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A causal model for longitudinal
randomised trials with time-dependent
non-compliance

Taeko Becque,” " Ian R. White® and Mark Haggard®

In the presence of non-compliance, conventional analysis by intention-to-treat provides an unbiased comparison
of treatment policies but typically under-estimates treatment efficacy. With all-or-nothing compliance, efficacy
may be specified as the complier-average causal effect (CACE), where compliers are those who receive inter-
vention if and only if randomised to it. We extend the CACE approach to model longitudinal data with
time-dependent non-compliance, focusing on the situation in which those randomised to control may receive
treatment and allowing treatment effects to vary arbitrarily over time. Defining compliance type to be the time
of surgical intervention if randomised to control, so that compliers are patients who would not have received
treatment at all if they had been randomised to control, we construct a causal model for the multivariate outcome
conditional on compliance type and randomised arm. This model is applied to the trial of alternative regimens for
glue ear treatment evaluating surgical interventions in childhood ear disease, where outcomes are measured over
five time points, and receipt of surgical intervention in the control arm may occur at any time. We fit the models
using Markov chain Monte Carlo methods to obtain estimates of the CACE at successive times after receiving the
intervention. In this trial, over a half of those randomised to control eventually receive intervention. We find that
surgery is more beneficial than control at 6 months, with a small but non-significant beneficial effect at 12 months.
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Non-compliance or departure from randomised intervention is a common occurrence in randomised
controlled trials and can take various forms. For example, some patients randomised to treatment may take
too much treatment, too little or none at all. Some participants may switch to another trial intervention or
to an intervention outside the trial. In some cases, departures occur after consultation with a physician;
in others, they may simply be because of non-adherence. Compliance can both influence and be influ-
enced by the outcome, side effects and other prognostic factors. Intention-to-treat analysis [1, 2] has
become the standard analysis in the presence of non-compliance as it avoids selection bias and provides an
estimate of the effectiveness of a particular programme of treatment. Per-protocol analysis, in which
those who adhere to their randomised allocation are compared between randomised arms, is commonly
used in addition to intention-to-treat (ITT) analysis. Occasionally, as-treated analysis, where patients are
compared according to the intervention received, is also used. Both analyses attempt to measure efficacy
but require strong assumptions about the comparability of compliers and non-compliers within ran-
domised arms [3] and are known to be subject to selection bias [4—6].
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Instead, we may use a randomisation-based estimate of efficacy, that is, an estimate of a causal effect
based on a comparison of randomised arms [3, 7]. The complier average causal effect (CACE) [8, 9] is
one such measure of causal effect. The main idea here is to divide the population of interest into several
categories or compliance types, which specify treatment received under different randomised allocations.
Compliance generally refers to treatment received, that is, whether or not the patient received their
randomised intervention. Compliance type, on the other hand, is a classification of treatment-received
given randomisation and is therefore independent of randomisation. Assuming two randomised arms,
treatment and control and assuming compliance is all-or-nothing, that is, individuals either receive all of
the treatment or none at all, the possible compliance types are as follows:

(1) Never-takers: those who never receive treatment regardless of their randomised arm.

(2) Always-takers: those who always receive treatment regardless of their randomised arm.

(3) Compliers: those who receive treatment if and only if randomised to treatment, that is, comply with
their assignment.

(4) Defiers: those who receive treatment if and only if randomised to control, that is, do the opposite
of their assignment.

Groups of always-takers and defiers are only possible if the treatment is available to those randomised to
control. The CACE measures the causal effect of assignment on outcome among the group of compliers.
In the principal stratification framework, the compliance types are referred to as principal strata, and the
CACE is a principal effect [10]. Compliance types are not fully observable because the behaviour under
all possible randomisations cannot be observed for all individuals, but due to randomisation, the expected
proportion of patients in each compliance type is the same across randomised arms. Two assumptions,
known as exclusion restrictions, are usually made to enable estimation: (1) never-takers have the same
mean outcome across randomised arms, and (2) always-takers have the same mean outcome across
randomised arms. In addition, it is often assumed that there are no defiers [11].

In this paper, we measure this causal effect as a mean difference, so that the CACE is the difference
in mean outcome between compliers randomised to treatment and compliers randomised to control. This
CACE may be estimated using instrumental variables (IVs) analysis [12, 13]. In the context of randomised
controlled trials, randomisation is an IV if it affects outcome only through the treatment received. In the
simplest setting, the IV estimate of the CACE is the ratio of the ITT effect of randomisation on outcome
and the ITT effect of randomisation on treatment received. Under the exclusion restriction and no defiers
assumptions, this ratio represents a causal effect of treatment received on outcome [8].

Alternatively, a full probability modelling approach involves specification of a model for the potential
outcomes given randomisation and compliance type and allows estimation of the CACE using either
maximum likelihood or Bayesian methods [14, 15]. Maximum likelihood estimation can be performed
using the expectation-maximisation algorithm [16], which treats compliance type as unobserved data.
The idea is to find the expected compliance type for each individual and to maximise the likelihood to
obtain the maximum likelihood estimate of the CACE. The new parameter estimates are then used to
calculate the expectation of the missing compliance types. The Bayesian model can be fitted with data
augmentation [17], using Markov chain Monte Carlo methods [18].

The same approach may be taken in cases where the data are longitudinal, allowing a time-dependent
treatment effect, provided that compliance remains all-or-nothing [19]. In trials where the alternative
intervention is always available, however, there will be many different compliance patterns, depending
on the time at which individuals depart from their allocation. With two or more interventions available at
each time, the number of compliance types can quickly become large. An alternative to using all possible
compliance types is to use superclasses or latent compliance class principal strata, to summarise longitu-
dinal compliance patterns: ITT contrasts are then made within these superclasses, but these contrasts do
not represent causal effects [20]. Sitlani ez al. [21] use a longitudinal structural mixed model (LSMM), an
example of a structural-nested model [22], to analyse a surgical trial with non-compliance that is varying
over time. They consider a joint model of outcome and treatment, allowing for inclusion of covariates.
The average causal effect of treatment is assumed to be a linear function of time. They compare the per-
formance of likelihood-based methods and various semi-parametric methods and state the assumptions
required for valid estimation in each case.

In this paper, we propose a causal model for longitudinal data, where intervention group individuals
all receive a one-off intervention at the start of the trial, while control group individuals may receive the
intervention at any time during the trial. Unlike Sitlani et al. [21], we consider the CACE interpretation,
generalising the model of [15] by creating a compliance type for each longitudinal pattern of compliance,
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and we make no assumption about how the treatment effect varies over time: in particular, our model
accommodates a transient treatment effect. By jointly modelling outcome and compliance over time, we
obtain estimates of the CACE at each time point. We apply this model to data from the trial of alternative
regimens for glue ear treatment (TARGET), which compared the effect of a surgical intervention and a
control programme on hearing loss in children with otitis media with effusion (‘glue ear’). The surgical
intervention was available at all times over the two-year trial, and a large proportion of those randomised
to control eventually chose to receive surgery.

In Section 2, we give details of the motivating example along with an ITT analysis. In Section 3,
we review existing methods to account for non-compliance, including the standard CACE model. In
Section 4, we introduce the CACE model for longitudinal data with time-dependent compliance and
various model extensions. In Section 5, we apply these models to the TARGET trial and end with a
discussion in Section 6.

2. Motivating example

2.1. Description of the trial

The TARGET [23] was a UK multi-centre randomised controlled trial that investigated the effect
of surgery for children with glue ear. This is a condition in which the middle ear becomes filled with
fluid, leading to hearing loss. The trial compared the insertion of ventilation tubes, with and without
adenoidectomy, with non-surgical management. The inclusion criteria specified that the children must be
aged 3-7 years, with no previous ear or adenoid surgery and with greater than 20 dB hearing loss in the
better ear.

Our analysis includes data from 248 participants: 126 randomised to insertion of ventilation tubes (VT)
and 122 randomised to control. The third randomised arm (VT plus adenoidectomy) is ignored for present
purposes. VT involved aspiration of fluid remaining in the middle ear, followed by insertion of ventilation
tubes in the ear drums. The control arm provided rapid access to antibiotics in the case of resurgent
acute infection, although these were rarely used in practice. Improvements in hearing were quantified by
hearing level in decibels (dB), with lower measurements indicating better hearing. For this condition, a
threshold high value of 40 dB represents poor hearing, and less than 15 dB is regarded as normal. Other
outcomes were also measured, but hearing loss was the main outcome for the power calculation due to
its widespread use and the existence of a precise convention on its measurement.

2.2. Description of the data

Measurements of hearing loss were taken at two pre-randomisation visits, then at 3, 6, 12, 18 and
24 months, referred to as post-randomisation visits 1, 2, 3, 4, and 5, respectivelyi. The hearing loss at
baseline has mean 33 dB and ranges from about 21 dB to 46 dB. The amount of missing outcome data
ranges between about 13% and 18% at each visit, and attrition rates are similar across randomised arms.
A descriptive summary of the trial is provided in Table I. A graph of the observed mean hearing loss
against time by randomised arm, along with 95% confidence intervals, is given in Figure 1, following
[23]. It shows that although VT gives a larger reduction in hearing loss than control by visits 1 and 2, it
is comparable to control after visit 3.

The published ITT analysis found statistically significant beneficial effects of VT over 3 to 6 months
but a statistically non-significant negative effect of VT over 12 to 24 months. This negative effect ‘occurs
because in this period more of the control group have transferred to treatment, and so have functioning
VT, than is seen in the surgery groups where VT have mostly fallen out [23]’. The present paper aims to
correct for such departures, which we now describe in a more detail.

Any child in the VT arm who did not receive their allocated VT and any child in the control arm
who received VT were considered to have departed from their randomised intervention. A total of
71 children departed from their allocated intervention, mostly from the control arm to receive surgi-
cal intervention (66 children, 54%). Departures from randomised treatment occurred over the duration
of the trial, mostly at scheduled visits. The numbers of departures in the control arm between consec-

In the main trial paper and elsewhere, the pre-randomisation visits are referred to as visits 1 and 2 and the post-randomisation
visits are referred to as visits 3 to 7.
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Table I. Description of trial of alternative regimens for glue ear treatment (TARGET).
Randomised to VT (n=126) Randomised to control (n=122)
Mean hearing Mean hearing Received VT
Visit  Months n loss (dB) n loss (dB) since previous visit
0 0 126 322 122 335 0
1 3 109 14.4 106 26.3 13
2 6 106 17.5 105 232 20
3 12 110 21.0 100 20.5 17
4 18 103 21.1 98 19.7 13
5 24 108 18.7 102 18.2 3
VT, ventilation tubes.

B Randomised arm

35

—— Control
—————— VT

30

Mean hearing loss (dB)
20 25

15

Visit

Figure 1. Graph of mean outcome (with 95% confidence intervals) by randomised arm.

utive visits are given in Table 1. Only five of those randomised to VT (4%) received control instead of
surgical intervention.

There were two main reasons for departures in the control arm: early surgical intervention (before
visit 1) was mostly due to discontentment with the allocated treatment, whereas later surgical intervention
was largely due to deterioration of the child’s condition. To see this, we plot the hearing loss for those
randomised to control (Figure 2). At each visit, we compare boxplots of the hearing loss for those who
depart from the control arm before the next visit and those who do not depart before the next visit. Those
who depart from the control arm tend to have a higher average hearing loss immediately prior to receiving
VT than those who have not yet departed from the control arm. In other words, those with worse hearing
in the control arm are more likely to depart and receive intervention.

2.3. Intention-to-treat analysis of trial of alternative regimens for glue ear treatment data

Let Yijk represent the average hearing loss for individual i = 1, ..., 248, visit j = 1,2, 3,4, 5 and allocated
treatment k = 1,2 (control, VT). An ITT model may be written
Yie =7+ 0% + €5 @D
€ ~NO,X)
where y; is the mean control arm outcome at visit j, §; is the treatment effect at visit j, x; is an indica-
tor for treatment being VT (i.e. for k = 2) and €, is a vector over j. The ITT estimates are given in
Table II.
The ITT analysis provides a useful primary analysis of the data and gives estimates of the relative
effectiveness of the treatment programmes. However, we may wish to know the efficacy (i.e. causal effect)
of the intervention at each time point. Estimation of the causal effect is complicated by the fact that
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Figure 2. Departures from the control arm. Boxplots of hearing loss for those who depart from control and those
who do not depart from control before the next visit.

Table II. Estimates of treatment effect using visits since receiving VT.
Visits since VT ITT (95% CI) CACE (95% CT)
1 ~11.6 (=13.8,-9.3) —11.6 (=14.0,-9.2)
2 -5.6 (-8.1,-3.1) -7.2(-10.1,-4.4)
3 0.8 (-=1.9,3.5) —14(-4.2,14)
4 1.6 (=1.3,4.5) —0.1(=3.5,3.3)
5 0.5(-1.9,2.8) —-0.8 (=3.9,2.4)

ITT (intention-to-treat) is the average effect of randomisation on observed
outcome at visit j (6; in model 2.1).

CACE (complier average causal effect) is the average effect of randomisation
on outcome at visit j in the principal strata of compliers at visit j (f(j) in
model 4.2.

compliance is time-dependent, and the treatment effect itself is also time-varying. In the next section, we
look at existing methods to account for non-compliance in randomised trials.

3. Accounting for non-compliance

3.1. Existing methods

Sitlani et al. [21] present an example comparing a surgical intervention with a non-operative treatment,
with outcomes measured at five time points after enrollment. They propose a LSMM to account for
non-compliance (treatment crossovers) between surgical and non-operative treatment. The LSMM
consists of a group average (separated into baseline and time-dependent exposure), subject average (ran-
dom effects to take into account correlation between measurements on the same individual) and individual
observations (error terms assumed to be independent of the random effects). In their model, treatment
effect is a linear function of time since receiving surgery, so the model cannot allow for the transient treat-
ment effect that we see in the TARGET trial. The average causal effect at any given time is the difference
at that time between the trajectory corresponding to treatment just after enrollment and the trajectory
corresponding to no treatment.
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Analysis is easiest if treatment depends on baseline characteristics (including randomisation) but not
on post-baseline characteristics (an ‘exogenous’ treatment process or ‘no selection’). In practice, treat-
ment often depends on post-baseline characteristics (an ‘endogenous’ treatment process or ‘selection’).
Sitlani et al. [21] distinguish two types of selection for receiving treatment: direct and indirect. Direct
selection depends on covariates observed after baseline but before the time of interest, for example a
previous poor outcome leading to a decision to receive surgery. Indirect selection depends on unobserved
confounders that affect both treatment and outcome: for example patients with a worse general health
condition may elect to receive surgery.

Sitlani ef al. go on to look at various methods of estimation for the different cases. In the absence of
selection, standard tools such as linear mixed effect (LME) model and generalised estimating equations
(GEE) may be used. If selection is only direct, the LME and GEE estimators provide consistent estimates
of treatment effect provided that the random effect structure is correctly specified. However, if there is
indirect selection, LME and GEE estimators that do not explicitly use a selection model can be biased.

Marginal structural models (MSM) enable flexible incorporation of factors that influence treatment
timing under marginal modelling assumptions. They require specification of a selection model that
includes observed covariates or past treatment that is predictive of treatment. Inverse probability weight-
ing can then be used to obtain consistent estimates of the causal parameters of interest. In order for MSM
to be consistent, there must be no unmeasured confounders (no indirect selection), and the form of the
selection models must be correctly specified.

G-estimation and IV estimation both aim to be valid under indirect selection by exploiting the ran-
domisation. G-estimation uses the idea that treatment-free potential outcomes for participants randomised
to treatment should be on average equal to treatment-free potential outcomes for those randomised to
control. This relies on three assumptions: the counterfactual outcomes are independent of randomisa-
tion, the structural model is correctly specified and the effect of treatment at a specified time is the same
for those who receive it and those who do not (‘no current-treatment interaction’). IV estimators are
two stage least squares estimates in which the first equation is a causal model relating outcome and
exposure, and the second equation uses an IV, in this case randomisation, to predict exposure. They
may be regarded as a special, non-optimal, case of G-estimation. The IV must satisfy the following
assumptions in every time period in which a causal effect is to be estimated: (1) random treatment assign-
ment, (2) randomisation affects outcome only via treatment received (exclusion restriction), (3) non-zero
average causal effect of randomisation on treatment and (4) those randomised to control and then treated
would also have been treated if randomised to treatment (monotonicity, required for the estimates to be
interpretable as average treatment effects).

Using simulations, Sitlani et al. show that when indirect selection exists, LME, GEE, MSM and
G-estimation can be biased, while IV methods tend to avoid bias but are inefficient [21]. The bias of their
G-estimation appears to arise because the simulation design involved current treatment interaction. They
therefore recommend using the joint likelihood of treatment and outcomes in order to obtain efficient
and consistent estimates (provided dependence of selection on subject specific latent effects is correctly
specified). Estimation may be achieved using Bayesian analysis that explicitly incorporates the selection
model. In this paper, we use the joint-likelihood approach via a CACE model to account for indirect selec-
tion to treatment. Section 3.2 describes the CACE model that has previously been used for cross-sectional
data and longitudinal data where the compliance is binary, and Section 4.1 describes our extension for
time-dependent compliance.

3.2. Complier average causal effect model for all-or-nothing compliance

We first state the standard CACE model in the simple case of a two arm trial with all-or-nothing compli-
ance and a binary treatment. Let R; be the randomised arm (R; = 1 for treatment and R; = 0 for control),
and Y; be the outcome for subject i, i € 1, ..., n. Let D, be an indicator of non-receipt of treatment, so that
D; = 0 for treated individuals and D; = 1 for untreated individuals: this formulation is used as it extends
naturally to the time-dependent case in Section 4.1. Let D;(r) be the potential value of D, if subject i
had been randomised to treatment r. Let Y,(r,d) be the potential outcome for subject i if randomised
to r and treated/untreated according to d = 0/1; we only model Y;(0, 1) the untreated outcome in the
control arm. Let C; be the latent compliance type for subject i, defined in terms of the potential treat-
ments received: individual i is an ‘always-taker’, ‘never-taker’, ‘complier’ or ‘defier’ when (D,(0), D;(1))
equals (0,0), (1, 1), (1, 0) or (0, 1) respectively. We allow indirect selection by allowing C; to be associated
with Y;(0, 1).
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Here, we concentrate on the main form of departure from randomised allocation in TARGET: contam-
ination of the control arm, that is, some of those randomised to control receive treatment. If we assume
that those randomised to treatment all receive treatment, then D,(1) = O for all i, so C; = D,(0): compli-
ance type is treatment received under randomisation to the control arm. Note that in this notation, C; = 1
indicates a complier. We do not observe the treatment received under both randomisations for a particular
individual so the compliance type C; is only partially observed. If individual i is randomised to control
(R; = 0) and they receive treatment (D; = 0), then they must be an always-taker (C; = 0), while if they
do not receive treatment (D; = 1), then they must be a complier (C; = 1). However, if individual i is
randomised to treatment (R; = 1), then they must receive treatment (D, = 0), and so they may be either
an always-taker or a complier. Therefore, the compliance type C; is unobserved for those randomised to
treatment R; = 1.

We assume the causal model

0iftD;, =1

ELY; - Y0, DIR;, C;] = { pifD, =0 -

where D; = C;if R, = 0 and D; = 0 if R; = 1. Model (3.1) describes observed outcomes as differing
in expectation from untreated outcomes only through the receipt of treatment, where f is the treatment
effect. The absence of a direct effect of R expresses the exclusion restriction, that the always-takers have
the same mean outcome in both randomised arms. In fact, the model makes unnecessary and unused
assumptions about the causal effect of treatment in always-takers: we return to this in the discussion.
Model (3.1) implies for the observed outcome:

E[Y,|R.,C;] = E[Y,(0, D|R,, C;] + f(1 = D))
= E[Y,(0, DIC] + p(1 = D) (3.2)
=a(C)+p(1-D)

where a(C;) = E[Y,(0, 1)|C;] represents the mean untreated outcome for individuals with compliance type
C;: its dependence on C; allows for indirect selection. Under this model, the causal effect of randomisation
on outcome for compliers (C; = 1) is

ElY)R,=1,C;=1]-E[Y,|R,=0,C;, = 1] = . (3.3)

This is the difference in mean outcome between compliers randomised to treatment and compliers
randomised to control. The parameter § represents the CACE, the average causal effect among the group
of compliers.

Estimation of f is complicated by the fact that compliance type C; is not observed for those randomised
to treatment R; = 1. A regression of outcome Y; on randomisation R; and compliance type C; will not
suffice because C; is not fully observed. Instead, estimation can be achieved using either maximum like-
lihood or Bayesian methods. In Bayesian analysis, the unobserved compliance types are considered as
missing data and estimated in the same way as the other parameters. Probability distributions for f# and
the other parameters are obtained and appropriate summary measures reported.

In trials with a repeatedly measured outcome and all-or-nothing compliance, a longitudinal version of
model (3.2) may be fitted. If ¥; is the outcome for individual i at visit j, then

E[Y;|R;, Ci] = a(C;, j) + ()1 — D)) (3.4)

where D; is defined as previously, and a(C;,j) = E [Y,-j(O, 1)|C;] represents the mean untreated outcome
for individuals with compliance type C; at visit j. Under this model, the causal effect of randomisation
on outcome at visit j for compliers (C; = 1) is

E[Yy|R; = 1,C; = 1] = E[Y;|R; = 0,C; = 1] = B()). (3.5)

Thus, f(j) is the CACE at visit j. This model has previously been proposed and fitted by Yau and
Little [19].

However, if treatment received is varying over time, the situation becomes more complicated. In
our example, at a given visit j, those randomised to treatment would all have received treatment at the
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beginning of the trial, but those randomised to control will be a mixture of those who received treatment,
one visit ago, two visits ago and so on up to j visits ago and will therefore be receiving different treat-
ment effects at the current time. We now extend the CACE model to account for this by modelling the
longitudinal data as follows.

4. Longitudinal complier average causal effect model

4.1. Complier average causal effect model for longitudinal compliance

As previously, let R; be randomised arm (1 for treatment and 0 for control), and ¥;; be outcome for subject
iel,..n,visitj € 1,...,m. Weredefine D, as the last visit before surgical treatment (regarding baseline
as visit 0): D; = 0 if treatment was received between visits 0 and 1, D; = 1 if treatment was received
between visits 1 and 2 and so on, and D; = m if no treatment was received. D, is therefore grouped, not
actual, time of surgery. Let D,(r) be the potential value of D; for subject i if randomised to treatment r.
Let Y;(r, d) be the potential outcome for subject i at visit j if randomised to r and receiving treatment just
after visit d; we only model the treatment-free potential outcome Y, U(O, m). Again, we allow for indirect
selection by allowing C; to be associated with ¥;;(0, m).

We assume those randomised to treatment receive surgery just after baseline, so that D,(1) = O for all
i. Thus, C;, the latent compliance type for subject i, is again defined as C; = D;(0), the last visit before
surgical treatment under randomisation to control. Now, C; is categorical and is a summary of longitudinal
compliance so is not dependent on time. The compliance types are principal strata in the terminology of
Frangakis and Rubin [10]. In particular, the principal strata with C; > j are the ‘compliers at visit j’, that
is, those individuals who would receive treatment under randomisation to treatment but would receive no
treatment up to visit j under randomisation to control.

We consider two causal models to specify the mean outcome, basing the treatment effect on (1)
the number of visits since receiving treatment and (2) the number of days since receiving treatment.
Both models describe the mean of Yij - Yl-j(O, m), which is the difference between an individual’s observed
outcome and the same individual’s counterfactual outcome if they were randomised to control and
never treated.

4.1.1. Causal model using visits. The first model assumes equal spacing between visits and assumes that
treatment occurs just after a visit:

o~ WO CI=3 s - py it < "

where D; = C; if R; = 0 and D; = 0 if R; = 1. Here, f(k), a function of k for k € 1,...,m, represents
the causal effect of treatment on outcome measured k visits after treatment. We assume f(k) is equal
across randomised arms: this identifying assumption is plausible in TARGET. This model implies for the
observed data:

a(C.,)) ifD; >j

En iR, Gl = { «(Co)+ G = D) i D, < @2

where a(C;,j) = E [Yl-j(O, m)|C;] represents the mean untreated hearing loss for a patient with compliance
type C; at visit j; its dependence on C; allows for indirect selection. The model embodies the exclusion
restriction, because individuals of a given compliance type have the same mean untreated outcome,
a(C,, ), in both randomised arms. Those randomised to control with D, > j have not (yet) departed from
their allocation (i.e. have not yet received any treatment), and so their expected outcome equals the mean
untreated outcome a(C;,j). Those randomised to control with D; < j received treatment j — D; visits ago,
so their expected outcome is a(C;, j) + f(j — D;). Those randomised to treatment all have D, = 0, so their
expected outcome is a(C;,j) + p(j).
Under this model, the causal effect of randomisation on outcome at visit j for principal stratum c is

ELY|R = 1.C, = c] - EY, IR, = 0.C, = c] = { *¥ L +3
[Y;|R; =1,C; = c] - E[Y|R; =0, i_c]_{ﬂ(]-)_ﬂ(]'—c)ifC<j @
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Thus, A(j) is the causal effect of randomisation on outcome at visit j for individuals in each of the principal
strata with ¢ > j. We therefore interpret f(j) as the average causal effect of randomisation on outcome at
visit j among compliers at visit j.

4.1.2. Causal model using days. We extend the aforementioned model to allow for unequal intervals
between visits and to allow the causal effect of treatment to depend on the actual number of days since
receiving treatment. Let the visits occur at ¢, ,, ... , t,, days after randomisation. The setup is the same as
previously, but instead of using D, to represent actual treatment, we now let 7; represent the time (in days)
at which individual i first received treatment, or a value greater than 7, if treatment was never received.
Compliance type is defined in terms of the potential treatment time under randomisation to control 7;(0)
as follows:

0 if0<Ty(0)<1
1 ifr, <T(0) <t

m—1ift, | <T,0) <1,
m it T,(0) > t1,,,.

L

Let B(j) represent the treatment effect among compliers 7; days after receiving treatment, where j =

1,2,...,m. We assume a piecewise linear treatment effect between these times:
0 if ;—=T;<0
ElY; - Y. (0,m)|R,, C 4.4
¥y = (0. po+ (L) (k4 D= ) < -Ty <y, P
fork=0,1,2,...,m — 1. This implies the observed data model
a(C.)) ift;— T, <0
[Y;IR;, C;] 4.5

@(Col)+ ) + (58 ) (Bl + 1) = BO) if 1 < (= T)) < 1

where a(C;,j) = E [Yl-j(O, m)|C;] represents the mean untreated hearing loss for a patient with compliance
type C; at visit j, and f(k) is the average effect of randomisation on outcome at #, days in the principal
strata of compliers.

4.1.3. Distributional model. In both models, the outcomes Y; = (¥}, ....,Y;,,) are assumed to have a
multivariate normal distribution,

Y;|R;, C; ~ MVnormal(y;, X) for i=1,..,n

with means p; = (41, ..., H;,), Where p; = E(Y;|R;, C;) as given in (4.2) or (4.5), and X is an unstructured
m X m covariance matrix. We also assume a saturated model for C;, that is, p(C; = ¢) = y(¢).

4.2. Assumptions

The aforementioned model makes several assumptions. The randomisation assumption implies that ran-
domisation R; is independent of pre-randomisation variables, including latent compliance type C; and
potential outcome Y;(0,1) [14]. The stable unit treatment value assumption implies no interference
between individuals, so that the compliance behaviour of one patient is not affected by the randomisa-
tion of other patients, and the potential outcome of one patient is not affected by the randomisation and
compliance status of other patients. We also assume the causal model given by either 4.1 or 4.4, and that
p(k) is equal across randomised arms.

4.3. Identification

We describe how the parameters y(c), f(j) and a(c,j) forc =0, ... ,mand j = 1, ..., m) are identified in
the causal model using visits. A similar argument applies for the causal model using days.

- _______________________________________________________________________________________________|
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(1) Since C; is observed if R; = 0, y(c) may be estimated using y(c) = P(C; = c|R; = 0).

(2) Since E [Y;|R; = 1] = p(j) + E [a(C;,j)| and E [Y,;|R, = 0] = ch_:lo 7(©)B( — ¢) + E [a(C,, )] the
ITT difference E [Y,-le,- = 1] —-E [YUIR[ = 0] may be expressed in terms of (y(0), ..., y(j— 1)) and
), ..., B(G)). So the ITT difference at time j may be used recursively to estimate f(j).

(3) Finally, we have E [Y;|C; = ¢,R; = 0] = a(c.j) if ¢ > j and = a(c.j) + p(j — ¢) if ¢ < j. This may
be used to estimate a(c, j).

The aforementioned procedure for estimating the f(j) is essentially the same as the instrumental variables
procedure. However, the Bayesian procedure makes fuller use of the data.

4.4. Bayesian estimation

In Bayesian inference, we assume prior distributions for the parameters to be estimated and simulate the
posterior distribution using the Gibbs sampler, treating the unobserved compliance types and missing
outcomes as missing data. The CACE can only be indirectly estimated through the observation of mix-
tures of distributions. If compliance type is known for all units, inference of the causal estimands involves
only data from the associated subpopulation with no mixture components. The first step of the data aug-
mentation algorithm is to impute the missing compliance types by drawing them from their conditional
distribution, a multinomial distribution, given observed data and current drawn values of a, 5, y and Z. The
second step is to draw values of parameters from the complete-data posterior distribution given current
values of C; and the observed values of Y;, D, and R,. This involves drawing « and f from a multivariate
normal distribution and £ from an inverse Wishart distribution.

5. Application

We now apply the aforementioned models to data from the TARGET trial. To fit the models to the
TARGET data, we make some simplifying assumptions to avoid creating too many compliance types.
Non-compliance is assumed to occur in only one direction: those allocated to control can receive VT but
not vice-versa. Some of those who received VT had the ventilation tube reinserted at a later time, but
the reinsertions are also ignored here. In the TARGET trial, treatment may be received at any time, but
we ignore its precise timing and define the compliance types as the last visit before which the individual
would receive surgical treatment if randomised to control. C = 0 corresponds to those who would receive
VT between visits 0 and 1 if they had been randomised to control, C = 1 corresponds to those who would
receive VT between visits 1 and 2 if they had been randomised to control and so on. In this notation,
C = 5 corresponds to those who would not have received VT at all, had they been randomised to control.
The compliance types are unobserved in those randomised to treatment, but the model parameters may
be estimated using Bayesian methods.

We analyse n = 248 individuals, 122 randomised to control (R = 0) and 126 randomised to VT
(R = 1). There are five visits, soj = 1,2,3,4,5, and the corresponding number of days is taken to be
t; =90,1, = 180,1; = 365,1, = 550, t5 = 730.

Here, we assess the plausibility of assumptions made in Section 4.2. Treatment assignment was random
in the TARGET trial, satisfying the randomisation assumption. The stable unit treatment value assump-
tion (SUTVA) implies that the potential outcome for each individual does not depend on the treatment
status of other individuals. This holds in TARGET because the hearing loss of one participant should not
be affected by the treatment that other trial participants are receiving. The exclusion restriction means
that treatment assignment is unrelated to potential outcomes given treatment received. This is plausible
in TARGET because the outcome only depends on the time since receiving treatment and compliance
type, rather than on randomisation. The monotonicity assumption implies that there are no defiers. In the
TARGET example, most of those offered treatment took it up, so the assumption of no never-takers or
defiers is plausible. The joint likelihood method assumes that the likelihood is correctly specified, namely
normality of outcomes and a correctly specified covariance matrix.

5.1. Implementation

The aforementioned models were fitted using Markov chain Monte Carlo in WinBUGS [24] and were
run for 100 000 iterations. Diffuse normal distributions with mean zero and a large variance were used
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as prior distributions for the parameters a(c,j), f(j). An inverse Wishart distribution was used as a prior
for X.

a(c,j) ~N(@©,10% for j=1,.,5 and ¢=0,..,5
BG) ~ N(0,10%)
>! ~ Wishart(Q,5) Q = diag(0.02)

The posterior distribution was simulated, treating the unobserved compliance types and missing
outcomes as missing data. We assume that the missing outcomes are missing at random [25], though
other methods could be applied, as noted in the discussion. The simulations were run on two chains,
which were initialised at different values near the maximum likelihood estimates. The first chain
was initialised at a(c,j) = 20, f(j) = —10 for all ¢ and j and C; = 1 for all i. The second chain was
initialised at a(c,j) = 10, f(j) = =5 for all ¢,j and C; = 1 for all i. Convergence was assessed using
the Gelman—Rubin diagnostic [26] and history plots for each parameter. All of the model parameters,
a(c, ), B(j), =, were mixing well, that is, the two chains were moving freely over the parameter space and
appeared to have converged after about 10 000 iterations.

The model using days since VT was implemented similarly. If there is a missing visit, we assume
the number of missing days because receiving VT is equal to the scheduled number of days. This value
is used to impute the missing ¥;;. An alternative model for the missing days with an appropriate mean
structure gave similar results.

5.2. Results

Table II gives the treatment effect estimates from an ITT analysis (model 2.1) and from the CACE model
by visits since receiving VT (model 4.2). Under ITT, VT reduces hearing loss more than control, by
11.6dB with 95% CI (9.3 to 13.8) dB after one visit and by 5.6 dB with 95% CI (3.1 to 8.1) after two
visits. Under the CACE analysis, VT reduces hearing loss by 11.6 (9.2 to 14.0) dB compared to control
after one visit and 7.2 (4.4 to 10.1) dB after two visits. The ITT analysis would be expected to give a
conservative estimate of the treatment effect compared to the CACE model at visit 1, because the ITT
analysis includes some patients in the control arm who have received VT one visit ago. In this case,
the ITT and CACE estimates are similar for visit 1. For visits 3, 4 and 5, the sign of the ITT effect is
positive, indicating a small but non-significant adverse effect of VT, whereas the CACE estimates are
negative, indicating a small but non-significant beneficial effect of VT. This change is because at visit
3, for example, the control arm contains a mixture of patients, some of whom have received control and
others who have received VT one, two or three visits ago.

Table III gives the treatment effect estimates from an ITT analysis and from the CACE model by days
since receiving VT (model 4.5). We observe slightly larger treatment effects in both CACE and ITT
analyses when taking into account actual days since receiving VT, rather than assuming equal spacing
between visits. Qualitatively, both analyses agree that VT is significantly better for the first 6 months after
receiving VT. After 6 months, no significant difference between VT and control is observed. By this time,
a substantial proportion of those randomised to control have received VT, so the ITT analysis obscures a
possible benefit of VT, whereas the CACE analysis indicates a non-significant beneficial effect.

Table III. Estimates of treatment effect using number of days since VT.
Days since VT ITT (95% CI) CACE (95% CI)
90 —11.9 (-14.3,-9.5) —12.0 (-14.3,-9.5)
180 ~-7.3(=9.8,-4.7) —-8.5(=11.2,-5.8)
365 —-0.2 (=2.9,2.7) —-2.5(-54,0.3)
550 1.0 (-2.0,4.0) —-1.3(-4.7,2.0)
730 0.8 (=1.5,3.2) 0.6 (=2.1,3.7)

ITT (intention-to-treat) is the average effect of randomisation on observed
outcome after ¢ days.

CACE (complier average causal effect) is the average effect of randomisation
on outcome at f, days in the principal strata of compliers at ¢, days (f(k) from
model 4.5). VT, ventilation tubes.
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A graph of the estimates of a(c,j) from model 4.2, representing the untreated outcome over time
for each compliance type, is given in Figure 3. Compliance type O has a relatively low hearing loss
that gradually decreases over time. Compliance type 1 begins with a high hearing loss but decreases
rapidly over time. Compliance type 2 has a relatively high hearing loss at the first two visits which then
decreases. Compliance type 3 has moderate hearing loss at visits 1 and 2 then a very high hearing loss
at visit 3 that decreases over the next two visits. Compliance type 4 starts with moderate hearing loss,
increases to a high value at visit 3 then decreases. Finally, compliance type 5 begins with a low hear-
ing loss that gradually decreases over time. The trajectories for those who receive VT immediately after
baseline (C=0) and those who never receive VT under randomisation to control (C=15) are quite simi-
lar. This is consistent with early departures being due to discontentment with the allocation rather than
poor outcomes.

5.3. Model checking

Plots of standardised residuals show that most lie within a reasonable range of about (—2.5,2.5). There
are a few extreme residuals and these usually correspond to very high (> 40 dB) outcomes. Exclusion
of individuals with extreme residuals has little effect on the results. Plots of residuals versus fitted values
show no distinguishable pattern. Comparison of the fitted values @(C,j) + f(j — D) from model 4.2
(Figure 4) with the crude mean outcome in the control arm (Figure 5) suggests that the model makes
fairly plausible assumptions.
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Figure 3. Estimates from model (4.2) of mean untreated outcome, a(C,j), by compliance type.

40

35
1

30

1 c=2
C=3 -
c=4
c=5

20

Mean hearing loss (dB)
25

15

T T T

1 2 3
Visit

g
(&)

Figure 4. Fitted values from model (4.2) for control arm by compliance type.
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Figure 5. Mean outcome from model (4.2) for control arm by compliance type.

Alternative options for Q in the Wishart prior distribution were used, such as = diag(0.001) and Q =
diag(1000), as well as non-diagonal matrices. These made little difference to estimates of the CACEs.

6. Simulation study

We performed a small simulation study to evaluate the performance of the proposed method and to
compare it with the IV method in a data generating model loosely based on the TARGET results and the
causal model using visits.

6.1. Data-generating model

We generated 1000 data sets of size 300 with m = 5 time points. We assumed equal randomisation
(p(R; = 1) = 0.5). The latent compliance types were distributed with y(0) = y(1) = y(2) = y(3) =
y(4) = 1/9, y(5) = 4/9. The untreated mean outcomes were derived from TARGET as a(c,j) = 10 if
c=0,5a(c,)) =25—jif C = 1,2; a(c,j) = 22 -3|j— 3| if C = 3, 4. The treatment effect was modelled
as f(j) = 2(6 — j). Finally, Y; followed model (4.5) with uncorrelated N(0, 82) errors. There were no
missing data.
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Figure 6. Results from the simulation study of Section 6. Monte Carlo error is expressed through 95% confidence
intervals.
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6.2. Analyses

Model (4.2) was used. For comparison the IV, analysis was done, using dummy variables for treatment
1,...,5 visits ago as endogenous variables, the interaction of randomised group and time as instruments,
and dummy variables for visits as covariates.

6.3. Results

The results are summarised in Figure 6. Bias was small (magnitude < 0.1 compared with treatment effects
ranging from 10 to 2) and somewhat worse for the Bayesian method. However, the Bayesian method had
a standard error 15-20% smaller than the IV method and hence a smaller mean squared error. Finally, the
Bayesian method achieved 95% coverage near the correct 95% interval, while the IV method somewhat
under-covered.

7. Conclusions and discussion

7.1. Conclusions

In randomised clinical trials in which a substantial proportion of patients departs from their randomised
treatment, standard ITT analysis compares treatment policies but may obscure the treatment effect.
Per-protocol analyses that compare those who adhere to their randomised allocation between randomised
arms are commonly used, but these are subject to selection bias. Instead, randomisation-based estimates
of efficacy may be employed. Given reasonable assumptions, the CACE model can provide estimates of
the average causal effect of treatment among the group of compliers.

CACE models have previously been applied in simple situations where treatment is all-or-nothing and
compliance is binary. We extended the CACE model to incorporate compliance that is changing over
time by introducing categorical compliance types based on the time of receiving treatment. We specified
a model for the conditional distribution of outcome given randomisation and compliance type and fitted
this to obtain estimates of the causal effect of treatment at each visit. Full probability modelling enables
model checking by comparing fitted values with the observed values, by checking for extreme residuals
and by examining the plot of residuals versus fitted values.

We applied this model to data from the TARGET trial in which outcomes are measured over five time
points, and departures from the control arm to surgical intervention could occur at any time. In this
example, the CACE analyses generally gave larger estimates of treatment effect compared to the ITT
effects. The ITT estimates are conservative in this case because at any given time, the control arm contains
a mixture of people, some of whom are receiving the effect of surgery. Adjusting for the exact timing of
the visit had little effect on the results.

The CACE model can provide a useful secondary analysis in addition to the primary ITT analysis.
However, the average causal effect among compliers may not be a representative of the causal effect
among the general population. In addition, the longitudinal CACE model is somewhat complex both con-
ceptually and in terms of computation. Computation can be performed using either maximum likelihood
or Bayesian methods, but software would be needed to make CACE estimation more accessible.

7.2. Discussion

In this paper, we focused mainly on contamination of the control arm, that is, those randomised to
control receiving VT. The model could be extended to include non-receipt of VT in the VT arm by
creating just one more compliance type, namely those who would not receive VT if randomised to it, and
making a no-defiers (monotonicity) assumption that these individuals would also not have received VT
if randomised to control.

We ignored baseline covariates such as trial centre and baseline hearing loss in the CACE models.
Inclusion of covariates both in the outcome model and as predictors in the compliance model should
improve efficiency but could make estimation more complex and is a topic for further work. Trials that
are large enough to consider interactions between baseline and outcome allow identification of patients
who benefit most. In TARGET, there was evidence that those who had worse hearing benefit more from
treatment and such people were more likely to receive non-randomised surgery. This is one situation in
which applying CACE analysis can be useful [3].
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The model could be extended to incorporate a k-level treatment by including more compliance
types, one for each level of each treatment. The mean outcome model may need to be changed to give
a different treatment effect for each level of treatment. It would be possible to incorporate continuous
compliance by modelling a(c,j), for example using a linear model. However, this may be too sensitive
to the modelling assumptions.

We used the identifying assumption that the causal effect of VT was the same in both randomised
arms. This might be false if randomisation to control modified the value of a subsequent VT. However,
in TARGET, control involved watchful waiting, and very few cases received any active treatment, so the
identifying assumption seems plausible. An alternative could be to allow the causal effect of VT on the
outcome k visits later to be f(k) in the VT arm and Af(k) in the control arm and to allow 4 to vary over
a range of values below 1.

A limitation of the models is that they assume missing data are missing at random. Much work has
been carried out to adjust for both non-compliance and missing data, for example [27-30], and these
methods could be incorporated into the models presented.

Models (3.1), (4.1) and (4.4) make stronger assumptions than are required. For example, model (3.1)
unnecessarily equates E[Y; — Y;(0, 1)|R; = 1, C; = 0], the causal effect of treatment in always-takers, to
E[Y; = Y;(0,1)|R; = 1,C; = 1], the causal effect of treatment in compliers randomised to treatment. It
would be sufficient to assume that E[Y;|R; = 1, C;] — E[Y;|R; = 0, C;] equals (1 — C)), as is implied by
(but does not imply) model (3.1).

An alternative to full probability modelling is to estimate the CACE using IV analysis [31]. This is
easier to implement than the full probability modelling method described here and avoids distributional
assumptions but does not perform as well as the CACE in terms of operating characteristics such as bias
and the width of 90% intervals [15,21].
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