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1 Introduction and Discussion

D-branes in string theory appear both as classical solutions of the supergravity low-energy effective

action and as fundamental objects on which open strings can end. It is well known that mixed

open/closed string amplitudes can be used to derive information about the classical solution from

the microscopic description [1, 2]. In particular, the one-point functions of closed string states from

the disk provide a direct way to compute, in the small coupling regime, the backreaction of the

D-branes considered [3, 4, 5, 6].

Recently it has been shown for two-charge D1-D5 configurations that the same direct link

between the microscopic and the macroscopic descriptions holds [7]. Two-charge D-brane con-

figurations have attracted much attention as they represent a simple and tractable system within

which (small) black holes in string theory may be studied [8, 9, 10, 11, 12, 13, 14, 15, 16]. A natural

question is whether these studies can be extended to three-charge D1-D5-P configurations [17, 18],

since the supergravity description of these configurations is that of a macroscopic black hole. As

a further step towards this goal, here we study two-charge configurations involving a momentum

charge.

In this letter we calculate the supergravity fields sourced by a D-brane carrying momentum

charge in the form of a null right (or left) moving wave, and show that the fields sourced by this

bound state reproduce the non-trivial features of the supergravity solutions which are U-dual to

the fundamental string solution of [19, 20]. In particular we describe in detail the calculation in the

D5-P duality frame. The world-sheet calculation employs the fact that these D-brane configurations

admit an exact CFT description [21] in which the travelling wave on the D-brane can be included in

the world-sheet action for the open strings in a tractable way. We use the boundary state describing

a D-brane with a travelling wave [22, 23, 24] to compute the disk one-point functions for emission

of massless closed string states, and we read off the various supergravity fields. Contrary to what

happens in the D1-D5 frame [7], the string computation in these duality frames yields the full

integrals over the D-brane profile appearing in the classical solutions. This is possible because the

profile function parametrizing the solutions arises as a condensate of massless open strings related

to the physical shape of the D-brane, which can be included exactly in the string world-sheet action.

The direct link between microscopic D-brane configurations and supergravity solutions might

also shed further light on the entropy of two charge systems in string theory. It was recently

proposed [15] that the macroscopic entropy of a two-charge configuration should be defined to be

the sum of the contributions of small black hole solutions and horizonless smooth classical solutions.

In this language the term ‘smooth classical solutions’ does not include solutions which are singular

due to delta-function sources, and the scaling arguments of [15] applied to the D-brane/momentum

duality frame show that α′-corrections to the supergravity action cannot produce small black holes

with a non-zero horizon area.

Here we observe that the supergravity solutions which are sourced by the microscopic D-brane

bound states are necessarily singular at the two-derivative level: the one-point functions on the disk

discussed in this letter provide the asymptotic behaviour of the solutions, and the nonlinear part of
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the standard supergravity equations of motion determines the background in the interior, leading

to the singular backgrounds obtained by dualising the fundamental string solution. Of course, it

might still be possible to recover a fully smooth field configuration starting from the same data

provided by the disk one-point functions if one includes α′-corrections to the supergravity equations

of motion.

This letter is organised as follows. In Section 2 we review the two-charge supergravity solutions

in the D1-P and D5-P duality frames and present the terms in the perturbative expansion that we

reproduce from the string amplitudes. In Section 3 we derive the boundary state for these D-brane

configurations, compute the one-point functions of the massless closed string states and read off

the gravitational backreaction, at weak coupling, of the D-brane configuration.

2 Two-charge system in the D1-P and D5-P duality frames

We work in type IIB string theory on R
4,1×S1×T 4 using the light-cone coordinates u = (t+ y) , v =

(t− y) constructed from the time and S1 directions. The indices (I, J, . . .) refer collectively to the

other eight directions which we then split into the R
4 directions labelled by (i, j, . . .) and those

along the T 4 labelled by (a, b, . . .) .

The family of classical supergravity solutions in which we are interested describe two-charge D-

brane bound states [10, 11, 25, 26, 27] and are connected through T and S dualities to the solution

describing a multi-wound fundamental string with a purely right (or left) moving wave [19, 20],

smeared along the T 4 directions and along y [10, 11]. In the D1-P duality frame, we take the

D1-brane to be wrapped nw times around y; letting the length of the y direction be 2πR, the brane

then has overall extent LT = 2πnwR and we use v̂ for the corresponding world-volume coordinate

on the D-brane, having periodicity LT . The non-trivial fields are the metric, the dilaton and the

R-R 2-form gauge potential:

ds2 = H− 1
2 dv

(
− du+Kdv + 2AIdx

I
)
+H

1
2 dxIdxI , (2.1)

e2Φ = g2sH , C(2)
uv = − 1

2(H
−1 − 1) , C

(2)
vI = −H−1AI ,

where the harmonic functions take the form

H = 1+
Q1

LT

LT∫

0

dv̂

|xi − fi(v̂)|2
, AI = −Q1

LT

LT∫

0

dv̂ḟI(v̂)

|xi − fi(v̂)|2
, K =

Q1

LT

LT∫

0

dv̂|ḟI(v̂)|2
|xi − fi(v̂)|2

, (2.2)

where fi(v̂+LT ) = fi(v̂) and where ḟ denotes the derivative of f with respect to v̂. The functions

fI describe classically the null travelling wave on the D-string. Q1 is proportional to gs and to the

D-brane winding number nw and is given by

Q1 =
(2π)4nwgs(α

′)3

V4
. (2.3)
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T-dualising to the D5-P duality frame and using the symmetry of the IIB equations of motion to

reverse the sign of B and C(4), we obtain the fields

ds2 = H− 1
2dv

(
− du+

(
K −H−1|Aa|2

)
dv + 2Aidxi

)
+H

1
2 dxidxi +H− 1

2dxadxa ,

e2Φ = (g′s)
2H−1 , Bva = −H−1Aa , (2.4)

C
(4)
vbcd = −H−1Aaǫabcd , C

(6)
vi5678 = −H−1Ai , C

(6)
uv5678 = − 1

2

(
H−1 − 1

)
,

where g′s is the string coupling in the new duality frame and ǫabcd is the alternating symbol with

ǫ5678 = 1. The effect of rewriting the functions in (2.2) in terms of D5-P frame quantities is to

substitute the D1 with the D5 charge, Q1 → Q5 = g′snwα
′ . From now on, we drop the prime and

refer to the D5-P frame string coupling as gs.

From the large distance behaviour of the gvv component of the metrics above, one can read off

how the momentum charge is related to the D-brane profile function f . For instance, in the D1-P

frame we have

nw

LT

LT∫

0

|ḟ |2dv̂ =
gsnpα

′

R2
, (2.5)

where np is the Kaluza-Klein integer specifying the momentum along the compact y direction. From

a statistical point of view [13], the typical two-charge bound state with fixed D1 and momentum

charges has a profile f consisting of Fourier modes of average frequency
√
nwnp. Then (2.5) implies

that the typical profile wave has an amplitude of order
√
gs. Despite this potential gs dependence,

we always keep track of f exactly and expand in the D-brane charges Qi. From the point of view of

the string amplitudes, this means that we are resumming all diagrams with open string insertions

describing the D-brane profile, but that we are considering only the disk level contribution.

From now on, for concreteness we present the calculation in the D5-P frame and we focus on the

field components that vanish in the absence of a wave; the calculations of the remaining components

are analogous. We canonically normalize the metric, B-field and R-R fields:

g = η + 2κĥ , B =
√
2κb̂ , C =

√
2κĈ (2.6)

where as usual, κ = 23π7/2gs(α
′)2. We then expand the relevant components of (2.4) for small Q5,

keeping only linear order terms, which yields the field components that we shall reproduce from

the disk amplitudes:

ĥvi =
Q5

2κLT

LT∫

0

−ḟi dv̂
|xi − fi(v̂)|2

, ĥvv =
Q5

2κLT

LT∫

0

|ḟ |2 dv̂
|xi − fi(v̂)|2

, b̂va =
Q5√
2κLT

LT∫

0

ḟa dv̂

|xi − fi(v̂)|2
,

Ĉ
(4)
vbcd =

Q5√
2κLT

LT∫

0

dv̂
ḟaǫabcd

|xi − fi(v̂)|2
, Ĉ

(6)
vi5678 =

Q5√
2κLT

LT∫

0

dv̂
ḟi

|xi − fi(v̂)|2
. (2.7)

Similar expressions are easily derived in the D1-P frame from (2.1).
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3 Classical fields from string amplitudes

3.1 World-sheet boundary conditions

The key ingredients of our string computation are the boundary conditions which must be imposed

upon the world-sheet fields of a string ending on a D-brane with a travelling wave, which we now

review. We consider a Euclidean world-sheet with complex coordinate z = exp(τ − iσ) such that

τ ∈ R and σ ∈ [0, π] . We first review the boundary conditions applicable for a D-brane wrapped

only once around y and later account for higher wrapping numbers.

We begin with the following world-sheet action for the superstring coupled to a background

gauge field Aµ on a D9-brane following [28, 23]:

S = S0 + S1 , (3.1)

where S0 and S1 are the world-sheet bulk and boundary actions respectively,

S0 =
1

2πα′

∫

M

d2z

(
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
, (3.2a)

S1 = i

∫

∂M

dz

(
Aµ(X)

(
∂Xµ + ∂̄Xµ

)
− 1

2

(
ψµ + ψ̃µ

)
Fµν

(
ψν − ψ̃ν

))
(3.2b)

and Fµν = ∂µAν − ∂νAµ is the abelian field strength. In the absence of a boundary the action S0
would be invariant under the supersymmetry transformations

δXµ = εψµ + ε̃ψ̃µ , δψµ = −ε∂Xµ , δψ̃µ = −ε̃∂̄Xµ (3.3)

however the presence of the boundary breaks the N = 2 world-sheet supersymmetry to N = 1

supersymmetry. When we include S1, the total action S0 + S1 preserves N = 1 supersymmetry

only up to the boundary conditions [28], which we impose at z = z̄. Defining

Eµν = ηµν + 2πα′Fµν , (3.4)

varying the above action yields the boundary conditions [28]

[
Eµν ψ̃

ν = ηEνµψ
ν
]
z=z̄

, (3.5a)
[
Eµν ∂̄X

ν − Eνµ∂X
ν − ηEνρ,µψ̃

νψρ − Eµν,ρψ
νψρ + Eνµ,ρψ̃

νψ̃ρ
]
z=z̄

= 0 , (3.5b)

where η takes the value 1 or −1 corresponding to the NS and R sectors respectively. By applying the

supersymmetry transformations (3.3) to the action (3.1) and employing these boundary conditions,

one finds that (3.1) is invariant under theN = 1 supersymmetry generated by these transformations

with the constraint ε = ηε̃.

For the systems under consideration the gauge field takes a plane-wave profile and so Aµ will

be a function only of the bosonic field V = (X0 − X9), where X0 is the string coordinate along
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time and X9 indicates the compact y direction. A physical gauge field can be written as AI(V ),

where we set to zero the light-cone components. Then the non-vanishing components of Eµν take

the form

Euv = Evu = −1

2
, EIJ = δIJ , EIv = −EvI = ḟI(V ) , (3.6)

where we have defined fI = −2πα′AI .

We can rewrite the fields appearing (3.5a) and (3.5b) in modes by using the expansions

Xµ(z, z̄) = xµ − i

√
α′

2
α
µ
0 ln z − i

√
α′

2
α̃
µ
0 ln z̄ + i

√
α′

2

∑

m6=0

1

m

(
α
µ
m

zm
+
α̃
µ
m

z̄m

)
, (3.7)

ψµ(z) =

√
α′

2

∑

r∈Z+ν

ψ
µ
r

zr+
1
2

, ψ̃µ(z̄) =

√
α′

2

∑

r∈Z+ν

ψ̃
µ
r

z̄r+
1
2

, (3.8)

where ν = 0 and 1
2 for R and NS respectively. Note however that in our case the presence of a

non-constant field strength Fµν makes the boundary conditions nonlinear in the oscillators. We

will see that, for the amplitudes in which we are interested, only the linear terms contribute.

As usual, we can change from the open string picture to the closed string picture, and derive

the boundary conditions describing a closed string emitted or absorbed by the D-brane. This has

the effect of

αµn → −αµ−n , ψµr → iψ
µ
−r ∀µ, n, r . (3.9)

We can then obtain the boundary conditions for a lower dimensional D-brane by performing a series

of T-dualities; after these transformations, the components of f along the dualised coordinates

describe the profile of the brane. We perform four or eight T-dualities in order to obtain the

boundary conditions appropriate for a D5 or a D1-brane, for instance in order to move from the

D9 frame to the D5-P frame we T-dualise along each xi which sends

α̃in → −α̃in , ψ̃ir → −ψ̃ir . (3.10)

By following the procedure outlined above, we can summarise the boundary conditions for the

closed string oscillators as follows

ψ̃µr = iη Rµνψ
ν
−r + . . . , α̃µn = −Rµνα

ν
−n + . . . , (3.11)

where ‘. . .’ indicates that we ignore terms which are higher than linear order in the oscillator modes.

We shall justify this below (3.28). The reflection matrix R is obtained from (3.5a) and (3.5b) by

performing the transformations (3.9) and (3.10) and replacing V by its zero-mode v:

Rµν(v) = T µρ(E
−1)ρσEνσ , (3.12)

where the matrix T performs the T-duality (3.10), i.e. it is diagonal with values −1 in the xi

directions and 1 otherwise. R has the lowered-index form

Rµν(v) = ηµρR
ρ
ν(v) =




−2|ḟ(v)|2 −1
2 2ḟ i(v) 2ḟa(v)

−1
2 0 0 0

2ḟ i(v) 0 −1l 0

−2ḟa(v) 0 0 1l


 . (3.13)
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We refer the reader to [22, 23, 24] for a detailed discussion of the boundary state describing a

D-brane with a travelling wave. For our purposes it is sufficient to know the linearized boundary

conditions for the non-zero modes (3.11) that the boundary state must satisfy, and to construct

explicitly only the zero-mode structure of the boundary state. Addressing firstly the bosonic sector,

the boundary conditions on the zero modes are

pv + ḟ i(v) pi = 0 , pu = 0 , pa = 0 , xi = f i(v) (3.14)

where the first three equations follow directly from (3.11) and the fourth equation must be included

to account for the T-duality transformations. The first equation in (3.14) may be represented as

i ∂∂v = ḟ i(v)pi and similarly the last constraint may be represented as i ∂∂pi = f i(v) . Then the

boundary state zero-mode structure in the t, y and xi direction is

∫
dv du

∫
d4pi

(2π)4
e−ipif

i(v) |pi〉 |u〉 |v〉 . (3.15)

So far we have essentially discussed a D-brane with a travelling wave in a noncompact space;

we next generalise this description to the case of compact y and higher wrapping number. One

may view a D-brane wrapped nw times along the y-direction as a collection of nw different D-brane

strands with a non-trivial holonomy gluing these strands together. This approach was developed

in [29, 30] for the case of branes with a constant magnetic field.

In the presence of a null travelling wave with arbitrary profile f(V ), the individual boundary

states of each strand will differ in their oscillator part and not just in their zero-mode part described

above. However, we are interested in the emission of massless closed string states, which have zero

momentum and winding along all compact directions. In this sector the full boundary state is

simply the sum of the boundary states for each constituent, along with the condition that the value

of the function f at the end of one strand must equal the value of f at the beginning of the following

strand. We label the strands of the wrapped D-brane with the integer s; then restricting to the

sector of closed strings with trivial winding (m) and Kaluza-Klein momentum (k), the boundary

state takes the following form:

|D5;P 〉k,m=0 = −κ τ5
2

nw∑

s=1

∫
du

2πR∫

0

dv

∫
d4pi

(2π)4
e
−ipif

i

(s)
(v) |pi〉 |u〉 |v〉 |D5; f(s)〉k,m=0

X,ψ
, (3.16)

where τ5 = [(2π
√
α′)5

√
α′gs]

−1 is the physical tension of a D5-brane. We have written explicitly

only the bosonic zero-modes along t, y and the xi directions and we denote by |D5; f(s)〉k,m=0
X,ψ

the

remaining part of the boundary state. The range of integration over v = t − y follows from the

periodicity condition of the space-time coordinate y.

We next address the fermion zero modes in the R-R sector. Letting A,B, ... be 32-dimensional

indices for spinors in ten dimensions1, and letting |A〉|B̃〉 denote the ground state for the Ramond

1For the spinors and the charge conjugation matrix, we use the conventions of [3].
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fields ψµ(z) and ψ̃µ(z̄) respectively, the R-R zero mode boundary state in the (−1
2 ,−3

2) picture

(before the GSO projection) takes the form

|D5;P 〉(η)ψ,0 = M(η)
AB |A〉− 1

2
|B̃〉− 3

2
(3.17)

where M satisfies the following equation [3],

Γ11 MΓµ − iη Rµν (Γν)T M = 0 . (3.18)

A solution to this equation for the case of our reflection matrix R (3.13) is given by2

M = i C

(
1

2
Γvu + ḟ I(v)ΓIv

)
Γ5678

(
1l− iηΓ11

1− iη

)
. (3.19)

where C is the charge conjugation matrix. The GSO projection has the effect of

|D5;P 〉ψ,0 =
1

2

(
|D5;P 〉(1)ψ,0 + |D5;P 〉(−1)

ψ,0

)
(3.20)

and so the zero mode part of the D5-P R-R boundary state for the strand with profile f(s) is

|D5; f(s)〉ψ,0 = i

[
C

(
1

2
Γvu + ḟ I(s)(v)Γ

Iv

)
Γ5678 1 + Γ11

2

]
|A〉− 1

2
|B̃〉− 3

2
(3.21)

which we can insert into the relevant part of the boundary state (3.16).

3.2 Disk amplitudes for the classical fields

We now calculate the fields sourced by the D5-P bound state by computing the disk one-point

functions for emission of a massless state, starting with the NS-NS fields. Since the states are

massless they have non-zero momentum only in the four noncompact directions of the R4, i.e. they

have spacelike momentum (see also [3]). The NS-NS one-point function thus takes the form

A(η)
NS(k) ≡ 〈pi = ki| 〈pv = 0| 〈pu = 0| 〈na = 0| Gµνψµ1

2

ψ̃ν1
2

|D5;P 〉k,m=0 (3.22)

where for an S1 direction with radius R we normalize the momentum eigenstates as 〈n|m〉 =

2πR δnm and the position eigenstates as 〈x|y〉 = δ(x−y). In terms of canonically normalized fields,

Gµν is given by

Gµν = ĥµν +
1√
2
b̂µν +

φ

2
√
2
(ηµν − kµlν − kν lµ) , (3.23)

where kµ and lν are mutually orthogonal null vectors. The contribution to the zero mode part of

the amplitude from a single strand with profile f(s)(v) is

V4Vu
κ τ5

2

2πR∫

0

dv e
−ikif i(s)(v) , (3.24)

2The overall phase of M is a matter of convention; see also [5].
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where Vu represents the infinite volume of the D-brane in the u direction. Since we have used a

delocalised probe (pv = 0), the string amplitude contains an integral over the length of the strand

of the D-brane. In the classical limit nw is very large, the typical wavelength of the profile is much

bigger than R, and so f is almost constant over each strand [10, 11]. The contribution to the value

of each supergravity field is thus (3.24) divided by the volume of the strand:

A(s)
0 (k) =

κ τ5

2

1

2πR

2πR∫

0

dv e
−ikif i(s)(v) . (3.25)

The contribution from the nw different strands of the brane is therefore

A0(k) =
κ τ5

2

1

2πR

nw∑

s=1

2πR∫

0

dv e
−ikif

i

(s)
(v)

, (3.26)

and we combine the integrals over each strand to give the integral over the full world-volume

coordinate v̂, giving

A0(k) =
κ τ5

2

nw

LT

LT∫

0

dv̂ e−ikif
i(v̂) . (3.27)

Adding in the non-zero modes, the coupling of the boundary state to the NS-NS fields is

A(η)
NS(k) = − iη

κ τ5 nw

2LT

LT∫

0

dv̂ e−ikif
i(v̂)GµνRνµ(v̂) (3.28)

where R(v̂) is the obvious strand-by-strand extension of the reflection matrix (3.13).

We can now observe why we were justified in ignoring terms higher than linear order in the

oscillator boundary conditions (3.11). To arrive at the above result we substitute ψ̃ν1
2

for an ex-

pression involving only creation modes using (3.11), and only the linear term can contract with

the remaining annihilation mode to give a non-zero result. A similar argument holds for the R-R

amplitude.

The GSO projection has the effect of

ANS(k) =
1

2

(
A(1)

NS(k)−A(−1)
NS (k)

)
(3.29)

and we read off the canonically normalized fields of interest via

ĥvi(k) =
1

2

δANS

δĥvi
, ĥvv(k) =

δANS

δĥvv
, b̂va(k) =

δANS

δb̂va
. (3.30)

The space-time configuration associated with a closed string emission amplitude is obtained by mul-

tiplying the derivative of the amplitude with respect to the closed string field by a free propagator

and taking the Fourier transform [3]. In general for a field aµ1...µn we have

aµ1...µn(x) =

∫
d4k

(2π)4

(
− i

k2

)
aµ1...µn(k) e

ikx , (3.31)
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with aµ1...µn(k) given in terms of derivatives of A as in (3.30). Using the identity

∫
d4k

(2π)4
eik

i(xi−f i)

k2
=

1

4π2
1

|xi − f i|2 (3.32)

and the relation

Q5 =
2κ2 τ5 nw

4π2
, (3.33)

we obtain

ĥvi =
Q5

2κLT

LT∫

0

−ḟi dv̂
|xi − f i|2 , ĥvv =

Q5

2κLT

LT∫

0

|ḟ |2 dv̂
|xi − f i|2 , b̂va =

Q5√
2κLT

LT∫

0

ḟa dv̂

|xi − f i|2

in agreement with (2.7).

We next calculate the coupling between the R-R zero mode boundary state and the on-shell

R-R potential state [5, 3, 4]:

〈Ĉ(n)| = − 1
2
〈B̃, k2 | − 3

2
〈A, k2 |

[
CΓµ1...µn

1l− Γ11

2

]

AB

(−1)n

4
√
2n!

Ĉµ1...µn (3.34)

where the numerical factor contains an extra factor of 1
2 to account for the fact that we are not

using the full superghost expression. Using the fact (see e.g. [4]) that

(
〈A| 〈B̃|

) (
|D〉 |Ẽ〉

)
= −〈A|D〉 〈B̃|Ẽ〉 = −(C−1)AD(C−1)BE , (3.35)

we find the coupling of the R-R potential to the (already GSO projected) boundary state for an

individual strand (3.21) to be

A(s)
R,ψ = 〈Ĉ(n)|D5; f(s)〉ψ,0

=
−i

4
√
2n!

tr

[
Γµn···µ1

(
1

2
Γvu + ḟ I(s)(v)Γ

Iv

)
Γ5678 1 + Γ11

2

]

AB

Ĉµ1...µn . (3.36)

This then combines with the bosonic zero mode part of the amplitude A(s)
0 given in (3.25) and we

sum over strands to obtain the full R-R amplitude AR. We then extract the gauge field profile via

Ĉ(n)
µ1...µn(k) =

δAR

δĈ(n)µ1...µn
(µ1 < µ2 . . . < µn) , (3.37)

and as for the NS-NS calculation we insert the propagator and perform the Fourier transform. The

fields which are non-trivial only in the presence of a travelling wave are then

Ĉ
(4)
vbcd =

Q5√
2κLT

LT∫

0

dv̂
ḟaǫabcd

|xi − fi(v̂)|2
, Ĉ

(6)
vi5678 =

Q5√
2κLT

LT∫

0

dv̂
ḟi

|xi − fi(v̂)|2
(3.38)
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which agrees with (2.7). This completes the link between the microscopic and macroscopic descrip-

tions of a D5-brane with a travelling wave.

To conclude, we have shown how to derive the supergravity fields sourced by D-brane/momentum

bound states from disk amplitudes, describing in detail the D5-P frame calculation. In the D1-P

frame, the computation proceeds exactly as for the R4 directions of the D5-P system and the results

may be readily obtained by changing the index i→ I and the charge Q5 → Q1 where appropriate.

We have seen that our calculations reproduce the full form of the harmonic functions in the known

supergravity solutions, which was not possible in the analogous calculation in the D1-D5 duality

frame [7]. This is due to the fact that in the Dp-momentum duality frames the profile function

parametrizing the solutions arises as a condensate of massless open strings related to the physical

shape of the D-brane, which we were able to treat exactly using the boundary state formalism.

We hope that combining this result with the analysis of the D1-D5 bound state will provide a way

to study the three-charge D1-D5-P system using string amplitudes. Work in this direction is in

progress.
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