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Learning to Calibrate Quantum Control Pulses
by Iterative Deconvolution

Xi Cao, Bing Chu, Zhihui Peng Yu-xi Liu and Re-Bing Wu

Abstract—In experimental control of quantum system-
s, the precision is often hindered by imperfect applied
electronics that distort pulses delivered to target quantum
devices. To mitigate such error, the deconvolution method
is commonly used for compensating the distortion via a
convolutional model. However, its effectiveness is limited
by model inaccuracies (e.g., imprecise parameters or un-
modeled distortion dynamics). In this paper, we propose a
learning-based scheme to eliminate the residual calibration
error by repeatedly applying the deconvolution operations.
The resulting iterative deconvolution method is shown by
simulation examples to be able to correct both linear and
nonlinear model errors to the highest precision allowed
by available finite sampling rates, and the inter-sampling
error caused by finite sampling rate can be suppressed by
actively introducing nonlinear components in the control
electronics. Finally, we experimentally apply the proposal
method to the quick frequency-tuning of superconducting
qubits, and the experimental results demonstrate significant
performance improvement over existing schemes without
iterative learning.

Index Terms—Quantum control, iterative learning control

I. INTRODUCTION

Towards practical applications of quantum information
processing technologies [1], high precision control of
quantum state and gate operations is the core enabling
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technology [2], [3]. To date, high-fidelity quantum gates
above error-correction threshold have been achieved [4],
but there is still a long way to go for scalable quan-
tum computation due to the decoherence induced by
environmental interactions and systematic errors induced
by imperfect control electronics. In this paper, we are
concerned with the latter systematic error caused by the
distortion of control signals delivered to the qubits [5], [6],
[7], [8], [9], [10], [11]. For example, in the manipulation
of superconducting qubits shown in Fig. 1, the arbitrary
waveform generator (AWG) sends control signals to the
superconductor quantum circuits via transmission lines
[12], which, together with the associated transmission line
and electronic components, can induce linear distortion
by spurious inductance, capacitors and resonators, as
well as nonlinear distortion induced by current-dependent
inductances and resistances [5], [6], [7], [8], [9], [13],
[14]. Besides, in low-temperature experiments, the change
of electronic properties of the circuit elements may lead
to additional distortions [10], [11]. All these factors can
severely decrease the precision of states and gate manip-
ulations and hence must be corrected.

To compensate the pulse distortion, one can incorporate
the error model into the optimization process for control
pulses design [5]. Alternatively, one can also directly cali-
brate the pulse to a designed shape, e.g., the deconvolution
method that has been applied to the flux bias control of
superconducting quantum circuits [15], [16], [17]. In both
approaches, an identified model is required for quantifying
the pulse distortion, and its accuracy determines how much
the distortion can be compensated.

Under the circumstance that an accurate model is not
always available, the pulse calibration must learn from
the measured error signals instead of merely using the
model. In quantum domain, the earliest application was
in the iterative learning control of chemical reactions
with ultrafast laser pulses [18], and later was extended
to atomic and optical systems, and further to information
processing [19], [20], [21], [22], [23]. These studies were
in principle “black-box” learning without using any a
priori information (i.e., the model) about the quantum
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Fig. 1. The signal transmission in a superconducting quantum informa-
tion processing system. The reference signal r(t) generated by AWG
is distorted when being delivered through the transmission line to the
target placed in the refrigerator. The in situ signal u(t) is readout via
a qubit acting as a signal analyzer from y(t) that is delivered through
amplifiers (the JPA and HEMT).

control system, which is different with classical “grey-
box” iteration learning control (ILC) that learns more
efficiently by incorporating a (even coarse) model. The
latter has been widely implemented in classical control
engineering [24], [25], such as industrial robots [26],
[27], computer numerical control machine tools [28] and
autonomous vehicles [29], and recently to quantum control
for online tuneup of high-precision quantum gates [30].

In this paper, we introduce the model based ILC to
the calibration of in situ signals based on the standard
(offline) deconvolution. The remainder of this paper is
organized as follows. Section II will introduce the decon-
volution method, following which the iterative deconvolu-
tion method is proposed and demonstrated by numerical
simulations. In Section III, we analyze the influence of
the inter-sampling oscillation induced by finite sampling
rate, and the stability of the learning process. In Section
IV, we show that the nonlinearity in the distortion can be
actively used for suppressing the inter-sampling oscilla-
tion. The feasibility of the method is shown in section V
by experiment. Finally, Section VI draws the conclusion.

II. ITERATIVE DECONVOLUTION: METHODS AND
SIMULATIONS

In this section, we will introduce the deconvolution
method and show how it can be improved by iterative
learning.

A. Deconvolution

Suppose that we wish to find a proper AWG signal r(t)
that produces a desired in situ control signal ud(t) to the
quantum system, which cannot be achieved by directly
setting r(t) = ud(t), because the yielded output pulse
u(t) will be distorted by the control transmission line that
goes from room temperature to the low temperature.

The idea of deconvolution is to identify a linear convo-
lutional input-output model:

u(t) =

∫ ∞
0

ḡ(t− τ)r(τ)dτ (1)

for the distortion of r(t), where ḡ(t) is the impulse
response of the distortion. In the Laplace domain, the con-
volutional model can be described by a transfer function
as:

u(s) = Ḡ(s)r(s), (2)

where r(s), u(s) and Ḡ(s) are the Laplace transform of
r(t), u(t) and ḡ(t). When the actual dynamics of the
distortion is also linear, say G(s), then by setting the
reference signal r(s) = Ḡ−1(s)ud(s), the produced in situ
control signal is u(s) = G(s)Ḡ−1(s)ud(s). Apparently,
the desired signal can be perfectly produced, only when
the identified model is precise, i.e., G(s) = Ḡ(s). This
inverse-system based method for compensating convolu-
tional distortion is called deconvolution.

B. From deconvolution to iterative deconvolution

In practice, the precision of deconvolution calibration is
always limited due to imprecise identified parameters or
unmodeled linear or nonlinear dynamics in Ḡ(s). In the
following, we will show that the resulting residue signal
errors can be corrected by repeatedly using the identified
imprecise model and online observation of the error signal.

In the following, we simply assume that the in situ
signal u(t) has been precisely identified. Note that this
is non-trivial, because u(t) needs to be reconstructed
from some qubit readout signal y(t) (e.g., by Ramsey
experiments [31]), which will be studied in our separate
work [32]. Denote the initial AWG signal by r(0)(t), and
the distorted input signal is thus u(0)(s) = G(s)r(0)(s).
According to the error e(0)(t) = ud(t) − u(0)(t), we can
modify the AWG signal using the error signal and the
reference model Ḡ(s), as follows

r(1)(s) = r(0)(s) + βḠ−1(s)e(0)(s), (3)

where β is the learning rate that needs to be sufficiently
small for the stability of the iteration. The updated AWG
signal is tested by the system, following which the error
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can be obtained for the next iteration of calibration. Induc-
tively, we can repeat this process by updating the AWG
signal with the error signal until the iteration converges.
The iterative application of deconvolution compensation
will be called iterative deconvolution.

According to Eq. (3), it is easy to derive that:

e(k+1)(s) =
[
I − βG(s)Ḡ−1(s)

]
e(k)(s). (4)

Therefore, if one can manage to keep the operator norm
‖I − βG(s)Ḡ−1(s)‖ smaller than 1, the iterative decon-
volution method will guide the AWG input to:

r(s) = G−1(s)ud(s) (5)

that perfectly yields in situ signal u(t) = ud(t). The con-
vergence holds when β is sufficiently small and when the
model error is not large (i.e., G(s)Ḡ−1(s) is reasonably
close to identity) [33]. Moreover, as long as the iteration
converges, the chosen reference model only affects the rate
of convergence, but not on final yield (5). Therefore, the
iterative deconvolution is by nature immune to the model
imprecision.

C. Simulation Results

In the following simulations, we choose the step func-
tion as the desired signal to be produced in situ, which is
required for fast quantum switching operation [34].

We start from the simpler case in which the real system
is described by the following linear transfer function:

G(s) =
1

(0.008s+ 1)(0.001s+ 1)
, (6)

which involves a slow part (characterized by T1 = 0.008)
and a fast part (characterized by T2 = 0.001). These
parameters are chosen only for illustration, and they vary
under different physical circumstances. We start the test
with a “good” reference model:

Ḡ1(s) =
1

(0.006s+ 1)(0.001s+ 1)
, (7)

in which only T1 is slightly different, and a “bad” refer-
ence model:

Ḡ2(s) =
1

0.004s+ 1
, (8)

in which not only T1 is very imprecise, but also the
fast dynamics is ignored. We also take into account the
discretization effect of the AWG device, i.e., the imple-
mentable r(t) signals are always piecewise constants with
a sampling rate τ . For example, we pick the sampling
period τ = 0.002 (arb.units.) and simulate the iterative de-
convolution for 100 iterations with learning rate β = 0.5,
as shown in Fig. 2. It can be clearly seen that the iterative
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Fig. 2. The AWG signals and in situ signals using the good model
Ḡ1(s) (left plots) and the bad model Ḡ2(s) (right plots), where the
AWG sampling period is τ = 0.002 (arb.units.). The AWG signal is
initially chosen as a step function (purple) and the calibrated signals
(after 100 iterations) are shown in black. The dash red curves correspond
to the intermediate results (in the 2nd iteration) and the blue curves are
obtained by using the standard non-iterative deconvolution.

deconvolution takes the in situ signal from a slowly rising
shape to a fastly rising shape that is much closer to the the
desired step function, no matter which reference model
is used, and the same reference input r(t) is obtained.
The only difference between using good and bad models
is the shape of signals during the intermediate iterations
(see the dash red curves). The iteration converges more
slowly when using the bad model, but not so much, than
that based on the good model. Figure 2 also compares
the calibration results with non-iterative deconvolution,
under which the performance is much worse, because
the performance of non-iterative calibration is heavily
dependent on the accuracy of the reference model.

It should be noted that iterative deconvolution may fail
when the model is too bad, in which case the iteration
diverges. In particular, the iteration is more likely instable
when the distortion dynamics is non-minimum phase
(i.e., the transfer function contains zeros or poles whose
positive parts are greater than zero [35]). In Fig. 3, we
simulate the calibration process using the following two
non-minimum phase reference models:

Ḡ3(s) =
−0.002s+ 1

(0.006s+ 1)(0.001s+ 1)
, (9)

Ḡ4(s) =
−0.006s+ 1

(0.006s+ 1)(0.001s+ 1)
(10)

that contain zeros in the right half of complex plane.
They yield the same AWG input as obtained with Ḡ1(s)
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Fig. 3. The AWG signals and in situ signals using non-minimum-phase
models Ḡ3(s) (left plots) and Ḡ4(s) (right plots), where the AWG
sampling period is τ = 0.002 (arb.units.). The AWG signal is initially set
as a step function (purple) and the calibrated signals (after 100 iterations)
are shown in black. The dash red curves correspond to the intermediate
results (in the 2nd iteration) and the blue curves are obtained by only
using deconvolution.

and Ḡ2(s). However, the iterated signal exhibits strong
oscillations with Ḡ4(s) for many iterations, which shows
that the calibration process is nearly instable. The iterative
can completely lose stability when the zero is closer to the
imaginary axis, which is not shown here.

The above observation shows that one must be cautious
when using a non-minimum phase model. Under such
circumstance, the above inverse-system based iterative
deconvolution (IMID) may never succeed, and one can
turn to more stable norm-optimal iterative learning con-
trol, which is essentially a combination of inverse model
algorithm and gradient-based algorithm. Interested readers
are referred to [36], [25] for more details.

III. ERROR ANALYSIS

The above simulations show that the iterative decon-
volution can well outperform the deconvolution itself.
However, the eventual calibrated pulse is never, more
or less, precisely identical to the desired step function.
Typically, overshoots and damping oscillations appear at
the beginning of the calibrated in situ signal, due to
the finite AWG sampling rate. In this section, we will
analyse the origin and influences of such inter-sampling
oscillations, as well as the stability of the iterative learning
process.
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Fig. 4. The AWG signals and in situ signals using Ḡ1(s) and Ḡ2(s),
where the AWG sampling period is τ = 0.001 (arb.units.). The AWG
signal is initially set as a step function (purple) and the final curves
(black) after 100 iterations are shown in black. The dash red curves
correspond to the intermediate results (in the 2nd iteration) and the blue
curves are obtained by non-iterative deconvolution.

A. The inter-sampling oscillation

Before analyzing the origin of the observed inter-
sampling oscillations, let us examine how they vary under
a faster sampling period τ = 0.001 (arb.units.). As shown
in Fig. 4, the iteration also successfully converges, but
with higher overshoot and longer oscillations.

It is not hard to understand how this happens. In the first
sampling period, the driving field r(t) attempts to drive
the in situ signal u(t) from 0 to 1 at the first sampling
time point t = τ , which requires a high power when the
sampling period is short. Due to the inertial dynamics of
G(s), u(t) will keep going up after crossing 1 at t = τ .
Then, the driving field r(t) switches to pull u(t) back
to 1 at the second sampling time point t = 2τ , and
again the inertia effect brings u(t) down below 1 after
t = 2τ . On and on, the inter-sampling oscillations persist
and gradually damp. Only when G(s) is first-order, there
is no inter-sampling oscillation (see Appendix).

The inter-sampling behavior is essentially determined
by the distortion dynamics G(s), which is independent
with the reference model used for calibration. Taking
second-order G(s) for examples, we show in Figs. 5(c)
and 5(d) the dependence of the highest overshoot and the
damping time (Ts in Eq. (20)) on the time constants T1
and T2 (defined in Eq. (19)) of G(s). The inter-sampling
oscillation is severer when T1 and T2 are larger, implying
that the distortion dynamics should be as fast as possible

4



0 0.005 0.01
0

0.5

1

in
 s

itu
 s

ig
na

l

0 0.005 0.01
−1

0

1

time (arb.units.)

er
ro

r

2 4

1

2

3

4

5  

 
T

2/τ

0.3

0.35

0.4

0.45

2 4

1

2

3

4

5  

T
1
/τ

 

T
2/τ

2
4
6
8
10
12
14
x 10

−3

(a)

(b) (d)

(c)

Fig. 5. (a). The calibrated in situ signal under sampling rate τ = 0.001
(arb.units.). The signal matches the reference signal perfectly at the
sampling points, but is deviated from it in between; (b). The blue curve
corresponds to the error between continuous in situ signal and the desired
in (a), the dashed red lines are the fitted exponential decaying curves;
(c). the decay time constant of the inter-sampling oscillation; (d). the
overshoot of the inter-sampling oscillation.

in order to mitigate the inter-sampling errors.
To see how the calibrated AWG signal affect the

measured qubit readout signal that is used to reconstruct
the in situ signal u(t), we take the example of flux bias
tuning (i.e., u(t) ) on a flux superconducting qubit [15], in
which the phase of the qubit is readout through a Ramsey
experiment [37], [38]. Mathematically, the readout signal
y(t) = cos θ(t), where the accumulated qubit phase is the
integral of the in situ signal u(t), as follows:

θ(t) =

∫ t

0

u(τ)dτ. (11)

Ideally, θ(t) should follow the linear rising function
θd(t) = t. For simplicity, we restrict our discussion within
a time interval that θ(t) ∈ [0, π], so that u(t) can be
uniquely determined. Figure 6 shows that the phase devia-
tion from θd(t) can be kept very small when using iterative
deconvolution calibration, which is much better than the
non-iterative calibration. Due to the inter-sampling effect,
the steady-state error in θ(t) is nonzero and it decreases
when using higher sampling rates. Moreover, it can be
seen that the inter-sampling oscillation in the phase θ(t)
is much weaker after being averaged out by integration.

B. Sampling-time and continuous-time errors

In Fig. 5(a), we find that the calibrated in situ signal
after applying iterative deconvolution perfectly matches
ud(t) at every sampling point except the first one. This
makes sense because we can only correct what we can
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Fig. 6. The accumulated phase deviation of the qubit probe from that
under ideal flux bias tuning, where the reference model Ḡ2(s) is used
for iterative and non-iterative deconvolution calibration.

see. Therefore, the physically existing overshoots and
oscillations is invisible to the sampled-data measurements,
which are assumed to be done at the same rate of AWG. In
this regard, we define the sampling-time and continuous
time errors as follows:

Esample =

N∑
k=1

[u(kτ)− ud(kτ)]τ. (12)

Econtinuous =

∫ T

0

|u(t)− ud(t)|dt, (13)

where T is the duration of the input signal and N is the
number of sampling points. Figure 7 shows how these two
types of errors vary in the iteration processes. The sampled
error can, as expected, be made arbitrarily small, but the
actual errors converge to finite values due to the inter-
sampling oscillation. Besides, under the same learning rate
(β = 0.5), the convergence is faster when using more
precise models. When the model is slightly non-minimum
phase, the convergence can be accelerated a little, but this
advantage does not hold when the iteration process is close
to instability (e.g., when using Ḡ4(s) for calibration).

C. The stability of iterative learning

We have shown that the iterative deconvolution works
when the reference error model is not accurate. However,
the error model cannot be too inaccurate, otherwise the
iterative learning will diverge. Figure 8 explains how the
stability of the iterative learning relies on the model from
its phase-frequency property. As indicated in [33], the
iteration is stable when the phase difference between the
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reference model and the real model is within 90 degrees
at the sampling frequency (see the shaded area). The
convergence becomes faster when the phase of the real
model G(iω) is in advance of that of the reference model
Ḡ(iω) (e.g., see Fig. 7 for Ḡ3(s) and Ḡ4(s)). However,
the iterative deconvolution starts to oscillate when the
phase of Ḡ(iω) is close to the border of stable region.
Furthermore, when the phase is out of the region, the
iterative learning will become unstable, which is very
likely for non-minimum-phase models.

IV. ITERATIVE DECONVOLUTION IN PRESENCE OF
NONLINEARITY

In this section, we study how the iterative deconvolution
works when the distortion of the signal is nonlinear.

For demonstration, we assume that, after a linear dis-
tortion G(s), the signal also experiences the following
saturation nonlinearity: SA(x) = A tanh

(
x
A

)
, where A is

the saturation bound. In the simulations shown by Fig. 9,
the saturation bound is chosen as A = 2 and A = 1,
respectively, and we perform the same iterative algorithm
using the linear reference model Ḡ1(s) for deconvolution.
In both cases, the iteration deconvolution can still correct
the error very well without including the nonlinearity in
the reference model. When the saturation is relatively
small (e.g., when A = 2 shown in the figure), and the
final calibrated in situ signal is only slightly different
from the case without saturation. However, when the
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Fig. 9. The AWG signals and in situ signals using small and large
saturation for the model Ḡ1(s), where the AWG sampling period is
τ = 0.002 (arb.units.). The AWG signal is initially set as a step function
(purple) and the final curves without saturation (dash black) and with
saturation (black) after 100 iterations are shown in black. The dash red
curves correspond to the intermediate results (in the 2nd iteration).

saturation is properly chosen (i.e., A = 1), the calibrated
in situ signal is remarkably different, but in a good way
that the inter-sampling overshoots and oscillations are
almost completely suppressed. The resulting calibration
performance is much better than the linear case. Such side-
effect implies that one can actively introduce nonlinearity
into the distortion dynamics to improve the calibration
performance limited by finite sampling rates.
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The saturator introduced above also makes the learning
process much more stable, by which one can choose much
larger learning rate to accelerate the learning process. As
shown in Fig. 10, the learning under the rate β = 0.5
takes about 300 iterations to reduce the error down to
Econtiunous = 10−3. For comparison, by increasing the
learning rate to β = 5, the learning process is still stable
and achieve the same precision within just 20 iterations,
resulting in a much faster convergence.
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Fig. 10. The calibration errors in the iteration process. The active use of
saturation nonlinearity can further reduce the calibration error, and one
can accelerate the learning process by tuning up the learning rate under
which the iteration is still stable.

V. EXPERIMENTAL DEMONSTRATION

In this section, we apply the iterative deconvolution
method to the signal calibration in our experimental qubit
control platform for quantum computating applications.
As is shown in Fig. 1, the signal u(t) to be calibrated
is a DC magnetic flux signal, which is used to tune the
frequency of the transmon qubit placed in the refrigerator.
In practice, it is often required that the qubit frequency
be quickly tuned to switched on or off the couplings with
neighboring qubits or data-bus.

For this purpose, the reference signal is supposed to
be an ideal step function. However, to avoid the high
overshoot caused by steep rising edge (as can be seen
in the above numerical simulations) in the step function,
we replace the jumping edge by a rsing slope, as follows:

r(t) =

{
0.2 mV/ns× t, t ≤ 5 ns,
1 mV, t > 5 ns,

(14)

In the experiment, the pulse r(t) sent from the AWG is
generated at 1GHz sampling rate and ranges from −1V to

1V. To simplify the experiment set-up, the in situ signal is
directly conducted out through the transmission line and
recorded by an oscilloscope at 1GHz sampling rate. We
first set r(t) as step function rising from 0V to 1V, measure
the distorted signal u(t) seen by the qubit [see the inset of
Fig. 11(a), where the noises come from the thermal noise
that cannot be completely removed in the refrigerator], and
identify the system model using the least square method
[39]. This leads to the following second-order model:

Ḡ(s) =
3.6× 10−4

(s+ 0.3484)2
. (15)

Note that the model is not very accurate, as the slowly
crawling part in the measured step response is not recov-
ered by the identified model. However, as will be seem
below, such model can still be used to effectively calibrate
the signal via iterative learning.

Before applying the iterative deconvolution method,
we test the standard deconvolution method to calibrate
the signal by using the identified transfer-function model
[Eq. (15)] and the finite-impulse-response (FIR) model
[40], respectively. As can be seen in Fig. 11(a), the
calibration fails to eliminate the steady-state error, due to
the unknown offset of the AWG output. Not surprisingly,
the unmodeled crawling behavior is also not corrected.
For comparison, we apply the iterative deconvolution
for 15 trials using the identified model [Eq. (15)]. As
can be seen in Fig. 11(a), the average steady-state error
almost vanishes by the end of iteration. The rising edge
is steeper than that without iterative calibration and closer
to the selected reference signal. As expected, there is an
unwanted but small overshoot, but the crawling part is also
gone.

The resulting AWG signals are displayed in Fig. 11(b),
from which one can see that the signal power needs to
be higher on average to better calibrate the in situ signals.
Due to the power limitation of the AWG, the required high
power is limited in the beginning, and hence the rising
time of the in situ pulse is a bit longer than the selected
reference signal.

To summarize, although the experimental curves are
affected by thermal noises in the cryogenic system, the
obtained results can firmly support the effectiveness of the
iterative deconvolution method. The noises can be further
suppressed by more advanced measurement techniques
(e.g., using the qubit readout instead of direct measure-
ment), and this will be applied in our future experimental
applications.
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Fig. 11. (a) The experimentally measured in situ signals calibrated by
the deconvolution and iterative deconvolution methods, in which the
latter outperforms the former. The inset shows the step response of
the transmission-line distortion, via which a second-model is identified.
(b) The optimized AWG output by the deconvolution and iterative
deconvolution methods.

VI. CONCLUSION

In this paper, we propose an iterative deconvolution
method for calibrating in situ quantum control pulses
applied for manipulating quantum information processing
systems. The iterative deconvolution method can effective-
ly and robustly mitigate the residue error of deconvolution
brought by model inaccuracies. The ultimate calibration
performance is limited by inter-sampling oscillations in-
duced by the finite sampling rate, but we show that such
oscillation may be effectively suppressed by active use of
nonlinear electronic circuits. We also demonstrate the pro-
posed method by the experiment of quick qubit-frequency
tuning, which significantly improve the performance than
that with iterative learning.

Our work demonstrates the power of “grey-box” learn-
ing that incorporates an imperfect model that is thought
to be useless in traditional “black-box” learning. Such
learning process can be much more efficient using a priori
knowledge from the model that is even not so good. Note
that in most of quantum information processing systems,
an imperfect but still good model is usually not hard
to construct, and one should active exploit the model to
improve the precision and efficiency of the control design.

This methodology can be extended to reduce the number
of very costly experiments in many other quantum control
problems (e.g., quantum gate tune-up [30]).

APPENDIX A
THE ANALYSIS OF INTER-SAMPLING BEHAVIOR

For illustration, we assume that the real system is
modeled by

G(s) =
(τ1s+ 1)(τ2s+ 1) · · · (τms+ 1)

(T1s+ 1)(T2s+ 1) · · · (Tns+ 1)
,

where T1 > T2 > · · · > Tn and the time constants in the
transfer function are not precisely known.

Suppose that the required AWG signal is:

r(t) = R11(t) +

∞∑
k=1

(Rk+1 −Rk)1(t− kτ), (16)

where τ is sampling period and Rn is the magnitude of
the signal during the n-th sampling period. Let h(t) be
the step+ response of G(s), then the in situ signal u(t) in
the first n sampling period can be derived as:

u(t, R1, ..., Rn) = R1h(t) +

∞∑
k=1

(Rk+1 −Rk)h(t− kτ).

(17)
For desired constant signal ud, (17) poses n linear equa-
tions of R1, R2, ... and Rn as follows:

u(kτ,R1, R2..., Rk) = ud, k = 1, 2, ..., n (18)

When ud(t) = u(t) (we treat it constant), it can be
easily proven that for first order system R1 = ud/h(τ)
and R2 = R3... = Rn, and the derivative of u(t) after the
first sampling point is 0. It implies iterative deconvolution
can perfectly correct errors with first-order plants after the
first sampling period.

For second order systems:

G(s) =
1

(T1s+ 1)(T2s+ 1)
, (19)

we use the function:

f(t) = 1 +Ae−t/Ts sinωt, (20)

to fit the oscillations of second order systems, in which
Ts corresponds to the damping time of the inter-sampling
oscillations and A corresponds to the magnitude of over-
shoot. Figs. 5(b) and 5(c) depict the dependence of the
settling time and the overshoot on T1 and T2 when
τ = 0.001 (arb.units.).
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