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Exploring methods for mapping seasonal
population changes using mobile phone data

Data accurately representing the population distribution at the subnational level within countries

is critical to policy and decision makers for many applications. Call data records (CDRs) have

shown great promise for this, providing much higher temporal and spatial resolutions compared

to traditional data sources. For CDRs to be integrated with other data and in order to effectively

inform and support policy and decision making, mobile phone user must be distributed from the

cell tower level into administrative units. This can be done in different ways and it is often not

considered which method produces the best representation of the underlying population dis-

tribution. Using anonymised CDRs in Namibia between 2011 and 2013, four distribution methods

were assessed at multiple administrative unit levels. Estimates of user density per administrative

unit were ranked for each method and compared against the corresponding census-derived

population densities, using Kendall’s tau-b rank tests. Seasonal and trend decomposition using

Loess (STL) and multivariate clustering was subsequently used to identify patterns of seasonal

user variation and investigate how different distribution methods can impact these. Results show

that the accuracy of the results of each distribution method is influenced by the considered

administrative unit level. While marginal differences between methods are displayed at “coar-

ser” level 1, the use of mobile phone tower ranges provided the most accurate results for

Namibia at finer levels 2 and 3. The use of STL is helpful to recognise the impact of the

underlying distribution methods on further analysis, with the degree of consensus between

methods decreasing as spatial scale increases. Multivariate clustering delivers valuable insights

into which units share a similar seasonal user behaviour. The higher the number of prescribed

clusters, the more the results obtained using different distribution methods differ. However, two

major seasonal patterns were identified across all distribution methods, levels and most cluster

numbers: (a) units with a 15% user decrease in August and (b) units with a 20–30% user

increase in December. Both patterns are likely to be partially linked to school holidays and

people going on vacation and/or visiting relatives and friends. This study highlights the need and

importance of investigating CDRs in detail before conducting subsequent analysis like seasonal

and trend decomposition. In particular, CDRs need to be investigated both in terms of their area

and population coverage, as well as in relation to the appropriate distribution method to use

based on the spatial scale of the specific application. The use of inappropriate methods can

change observed seasonal patterns and impact the derived conclusions.
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Introduction

In an increasingly connected world, the need for accurate
contemporary information at high temporal resolutions has
become essential. Intra-annual information on the spatial

distribution of populations is crucial for a multitude of applica-
tions, including policy planning, resource allocation, transport
logistics, disease control and disaster management among many
others (Steenbruggen et al., 2015; Gaughan et al., 2016; Kraemer
et al., 2019; Ruktanonchai et al., 2020; Lai et al., 2020b). His-
torically, such data has been collected as part of smaller interviews
or surveys, which are limited by their spatial coverage and fre-
quency of collection (Jiang et al., 2017), whilst potentially biased
by recall errors (Palmer et al., 2013).

A full census overcomes the limited spatial coverage of smaller
surveys and provides essential information about populations.
However, census data has its own inherent limitations when used
for contemporary planning or assessing short-term human
mobility. The typical decadal temporal resolution introduces a
significant disadvantage, as the data are temporally fixed and so
becomes outdated and less representative of a given population
over time. In some countries, census collection can be more
irregular and suffer from an even lower temporal resolution
which enhances this problem. Beyond this, census data are unable
to appropriately assess human population dynamics throughout
the year or identify seasonal migration patterns (Davis et al.,
2013), which may be needed to provide the most appropriate
support to policy and decision makers.

In order to overcome some limitations of the census data, novel
sources of human mobility data have been utilised in recent years,
such as Global Positioning Systems (GPS) data, to monitor
people’s movements through space (Vazquez-Prokopec et al.,
2013; Tang et al., 2015; Siła-Nowicka et al., 2016). However, the
vast growth in ownership of mobile phones has come to the
forefront of modern mobility and migration research (Lai et al.,
2019b), most prominently in the form of call data records (CDRs)
which can cover much greater numbers of people than localised
GPS data. CDRs are recorded by carriers for billing purposes and
provide the timestamp and position of the base station being used
when subscribers make a call, send a text or access the internet
(Kanasugi et al., 2013; Wesolowski et al., 2013; Lai et al., 2019b),
which then associates the user with a certain tower location.

The ability of CDRs to accurately represent a country’s
population is therefore of interest to both researchers, decision
and policy makers, as it holds the potential to provide human
mobility information at higher spatial and temporal resolutions
than other data sources (Lenormand et al., 2015). This may allow
for events to be responded to more effectively, policies to be based
on up-to-date information, and distribution of resources to be
streamlined and made more efficient. CDRs have become
increasingly adopted to model population distribution (Deville
et al., 2014; zu Erbach-Schoenberg et al., 2016) and in mobility
research (Xu et al., 2017; Zufiria et al., 2018, Xiao et al., 2019;
Zhang et al., 2019; Lai et al., 2020a). Researchers have also used
CDRs to assess human mobility relationships with known
infectious disease transmission rates, understand connectivity
between regions, and inform elimination strategies (Frias-Marti-
nez et al., 2011; Tatem et al., 2014; Ruktanonchai et al., 2016),
which further highlights their potential value in complementing
more traditional data (Lai et al., 2019a). Some of the short-
comings of CDRs include the reluctance of many mobile network
providers to share their data. It can be a lengthy process to draw
up precise data agreements therefore most studies work with data
from just one provider. Furthermore, CDRs are generally biased
due to inhomogeneous market shares of providers (Salat et al.,
2020) and their sampling process which is by nature spatially and
temporarily non uniform and user dependent (Zufiria et al.,

2018). To protect users’ identities CDRs typically require anon-
ymising and aggregating. Aggregation is also needed to map the
mobile network to the specific units of interest. To be useful for
end users, such as decision and policy makers, CDRs must often
be related to statistical or administrative units (Fernández and
Wu, 2018; Midzi et al., 2018; Poel et al., 2018; Gwitira et al.,
2019). Choosing the most appropriate method for distributing the
mobile users from the cell tower level into administrative units is
therefore the necessary first step in most geographical analysis
relying on the use of CDR data. Indeed, it is likely that the chosen
distribution method impacts on how accurately the distribution
of the underlying population is represented; therefore although
particular consideration should be given to this step, in the
existing literature this is either overlooked or perhaps the decision
is made unconsciously due to lack of knowledge of alternative
methods. Whilst easy to implement distribution methods like
Point to Polygon allocation or Voronois tessellation are com-
monly used, a rising number of more complex methods based
around maximum likelihood estimation (Ricciato et al., 2017),
probabilistic models (Ricciato and Coluccia, Preprint) and signal
propagation methods (Koebe, 2020) are being increasingly
explored based on the rationale that more advanced and
sophisticated distribution methods lead to more accurate results.
Koebe (2020) compared Point to Polygon allocation and Vor-
onois tessellation with an augmented Voronois method where the
number of settlements within each Voronois were used as
weights. They also examined two different signal propagation
methods to estimate which towers are most likely to service the
different settlements. All five distribution methods were com-
pared both in a simulated country and in Senegal with real-world
data from 2013 which were used to estimate unemployment rates.
Koebe (2020) got mixed results with no single method con-
sistently outperforming the others. He concluded that while the
addition of auxiliary settlement data to inform the Voronois-
based distribution improved the model fit, it did not translate into
significant efficiency gains for the prediction of unemployment
rates. Equally, the value added from using signal propagation
methods was neglectable.

The question of what impact the chosen distribution method
has on subsequent analysis remains open. In this study we
explore the role of the spatial scale of the analysis by using CDR
data for Namibia and four methods to distribute user counts
from the cell tower level into three administrative unit levels:
regions, constituencies and enumeration areas. For each
administrative unit level, we compare the distributed users
obtained using the different distribution method with the cor-
responding observed population from the census to assess the
performance of distribution methods. While user densities of
each unit will never match the true population density, they can
be a useful proxy, especially if a strong correlation to a known
baseline can be demonstrated. This would also support the point
that such data may be used to further analyse the seasonal var-
iation of population distribution. As a potential use case of the
distributed user counts, we finally analyse the two methods that
match users best/worse for seasonal patterns and cluster them
into groups of similar seasonal behaviour. If the observed sea-
sonal patterns and clusters vary, we can conclude that the dis-
tribution methods impact outcomes.

Seasonal mobility derived from clustering of CDRs was
investigated extensively by Zufiria et al. (2018) on the example of
Senegal. They suggest an approach which uses individual trajec-
tory matrices to represent human mobility at the individual
(anonymised) level over one year. This allows for the detection of
mobility patterns through clustering of individual matrices at the
desired spatial and temporal scale. In this study, on the other
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hand, we show that seasonal patterns can still be derived even
when information on individuals’ location is not available. We
explore the use of seasonal and trend decomposition using Loess
(STL) on CDR data aggregated to administrative units and
months in combination with clustering techniques, which to the
best of our knowledge has not been done before.

Study area
Namibia is situated in Southern Africa with a population of just
above 2 million according to the 2011 census (Namibia Statistics
Agency, 2013). As Fig. 1 shows, Namibia is divided into 13
regions (level 1 divisions), 107 constituencies (level 2 divisions)
and 5473 enumeration areas (level 3 divisions). The average unit
size per level is shown in Table 1. The country has vast amounts
of arid land, resulting in clustering of its settlements and popu-
lation (Linard et al., 2012). Population density therefore varies
considerably; besides the capital Windhoek located in the Kho-
mas region in the centre of the country where 16% of the
population are located (Pendleton et al., 2014), the majority of
people live in the five northern regions of Omusati, Oshana,
Oshangwena, Oshikoto and Kavango (see also Fig. 1b). Urbani-
sation is an ongoing rapid process in Namibia, however, during
the time frame we are examining in this study the majority
of the population, namely 57%, was still living in rural areas

(Namibia Statistics Agency, 2015). The only known seasonal
population movements we are aware of were observed in a study
about the impact of seasonally varying population numbers on
disease incidence estimates by zu Erbach-Schoenberg et al. (2016)
and are based on the same CDR data as are used in our study.
They found a significant number of people travelling from the
capital to the relatively highly populated North of the country in
December and returning in January. Similar behaviour, despite at
a smaller magnitude, was observed during Easter.

Ownership of mobile phones in households has risen drama-
tically to 89% in 2013 and is higher in urban households (95%)
than in rural households (81%) according to the Namibia
Demographic and Health Survey (The Namibia Ministry of
Health and Social Services and ICF International, 2014). The two
main mobile network providers are Mobile Telecommunications
Limited (MTC) and the state owned Telecom Namibia Limited.

CDR and mobile phone tower data
CDR data was obtained from Mobile Telecommunications Lim-
ited (MTC), the leading mobile network provider in Namibia
with a market share of 76% for 2010–2012. Figure 2 shows cell
tower density at level 1 which mirrors the highly populated areas
in the capital and the North of the country. In order to comply
with the proprietor’s terms and conditions, details on tower

Fig. 1 Overview of Namibia and its divisions. a Administrative level 0 (country) with capital, b administrative level 1 (regions) with population density
derived from WorldPop (2018), c administrative level 2 (constituencies), d administrative level 3 (enumeration areas) (GADM, 2022; WordPop, 2018).

Table 1 Characteristics of administrative levels in Namibia.

Administrative unit level 1 (regions) 2 (constituencies) 3 (enumeration areas)

Number of units 13 107 5473
Average unit size (km2) 63,062 7661 153
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numbers and precise locations cannot be shared. However, since
the spatial scale plays a vital role in this study, the following gives
an indication of the relative difference of cell tower ratio per
administrative level: consider the average number of cell towers
per administrative unit at level 1 to be 100%, this percentage
drops substantially to 12.5% at level 2 and to only 0.2% at level 3.

The CDR data spans from October 2010 to April 2014 with a
total of 72 billion communications (zu Erbach-Schoenberg et al.,
2016), each containing an anonymised user ID, the date and time
of communication, and the cell tower ID through which the
communication was recorded. Mobile users are defined as SIM
cards, i.e. each unique anonymised identifier code in the con-
sidered CDRs is defined as a user. MTC also supplied approxi-
mated circular ranges of cell tower coverage, but no exact
information was given on antenna types, frequencies or output
power of base transmitter stations. The processing of the raw
CDR data was performed by and is described in detail in zu
Erbach-Schoenberg et al. (2016); following common practices in
literature, the home location of users was assigned to specific
cellular towers each day based on their night time location
resulting in the number of unique users per day per tower. In the
case of a user having no communications for a day, their last/next
known night time location was used instead. While the use of
night time location is a widely used home detection algorithm,
recent research has shown that it is very sensitive to parameter
choice, like the exact hours defining night time or the length of
observation (Vanhoof et al., 2018). Zu Erbach-Schoenberg et al.
(2016) defined night time to the hours between 8 p.m. and 6 a.m.
and finally derived daily and monthly user counts per tower
which are used in this study. Since CDR data are known to be
noisy, monthly counts provide the benefit over daily counts of
being sufficiently smoothed. While we will not be able to analyse
user movements on a finer temporal level, for example, weekly
movements linked to the working week or short-term events like
festivals, we believe that months are a useful temporal scale for
many policy purposes, for example planning for resource dis-
tribution or surveillance and control of infectious diseases.

Within this study, we used daily average user counts per month
as a proxy for monthly population distribution. For the temporal
analysis we wanted as complete a time series as possible to
minimise the risk of noise or outliers, however, due to incomplete
data in both 2010 and 2014 we decided to exclude these years in

order to eliminate data which may impact on subsequent quality
of analysis. This decision left us with three years’ worth of data
(2011, 2012, 2013) which fulfils the minimum criteria of three
complete temporal cycles to perform STL.

We calculated the number of days per month that each tower
was active to determine the tower’s daily average user count per
month. Some towers show clear periods of inactivity, possibly due
to towers undergoing repair works. We used the same approach
as Vanhoof et al. (2018) and Salat et al. (2020), who came across a
similar issue with CDR datasets in France and Senegal and
considered these towers as artefacts, therefore they were removed
from the analysis. In the absence of common practices we
regarded towers with an arbitrary activity level of less than
3 weeks per month (activity below 77%) as unrepresentative of
the month as they could potentially miss significant events which
may drive population movement. Such towers were hence
excluded from that year. Towers in rural areas are generally
harder to access for repair works and therefore likely to be
inactive for longer periods of time. Providing their location is
overlapped by an adjacent tower range, their counts were reas-
signed to the adjacent tower. If no overlap existed, the counts
were dropped to avoid misleading user count fluctuations driven
by tower inactivity.

In this manner a ‘stable’ set of towers was created for 2011,
2012 and 2013 individually, with the number of towers in each
month remaining identical throughout each year. Annual tower
sets were considered separately because more towers became
active over time as a result of expansion of the MTC network.
When comparing the number of towers in our annual stable sets
specifically, there is a 3% increase between 2011 and 2012, fol-
lowed by a 1% increase between 2012 and 2013. If just one ‘stable’
set were to be created for the whole time-series, this would
constrain the data to towers which have existed throughout the
three study years and ignore data from newly constructed towers
in later years. In addition, general growth in mobile phone
adoption over the 3-year period is likely to lead to rising user
counts, which the detrending algorithm of STL controls for (see
section “Analysis and statistical tests”, “Decomposition analysis”).

Population data
Three different population datasets, gathered from different
sources, were used for better estimating the MTC network cov-
erage in terms of population, and thus preliminary assessing how
well the CDR data from MTC can represent the distribution of
the underlying population during the whole study period. The full
2011 Namibia Population and Housing Census data was obtained
directly from the Namibia Statistics Agency. The official census
date is 28 August but the actual enumeration exercise was
undertaken over a period of about three weeks and ended on 15
September. The census-based population data depicts the spatial
distribution of aggregated counts across 5475 enumeration areas
(i.e. level 3 administrative unit), with a minimum, mean and
maximum of 1, 386, and 5013 people per enumeration area,
respectively. These data were subsequently further aggregated to
administrative unit levels 2 and 1 to enable analysis of coarser
spatial detail. Since aggregated counts at administrative unit levels
only allow to assume that the population is evenly distributed
throughout each spatial unit, we also used two gridded population
datasets disaggregating the census-based population counts from
enumeration areas into grid cells, without assuming equal dis-
tribution across space. WorldPop gridded population datasets
(WorldPop, 2018), acquired for the years 2011, 2012 and 2013,
are produced by using a top-down unconstrained Random
Forest-based dasymetric approach (Stevens et al., 2015), which is
relying on the use of a population density weighting layer, for

Fig. 2 Cell tower density in Namibia at administrative level 1 (regions;
GADM, 2022).
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redistributing census-based extrapolated estimates referring to
each enumeration area into all ~100 m grid cells located within it
—apart from the grid cells classified as water. The weighting layer
is produced by using a population density response variable and a
suite of ancillary data calculated at the administrative unit which
are then used to fit a Random Forest model (Breiman, 2001) for
predicting population density at the ~100 m grid cell level (Sor-
ichetta et al., 2015).

Conversely, the GHS-POP gridded population dataset (Freire
et al., 2016; Schiavina et al., 2019), acquired for 2014, are pro-
duced by using a top-down constrained approach which pro-
portionally redistributes the same estimates used to produce the
WorldPop datasets, from each enumeration area into its ~1 km
grid cells according to their percentage of build-up area (Florczyk
et al., 2019)—thus with the population of each enumeration area
only redistributed with its grid cells that contain built settlements.

While the uncertainty and accuracy associated to each top-
down gridded population distribution dataset may be difficult to
quantify (Leyk et al., 2019), their use allow to consider two
alternative modelled distributions, representing two extremes
with respect to the population distribution derived from the
counts aggregated at the enumeration are level, which can provide
a more robust assessment of the population residing within the
MTC network coverage.

Analysis and statistical tests
We explored and assessed four methods for distributing users
into administrative unit levels: (1) Point to Polygon; (2) Voronois;
(3) Tower Ranges; and (4) Adjusted Voronois. Each method’s
estimates of user density per unit was compared to census-
derived population density figures, and Kendall’s tau-b rank tests
were used to determine the correlation between rankings. Sea-
sonal and trend decomposition using Loess (STL) was subse-
quently used to analyse CDRs and identify patterns of seasonal
user variation and investigate how the use of different distribution
methods can impact upon identifiable seasonal patterns. Finally,
administrative units sharing a similar seasonal behaviour were
grouped into clusters.

Population coverage. Coverage of tower ranges across Namibia
lies at approximately 30% of its area and is spatially incomplete,
with coverage concentrating on urban areas and along the road
network whilst not covering some remote areas. However, large
portions of the land not covered by signals are very sparsely

populated, so it is important to consider the tower coverage in
terms of the population being covered and not just the area.
Three population datasets were used to assess the proportion of
the country’s population which is covered by cellular towers in
each year. The use of both gridded and non-gridded population
datasets allows for a stronger assessment to be made about
population coverage. Administrative unit level 3 2011 census data
was intersected against the tower ranges for 2011 and had its
counts proportionally represented, based on the area of each unit
covered by tower ranges. Both WorldPop and GHS-POP data
represent the number of people per grid cell and so the coverage
of these data was calculated by summing the number of people in
all grid cells contained within the tower ranges. WorldPop data
was collected for and compared to each year the tower ranges
represented. GHS-POP data was only available for 2014 and so
was compared against the 2013 tower ranges.

Distribution methods
Each distribution method carries inherent benefits and drawbacks
when being used to distribute users into administrative units. It is
important to be aware of how well the redistributed user count
numbers correlate with known population figures for the same
area, in addition to the spatial coverage of each method. We
perform each distribution method using models and python
scripts in ArcGIS Pro 2.4.0.

The most basic method we implemented observes tower points
which fall within a unit and then sums the counts from each
point within it, shown in Fig. 3a. This is referred to as ‘Point to
Polygon’ and has been used in a range of studies (Ihantamalala
et al., 2018; Lai et al., 2019b; Schmid et al., 2017). This method is
the least computationally demanding of those considered in this
analysis. Due to the simplicity of the input data, Point to Polygon
is unable to account for the signal range each cell tower has,
meaning if a point falls within an administrative unit, all its
counts will be assigned to it even if this cell tower provides service
to people in neighbouring units; as is often the case when cell
towers are located close to a boundary. Equally, this could limit
the spatial extent of the method as every unit needs at least one
cell tower to be located within it to receive a user count. This can
vary between study sites but can lead to poor representation of
parts of the study area characterised by low cell tower density,
especially where units become small.

The second method being analysed requires additional infor-
mation regarding the estimated signal range of each cell tower.

Fig. 3 Four methods of distributing CDR data into administrative units. a Point to Polygon, b Tower ranges, c Voronois, d Adjusted Voronois. Note: This
figure was created using entirely fictitious data points, ranges and unit boundaries.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-022-01256-8 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |           (2022) 9:247 | https://doi.org/10.1057/s41599-022-01256-8 5



A buffer is created around each input point based on the known
or estimated cell tower range (Fig. 3b). This represents the service
area of each tower, which would theoretically translate to it being
the most realistic method of distribution into administrative
units. In our case, MTC provided approximate circular ranges for
each tower. Tower Range counts are intersected against admin-
istrative units and have their user counts proportionally dis-
tributed across them, for example, if half of a tower range
intersects unit X and the other half intersects unit Y, both units
receive 50% of the counts. While this method has greater spatial
coverage than Point to Polygon, there is no guarantee that it can
provide total coverage of the study area; something that will be
country and dataset specific.

The creation of Thiessen polygons or ‘Voronoi’ polygons
around point data is thought to provide numerous benefits over
simple Point to Polygon methodology. Using the cell tower point
locations as inputs shown in Fig. 3c, Voronois form a continuous
non-overlapping layer of polygons (Mercier and Baujard, 1997)
representing the area of influence from each point to the nearest
neighbouring point (Richter et al., 2019; Gautam et al., 2020).
Where input points are more densely clustered, Voronoi poly-
gons become smaller. This is typical of an urban area, contrasting
rural settings which are likely to have fewer cell towers and much
larger Voronoi polygons as a result. Voronoi polygons have been
used in a wide range of studies to represent tower service areas
(González et al., 2008; Gao et al., 2013; Xu et al., 2015; Zhao et al.,
2016; Steele et al., 2017) and constitute the most frequently
observed technique. User counts from the cell tower points are
carried across to the corresponding Voronoi which allows them
to be assigned to administrative boundaries proportionally, based
upon the area for which they intersect. A key benefit of this
method is its ability to provide 100% coverage across the study
area, enabling all administrative units to be represented following
count distribution. However, at the same time one needs to be
aware that full coverage is an unrealistic representation which
does not consider topology, radio frequency, or uninhabited areas
like lakes. It is rather an artificial way of sub-setting the whole
study area into continuous regions and has a tendency to over-
estimate (Koebe, 2020).

The final method is referred to as the ‘Adjusted Voronoi’
method. This method follows the methodology proposed by
Ricciato et al. (2015) and attempts to enhance the standard
Voronoi method through the introduction of new artificial input
point data, based on tower range areas. Tower Ranges often
exhibit overlap with the ranges of neighbouring towers, creating
intersecting segments in the process. The Adjusted Voronoi
method treats these segments as new polygons, then places an
artificial cell tower point at their centre. The non-overlapping
tower range polygon then has its cell tower point re-centred
within its remaining area. Counts from the original tower ranges
are proportionally distributed to the new set of points based on
area. The new set of tower cell points is then used to create
Voronoi polygons around them. The purpose of this is to create a
higher number of input points to achieve a finer resolution
Voronoi layer as depicted in Fig. 3d, which could make dis-
tribution into administrative units more accurate than the stan-
dard Voronois method.

Determining success of distribution methods. Using each dis-
tribution method, tower’s daily average user counts per month
were distributed into administrative units at three levels: Level 1,
level 2 and level 3 for 2011, 2012 and 2013. We compare the 2011
CDR data to the 2011 Namibia Census Data (Namibia Statistics
Agency, 2011) to determine how well the results of each method
compare with reference data representing the same point in time.

A comparison of mobile user counts versus census population
counts was thought to be inappropriate in this case. Instead, it
was decided to compare ranked administrative units and remove
the influence of area to provide a directly comparable value
across both sources. Census counts were converted to population
density per administrative unit and ranked from highest to
lowest. A three-month average of mean daily user counts from
July to September 2011 was then used to create a user density
value per unit for each distribution method at each level. A
3-month average was used to reduce the noise in the CDR data,
whilst still matching the census collection date (from 28 August
2011 up to mid-September; Namibia Statistics Agency, 2011). As
with the census units, a ranking number was assigned to each
unit for each method.

We also explore if administrative units being classified as
urban or rural can affect the observed correlations to the census
in a separate test. All administrative units were considered for
this, as above, with census and method derived values being split
to include only urban or rural units at both level 2 and 3. Urban
and rural classifications per administrative unit were informed
by GHS-SMOD (Pesaresi et al., 2019; Florczyk et al., 2019) and
GHS-POP gridded data (Schiavina et al., 2019; Freire et al.,
2016), both acquired from the Joint Research Centre. As
described in Florczyk et al. (2019), rural areas are an aggregation
of L2 class topologies 10–13; suburban areas an aggregation of
21–23 and urban areas (city) are L2 class topology 30. Overall
classification of an administrative units was then determined by
population per class.

The distributions of both population and user density were
heavily skewed, violating the normality criterion of the commonly
used Pearson’s correlation coefficient; instead Kendall’s tau-b
rank test was chosen to assess the correlation between user
densities derived from the four distribution methods and census-
derived population density. Kendall’s tau-b is a non-parametric
statistic which measures how well two sets of ranks for a pair of
variables correspond to one another. A value of 1 indicates perfect
agreement between two rankings. A value of 0 indicates that both
ranks share no relationship, and −1 indicates the two rankings
are totally opposite (Lasserre et al., 2011). This test was chosen
over similar tests such as Spearman’s Rank due to its ability to
handle tied ranks (Javadi et al., 2016). All Kendall’s Tau-b rank
tests were performed using IBM SPSS Statistics 26. We consider
the method exhibiting the highest correlation with the census to
represent the most appropriate technique at the administrative
level in question.

Decomposition analysis. STL was used to analyse adminis-
trative units’ daily average user counts per month regarding
seasonal behaviour and was carried out for the best and the
worst performing CDR distribution method at administrative
levels 2 and 3.

STL is a filtering procedure for decomposing a time series into
trend, seasonal, and remainder components (Cleveland et al.,
1990) as shown in Fig. 4. The algorithm implemented in R v3.6.1
finds the seasonal sub-series, for example the series of all January
values, by taking the mean. It then removes these values and
smooths the remainder to find the trend. In an iterative way, the
overall level is subtracted from the seasonal component and
added to the trend component. The residuals left from summing
seasonal and trend form the remainder component (R Core
Team, 2020).

Only the resulting seasonal component, which is no longer
influenced by rising user counts due to STL’s detrending algorithm,
was used for further analysis. To enable the comparison of seasonal
patterns between administrative units the seasonal component was
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transformed into a seasonal proportion with an annual baseline.
This calculation is in line with the initial processing of the CDR
data into consistent annual tower sets but has the disadvantage of
the resulting proportions potentially underestimating the popula-
tion at the beginning of the year and overestimating at the end of
the year due to general population and specific subscriber growth
inherent in the annual user average used as denominator. The
seasonal proportion informs what percentage of mobile phone
users are in an administrative unit for a given month compared to
the average number of people in that unit during the entire year.
This seasonal proportion per administrative unit forms the basis
for a clustering procedure.

Multivariate clustering. To analyse which administrative units
share a similar seasonal behaviour, the seasonal proportions
calculated in R were joined back to the spatial boundaries and
used as input for a multivariate clustering tool in ArcGIS Pro
2.4.0. The tool was run with a K-medoids algorithm, which
constructs nonspatial clusters and is more robust to noise and
outliers than the more popular K-means algorithm (Environ-
mental Systems Research Institute, 2020). Spatial clustering
restricts clusters to be formed of neighbouring units only. In this
application, there is little reason to believe that clusters must be
spatially contiguous, hence a non-spatial clustering algorithm was
chosen. A single cluster is formed from multiple administrative
units based on the similarity of their seasonal user proportion
alone; the location of the unit itself within Namibia or its
proximity to other units is irrelevant.

Initially the tool was run without a restriction on the number
of clusters as it was not known how many groups of similar
seasonal behaviour to expect. The analysis of the computed
pseudo-F-statistic for clustering solutions with 2–30 clusters gave
an initial indication of how many clusters are sensible for the
data. “The largest pseudo-F-statistic values indicate solutions that
perform best at maximising both within-cluster similarities and
between-cluster differences” (Environmental Systems Research
Institute, 2020). Based on the three largest pseudo-F-statistic
values we repeated the clustering with the associated number of
clusters specified.

Results
Population coverage of tower ranges. Mobile phone tower
ranges cover most of Namibia’s population with levels con-
sistently higher than 85% regardless of the considered population
distribution dataset (Table 2). The highest and lowest coverage
are observed against the 2013 WorldPop dataset, at 87.8%, and
the 2011 census-based data, at 85.8%, respectively.

Kendall’s Tau-b rank. As seen in Table 3, high correlations are
shown between the ranked results of each distribution method and
the ranked census-based figures at Level 1, with Point to Polygon
and Voronois tied for the highest score (r= 0.87). At level 2 more

Fig. 4 Result of STL decomposition of the daily average of user counts per month for a level 2 administrative unit, Luderitz, using the corresponding
best CDR distribution method, i.e. Tower Ranges. STL enables the separation of the seasonal component and the trend from CDR user counts (data)
whilst leaving a remainder.

Table 2 Population coverage percentages in each year for
three different population distribution datasets.

Census (2011) WorldPop
(2011,
2012, 2013)

GHS-
Pop (2014)

% coverage 2011 85.83 86.54 86.32
% coverage 2012 86.41 87.19 86.91
% coverage 2013 87.03 87.88 87.51

Italic values indicate a temporal mismatch between the population distribution dataset and the
mobile phone tower ranges used for calculating the corresponding population coverage.

Table 3 Results of Kendall’s tau-b rank test, comparing the
order in which the administrative units are ranked by
census-based population density figures against how the
same units are ranked using user density figures derived
from each CDR distribution method.

Administrative level Point to
Polygon

Voronois Tower Range Adjusted
Voronois

Level 1 0.87 0.87 0.85 0.77
Level 2 0.81 0.86 0.89 0.79
Level 3 −0.08 0.55 0.60 0.52
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units are introduced and greater differences are observed. Results
obtained using the Tower Ranges exhibit the highest correlation
here (r= 0.89), with Adjusted Voronoi continuing to show the
weakest results (Kendall’s tau-b correlation, r= 0.79). At Level 3
correlations fall for all methods. Results obtained using Point to
Polygon exhibit almost no relationship with the census-based fig-
ures at this level (r=−0.08), while results obtained using Tower
Ranges continue to show the strongest correlation (r= 0.60). Both
Voronois and Adjusted Voronois methods show strong results
(r= 0.55 and r= 0.52, respectively).

At level three many units are not covered by some methods,
leading to them all receiving a value of zero and subsequently
being tied during the ranking process, thus impacting the
correlation values. The second set of Kendall’s tau-b correlation
coefficients were calculated to judge the performance of each
method without such tied ranks impacting the correlation values.
This time, for each method, only administrative units which are
covered by the specific method are included, and the census units
are ranked again using only covered units. As shown in Table 4,
this does not produce any change at level 1, as all units are
covered. At level 2 there is no change for any method but Point
to Polygon, which improves slightly (r= 0.85) while dropping 2
units. At level 3, Point to Polygon improves greatly (r= 0.85),
although only 520 units are covered, leaving 90.5% of the total
units at this level unaccounted for which renders this method
inappropriate at this level. The correlation of Tower Ranges
remains the same while dropping only 6.83% of units. Both
Voronois and Adjusted Voronois see no change in correlation
between Tables 3 and 4, as they provide 100% coverage across
the study site.

A final set of Kendall’s tau-b correlation coefficients were
calculated to explore whether the classification of each admin-
istrative unit either urban or rural has any impact on how the
ranked results of the different methods correlate to the ranked
census-based figures. Due to small sample sizes, urban and
suburban classes were combined for this analysis and level 1 was
not included. It can be seen in Supplementary Table S2 that, when
only rural units are considered, each distribution method is not as
good at accurately ranking units at level 2, however, results
obtained using Tower Ranges still exhibit the highest correlation
at both level 2 and 3 (r= 0.85 and 0.46 respectively), while Point
to Polygon and Adjusted Voronois continue to produce the worst
results, with Point to Polygon showing, as in Table 3, a dramatic
reduction in performance from level 1 to 3. The same pattern is
observed when considering only the urban units, as results
obtained using Tower Ranges once again yielded the highest

correlation to the census-based figures at levels 2 and 3 (r= 0.97
and 0.35, respectively). Rankings of rural units at level 3 saw
higher correlations to census-based values than city/suburban
units at the same level in each method.

We assume that at each administrative level the methods
producing results exhibiting the highest/lowest correlation with
the census-based figures represent the most/least appropriate
techniques, respectively. As demonstrated in Table 4, the number
of units that each method can account for should also guide
which methods to consider as appropriate. This means that,
based on Tables 3 and 4, Tower Ranges are considered the best
method at both levels 2 and 3 with high correlation and coverage.
The least appropriate methods are shown to be Adjusted
Voronois at level 2 and Point to Polygon at level 3. In the
following stages of analysis, these best and worst methods will be
compared against one another to assess their relative impacts on
observable seasonal patterns. However, as Point to Polygon at
level 3 covers <10% of administrative units and <10% of
Namibia’s population, a comparison between Tower Ranges
and Point to Polygon would not provide relevant results at this
level. Therefore, at level 3, Tower Ranges, representing the best
method will be compared against the Adjusted Voronois
representing the second-worst method.

Decomposition analysis. To compare the potential effect of using
results from different distribution methods to inform subsequent
analyses, an analysis of mobile phone users’ seasonal mobility was
carried out for both Tower Ranges and Adjusted Voronois at level
2 and 3, but not at level 1 as all methods performed very similarly
at this level (Tables 3 and 4). Since both Tower Ranges and
Adjusted Voronois make use of the tower ranges, Standard
Voronois were included in the decomposition and clustering
analysis in order to represent a method not requiring auxiliary
data. Results are described in the Supplementary Information.

At level 2, STL was carried out to reveal the seasonal, trend and
remainder components for each administrative unit: Fig. 4 shows
the example of the level 2 administrative unit ‘Luderitz’ located in
the South West of Namibia based on the results of the Tower
Ranges method. The data clearly shows an increasing trend in
daily averaged users counts per month starting at circa 9000
mobile phone users in January 2011 with an almost linear
increase in users during the first year, before plateauing slowly
from the beginning of 2012 onwards. The seasonal component is
ranging between −1000 and +500 users across the 3 years and it
can be clearly seen that the number of users decreases twice
sharply in each year in August and in October.

To facilitate comparison between administrative units, seasonal
components were subsequently converted to seasonal propor-
tions. For both methods the largest seasonal increase was found in
level 2 administrative unit ‘Epukiro’ in December 2011 (Tower
Ranges= 57%, Adjusted Voronois= 56%). The largest seasonal
decrease was found in level 2 administrative unit ‘Karasburg’ in
August 2011 (Tower Ranges=−26%, Adjusted Voronois=
−28%). See Fig. 5 for the location of these administrative units.
Figure 5 compares the largest seasonal increases and decreases

between methods at level 2. For the majority of Namibia, the
choice of distribution methods makes no difference when
determining the month of the largest seasonal changes (green
fill). For user increase and decrease, respectively, 79% and 78% of
the administrative units match the month regardless of used
method. Where there is no overlying hatching the percentage of
change is also similar between methods (±3%). The few
administrative units where the methods disagree (purple fill),
vary depending on whether the increase or decrease is considered.

Table 4 Results of the second Kendall’s tau-b rank test,
comparing the order in which administrative units are
ranked by census-based population density figures against
how the same units are ranked using user density figures
derived from each CDR distribution method—only using
administrative units covered by the corresponding
distribution method.

Administrative Level Point to
Polygon

Voronois Tower Range Adjusted
Voronois

Level 1 0.87 0.87 0.85 0.77
L1 units covered 13 13 13 13
Level 2 0.85 0.86 0.89 0.79
L2 units covered 105 107 107 107
Level 3 0.85 0.55 0.60 0.51
L3 units covered 520 5473 5099 5473
L3 % units lost 90.5 0 6.83 0
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At level 3, the comparison is complicated by the fact that there
are 374 administrative units which are not covered by a tower
range and therefore were not considered for the decomposition of
the Tower Range method. Another issue, affecting both Tower
Ranges and Adjusted Voronois at level 3, is caused by an
‘intersection effect’: Distribution methods, like Tower Ranges,
Voronois and Adjusted Voronois, require intersecting polygons
with administrative units and are therefore prone to result, in some
cases, in very small user numbers and in extreme cases in less than
1 user per administrative unit. This can happen when a Tower
Range or Voronoi polygon intersects only a small portion of an
administrative unit (sliver polygon) which will therefore receive
only a small portion of the number of users originally assigned to
the specific Tower Range or Voronoi polygon. The likelihood of
this ‘intersection effect’ increases with the spatial scale (i.e. from
level 1 to level 3) as intersections are more likely to result in sliver
polygons due to more complex unit distribution. This can lead to
abnormally large proportions where the sliver is produced by a
tower built in a later year. This is because the user count
(denominator) varies while the seasonal component (nominator)
remains identical throughout the 3 years. While this ‘intersection
effect’ had no impact on the results at level 2, its impact was
obvious at level 3. In some cases, such ‘intersection effect’ resulted
in seasonal proportions suggesting that up to 250k times more
users would be present in a particular month compared to the
annual average. To exclude these artefacts, and after considering
the range of the seasonal proportions, we filtered out adminis-
trative units at level 3 with seasonal proportions >150% or <
−150% to only keep units with data likely to represent actual
change. This was also necessary to gain meaningful inputs for the
following clustering procedure which would otherwise assign the
affected units incorrectly to clusters. For the results from the Tower
Range decomposition this meant that 36 administrative units were
filtered out, whereas for Adjusted Voronois 55 units were
disregarded. Units removed due to filtering or no overlapping
tower ranges comprise 8% of the total units at level 3. This leaves a
total of 5037 units for the comparison of the month of largest
seasonal user change. Both Tower Ranges and Adjusted Voronois
agree on the same month for the largest user change in 68% of
units and disagree in 24% of units.

Seasonal decomposition was carried out for each adminis-
trative unit individually, therefore it cannot be expected that
seasonal variations cancel each other out on a national level.
However, we can assume that the majority of the CDR-based
observed mobility is national travel rather than international, it is
therefore reasonable to assume that mobility is approximately
related to each other.

Multivariate clustering. Multivariate clustering at levels 2 and 3
for both methods, Tower Ranges and Adjusted Voronois, reveal
that the ideal way to group administrative units for within-cluster
similarity and between-cluster difference is to split units into two,
three or four clusters with decreasing Pseudo-F values (see Sup-
plementary Table S1).

When splitting administrative units into only two clusters, both
methods lead to very similar outcomes. Figure 6 shows the results
according to Tower Ranges with notable similarities in spatial
distribution of clusters between administrative level 2 and 3. By
relating the clusters back to the seasonal proportions and
averaging them across each cluster, we can start to understand
seasonal variation of user distribution within Namibia. With
administrative units in cluster 1 (blue) gaining 20–30% of users in
December whereas units in cluster 2 (red) are marked by a circa
10–15% user loss in August (see Fig. 6c).

Considering the example of four clusters at level 3 the
difference in spatial distribution between the methods is very
apparent (Fig. 7). Adjusted Voronois reveal a spatially homo-
geneous picture with 99% of the country being grouped either
into cluster 1 (December peak) or 2 (August drop), an almost
identical result to the grouping into 2 prescribed clusters (see
Fig. 6b). The remaining 1% of units are allocated to cluster 3 and
4, which both show very strong seasonal patterns. Cluster 3 has a
user decrease of circa 40% from January to August and a user
increase of 50–80% between September and December. The same
pattern was already observed for the corresponding level 2
administrative unit ‘Karasburg’, despite smaller changes at level 2
using Adjusted Voronois with 3 clusters (compare Supplementary
Fig. S2) and using Tower Ranges with 4 clusters (Supplementary
Fig. S3). Cluster 4 of Adjusted Voronois in Fig. 7 shows a new

Fig. 5 Comparison between results from the Tower Range and Adjusted Voronois methods via the month with the largest user change at level 2.
No hatch= both methods have similar values (±3%); simple hatch: Adjusted Voronois > Tower Ranges+ 3%; cross hatch: Tower Ranges > Adjusted
Voronois+ 3%.
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seasonal behaviour with user drops of 20–25% from January to
April as well as in August, and user gains between 10% and 25%
for the other months. Spatially, this cluster consists mainly of
small urban administrative units in Windhoek but also several
rural units in the North of Namibia. It is noticeable that while
Adjusted Voronois’ clustering results for three prescribed clusters
(see Supplementary Fig. S4) shows one cluster marked by a drop
in users in August and December, this behaviour is no longer
visible when specifying four clusters.

Using Tower Ranges, the clusters appear spatially much more
fragmented compared to Adjusted Voronois (compare Fig. 7a
and b). Clusters 1 and 2 continue to show the already familiar
patterns from previous clustering results, with the former cluster
being characterised by the increase in users in December while
the latter shows a drop in users in August. Cluster 3 shows a
similar pattern to Adjusted Voronois but is more moderate with
a user decrease from January until August ranging between 5%
and 15% followed by a large increase up to ~30% in December.
This is also similar to Cluster 4 using Tower Ranges at level 2

(Supplementary Fig. S3) which is likely due to the 3 Southern
administrative units located within the equivalent level 2 unit
‘Karasburg’. Cluster 4 in Fig. 7c shows partially similar patterns
to cluster 1 but with an even more prominent user gain in
December but no user change in August.

These results show that increasing the number of prescribed
clusters leads to larger discrepancies between methods, both in
terms of the spatial distribution of the clusters and the observed
seasonal patterns. This behaviour was observed both at level 2
and 3, whereby the comparison of methods at level 3 is
complicated by the fact that not all administrative units are
covered by all methods (i.e. Tower Ranges do not cover the whole
country) and the ‘intersection effect’ described in the Decom-
position Analysis section. Comparisons of clustering results
between methods for 3 clusters at level 2 can be found in
Supplementary Fig. S2, for 4 clusters at level 2 in Supplementary
Fig. S3 and for 3 clusters at level 3 in Supplementary Fig. S4.
Clustering results based on the standard Voronoi method are also
included in the Supplementary Information (Figs. S4–S7).

Fig. 6 Grouping of administrative units into two clusters using the Tower Range method. a At level 2, b at level 3, and c average seasonal user
proportion per cluster at level 3. Administrative areas without fill colour have no data.
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It is noticeable that seasonal proportions seem to attenuate over
the years (see Figs. 6c and 7c, d). This is a side effect of the use of
annual stable tower sets and the transformation of seasonal
components to seasonal proportions as discussed above (see the
section “Results—Decomposition analysis). Where MTC enlarged
their network, an increasing number of towers is available in each
year’s tower set capturing an increasing number of users. The STL
seasonal component is calculated in a way that it remains identical
throughout the 3-year period. When converting seasonal compo-
nents to seasonal proportions we divide the stable seasonal
component (i.e. nominator) by the annually increasing user count
(i.e. denominator), hence the artificial attenuation of the resulting
proportions.

Despite the mentioned discrepancies, overall two major seasonal
patterns can be identified across all distribution methods, adminis-
trative unit levels and most cluster configurations: (a) administrative
units with a circa 15% decrease of mobile phone users in August and
(b) administrative units with a 20–30% user increase in December.
The only exception to this pattern is when Voronoi-based results are
clustered into 3 groups at level 3 (see Supplementary Fig. S6).

Figure 8 shows the relationship between seasonal mobility and
number of public and school holidays, with high mobility
observed in August and December corresponding to the two
months with the longest holidays.

Discussion
This study explores the use of different distribution methods at
three different spatial scales and validates results based on census

data. Results show high population coverage levels of MTC
mobile phone tower ranges, above 85% for each source, mir-
roring the high mobile phone ownership of Namibian house-
holds (i.e. 89%; The Namibia Ministry of Health and Social
Services and ICF International, 2014). As expected, the popula-
tion coverage increases over time as a result of the expansion of
MTC’s network, which is noticeable in our data through the use
of annual stable tower sets. The high agreement of coverage
across different population distribution datasets strengthens the
conclusions that can be drawn from the use of the CDR data, and
suggests that it is appropriate to use such data for further analysis
assessing the seasonal variation of population distribution in
Namibia. Whilst the population coverage is shown to be high, it
should still be recognised that a small portion of the population
is missed. One might speculate that the missing ~12–15% of
population live in rural parts of the country where cell coverage
is either supplied by a different network provider or absent. The
latter is supported by the 2013 demographic and health survey
which found phone ownership of rural households being 14%
lower than those of urban households (The Namibia Ministry of
Health and Social Services and ICF International, 2014). This
undersampling needs to be considered when results are used for
decision and policy purposes.

The performance of distribution methods clearly varies with
the spatial scale of the analysis; there is no single method con-
sistently outperforming others, confirming that the spatial scale of
the analysis needs to be considered to identify the best method.
CDR data distributed through different methods translate into

Fig. 7 Grouping of administrative units into four clusters at level 3. a Spatial distribution of clusters using Tower Ranges, b spatial distribution of clusters
using Adjusted Voronois, c average seasonal user proportion per cluster from 2011 to 2013 using Tower Ranges, and d average seasonal user proportion
per cluster from 2011 to 2013 using Adjusted Voronois. Administrative areas without fill colour have no data.
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input data of varying accuracy which therefore impacts sub-
sequent analysis as shown by the clustering results.

At level 1, there is little difference observed between each
method’s correlation with census derived population density
rankings (Tables 3 and 4). This is likely a result of units at this
level being large in area and few in number, with tower density
therefore being relatively high per administrative unit. Point to
Polygon presents itself as being an effective method at this scale,
in addition to being easy to implement and requiring no addi-
tional information. The three other methodologies also perform
well, however the additional steps and information required to
implement them are shown to provide no discernible benefits at
this spatial scale.

With 107 units, the tower density per administrative unit at
level 2 is much lower. This results in more variation being
observed in correlations with Point to Polygon and Voronoi
methods both exhibiting weaker correlations, while Tower Ranges
and Adjusted Voronois show slight improvements. Tower Range
methodology performs best; the ability to carry out proportional
distribution, coupled with more accurate information regarding
each tower’s service area enables this method to better handle
increased boundary complexity and number of units. While the
correlation fell slightly at level 2, Voronois appear to benefit from
their ability to proportionally distribute users based on the area of
intersection, in addition to maintaining distribution to all units.
These factors could be what leads this method to outperform
Point to Polygon at this level, having not done so at level 1. Using
Voronoi polygons as an approximate cellular range for each point
is however shown to be far less effective than using accurate
Tower Range information. The drawbacks of Point to Polygon
begin to emerge, with an increased number of units leading to
greater boundary complexity. The simple assignment of points to
units without accounting for proximity to neighbouring units
results in misplacing users who would be served by the tower in
practice. Moreover, there are not enough input points to cover all
available units and so this method is limited by the assumption
that units without an input point are entirely devoid of users.
Adjusted Voronois display a slight improvement between levels 1
and 2, although it still shows the lowest correlation of all meth-
ods. Despite increased variation in correlation, clustering results
at level 2 are largely similar: Tower Ranges, Voronois and

Adjusted Voronois all agree on an ideal split into two clusters
with very similar spatial distribution and seasonal patterns. When
forcing a split into more clusters, discrepancies in spatial dis-
tribution and seasonal patterns emerge.

Level 3 represents the biggest challenge for these methods;
with over 5000 units to account for, tower density is very low
and more than 90% of units are no longer represented by a
tower at all without the help of estimated ranges. Tower Ranges
continue to outperform the other methods, however, cannot
account for 6.83% of units which do not fall within them. Both
Voronoi methods perform well considering the number and
density of units, however, the inaccuracies of using Voronois as
a proxy for service area seemingly become more apparent with
reduced correlation values. Point to Polygon shows no corre-
lation to census rankings as only a small fraction of units is
covered. At level 3, clustering results have more variation than at
level 2, but are still similar when clustering into only two groups.
As already observed at level 2, higher cluster numbers lead to an
increase in variation.

The observed correlations to census ranking also hold true
when stratifying administrative units into urban and rural areas.
Unexpectedly, rural units at level 3 across all methods had a
higher correlation with the census than city/suburban adminis-
trative unit at the same level, this is possibly because city/sub-
urban units are typically much smaller in size than rural ones,
making it harder to distribute user counts from each method
accurately, as shown in Tables 1 and 2.

Koebe (2020) suggests that more precise distribution methods
do not automatically lead to more precise outcomes. Our results
show that this is true only at low administrative-unit level with
high tower density, in our case at level 1, but not at level 2 and 3
where Tower Ranges with their more accurate representation of
the service area outperform the other methods. Koebe’s work in
Senegal is done at high administrative-unit level (i.e. level 4
which splits the country into 431 communes), which initially
seems to contradict our findings. However, number and dis-
tribution of cell towers of the network provider in Senegal are
favourable with nearly all units covered by at least one of the
1666 towers leading to a tower density of ~8 towers per
1000 km2. This is substantially higher than in Namibia where
tower density is <1 tower per 1000 km2 for most level 1 units and

Fig. 8 Relationship between seasonal mobility and public and school holidays (obtained via Lai et al., 2020b; see “Data availability” section). Mobility
was averaged per month from 2011 to 2013 across all administrative units.
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only rises to a maximum of 4.6 (see Fig. 2). In this context,
Koebe’s work which aggregates data to level 4 is therefore more
comparable to our level 1 data and results.

With regards to Namibia, the Adjusted Voronoi method pro-
posed by Ricciato et al. (2015) performed worse than the standard
Voronoi method across all spatial scales. Whether this is due to
the irregular distribution of cell towers across the country or a
more general result of this method, which was developed on
artificial data, remains open. Our results show that if estimates of
tower service areas are available, better performance can be
obtained when they are used directly as Tower Ranges and not to
adjust Voronois.

Our results also show that CDR data, aggregated to users per
tower and month, are suitable to derive seasonal mobility through
the use of STL; exact information of individual’s locations at
various time stamps is therefore not always necessary to carry out
mobility analysis. STL in combination with multivariate cluster-
ing delivers valuable insight into which areas of a country share a
similar seasonal variation in mobile phone users. We found that
the higher the number of prescribed clusters, the more dis-
crepancies between methods. This is to be expected as the sheer
number of clustering options increases along with the number of
clusters used. Despite the discrepancies, two major seasonal
patterns can be identified across all distribution methods,
administrative levels and most cluster numbers: (a) areas with a
circa 15% decrease of mobile phone users in August and (b) areas
with a 20–30% user increase in December. Pseudo-F values
clearly favour clustering into these two groups. Cluster (b) sec-
onds the findings of zu Erbach-Schoenberg et al. (2016) who
analysed seasonal mobility using the relatively small scale of
health districts. With 33 health districts in Namibia, they are
closest to administrative unit level 1 in terms of spatial scale. To
gain further insights into seasonal movements we can prescribe a
higher cluster number whilst using the best performing method at
the highest spatial resolution; Tower Ranges at level 3 (Fig. 7a and
c). However, these results have to be considered with caution due
to their lower Pseudo-F values.

In general, the highest average mobility is observed in August
and December (Fig. 8), the two months with the longest holidays.
With primary school net enrolment of 91% between 2010 and
2014 (UNICEF, 2016) and over 90% of Namibia’s population
identifying themselves as Christians (Horn, 2008), it is likely that
some of the seasonal mobility patterns detected are due to people
travelling during school holidays to celebrate Christian festivities
with relatives and friends. Similarly, mobility is increasing to a
lesser extent during the shorter holidays in April and May, which
can partially be linked to religious events like Easter and
Ascension Day but also to other non-religious public holidays
(e.g. half-term, Africa Day, Day of the African Child). However,
other changes in phone usage that are entirely unrelated to
mobility could also have an impact, for example children being
allowed to stay up later during holidays and/or using their phones
more, or adults being less active over the phone while spending
time with their family.

The level 2 administrative unit ‘Karasburg’ located in the South
of Namibia (see Fig. 5) stands out in this analysis as it is
repeatedly listed as a separate cluster and is characterised by the
largest user decrease between January and August (>20%) and the
largest user increase between September and December (>30%).
Under closer examination we found that this is likely to be caused
by the presence of grape farms using water from the Orange River
as source for irrigation. The special combination of water avail-
ability and hot climate in this part of Namibia allows table grapes
here to be harvested at the end of the year, when they are most
vulnerable to frost elsewhere in the world making them a lucra-
tive export product to the European market (Hoffman, 2008).

The growing of grapes is very labour intensive, especially during
harvest, which requires additional workers. Based on a combi-
nation of internet searches and visual analysis of satellite images
there seem to be 3 grape farms located along the Orange River:
Komsberg Farm, Sonop Farm, and the Orange River Irrigation
Project at Aussenkehr, with the latter being by far the largest. In
2011, Aussenkehr had close to 30,000 residents with an additional
7000 harvest workers for 3–4 months a year (The Namibian,
2011). This large in- and outflow of seasonal workers is also what
the CDR data show clearly with a large increase of users from
September to December during the grape harvest and a large user
decrease between January and August when there is less work to
do in the vineyards. In the underdeveloped region of Karasburg,
where all three farms are located, the grape industry is the largest
employer; to produce and export 1000 tonnes of table grapes it is
estimated that 300 new permanent and 600 seasonal jobs are
created (Hoffman, 2008).

Looking at cluster 3 in Fig. 7b, we can see the level 3 units in
which Aussenkehr and Komsberg Farm are located. At this larger
scale users of this cluster almost double between September and
December (80%). The administrative unit of Sonop Farm is not
included in this cluster. We can speculate that this is because it is
a smaller farm and because it is growing a wider range of fruits
and vegetables like tomatoes and peppers with different growing
and harvest cycles to grapes (Sonop Farms, 2020), therefore
having more permanent and less seasonal workers.

With agriculture and herding forming large parts of Nami-
bia’s economy (The Namibia Ministry of Health and Social
Services and ICF International, 2014), a link between agri-
cultural activity and seasonal mobility is no surprise. Further
investigation is necessary to see if and to what extent the sea-
sonal behaviour of other clusters can be connected to agriculture
and whether they correlate better than holidays. Zufiria et al.
(2018), who used more detailed CDR data were able to quantify
relationships not only between mobility and the agricultural
calendar, but general economic activity as well as rainfall. It
would be interesting to see whether similar relationships can be
established in Namibia where the agricultural sector supports
directly or indirectly over 70% of the population (Namibia High
Commission London, 2022).

The results of this study are affected by a number of metho-
dological limitations which need to be considered when using
them for informing and supporting decision and policy makers.
Firstly, using the modelled distribution of mobile phone users as a
proxy for the distribution of the underlying population is a
simplification and it needs to be considered that the observed
changes in mobile phone usage may not be a function of mobility
of users alone. Other changes in phone usage, for example a
different usage behaviour during holidays, could also have an
impact on user count fluctuations. Secondly, people may have
multiple mobile devices/SIMs which would artificially inflate the
observed CDR-based mobility. Thirdly, CDR data are biased
towards particular demographics, not only ownership of mobile
phones but also the likelihood and frequency of their usage will
vary between demographic groups. While growth in cell phone
adoption rate is corrected for by the detrending algorithm of STL,
when using annual baselines for the calculation of seasonal pro-
portions we effectively introduce growth rates back into the data.
In combination with distribution methods using intersection, this
can lead to unrealistically large seasonal proportions. The like-
lihood of this happening increases with larger spatial scales (i.e.
level 3) and potentially requires post processing, for example in
the form of filtering based on a data identified threshold, in our
case ±150%. In this study, this shortcoming was accepted so as
not to lose valid input data and therefore obtain the greatest
coverage possible, which is of particular importance in a country
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like Namibia where tower density is relatively low, especially in
rural areas. The decision on which approach to use must also
consider the desired outcomes. For example, in settings with
higher tower densities or if the scope is to estimate precise
population numbers (like in the works of Zufiria et al., 2018 or
Salat et al., 2020), this problem can be easily avoided by using a
consistent set of towers for the entire study period. Finally,
assuming rural towers are also more likely to be inactive for
longer periods due to more difficult access for repairs, the like-
lihood of undersampling in the countryside increases. This must
be considered when formulating policies especially as the
majority of Namibia’s population is still living in rural settings
during the timeframe of this study.

Conclusions
This study, like many others, shows that CDR data can be used
for estimating seasonal mobility and the associated changes in
population distribution at the subnational level (Deville et al.,
2014; Ricciato et al., 2015; zu Erbach-Schoenberg et al., 2016; Lai
et al., 2019b). However, it also shows that in a country like
Namibia, where mobile phone tower coverage is limited in rural
areas, it is important and recommended to investigate both what
proportion of population is covered by the tower ranges and,
most importantly, which is the best spatial method to distribute
the mobile phone users from towers to administrative units in
order to best represent the underlying population distribution
and inform any further work or seasonal analysis.

The method used to distribute CDRs into areas of interest, e.g.
administrative units or health facility catchments, can impact
upon the accuracy to which counts are allocated to them and
therefore needs to be considered carefully at the outset. This study
shows that the performance of each method is greatly influenced
by the spatial scale and resulting tower density at which they are
analysed. We conclude that Tower Ranges represent the best
distribution method when working at high administrative-unit
level with relatively low tower density per unit, i.e. levels 2 and 3;
benefiting greatly from the more accurate coverage estimation
which is absent from other methods. It is also shown that Vor-
onois can provide a useful alternative if tower range information
is unavailable. In scenarios where there are enough towers to
cover all units, which is typically the case at low administrative-
unit level with relative high tower density per unit (i.e. level 1, see
Fig. 2), Point to Polygon performs well and serves as a viable, easy
to implement option.

With regards to Namibia, the Adjusted Voronoi method pro-
posed by Ricciato et al. (2015) performed worse than the standard
Voronoi method across all spatial scales. Whether this is due to
the irregular distribution of cell towers across the country or a
more general result of this method, which was developed on
artificial data, remains a question for future research using actual
CDRs from different countries and settings.

STL has shown to be a valuable way of revealing seasonal
variation in mobile phone user distribution. The example of
‘Karasburg’, an important region for the growing of table grapes,
has proven that CDR data has the ability to show the extent of
seasonal mobility of harvest workers which needs to be con-
sidered when planning new infrastructures. Similarly, the
grouping of administrative units by their seasonal behaviour
facilitates the discovery of patterns, for example in identifying
areas with an increased population around the Christmas period,
which consideration should be given to when discussing policies
for resource allocation. Similar results, showing the importance of
accounting for seasonal movements when calculating disease
incidence were shown in zu Erbach-Schoenberg et al. (2016).
Awareness of seasonal mobility plays also an important role in

the field of epidemiology and can aid identification of seasonally
varying transmission hotspots of infectious diseases as well as
inform the targeting of suitable interventions, for example, the
spatio-temporal distribution of bed nets to minimise malaria
transmission (Tatem et al., 2014; Ruktanonchai et al., 2016). In
addition, the underlying CDR distribution method can have a
major impact on subsequent analysis as shown in this study on
the example of multivariate clustering (Fig. 7). Seasonal change as
a proportion of the usual annual population is an easy to com-
municate metric which can be beneficial for supporting specific
policies/actions.

Future research should concentrate on validating the results
regarding the benefit of Tower Ranges over Voronoi based and
Point to Polygon methods in different countries and settings. This
would be especially interesting in countries with near-complete
tower penetration where Point to Polygon might reveal con-
sistently good results across all spatial scales without the issue of
missing out spatial units. To make the results more widely usable,
it would be a useful next step to try and quantify a threshold of
tower density at which different distribution methods can be
recommended. Additional factors which are likely to play a role,
for example, the percentage of units covered by cell towers and
boundary complexity, should also be further examined.

Data availability
The Call Data Record dataset analysed during the current study is
not publicly available since that would compromise the agree-
ment with the mobile phone operator that made the data avail-
able for research, but information about the process of requesting
access to the mobile phone data that support the findings of this
study are available from the corresponding author on reasonable
request.
Population data used in this study are available via the following
sources:
• GHS-POP Data
Schiavina M, Freire S, MacManus K (2019) GHS population
grid multitemporal (1975, 1990, 2000, 2015) R2019A. European
Commission, Joint Research Centre (JRC) https://doi.org/10.
2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 PID: http://
data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f
Accessed: 30 Apr 2020.
Concept & Methodology:
Freire, Sergio; MacManus, Kytt; Pesaresi, Martino; Doxsey-
Whitfield, Erin; Mills, Jane (2016): Development of new open and
free multi-temporal global population grids at 250 m resolution.
Geospatial Data in a Changing World; Association of Geographic
Information Laboratories in Europe (AGILE). AGILE 2016.
• GHS-SMOD Data
Pesaresi, Martino; Florczyk, Aneta; Schiavina, Marcello; Mel-
chiorri, Michele; Maffenini, Luca (2019): GHS settlement grid,
updated and refined REGIO model 2014 in application to GHS-
BUILT R2018A and GHS-POP R2019A, multitemporal (1975-
1990-2000-2015), R2019A. European Commission, Joint Research
Centre (JRC) [Dataset] https://doi.org/10.2905/42E8BE89-54FF-
464E-BE7B-BF9E64DA5218 PID: http://data.europa.eu/89h/
42e8be89-54ff-464e-be7b-bf9e64da5218.
Concept & Methodology:
Florczyk, Aneta J.; Corbane, Christina; Ehrlich, Daniele; Freire,
Sergio; Kemper, Thomas; Maffenini, Luca; Melchiorri, Michele;
Pesaresi, Martino; Politis, Panagiotis; Schiavina, Marcello; Sabo,
Filip; Zanchetta, Luigi (2019): GHSL Data Package 2019, EUR
29788 EN, Publications Office of the European Union, Lux-
embourg, ISBN 978-92-76-13187-8 https://doi.org/10.2760/0726,
JRC 117104.
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• Census Data
Namibia Statistics Agency, Government of the Republic of
Namibia. Namibia Population and Housing Census 2011.
Received: June 2015.
• WorldPop Population Estimates, 100 m
WorldPop (www.worldpop.org—School of Geography and Envir-
onmental Science, University of Southampton; Department of
Geography and Geosciences, University of Louisville; Departement
de Geographie, Universite de Namur) and Center for International
Earth Science Information Network (CIESIN), Columbia Uni-
versity (2018). Global High Resolution Population Denominators
Project—Funded by The Bill and Melinda Gates Foundation
(OPP1134076). https://doi.org/10.5258/SOTON/WP00660.
• WorldPop Population Density Estimates, 1 km
WorldPop (www.worldpop.org—School of Geography and Envir-
onmental Science, University of Southampton; Department of
Geography and Geosciences, University of Louisville; Departement
de Geographie, Universite de Namur) and Center for International
Earth Science Information Network (CIESIN), Columbia Uni-
versity (2018). Global High Resolution Population Denominators
Project - Funded by The Bill and Melinda Gates Foundation
(OPP1134076). https://doi.org/10.5258/SOTON/WP00675.
The administrative unit boundaries are available from:
• WorldPop Namibia Shapefiles
WorldPop (www.worldpop.org—School of Geography and Envir-
onmental Science, University of Southampton; Department of
Geography and Geosciences, University of Louisville; Departement
de Geographie, Universite de Namur) and Center for International
Earth Science Information Network (CIESIN), Columbia Uni-
versity (2018). Global High Resolution Population Denominators
Project—Funded by The Bill and Melinda Gates Foundation
(OPP1134076). https://doi.org/10.5258/SOTON/WP00651.
• GADM Namibia Shapefiles
Global Administrative Areas (2022). GADM database of Global
Administrative Areas, version 4.0. URL: www.gadm.org.
The global and school holidays dataset is available from:
• Lai S, Sorichetta A and WorldPop (2020) Global Public and
School Holidays 2010-2019. Mapping seasonal denominator
dynamics in low- and middle-income settings. https://doi.org/10.
5258/SOTON/WP00691.
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