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1. Introduction

Ultrashort optical pulses in the mid-infrared (MIR) spectral regime have become powerful

tools in both fundamental and applied research. The combination of their quantum energy

and timescale not only allows insight into the ultrafast dynamics of various materials,1–3

but is also useful for controlling the outcome of quantum phenomena.4–7 Crucial to these

experiments is the ability to tailor the intensity and phase of these MIR pulses precisely.

Furthermore, electronically programmable methods are often required for versatile pulse-

shaping, especially in coherent control experiments where closed-loop learning techniques4

are necessary.

Direct electronically programmable pulse-shaping techniques are now routinely used for

pulses in the visible and near-infrared (NIR) region using liquid-crystal modulators (LCMs),8

deformable mirrors,9 and acousto-optic modulators (AOMs).10 Their implementation in the

MIR spectral region is, however, nontrivial. For example, LCMs are opaque in this wavelength

range, while the deformable mirrors require a large deflection to achieve a significant phase

modulation. Although a direct programmable MIR pulse shaping using a Germanium AOM
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has been successfully demonstrated recently,11 its limited radio frequency bandwidth limits

its modulation resolution and its applicability to a pulse train with a high repetition rate.

An alternative approach to this problem is through indirect pulse shaping, that is, to shape

ultrashort optical pulses in the visible or NIR and to transfer them to the MIR region via

a nonlinear optical process. The first successful attempt in this approach was achieved via

difference-frequency generation (DFG) between the spectral wings of a broadband pulse from

a titanium sapphire laser.12,13 This method, however, is limited in terms of spectral tunability

and output energy. Better results can be achieved by performing DFG between two pulses,

a shaped pulse and another one without complex structure, at different wavelengths.14–17

To the best of our knowledge, previous works reporting experimental demonstrations of

this parametric transfer provided limited discussion on the factors which can limit its per-

formance. In this paper, we theoretically and numerically investigate parametric transfer via

DFG. We reexamine the convolution and provide quantitative measures of the fidelity of

parametric transfer using spectrograms. We also analyze the effects of material dispersion,

which is manifest in temporal walk-off and group velocity dispersion, and of process non-

linearity, which is manifest in pump depletion and signal amplification. Our results confirm

that one can efficiently transfer broad bandwidth pulses with good fidelity and reasonable

tuning ranges.

This paper is organized as follows. In Section 2, we present the indirect pulse shaping

technique via DFG through a simple convolution, define the quantitative measure of para-

metric transfer, and introduce the shape of the pump pulse we will analyze in this work.

We then continue with the theoretical analysis of the DFG in the presence of material dis-

persion, specifically temporal walk-off, in Section 3, followed by extensive numerical analysis

in Section 4, which also includes process nonlinearity and group velocity dispersion. These

results are, in principle, applicable to any second-order nonlinear material. In Section 5, we

specifically address the parametric transfer in periodically-poled lithium niobate (PPLN),

which has been widely used for frequency conversion. We then provide discussions of our re-

sults in Section 6, including their implications for parametric transfer in optical parametric

oscillators (OPOs).

2. Indirect Pulse Shaping via Difference-Frequency Generation

We investigate an indirect pulse shaping technique via parametric transfer as illustrated

schematically in Fig. 1. A shaped ultrashort pulse, henceforth referred to as the pump pulse,

with a carrier frequency ωp in the NIR regime, is mixed with a signal pulse, with a carrier

frequency ωs < ωp, also in the NIR regime, via DFG in a second-order nonlinear material

to generate a shaped idler pulse with a carrier frequency ωi = ωp − ωs in the MIR regime.

This scheme has been experimentally demonstrated in Ref. 17, and differs from others,14–16
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Fig. 1. Illustration of indirect pulse shaping via parametric transfer by DFG.

in which the signal pulse is shaped.

The analysis presented in this section is similar to the frequency domain treatment used in

Refs. 18 and 19. In order to simplify our analysis here, we consider a collinear geometry with

a noncritical phase-matching condition, and assume plane-wave fields. We first introduce the

notations to be used throughout this paper. The electric-field of an ultrashort pulse, in the

time domain, is decomposed into its slowly and rapidly varying parts as follows:

Ej(z, t) = Aj(z, t) exp [ik(ωj)z − iωjt] , (1)

where ωj is the carrier frequency of the pulse, with corresponding wavevector k(ωj), and

Aj(z, t) is the slowly-varying complex envelope. The complex amplitude Aj(z, t) can be

written as:

Aj(z, t) = Ψj(z, t) exp[iφj(z, t)], (2)

where Ψj(z, t) is the temporal profile, while φj(z, t) is the temporal phase. The description

of the electric field in the frequency domain is then given by its Fourier transform:

Êj(z, Ωj) = F [E(z, t)] = Âj(z, Ωj) exp [ik(ωj + Ωj)z] , (3)

where Ωj = ω − ωj is the frequency-detuning from the carrier frequency.

The simplest mathematical description of the generated idler pulse envelope from the DFG

process in a dispersionless material, assuming undepleted pump and unamplified signal, is

given by:

Ai(L, t) = iγiAp(0, t)A
∗
s(0, t − τ), (4)

where γi = dωi

nic
is the nonlinear coupling coefficient, with d being the effective nonlinear

coefficient of the material, and ni its refractive index at ωi, while τ is a relative temporal delay

between the input pump and signal pulses. In the frequency-domain, the above mathematical
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expression translates into the following convolution:

Âi(L, Ωi) = iγiÂp ⊗ Â∗
s = iγi

∫ ∞

−∞
Âp(0, Ωs + Ωi)Â

∗
s(0, Ωs) exp(−iτΩs)dΩs. (5)

The above convolution suggests that the parametric transfer itself is the fundamental

limitation to the indirect pulse shaping. In general, the convolution limits the resolution

at which the pump intensity and phase can be transferred onto the idler pulse. A perfect

transfer [Âi(Ωi) = Âp(Ωi)] can only happen when the signal is chosen to be a Dirac delta

function [Âs(Ωs) = δ(Ωs)], implying a continuous-wave, instead of a pulsed signal. In practice,

however, signal pulses with a narrow spectrum relative to the shaped pump pulses are often

sufficient. Additional requirements for the signal pulses can be drawn from the convolution.

Firstly, the spectrum of the signal pulses is required to be symmetric in order to preserve the

spectral intensity shape of the pump pulses. Secondly, the signal pulses have to be chirp-free

to prevent unwanted chirp being transferred to the idler pulses, and finally, a full temporal

overlap (τ = 0) is required between the input pulses.

In this work, we are interested in the extent of the parametric transfer from the pump to

the idler pulses. We define the following measure for the fidelity of parametric transfer in

terms of intensity and phase:

Z = 1 −
∫

Sp(Ω, τ ; z = 0)Si(Ω, τ ; z = L)dΩdτ[∫
S2

p(Ω, τ ; z = 0)dΩdτ
∫

S2
i (Ω, τ ; z = L)dΩdτ

] 1
2

, (6)

where the polarization gate spectrogram S(Ω, τ, z) is given by:20

Sj(Ω, τ ; z) =

∣∣∣∣
∫ ∞

−∞
Aj(z, t) |Aj(z, t − τ)|2 exp(iΩt)dt

∣∣∣∣
2

. (7)

Transfer fidelity Z essentially indicates the amount of overlap between the spectrograms of

the output idler pulse and the input pump pulse. Its value ranges from 0, indicating a perfect

overlap, to 1, indicating no overlap. It is worth noting that transfer fidelity Z is independent

of the numerical discretization size in the computation.

In general it is of more interest to transfer complex, non-transform-limited pulses and so,

as an example, we will consider a Gaussian pump pulse that has undergone a self-phase-

modulation in a Kerr-medium, in order to study the fidelity of parametric transfer via DFG.

The pump pulse has the following form:

Ap(t) = A(0)
p f(t) exp

(
i10|f(t)|2) , (8)

where

f(t) = exp

[
−2 ln 2

(
t

δtp

)2
]

, (9)

4



−5 0 5−5

5
Te

m
po

ra
l I

nt
en

si
ty

 (a
.u

.)

Time (ps)

Inst. Frequency (TH
z)

(a)

−5 0 5−0.8

0.8

Sp
ec

tr
al

 In
te

ns
ity

 (a
.u

.)

Frequency Detuning (THz)

D
elay (ps)

(b)

Fig. 2. a) Temporal intensity and instantaneous frequency, and b) spectral

intensity and group delay of the input pump pulse.
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Fig. 3. a) Spectral intensities of the generated idler pulses from the interaction

between pump pulses as described in the text and transform-limited Gaussian

signal pulses of temporal FWHM shown by the numbers in picoseconds. b)

Transfer fidelity Z in logarithmic scale as a function of the signal pulsewidth.

A
(0)
p denotes the pump envelope peak, and δtp is the temporal full-width half-maximum

(FWHM). Figure 2 shows the temporal intensity, instantaneous frequency, spectral inten-

sity, and the spectral group delay of the pump pulse. Note that the leading side of the

pump pulse has a positive instantaneous frequency, corresponding to the spectral part in the

positive frequency detuning, while the trailing side has a negative instantaneous frequency,

corresponding to the spectral part in the negative frequency detuning. We chose a temporal

FWHM of 1 ps, leading to a spectral FWHM of 4.44 THz, equivalent to ∼ 16 nm for a cen-

tral wavelength at around 1 μm. Such a spectral FWHM is able to support transform-limited

Gaussian pulses with a temporal FWHM of ∼ 100 fs.

When we calculated the generated idler pulse through the convolution (Eq. 5) of the above

input pump pulse and transform-limited Gaussian signal pulses of different temporal FWHM,

we obtain Fig. 3. As one can easily observe, longer duration signal pulses (narrower band-

widths) yield a lower Z, indicating a better fidelity transfer. Figure 3(a) shows the generated
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idler spectrum using signal pulses with temporal (spectral) FWHM of 1 ps (0.44 THz), 2 ps

(0.22 THz), and 3 ps (0.15 THz), leading to a transfer fidelity Z of 4.38 × 10−2, 4.83 × 10−3,

and 1.08×10−3, respectively. Since the parametric transfer cannot be perfectly achieved, we

have to establish a limit to Z that we deem as an acceptable level of transfer fidelity. We

therefore chose the value Z < 5 × 10−3 as a condition for a good parametric transfer. In

practice, the choice of the signal spectral FWHM depends on the finest spectral structure of

the shaped pump pulse that we wish to transfer.

3. Theoretical Analysis of Parametric Transfer in Dispersive Media

In the previous section, we have established the fundamental limitations and requirements

for a good fidelity parametric transfer through DFG. However, the simple convolution, on

which the analysis was based, only arises from interactions in a non-dispersive nonlinear

material, i.e. a very short length of material, and by using relatively low input powers in

order to avoid pump depletion and signal amplification. To implement a situation in which

such assumptions were valid would limit the conversion efficiency of the generated idler

pulses, and thus the amount of power that can be put into practical uses.

When a longer second-order nonlinear material is used to increase the conversion efficiency,

chromatic dispersion starts to affect the interaction in a complicated manner, especially since

this technique involves interactions between pulses in different spectral regions. Chromatic

dispersion causes the envelope of each of the interacting pulses to propagate at different group

velocity u =
[

dk(ω)
dω

]−1

, leading to a temporal walk-off. Chromatic dispersion further causes

different spectral components within a pulse to travel at different speed, the phenomenon

called of group velocity dispersion (GVD), whose parameter is given by β = d2k(ω)
dω2 . As we

shall see later, temporal walk-off effects and GVD play an important role in the parametric

transfer, and so they are included in the following analysis.

The generated idler spectral envelope, after propagating in a nonlinear crystal of length

L, and under the assumption of negligible pump-depletion and signal-amplification, is given

by:18,19, 21

∂Âi(z, Ωi)

∂z
= iγi

∫ ∞

−∞
Âp(Ωs + Ωi)Â

∗
s(Ωs) exp(iτΩs) exp[iΔk(Ωs, Ωi)z]dΩs, (10)

where

Δk(Ωs, Ωi) = k(ωp + Ωs + Ωi) − k(ωs + Ωs) − k(ωi + Ωi) (11)

is the wavevector mismatch between the interacting pulses. This wavevector can be expanded

in a Taylor series to yield:

Δk(Ωs, Ωi) = Δk0 + δνpsΩs + δνpiΩi +
1

2
δβpsΩ

2
s +

1

2
δβpiΩ

2
i + βpΩsΩi + O(Ω3

s, Ω
3
i ), (12)
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where Δk0 = k(ωp)−k(ωs)−k(ωi) is the wavevector mismatch between the carrier frequencies

of the interacting pulses, δνps = 1
up
− 1

us
is the group velocity mismatch (GVM) between pump

and signal pulses, δνpi = 1
up

− 1
ui

is the GVM between pump and idler pulses, βp is the GVD

of the pump pulse, δβpi = βp −βi is the GVD mismatch between pump and idler pulses, and

δβps = βp − βs is the GVD mismatch between pump and signal pulses. We are interested in

phase-matched interactions, i.e. Δk0 = 0, so we shall ignore the wavevector mismatch in the

remainder of this section.

Substituting the above Taylor expansion into Eq. 10, and ignoring GVD and higher-order

terms, we arrive at the following expression:

∂Âi(z, Ωi)

∂z
= iγi

∫ ∞

−∞
Âp(Ωs + Ωi)Â

∗
s(Ωs) exp(iτΩs) exp[i(δνpsΩs + δνpiΩi)z]dΩs. (13)

The analytical integration of the above equation will result in a complicated expression,

mainly because of the exponential term containing the GVM parameters. We shall consider

the effect of each parameter separately, treating them as two special cases. First, when the

GVM between pump and signal pulses δνps can be ignored, Eq. 13 becomes:

∂Âi(z, Ωi)

∂z
= iγi

∫ ∞

−∞
Âp(Ωs + Ωi)Â

∗
s(Ωs) exp(iτΩs) exp[iδνpiΩiz]dΩs, (14)

from which one can easily see that exponential term does not depend on Ωs, and thus can be

moved out of the integration. Taking the integration of both sides with respect to z results

in:

Âi(L, Ωi) = D(L, Ωi)[Âp ⊗ Â∗
s], (15)

where

D(L, Ωi) = iγi

∫ L

0

exp[iδνpiΩiz]dz

= iγi sinc

[
δνpiΩi

L

2

]
exp

[
iδνpiΩi

L

2

]
.

(16)

Equation 15 describes a filter function [D(L, Ωi)] acting on a convolution. The filter func-

tion has a sinc shape, whose FWHM is given by δf = 0.88/(δνpiL). When the filter band-

width is much larger than the FWHM of the pulse spectrum, it hardly affects the parametric

transfer. However, when the filter bandwidth is comparable to the pulse spectrum, spectral

clipping will occur, thus degrading the parametric transfer. Therefore, it is imperative to

work with a condition at which the bandwidth of the filter function is much larger than the

spectral FWHM of the shaped pump pulse in order to achieve good fidelity spectral transfer.

The second case is negligible δνpi, such that Eq. 13 becomes:

∂Âi(z, Ωi)

∂z
= iγi

∫ ∞

−∞
Âp(Ωs + Ωi)Â

∗
s(Ωs) exp(iτΩs) exp[iδνpsΩsz]dΩs. (17)
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In contrast to the previous case, the integration of the exponential term with respect to z

must be carried out within the Ωs integration, resulting in the following convolution:

Âi(L, Ωi) = Âp ⊗ Âe, (18)

where

Âe(Ωs) = iγiÂ
∗
s(Ωs) exp(iτΩs)

∫ L

0

exp[iδνpsΩsz]dz

= iγi sinc

[
δνpsΩs

L

2

]
Â∗

s(Ωs) exp

[
i

(
τ +

δνpsL

2

)
Ωs

]
.

(19)

The noteworthy contrast between Eqs. 15 and 18 is the lack of the filter function in the

latter. The latter is only a convolution between the pump pulse and the so-called effective

signal pulse Âe(Ωs), which is essentially a time-delayed filtered signal pulse. It then follows

directly that good fidelity parametric transfer can be achieved if the effective signal pulse

meets the requirements mentioned in the previous section. Since sinc is an even function,

the effective signal pulse is guaranteed to be symmetric provided the signal pulse is an

even function as well. Furthermore, as the effective signal pulse has to be fully temporally

overlapped with the pump pulse, a time delay of τ = τc = −δνpsL/2 has to be introduced

between the input pump and signal pulses. The sinc filter function in this case actually

improves the fidelity of the parametric transfer because as it becomes narrower, it reduces

the spectral FWHM of the original signal pulse.

The analysis in this section suggests that the conditions for a good fidelity parametric

transfer in a dispersive material is to choose a working condition for which the δνpiL does

not cause significant spectral clipping, and to introduce a temporal delay between the input

pump and signal pulses to offset their temporal walk-off.

4. Numerical Analysis of Parametric Transfer

The frequency-domain analysis in the previous section provides us with a rather qualitative

understanding of parametric transfer via DFG. One can obtain a better picture by performing

an extensive numerical simulation based on the following set of coupled equations for the

DFG interaction in time domain:

∂Ap

∂z
+

1

up

∂Ap

∂t
+

iβp

2

∂2Ap

∂t2
= iγpAsAi exp (−iΔk0z),

∂As

∂z
+

1

us

∂As

∂t
+

iβs

2

∂2As

∂t2
= iγsApA

∗
i exp (iΔk0z),

∂Ai

∂z
+

1

ui

∂Ai

∂t
+

iβi

2

∂2Ai

∂t2
= iγiApA

∗
s exp (iΔk0z),

(20)

where γj =
dωj

njc
is the nonlinear coupling coefficient, u is the group velocity, β is the GVD pa-

rameter, and the subscript j = p, s, i denotes the pump, signal and idler pulses, respectively.
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Fig. 4. Generated idler spectra as a function of δνpiL at δνps = 0 and τ = 0.

It is to be understood that in the above set of equations, Ap = Ap(z, t), As = As(z, t−τ), and

Ai = Ai(z, t). Equation 20 includes material dispersion up to GVD, nonlinear evolution of

the pump and signal pulses, and the phase-mismatch term. We solved the above set of equa-

tions using the symmetric split-step Fourier method22 with a Runge-Kutta integrator, in the

pump pulse’s frame of reference. We shall assume, in this section, that the phase-matching

condition is achieved, i.e. Δk0 = 0, through appropriate phase-matching methods. The non-

linear coupling coefficients used in our numerical simulations were γp = 4.42 × 10−5 V−1,

γs = 3.11 × 10−5 V−1, γi = 1.38 × 10−5 V−1, which corresponds to bulk periodically-poled

lithium niobate (PPLN). The length of the material was chosen to be 1 cm, unless stated oth-

erwise. The signal pulse used was a transform-limited Gaussian with a temporal FWHM of

4 ps, yielding a parametric transfer fidelity Z = 3.6×10−4 for interactions in a dispersionless

material, without pump-depletion and signal amplification.

4.A. Effect of Temporal Walk-Off

Initially, we verify the frequency-domain analysis presented in the previous section by per-

forming numerical simulations using low input pump and signal intensities, and omitting

GVD and higher order dispersion in these calculations. Here, we shall first consider the case

of δνps = 0. Figure 4 shows the generated idler spectra calculated from our numerical simula-

tions as a function of δνpiL while both input pulses are fully temporally overlapped (τ = 0).

As δνpiL increases, the width of the filter decreases, resulting in spectral clipping. While the

middle part of the spectrum remains constant, the spectral intensity of the two main side

lobes decreases, and additional side lobes start to appear in exchange, showing an evidence
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of the sinc shape of the filter function in Eq. 15. Figure 5 shows the contour plot of the

calculated transfer fidelity Z as a function of δνpiL and τ . As expected from our analysis

in the previous section, the transfer fidelity rapidly degrades as δνpiL increases. The upper

bound of δνpiL that still gives an acceptable fidelity of parametric transfer corresponds to

the filter FWHM of 1.5 times that of the pump spectral FWHM, corresponding to a total

walk-off of 132 fs between the input pump and idler pulses.

We now consider the case of δνpi = 0. Figure 6 shows the generated idler spectra calcu-

lated from our numerical simulations for δνpsL = 0, 0.5, 1 ps, and the input pulses are fully

temporally overlapped (τ = 0). One can easily see that the general shape of the idler spec-

trum remains constant as δνpsL varies. The interesting point in this case is that as δνpsL

increases, the spectral intensity in the negative frequency detuning decreases, while the in-

tensity in the positive frequency detuning increases, breaking the symmetry of the generated

idler spectrum. This can be explained by looking at the propagation in the time domain.

Since δνpsL > 0, signal pulses travel with a higher group velocity than the pump pulses, and

they will walk through the pump pulses during the propagation in the material, implying

that the temporal overlap is shifted toward the leading side of the pump pulses. The leading

side of the pump pulses, as we recall from Fig. 2, has a positive instantaneous frequency,

which corresponds to the spectral part in the positive frequency detuning. Since the temporal

overlap is shifted toward the leading side of the pump pulses, the spectral part in the positive

frequency detuning is converted toward the idler pulses more efficiently than the part in the

negative frequency detuning, as confirmed by Fig. 6. Figure 7 shows the contour plot of the
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calculated transfer fidelity Z as a function of δνpsL and τ . In contrast to the previous case,

there exist points in the τ and δνpsL space that minimizes Z. These points form a line which

corresponds to a time delay of τc between the input pulses. Furthermore, the transfer fidelity

along this line improves as δνpsL increases, as shown by the inset of Fig. 7. These results are

in excellent agreement with the analysis presented in the previous section.

4.B. Effect of Pump Depletion and Signal Amplification

In addition to increasing the crystal length in order to produce more photons at the idler

wavelength, one can also increase the input intensities. However, in doing so, the pump

pulse may experience significant depletion, while the signal pulse may experience significant

amplification. These conditions result in the generated idler pulses not being proportional

to the convolution of the input pulses, and thus degrades the parametric transfer. We shall

analyze the effect of the intensity variation without material dispersion, so that the temporal

derivatives in Eq. 20 can be ignored. Figure 8 shows the contour plot of the transfer fidelity

Z as a function of both input pump and signal peak intensities. This figure shows that

the peak intensities of input pump pulses up to ∼ 8 MW/cm2 and input signal pulses up

to ∼ 10 MW/cm2 yield an acceptable parametric transfer. Figure 9(a) shows the transfer

fidelity Z as a function of signal peak intensity I
(0)
s with input pump peak intensity being kept

constant at I
(0)
p = 10 kW/cm2. In this condition, there is negligible signal amplification for

all values of signal peak intensities. The figure also shows the amount of depletion, 1− Up(L)
Up(0)

,

experienced by the pump pulse, where U(z) =
∫

I(z, t)dt is the pulse energy. As the input
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signal peak intensity increases, the pump depletes, and Z tends to be constant for several

orders of magnitude, and then decreases, indicating an improvement in the transfer fidelity.

This continues until the pump pulse almost completely depletes, which corresponds to the

minimum value of transfer fidelity Z in the picture. After the depletion, back-conversion

happens, and Z starts to increase again, indicating a degradation of the transfer fidelity. As

the pump intensity used in the simulation of Fig. 9(a) was such that the signal amplification

was negligible, we can ignore the equation for signal pulse evolution in Eq. 20, and analytically

solve the remaining two equations to yield the following z dependence of the idler pulse

envelope:

Ai(z, t) = iAp(0, t)

√
γi

γp
sin

[√
γiγp |As(0, t)| z

]
exp [−iφs(0, t)] . (21)

When one examines the above solution, the fact that there is a region of input signal

peak intensities where the transfer fidelity Z remains almost constant is obvious, since

Ai(L, t) ∝ Ap(0, t), and As(0, t) has been chosen to be wider than Ap(0, t). The improvement

of parametric transfer fidelity, indicated by the decrease of transfer fidelity Z, when the

pump pulse further depletes, can be explained by the fact that the signal envelope |As(0, t)|
is inside a sine function in the above equation. As the signal pulse peak intensity is increased,

the peak is the part of the pulse that will cause the argument of the sine function to ap-

proach π/2 first. Since the gradient of the sine function around π/2 is low, the change of

the sine term around the high intensity part will be low. Therefore, this term results in an

artificial broadening of the signal pulse as its peak intensity is increased, and thus justifies

the improvement of the parametric transfer fidelity. When the peak signal intensity makes

the argument of the sine function equal to π/2, the pump almost completely depletes, espe-

cially as it is narrower than the signal pulse. This condition corresponds to the best transfer

fidelity in Fig. 9(a).

Figure 9(b) shows the transfer fidelity Z as a function of pump peak intensity with input

signal peak intensity being kept constant at 10 kW/cm2. In this condition, there is negligible

pump depletion for all value of signal pump intensities. The figure also shows the amount

of amplification, Us(L)
Us(0)

− 1, experienced by the signal pulse. As the input signal peak inten-

sity increases, the signal was amplified, and correspondingly, transfer fidelity Z increases

monotonically. As the signal intensity used in the simulation of Fig. 9(b) was such that the

pump depletion was negligible, we can ignore the equation for pump pulse evolution in Eq. 20,

and solve analytically the remaining two equations to yield the following z dependence of

the idler pulse envelope:

Ai(z, t) = i sinh
[√

γiγs |Ap(0, t)| z
]
exp [iφp(0, t)]

√
γi

γs
A∗

s(0, t). (22)

In contrast to the previous case, Ai(L, t) is not directly proportional to Ap(0, t). Instead, the

pump pulse envelope becomes the argument of a hyperbolic sine function. For a small gain,
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sinh(x) ≈ x, explaining the fact that Z does not change over several orders of magnitude

of pump peak intensity variations, where there is only a small gain. However, as the pump

peak intensity keeps increasing, signal amplification becomes larger, and thus the parametric

transfer fidelity degrades quickly.

So far, we have seen the effect of temporal walk-off, pump depletion and signal amplifica-

tion on the fidelity of the parametric transfer. These effects, however, have been investigated

separately from each other. The interaction of the pulses becomes more complicated when

both the nonlinear intensity evolutions and temporal walk-off effects are all present. We now

investigate the ability of the relative delay introduction between the input pulses to com-

pensate GVM between pump and signal pulses in the presence of pump depletion or signal

amplification. We performed numerical simulations with δνpi = 0 and δνpsL = 1 ps. Fig-

ure 10(a) shows the transfer fidelity Z as a function of input signal peak intensities I
(0)
s and

temporal delay τ . The input pump peak intensity was kept constant at I
(0)
p = 10 kW/cm2.

This choice of parameters results in a pump depletion, similar to Fig. 9(a), which does not

significantly affect the parametric transfer. Hence, the fact that the required delay to offset

the GVM between pump and signal pulses does not deviate from τc can be expected, which

is the case shown in Fig. 10(a). Figure 10(b) shows the contour plot of transfer fidelity Z

as a function of input pump peak intensities I
(0)
p and temporal delay τ . The input signal

intensity was kept constant at I
(0)
s = 10 kW/cm2. The temporal delay between input pulses

that minimizes transfer fidelity Z is also shown in the figure. In the low input pump peak

intensity regime, where there is negligible signal amplification, the delay which minimizes Z

is given by τc, as we have seen before. As the input pump peak intensity is increased, signal

amplification takes place, degrading the parametric transfer. A larger delay is then required

to maintain high parametric transfer fidelity, implying that the interaction happens with the

lower intensity part of the signal pulse, i.e. the leading part of the pulse, in order to minimize

signal amplification.

4.C. Effect of Group Velocity Dispersion

We now discuss the effect of GVD on the parametric transfer fidelity. Reexamining Eqs. 10

and 12, the effect of GVD is governed by three parameters: βp, δβps, and δβpi. Of these three

parameters, we can neglect δβps, because we have chosen the signal pulse to be sufficiently

wide, and both the input pump and signal pulses are in the NIR region, leaving us with only

two parameters to be investigated. Since δβpi is related to the Ω2
i factor (see Eq. 12), it can be

moved outside the integration in Eq. 10. The integration with respect to z will yield a filter

function with a linear group delay, a similar expression to Eq. 16. This linear group delay can

be compensated by introducing an opposite group delay onto the input pump or the output

idler pulses in order to to compensate the effect of GVD, i.e. pre- or post-compensation.
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Either scheme or the combination of both yield the same result. In practice, the required

compensation can be included directly in the shaped input pulse, but in the strict context

of parametric transfer, we would no longer be looking at getting the best replication of the

shaped pump pulse but rather the best production of a certain target pulse. Meanwhile,

since βp is related to the mixed ΩsΩi term, Eq. 10 would not reduce to a simple convolution,

and thus would significantly degrade the parametric transfer. Due to the mixed term, it is

also expected that the required delay τ to compensate δνps is not equal to τc.

Figure 11 shows contour plot of the calculated transfer fidelity Z as a function of βpL and

δβpiL, with δνpi = 0, δνpsL = 1 ps, and I
(0)
p = I

(0)
p = 10 kW/cm2. In calculating Z, it was

necessary to implement an optimization algorithm to locate the delay τ which compensates

δνps and some of the GVD. The algorithm we chose was the Nelder-Mead algorithm.23 From

the figure, it can be easily seen that the gradient of Z along βpL is higher than that along

δβpiL. Furthermore, it can be observed that there exists a line of minimum Z. This line,

however, does not coincide with the origin, i.e. (βpL, δβpiL) = (0, 0). Because the resolution

of the transferred phase is limited by the convolution, this result implies that the introduction

of group delay in the material by GVD may improve the transfer fidelity. It is worth noting

that the result would depend on the group delay of the pump pulse one wishes to transfer. A

similar picture to Fig. 11 can be obtained for higher input pump and signal peak intensities.
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Fig. 12. Group velocity (solid curve) and group velocity dispersion (GVD,

dashed curve) of lithium niobate at a temperature of T = 120 0C as calculated

from the Sellmeier equation.24

5. Parametric Transfer via DFG in PPLN

We have investigated the effects of several parameters on the parametric transfer fidelity in

the previous sections. In this section, we shall numerically investigate the parametric transfer

fidelity in a real material. In order to have the condition of no temporal walk-off between

the pump and idler pulses, the GVM between the pump and idler pulses must be zero

(δνpi = 0), implying the group velocity profile has to have a turning point, i.e. a zero GVD,

at a wavelength between the pump and idler wavelengths. Chromatic dispersion of lithium

niobate, shown in Fig. 12, suggests that there exist combinations of pump wavelengths around

1 μm and idler carrier wavelengths around 3.5 μm which satisfy δνpi = 0. Correspondingly,

the signal wavelength is around 1.5 μm. Quasi-phase-matching techniques can be used to

phase-match these wavelengths. The ready availability of laser sources with a wavelength

around 1 μm and 1.5 μm makes the choice of periodically-poled lithium niobate (PPLN)

natural for producing shaped MIR pulses in the 3−4 μm regime. Furthermore, this material

has been widely used for frequency conversion and optical parametric oscillator devices, and

its fabrication techniques have been well established. We numerically solved Eq. 20 using

dispersion parameters (GVM and GVD) of lithium niobate at a temperature of T = 120 0C

calculated from the Sellmeier equation given in Ref. 24. The nonlinear coupling coefficients

are the same as the ones used in the previous section.

Figure 13 shows the calculated parametric transfer fidelity Z as a function of the idler

carrier wavelength (λi) for four different pump carrier wavelengths (λp = 0.95, 1.00, 1.05,

and 1.10 μm) in a 1 cm long crystal. The tuning was achieved by varying the signal carrier
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Fig. 13. Parametric transfer fidelity Z (top) and temporal walk-off δνpiL (bot-

tom) as a function of the idler carrier wavelength λi using different pump

carrier wavelength λp, as indicated by the numbers, in a 1 cm long PPLN.

The peak intensities for both input pump and signal pulses were 5 MW/cm2.

Parametric transfer fidelities for different cases are shown: with GVD (solid

curves), with GVD and post-compensation (dashed curves), and without GVD

(dotted curves).
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wavelength (λs), and we assumed that the phase-matching condition is always met, for

example, by using different gratings periods, or by changing the temperature. The input

pump and signal peak intensities were I
(0)
p = I

(0)
s = 5 MW/cm2, resulting in idler peak

intensity of I
(0)
i ≈ 1 MW/cm2. This power level corresponds to low signal amplification, and

some pump depletion. Values of δνpiL as a function of λi for different λp are also plotted in

Fig. 13. For different λp, there is an idler carrier wavelength at which Z is minimum, which

corresponds to zero GVM between the pump and idler pulses. It can be easily observed that

as λi varies, |δνpiL| rapidly increases, resulting in the narrowing of the spectral filter, and

thus limiting the tunability range that can be achieved. Other parts of the MIR spectral

regime can be covered, as shown, without reducing the efficiency by using different pump

wavelengths. It should be remembered, nonetheless, that in this simulation, we have tried to

transfer a relatively large bandwidth (4.44 THz) in a long (1 cm) PPLN crystal.

In Fig. 13, we plotted calculation results which either include (solid curves), or do not

include GVD (dotted curves). The Nelder-Mead algorithm was used on the relative delay τ

to compensate δνps and some of the GVD in order to obtain optimal Z in both cases. We

also used the Nelder-Mead algorithm to optimize the amount of the post-compensation and

the relative delay simultaneously (dashed curves). In general, results without GVD yield

a lower Z than the ones with GVD, while the results that use post-compensation fall in

between. While the results without GVD show similar behavior for different pump carrier

wavelengths, the results with GVD do not show similar behavior. As λp becomes shorter,

the transfer fidelity becomes worse, because βp becomes larger. This is supported by the

fact that the post-compensation is less able to improve the transfer fidelity at shorter λp. A

similar picture can be obtained for lower input peak intensities.

Utilization of shorter nonlinear crystal can also increase the tuning range. Figure 14 shows

the calculated transfer fidelity Z as a function of λi using λp = 1.05 μm in three different

lengths of PPLN (L = 10, 5, 2.5 mm). The peak intensities for both input pump and signal

pulses were I
(0)
p = I

(0)
s = 5, 10, 20 MW/cm2, respectively. These intensity levels should

produce similar output idler peak intensities I
(0)
i ≈ 1 MW/cm2. Results including GVD,

including GVD with post-compensation, and not including GVD, have been plotted. In

general, shorter crystal length improves the transfer fidelities, and the post-compensation

scheme always improves the results where GVD is included. In a 2.5 mm long PPLN crystal,

results that include GVD (with or without compensation) provide better transfer fidelities

than the one that does not include GVD. As explained in Subsection 4.C, in this particular

example, the amount of chirp introduced in the material fortuitously improves the limited

resolution resulting from the convolution.

These calculations are not only limited to PPLN, but can also be applied to other materials.

Chromatic dispersion of different materials results in different sets of wavelengths that satisfy
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δνpi = 0. In Fig. 15, we compare the idler carrier wavelengths that satisfy this condition as a

function of pump idler carrier wavelengths for LiNbO3, LiTaO3, and RbTiOAsO4, using the

Sellmeier equations given in Refs. 24, 25, and 26, respectively. These materials are commonly

used to generate pulses in the MIR regime, and can be engineered for quasi-phase-matching

technique. For the same pump carrier wavelengths, RbTiOAsO4 requires a longer idler carrier

wavelength to satisfy δνpi = 0, followed by LiNbO3, and LiTaO3.

6. Discussion

In the previous sections, we have made a comprehensive study of the various effects that

can affect the fidelity of the parametric transfer of a shaped NIR pump pulse to the MIR

via DFG. We have seen that the parametric transfer is fundamentally limited by the con-

volution, restricting the resolution of the indirect pulse shaping technique. Therefore, using

signal pulses with a narrow spectrum for experimental realizations is imperative. We have

addressed the effect of material dispersion, which manifests itself in temporal walk-off and

group velocity dispersion. The temporal walk-off between pump and idler pulses restricts the

amount of spectral bandwidth one can transfer, while the temporal walk-off between pump

and signal pulses shifted their overall temporal overlap. The latter can be compensated by

introducing a relative delay, which experimentally can be simply achieved by using a delay

line. We have also investigated the effect of the process nonlinearity, i.e. signal amplification
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and pump depletion, on the parametric transfer fidelity. For good fidelity parametric trans-

fer, the input intensities have to be arranged to remain in the regime where pump depletion

may happen, but not back conversion. Working in the regime where signal amplification is

significant, on the other hand, will always degrade the parametric transfer. Therefore, this

limitation of pump and signal intensities to maintain good fidelity transfer will necessarily

restrict the intensity of the idler pulses that can be generated. It is worth noting here, that

we have also considered contributions of other nonlinear effects in the material, such as self-

and cross-phase modulation, but these are found to be negligible under the condition of the

calculations presented here.

Several techniques are currently available to overcome the most restrictive factor of para-

metric transfer, namely the spectral filter effect caused by the temporal walk-off between

the pump and idler pulses. One of the most established and successful ones is the use of

aperiodically poled material (QPM engineering), which effectively broadens the spectral fil-

ter.18 Another alternative approach is the critical phase matching scheme involving spatial

walk-off with pulse-front tilt.27

Operation at different, in this case longer, wavelengths could be achieved via a tandem

configuration. In such a configuration, two or more DFG processes in different materials may

take place. The idler pulses produced in one DFG are used as the pump pulses of another

DFG, producing longer wavelength idler pulses. Interesting materials for this configuration

includes CdSe,28 and orientation-patterned GaAs.29

It should be noted that coherent control applications are not strictly reliant on achieving

good fidelity transfer, but rather just require the production of a particular MIR shaped

pulse via a closed-loop learning technique, whatever the input pump pulse shape. We can

view this approach as an application of amplitude and phase corrections to the shaped

pump pulse to mitigate some factors degrading the parametric transfer fidelity, such as

GVD, back conversion, and signal amplification. Using this approach, intense idler pulses

with a particular shape could in principle be produced. Further studies are necessary to

verify the capabilities and limitations of this approach. However, there are factors degrading

the parametric transfer fidelity that can not be mitigated. The main factor would be the

convolution itself, which limits the resolution, and the temporal walk-off between the pump

and the idler pulses, which limits the spectral bandwidth that can be transferred. These

problems need to be addressed, as the learning techniques used will not be able to overcome

them.

Since one can argue that the generation of the idler pulse in an OPO device is a result of

a DFG process, albeit the resonating signal pulse being built up from noise, we can expect

that results in this paper can be qualitatively applied to it.30 For example, the necessary

narrow spectrum signal pulse could be provided by restricting the spectral bandwidth of
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the resonating signal pulse using an intra-cavity spectral filter. Such a spectral filter would

increase the effective loss of the cavity, and thus the required threshold value. We expect

that the relative delay between the pump and signal pulses to compensate their temporal

walk-off can be mimicked by adjusting the cavity length. Furthermore, the use of an output

coupling for the signal pulses should not be needed, resulting in a reduced cavity losses

and the amount of necessary signal amplification. Theoretical and numerical analysis for

synchronously-pumped OPO (SPOPO) to clarify these issues will be the subject of our

future work.

7. Summary

We have theoretically and numerically analyzed the main factors affecting the fidelity of the

parametric transfer of a shaped NIR pulse to the MIR via a DFG process for indirect pulse

shaping techniques beyond convolution. These factors include material dispersion (GVM

and GVD), and process nonlinearity (signal amplification and pump depletion). We showed

that a good fidelity transfer of a broad-bandwidth pulse can be efficiently achieved with a

reasonable wavelength tunability, by careful design of the experimental configuration.
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