWI1640 in northeast China, and analyse the tempo-spatial 

distribution of rice in the three provinces from 2007 to 2011.                 

6.2  Study area 

Northeast China extends from 118°50´5´´E to 134°46´26´´E in longitude, and from 

38°43´15´´N to 55°33´39´´N in latitude, covers an area of 7.9×105 km2 with about 

30% arable land (Shi et al. 2013). The arable land comprises three provinces of 

Heilongjiang, Jilin, and Liaoning, and is one of the most significant agricultural 
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production bases in China for soybeans, maize, and japonica rice. Soybean 

production in northeast China accounts for over 40% of the national total 

production; japonica rice takes up 30-50% of the national total, and maize output 

was more than 30% in entire China in 2015 (National Bureau of Statistics of China, 

http://stats.gov.cn/). Altitude in northeast China is mostly less than 600 m, annual 

precipitation varies from 480 mm in the west to 900 mm along the east coast; the 

annual temperature ranges from 1°C to 7 °C, and the cumulative temperature is 

lower than 3000°C, with a frost-free period of 100 – 180 days through a year. 

Japonica rice in northeast China enjoys the reputation of being high yield and higher 

quality, because it is cultivated as a single-season crop, planted in major alluvial 

plains with a flat topography, abundant precipitation, and fertile soils (Shi et al. 

2013; Zhang et al. 2015b). 

6.3 Data 

6.3.1 Remote sensing data 

Medium Resolution Imaging Spectrometer (MERIS) Data 

The MERIS Terrestrial Chlorophyll Index (MTCI) dataset used in this study was 

obtained from the Envisat MERIS sensor. The 1 km reduced spatial resolution and 

10-day cloud free composites were downloaded from the UK Natural Environment 

Research Council Earth Observation Data Centre (NERC NEODC; 

http://www.ceda.ac.uk/). It is believed that MERIS was the most radiometrically 

accurate imaging spectrometer in space (Curran and Steele 2005). The MTCI data 

were composited from standard level 2 reduced resolution MERIS products by an 

arithmetic mean and a flux conversion resampling method (Dash and Curran 2007).  

Moderate Resolution Imaging Spectroradiometer (MODIS) Data 

The National Aeronautics and Space Administration (NASA) provides a range of 

MODIS products which are processed with standard correction algorithms for free 

download. The MODIS sensor on-board the NASA EOS Terra/Aqua satellite has 

36 bands, amongst which bands 1 to 7 are designed for vegetation and Earth surface 

studies: Band 1 (red: 620-670nm), Band 2 (NIR1: 841-876nm), Band 3 (blue: 459-

479nm), Band 4 (green: 545-565nm), Band 5 (NIR2: 1230-1250nm), Band 6 
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(SWIR1: 1628-1652nm), and Band 7 (SWIR2: 2105-2155nm). The MODIS 

products are available from daily to yearly with different spatial resolutions and 

various composite products.  8-day, 500 m surface reflectance data (MOD09A1) 

were acquired from the Land Processes Distributed Active Archive Centre 

(LPDAAC) (https://lpdaac.usgs.gov/). The MOD09A1 dataset has quality control 

flags to reduce the effects of clouds, cloud shadows and so on. It includes two 

quality assessment (QA) datasets at pixel and band levels, which were used to 

remove cloud contaminated pixels, before compositing indices. MODIS data are 

organised in a tile system with the Sinusoidal (SIN) projection grid, and each tile 

covers an area of 1200 km by 1200 km, which is about 10° latitude by 10° longitude. 

To cover northeast China, five tiles (h25v03, h26v03, h26v04, h27v04, h27v05) of 

MOD09A1 data were used to calculate indices including EVI and LSWI1640 from 

2007 to 2009. 

GlobeLand30 land cover map 

In 2010, China launched a global land cover (GLC) mapping project, and the 30   

m GLC data product (GlobeLand30) with 10 classes for years 2000 and 2010 were 

produced in 2014 (Chen et al. 2015). GlobeLand30 datasets are freely available 

from http://www.globallandcover.com/GLC30, with ten classes namely: water 

bodies, wetland, artificial surfaces, cultivated land, permanent snow/ice, forest, 

shrubland, grassland, bareland, and tundra. GlobeLand 30 employed a pixel-object-

knowledge-based (POK-based) classification approach, because in experiment four 

common classifiers (Maximum Likelihood Classifier (MLC), J4.8 Decision Tree 

Classifier (DT), Random Forest Classifier (RF), and Support Vector Machine 

(SVM)) were tested and it was found that the overall classification accuracy (OCA) 

was at 64.9%, produced by SVM, which was less satisfying (Gong et al. 2013). In 

this chapter, the cultivated land map was extracted and resampled by the majority 

method (a 4 by 4 filter finds the pixel values that are occupying more than 50% 

cells within it and output the majority as the new 4 by 4 cells) to match the resolution 

of 1 km (Figure 30), for the purpose of discriminating flooded forest, shrubland, 

wetland, and other water bodies from paddy rice fields. 

http://www.globallandcover.com/GLC30
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Figure 30 Cultivated land map extracted from GlobeLand30 of Northeast China. 

6.3.2 Census data 

Agricultural census data of sowing area were derived from the statistical yearbooks 

of Heilongjiang, Jilin, and Liaoning Provinces from 2007 to 2011, to evaluate the 

rice maps. In China, the administrative levels from large to small are provincial 

level, prefectural level, county level, township level, and the smallest is village level. 

The statistical yearbooks are published officially by provincial governments, 

gathering from the statistics done by governments from prefectural level to county 
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level. In the yearbooks, for Heilongjiang and Liaoning Provinces, only prefectural 

level data were available, while for Jilin Province, both prefectural level and county 

level data were available. In summary, there were 36 prefectures in northeast China, 

including 13 in Heilongjiang Province, 9 in Jilin Province, and 14 in Liaoning 

Province; and there are 50 counties in Jilin Province (Figure 35). 

 

Figure 31 Northeast China administrative regions map. 

6.3.3 The National Land Cover Dataset (NLCD) 

The National Land Cover Dataset (NLCD) for China was developed by the Chinese 

Academy of Sciences in the late 1980s, and updated in 1995, 2000, 2005, and 2010 

(Liu et al. 2014). The dataset was generated through human-computer interactive 
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interpolation of Landsat Thematic Mapper ™ and Enhanced Thematic Mapper 

(ETM+) images, with supplemental data from the Chinese Huanjing-1 satellite (HJ-

1). Six major land cover categories (cropland, woodland, grassland, water body, 

built-up land, and unused land) and 25 subclasses were contained in the dataset, 

with specific classes of “paddy cropland” (mainly used for planting paddy rice) and 

“dry cropland” (for upland crops). The acquired 2010 NLCD dataset was in 1 km 

spatial resolution, and in northeast China, there was a total area of 4.6×104 km2 of 

paddy cropland in the three provinces (Figure 32). The “paddy cropland” class in 

the NLCD 2010 dataset was extracted for comparing with the rice maps derived 

from MTCI and MODIS data. 

 

Figure 32 The National Land Cover Dataset (NLCD) 2010 in northeast China in the three 

provinces and the derived paddy cropland distribution. 

 

Table 7 Summary of paddy cropland area in three northeast China provinces and 

percentage, calculated from NLCD 2010. 

Province Paddy Cropland Area (km
2
) Percentage

Heilongjiang 26060 55.65

Jilin 11102 23.71

Liaoning 9667 20.64

Total 46828
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6.4  Method 

Figure 33 shows a flowchart that describes the complete processing chain. There 

were two main steps for identifying paddy rice in northeast China: (1) data 

preparation. Two vegetation indices (EVI and LSWI) were calculated from MODIS 

500 m data, after the raw MOD09A1 MODIS surface reflectance data tiles were 

mosaicked and re-projected. To use the MTCI data and MODIS data together, all 

vegetation indices data were processed into the same bands and data value range; 

(2) conduct a vegetation indices analysis based on the characteristic that the paddy 

fields are flooded during transplanting period, to identify paddy rice fields in the 

three provinces, in northeast China. 

 

Figure 33 Workflow for mapping paddy rice distribution in northeast China using 

MODIS and MTCI data. 
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6.4.1 Remote sensing data pre-processing 

Based on Xiao et al.’s researches (2006; 2002; 2005) many studies had been 

conducted. MODIS surface reflectance data or Landsat high resolution data were 

used and the same principle with more or less modifications or improvements were 

adopted, such as additional condition, different threshold, and different LSWI 

(LSWI2130) (Jin et al. 2015; Qiu et al. 2015; Shi et al. 2013; Sun et al. 2009; Zhang 

et al. 2015a; Zhou et al. 2016). It is the first time to use the MERIS Terrestrial 

Chlorophyll Index (MTCI) instead of the Normalised Difference Vegetation Index 

(NDVI), because MTCI has proved abilities of detecting vegetation growing 

phenology and an advance in high biomass situation, where the NDVI saturates 

(Dash et al. 2010b). Moreover, the MTCI also has another advantage for detecting 

paddy rice growing. Before transplanting the soil needs to be prepared by plowing, 

overturning, flooding, and levelling (Jin et al. 2015), at this phase there is barely 

green covers on the rice fields. Therefore, the MTCI value is extremely low or equal 

to zero, which is the biggest difference from the NDVI. After that, from 

transplanting phase, the MTCI signal shows a similar pattern with the NDVI (Figure 

34). However, the MTCI 1km dataset have a 10-day temporal resolution; while 

MODIS surface reflectance data have an 8-day interval. To replace MODIS NDVI 

with MERIS MTCI, then it was very necessary to resample their temporal 

resolution into a same number of bands through one year. The Maximum Value 

Composite (MVC) method was applied to capture the max value for every two 

bands and finally, both MERIS and MODIS dataset were converted to 24 bands a 

year. Meanwhile, the raw data were cleaned by replacing the missing values with 

the larger ones with a window of two valid values. After that, another fact needed 

to be considered which was the value range of the MTCI is from 0 to 6 (values 

usually range from 1 to 4 for rice), while values of EVI and LSWI are within 0 to 

1. Therefore, the easiest way to solve the problem was to apply a normalisation for 

the MTCI data in each pixel within a time-series by using the following equation: 

𝒙𝒏𝒆𝒘 =
𝒙−𝒙𝐦𝐢𝐧

𝒙𝒎𝒂𝒙−𝒙𝒎𝒊𝒏
 (10) 

Where ⅹ is the value of one date within the time-series of MTCI, xmin, xmax is the 

minimum value and maximum value of a set of time-series data, in another word 
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they are the minimum and maximum values for one MTCI pixel of the year. 

 

Figure 34 An example of 8-day MODIS NDVI (46 bands) and 10-day MTCI (36 bands). 

NDVI valid values ranging from 0 to 1 and MTCI valid values ranging from 1 to 6 (zeros 

from the beginning of the year till transplanting include snow cover and land preparation 

period). 

Replacing NDVI with MTCI in phenology based multi indices method; Figure 35 

shows the result of the temporal conversion for one sample point of paddy rice. It 

can be seen from the line plots that after applying the Maximum Value Composite 

(MVC) technique, 24 bands time-series can clearly represent the changes, i.e. the 

start and end of the season, and retains the similar patterns from the original data, 

which is significant for keeping the accuracy from original data. The different place 

is that the 24-band has a smoother profile with less fluctuation between values. 

However, the timing of inflection points within the growing season stay around the 

similar dates, which correctly represent the development of paddy rice growth. 
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Figure 35 Temporal resolution conversion by Maximum Value Composite (MVC) 

technique. The left three are original 8-day MODIS (46 bands/year) and 10-day MTCI 

data (36 bands/year), the right three are converted time-series data with 24 bands/year for 

both MODIS and MTCI. 

In order to be integrated with EVI and LSWI, MTCI values were normalised into 

the range of 0 to 1, Figure 36 shows the plots for the average values from 56 sample 

fields of paddy rice in Sanjiang Plain in 2011. It can be indicated from the plots that 

after applying the normalisation, 24 bands time-series MTCI still stayed in its shape 
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and all the significant break points remained. Therefore, the normalisation process 

was feasible and necessary. 

 

Figure 36 Normalised MTCI and original MTCI together with EVI and LSWI to show 

paddy rice growth pattern from 56 sample fields in Sanjiang Plain in 2011. 

6.4.2 Algorithms for identifying paddy rice fields 

Figure 37 shows the cropping calendar for northeast China and Figure 38 shows the 

average changes of three VIs within one-year period, from 56 sample points in 

Sanjiang Plain. Starting from February the LSWI value shows a dramatic decrease 

until late March, which is because of the snow melting during the spring; after that, 

the LSWI rapidly increased for about 4 months during the growing period. In late 

to early June rice seedlings are transplanted to flooded paddies with a water depth 

of 2 to 15 cm until about one week before harvest. During the transplanting period 

the paddy fields are mostly dominated by water, hence within the period LSWI 

values are usually larger than NDVI and MTCI values, shown in Figure 38, framed 

part. From mid-June to early July, rice grows rapidly during the vegetation growing 

phase (tillering and stem elongation), and the canopies may cover most of the paddy 

fields about 50 to 60 days after transplanting (2006; Xiao et al. 2005). During this 

period, NDVI and MTCI values are increasing rapidly and larger than LSWI values. 

In late July, the vegetation-to-water ratio reaches its maximum and then remains 

stable or slightly decreases during the ripening period (NDVI, MTCI, and LSWI 

values reach their maximums), which is the last stage of rice growth prior to 

harvesting. The moisture in both the paddy fields and leaf and stem start to 

decreases in ripening stage, and the number of green leaves decreases as well. 
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Therefore, the suitable timing for identifying paddy fields should be in the early 

flooding period before the fields are fully covered by the canopies. 

 

Figure 37 Rice cropping calendar in northeast China area. 

 

Figure 38 An average seasonal dynamic of normalised MERIS Terrestrial Chlorophyll 

Index (MTCI), the Enhanced Vegetation Index (EVI), and the Land Surface Water Index 

(LSWI) at 96 sample GPS points in three provinces, northeast China. 

Step 1 With the purpose of detecting significant water content changes during the 

transplanting period in paddy rice fields with MODIS surface reflectance data, 

two spectral indices namely, EVI and LSWI1640 were calculated using the 

following equations: 
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(11) 
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Step 2 Simple conditions were used for identifying paddy fields in the studies of 

Xiao et al. (2006; 2005), which were based on the situation that water content in the 

paddy fields is much higher than the vegetation coverage at the earlier stage of rice 

transplanting (𝐿𝑆𝑊𝐼 ≥ 𝐸𝑉𝐼 𝑜𝑟 𝑁𝐷𝑉𝐼), and to reconcile the differences in planting 

schedules (commonly one to two weeks), LSWI was slightly relaxed with a value 

of 0.05 (LSWI can reach around 0.2 from zero within two months from late April 

to early June, during the transplanting period, therefore, average LSWI value is 0.05 

for two weeks): 

𝑳𝑺𝑾𝑰𝟏𝟔𝟒𝟎 + 𝟎. 𝟎𝟓 ≥ 𝑬𝑽𝑰 Or 𝑳𝑺𝑾𝑰𝟏𝟔𝟒𝟎 + 𝟎. 𝟎𝟓 ≥ 𝑵𝑫𝑽𝑰 (13) 

According to Sun et al. (2009), within two to four 8-day MODIS composites 

significant differences can be captured by optical sensors. Xiao et al. (2006; 2005) 

and Wang et al. (2015) indicated that the EVI value of a true rice pixel reaches over 

half of the maximum EVI value within five 8-day MODIS composites (40 days) 

following the date of flooding and transplanting. Therefore, EVI value reaches its 

maximum value within five 8-day composites after transplanting was used as 

additional condition for identifying paddy rice: 

𝑬𝑽𝑰𝒕 > 𝟎. 𝟓 × 𝑬𝑽𝑰𝒎𝒂𝒙               (14) 

In this study, the same principles were adopted with a slight change of the EVI 

condition and the replacement of MODIS NDVI by MTCI. Because of the 

comparison between the 8-day MODIS and 10-day MERIS data, the time-series 

data were transformed from 46 bands to 24 bands through a year. Therefore, the 

corresponding date of the growing period could be slightly advanced, hence a lower 

threshold was applied (0.4): 

𝑳𝑺𝑾𝑰𝟏𝟔𝟒𝟎 + 𝟎. 𝟎𝟓 ≥ 𝑬𝑽𝑰 Or 𝑳𝑺𝑾𝑰𝟏𝟔𝟒𝟎 + 𝟎. 𝟎𝟓 ≥ 𝑴𝑻𝑪𝑰 (15) 

𝑬𝑽𝑰𝒕 > 𝟎. 𝟒 × 𝑬𝑽𝑰𝒎𝒂𝒙                (16) 

Step 3 To prevent unexpected interference from wetlands, seasonal flooding area 

and so on, GlobeLand30 land cover map was used to exclude the non-agricultural 

area in northeast China. The method could not be applied to double or triple 

cropping system areas. However, in northeast China, there is only one growing 

season through the year. 
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6.5 Results 

6.5.1 Temporal-spatial distribution of paddy rice in northeast 

China from remote sensing derived rice map 

Figure 40 shows the paddy rice maps derived from MTCI and MODIS data from 

2007 to 2011. Paddy rice fields are distributed across three provinces, and the paddy 

fields were distributed mainly at two major alluvial plains: Sanjiang Plain, locates 

in northeastern Heilongjiang, where is developed by three major rivers of 

Heilongjiang River, Songhua River, and Ussuri River; and Liaohe Plain locates in 

the central part of Liaoning Province, where the Liao River flows through. Most 

paddy rice fields locate at where has an elevation of less than 200 m, except some 

fields found in the mountainous region in Jilin Province with an elevation around 

600 m. Also, it can be noticed that Heilongjiang Province had the largest area of 

paddy rice fields.  

The planting area of paddy rice increased each year according to the official 

statistical yearbook. The inter-annual variation of MTCI and MODIS derived paddy 

rice fields area generally was consistent with the agricultural census data with a 

slightly larger count of planting area, except for the year 2009, shown in Figure 39. 

According to the State of the Climate in 2009: Special Supplement to the “Bulletin 

of the American Meteorological Society” (Vol.91, No.6, June 2010), the year 2009 

was the fourth driest year since 1951 and the driest year since 1987. Severe drought 

happened in China in 2009. From April to May Heilongjiang Province suffered 

severe spring drought impact, while severe summer and autumn drought took place 

in Liaoning and Jilin Provinces from late June to early November. Hence, the map 

derived from remotely sensed data correctly reflected the paddy cropland during 

drought. However, the official agricultural record of the year 2009 was about 

sowing area, which was not capable of reflecting the drought. 

The overall increase of paddy rice field area in northeast China, derived from 

remote sensing data and census data, were 117200 km2 and 121625 km2 from 2007 

to 2011, respectively. It can be observed from Figure 40 that most of the increase 

of planting area occurred at the east of Heilongjiang Province where the Sanjiang 

Plain is, characterised by enhanced agricultural irrigated infrastructure and high 
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mechanisation. The slopes of remote sensing derived data and agricultural census 

data were 2774 km2 year-1 and 2989 km2 year-1 respectively, that is almost 3000 km2 

year-1. To sum up, the results demonstrated that through time remotely sensed data 

processing for paddy rice field detection could be used as a valid monitoring tool 

for detecting the paddy rice planting area and evaluating the variation between years 

at large scales with low cost and high efficiency.  

 

Figure 39 Above plot is the inter-annual variation of the paddy rice growing area derived 

from MTCI and MODIS data and agricultural census data of sowing area in northeast 

China three provinces. Below is the comparison between the paddy rice growing area 

derived from MTCI and MODIS data, and agricultural census data of sowing area during 

the year 2007 to 2011. 
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Figure 40 Spatial distribution of paddy rice in northeast China derived from MTCI and MODIS data from 2003 to 2011 and the main river areas along with 

paddy cropland extracted from NLCD 2010. 
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6.5.2 Comparison between the paddy rice maps derived from 

MTCI and MODIS data and the NLCD 2010 data. 

The rice map for 2010 for comparison with the NLCD 2010 data. In general, there 

are several marked differences at the provincial level shown in Table 8: the rice 

maps derived from the MTCI and MODIS data detected similar areas of paddy rice 

fields in Heilongjiang Province (5.21% vs 5.89%) and in Liaoning Province (6.01% 

vs 6.61%), but less paddy rice fields in Jilin Province (2.49% vs 5.64%), compared 

with the NLCD 2010 dataset. However, in Heilongjiang Province, it can be seen 

from Figure 40 that more paddy rice fields were identified, mainly located at 

Sanjiang Plain from remote sensing derived rice maps compared with the NLCD 

2010. By correlating with Google Earth for inspection, most of them were correct. 

While the NLCD 2010 had more scattered fields located at other places; In Jilin 

Province, the inconsistencies with the NLCD 2010 were identified mainly located 

in mountainous areas with an elevation around 600 m, which can be attributed to 

smaller scale farming than in the plains with low elevation, leading to an 

underestimation by remote sensing data with a larger spatial resolution, 1 km in this 

case, while the NLCD 2010 was based on 30m fine-resolution Landsat and HJ-1 

data. 

 

Table 8 Summary of paddy rice field pixels distribution and percentage within the areas, 

both datasets were in same spatial resolution. 

At prefectural level, a comparison between the MTCI and MODIS data derived rice 

map of 2010 and the NLCD 2010 extracted rice map was conducted, the result was 

shown in Figure 41. The counts of paddy rice field pixels were calculated by zonal 

statistics for the 36 prefectures in northeast China. The result demonstrated MTCI 

and MODIS data derived rice map had a large correlation with the NLCD 2010 

dataset, with r2=0.8148 and RMSE=464 (n=36). 

Provinces Rice_Results Total Counts_Results %_Results Rice_NLCD Total Counts_NLCD %_NLCD

Heilongjiang 35533 681976 5.21 40146 681718 5.89

Jilin 6668 267583 2.49 15088 267508 5.64

Liaoning 11813 196686 6.01 12986 196331 6.61

Total 54014 1146245 4.71 68220 1145557 5.96
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At county level in Jilin Province, for the 50 counties under 8 prefectural units, the 

same zonal statistics were conducted. It can be seen from Figure 41 that the MTCI 

and MODIS derived rice map had a moderate linear correlation with the NLCD 

2010, with r2=0.6324 and RMSE=108 (n=50). 

The distribution of paddy rice derived from MTCI and MODIS data, validating with 

NLCD 2010 dataset, implied the combined conditions method for mapping paddy 

rice fields at northeast China performed accurately, based on the large linear 

correlations with the NLCD 2010 dataset at both the prefectural and county levels, 

given the coarse spatial resolution of 1 km relative to the size of the paddy rice 

fields. 

 

Figure 41 Prefectural and county level quantitative comparison of pixels identified as 

paddy rice fields in northeast China and Jilin Province respectively. 
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6.5.3 Validation of remote sensing derived rice planting area with 

census data. 

The MTCI and MODIS derived paddy rice map of 2010 was compared with census 

data acquired from National Bureau of Statistics of China (NBSC), at both 

prefectural levels for all three provinces in northeast China, and at the county level 

for Jilin Province. In Figure 42, the results exhibited a linear correlation between 

remote sensing derived paddy rice field area and census records with r2=0.5524, 

RMSE=628 km2 (n=36); and at the county level, it returned the r2=0.5134, and 

RMSE=119 km2 (n=50). Comparing with the consistency between the NLCD 2010 

data and census records, it showed a slightly more accurate result than the MTCI 

and MODIS derived rice map. 

 

Figure 42 Prefectural and county level quantitative comparison of the area of paddy rice 

fields in Jilin Province. 
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including support vector machine classifier classification (SVM), the random forest 

(RF), and other clustering analysis (Hao et al. 2016; Hu et al. 2017; Zhang et al. 

2017; Zhang et al. 2008; Zhong et al. 2016). However, these machine learning 

methods are limited to the quantity and quality of sample points, which can be time-

consuming and high cost (Černá and Chytrý 2005; Kussul et al. 2017; Zhang et al. 

2008), while the vegetation indices profiles analysis overcomes the disadvantages. 

In this study based on the physical feature of paddy rice, a vegetation index profiles 

analysis was employed to identify paddy rice fields at a large scale. This method 

takes advantages of the flooding paddy fields and open canopy characteristics 

during rice transplanting period (Jin et al. 2015; Shi et al. 2013; Xiao et al. 2006), 

by analysing the different behaviours of three indices including MTCI, EVI, and 

LSWI, to separate paddy rice fields from other croplands with no flooding period. 

Rice maps derived from MTCI and MODIS data showed good consistency with 

both the NLCD 2010 and the census data from three provinces statistical yearbooks. 

However, several factors can affect the process of identifying paddy rice by 

analysing vegetation indices profiles. The first factor is the use of MTCI instead of 

MODIS NDVI comparing to other similar studies. The mixing use of indices 

derived from different satellite sensors introduces the problem of handling different 

spatial and temporal resolutions. For resampling the temporal resolution to the same 

time interval, the MVC technique was applied. However, from the before and after 

profiles comparison, it can be noticed that some details were lost, although the 

inflection points and general patterns were kept. It has a possibility that the rice 

distribution is overestimated or underestimated. The second factor is related to 

MTCI and MODIS datasets. The MODIS 8-day dataset was generated by selecting 

the value for each pixel from all the acquisitions within the 8-day composite period, 

with the minimum blue band value, in another word, the clearest atmosphere 

condition with least cloud coverage (LPDAAC, USGS); while the MTCI is 

generated by calculating the mean value for each pixel within every time interval 

(Dash et al. 2007). The compositing method could mean that some observations are 

omitted which can affect the identification of flooding paddy fields during the 

transplanting period. Although MODIS daily data are available and free to obtain, 

the problem with data redundancy and a higher rate of cloud contamination must 
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be considered (Williamson et al. 2012). The 5-day Sentinel-2 dataset is also worth 

considering, which has a shorter revisit cycle than MERIS and MODIS. But the 

Sentinel-2 satellites were launched in 2015, which means a lack of data for long-

term observations and studies at the moment. The third factor is the spatial 

resolution of the dataset. MTCI has a spatial resolution of 1 km, therefore, 500 m 

spatial resolution MODIS derived vegetation indices need to be resampled, as well 

as the GlobLand30 land cover map (30 m). Moreover, in China most farmers do not 

have much land (1 km is probably covered too much for farmland) (Chen et al. 

2011), both of which could result in overestimating or underestimating. Thus, finer 

spatial and temporal resolution input data may be much more suitable and helpful 

for mapping paddy rice in China. The Sentinel-2 satellites (Sentinel-2A and 

Sentinel-2B) carry a single multi-spectral instrument (MSI) with 13 spectral 

channels in the visible/near-infrared (VNIR) and shortwave infrared spectral range 

(SWIR) (Figure 43), and the data are free for download from https://sentinel.esa.int/. 

Therefore, the algorithm in this chapter can be fully applied to Sentinel-2 data. With 

time, the increasing amount of Sentinel data can be applied to more situations. 

 

Spatial 

Resolution

Band 

Number
Bands S2A S2B

(m) Central Wavelength Central Wavelength

(nm) (nm)

10 2 Blue 496.6 492.1

3 Green 560 559

4 Red 664.5 665

8 Red Edge 835.1 833

20 5 Red Edge 703.9 703.8

6 Red Edge 740.2 739.1

7 NIR 782.5 779.7

8a Narrow NIR 864.8 864

11 SWIR 1613.7 1610.4

12 SWIR 2202.4 2185.7

60 1 Coastal aerosol 443.9 442.3

9 Water vapour 945 943.2

10 SWIR 1373.5 1376.9
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Figure 43 Wavelengths and bandwidths of the three spatial resolutions of the multi-

spectral instrument (MSI). (https://sentinel.esa.int/web/sentinel/missions/sentinel-

2/instrument-payload/resolution-and-swath) 

The last factor is the that vegetation indices analysis method, which was originally 

proposed by Xiao et al. (2005), contains only three vegetation indices. Bringing in 

additional variables could increase the accuracy of rice mapping. For example, 

Zhang et al. (2015a) and Zhou et al. (2016) adopted the same condition of LSWI 

and EVI for detecting flooding area, and also utilised night temperature data from 

the MODIS land surface temperature product to set rules for detecting the 

flooding and transplanting period, based on the fact that a stable temperature is 

needed for the occurrence of rice transplanting. In addition to all the above 

factors, slope was not taken into consideration, which might lead to 

underestimation of paddy rice area in mountainous regions. 

Although there are some uncertainties in the processing of paddy rice 

identification, still, MTCI and MODIS indices are reasonable choices for the 

advantages of coverage, moderate time interval, and availability, to monitor paddy 

rice distribution over a long period. Moreover, the MTCI has a strength of clearly 

marking the growing season in the cold region such as northeast China which has 

snow cover in the winter (MTCI≤0). 

6.7  Conclusion 

Monitoring paddy rice distribution is important for studies of yield prediction, food 

security assessment, water resource management, and methane emission 

assessment (Jin et al. 2015). Using remote sensing data to monitor the spatial extent 

of paddy rice planting area at large scale is low cost and efficient. This chapter 

demonstrated the ability to use phenology profiles derived from different indices in 

regional scale paddy rice identification and tested the performance of MTCI in 

detecting rice phenological spectral features. Future studies should adopt finer 

temporal and spatial resolution satellite sensors data to extract phenology profiles, 

such as Sentinel-2, which can calculate MTCI, EVI, and LSWI together. Further, 

additional variables and conditions can be added for rice field identification when 

applying the methodology in the multi-cropping area such as southern China.  



Use of Phenological Variables to Forecast Rice Yield 

 

146 
 

 

 

 

 

 

 

 

 

 

7.Use of Phenological Variables to 

Forecast Rice Yield  



Use of Phenological Variables to Forecast Rice Yield 

 

147 
 

7.1  Background 

Paddy rice is one of the most important and widely grown crops in China. The total 

rice production in 2016 reached 207.1 million tonnes, and it accounts for 36.6% of 

the total grain production in China (565.4 million tonnes), according to China 

statistical yearbook of 2017. As China’s huge population keeps growing, China has 

to meet the food demand by improving 14% of the rice production by 2030, reported 

by Cheng et al. (2007). 

Timely and accurate estimation of rice crop yield prior to harvest is crucial, 

especially in the regions with uncertain climatic characteristics. Well forecasted 

crop yield will help farming planners and decision makers to plan harvest, storage, 

and prepare for food import or export in case of any shortfall or surplus (Huang et 

al. 2013). Therefore, paddy rice yield estimation is important for the food security 

of China. There are many conventional methods for estimating crop yield, which 

can be divided into two categories: empirical-statistical models and crop growth 

models (Jørgensen 1994). Empirical-statistical models usually adopted effective 

environmental factors such as temperature, solar radiation, and precipitation, to 

relate with annual crop yield records by an empirical equation, to estimate the 

coefficient for each factor. With the coefficients, crop yield can be forecasted. Crop 

growth models are normally based on the physiological processes between crops 

and environment, to estimate biomass production by simulating daily crop growth. 

These conventional methods for predicting crop yield are based on a collection of 

ground or experimental data, which is time-consuming, labour-intensive, and 

sometimes the data become available when it is too late (Huang et al. 2013; Huang 

et al. 2012). Precision farming is practised in most countries in the world. However, 

conventional methods cannot be applied to all crop types simultaneously. 

Remote sensing has been used widely for agricultural monitoring since the 1980s 

based on Landsat images (Tenkorang and Lowenberg-DeBoer 2008), it provides an 

opportunity of overcoming both spatial and temporal scaling challenges in 

forecasting crop yield. Therefore, satellite sensors data have been recognised as 

valuable resources for yield forecast. Vegetation Indices (VIs), the most common 

one in use being the NDVI, have been used widely in predicting crop yield, for its 
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close relationship to the vegetation vigour (Xue and Su 2017). A number of methods 

have been developed to incorporate spectral information into yield forecast, the 

most common approach is to develop the direct empirical relationship between the 

variables of vegetation indices measures and the crop yield records, using 

regression models. Ren et al. (2008) used 250 m MODIS-NDVI data to estimate 

the winter wheat in Jining, Shandong Province, China. A linear regression model 

was established between the accumulation of NDVI and the production of winter 

wheat by using a stepwise regression method at county level, and the results showed 

relative errors from -4.62% to 5.40% comparing the predicted yield with actual 

yield. Huang et al. (2013) tested 28 NDVI variables in generating a regression 

model with official statistical data of rice yield, by using an AVHRR NDVI dataset 

from 1981 to 2006. The results showed that different NDVI variables performed 

differently in effectiveness depending on the region, with an overall relative error 

of approximately 5.82%. Wang et al. (2014b) calculated five vegetation indices 

including Enhanced Vegetation Index (EVI), Normalised Difference Vegetation 

Index (NDVI), Normalised Difference Water Index (NDWI), Land Surface Water 

Index (LSWI), and Wide Dynamic Range Vegetation Index (WDRVI) from MODIS 

data to develop linear regression models with corn yield data in northeast China. 

LSWI showed the largest correlation with crop yield and the results demonstrated 

a feasible and helpful way of forecasting crop yield by phenology-tuned spectral 

indices. Furthermore, a range of studies found different NDVI variables and crop 

yields had a strong linkage at the pixel level (Huang et al. 2013). For example, 

original NDVI values (Labus et al. 2002; Ren et al. 2008), cumulative NDVI values 

during a certain period (usually through the consecutive month of the growing 

season or over selected critical dates) (Labus et al. 2002; Rojas 2007; Wall et al. 

2008), maximum NDVI value (Benedetti and Rossini 1993; Doraiswamy and Cook 

1995; Tucker et al. 1980), average NDVI values (Boken and Shaykewich 2002; 

Esquerdo et al. 2011; S. Mkhabela et al. 2005), and standard deviation in NDVI 

(Boken and Shaykewich 2002). In summary, the use of NDVI variables is in 

accordance with the crop conditions during the growing period, such as heading 

(peak phenological phase of growth) and ripening (after mid- growing season). 

The red-edge position (REP) in the vegetative spectra has been applied in 

estimating variation of chlorophyll content during plant growing period (Almond 
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2009; Dash et al. 2009a; Filella and Penuelas 1994; Liu et al. 2004; Ullah et al. 

2012; Zhang and Liu 2014). Many techniques such as curve fitting, determination 

of a derivative spectrum, Lagrangian interpolation, and linear interpolation, were 

employed to estimate chlorophyll content (Dash and Curran 2004). However, these 

techniques were designed for hyperspectral data with continuous spectral data 

rather than discontinuous multispectral data (Dash and Curran 2004; Zhang and Liu 

2014). The Medium Resolution Imaging Spectrometer (MERIS) Terrestrial 

Chlorophyll Index (MTCI) was designed by Dash and Curran (2004) for the 

purpose of easy calculation based on standard MERIS band settings and high 

sensitivity to a wide range of chlorophyll contents.  

In this chapter, the MERIS Terrestrial Chlorophyll Index (MTCI) was used to 

replace the common Normalised Difference Vegetation Index (NDVI) to evaluate 

the potential of estimating crop yield in the three provinces in northeast China, 

based on the rice maps produced in the last chapter. 

7.2  Study area 

The study was carried out in northeast China, mainly located in the cool temperate 

zone and partially located in the semi-arid zone, with an annual temperature of -

3~11°C. It has a markedly continental climate with an average rainfall of 400~900 

mm, concentrated during July to September, making this region the typical rain-fed 

farming area in China. Northeast China has many big rivers including Amur River, 

Songhua River, Ussuri River, Liao River, and Yalu River (Amnok River), forming 

alluvial plains including Songnen Plain, Liaohe Plain, and Sanjiang Plain. 

Accordingly, the flat topography, abundant precipitation, and fertile soils, resulting 

in a high production of japonica rice, account for more than 40% of the national 

output (Zhou et al. 2017). 

7.3  Materials and method 

7.3.1 Data 

In this chapter, the MERIS Terrestrial Chlorophyll Index (MTCI) with 1 km spatial 

resolution and 10-day temporal resolution (level-3 product) was used to construct 

time-series data from 2007 to 2010. In addition, the NDVI was used in the study 
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for comparison with the MTCI. The NDVI was developed by Rouse et al. (1974), 

and it has been used widely for more than 40 years all over the world. NDVI is 

based on the difference between the leaf absorption in the red band because of 

chlorophyll, and the reflectance in the infrared band caused by leaf cellular structure 

(Zhang and Liu 2014). 8-day 500 m MODIS surface reflectance data (MOD09A1) 

from 2007 to 2011 were used in this chapter. Five tiles (h25v03, h26v03, h26v04, 

h27v04, h27v05) for covering northeast China were selected, and each tile covers 

an area of 1200 km × 1200 km with a sinusoidal projection. The data were 

downloaded from NASA’s Land Processes Distributed Active Archive Centre 

(LPDAAC) (https://lpdaac.usgs.gov/data_access), and then the raw data were 

reprojected and NDVI data were calculated with band 1 (645nm) and band 2 

(858nm) of the MODIS standard band settings in the meantime according to the 

following equation: 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹−𝑹𝒆𝒅

𝑵𝑰𝑹+𝑹𝒆𝒅
=

𝑩𝒂𝒏𝒅𝟐−𝑩𝒂𝒏𝒅𝟏

𝑩𝒂𝒏𝒅𝟐+𝑩𝒂𝒏𝒅𝟏
 (17) 

The contaminated pixels, which were generated by clouds and atmospheric noises, 

were removed by utilising the quality assurance (QA) band in the MOD09A1 data.  

To establish a relationship between vegetation indices and yield records, it was 

necessary to identify areas of paddy rice fields. Therefore, rice distribution maps of 

three provinces in northeast China for 2007 to 2011 (Figure 44), which were 

generated in the last chapter by a method of combined conditions of vegetation 

indices including MTCI, MODIS EVI, and MODIS LSWI1640, were used in this 

chapter to mask out non-paddy rice area in northeast China. 

Yield records from the statistical yearbook for three provinces in northeast China 

of 2007 to 2014 were acquired from National Bureau of Statistics of China (NBSC) 

(http://www.stats.gov.cn/). The NBSC is the agency in China for collecting and 

publishing statistical information based on sub-province sample surveys. For 

northeast China, prefectural level statistical data were acquired for Heilongjiang, 

Jilin, and Liaoning Provinces, with a total number of thirty-six prefectures, among 

them, thirteen in Heilongjiang Province, 9 in Jilin Province, and fourteen in 

Liaoning Province. 
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7.3.2 Remote sensing data smoothing 

In this chapter, to eliminate noise and fluctuations during rice growth, time-series 

of MTCI and MODIS NDVI data were cleaned at first, by using a window size of 

three pixels and the moving average method, for removing missing data and errors, 

caused by cloud contamination and atmospheric variability (Ren et al. 2008). Then, 

the discrete Fourier transformation (DFT) method was used to smooth the time-

series data, for representing the growing profiles of rice accurately. 

7.3.3 Phenological variables extracted from time-series remote 

sensing data 

It has been demonstrated that crop production or yield is highly related to VI 

changes because crops are strongly affected by various conditions during each 

growing stage (Doraiswamy and Cook 1995; Fontana 2005; Huang et al. 2013; 

Jing-feng et al. 2002; Ren et al. 2008). Therefore, crop phenological variables can 

be used for estimating crop yield. Furthermore, crop phenology varies spatially and 

temporally, therefore, it is not optimal to only use a fixed date within the growing 

period to estimate crop yield (Bolton and Friedl 2013). 

In this study, four phenological variables including maximum value, summation 

before the peak, summation after the peak, and summation of growth were taken 

into consideration in the correlation between phenological variables and rice yield. 

The maximum value was equal to the peak value of a smoothed time-series remote 

sensing data, MTCI and MODIS NDVI in this case. Summation before peak was 

computed by summing up the values before peak point to peak point. Summation 

after peak was computed by summing up the values from peak point to the fourth 

point after peak, and the summation over growing period was the summation of 

before and after peak summation. In this study we choose the fourth point before 

and after the peak point. In other words, 40 days before and after heading stage 

(which has the maximus MTCI value during the growing period). In northeast 

China, it is usually in the booting stage for paddy rice around 40 days before the 

heading stage (during which it is the fastest growing period of paddy rice, and rice 

plants need large amount of nutrients during this period, making this stage is 

critically associated with rice yield); and it is grain filling and maturation period 
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including flowering stage, milky and doughy stage (ripening phase/filling stage) 

around 40 days after heading stage. Therefore, from boosting to heading and from 

heading to maturity, the two important growing periods were represented by 

phenological variables for examining the accuracy in estimating rice yield. 

According to the location of summation at rice growing profile versus peak point, 

variables were named as, taking MTCI as an example, MTCIpeak, MTCIleft, MTCIright, 

and MTCIwhole, as shown in Figure 44. 

 

 

Figure 44 Phenological variables extracted from time-series remote sensing data for 

correlation analysis. 

7.3.4 Regression model development 

Crop yield is greatly affected by various conditions during each crop growth stage, 

such as the development of agricultural technologies, fertilizer applications, and 

improved management, in the form of changing VI values. Therefore, a linear 

relationship between phenological variables extracted from VI time-series data and 

crop yield can be expected as: 

�̂� = 𝒂 + 𝒃𝑽   (18) 
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Where �̂�  is the estimated prefectural level yield, and V is the mean of four 

phenological variables of training years, extracted from smoothed time-series data. 

To estimate the models using prefectural level yield records, it was necessary to 

aggregate remote sensing data to prefectural level for all average phenological 

variables, based on the 5 years processed remote sensing time-series data from 2007 

to 2011. 

7.3.5 Model validation 

Validating model performance is essential. The MTCI data were unavailable after 

April 2012, and 1 km MTCI data were only available for 2007 to 2011. Therefore, 

as a final test, the established model accuracy was assessed by using a leave-one-

year-out-approach (Mkhabela et al. 2011; Schut et al. 2009), in which the model is 

iteratively trained on four years of data and used to predict yield as well as total 

production in the held-out year. The root mean square error (RMSE) was calculated 

between actual and predicted yield for the held-out year as follows: 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒀�̂� − 𝒀𝒊)𝟐𝒏

𝒊=𝟏  (19) 

Where n is the number of prefectures (n=36 in this case), 𝑌�̂� is the predicted yield 

at prefectural level, and 𝑌𝑖 is the actual yield at prefectural level. 

Furthermore, the MODIS NDVI from 2007 to 2011 were used as input data to 

generate the linear models, and an inter-comparison between MTCI and MODIS 

NDVI was conducted. In summary, the processes were shown in a flowchart of 

Figure 45. 
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Figure 45 A flow chart of the processes for establishing rice yield estimation models. 

7.4  Results and Discussion 

7.4.1 Yield estimation model 

Figure 46 presents the multi-year average coefficients of determination (r2) for four 

variables derived from linear regression models using MTCI and MODIS NDVI 

time-series data, for forecasting paddy rice yield for all study years. Figure 47 
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exhibited the relationship and models between each phenological variable of MTCI 

and MODIS NDVI and yield, all of which were at prefectural level with n=35 

(Daxinganling Province did not have any records as it had very few paddy rice 

fields). Each model contains variables using the data from 2007 to 2011. The MTCI 

and MODIS NDVI values were used as the independent variables, and the yield 

was used as the dependent variable. The coefficients of determination ranged from 

0.6162 to 0.6869 for MTCI, and from 0.6079 to 0.6777 for MODIS NDVI.  

Overall, both MTCI and MODIS NDVI variables produced acceptable coefficients 

of determination, with MTCI producing a slightly larger coefficient of 

determination than MODIS NDVI. It can be clearly seen that the maximum value 

had the largest coefficient of determination between paddy rice yield and the 

maximum values of MTCI and MODIS NDVI during all the study years, with an 

average coefficient of determination of 0.6869 and 0.6777 for MTCI and MODIS 

NDVI, respectively. It was agreed with the studies reporting that the grain filling 

stage was more related with rice yield (Marti et al. 2007; Mkhabela et al. 2011; 

Mkhabela et al. 2005), and specifically, the rice yield was mostly determined by 

crop conditions during the heading (i.e. peak phenological phase of growth) (Huang 

et al. 2013). Also, it can be noticed that the Vright (average r2=0.6721 for MTCI and 

r2=0.6538 for NDVI) had a generally larger coefficient of determination than Vleft 

(average r2=0.6676 for MTCI and r2=0.6524 for NDVI). In 2009, the northeast 

China suffered from drought, both MTCI and MODIS NDVI had relatively low 

coefficients of determination. Because grain yield was critically subjected to the 

conditions during the flowering and grain filling periods, and water stress may 

result in reduced yield and production during these growing stages (Labus et al. 

2002). In addition, Vwhole (average r2=0.6162 for MTCI and r2=0.6079 for NDVI) 

had the smallest value of the coefficient of determination than other variables. The 

maturing stage of paddy rice showed a significant correlation with rice yield, end 

of tillering/before heading stage could affect the yield, and summation of middle 

part of growing stage had the least determination with the rice yield. This might be 

because the longer the period considered, the more potential factors could have 

effects on the final rice production or yield, and it was reported that grain yield was 

influenced mostly by crop conditions during the heading phase (Mkhabela et al. 

2011; Salazar et al. 2007). Therefore, the results indicated that the paddy rice yield 
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in northeast China can be forecasted during mid- to late- August, when the paddy 

rice experiences the filling/milky phase, by the phenological variables extracted 

from VIs. 

 

Figure 46 The coefficients of determination for phenological variables of MTCI and 

MODIS NDVI, including Vmax, Vleft, Vright, and Vwhole. 
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Figure 47 Relationships between the average rice yield and the average of four variables. 

The x-axis is values of MTCI and MODIS NDVI values; the Y-axis is yield records (kg 

ha-1), n=35. 

7.4.2 Yield forecast model validation 

Four phenological variables were used to fit the models to forecast rice yield in 

northeast China. The MTCI and MODIS NDVI were used in the processes, both of 

which worked. Therefore, the validation was concentrated on the MTCI by using 

the leave-one-year-out method to estimate rice yield for each from 2007 to 2011.  

Table 9 shows the models, coefficients of determination (r2), and the root mean 

square errors (RMSE) based on the leave-one-year-out method. The results suggest 

that MTCImax has a larger r2 value than other variables (r2 = 0.624~0.689), whereas 

for MTCIleft is generally smaller (r2 = 0.458~0.596). MTCIright (r
2 = 0.542~0.619) 

and MTCIwhole (r
2 = 0.517~0.617) perform equally well for predicting rice yield in 

northeast China. In addition, it can be noticed that the models established by using 

four years when the year 2009 was held out, produced the smallest r2 compared to 

other held-out-years. This might be because of the drought in 2009. Overall the 

RMSE (expressed in units of percentage relative to the mean yield) ranges from 9.8% 

to 14.5%. Among them, MTCImax has the RMSE ranges from 9.8% to 12.9%, which 

is lower than other variables (10.6%~14.5% for MTCIleft, 10.6%~13.5% for 

MTCIright, and 10.4%~13.4% for MTCIwhole). The differences between predicted and 

actual yield shows a smaller range, compared to those recorded by Ren et al. (2008) 

(reported the differences ranging from -4.6% to 5.4%), Bolton and Friedl (2013) 

(reported the differences ranging from 5% to 15%), and Wang et al. (2014b) 

(reported the differences ranged from 7.3% to 16.9%), however, multiple indices 

were used in their studies to correlate with grain yield. 

Figure 48 showed the forecasted rice production at prefectural level (n=35), 

calculated from estimated yield and identified paddy fields in the previous study, 

for 2007 to 2011, against official statistical records within the same period. It can 

be seen from the figure that the data are linearly related, the r2 ranges from 0.5373 

to 0.7466. The largest coefficient of determination was obtained for MTCIwhole of 

2011, and the least was 0.5373 for MTCIwhole of 2009. Still, it can be noticed that in 

2009 the estimated production was less linearly related with historical records, 
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which might be because of the drought in 2009.
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Table 9 Linear regression models for forecasting rice yield established from MTCI variables and rice yield records at the prefectural level from every four years 

except one held-out year. The numbers in the bracket are percent RMSE, expressed in units of percentage relative to the mean. 

 

Figure 48 Comparison between estimated rice production at prefectural level (n=35) and official statistical records from 2007 to 2011, for four phenological 

variables of MTCI: MTCImax (a-e), MTCIleft (f-j), MTCIright (k-o), and MTCIwhole (p-t). 

MTCI max MTCI left MTCI right MTCI whole

Held-out-year Model r
2 RMSE(kg/ha)(%) Model r

2 RMSE(kg/ha)(%) Model r
2 RMSE(kg/ha)(%) Model r

2 RMSE(kg/ha)(%)

2007 y = 0.6526x + 2604.7 0.647 742.07 (9.8) y = 0.6057x + 2955.4 0.585 805.28 (10.6) y = 0.6273x + 2829.3 0.600 814.12 (10.8) y = 0.6508x + 2669.9 0.583 790.11 (10.4)

2008 y = 0.5429x + 3608.2 0.659 781.46 (10) y = 0.495x + 3929.3 0.466 949.27 (12.2) y = 0.5661x + 3369.7 0.595 826.95 (10.6) y = 0.5059x + 3820.5 0.517 919.48 (11.8)

2009 y = 0.6965x + 2341.1 0.624 975.07 (12.9) y = 0.6409x + 2729.8 0.458 1125.55 (14) y = 0.643x + 2587.4 0.542 997.25 (13.2) y = 0.6433x + 2585.3 0.549 1012.231 (13.4)

2010 y = 0.7607x + 1906.4 0.689 805.17 (10.9) y = 0.7114x + 2285 0.546 1008.97 (13.7) y = 0.6998x + 2325 0.548 994.5 (13.5) y = 0.7037x + 2322.5 0.557 985.33 (13.4)

2011 y = 0.5979x + 3464.7 0.683 888.99 (11.5) y = 0.6137x + 3333.9 0.596 1059.32 (14.5) y = 0.6546x + 2917.2 0.619 1005.37 (13) y = 0.6107x + 3294.3 0.617 996.05 (12.9)
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7.5  Discussion 

The MTCI was used to extract four paddy rice phenological variables during the 

growing period, for establishing relationships with yield records in this chapter. 

MODIS NDVI was also adopted as an input into the same procedure, as a 

comparative indicator. The results indicated that the rice yield was mostly related 

with the maximum VIs at the prefectural level, compared to other variables standing 

for different rice growing stages.  

MTCI showed a slightly greater accuracy than MODIS NDVI in establishing the 

relationship with rice yield. More generally, the results from this study imply that 

the remotely sensed information is useful and efficient for providing rice yield 

forecasting before harvest around the mid of the growing season when coupled with 

historical yield records. Among the phenological variables that were investigated, 

the maximum values of both MTCI and NDVI showed the better performance in 

estimating rice yield than other variables. The maximum value normally appears 

during the heading stage (Wang et al. 2014a), it can be attributed to the heading 

stage is the end of rice reproductive phase, following by flowering stage which is 

the beginning of the ripening phase. Therefore, the health of rice plants after 

experiencing the vegetative phase can be reflected by VIs at the heading stage, 

which is highly correlated with the final yield. Lopresti et al. (2015) found the best 

correlation between NDVI and wheat yield coincided with the period of highest 

LAI, during the heading stage, using MODIS-NDVI, which is similar with the 

results of Ren et al. (2008). Qader et al. (2018) found that winter wheat and barley 

production were highly and linearly correlated with the maximum value of both 

MODIS NDVI and EVI at the governorate level in Iraq. However, it is not a general 

case for the maximum value to be most correlated with grain yield. Esquerdo et al. 

(2011) found that the whole productive cycle was the most significantly correlated 

with soybean yield among five phenological parameters investigated. Nuarsa et al. 

(2011) found the summation of NDVI during rice growing period showed the 

strongest exponential relationship with rice yield, among three growth variables. 

This might be because of the different climatic factors. 

The method worked in northeast China, which has only one growing season, with 
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a larger farmland per farmer and higher rate of mechanisation than elsewhere in 

China. In south China, mountainous landscape and higher elevation resulted in 

smaller scale farming with more labour intensive activities (Xiao et al. 2005), With 

the performance of MTCI data used in the last chapter for mapping paddy rice, 

fewer rice fields were detected in middle Jilin Province which is mountainous with 

smaller scale farmlands. The same situation would happen in estimating rice yield. 

Moreover, the validation was somewhat limited by the inadequate data sources in 

the study. Because the MTCI 1 km data were only available for 2007 to April 2012, 

no future data were used as input for validating the rice yield model with a cross 

comparison with yield records. 

The coarse spatial resolution of 1 km used in this study is less sensitive than finer 

resolutions in handling paddy rice fields in China. Moreover, the less accurate rice 

distribution maps used in this study affected the result to some extent. In addition, 

since the Envisat was not in operation since 2012, there were no data available from 

then. Hence validation like cross-comparison with following years could not be 

conducted. Furthermore, the approaches for establishing linear models between VIs 

and yield used in this study considered a limited number of variables, which might 

result in less comprehensive conclusions. 

7.6  Conclusion 

This chapter focused on testing the performance of the MTCI in forecasting rice 

yield, and has shown the potential for using the MTCI variable in large area crop 

yield and production forecasting. The results of this analysis suggest the MTCI can 

be applied in yield forecasting area as a replacement of the NDVI, and the 

maximum value of MTCI has a better correlation with rice yield than other 

phenological variables. In the light of the MERIS data is not available after 

February 2012, the most suitable sensor for compositing free MTCI dataset is the 

Multispectral Instrument (MSI) on-board sentinel-2 and Ocean and Land Colour 

Instrument (OLCI) on-board Sentinel-3, new indices can be developed and applied 

with better spatial and temporal resolutions. 
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This chapter will conduct a comprehensive discussion based on each chapter around 

the main topic of this thesis: test the performance of MERIS Terrestrial Chlorophyll 

Index (MTCI) in analysing phenology dynamics and in specific applications, for 

example, agricultural ones.  

8.1  In phenology studies 

The outcomes of Chapter 3 and 4 in conjunction highlight the importance of using 

vegetation indices derived from remotely sensed data for long-term vegetation 

phenology observation, and reveal the convenience in depicting vegetation 

phenology at a large scale. Furthermore, in Chapter 5, the metrics were associated 

with climatic data including precipitation and temperature.  

The MTCI was developed based on the relationship between chlorophyll absorption 

and the increase in the wavelength (spectral) range 650-700 nm, and the red-edge 

position (REP) is the point of maximum change in reflectance. The MTCI benefits 

from the MERIS sensor which has well-placed spectral sampling at visible and 

near-infrared (NIR) wavelengths coupled with narrow bands, making it 

theoretically accurate in vegetation monitoring (Boyd et al. 2011), and less 

influenced by atmospheric effects as well as soil background (Dash et al. 2009b), 

compared to red and near-infrared based broad-band indices such as the NDVI. One 

key point need to be addressed that the relationship between REP and chlorophyll 

content is asymptotic, hence REP is not an accurate indicator at high chlorophyll 

contents (Dash and Curran 2007). 

Since the REP is strongly linked with the content of chlorophyll, the pigment for 

foliar photosynthesis, the MTCI can be used as an indicator for onset of productivity 

and senescence before canopies change in structure (Boyd et al. 2011). In Chapter 

3 the results showed that the MTCI performed very well in high chlorophyll content 

situations, for instance, mixed evergreen vegetation in the subtropical region, where 

there is a high average annual temperature and high biomass all year around: the 

MTCI exhibited a more legible pattern than NDVI. In addition, the close 

relationship between REP and chlorophyll is particularly advantageous in 

demonstrating the changes in the chlorophyll concentration in plants that occur 

because of rising temperatures, but may not result in biomass change. Therefore, in 

most cases, the MTCI has an earlier decline for autumnal senescence than the NDVI 
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and sometimes more rapid increase during the onset of vegetation growth, during 

which both chlorophyll content and leaf area grow quickly, reflected in Figure 8.  

All the features of MTCI provide the opportunity for monitoring vegetation 

phenology. With a moderate temporal resolution of 8-days and 10-days, and 

relatively coarse spatial resolution of 4.6 km but is suitable for large scales, in 

Chapter 7, 9 years phenology maps for mainland China were produced for the first 

time. Although it has been suggested by Piao et al. (2006a) that there is no obvious 

seasonality in the humid tropical and subtropical areas in China (approximately 

south of 30°N), because NDVI presents aberrant seasonal fluctuations related to 

non-vegetation weather impact, the MTCI still managed to delineate the growing 

patterns. Comparison with ground observation data that collected from the literature 

and the gridded dataset of spring phenology of Fraxinus Chinensis in China from 

2003 to 2007, produced satisfying results. However, as mentioned in Chapter 4, 

dimensional factors were not taken into consideration (e.g. slope and elevation), 

which affect the vegetation distribution and consequently cause variation in growth 

environment (e.g. temperature, solar radiation, soil condition and so on), all of 

which finally were reflected in local-to-regional differences in phenology and the 

phenomenon has been particularly marked around the “Three Gradient Terrains” of 

mainland China where elevation and slope increase sharply from east to west. 

Many time-series smoothing methods can be used for reducing noise and extracting 

vegetation phenological variables from stacked remote sensing images, but there is 

still no conclusion in favour of one over the others. They can be generally divided 

into two categories according to their functionalities. One category contains 

methods that can capture short-term phenological variation precisely during the 

growing season, by employing statistical filters, e.g. the best index slope extraction 

(BISE) (Viovy et al. 1992), running median (Velleman 1980), the repeated moving-

window median filter (Filipova-Racheva and Hall-Beyer 2000), Fourier analysis 

(Menenti et al. 1993; Olsson and Eklundh 1994); anther category includes methods 

employing mathematical functions that are applicable for all situations such as part 

of the growing season, one season, and multi seasons. For example, the double 

logistic function (DL) (Beck et al. 2006), the Asymmetric Gaussian function (A-G) 

(Jonsson and Eklundh 2002), and so on. 

The Fourier transformation method has been used through all the smoothing process 
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in this thesis. It has an advantage over other methods that there is only one 

parameter that needs to be decided, i.e. how many harmonics are needed to input. 

It has been tested and demonstrated by (Jakubauskas et al. 2001; Jakubauskas et al. 

2002) that the first two harmonics were capable of representing only annual and 

semi-annual cycles; the first four harmonics were able to represent single growing 

season very well. Dash et al. (2009a) used six harmonics to extract phenology in 

agricultural areas in India where usually there are up to three growing seasons for 

crops. Given China has a complex vegetation land cover and multiple climatic 

zones, six harmonics were used in this thesis to generate a smoothed time-series. 

Based on the produced 9 years phenology maps, in Chapter 5, coupling with 

vegetation regionalisation map and climate data, regional climate change over 

mainland China was analysed. As the effects from climate acting on vegetative 

events is a process of accumulation, phenological stages such as OG or ES are not 

only determined by the climatic factors of the month, but also influenced from 

months before. For example, in cold and temperate regions, plants require a certain 

amount of heat accumulated through winter to trigger spring leaf onset and also a 

continuous decrease in temperature is also a significant precondition for plants 

dormancy (Piao et al. 2015). In Chapter 5, three months including the seasonal 

month were considered, limiting its own conclusiveness regarding the impact over 

longer times ahead of the phenological events. 

8.2  In agricultural applications  

Crop analysis is generally separated into two categories. One is focused on 

measuring crop area or agricultural land area; another is centred upon monitoring 

crop growth/health, and estimating crop yield. In Chapter 6 and 7, the MTCI was 

utilised in agriculture for mapping paddy rice distribution and estimating rice yield 

at northeast China. 

Conventional crops classification techniques broadly include two approaches, 

unsupervised classification and supervised classification. Unsupervised 

classification in essence is a clustering analysis that groups pixels into different 

categories according to the similarity in the spectral values; supervised 

classification is based on selected training samples of representative crop types, 

associating with appropriate spectral bands of certain remotely sensed data, 
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different crops can be identified accordingly, usually by using machine learning 

techniques such as support vector machine classifier (SVM), random forest (RF), 

and other clustering analysis in supervised classification. They are efficient but rely 

heavily on the quantity and quality of the sample fields, which make supervised 

classification cannot be suitable for places that are prohibited or limited due to 

regional conflict, political regime, or short of surveyors (Moody et al. 2017). 

In Chapter 6, 5-year time-series MTCI data were combined with MODIS 500 m 

surface reflectance data for mapping paddy rice by analysing the growing profiles 

of MTCI, MODIS LSWI and MODIS EVI, in terms of paddy rice growing calendar 

in the region. Comparing to conventional statistical classification methods, this 

phenological profile-based method was more accurate. Phenological metrics such 

as OG and ES have the advantage of bearing a physiological significance (Zhong 

et al. 2016), while conventional statistical methods are more relying on specific 

datasets which contain more uncertainties. 

Comparing with other studies that adopted the same principle of combing several 

VIs derived from MODIS and Landsat in reflecting rice growing profiles in 

Northeast China (Dong et al. 2016; Jin et al. 2015; Qin et al. 2015; Shi et al. 2013; 

Zhang et al. 2015a), the MTCI showed good performance in depicting paddy rice 

growing seasons after flooding period, during which there was only water in the 

paddies. And the final identified paddy rice area had an agreement with NCLD 2010 

dataset as well as the multi-year official statistical records. 

There are still some limitations in the whole procedure, and using MTCI instead of 

NDVI to integrate with EVI and LSWI, there were some inherent differences. At 

first, MTCI is an index developed from narrow bands which are continuous in red 

edge position, while NDVI is derived from separated broad bands. Studies 

comparing between narrow-band and broad-band vegetation indices have been 

made on estimating biophysical parameters showing in most cases narrow-band 

indices perform more accurately than broad-band ones (Hansen and Schjoerring 

2003; Thenkabail et al. 2000; Ullah et al. 2012). This can be attributed to broad-

band indices such as NDVI using average spectral information over broad band 

widths (e.g. MODIS Band 1 red: 620-670nm, Band 2 NIR1: 841-876nm), leading 

to a loss of some information available in narrow bands. Furthermore, it was 

reported by Huete (1988) that red and NIR based indices were influenced by soil 
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background at low vegetation cover. However, when dealing with specific 

agricultural situations such as mapping rice fields and predicting yield, spatial and 

temporal resolution always affects the results. 1 km spatial resolution of MTCI can 

be somewhat coarse for small farmlands not only in mountainous areas such as in 

Jilin Province mentioned in Chapter 6, but also terrace fields in hilly areas, scattered 

farms around big cities, and less developed rural areas. 

The method proposed by Xiao et al. (2006; 2002; 2005) had an advantage of 

adopting free remote sensing images of MODIS dataset, overcoming the problem 

of the discordance in planting schedule, and on the basis of the flooding physical 

features at the early stage of paddy rice growing cycle, it also avoids the high cost 

and inefficient fieldwork for collecting field data for input in any statistical method. 

However, for the purpose of integrating MTCI with MODIS EVI and LSWI, MTCI 

original temporal resolution and data values were transferred and normalised to 

match with the other two. The temporal transformation was carried out to adjust 

MTCI, EVI, and LSWI into a bi-week interval. Although it is sensible for observing 

rice growth by the MVC method picking the largest value of every two bands, 

according to the regional rice calendar (Figure 37), major events happen in early, 

mid, and late months from April to October (preparation to harvest) in northeast 

China, the temporal transformation dissolved some details and generally made the 

patters of all indices exhibited more continuous than original ones, which might 

result in slight overestimation.  

The normalisation of MTCI time-series data might magnify the growth pattern to 

some extent (i.e. earlier OG, later ES, and higher peak value). The valid MTCI value 

usually is from 0 to 6 and normally rice reaches around 3.5 to 4.0 (other crops or 

vegetation may have a lower or higher values), but after normalisation the peak 

value reached nearly to 1. This might also give a side effect that underestimates the 

area where LSWI was greater than MTCI during the flooding/transplanting period. 

What is more, the GLC30 land cover map was used in Chapter 6 to mask out non-

agricultural area which was produced with a pixel-object-knowledge-based (POK-

based) classification approach, a pixel and object-based method with human 

knowledge interactive verification (Guo et al. 2007); while more complex 

conditions by other indices were used in other studies focused on mapping rice. But 

no studies have been done to compare the accuracy between land cover based and 
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indices conditions-based methods. 

In Chapter 7, based on the results of mapped paddy rice distribution in northeast 

China, the phenology-based method was utilised to investigate the correlation 

between four phenological variables and rice yield. The results were satisfying 

compared to official yield and production records. But some comments need to be 

made about the methodology. Many studies have explored the feasibility and 

accuracy of estimating models between phenological variables/metrics and crop 

yield (Bolton and Friedl 2013; Labus et al. 2002; Ren et al. 2008; Rojas 2007; Wall 

et al. 2008; Wang et al. 2014b), various kinds of phenological variables/metrics 

calculated from the original values of vegetation indices such as NDVI were tested 

including accumulation, summation, standard deviation, average, maximum and so 

on. In most cases, the maximum value of VIs shows the largest correlation with 

crop yield. In Chapter 7, only four phenological variables were considered 

including three summation of MTCI values at different rice growing stages, plus 

the maximum MTCI value. This can be a limitation which narrows the complexity 

and scope. Also, it needs to be mentioned that drought had a great influence on the 

phenology-based methodology in both mapping paddy fields and yield prediction. 

In Chapters 6 and 7, it was found that both mapped paddy rice fields and predicted 

yield had the smallest correlation with statistical records in 2009, when a severe 

drought took place in China. 

This thesis tested the MTCI products in various scenarios, and satisfying results 

were produced. However, the Envisat’s mission was formally stopped on 9 May 

2012, with the MERIS sensor onboard, hence the MTCI data were not available any 

more. In the past last several years and onwards, an increasing amount of free 

remotely sensed data have started becoming available including optical and 

synthetic aperture radar (SAR) with fine spatial resolution (10-30 m), such as 

Sentinel-1 A/B and Sentinel 2A within the European Copernicus programme; and 

Landsat-8 within the Landsat Programme, co-managed by U.S. Geological Survey 

(USGS) and the National Aeronautics and Space Administration (NASA), launched 

during 2013-2016 period. In addition, the Sentinel-3B satellite will be launched on 

25th April 2018, to work in conjunction with the Sentinel-3A which was launched 

on 16th Feb 2016. These datasets are all freely available, giving unprecedented 

opportunities for a wide range of remote sensing applications in the environment 
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and agriculture domains, benefiting from fine temporal and spatial resolution. 

Furthermore, the terrestrial chlorophyll index can be continued, due to the on-board 

Multi-Spectral Instrument (MSI) (Sentinel-2) and Ocean and Land Colour 

Instrument (OLCI) (Sentinel-3), both of which have narrow spectral bands covering 

the vegetation red-edge position. 
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This thesis primarily focused on the application of the MERIS Terrestrial 

Chlorophyll Index (MTCI). At first, the MTCI was compared with MERIS NDVI 

to test the ability of MTCI in determining key vegetation phenological metrics. 

After that, the MTCI was used in practical applications from the national scale to 

regional scale, specifically in mapping vegetation phenology across the whole of 

mainland China, examining phenology variations correlated with climatic factors, 

and application in agriculture including mapping paddy rice and estimating rice 

yield. This chapter draws the main conclusions from the works presented in 

Chapters 3 to Chapter 6, with a specific view of assessing the objectives of the 

research stated in Chapter 1. 

9.1  Thesis summary 

The thesis has tested the potential use of the MTCI in practical applications as a 

refinement for NDVI. The significant novel contribution of the research is the use 

of MERIS MTCI at large and regional scales in mainland China, which probably 

has the most complex physical diversity in the world. MERIS MTCI at 300 m, 1 

km, and 4.6 km spatial resolution were all tested in the research, and the results 

were generally positive and satisfying. 

The Ph.D. objectives have been achieved: 

1. To investigate the performance of using the MTCI to monitor 

vegetation phenology at large and regional scales for different 

vegetation types. 

In Chapter 3, 18 months 300 m full resolution MERIS surface reflectance 

data were used to compute MTCI and MERIS NDVI, for comparison in 

determining the phenological timing of different vegetation types including 

broadleaf deciduous, cropland, grassland, and mixed evergreen (broadleaf 

and needle leaf) in six major vegetation-climate zones of mainland China 

including warm temperate deciduous broadleaf forest, subtropical evergreen 

broadleaf forest, tropical monsoon rain forest, temperate steppe, temperate 

desert, and Qinghai-Tibet plateau alpine vegetation. Two key phenological 

metrics OG and ES were extracted from both the MTCI and NDVI time-

series data with a full temporal coverage of 2010. 
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The results implied that the both the MTCI and the NDVI captured the plant 

phenology patterns very well for different vegetation types. However, unlike 

the NDVI, the MTCI is more sensitive to large values of chlorophyll content. 

The NDVI is more sensitive to green biomass and will respond to the 

aggregated change in seasonal. 

2. To estimate vegetation phenology over a 9 years period across mainland 

China by using the MTCI data. 

In Chapter 4, 9 years reduced spatial resolution at 4.6km of the MTCI data 

were used to map the vegetation phenology across mainland China, and the 

variation in vegetation phenology was demonstrated. The results were 

validated with phenology data from the literature and a gridded phenology 

dataset of Fraxinus Chinensis from 2003 to 2007. Moreover, the general 

trends of vegetation phenology were investigated along longitude, and 

generally showed good consistencies. However, a high standard deviation 

of vegetation phenology was found in the double-cropping agricultural 

region at mid-eastern China, where affected by human management, and 

South China where is humid and temperate with mixed vegetation types.  

3. To investigate vegetation phenological variation at the regional scale 

and the drivers of this variation. 

In Chapter 5, based on the phenology maps produced in Chapter 4, coupling 

with long-term gridded temperature and precipitation data and climate 

regionalisation map of mainland China, the quantitative analysis was 

conducted for determining the main regional drivers of phenology. The 

results showed in north China, the temperature was the main driver for the 

earlier OG, while in the south precipitation played a prominent role in 

advancing the OG. For the ES, both precipitation and temperature 

influenced partially. In Qinghai-Tibet Plateau, the precipitation was the 

main driver for both shifting OG and ES of grass, while less influenced by 

temperature. Among the vegetations that were examined, the broadleaf 

forest had the strongest correlation with climatic factors; the needle leaf 

forest was also greatly influenced by climate in cold temperate zone; the 

grass was highly affected by climate, while the mixed forest and crops were 

at moderate level. 

4. To evaluate the potential of using phenological information derived 
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from MTCI in specific application such as agricultural mapping and 

crop yield estimating. 

In Chapter 6 and 7, the reduced resolution MTCI data of 1 km were used in 

agricultural applications of mapping paddy rice fields and predict rice yield, 

in northeast China, combined with MODIS 500 m data. The results 

confirmed the ability and feasibility of the use of MTCI for an agricultural 

purpose. 

By adopting a combined conditions method, the paddy rice field distribution 

was mapped based on vegetation indices including MTCI, MODIS EVI, and 

MODIS LSWI1640. NLCD 2010 data and census data from China statistics 

yearbook for validation. The results showed good consistencies between 

produced paddy rice maps and NLCD 2010 data and census data, at both 

the prefectural and county level in northeast China. However, fewer paddy 

rice fields were detected in the mountainous area with higher altitude around 

600 m to 800 m. Based on the census data of paddy rice yield and the 

produced paddy rice field maps from 2007 to 2011, simple linear models 

were established between four phenological variables extracted from MTCI 

time-series and yield records. A leave-on-year-out-approach was used to 

validate the yield prediction model. The results showed rice yield was most 

related with the maximum values of the MTCI and the NDVI at the 

prefectural level compared to other phenological variables derived from VIs, 

and the established models produced reasonable coefficients of 

determination and relative errors between forecasted yield and production 

with statistical records from the official yearbook. 

9.2  Strengths and weaknesses 

This research tested the 300 m, 1 km, and 4.6 km MTCI data in vegetation 

phenology determination and related applications in various situations, thus, the 

strengths and weaknesses of the research need to be examined.   

The strengths of this research are that: 

• The results were produced using relatively simple methods including 

moving average data cleaning method, discrete Fourier transformation 
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(DFT) time-series data smoothing method, and inflection point method for 

extracting key phenological variables, to process remote sensing time-series 

data, for the purpose of applying in complex circumstances (i.e. mainland 

China with high fault-tolerance performances). 

• Unlike most of the previous studies conducted in China, which were 

normally concentrated on some parts of China, in this research, the whole 

of mainland China and all the subdivisions based on vegetation types and 

climate were taken into consideration when analysing the variation of 

phenology. 

• Integrated the MTCI with MODIS derived vegetation indices in mapping 

paddy rice fields at northeast China, by employing a sophisticated approach, 

and then the produced map and MTCI phenological variables were used to 

forecasted rice yield. 

• The MTCI has a generic advantage when applied in cold temperate climate 

region, where snow cover exists during the winter before spring, with MTCI 

values are equal to zero. It is also the same with the situation that there is a 

farmland preparation period before the crop growing season, (i.e. paddy 

rice). 

The weaknesses of this research are that: 

• The quality of 300 m MERIS surface reflectance data was inadequate 

enough. Therefore an extra process was carried out to improve the 

proportion of valid data. To some extent, this step may cause an advance 

or delay when extracting phenological metrics. And it was the same 

situation in converting MTCI and MODIS data into the same temporal 

interval. 

• Lack of ground reference data for validating the phenological variables 

extracted from the MTCI dataset. In Chapter 3, the only comparison 

between MERIS NDVI and MTCI was conducted, no reference data 

were used for validating the accuracy of 300 m MERIS NDVI and 

MTCI in determining key phenological metrics. And when using 4.6 km 

MTCI data in measuring OG and ES for mainland China, still, no 

reference data were introduced for validating. 
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• The spatial and temporal resolution of 1 km MTCI for the agricultural 

application could be coarse to a certain extent. For example, when 

mapping the paddy fields in Jilin Province, the results showed less 

mapped fields than NLCD 2010, which was produced based on 30 m 

Landsat TM and ETM and HJ-1 satellite sensors data. And when 

establishing linear models between VIs and rice yield, the coefficients 

of determination were less than 0.7, which indicates only moderate 

strength compared with other studies. The reason could be attributed to 

the 1 km spatial resolution, which might be too large for small sale farms, 

located in the mountainous area with a higher elevation than the plain 

area. 

9.3  Future work 

The studies documented in this thesis have presented the use of the MERIS 

Terrestrial Chlorophyll Index (MTCI) in estimating plant chlorophyll content in 

describing vegetation phenology. The research demonstrated the advantage and 

sensitivity of the MTCI as a tool in determining key vegetation phenological 

variables and exhibited the potential to be used in a range of agricultural 

applications such as mapping paddy rice area and forecasting yield at a large scale. 

The research also returned satisfying results in terms of the performance from the 

MTCI, providing the foundation for broad application prospects. 

9.3.1 Extending to other sensors 

One of the major issues with the algorithm implemented in this research is that the 

MERIS Chlorophyll Terrestrial Index (MTCI) is calculated based on the red-edge 

position (REP) wavelength located in the red and near-infrared bands of Envisat 

MERIS, use of which is commonly designed for hyperspectral data with continuous 

narrow wavelength of spectral bands rather wide spectral wavelength, 

discontinuous multispectral data (Zhang and Liu 2014). The Multispectral Imager 

(MSI) onboard the Sentinel-2 satellites, which were launched in 2015, also has the 

red edge bands for computing a new index based on the same principle of the MTCI, 

with a finer spatial resolution of 30 m. Dong et al. (2015b) conducted studies testing 

the performance of 28 chlorophyll-related vegetation indices in estimating crop 
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FPAR (the Fraction of Absorbed Photosynthetically Active Radiation) by using 

Sentinel-2 data, and the MTCI was also included. The results showed a coefficient 

of determination of 0.86 and 0.10 of RMSE, more accurate than NDVI. Therefore, 

with time the remotely sensed data sources will increase with no doubt, as well as 

for such chlorophyll content based vegetation indices like the MTCI. Further, the 

indices can be widely used into agricultural applications in crops acreage mapping, 

health monitoring and yield forecasting, not only for paddy rice, but also for other 

crops such as wheat, soybeans, and so on. Moreover, the indices can also be applied 

for carbon related studies (Harris and Dash 2010, 2011) and land cover 

classification (Dash et al. 2007). 

9.3.2 Methods improvements 

Although the algorithm for processing remote sensing data and phenological 

variables extraction, generated satisfying results, still there are several potential 

areas for improvement. Firstly, for pre-processing the remote sensing data, the 

simple moving average method was used. Although it is quick, simple, and suitable 

for most occasions, for specific applications its performance has not been validated 

and compared with other common methods. For example, as far as known, the 

moving average method is good at cleaning remote sensing data of the same species 

as calculating the average values will eliminate the characteristics of vegetation 

growth reflected on data curves, to some extent. Therefore, additional research can 

be conducted. 

Secondly, the discrete Fourier transformation (DFT) was used for smoothing data 

and the inflection point method was used to determine the phenological metrics. 

Although the DFT is simple to use with a minimal input variable, model-based 

methods are sometimes more accurate (Dash et al. 2010b). Moreover, the 

phenology extraction method needs to be assessed. Methods such as the threshold 

method can be applied for agricultural use coupling with experimental or ground 

observation data to determine the rice growing season more accurately, while in this 

research it was based on the empirical cropping calendar. 

In the end, for mapping paddy rice and estimating yield, widely accepted methods 

were adopted for testing the MTCI in agricultural use, rather than developing new 
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methods. However, more factors can be introduced into the agricultural applications. 

For example, when mapping rice, land surface temperature (LST), the 2 band EVI, 

and LSWI2130, can be considered for additional conditions when identifying 

flooding areas (Jin et al. 2015; Shi et al. 2013; Sun et al. 2009; Zhang et al. 2015a); 

and for estimating rice yield, LSWI, gross primary productivity (GPP), NDVI, and 

EVI can be included with the MTCI for establishing yield prediction models; and 

the MTCI also can be tested for use as input to rice growth models (Zhang and Liu 

2014). 

9.4  Conclusion 

In this thesis, the MERIS Terrestrial Chlorophyll Index (MTCI) was employed with 

300 m, 1 km, and 4.6 km spatial resolution and 8-day, 10-day intervals, for testing 

its potential ability in phenology observation at large scales and phenology based 

agricultural applications. The use of MTCI in China at both national and regional 

scales was the most novel contribution to the research. It can be foreseen with the 

development of satellite and spectral technologies, the MTCI and its derivations 

have a broad prospect in the applications of many fields. 
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