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Abstract

We derive the long range supergravity fields sourced by a D1-D5-P bound state from

disk amplitudes for massless closed string emission. We suggest that since the parameter

controlling the string perturbation expansion for this calculation decreases with distance

from the bound state, the resulting asymptotic fields are valid even in the regime of

parameters in which there is a classical black hole solution with the same charges. The

supergravity fields differ from the black hole solution by multipole moments and are more

general than those contained within known classes of solutions in the literature, whilst

still preserving four supersymmetries. Our results support the conjecture that the black

hole solution should be interpreted as a coarse-grained description rather than an exact

description of the gravitational field sourced by D1-D5-P bound states in this regime of

parameters.
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1 Introduction

Type IIB string theory compactified on S1 × M4 (where M4 can be either T 4

or K3) contains a large degeneracy of configurations preserving 4 of the 32 super-

charges of the trivial vacuum. Since the seminal papers [1, 2] we know that at zero

string coupling gs = 0, the number of these configurations matches the Bekenstein-

Hawking entropy of the extremal three-charge black hole. It is expected that a non-

renormalization theorem protects this degeneracy from corrections as gs is switched

on, explaining the agreement between the number of string/D-brane configurations

at zero coupling and the entropy calculated in the black hole description. In this

gravitational regime, gs is non-zero but can be as small as we like as long as the

supergravity charges are large; for instance, this requires that gsN > 1, where N is

any one of the D-brane charges of the configuration.

The microscopic derivation of the Bekenstein-Hawking entropy made this class of

extremal black holes an ideal arena for trying to address other crucial questions at the

heart of black hole physics. In particular, a line of research advocated by Mathur and

collaborators has focused on the problem of studying the geometrical backreaction of

individual microscopic D-brane configurations (microstates) as the parameter gsN

is increased from zero to a large value (see the reviews [3, 4, 5, 6, 7]). The central

question is to understand whether the different elementary configurations produce

distinguishable gravitational backgrounds and, if so, to determine the scale at which

the differences start being relevant.

This question is closely tied with the information paradox: the Hawking emission

process resulting from a classical black hole metric coupled to quantum fields leads to

a breakdown of unitarity [8, 9] so if the physical black holes we observe in Nature are

to be accurately described by quantum mechanics, then one requires a more refined

description of physics at the horizon than that provided by Hawking’s description

(for recent progress in this area see [10, 11, 12]). One way to avoid the conclusions

of the Hawking theorem is to seek a more refined description of the gravitational

field sourced by physical black holes; one of the crucial features of the fuzzball

proposal [3, 4] is that sizable deviations from the ‘naive’ black hole geometry appear

at a scale proportional to gsN .

One way to test this proposal is to look for solutions of type IIB supergravity which

preserve four supersymmetry generators and have the same D1, D5 and Kaluza-

Klein charges of the usual black hole, but which differ from the ‘naive’ black hole

geometry at a large scale ∼ gsN (for a review, see [13]). This program builds

on the successful analysis of the two-charge D1-D5 configurations, in which case

the Kaluza-Klein momentum charge is set to zero. By dualizing the supergravity

solutions for a fundamental string with a travelling wave [14, 15], a large class of
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horizon-less geometries was found and studied [16, 17] which led to the fuzzball

proposal and many further studies, see e.g. [18, 19]. In the D1-D5 duality frame

these solutions are everywhere smooth and free of brane sources, a feature which is

however duality-frame dependent.

The analysis of the three-charge D1-D5-P configurations has proved much more chal-

lenging. A large class of 1/8-BPS smooth and horizon-less supergravity solutions is

known [20, 21, 22, 23, 24, 25, 26, 27], however quantizing the degeneracy of these

geometries does not yield an entropy of the same order as the entropy of the black

hole [28]. Another complication is that the precise relation between the known su-

pergravity solutions and the microstates is less clear than in the two-charge case [29].

One way to match the geometrical and the microscopic descriptions is to use the

AdS/CFT dictionary; see for instance [30, 31, 32] for an explicit implementation

of this approach (see also [33] for recent progress in understanding the AdS/CFT

dictionary in different phases of this system). The basic idea is the following: if a

solution is indeed dual to the elementary states of the extremal three-charge black

hole, then it should have a “near-horizon” limit, where its asymptotic geometry is

AdS3 × S3 ×M4; in this limit one can use the AdS/CFT correspondence to read

from the geometrical data the corresponding state in the CFT description. How-

ever it is more difficult to reverse the logic and use this approach to construct new

supergravity solutions starting from the definition of a CFT microstate.

In this paper, we use a different approach to derive the large-distance backreacted

geometry from a microscopic configuration of D-branes. We exploit the fundamental

definition of D-branes as space-time defects which introduce borders in the string

world-sheet and identify the left and the right moving excitations of closed strings.

By calculating string amplitudes describing the emission of each massless closed

string field from world-sheets with disk topology one can derive the large distance

fall-off of the various supergravity fields sourced by a given D-brane bound state.

This was originally done for the simplest case of 1/2-BPS configurations [34, 35]. Of

course, the leading long-range behaviour of a solution is determined by its charges

and, if one repeats the same calculation for a simple superposition of D1 and D5-

branes, then only the ‘naive’ D1/D5 supergravity solution at large distances is re-

produced and, as expected, no higher multipole moments appear.

The backgrounds we are interested in are however more complicated and should

correspond to states in the Higgs branch of the D1/D5 world-volume CFT. While a

precise quantum description of the states in the Higgs branch is difficult, semiclassi-

cally we can characterize them by giving a non-zero vacuum expectation value (vev)

to the massless fields in the spectrum of the open string stretched between the D1

and the D5-branes. Even this is quite challenging, as, at the CFT level, the vertex

operators for the open strings stretched between different D-branes contain com-
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plicated boundary changing operators known as twist/spin fields, as we describe in

Section 3.5. However the large-distance expansion of the corresponding backreacted

geometry corresponds order by order to the standard open string perturbative ex-

pansion, where also the open string vevs are treated perturbatively, something which

can be done quite straightforwardly as long as we do not have to deal with too many

twist fields. Recently it was shown [36] that this approach captures precisely the

first non-trivial moments of the two-charge geometries in the D1/D5 duality frame.

The reason for this correspondence lies in how the superghost charge is saturated in

superstring perturbation theory. As summarized in Section 4, the main space-time

implication of the world-sheet constraint following from the superghost correlators

is that the expansion parameter in the perturbative calculation of the geometry

produced by each D-brane configuration is gsNα
′/r2, where r is the radial distance in

R4 at which we are probing the background. So at large enough distances the results

derived from string amplitudes should be reliable also in the black hole regime, where

gsN and the Higgs vevs are large.

In this paper we combine the D1/D5 setup of [36] with the microscopic description of

a null-wave on D-branes [37, 38, 39, 40] to provide a description of the three-charge

microstate at least at the semiclassical level. It was shown in [41] that the boundary

state for a D-brane with a travelling wave can be used to derive the large distance

behaviour of the two-charge configuration in the D-brane/momentum duality frame.

Thus, at the microscopic level, the basic building block for the most general three-

charge configuration is provided by a set of D1 and D5-branes, each one with an

a priori different wave profile, and a non-trivial vev for the open strings stretched

between the two types of D-branes.

We find that the world-sheet analysis of this generic building block is rather non-

standard, as the sector of the D1/D5 open strings is described by a logarithmic

CFT [42] (for related work see e.g. [43, 44, 45, 46]). We focus our attention in this

paper to the simplest case where the wave profiles on the D1 and D5-branes are

identical and the worldsheet description is given in terms of a standard CFT1.

We calculate for these configurations the one-point functions of the massless super-

gravity fields with disk topologies, and are particularly interested in the contribu-

tions which vanish in all two-charge limits, which we describe as ‘new’ contributions.

We derive the new part of the large-distance expansion of the backreacted geometry

up to order 1/r4. There are other terms in the 1/r expansion of the solution that

follow from the non-linearity of gravity, rather than the non-trivial structure of the

microstates; in our string approach these contributions are related to world-sheet

surfaces with more than one border. We will not try to derive these terms from

1This class of microstates was recently studied at the level of the probe-brane approximation

in [47].
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string amplitudes, as it is much easier to do so by solving the standard supergravity

equations and by using the results from the disk amplitudes as boundary conditions.

Using the type IIB supersymmetry equations we explicitly check that the supergrav-

ity backgrounds derived from these string amplitudes preserve four supercharges. A

surprising result is that we find supergravity fields not contained within known

classes of 1/8-BPS solutions in the literature [13]: in particular the NS-NS 2-form

and the R-R 0 and 4-form potentials are non-trivial, while the metric of the R4 part

is still hyper-Kahler, apart from the presence of a warp factor.

Our calculation supports the conjecture that individual states should have backre-

actions with non-trivial multipole moments, whilst an appropriate thermodynamic

ensemble average would average out these moments to zero, obtaining the ‘unique’

classical black hole solution with horizon [3, 48, 49, 50].

The paper is structured as follows. In Section 2, we analyze the type IIB supersym-

metry equations perturbatively in 1/r to constrain the form of 1/8-BPS geometries.

We focus on configurations in which the structure spaceM4 only receives an overall

warping from the microstate backreaction. We obtain from supergravity a set of

conditions which we later use to test the consistency of our string derivation. In

Section 3, we review the basic ingredients necessary for the string computation and

show why the case of identical profiles on the D1 and D5 branes has a standard CFT

description. In Section 4 we calculate the disk one-point functions for the massless

supergravity fields and in Section 5 we derive from this data the large-distance be-

haviour of the supergravity background corresponding to each microscopic D-brane

configuration. Finally, in Section 6, we present our conclusions discussing limita-

tions and possible generalizations of this approach for extracting information about

the backreactions of D-brane microstates from string amplitudes. The appendices

contain technical details of the type IIB supersymmetry equations and the string

vertices used in the main text.

2 Supersymmetry analysis

The geometry sourced by a D1-D5-P bound state must preserve the same four

supersymmetries as the ‘naive’ black hole with the same charges. We derive in

this section, from the supergravity point of view, the constraints imposed on the

geometry by the existence of these four conserved supercharges. Though we do not

input supersymmetry explicitly in computing string amplitudes, the string results

should be compatible with these supersymmetry constraints. This will thus provide

a useful and non-trivial check on the string amplitude computation. For the purpose

of comparison with the world-sheet results it is sufficient to restrict the supergravity
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analysis to 1/r4 order in the asymptotic expansion. We have checked that the

analysis can be extended to all orders in 1/r, but we will leave the details of the

exact solution for a future work.

2.1 The ansatz

We consider a general ansatz for a IIB configuration compactified on T 4×S1 which

does not break the isometries along the T 4 directions. For the NSNS fields, a generic

ansatz with this property is (in the string frame):

ds2 =
1√
Z1Z2

[
− 1

Z3

dt̂2 + Z3 dŷ
2
]

+
√
Z1Z2 ds

2
4 +

√
Z1

Z2

ds2
T 4 ,

B = −b0 dt̂ ∧ dŷ + b1 ∧ dŷ + b̃1 ∧ dt̂+ b2 ,

e2φ = D , (2.1)

where we have introduced the short-hand notation

dt̂ = dt+ k , dŷ = dy + dt− dt+ k

Z3

+ a3 . (2.2)

Here ds2
4 is a generic Euclidean metric on R4, ds2

T 4 is the flat metric on T 4 (which

we take to be ds2
T 4 = δab dz

adzb), Z1, Z2, Z3, b0, D are 0-forms, k, a3, b1, b̃1 1-forms,

and b2 a 2-form on R4. Similarly we can write for the RR 0-form and 2-form

C(0) = c ,

C(2) = − 1

Z̃1

dt̂ ∧ dŷ + a1 ∧ dŷ + ã1 ∧ dt̂+ γ̃2 , (2.3)

with c, Z̃1 0-forms, a1, ã1 1-forms and γ̃2 a 2-form on R4. The RR 4-form is con-

strained to have a self-dual field strength F (5) = ∗F (5), hence one can write

F (5) = f1 dt̂ ∧ dz4 + f2 dŷ ∧ dz4 + g ∧ dz4

+ Z2
2Z3 f1 dŷ ∧ dx4 +

Z2
2

Z3

f2 dt̂ ∧ dx4 +
Z2

Z1

∗4 g ∧ dt̂ ∧ dŷ , (2.4)

where f1, f2 are 0-forms, g a 1-form on R4, and dz4 and dx4 are the volume forms

of T 4 and R4.

At order 1/r2 the solution should reduce to the ‘naive’ D1-D5-P black hole; we will

moreover use some foresight from the string computation to assert that the 1-forms

k, a1, ã1, a3, b1, b̃1 receive non-trivial contributions first at order 1/r3 and that the

quantities c, f1, f2, g, b0, b2 and the metric ds2
4 do not have non-trivial terms until

order 1/r4.
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Under these assumptions, and discarding terms of order higher than 1/r4, the equa-

tions of motion for B and C(2) can be approximated by d ∗B = 0, d ∗C(2) = 0, and

imply, in particular, that

db2 = ∗4db̃0 , dγ̃2 = ∗4dZ̃2 , (2.5)

for some 0-forms b̃0 and Z̃2. Moreover the Bianchi identity dF (5) = 0 implies df1 =

df2 = 0, so that one has f1 = f2 = 0, and dg = d ∗4 g = 0, so that g = df and

d ∗4 df = 0, for some 0-form f . Then F (5) can be simplified to

F (5) = df ∧ dz4 + ∗4df ∧ dt̂ ∧ dŷ . (2.6)

We also know that in the ‘naive’ black hole geometry Z1 = Z̃1, Z2 = Z̃2, D = Z1/Z2,

and we allow these identities to be modified at order 1/r4.

In summary our ansatz is given by (2.1), (2.2), (2.3), (2.5), (2.6), with the asymptotic

boundary conditions

Z1, Z2, Z3 = 1 +O(r−2) , Z̃i = Zi +O(r−4) (i = 1, 2) , D =
Z1

Z2

+O(r−4) ,

b0, b̃0, c, f = O(r−4) , ds2
4 = dxidxi +O(r−4) , k, a1, ã1, a3, b1, b̃1 = O(r−3) .

(2.7)

2.2 Results

It is a straightforward though quite lengthy exercise to impose the vanishing of

the dilatino and gravitino supersymmetry variations and derive the condition this

imposes on the various metric coefficients2. Some details of this computation, up to

order 1/r4, are given in Appendix A. The results are

Z̃1 = Z1 , Z̃2 = Z2 , D =
Z1

Z2

, b0 = b̃0 = c = f ,

ã1 = a1 , b̃1 = b1 , da1 = ∗4da1 , da3 = ∗4da3 , db1 = ∗4db1 ,

R
(4)

ij,kl =
1

2
εijrsR

(4)

rs,kl , (2.8)

where R
(4)

ij,kl is the Riemann tensor of ds2
4. The last condition is equivalent to require

that ds2
4 be hyper-Kahler.

Moreover the gauge field equations of motion and the ty component of Einstein’s

equations imply, at this order, that

d ∗4 dZ1 = 0 , d ∗4 dZ2 = 0 , d ∗4 dZ3 = 0 , d ∗4 db0 = 0 , d ∗4 dk = 0 . (2.9)

2Though there are many papers that study the supersymmetry conditions for 5D minimal

supergravity coupled to various vector and hypermultiplets, as far as we understand none of those

results directly apply to the case specified by our ansatz.
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Conditions (2.8) and (2.9) are enough to guarantee that all other components of

Einstein’s equations be satisfied.

3 String world-sheet setup

3.1 D-brane configuration

We consider type IIB string theory on R1,4×S1×T 4. We denote the 10D coordinates

(xµ, ψµ) by µ, ν = t, y, 1, . . . , 8. We use (i, j, . . .) and x1, . . . , x4 for the R4 directions,

we use (a, b, . . .) and x5, . . . , x8 for the T 4 directions and we use (I, J, . . .) to refer

to the combined R1,4 × S1 directions. We work in the light-cone coordinates

v = (t+ y) , u = (t− y) (3.1)

constructed from the time and S1 directions. In Appendix B we collect our CFT

conventions, including the form of the BRST charge and some details on the closed

string vertices, while in Appendix C we record our conventions for spinors.

We focus on 1/8-BPS configurations composed of D1 and D5-branes with a non-

trivial wave. The branes have common Neumann (Dirichlet) boundary conditions

along the directions t, y (xi in the R4), while they have mixed Neumann/Dirichlet

boundary conditions in the T 4. We can summarize the D-brane configuration under

study in the following table:

v u R4 T 4

D1 x x fD1
i (v) fD1

a (v)

D5 x x fD5
i (v) x

(3.2)

where “x” denotes a Neumann direction and f indicates the (v-dependent) position

of the D-brane in the Dirichlet directions. We will ignore from the very beginning

the profile along the T 4 by setting fD1
a = 0. Initially we will allow for independent

wave profiles fD1 and fD5, before focusing our calculations on the case in which the

two profiles are identical.

3.2 Boundary conditions for 1-1 and 5-5 strings

We now review the boundary conditions for an open string with both endpoints on

a D-brane carrying a travelling wave. Encoding the effect of the D-brane profile has

the effect of resumming all the open string insertions of the vertex

Vf =

∫ (
1

2α′
fj ∂X

j + ḟjψ
jψv
)
dz (3.3)
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describing the KK charge of the D-brane configurations (see e.g. [51, 52]) so our

results will be exact in this respect.

The boundary conditions on the worldsheet fields in the open string picture may be

expressed in terms of a reflection matrix R as

ψ̃µ = η Rµ
ν(V )ψν (3.4)

∂Xµ = Rµ
ν(V )∂Xν − δµu 8α′f̈jψ

jψv (3.5)

where we use a capital V to indicate the string field corresponding to the coordinate

v. The parameter η can be set to 1 at σ = 0, while at σ = π we have η = 1 or

η = −1 corresponding to the NS and R sectors respectively.

For 1-1 strings, the holomorphic and the anti-holomorphic world-sheet fields are

identified with the reflection matrix R = RD1 where (see [41] and references within)

(
RD1

)µ
ν

=


1 0 0 0

4| ˙fD1(V )|2 1 −4ḟD1
i (V ) 0

2ḟD1
i (V ) 0 −1l 0

0 0 0 −1l

 , (3.6)

where 1l denotes the four-dimensional unit matrix and the indices follow the ordering

(v, u, i, a).

Similarly, for 5-5 strings ending on a D5-brane with profile fD5, the right and left-

moving world-sheet fields are identified with RD5, where

(
RD5

)µ
ν

=


1 0 0 0

4|ḟD5(V )|2 1 −4ḟD5
i (V ) 0

2ḟD5
i (V ) 0 −1l 0

0 0 0 1l

 . (3.7)

We note that the reflection matrices RD1 and RD5 preserve the Minkowski metric

RT
D1 ,D5 η RD1 ,D5 = η . (3.8)

Importantly, this setup differs from the case of D-branes at angles or with a constant

magnetic field in that our reflection matrices contain a non-trivial function of the

coordinate V . Thus, when we use the identification (3.4) on the antiholomorphic

part T̃ψ̃ of the fermionic stress energy tensor (see (B.5) for our conventions), we

obtain a new term involving f̈ . In the full stress energy tensor, this is cancelled by a

similar term in T̃X coming from the non-linear part of the bosonic identification (3.5).

So all terms involving f̈ cancel and, thanks to (3.8), we find that our boundary

conditions define the usual open string Virasoro algebra.
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3.3 Boundary conditions for 1-5 and 5-1 strings

For a string with one endpoint on a D1-brane and one endpoint on a D5-brane, the

situation is more complicated. Boundary conditions for a string with endpoints on

different D-branes are discussed in [53], from which we now review some relevant

expressions. Denoting the bosonic string coordinates by xµ, the boundary conditions

at the two endpoints of the string may be written as

∂̄xµ
∣∣∣
σ=0,π

=
(
Rσ

)µ
ν
∂xν
∣∣∣
σ=0,π

. (3.9)

For a string with both endpoints on the same D-brane, we have R0 = Rπ and one

may solve the boundary conditions by writing xµ in terms of a holomorphic field

Xµ(z):

xµ(z, z̄) = qµ +
1

2

[
Xµ(z) +

(
R0

)µ
ν
Xν(z̄)

]
. (3.10)

For a string with endpoints on different D-branes, we may define multi-valued fields

Xµ(z) and introduce a branch cut in the z-plane just below the negative real axis,

such that ∂Xµ has a monodromy written in terms of a “monodromy matrix” M :

∂Xµ(e2πiz) = Mµ
ν ∂X

ν(z) , where M ≡ R−1
π R0 . (3.11)

Then the boundary conditions are again solved by (3.10), but now with a multivalued

field Xµ(z). In our case we have

R0 = RD1 , Rπ = RD5 . (3.12)

Then the monodromy matrix turns out to be only a function of the difference be-

tween the two profiles, and has the same form as the monodromy matrix for one

profile (with the extra minus sign in the T 4 directions):

Mµ
ν =

(
R−1
π R0

)µ
ν

=


1 0 0 0

4 |ḟD5 − ḟD1|2 1 4(ḟD5 − ḟD1)i 0

2(ḟD5 − ḟD1)i 0 1l 0

0 0 0 −1l

 . (3.13)

The monodromy matrix has a similar form to that studied in the context of null

orbifolds [54, 55]. This can be seen by defining

f−i = fD5
i − fD1

i , (3.14)

and then by writing

M = M0 exp
(

2πḟ−i Ji
)
, (3.15)

where M0 is the monodromy matrix for f− = 0 (see (3.18)) and

(ḟ− ·J )µν =
1

π


0 0 0 0

0 0 2ḟ−i 0

ḟ−i 0 0 0

0 0 0 0

 . (3.16)
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Thus the monodromy (3.11) for the coordinates ∂X can be written as follows

∂Xµ(e2πiz) =
[
exp

(
2πḟ−j Jj

)]µ
ν
∂Xν(z) , (3.17)

The unusual feature is that ḟ−J is nilpotent and thus not diagonalizable. A con-

sequence of this is that the sector of open strings stretched between D-branes with

different profiles has the structure of a logarithmic CFT. In particular, one finds

that at each level there is a Jordan block of rank three, related to the property

(ḟ−J )3 = 0. We shall postpone the study of the full analysis of this problem to

later work, and in this paper we shall treat the simpler scenario in which the profiles

are equal, in which case one has f− = 0.

3.4 Equal D1 and D5 profiles

We now specialize to the case in which both the D1 and the D5 branes are wrapped

nw times around y. Letting the length of the y direction be 2πR, each brane then

has total length LT = 2πnwR and we use v̂ for the corresponding world-volume

coordinate on the D-branes, having periodicity LT . Moreover we focus on the case

in which the D1 and D5 branes have identical profiles, which we denote by f ≡
fD1 = fD5. Clearly this common profile f i satisfies f i(v̂ + LT ) = f i(v̂).

We see from the discussion in the previous subsection that in this case the mon-

odromy matrix reduces to that of the two-charge D1-D5 system as studied in [36],

i.e.

(M0)µν =


1 0 0 0

0 1 0 0

0 0 1l 0

0 0 0 −1l

 . (3.18)

In this case the worldsheet CFT is not logarithmic and one can use the boundary

conditions (3.6) with fD1 = f in the calculation of closed string emission from a

D1-D5 disk. This is the approach we follow in Section 4.2.

We will later also require the boundary conditions for the left and right moving spin

fields. These are

S̃Â = (RD1)Â
B̂
SB̂ (3.19)

where RD1 is the spinor representation of the reflection matrix RD1. For a flat D1

brane,RD1 = Γty however for a D-brane with a travelling wave we can readRD1 from

the R-R zero mode boundary state for a D1 brane with travelling wave described

by the profile f i. This was calculated in [41] to be

|D1;P 〉(η)
ψ,0 =M(η)

AB |A〉− 1
2
|B̃〉− 3

2
(3.20)

11



where, following our spinor conventions (given in Appendix C) in which the gamma

matrices in ten dimensions are denoted Γµ(10), we have

M(η) = i C

(
1

2
Γuv(10) + ḟ i(v)Γiv(10)

)(
1l− iηΓ11

1− iη

)
, (3.21)

so we read off

RD1 =

(
1

2
Γuv(10) + ḟ i(v)Γiv(10)

)
. (3.22)

3.5 Twisted open string vertex operators

In Section 4.2 we calculate amplitudes on a mixed disk with half its boundary on

a D1 and the other half on the D5, and two twisted vertex operator insertions as

studied in [56, 36], details of which we record here.

Since the monodromy matrix is now given simply by (3.18), we use the same twisted

open string vertices considered in [36], which take the form

Vµ = µAe−
ϕ
2 SA ∆ , Vµ̄ = µ̄Ae−

ϕ
2 SA ∆ (3.23)

where µA and µ̄A are Chan-Paton matrices with n1 × n5 and n5 × n1 components

respectively, SA are the SO(1, 5) spin fields, ϕ the free boson appearing in the

bosonized language of the worldsheet superghost (β, γ), and ∆ is the bosonic twist

operator with conformal dimension 1
4

which acts along the four mixed ND directions

(in which the monodromy matrix has the value −1) and changes the boundary

conditions from Neumann to Dirichlet and vice versa.

We focus on open string condensates involving only states from the Ramond sector.

Notice that states in the Ramond sector will break the SO(4) symmetry of the DD

directions R4, while they are invariant under the SO(4) acting on the compact T 4

torus. The most general condensate of Ramond open strings can be written as:

µ̄A µB = vI(CΓI)[AB] +
1

3!
vIJK(CΓIJK)(AB) , (3.24)

where the parenthesis on the indices A,B are meant to remind that the first term

is automatically antisymmetric, while the second one is symmetric. Thus the open

string bispinor condensate is specified by a one-form vI and an self-dual three-form

vIJK . The self-duality of vIJK follows from µ̄A and µB having definite 6D chirality

and can be written as

vIJK =
1

3!
εIJKLMNv

LMN . (3.25)

In this paper we shall consider only the components of vIJK which have one leg in

the t, y directions and two legs in the R4; this choice of components was associated
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to considering profiles only in the R4 directions in [36]. In t, y coordinates with

ε1234 = 1, we see that (3.25) becomes

vyij =
1

2
εijklvtkl . (3.26)

The self-duality properties in light-cone coordinates are then

vuij = −1

2
εijkl vukl , vvij = +

1

2
εijkl vvkl . (3.27)

Since the spinors µ̄A and µB carry n5 × n1 and n1 × n5 Chan-Paton indices, the

condensate µ̄AµB must be thought of as the vev for the sum

n1∑
m=1

n5∑
n=1

µ̄Amn µ
B
nm , (3.28)

which, for generic choices of the Chan-Paton factors, is of order n1n5.

4 D-brane geometrical backreaction

In this section we derive the geometrical backreaction of the D-brane configuration

discussed in the previous section, starting from the couplings of the closed string

massless fields. In perturbation theory, these couplings are captured by the one-point

functions of each closed string state on world-sheets with boundaries. As we are not

interested in purely quantum gravity effects (i.e. couplings weighted by the Planck

length) we will ignore all contributions to the one-point functions from topologies

which have handles and focus only on planar world-sheets with boundaries. The

non-trivial vacuum expectation values for the open string fields (3.3) and (3.23)

should ensure that we are considering, at least semiclassically, not merely a naive

superposition of three charges but a real bound state.

As discussed in the previous section, the boundary conditions (3.4) and (3.5) resum

all the open string insertions describing the KK momentum charge of the D-brane

configurations, so our results will be exact in this respect. On the contrary we will

treat perturbatively the open string insertions (3.23) related to the vev of the strings

stretched between the D1 and D5 branes.

The interesting microstates, for which we might expect a gravitational description,

have large open string vevs and so, in principle, we should resum amplitudes with

many twisted vertices. However, as briefly mentioned in the Introduction, it is

possible to check that string amplitudes with a different number of open string

insertions (3.23) contribute to different terms in the large distance expansion of

the corresponding gravity solution. The argument goes as follows: disk amplitudes

13



are non vanishing only if the total superghost charge of the correlator is −2; the

open string vertices (3.23), which must be always paired in order to have a consistent

boundary, are in the −1/2 picture, so each insertion of Vµ, Vµ̄ in a non-zero correlator

requires an extra eφ factor to keep the correlator non-trivial.

Thus the expansion in the number of twisted open string insertions is actually

weighted by the eφ charge we need to saturate. This can be done by inserting

in the amplitude the supercurrent, or equivalently by changing the picture of the

emitted closed string vertex. From the form of the supercurrent (given in (B.6)) we

see that each eφ factor is accompanied by a ∂X, which in the amplitudes we are

interested in becomes a factor of the closed string momentum k. In configuration

space each factor of k becomes a factor of 1/r, r being the radial coordinate in the

R4. Thus amplitudes with m pairs of Vµ, Vµ̄ vertices contribute to the geometric

backreaction with terms which decay at least as 1/rm at large distances.

We also have the standard open string loop expansion weighted by the number

of borders inserted in the diagrams and we need to justify why we focus on disk

amplitudes. The reason we can perform a perturbation expansion in the regime

of parameters of interest is that the open string loop expansion parameter for the

calculation of the value of the backreacted field at a radial distance r (for a generic

Dp-brane) is

ε = gsN

(
α′

r2

)7−p
2

(4.1)

where here N counts the number of D1 or D5 branes. For fixed large gsN , ε can be

made arbitrarily small by choosing to examine the fields at large enough r.

One can see that the quantity ε controls the open string perturbation expansion

as follows. Adding an extra border to the string worldsheet gives a factor of gsN

since there are N choices of which D-brane the open string endpoints can end on. It

also introduces a loop momentum integral, two extra propagators, and reduces the

background superghost charge by two units, requiring us to increase the picture of

the vertex operators into a picture two units higher.

Qualitatively, each of these contributes as follows: At large distances, the loop

momentum integral is dominated by the closed string channel, effectively resulting

in an integral over the Dirichlet directions,
∫
d9−pk. The two propagators bring two

factors of 1/k2, and the picture-changing procedure brings a factor of k2 as we have

described. Thus all together we have an additional integral of the form∫
d9−pk

1

k2
∼ 1

r7−p (4.2)

and so restoring units of α′ we indeed find that ε is the appropriate dimensionless

expansion parameter.
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In the following sections we focus on the contributions which depend on all three

charges of the microstate being present, and so vanish when any one charge is

turned off; we refer to these as the ‘new’ fields. The new fields are not the only

contributions appearing up to order 1/r4; there are also contributions from diagrams

with more borders which contribute at the same order. However as mentioned in the

Introduction, amplitudes with many disconnected borders are both more difficult to

derive and also less interesting. At large distances, they should simply reproduce

the contributions due to the non-linear nature of gravity; these contributions are

more easily calculated in the low-energy limit, by solving the supergravity Killing

spinor equations (and equations of motion). The reason is that the momentum of

each closed string exchanged between a probe placed at large distances and the

D-brane bound state is very small. So the contribution to the string amplitudes

is dominated by world-sheets which look like tree-level gravity Feynman diagrams

where each boundary represents a source. This is a diagrammatic representation for

the perturbative solution of the supergravity equations of motion as performed in

Section 2.

Thus in the following we focus only on the leading contributions at large distances

which are induced by the amplitudes with one border (see Figure 1) and those with

one border and one pair of open vertices Vµ, Vµ̄ (see Figure 2). This should be

sufficient to capture, in the supergravity solution corresponding to any microstate,

the interesting new terms up to order 1/r4.

4.1 Amplitudes with one type of boundary

The most direct way to derive the one-point functions from a disk with only one type

of boundary is to use the boundary state formalism [34]. In our case we have two

contributions, depending on whether the boundary is ending on the D1 or D5 branes,

see Figure 1. These one-point couplings, and the corresponding contributions to the

background geometry, were calculated in [41], by using the boundary state for a

D-brane with a null wave derived in [38, 39, 40]. Here we summarize the derivation

of the NS-NS fields in order to clarify a point on how to separate the dilaton and

the metric contribution which will be useful in the following. For the R-R sector,

we will just recall the results of [41].

Let us focus on the D1f diagram Figure 1; the calculation for the other contribution

will be completely analogous. We can view the wrapped D1-brane as as a collection

of nw different D-brane strands, with a non-trivial holonomy gluing these strands

together. Each strand carries a segment f i(s), with s = 1, . . . , nw of the full profile.

The boundary state describing the wrapped D1-brane can be expanded in terms of
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W

D1f D5f

W

Figure 1: The simplest non-trivial contributions to the one-point function of closed

string state W : two disk diagrams where the border lies entirely on the D1 brane

(for the first amplitude) or on the D5 brane (for the second amplitude).

the closed string perturbative states. The first terms of this expansions are

|D1; f〉 = −iκ τ1

2

nw∑
s=1

∫
du

2πR∫
0

dv

∫
d4pi

(2π)4
e−ipif

i
(s)

(v) c0 + c̃0

2
(4.3)

c1c̃1

[
−ψµ− 1

2

(tRD1)µνψ̃
ν
− 1

2
+ γ− 1

2
β̃− 1

2
− β− 1

2
γ̃− 1

2
+ . . .

]
|u, v, pi, 0〉−1,−̃1

where τ1 = [2πα′gs]
−1 is the physical tension of a D1-brane and where tRD1 is the

transpose of the reflection matrix RD1 given in (3.6). The ket in (4.3) represents

a closed string state obtained by acting on the SL(2, C) invariant vacuum with a

eipix
i

in the R4 directions. We also wrote the delta functions on the pu and pv
momenta as integrals in configuration space du, dv. The boundary state enforces

the identification (3.4), which in the approximation (4.3) holds just for the first

oscillator ψ̃µ−1/2.

The second line of (4.3) contains all the massless NS-NS states and we can separate

the irreducible contributions by taking the scalar product with each state, details

of which are given in Appendix B. The dilaton state has the form (see (B.9) for

details):

lim
z→0

W
(−2)
dil |0〉 =

(
ηµνc1ψ

µ

− 1
2

c̃1ψ̃
ν
− 1

2
+ c1γ− 1

2
c̃1β̃− 1

2
− c1β− 1

2
c̃1γ̃− 1

2

)
|k〉−1 |̃k〉−1 (4.4)

while the graviton and the B-field are given by the symmetric and the antisymmetric

parts of G in Gµνc1ψ
µ
−1/2c̃1ψ̃

ν
−1/2 |ki〉−1,−̃1 .

Some care is needed to read the diagonal components of the graviton, as we have to

select a state that is orthogonal to (4.4). For these components we use[
B
(
ηαβc1ψ

α
− 1

2
c̃1ψ̃

β

− 1
2

)
+ C

(
c1ψ

i
− 1

2
c̃1ψ̃

i
− 1

2
+ c1γ− 1

2
c̃1β̃− 1

2
− c1β− 1

2
c̃1γ̃− 1

2

)]
|ki〉−1,−̃1
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where B = −(7− p)/4 and C = (p+ 1)/4 and we temporarily use the notation, for

a generic Dp-brane, that the indices α, β (i) are parallel (transverse) to the brane

world-volume. The values of B and C ensure that this state has a vanishing scalar

product with (4.4). We note that, if we analytically continue the momentum ki so

as to have k2 = 0, the two round parenthesis are separately BRST-invariant.

We can now separate two types of contributions to the first diagram in Figure 1.

The first type involves the diagonal part of the reflection (3.6), while the second one

follows from the elements in RD1 which depend on f . The result for the diagonal

terms is almost identical to the result for a static flat D-brane [34]: the one-point

function for the canonically normalized dilaton φ̂ is

AD1
dil (k) = − iκ τ1

2
Vu
√

2φ̂

LT∫
0

dv̂ e−ik·f(v̂) , (4.5)

where Vu is the (infinite) volume along the u direction. As we shall see, this term

and the analogous D5-P contribution are the only contributions to the dilaton for

the D-brane configuration under analysis. Similarly the one-point function for the

diagonal components ĥµµ of the canonically normalized graviton is

− iκ τ1

2
Vu

LT∫
0

dv̂ e−ik·f(v̂)

(
−3

2
(−ĥtt + ĥyy) +

1

2
(ĥii + ĥaa)

)
. (4.6)

Here we already summed the contributions over all strands and so the integrals over

v in each strand in (4.3) have been combined in a single integral over v̂ extended

from 0 to LT .

The f -dependent terms in the reflection matrix switch on new couplings with the

off-diagonal terms of the metric3. By using the expression for the reflection (3.6),

one can see that the complete graviton coupling induced by the first diagram in

Figure 1 is

AD1
gra(k) = −iκ τ1

2
Vu

LT∫
0

dv̂ e−ik·f(v̂)

[
−3

2
(−ĥtt + ĥyy) (4.7)

+
1

2
(ĥii + ĥaa)− 2ĥvv|ḟ |2 + 4ĥviḟ

i

]
.

In the NS-NS sector, the expansion of the boundary state for a D5-brane with a null

wave f is completely analogous to the D1 case (4.3), except for the appearance of

the D5-brane tension τ5 = [(2π
√
α′)5
√
α′gs]

−1 and the reflection matrix RD5 given

3As we are considering a non-trivial profile only the R4 directions, we do not have any contri-

butions to the B-field.
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in (3.7). Thus we can read right away the contribution to NS-NS couplings from

the second diagram in Figure 1:

AD5
dil (k) = i

κ τ5

2
VuV4

√
2φ̂

LT∫
0

dv̂ e−ik·f(v̂) , (4.8)

AD5
gra(k) = −iκ τ5

2
VuV4

LT∫
0

dv̂ e−ik·f(v̂)

[
−1

2
(−ĥtt + ĥyy + ĥaa) (4.9)

+
3

2
ĥii − 2ĥvv|ḟ |2 + 4ĥviḟ

i

]
where we recall the notation that V4 is the volume of the compact space.

The details of the R-R calculation may be found in [41], here we just recall the

results:

AD1
RR(k) = −i

√
2κ τ1Vu

LT∫
0

dv̂ e−ik·f(v̂)
[
2Ĉ(2)

uv + Ĉ
(2)
vi ḟ

i
]

(4.10)

AD5
RR(k) = −i

√
2κ τ5VuV4

LT∫
0

dv̂ e−ik·f(v̂)
[
2Ĉ

(6)
uv5678 + Ĉ

(6)
vi5678ḟ

i
]
. (4.11)

4.2 Amplitudes with two types of boundary

We next calculate the contribution coming from diagrams with two types of bound-

ary. These diagrams were studied in the case of a D1-D5 bound state without

momentum charge in [36]; in this section we introduce momentum charge by using

the boundary conditions derived earlier. The world-sheet topology for these ampli-

tudes is depicted in Figure 2 and involves a mixed disk with half its boundary on a

D1 and the other half on the D5 brane. Clearly this type of diagram is absent for

the naive D1/D5 superposition, where the fields living on the D-brane world-volume

are set to zero. On the contrary, the configurations corresponding to D-brane bound

states have a non-zero vev for the massless fields in the spectrum of the open stings

stretched between the D1 and D5-branes. In our perturbative approach, these vevs

are described through the insertion of pairs of vertex operators, such as Vµ, cor-

responding to an open string stretching from the D1 to the D5-branes, and Vµ̄,

corresponding to an open string with the opposite orientation. For the microstates

we are interested in, these vertex operators are given in (3.23).

Thus the amplitude we need to calculate is

AD1−D5
NS,R =

∫ ∏4
i=1 dzi
dVCKG

〈
Vµ(z1)W

(−k)
NS,R(z2, z3)Vµ̄(z4)

〉
f
, (4.12)
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Vµ

Vµ̄

W
D1f D5f

Figure 2: The simplest amplitude involving all three charges of the microstate: the

topology of the worldsheet is that of a mixed disk diagram where part of the border

lies on the D1 brane and part on the D5 brane.

where the subscript f reminds that, in this disk correlator, the identification between

holomorphic and anti-holomorphic components depends on the profile of the D-

branes. In the parameterization where the disk is mapped to the upper half of

the complex plane, z1 and z4 are purely real as they represent the positions of the

open string vertices and lie on the boundary of the world-sheet, while z2 = z̄3 is

the position of the closed string vertex in the interior of the world-sheet surface. In

order to have a non-trivial correlator we need to saturate the superghost charge of the

disk (−2): the two open string vertices together contribute half of this total charge,

so the closed string insertion has to carry globally another −1 superghost charge.

Finally in (4.12) we did not keep track of the factors contributing to the overall

normalization. This normalization can be reabsorbed in the dictionary between the

string condensate (3.24) and the supergravity results and so it is not relevant for

the comparison with the ansatz of Section 2.

4.2.1 NS-NS Amplitude

In the NS sector the holomorphic and the anti-holomorphic parts of the vertices have

integer superghost charge, and so the constraint on the superghost charge forces us

to work in an asymmetric picture; for instance in the (0,−1) picture, the closed

string vertex operators representing the emission of graviton or B-field is

W
(k)
NS = Gµν

(
∂Xµ

L − i
k

2
·ψ ψµ

)
ei

k
2
·XL(z) ψ̃νe−ϕ̃ei

k
2
·XR(z̄) + . . . , (4.13)

where the dots stand for other terms that ensure the BRST invariance of the vertex,

but that do not play any role in the correlator under analysis. For consistency, we

should be able to choose the (−1, 0) picture, where the roles of the holomorphic and
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the anti-holomorphic parts in (4.13) are swapped, or any linear combination of these

two choices. We show in Appendix B that all these choices yield the same result.

The dilaton vertex we need to use is described in Appendix B and is written

in (B.10). This vertex has a term involving the (ξ, η) fields in the superghost sector

which does not contribute to the correlator (4.12). The other term, which is relevant

in our case, has the same structure as the vertex (4.13), but with Gµν = ηµν and

a symmetric linear combination of the (−1, 0) and (0,−1) structures. Since both

structures yield the same result in the correlator (4.12), we can use the simplified

form (4.13) for all massless NS-NS states, where the polarization G is equal to the

Minkowski metric for the dilaton, while it is a symmetric (antisymmetric) tensor for

the graviton (B-field).

SO(1, 5) invariance, which is broken only by the boundary conditions, dictates the

form of the amplitude (4.12) up to an integral over the world-sheet punctures which

was calculated in [36]. By adapting that result to our case, we obtain

AD1-D5
NS = −2

√
2πVu

LT∫
0

dv̂e−ik·f(v̂)kK GIJ(tR) M
J vIMK , (4.14)

where we take tR to be the transpose of the reflection matrix RD1 given in (3.6); we

could also use R = RD5 and we would obtain the same result for the correlator under

analysis. The f -dependent exponential factor follows from the zero-mode part of

the eikXL,R/2 terms in the vertex operator (4.13), as a consequence of the Dirichlet

boundary conditions for the string coordinates xi = (X i
L + X i

R)/2 in the R4. The

integral over v̂ follows, as in the previous section, from the zero-mode correlator

along the Neumann direction v, and, after combining the contributions from the

different D-brane strands, we can write the full amplitude as an integral over the

world-volume coordinate v̂.

Expanding the above amplitude (4.14) for the D1-D5 condensate in which only the

components vuij and vvij are non-zero and k is only in the R4 directions, we obtain

AD1-D5
NS = 2

√
2πVu

LT∫
0

dv̂e−ik·f(v̂)kl
[ (
Guj + Gju

)
vujl +

(
Gvj + Gjv

)
vvjl (4.15)

+ 4Gjv vujl|ḟ(v̂)|2 − 4Gij vuilḟ j(v̂)− 2Gvv vvilḟ i(v̂)− 2Guv vuilḟ i(v̂)
]
,

where the first line includes the two-charge D1-D5 contribution, and the second one

contains the new D1-D5-P contributions, which vanish in each of the two-charge

limits, i.e. if we set to zero either the vIJK condensate or the profile f i.

It is interesting to notice that the result (4.15) vanishes if we focus on the emission

of a dilaton. As argued above, in our amplitude one can effectively use ηµν for the
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dilaton polarization. There are two terms in the second line of (4.15) which can

potentially contribute to the dilaton amplitude, however, in our case, they cancel

each other,

4 ηij vuilḟ
j + 2 ηuv vuilḟ

i = vuilḟ
i(4− 4) = 0 ,

where we used ηij = δij and ηuv = −2. Thus the only non-trivial contributions

from the diagram in Figure 2 are for the graviton and B-field and can be read from

Eq. (4.15) by using

Gµν = ĥµν +
1√
2
b̂µν , (4.16)

where, as before, ĥ and b̂ are the canonically normalized supergravity fields. Thus

we obtain the graviton coupling

AD1-D5
gra = −2

√
2πVu

LT∫
0

dv̂e−ik·f(v̂)kl
[
− 2ĥujvujl − 2ĥvjvvjl (4.17)

− 4 ĥjv vujl|ḟ(v̂)|2 + 4 ĥij vuilḟj(v̂) + 2 ĥvv vvilḟ
i(v̂) + 2 ĥuv vuilḟ

i(v̂)
]

and the B-field coupling

AD1-D5
B = −2πVu

LT∫
0

dv̂e−ik·f(v̂)kl (4.18)

×
[
− 4 b̂jv vujl|ḟ(v̂)|2 + 4 b̂ij vuilḟj(v̂) + 2 b̂uv vuilḟ

i(v̂)
]
.

4.2.2 R-R Amplitude

In the R-R sector the standard form for the massless closed string vertices is, in the

(−1/2,−1/2) picture,

W
(k)
R =

1

8
FÂB̂e−

ϕ
2 SÂ ei

k
2
·XL(z) e−

ϕ̃
2 S̃B̂ ei

k
2
·XR(z̄) , (4.19)

where FÂB̂ contains the fields strengths F of the R-R fields. It can be expanded on

a basis of ten dimensional Gamma matrices and contains a 1, a 3 and a self-dual

5-form

FÂB̂ =
∑

n=1,3,5

1

n!
F (n)
µ1..µn

(C10Γµ1..µn(10) )ÂB̂ . (4.20)

The standard relation between the field strength F (n) and its U(1) gauge potentials

C(n−1) reads in momentum space as follows

F
(n)
I1..In

= n i k[I1 Ĉ
(n−1)
I2..In] . (4.21)
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The amplitude we next calculate is again (4.12), now with the R-R vertex (4.19)

inserted. The holomorphic and anti-holomorphic spin fields are identified via the

spinor representation of the reflection matrix (3.22); after this identification, one ob-

tains the same fermionic correlator, with four spin fields, of the two-charge case [36]

and so the modified reflection matrix brings all the new terms with respect to the

two-charge calculation.

Since the open string condensate µ̄(AµB) under consideration is invariant under the

SO(4) Lorentz group of the T 4 torus, we can restrict ourselves to SO(4) invariant

components of FÂB̂, which, by using the conventions of Appendix C, are FAB[α̇β̇] ,

FAB[αβ]. In addition the RR components FAB[αβ] can be discarded by noticing that

the only SO(6) singlet εABCDµ
Aµ̄B FCD[αβ] vanishes for the symmetric open string

condensate µ̄(AµB) we consider. As a result, the open string condensate under

analysis contributes only to the emission of

W ef
R =

1

8
(FR)ABεα̇β̇e−

ϕ
2 SA Sα̇ (z) e−

ϕ
2 SB Sβ̇(z̄) , (4.22)

with R = RD1 (or alternatively R = RD5) and where

FAB =
1

2 4!
F

(5)
Iabcd(C10ΓIabcd(10) )AB

α̇
α̇ +

∑
n=1,3,5

1

2n!
F

(n)
I1..In

(C10 ΓI1..In(10) )AB
α̇
α̇

= F
(5)
I5678(C ΓI)AB +

∑
n=1,3,5

1

n!
F

(n)
I1..In

(C ΓI1..In)AB . (4.23)

In the last line above we have used the facts that Γ5678
(10) = −Γ33̄44̄

(10) = 1(6) ⊗ (−γND)

and that −γND is 1 on the indices α̇ (see (C.3)). Lorentz invariance again fixes the

form of AR up to a constant calculated in [36], giving

AD1-D5
R =

iπ

2
Vu

LT∫
0

dv̂ e−ik·f(v̂)µ̄A(C−1FR0C
−1)AB µ

B , (4.24)

where R0 is the SO(1, 5) part of the spinorial reflection matrix R given in (3.22),

i.e.

R0 =
1

2
Γuv + ḟ i(v)Γiv . (4.25)

The couplings coming from the 1
2
Γuv term are the two-charge D1-D5 contributions;

these were calculated in [36] and contribute first at order 1/r3. The terms coming

from the ḟ i(v)Γiv term are new D1-D5-P terms and contribute first at order 1/r4.

Expanding the amplitude in terms of the R-R gauge potentials using (4.23) and

(4.21) we find the following coupling to the canonically normalized R-R potentials:

AD1-D5
R = 4πVu

LT∫
0

dv̂ e−ik·f(v̂)kl

[
(Ĉ(2))vj vvlj − (Ĉ(2))uj vulj
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− 2Ĉ(0) vulj ḟ
j(v̂) + (Ĉ(2))uv vulj ḟ

j(v̂)− 2(Ĉ(2))ij
(
vuli ḟ

j(v̂)− vulj ḟ i(v̂)
)

− 2(Ĉ(4))5678 vulj ḟ
j(v̂) + (Ĉ(4))uvij

(
vuli ḟ

j(v̂)− vulj ḟ i(v̂)
)]

(4.26)

where the first line is the two-charge D1-D5 contribution, and the other terms are

the new D1-D5-P contributions, which vanish in each of the two-charge limits.

4.3 Geometry from string amplitudes

We now use the amplitudes calculated in the previous section to read off the cou-

plings with the canonically normalized fields and then to derive the geometric back-

reaction of the microstate at large distances. As usual the couplings between the

D-brane configuration and the perturbative states is given simply by the first vari-

ation of the string amplitude

ĥµν =
1

2

δANS

δĥµν
(µ < ν) , ĥµµ =

δANS

δĥµµ
(no sum over µ) , (4.27)

b̂µν =
δANS

δb̂µν
(µ < ν) , Ĉ(n)

µ1...µn
=

δAR

δĈ(n)µ1...µn
(µ1 < µ2 . . . < µn) , (4.28)

where all the fields are set to zero after the variations. The NS-NS amplitude is the

combination of the results in (4.7), (4.9) and (4.15), plus higher order corrections

ANS =
1

V4Vu2πR

(
AD1

NS +AD5
NS +AD1−D5

NS + . . .
)
, (4.29)

where the prefactor is needed to cancel the volume of the directions where the

momentum of the emitted closed string is set to zero. A similar equation holds in

the R-R sector where one must combine (4.10), (4.11) and (4.26).

If we indicate with aµ1...µn(k) a generic coupling appearing in (4.27) and (4.28),

then the we can derive the geometric backreaction of the configuration by sewing

a standard propagator −i/k2 and then taking the Fourier transform to rewrite the

result in configuration space,

aµ1...µn(x) =

∫
d4k

(2π)4

(
− i

k2

)
aµ1...µn(k) eik·x . (4.30)

A common feature of the string couplings derived in the previous section is the

presence of a f -dependent exponential factor (e−ik·f ), which combines with the eik·x

Fourier transformation. Thus the contributions of Section 4.1 and of 4.2 will involve

the following integrals (4.31) and (4.32) respectively,∫
d4k

(2π)4

(
− i

k2

)
eik

i(xi−f i) =
−i
4π2

1

|xi − f i|2
, (4.31)∫

d4k

(2π)4

(
− i

k2

)
kleik

i(xi−f i) =
1

2π2

xl − f l

|xi − f i|4
(4.32)
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where in the above we have used the abuse of notation

|xi − f i|2 =
4∑
i=1

(xi − f i)2 . (4.33)

We now wish to compare the string result with the ansatz of Section 2, so we must

change from the canonically normalized (hatted) fields which have propagators 1/k2

to the fields appearing in the supergravity action

g = η + 2κĥ , B =
√

2κb̂ , φ =
√

2κφ̂ , C(n) =
√

2κĈ(n) . (4.34)

We then use Eqs. (4.7), (4.9) and (4.17) in Eq. (4.30) to derive the metric induced

by our D-brane configuration. We thus obtain the following dilaton and metric

components (in the Einstein frame):

eφ = 1 +
1

LT

LT∫
0

(Q1 −Q5)

2|xi − f i|2
dv̂ , (4.35)

guj =
1

LT

LT∫
0

vulj
xl − f l

|xi − f i|4
dv̂ , (4.36)

gvj =
1

LT

LT∫
0

[
xl − f l

|xi − f i|4
(
vvlj + 2|ḟ i|2vulj

)
− (Q1 +Q5)ḟj
|xi − f i|2

]
dv̂ , (4.37)

gij = δij

1 +
1

LT

LT∫
0

(Q1 + 3Q5)

4|xi − f i|2
dv̂

 (4.38)

− 2

LT

LT∫
0

(
ḟj(x

l − f l)
|xi − f i|4

vuli +
ḟi(x

l − f l)
|xi − f i|4

vulj

)
dv̂

gab = δab

1 +
1

LT

LT∫
0

(Q1 −Q5)

4|xi − f i|2
dv̂

 (4.39)

guv = −1

2
+

1

LT

LT∫
0

(3Q1 +Q5)

8|xi − f i|2
dv̂ − 1

LT

LT∫
0

vulj
ḟ j(xl − f l)
|xi − f i|4

dv̂ , (4.40)

gvv =
1

LT

LT∫
0

[
−2vvlj

ḟ j(xl − f l)
|xi − f i|4

+
(Q1 +Q5)|ḟ j|2

|xi − f i|2

]
dv̂ (4.41)

where in order to make the equations more readable, we have absorbed some factors

in the µ̄µ condensate

vIJK = − 2
√

2nwκ

πV4

vIJK (4.42)
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and we have introduced the standard combinations Q1 and Q5,

Q1 =
nwτ1κ

2

2π2V4

=
(2π)4gsα

′3nw
V4

, Q5 =
nwτ5κ

2

2π2
= α′gsnw . (4.43)

In the above, if we set to zero the condensate vIJK for the open string stretched

between the D1 and the D5 branes we recover the a linear combination of two-

charge solutions D1/P and D5/P, as already verified in [41]. Another limit consists

of switching off the momentum charge by setting f = 0. In this case we recover the

solutions appropriate for the two-charge microstates D1/D5. Of particular interest

are the new contributions that vanish in both limits.

In order to obtain the large distance behaviour of the supergravity fields listed above,

it is sufficient to expand the denominators for xi � f i. Some of the leading contribu-

tions vanish because of the periodicity of the profile, which implies
∫ LT

0
f i(v̂)dv̂ = 0

meaning that the first non-trivial corrections are proportional to the moment of the

wave
∫ LT

0
ḟ if jdv̂ . As discussed in some details at the beginning of this section, the

1/r4 behaviour obtained in this way should be universal for all microstates which

have the same momentum profile on the D1 and the D5-branes. Here we decided to

keep the exact dependence on f i, as it follows from the string computation, since

these formulae are relevant for a smaller class of microstate where the condensate

vIJK is small (or in other words, states which are localized near the origin of the

classical Higgs branch). This information will provide a useful guide when general-

izing the perturbative 1/r expansion to a full non-linear supergravity solution. For

this reason, in the following, we will keep the exact dependence of the string results

on the momentum profile.

In a similar way, from Eq. (4.18) we obtain the non-zero components of the B-field:

Bvj =
2

LT

LT∫
0

|ḟ |2 vujl
xl − f l

|xi − f i|4
dv̂ , (4.44)

Bij = − 2

LT

LT∫
0

(
vuli

ḟj(x
l − f l)

|xi − f i|4
− vulj

ḟi(x
l − f l)

|xi − f i|4

)
dv̂ , (4.45)

Buv = − 1

LT

LT∫
0

vulj
ḟ j(xl − f l)
|xi − f i|4

dv̂ . (4.46)

Notice that all these contributions are new in the sense that they disappear in the

two-charge limits where either f i or vIJK are set to zero. On the contrary we have

seen that the dilaton does not receive such new contributions from the mixed disk

diagram in Figure 1.

Following the same approach with the R-R fields, we use Eqs. (4.10), (4.11) and (4.26)
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in Eq. (4.30) to derive the backreaction of the microstate under analysis in this sec-

tor. We find the nonzero R-R fields:

C(0) =
2

LT

LT∫
0

vulj
ḟ j(xl − f l)
|xi − f i|4

dv̂ , (4.47)

C
(2)
vj =

1

LT

LT∫
0

[
−vvlj

xl − f l

|xi − f i|4
+Q1

ḟj
|xi − f i|2

]
dv̂ , (4.48)

C
(2)
uj =

1

LT

LT∫
0

vulj
xl − f l

|xi − f i|4
dv̂ , (4.49)

C(2)
uv =

1

LT

LT∫
0

[
−vulj

ḟ j(xl − f l)
|xi − f i|4

+
Q1

2|xi − f i|2

]
dv̂ , (4.50)

C
(2)
ij =

2

LT

LT∫
0

[
vuli

ḟj(x
l − f l)

|xi − f i|4
− vulj

ḟi(x
l − f l)

|xi − f i|4

]
dv̂ , (4.51)

C
(4)
uvij = − 1

LT

LT∫
0

[
vuli

ḟj(x
l − f l)

|xi − f i|4
− vulj

ḟi(x
l − f l)

|xi − f i|4

]
dv̂ , (4.52)

C
(4)
5678 =

2

LT

LT∫
0

vulj
ḟ j(xl − f l)
|xi − f i|4

dv̂ , (4.53)

C
(6)
vj5678 =

Q5

LT

LT∫
0

ḟj
|xi − f i|2

dv̂ , (4.54)

C
(6)
uv5678 =

1

LT

LT∫
0

Q5

2|xi − f i|2
dv̂ . (4.55)

In the next section we read off from these fields the string contribution to the fields

parameterizing the supergravity ansatz of Section 2.

5 Comparison to supergravity

We will now verify that the fields derived from the string amplitudes satisfy the

supergravity constraints obtained in Section 2.

The supergravity analysis was performed in the large r limit, keeping only terms

up to order 1/r4. One should thus apply the supergravity equations to the large
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r expansion of the string results of the previous section. It turns out, however,

that one can keep the full r dependence of the string results and still satisfy4 the

approximate supergravity equations of Section 2. This is what we will show in the

following. We remind the reader that full r dependence of the supergravity fields is

meaningful in describing the small gsN and small vIJK limit, i.e. the weak gravity

regime and the region of the Higgs branch infinitesimally close to its intersection

with the Coulomb branch. If one is interested in the full black hole regime (large

gsN and finite vIJK), one should keep only the large r limit (up to 1/r4 order) of

the results we present below.

In order to make equations more compact, it is useful to define the the following

integrals

I =
1

LT

∫ LT

0

dv̂
1

|xi − f i|2
, Ĩ =

1

LT

∫ LT

0

dv̂
|ḟ j|2

|xi − f i|2
, Ij =

1

LT

∫ LT

0

dv̂
ḟj

|xi − f i|2
.

(5.1)

The properties

∂2
i I = ∂2

i Ĩ = ∂2
i Ij = 0 , ∂i Ii = 0 (5.2)

easily follow from the definitions above and the fact that fi(v̂) is a periodic function.

We first extract from the string results of Section 4 the metric functions used to

parameterize the general supergravity ansatz of Section 2 and then verify that they

obey the constraints from supersymmetry and the equations of motion. In doing

this we will only keep terms up to first order in the condensate vIJK and in the Q1

and Q5 charges.

As the supergravity ansatz is given in the string frame, it is useful to translate the

string results for the metric, given in Einstein frame, into string frame. At our order

of approximation, if we denote by ηµν +hµν and by gµν the string frame and Einstein

frame metrics, one has

ηµν + hµν = gµν +
1

2
ηµν φ . (5.3)

From eqs. (4.35)-(4.41), one then finds that the world-sheet prediction for the metric

4This happens because the approximate constraints of Section 2 are valid up to terms of second

order in the condensate vIJK and thus in the same approximation in which the string results have

been derived.
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in string frame is

huj = −1

2
vulj ∂lI , (5.4)

hvj = −1

2
vvlj ∂lI − vulj ∂lĨ − (Q1 +Q5) Ij , (5.5)

hij =
1

2
(Q1 +Q5) I δij + vuli ∂lIj + vulj ∂lIi , (5.6)

hab =
1

2
(Q1 −Q5) I δab , (5.7)

huv =
1

4
(Q1 +Q5) I +

1

2
vulk ∂lIk , (5.8)

hvv = vvlk ∂lIk + (Q1 +Q5) Ĩ . (5.9)

We should also dualize the RR 6-form computed on the string side into a 2-form:

C(6) = Q5

(1

2
I du ∧ dv + Ii dv ∧ dxi

)
∧ dz4 ⇒

dĈ(2) = − ∗ dC(6) = Q5 εijkl (∂lI dxk + ∂kIl dv) ∧ dxi ∧ dxj . (5.10)

One can check that, thanks to (5.2), the forms

εijkl ∂lI dxi ∧ dxj ∧ dxk and εijkl ∂kIl dxi ∧ dxj (5.11)

are d-closed, and hence one can define a 2-form 1
2
Îij dxi ∧ dxj and a 1-form Îi dxi

such that

d
(1

2
Îij dxi∧dxj

)
= εijkl ∂lI dxi∧dxj∧dxk , d(Îi dxi) = εijkl ∂kIl dxi∧dxj . (5.12)

Then the dual of C(6) is

Ĉ(2) = Q5

(1

2
Îij dxi ∧ dxj − Îi dv ∧ dxi

)
. (5.13)

This gives additional contributions to the C
(2)
vj and C

(2)
ij of eqs. (4.48),(4.51) , so that

in total one has

C
(2)
vj =

1

2
vvlj ∂lI +Q1 Ij −Q5 Îj , (5.14)

C
(2)
ij = −vuli ∂lIj − vulj ∂lIi +Q5 Îij . (5.15)

We can now compute the various metric coefficients that appear in the supergravity
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ansatz (2.1), (2.3), (2.6) :

Z1 = 1 + 2huv + haa = 1 +Q1 I + vulk ∂lIk , (5.16)

Z2 = 1 + 2huv − haa = 1 +Q5 I + vulk ∂lIk , (5.17)

Z3 = 1 + hvv = 1 + (Q1 +Q5) Ĩ + vvlk ∂lIk , (5.18)

a3 = −2hui dx
i = vuli ∂lI dxi , (5.19)

k = −(hui + hvi) dx
i =
[
(Q1 +Q5) Ii +

1

2
(vuli + vvli) ∂lI + vuli ∂lĨ

]
dxi,(5.20)

ds2
4 = (δij + hij − 2hvu δij) dx

idxj

= [δij + vuli ∂lIj + vulj ∂lIi − δij vulk ∂lIk] dxidxj , (5.21)

D = e2φ = 1 + (Q1 −Q5) I , (5.22)

b0 = −2Buv = −vulk ∂lIk , (5.23)

b1 = (Bui −Bvi) dx
i = vuil ∂lĨ dxi , (5.24)

b̃1 = −(Bui +Bvi) dx
i = vuil ∂lĨ dxi , (5.25)

b2 =
1

2
Bij dx

i ∧ dxj = vuli ∂lIj dxi ∧ dxj , (5.26)

c = C(0) = −vulk ∂lIk , (5.27)

Z̃1 = 1 + 2C(2)
uv = 1 +Q1 I + vulk ∂lIk , (5.28)

a1 = (−hui − hvi + C
(2)
ui − C

(2)
vi ) dxi = Q5 (Ii + Îi) dxi + vuli ∂lĨ dxi , (5.29)

ã1 = (hui − hvi − C(2)
ui − C

(2)
vi ) dxi = Q5 (Ii + Îi) dxi + vuli ∂lĨ dxi , (5.30)

γ̃2 =
1

2
C

(2)
ij dxi ∧ dxj =

1

2
Q5 Îij dxi ∧ dxj − vuli ∂lIj dxi ∧ dxj , (5.31)

f = C
(4)
5678 = −vulk ∂lIk . (5.32)

Finally we need to derive the 0-forms b̃0 and Z̃2 defined in (2.5). One has

db̃0 = − ∗4 db2 = − ∗4 (vuli ∂k∂lIj dxi ∧ dxj ∧ dxk) = −εmijk vuli ∂k∂lIj dxm

=
1

2
εmijk εlipq vupq ∂k∂lIj dxm

= vujk ∂k∂lIj dxl + vukl ∂k∂jIj dxl + vulj ∂k∂kIj dxl

= −d(vulk ∂lIk) ⇒ b̃0 = −vulk ∂lIk , (5.33)

where we have used the anti-self-duality of vuij and the properties (5.2) of Ii. Sim-

ilarly one finds that

dZ̃2 = − ∗4 dγ̃2 ⇒ Z̃2 = 1 +Q5 I + vulk ∂lIk , (5.34)

where we have picked the solution for Z̃2 that goes to 1 at infinity, and have used,

to derive the Q5-proportional term, the definition (5.12) of Îij.

We now have all the ingredients to verify the supergravity constraints. The equalities

Z̃1 = Z1, Z̃2 = Z2, D = Z1

Z2
, b0 = b̃0 = c = f , ã1 = a1, b̃1 = b1 are evidently satisfied
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by the metric coefficients listed above. The self-duality condition da3 = ∗4da3 follows

from anti-self-duality of vuij and the fact that I is harmonic (5.2):

∗4 da3 = ∗4(vuli ∂j∂lI dxj ∧ dxi) =
1

2
εkmji vuli ∂j∂lI dxk ∧ dxm

= −1

4
εkmji εlipq vupq ∂j∂lI dxk ∧ dxm

= −1

2
(2 vumj ∂j∂kI dxk ∧ dxm + vukm ∂j∂jI dxk ∧ dxm)

= da3 . (5.35)

The proof of the self-duality of db1 is identical, with the replacement I → Ĩ. The

same identity, plus the definition of Îi (5.12), shows that da1 is self-dual. The fact

that Z1, Z2, Z3, b0 and k are harmonic follows from the harmonicity of I, Ĩ, and Ii
(5.2). We are left to show that the 4D metric ds2

4 given in (5.21) is hyper-Kahler:

this also follows from anti-self-duality of vuij and the properties of Ii, and we give

the details of the proof in Appendix D.

The supergravity ansatz of Section 2 reduces to the class of supergravity solutions

that have been used in the literature [13] to describe black hole microstates when

b0 = b̃0 = c = f = 0 and b1 = b̃1 = 0. We have seen that the string amplitude

computation predicts that the class of D-brane configurations with equal D1 and

D5 profiles emits non-zero values of these latter fields, and thus cannot be described

by the existing microstate geometries. The fields b1 and b0 (that first appear at

order 1/r3 and 1/r4, respectively) represent new types of dipole and quadrupole

moments, proportional to both the D1-D5 vev vuij and the derivative of the string

profile ḟi, and thus vanish when any one of the three charges vanishes. This is in

contrast with the three types of dipole moments of the existing microstate solutions,

each of which survives in one of the three 2-charge limits. Since the new multipole

moments involve all three charges, it is difficult to use dualities to relate them to

a simpler system, as can be done for the moments involving only two charges at

a time. Another interesting outcome of our calculation is that it predicts that the

4D base metric ds2
4, which is simply the flat metric on R4 in the 2-charge case, is a

non-trivial hyper-Kahler metric when all three charges are non-vanishing. The non-

flatness of the base metric for 3-charge microstate geometries was already noted in

the particular solution of [31], and it had remained until now a largely unexplained

phenomenon. It is nice to see that our approach neatly predicts this feature.

6 Discussion

In this paper we showed how to extract information on the geometrical backreac-

tion of D-brane bound states, in the regime of finite gravitational coupling, from

30



perturbative string amplitudes. The string amplitudes of interest involve both open

and closed strings; the open strings determine the state of the D-brane configura-

tion and the closed strings specify the supergravity field under consideration. The

most interesting contributions come from disk amplitudes that mix different types

of boundary conditions, in a spirit very similar to the stringy description of classi-

cal gauge instantons of [56]. In this setup, the open strings stretched between the

instantonic and the physical branes are part of the instanton moduli and so the

physical observables are obtained after integrating over these fields. For instance,

recently [57] considered a N = 2 superconformal setup and derived the backreac-

tion on the axion-dilaton field due to the presence of D(−1)-branes. As seen in the

two-charge cases [36, 41], in our construction the open string vevs contain the data

specifying the microstate and no integration over the open string fields is necessary.

We saw that also the gravitational couplings of three-charge microstates are deter-

mined by the open string data, which in our case are encoded by the functions f i(v̂)

and the condensate vIJK . Once these couplings are derived from string theory, the

leading gravitational backreaction is obtained by solving the free bulk equations of

motion. As a consistency check, we also showed explicitly that the bulk configura-

tions derived in this way are consistent with the type IIB equations of motion and

preserve four supersymmetries, at least up to fourth order in the 1/r expansion.

The results presented in this paper focus on a particular class of three-charge bound

states which has a simple world-sheet description, as described in Section 3.4. Most

likely a typical microstate of the D1-D5-P system will not be in this class of configu-

ration. In addition, our result about the large distance behaviour of the supergrav-

ity fields are non-trivial only if the wave profile is slowly varying and its moments,

such as
∫ LT

0
ḟ if jdv̂, are sizable. Again this is certainly not the case for a generic

microstate, where the direction (in the R4) of the modes of the profile will be ran-

domly distributed. As usual we hope to learn something about the backreaction of

a typical microstate, even if we start by focusing on an atypical case described by

semiclassical data such as the profile functions f i.

It is interesting to notice that the simplicity at the microscopic level is not reflected

in a particularly compact supergravity solution. On the contrary, the geometric

backreaction for a D1 and D5-brane bound state with equal oscillations contains

new types of multipole moments that do not appear in the class of 1/8-BPS solu-

tions studied in [20]. In discussing the regime of validity of our perturbative string

calculation, we have given our reasons for believing that this more general type of

asymptotic behavior applies also to states deep in the Higgs branch and for large

gsN .

It would be of course interesting to see whether we can engineer a D-brane config-

uration which emits only the fields excited in the ansatz of [20]. In our case, this
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would require to switch off all fields in Section 4 proportional to vujlḟ
j∂l(1/r

2). For

instance this would happen if the profile function f i were made of two disconnected

circles in the (x1, x2) and (x3, x4) planes, but this is not an allowed configuration

for a microstate. It does not seem to be simple to satisfy this requirement with an

allowed profile. This also means that the microstate solutions [30] are not described

by our D-brane configurations.

By extrapolating our solution to the case where the profile functions on the D1

and D5 branes are different, one may write an educated guess for the structure of

a configuration where fD1 is a circle in the (x1, x2) plane and fD5 is given by the

same circle but now in the (x3, x4) plane. It is possible that this is the D-brane

configuration whose backreaction reduces to the ansatz in [20]. However, in order

to analyze explicitly this case, we need first to derive the possible states for an open

string stretched between D1 and D5 branes with different profiles.

Another interesting future line of development is to keep focusing on the class of

configurations analyzed in this paper and derive a full non-linear ansatz solving the

type IIB supersymmetry variations and equations of motion. The final goal would

be to extend the relations (5.16)-(5.32) to all orders in the condensate vIJK . The

recent proposal of [47], that associates three-charge bound state configurations with

functions of two variables, would suggest that the all-order form of the expressions

(5.16)-(5.32) could be represented in terms of integrals of the type appearing in

Eq. (5.1), but with the profile f i(v̂) replaced by a function of two variables. If this

program could be completed, it would represent a major development towards the

construction of a family of geometries with enough degrees of freedom to encode for

the full entropy of the three-charge black hole.

A more immediate step towards this goal would be to focus on the subclass of config-

urations with two axial symmetries. Work in progress indicates that exact solutions

within this class can be constructed and it would be very interesting to study the

simplest explicit solution of this ansatz. This configuration could play the role the

solution in [30] played for the ansatz [20]. An analysis of the “near-horizon” limit

of such a solution has the potential to provide, via the AdS/CFT correspondence,

further evidence that we are really considering the geometrical backreaction of a

three-charge microstate.
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A Constraints from supersymmetry

A.1 Killing spinor equations

In our conventions the supersymmetry variations of the gravitino and dilatino in

IIB theory, in units where κ = 1, are

δψM =

(
∇M −

i

2
QM

)
ε+

i

192
ΓM1...M4F

(5)
M1...M4M

ε (A.1)

− 1

96
GNPQΓ NPQ

M ε∗ +
9

96
GMNPΓNP ε∗ ,

δλ = iΓMPMε
∗ +

i

24
GMNPΓMNP ε , (A.2)

where

P =
i

2
eφdC(0) +

1

2
dφ,

Q = −1

2
eφdC(0),

G = ieφ/2
(
τdB − dC(2)

)
,

τ = C(0) + ie−φ .

(A.3)

We take the supersymmetry parameter ε to satisfy the chirality condition

Γ0y12345678 ε = ε , (A.4)

where 1, 2, 3, 4 are the directions of R4 and 5, 6, 7, 8 the T 4 directions. Correspond-

ingly F (5) satisfies F (5) = ∗F (5), where the star operation is defined using the ori-

entation ε0y12345678 = 1. We are using a base in which the 10D gamma matrices are

purely imaginary, in which case the conjugate ε∗ of ε is simply given by complex

conjugation: ε∗ = ε1−iε2, with ε = ε1+iε2 and ε1, ε2 real spinors. We will denote the

R4 coordinates by i, j, . . . = 1, 2, 3, 4 and the T 4 coordinates by a, b, . . . = 5, 6, 7, 8.

A.2 Vielbeins, spin connection and gauge fields

To explicitly write the Killing spinor equations one needs the vielbeins and spin

connection of the Einstein frame metric (ds2
E = e−φ/2ds2) and the gauge fields for

the general ansatz specified in section 2. We give these data below, keeping only the

terms that contribute to the large distance expansion up to order 1/r4.

The vielbeins are

et =
1

(Z1Z2)1/4Z
1/2
3 D1/8

(dt+ k) , ey =
Z

1/2
3

(Z1Z2)1/4D1/8

(
dy + dt− dt+ k

Z3

+ a3

)
,

ei =
(Z1Z2)1/4

D1/8
ei , ea =

(Z1

Z2

)1/4 1

D1/8
dxa , (A.5)
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with ei the vielbeins of the metric ds2
4. The non-trivial components of the spin

connection are

ωti =
D1/8

(Z1Z2)1/4

(1

4
∂i logZ1 +

1

4
∂i logZ2 +

1

2
∂i logZ3 +

1

8
∂i logD

)
et

+
1

2

D1/8

(Z1Z2)1/4
∂i logZ3 e

y − 1

2
(∂ikj − ∂jki) ej ,

ωty =
1

2

D1/8

(Z1Z2)1/4
∂i logZ3 e

i ,

ωyi =
D1/8

(Z1Z2)1/4

(
−1

4
∂i logZ1 −

1

4
∂i logZ2 +

1

2
∂i logZ3 −

1

8
∂i logD

)
ey

+
1

2

D1/8

(Z1Z2)1/4
∂i logZ3 e

t +
1

2
(∂ia3j − ∂ja3i − ∂ikj + ∂jki) e

j ,

ωij =
D1/8

(Z1Z2)1/4

(1

4
∂j logZ1 +

1

4
∂j logZ2 −

1

8
∂j logD

)
ei − (i↔ j)

+
1

2
(∂ikj − ∂jki) et −

1

2
(∂ia3j − ∂ja3i − ∂ikj + ∂jki) e

y + ωij ,

ωai =
D1/8

(Z1Z2)1/4

(1

4
∂i logZ1 −

1

4
∂i logZ2 −

1

8
∂i logD

)
ea , (A.6)

where ωij is the spin connection of ds2
4.

The gauge fields are

P =
i

2
∂ic e

i +
1

4

D1/8

(Z1Z2)1/4
∂i logD ei , (A.7)

Q = −1

2
∂ic e

i , (A.8)

G = −i
(
i∂ib0 +D5/8(Z1Z2)1/4 ∂iZ̃1

Z̃2
1

)
ei ∧ et ∧ ey

−i(−i∂ib1j + ∂ia1j − ∂ikj) ei ∧ ej ∧ ey

−i(−i∂ib̃1j + ∂iã1j + ∂ia3j − ∂ikj) ei ∧ ej ∧ et

−i εijkl
3!

(
−i∂lb̃0 +

D5/8

(Z1Z2)3/4
∂lZ̃2

)
ei ∧ ej ∧ ek . (A.9)

We will analyze below the constraints coming from imposing δψM = δλ = 0 order

by order in the 1/r expansion.
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A.3 Order 1/r2

At order 1/r2 the only non-trivial functions are Z1 = Z̃1, Z2 = Z̃2, Z3 and D =

Z1/Z2.5 At this order the dilatino equation δλ = 0 becomes

i(∂iZ1 − ∂iZ2) Γi ε∗ + ∂iZ1 Γity ε+
1

3!
εijkl ∂lZ2 Γijk ε = 0 . (A.10)

Requiring the coefficients of ∂iZ1 and ∂iZ2 to vanish separately gives

Γty ε1 = −ε2 , Γ1234 ε1 = −ε2 . (A.11)

No new constraint is imposed by the M = a components of the gravitino equation

δψM = 0. The M = t component of the gravitino equation is(3

4
∂iZ1 +

1

4
∂iZ2 + ∂iZ3

)
Γti ε+ ∂iZ3 Γyiε− i

4

1

3!
εjkli ∂iZ2 Γtjklε∗ + i

3

4
∂iZ1 Γiy ε∗ = 0 ,

(A.12)

and one has an equivalent equation from M = y. The Z1 and Z2 terms vanish

thanks to (A.11); the Z3 term implies:

Γtyε1 = ε1 , (A.13)

which together with (A.11) gives

ε2 = −ε1 . (A.14)

Finally the M = i components of the gravitino equation yield

∂iε+
1

4
∂iZ3 Γtyε+

1

16

(
∂jZ1 + 3∂jZ2

)
Γij ε+

i

16
(∂jZ1Γijtyε∗ − ∂iZ2Γ1234ε∗)

−i 3

16

(
∂iZ1Γtyε∗ +

1

2
εijkl∂jZ2 Γkl ε∗

)
= 0 . (A.15)

Using the constraints derived above, this equation reduces to a differential equation

for ε1, which is solved by

ε1 = Z
−3/16
1 Z

−1/16
2 Z

−1/4
3 ε0 , (A.16)

with ε0 a constant spinor.

In summary the spinor satisfies the projection conditions

Γtyε1 = ε1 , Γ1234ε1 = ε1 , Γ5678ε1 = ε1 , ε2 = −ε1 , (A.17)

where the third constraint follows from the previous ones and the chirality condition.

These constraints leave 4 independent components, corresponding to the supersym-

metries preserved by a 3-charge black hole. We can use these projection conditions

in the computation at order 1/r3.

5By reversing the sign of the RR fields, one could have also taken Z̃1 = −Z1 and Z̃2 = −Z2.

Sending all the RR fields to minus themselves and ε → ε∗ leaves the supersymmetry variations

(A.1), (A.2) invariant and constitutes a symmetry of the theory. Hence our choice is not restrictive.
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A.4 Order 1/r3

At order 1/r3 the only new constraints coming from supersymmetry are the ones

involving the 1-forms. We will analyze these new conditions in the following.

The real and imaginary parts of the dilatino equation, or the M = a components of

the gravitino equation, imply, after using (A.17):

(∂ia3j + ∂iã1j − ∂ia1j)Γ
ijε1 = 0 , (A.18)

and

(∂ib̃1j − ∂ib1j)Γ
ijε1 = 0 . (A.19)

Since the condition Γ1234ε1 = ε1 implies that

Γijε1 = −1

2
εijkl Γ

klε1 (A.20)

an equation of the form ωij Γijε1 = 0, for some 2-form ωij, requires that the anti-

self-dual part of ωij vanish, i.e. that ω = ∗4ω. Hence the two conditions above are

equivalent to

(1− ∗4)(da3 + dã1 − da1) = 0 , (1− ∗4)(db1 − db̃1) = 0 . (A.21)

In an analogous way, the M = t and M = y components of the gravitino equation

imply

(1− ∗4)(da1 + 3da3 + 3dã1) = 0 , (1− ∗4)(db1 + 3db̃1) = 0 , (A.22)

and

(1− ∗4)(dã1 − 3da3 + 3da1) = 0 , (1− ∗4)(db̃1 + 3db1) = 0 . (A.23)

Altogether these conditions require that all the 1-forms (apart from k) have self-dual

field strengths:

(1− ∗4)da1 = (1− ∗4)dã1 = (1− ∗4)da3 = (1− ∗4)db1 = (1− ∗4)db̃1 . (A.24)

Let us now consider the M = i components of the gravitino equation: the terms

involving the scalars give the same differential equation for ε found at order 1/r2,

and hence ε is given by an expression of the form A.16 even at 1/r3 order. The

terms involving the 1-forms can be simplified by the use of the identity

ωjk Γijkε1 = −2ωij Γjε1 , (A.25)

valid for any self-dual 2-form ωij if Γ1234ε1 = ε1. Then the real and imaginary parts

of the M = i gravitino equation give

(∂[iã1j] − ∂[ia1j]) Γjε1 = 0 , (A.26)

and

(∂[ib̃1j] − ∂[ib1j]) Γjε1 = 0 , (A.27)

which imply

a1 = ã1 , b1 = b̃1 . (A.28)

36



A.5 Order 1/r4

The equations for the 1-forms are unchanged at order 1/r4, therefore we will only

discuss the scalar and 4D metric sector below.

The conditions following from the real and imaginary part of the dilatino equation

are

∂i logD −D1/2
(

(Z1Z2)1/2∂iZ̃1

Z̃2
1

− (Z1Z2)−1/2∂iZ̃2

)
= 0 , (A.29)

2 ∂ic− ∂ib0 − ∂ib̃0 = 0 , (A.30)

and they imply, using the asymptotic conditions (2.7), that

D =
Z̃1

Z̃2

, c =
1

2
(b0 + b̃0) . (A.31)

The M = a gravitino equation gives

2 ∂i log
Z1

Z2

− ∂i logD −D1/2
(

(Z1Z2)1/2∂iZ̃1

Z̃2
1

− (Z1Z2)−1/2∂iZ̃2

)
= 0 , (A.32)

2 ∂if − ∂ib0 − ∂ib̃0 = 0 . (A.33)

Combining these conditions with the previous ones gives the further constraints

Z̃1

Z̃2

=
Z1

Z2

, f = c =
1

2
(b0 + b̃0) . (A.34)

The conditions following from the M = t gravitino equation are

2 ∂i log(Z1Z2) + ∂i logD −D1/2
(

3 (Z1Z2)1/2 ∂iZ̃1

Z̃2
1

+ (Z1Z2)−1/2 ∂iZ̃2

)
= 0 , (A.35)

2 ∂if + ∂ib̃0 − 3 ∂ib0 = 0 , (A.36)

and imply, together with the previous conditions,

Z̃1Z̃2 = Z1Z2 , b̃0 = b0 . (A.37)

The M = y gravitino equation introduces no new constraints.

In summary one has

Z̃1 = Z1 , Z̃2 = Z2 , b̃0 = b0 , c = f = b0 . (A.38)

In the M = i components of the gravitino equation the terms in ε of order 1/r4

contribute, and one thus has to consider the possibility that the relation ε1 = −ε2
be violated by order 1/r4 terms. Hence one can write

ε = (1− i)ε1 + iε̃2 , (A.39)
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where ε̃2 = O(r−4). The equations one gets after taking into account the identities

(A.38) are

D1/8

(Z1Z2)1/4

[
∂iε1 + ∂i log(Z

3/16
1 Z

1/16
2 Z

1/4
3 )ε1

]
− 1

2
∂iε̃2 +

1

4
ωjk,iΓ

jkε1 = 0 , (A.40)

and

∂iε̃2 + ∂ib0 ε1 = 0 . (A.41)

The second equation simply determines ε̃2 to be

ε̃2 = −b0 ε0 . (A.42)

The first equation determines ε1:

ε1 = Z
−3/16
1 Z

−1/16
2 Z

−1/4
3

(
1− 1

2
b0

)
ε0 + ε̃1 , (A.43)

with

∂iε̃1 +
1

4
ωjk,iΓ

jkε0 = 0 . (A.44)

The compatibility condition for the equation above is

∂[l ωjk,i]Γ
jkε0 = Rjk,li Γ

jkε0 +O(r−5) = 0 , (A.45)

where Rij,kl is the curvature of ds2
4. Remembering that Γ1234ε0 = ε0, the compati-

bility equation is equivalent to

Rij,kl =
1

2
εijrsRrs,kl , (A.46)

i.e. the metric ds2
4 is hyper-Kahler.

B Closed string vertices

In this appendix we summarize our conventions for the world-sheet CFT and discuss

some details of the closed string vertices used in the disk amplitudes of Section 4.

The holomorphic components of the string fields satisfy the standard OPE relations

∂Xµ(z)∂Xν(w) ∼ − 2α′ηµν

(z − w)2
, c(z)b(w) ∼ 1

z − w
, (B.1)

ψµ(z)ψν(w) ∼ ηµν

z − w
, γ(z)β(w) ∼ 1

z − w
,

where b, c (β, γ) are the usual (super)ghost fields, and the full closed string coordinate

xµ is given by xµ(z, z̄) = (Xµ(z) + Xµ(z̄))/2. The simplest form for the vertex

operator describing the emission of a massless NS-NS string state is

W
(−1,−1)
NSNS = Gµνψµe−ϕ ψ̃νe−ϕ̃eik·x , (B.2)
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where as usual the bosonic field ϕ(z) with background charge −2 and the fermionic

system (η, ξ) of conformal weight (1, 0) provide an equivalent description for the

superghost sector

γ ' eϕη , β ' ∂ξe−ϕ . (B.3)

The BRST charge is (we follow the conventions of [58])

QB =

∮
dz

2πi

{
c
(
TX + Tψ + Tβ,γ + (∂c)b

)
+ γ jX,ψ − bγ2

}
, (B.4)

where the (holomorphic parts of the) stress energy tensor and supercurrent are

TX(z) = − 1

4α′
∂Xµ∂Xµ , Tψ(z) = −1

2
ψµ∂ψµ , (B.5)

Tβ,γ(z) =
1

2
(∂β)γ − 3

2
β∂γ , jX,ψ(z) =

i√
2α′

ψµ∂Xµ . (B.6)

The vertex operators (4.13) and (B.2) are invariant under separate holomorphic and

antiholomorphic BRST variations, provided that we restrict to massless (k2 = 0)

and transverse (kµGµν = 0) states.

While we can use the RR vertices (4.19) directly in the string amplitudes we are

interested in, we need to discuss in more detail the NSNS vertices. First we must

separate the dilaton and the graviton parts of the polarization Gµν , then we must

find a representative for these state whose total (holomorphic plus antiholomorphic)

charge is −1, instead of −2.

The standard way to separate the dilaton and the graviton terms is to write the

symmetric part of G in two parts, with the dilaton contribution coming from the

part proportional to

εdil
µν = ηµν − kµ`ν − kν`µ , (B.7)

with `2 = 0 and `µk
µ = 1, and the graviton contribution coming from the terms

orthogonal to (B.7). However this requires a non-zero value for the momentum k

and requires one to choose explicitly the light-cone by fixing the null-vector `. A

covariant way to separate graviton and dilaton contributions is to choose different

BRST representative for their vertex operators. By following [59], it is possible to

show that for k2 = 0 the vertex operator

W
(−2)
dil =

(
ηµνψ

µe−ϕψ̃νe−ϕ̃ + cηc̃ ∂̄ξ̃e−2ϕ̃ − c∂ξe−2ϕc̃ η̃
)

eik·x (B.8)

is in the BRST-cohomology of QB + Q̃B
6 and for k 6= 0 is equivalent to the ver-

tex (B.2) with the dilaton polarization (B.7). Even if the vertex operator (B.8)

6Notice that (B.8) is not annihilated by QB and Q̃B separately; also the picture of this state

cannot be separated in its left and right moving part and is given by the sum of the eigenvalues of

the operator
∮

dz
2πi (ξη − ∂ϕ) and its anti-holomorphic analogue.
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seems rather complicated, the state obtained via the usual operator/state corre-

spondence is less so:

lim
z→0

W
(−2)
dil |0〉 =

(
ηµνc1ψ

µ

− 1
2

c̃1ψ̃
ν
− 1

2
+ c1γ− 1

2
c̃1β̃− 1

2
− c1β− 1

2
c̃1γ̃− 1

2

)
|k〉−1 |̃k〉−1 (B.9)

where |0〉 is the SL(2, C) invariant vacuum (annihilated by γr with r > 1/2 and

βs with s > −3/2), while the states labelled with −1 are annihilated by all su-

perghost oscillators with r, s ≥ 1/2. Notice that the state (B.9) appears generically

in the expansion of the NSNS part of the full boundary state (see for instance [60]),

supporting the claim that this is the form of the dilaton state to be used in disk

amplitudes without momentum flow in the Neumann directions.

For our purposes, we need to raise the picture of the vertex (B.8). Again we cannot

treat the holomorphic and the anti-holomorphic part separately and thus we have

to calculate W
(−1)
NSNS =

{
QB + Q̃B, (ξ + ξ̃)W

(−2)
NSNS

}
, which yields

W
(−1)
NSNS = ηµν

[
(∂Xµ − iα′ k ·ψ ψµ) ψ̃νe−ϕ̃ + ψµe−ϕ(∂̄Xν − iα′ k ·ψ̃ ψ̃ν)

]
cc̃ eik·x

+

√
α′

2

[
k ·∂(ψeϕ)cηc̃ ∂̄ξ̃e−2ϕ̃ − c∂ξe−2ϕk ·∂̄(ψ̃eϕ̃)c̃ η̃

]
eik·x . (B.10)

Let us consider what happens when this vertex is inserted in the amplitude (4.12).

Because of the structure of the open string condensate discussed in Section 3.5,

the only non-trivial contributions to this amplitude come from the terms in the

correlator that, after the identification of the left/right moving fields, contain three

ψ’s. Thus we can drop the second line as it is at most linear in ψ and focus on the

terms in the first line of (B.10). The first of such terms was discussed in Section 4.2,

so now we want to show that the second term, where the holomorphic part is in the

−1 picture and the antiholomorphic one in the zero picture, yields exactly the same

result.

The calculation of this term differs from the one discussed in Section 4.2 in two

respects: first we have to identify two anti-holomorphic fermionic fields and so we

clearly have contributions that are quadratic in the reflections matrix (3.6) or (3.7)

(again we can use either of these two matrices, as they are identical in the R1,5 which

is relevant for our purposes); then we have also to consider the non-linear nature

of the bosonic boundary conditions (3.5). We will show that the extra contribu-

tions which are related to these two new features compensate each other. Actually

this happens not just for the terms in the dilaton vertex (B.10), but for a generic

NS-NS state in the (−1, 0) picture. Thus the net result for the amplitude (4.12)

obtained from these NS-NS vertices is indeed identical to the contribution obtained

in Section 4.2 with the (0,−1) vertices.

A first way of obtaining three ψ’s in the correlator is to start from the term (ψ k ·ψ̃ ψ̃)

and apply the identification (3.4) twice. By using (3.6) or (3.7), we obtain from the
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reflection matrix contracted with the momentum k

k ·ψ̃ = −k ·ψ + 2k ·ḟ ψv . (B.11)

For the first term, one can follow exactly the same steps discussed in Section 4.2

and obtain the result in (4.14). Notice that the −1 present in the diagonal terms

Ri
i is compensated by the different ordering of the three fermionic fields. From the

second term in (B.11) we get a new contribution to the mixed disk amplitude which

reads

iα′
LT∫
0

dv̂ 2k ·ḟ (GR)ij v
ivje−ik·f(v̂) . (B.12)

If in this equation we take the f -independent part of the identification matrix,

then this is the integral, over a full period, of the derivative of a periodic function

f(v̂). Then the only non-trivial contribution from (B.12) is from the f -dependent

component Ru
i ,

(B.12) = −8iα′Giu

LT∫
0

dv̂ (k ·ḟ)ḟj v
ivje−ik·f(v̂) . (B.13)

Let us now focus on the contribution coming from ∂̄Xu. So far we neglected all terms

of this type because they did not give rise to correlators with the necessary three

insertions of the ψ-field. However this case is different and by using the non-linear

part of the identification in (3.5) we obtain

− 8α′Giu

LT∫
0

dv̂ f̈jv
ijve−ik·f(v̂) = −8iα′Giu

LT∫
0

dv̂ (k ·ḟ)ḟj v
ijve−ik·f(v̂) , (B.14)

where we integrated by parts the double derivative f̈ . This result cancels (B.13)

and this completes the proof of the equivalence between the vertices in (−1, 0) and

(0,−1) pictures.

C Spinor conventions

We use the spinor conventions of [36], which we record here for completeness.

In our conventions, the 10D Majorana-Weyl spinors ΘÂ satisfy Γ(10)ΘÂ = −ΘÂ,

where Γ(10) = Γ0
(10)Γ

y
(10)Γ

1
(10) . . .Γ

8
(10). These spinors decompose with respect to the

SO(1, 5)× SO(4) as

ΘÂ = {Θ α̇
A ; ΘAα} , (C.1)
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where upper and lower indices A,B, · · · = 1, . . . , 4 denote Weyl SO(1, 5) spinors of

opposite chirality; similarly α, α̇ = 1, 2 are Weyl spinor indices of opposite chirality

for the SO(4) group acting along the ND T 4 directions. We decompose the 10D

Gamma matrices as follows

Γa(10) = 1(6) ⊗ γa , ΓI(10) = ΓI ⊗ γND , (C.2)

where we use simply ΓI for the 6D Gamma matrices and

(γND)β̇α̇ = (
∏
a

γa)β̇α̇ = −δβ̇α̇ , (γND)βα = (
∏
a

γa)βα = δβα ,

(Γ) B
A = (

∏
I

ΓI) B
A = −δ B

A , (Γ)AB = (
∏
I

ΓI)AB = δAB . (C.3)

Instead of the 6D Gamma matrices, we will often use the chiral components such

as (CΓI1..I2n−1)AB, where C is the 6D charge conjugation matrix7 satisfying tΓI =

−CΓIC−1.

D Proof that the 4D base metric is hyper-Kahler

The form of the base metric ds2
4 predicted by the string theory computation is

ds2
4 =

(
δij + hij

)
dxidxj , (D.1)

with

hij = (vuli ∂lIj + vulj ∂lIi − δij vulk ∂lIk) , (D.2)

where the integral Ii has been defined in (5.1) and its properties are stated in (5.2).

At first order in hij the curvature of ds2
4 is

Rij,kl =
1

2

(
∂k∂jh̄il − ∂l∂jh̄ik − (i↔ j)

)
≡

(
(1)ij,kl + (2)ij,kl − (3)ij,kl − (i↔ j)

)
, (D.3)

where

(1)ij,kl ≡ vumi ∂k ∂j ∂m Il − (k ↔ l) , (D.4)

(2)ij,kl ≡ vuml ∂k ∂j ∂m Ii − (k ↔ l) , (D.5)

(3)ij,kl ≡ δil vumn ∂k ∂j ∂m In − (k ↔ l) . (D.6)

We want to compute 1
2
εklpq Rij,pq and prove that it is equal to Rij,kl. We will do it

term by term:

7C is related to the 10D and 4D charge conjugation matrices by C10 = C ⊗ C4.
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(1):

1

2
εklpq (1)ij,pq = εklpq vumi ∂p ∂j ∂m Iq = −1

2
εklpq εmirs vurs ∂p ∂j ∂m Iq , (D.7)

where we have used, in the second equality, the anti-self-duality of vuij. The product

of the two epsilon’s gives, up to the exchange of r and s that cancels the factor 1/2,

12 possible terms: the 3 terms proportional to δpm and the 3 terms proportional to

δqm vanish thanks to (5.2); the 2 terms proportional to δpi are symmetric in i, j and

hence cancel after anti-symmetrization in i, j; the 4 terms left give

1

2
εklpq (1)ij,pq =

(
vupl ∂p ∂j ∂k Ii − (k ↔ l)

)
−
(
δil vupq ∂p ∂j ∂k Iq − (k ↔ l)

)
= (2)ij,kl − (3)ij,kl , (D.8)

where the second equality follows from the first property in (5.2).

(2):

1

2
εklpq (2)ij,pq = εklpq vumq ∂p ∂j ∂m Ii = −1

2
εklpq εmqrs vurs ∂p ∂j ∂m Ii ; (D.9)

the contraction of the two epsilon’s produces, up to r and s exchange, 3 different

terms: the term with δpm vanishes due to (5.2), and the other 2 terms give

1

2
εklpq (2)ij,pq = vupl ∂p ∂j ∂k Ii = (2)ij,kl . (D.10)

(3):

1

2
εklpq (3)ij,pq = εklpq δiq vumn ∂p ∂j ∂m In = −1

2
εklpq εmnrs δiq vurs ∂p ∂j ∂m In ;

(D.11)

for the reasons explained above, of the 12 terms coming from the expansion of the

two uncontracted epsilon’s the ones containing δpm, δim or δpn vanish, leaving

1

2
εklpq (3)ij,pq = −

(
vupi ∂p ∂j ∂k Il − (k ↔ l)

)
+
(
vupl ∂p ∂j ∂k Ii − (k ↔ l)

)
= −(1)ij,kl + (2)ij,kl . (D.12)

Putting things together:

1

2
εklpq Rij,pq =

(
(2)ij,kl − (3)ij,kl + (2)ij,kl + (1)ji,kl − (2)ji,kl − (i↔ j)

)
= Rij,kl , (D.13)

which is the identity we wanted to prove.
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