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Abstract—Broiler feed conversion rate optimization reduces1

the amount of feed, water, and electricity required to produce2

a mature broiler, where temperature control is one of the most3

influential factors. Iterative learning control provides a potential4

solution given the repeated nature of the production process, as5

it has been especially developed for systems that make repeated6

executions of the same finite duration task. Dynamic neural7

network models provide a basis for control synthesis, as no8

first-principle mathematical models of the broiler growth process9

exist. The final feed conversion rate at slaughter is one of the10

primary performance parameters for broiler production, and it11

is minimized using a modified terminal iterative learning control12

law in this work. Simulation evaluation of the new designs is13

undertaken using a heuristic broiler growth model based on the14

knowledge of a broiler application expert and experimentally15

on a state-of-the-art broiler house that produces approximately16

40, 000 broilers per batch.17

Index Terms—Iterative learning control, Biosystems, Neural18

networks19

I. INTRODUCTION20

The global demand for poultry meat is predicted to increase21

by 18% between 2015-2017 and 2027 to 139 billion kg [1,22

pp. 37], of which broiler (i.e., a chicken that is bred and23

raised specifically for meat production) meat will represent the24

majority. Industrial state-of-the-art broiler production typically25

has 30-40,000 broilers per batch, produces 2050g broilers in 3426

days from 42g newly hatched broilers and employs ad libitum27

feeding and drinking strategies, i.e., unrestricted access to feed28

and water. Broiler feed conversion rate (FCR) optimization29

reduces the amount of feed, water and electricity required to30

produce a mature broiler.31

Tight bounds on the production environment must be met32

to enable optimal growth, which requires manual tuning of33

each broiler house by a broiler application expert. Active feed34

control is not practically feasible in state of the art broiler pro-35

duction as ad libitum feeding regimes are used. Temperature36

control is, however, highly influential and practically feasible.37

Broiler production is mature in terms of data acquisition38

due to tight biosecurity and traceability requirements. This, in39

turn, drives the need to automatically optimize performance40

in a data driven framework by suitably designed temperature41

control. In this paper, a design based on combining Iterative42
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Learning Control (ILC) and Dynamic neural network (DNN) 43

modeling is developed and evaluated in both simulation and 44

implementation in a state of the art broiler house. 45

The development of ILC was motivated by the many pro- 46

cesses that repeat the same finite duration task over and over 47

again, e.g., a gantry robot undertaking a “pick and place” task. 48

Each execution is commonly termed a trial or pass and the 49

finite duration is known as the pass or trial length. Once a trial 50

is completed, the system resets to the starting location and the 51

next trial can begin, exactly as in broiler production. Moreover, 52

all data recorded during the previous trial is available for use in 53

computing the control input for the next trial with the overall 54

aim of improving performance from trial-to-trial. 55

The survey papers [2] and [3] are a good starting point for 56

the ILC literature. The scope of ILC laws in the literature range 57

from simple structure laws, such as phase-lead, that can be 58

tuned without the use of a model through to advanced model 59

based designs for linear and nonlinear dynamics. Mature 60

ILC application areas with experimental validation include 61

additive manufacturing, see, e.g., [4], and an extension to 62

robotic-assisted stroke rehabilitation for the upper-limb with 63

supporting clinical trials [5]. 64

Model based ILC is required for broiler FCR optimization 65

since the broiler growth process itself is highly nonlinear 66

and time varying. See Fig. 1 for a schematic diagram of 67

the inputs, outputs and disturbances that are relevant to 68

the application of control laws to the broiler process. This 69

paper uses nonlinear data driven modeling in the form of 70

dynamic neural networks to model the dynamic relationship 71

between climate conditions and broiler growth. See, e.g., [6] 72

for background information on neural networks. Such models 73

have been successfully applied to model complex biological 74

processes, of which non-control related applications includes 75

broiler growth forecasting [7] [8]. 76

This paper gives the first results on a new application of 77

ILC to food production. In particular, ILC is modified to 78

minimize the terminal broiler FCR in the presence of the 79

uncertain nature of the data driven DNN model. To evaluate 80

the new design in simulation, a heuristic broiler growth model 81

is developed based on the experience and knowledge of a 82

broiler application expert, which is then analyzed to provide 83

FCR optimization guidelines. In [9], preliminary ILC law 84

design and associated simulation study of a heuristic broiler 85

growth model were reported. The results in this paper differ 86

substantially by including cumulative feed consumption output 87

in the heuristic model, measurement weight bias compensation 88

as investigated in [10], and experimental results from a state- 89

of-the-art broiler production facility. 90
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Fig. 1. Overview of the broiler process in terms of inputs (left), disturbances
(top) and outputs (right).

The paper is organized as follows. The development of91

a heuristic broiler model and the broiler FCR minimization92

problem is described in section II. Terminal ILC is then93

introduced and applied to solve the FCR minimization problem94

in section III. A simulation study of the design is given in sec-95

tion IV followed by the experimental results in section V.96

Finally section VI gives the concluding remarks and briefly97

discusses possible future research.98

Notation99

Let uk[n] ∈ RNu denote a signal at trial k and sample n,100

and Uk be the super-vector formed from uk[n] in the finite101

time interval between the first sample Ns and last sample Ne102

as103

Uk =
[
uk[Ns]

T · · · uk[Ne]
T
]T ∈ RNuNn (1)104

with a total of Nn = Ne − Ns + 1 samples; Ũk denotes the105

terminal super-vector. If a is a vector then ‖a‖ =
√
aTa and106

‖a‖A =
√
aTAa, where A is a positive definite matrix, respec-107

tively, denote the Euclidean and weighted Euclidean norm of108

a. Let B and C be sets, then #B denotes the cardinality of109

B and B\C = {x ∈ B | x /∈ C} is the difference of B and110

C.111

II. HEURISTIC BROILER GROWTH MODEL AND FCR112

OPTIMISATION113

A. Heuristic Broiler Growth Model114

The heuristic broiler FCR model developed in this section115

is used to test the data driven broiler growth optimization116

algorithm developed in subsection III-C in a simulation envi-117

ronment prior to experimental tests. Only past growth model118

data, and not the growth model, is used for control synthesis,119

which would also be the case under real production conditions.120

The objective is to represent basic broiler growth behavior121

in an industrial state-of-the-art broiler production, which is122

based on the experience and knowledge of a broiler application123

expert.124

The model’s primary objective is to assess the algorithm’s125

ability to iteratively learn a unique time series of broiler126

state dependent temperature inputs that minimizes the termi-127

nal broiler FCR, while simulating reduced growth for both128

negatively- and positively suboptimal temperature inputs. Such129
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Fig. 2. Total metabolized energy for different temperature categories in terms
of energy intake and maintenance energy requirements. Blue denotes a cold
temperature, red denotes hot temperature, and white denotes thermoneutral
temperature. The optimal temperature is marked with a vertical line [11, pp.
4].
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ū(xm[n])
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Fig. 3. Visualization of the maturation rate function G(xm[n], u[n]) for
xm[n] = 0 with worst case broiler growth rate β = 0.85, α = 0.05,
maximizing input ū(xm[n]) = 34 [◦C] and temperature error sensitivity
σu = 0.75 [◦C].

a broiler growth model can be represented by the discrete time 130

dynamic nonlinear model 131[
xm[n+ 1]
xf [n+ 1]

]
=

[
xm[n]
xf [n]

]
+ Ts

[
G(u[n], xm[n])
Rf (xm[n])

]
(2a) 132[

yw[n]
yf [n]

]
=

[
Rw(xm[n])
xf [n]

]
+

[
qw[n] + qw,bias[n]

qf [n]

]
(2b) 133

Γ = Rw(xm[Ne]) (2c) 134

with initial conditions xm[Ns] = xf [Ns] = 0 and measured 135

slaughter weight Γ ∈ R, where xm[n] ∈ R+ is the broiler 136

maturity in “effective growth days”, yw[n] ∈ R+ is the 137

measured broiler weight, xf [n] ∈ R+ is the cumulative feed 138

consumption, yf [n] ∈ R+ is the measured cumulative feed 139

consumption, u[n] ∈ R is the temperature input, and Ts ∈ R+ 140

is the sampling interval in days. Under production conditions 141

the temperature input u[n] is a reference for the climate control 142

system, which, for simplicity, is assumed to achieve perfect 143

tracking. In (2a), G is a function representing the broiler 144

growth rate, while Rw : R+ → R+ and Rf : R+ → R+ are 145

smooth and strictly increasing functions mapping the broiler 146

maturity xm[n] into broiler weight and feed consumption, 147

qw[n] ∈ R is the weight measurement noise, qw,bias[n] ∈ R 148

is the weight bias and qf [n] ∈ R is the feed measurement 149

noise. 150

The growth and feed consumption of the widely-used ROSS 151

308 fast growing broiler strain are described by the manufac- 152
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turer in [12, pp. 3] as153

Rw(t) =
−18.3 t3 + 2.2551 t2 + 2.9118 t+ 54.739

1000
(3a)154

Rf (t) =
21.9 · 10−6 t4 − 4.232 · 10−3 t3 + 0.206 t2

1000
155

+
2.02 t+ 11.6

1000
(3b)156

where Rw(t) ∈ R+ is the broiler weight reference in kg,157

Rf (t) ∈ R+ is the broiler feed uptake reference in kg/day,158

and t ∈ [0, 59] days is the time in “effective growth days”.159

Expressing broiler weight Rw(xm[n]) and broiler feed uptake160

Rf (xm[n]) in terms of the broiler maturity in “effective growth161

days” through xm[n] results in realistic weight and feed uptake162

behavior, as it captures the nonlinear nature of broiler growth.163

The polynomials are determined by the manufacturer using164

statistical means.165

The maturation rate function G : R × R+ → [β, 1], where166

β ∈ [0, 1[ is a worst-case broiler growth rate, represents167

the influence of external stimuli u on the broilers’ relative168

maturation. It keeps track of the metabolized energy, as169

illustrated on Fig. 2. It is not possible to construct this function170

from “first principles”; instead, a broiler application expert will171

heuristically specify the decreased growth rate for a specific172

temperature deviation from “optimal” growth conditions.173

In this paper, a modified normal distribution is chosen for174

G, as it has a unique maximum and the standard deviation can175

easily be tuned to design how sensitive G is to temperature176

errors. Specifically177

G(u[n], xm[n]) = β+178

(1− β) exp

{
ln

(
α+ β − 1

β − 1

)[
u[n]− ū(xm[n])

σu

]2
}
, (4)179

where ū(xm[n]) is the temperature maximizing G,180

G(ū(xm[n]), xm[n]) = 1, and σu ∈ R+ is the constant181

temperature sensitivity. The temperature sensitivity is182

the temperature input error, u[n] − ū(xm[n]), resulting183

in a decreased maturation rate of α – corresponding to184

G(ū(xm[n])± σu, xm[n]) = 1− α with α ∈]0, 1− β[.185

The parameters of the maturation rate function G are shown186

in Fig. 3. For a more accurate temperature sensitivity, the187

broilers’ feathering and ability to regulate their own body188

temperature could also be considered, but this could make σu189

time and state dependent and is left as a subject for possible190

future research.191

The optimal temperature profile is unknown in the indus-192

try, but typical temperature profiles for the ROSS 308 fast193

growing broiler transition almost linearly between the initial194

temperature of ūs = 34 ◦C at day ts = 0 to ūe = 21 ◦C at day195

te = 34. This corresponds to a temperature drop of (ūe − ūs),196

which is modeled as proportional to the maturity xm[n] as197

ū(xm[n]) = ūs + ∆Txm[n] with ∆T =
ūe − ūs
te − ts

. (5)198

Consequently, the optimal temperature at sample n depends199

on xm[n− 1], which, in turn, depends on all prior inputs.200

The weight bias term qw,bias[n] was investigated in [10]201

and found to cause terminal weight measurement errors, with202
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(a) Weight measurement bias qw,bias[n] samples using (6).
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Fig. 4. Measurement behavior for the heuristic broiler growth model.
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−27.4g mean and 115.9g standard deviation through compari-203

son with the accurately measured slaughter weight. This prob-204

lem was first reported by [13], but has subsequently received205

limited research attention. In [14] it was observed that the au-206

tomatic weighting system was used less frequently by heavier207

broilers through image analysis and subsequently confirmed208

in [15]. The weight bias onset was found to occur around day209

15 in [10], which is heuristically assumed to increase linearly210

from zero at day 15 to Qbias ∼ N (−27.4g, 115.9g) at the211

terminal sample and hence212

yw,bias[n] =

{
nTs−15
NeTs−15Qbias, 15 < nTs

0, otherwise
, (6)213

where Qbias is constant throughout each simulation as shown214

in Fig. 4a. In [10] it was found that using the measured215

slaughter weight, i.e. the terminal broiler weight, reduces the216

weight bias effect for broiler weight prediction on real broiler217

production data.218

The noise terms qw[n] and qf [n] are found by analyzing the219

frequency spectrum of production data from the experimental220

test site. As broiler weight is a smooth function of time,221

the “true” broiler weight is approximated by a second order222

polynomial ŷw,pol,2 between day 3 and 15, where the weight223

measurement yw is expected to be the most reliable. The fit224

errors, yw−ŷw,pol,2, of 36 batches from the experimental test225

site are shown in the top plot of Fig. 4b and are treated as226

measurement noise. Note that it is not feasible to evaluate the227

performance of this noise model.228

Subtracting the mean, concatenating all the fit errors and229

computing the FFT produces the bottom magnitude plot. As230

this is not a standard distribution, random realizations of qw[n]231

with identical magnitude are obtained by randomly rotating the232

phases of the FFT and applying the inverse discrete Fourier233

transform. For more information on this approach, see [16].234

Some realizations of qw[n] are shown in the top plot of Fig. 4b.235

Similarly, the “true” cumulative feed uptake is approximated236

by a fourth order polynomial ŷf,pol,4 between day 3 and 30237

and shown in Fig. 4c (using the same order of polynomial fit238

as proposed by the ROSS 308 manufacturer).239

B. Control Design Considerations240

Potential broiler production optimization strategies are dis-241

cussed in this section. They consist of weight maximization,242

feed minimization and FCR maximization.243

1) Weight maximization: The objective for this strategy is to244

maximize ȳw[n]. Inspecting G shows that xm[n] is maximized245

by the unique input ū(xm[n]) that for all u[n] 6= ū(xm[n])246

satisfies247

G(u[n], xm[n]) < G(ū(xm[n]), xm[n]) = 1.248

In the case when β ≤ G ≤ 1, the largest possible maturity249

x̄m[n] equals250

x̄m[n] = max{xm[n]} = Ts

n∑
i=1

max{G(u[i], xm[i])}251

= nTs.252
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Fig. 5. Visualization of broiler growth ym with different inputs. The top
plot depicts the maturation rate function G(xm[n], u[n]) as a function of the
input u[n] and the bottom plot depicts the output ym[n]. The model settings
equal that of Fig. 3 with Ts = 1 day.

As Rw is strictly increasing, the largest possible broiler weight 253

is given by 254

ȳw[n] = max{yw[n]} = max{Rw(xm[n])} 255

= Rw(max{xm[n]}) = Rw(nTs). 256

This ensures that suboptimal control results in suboptimal 257

weight, as expected in real broiler production where either 258

a too low or too high temperature results in decreased broiler 259

growth, as illustrated in Fig. 2. In Fig. 5 the behavior of the 260

broiler model is shown for different temperature inputs. 261

2) Feed minimization: The objective for this strategy is to 262

minimize ȳf [n]. If β ≤ G ≤ 1, the smallest maturation rate 263

¯
xm[n] is governed by 264

¯
xm[n] = min{xm[n]} = Ts

n∑
i=1

min{G(u[i], xm[i])} 265

= Tsβn (7) 266

As Rf is strictly increasing, the lowest cumulative feed 267

consumption is given by 268

¯
xf [n] = min{xf [n]} = min

{
Ts

n∑
i=1

Rf (xm[i])

}
269

= Ts

n∑
i=1

Rf (min{xm[i]}) = Ts

n∑
i=1

Rf (Tsβi) (8) 270

This suggests that feed minimization and weight maximization 271

are completely opposing goals. 272

3) FCR minimization: The expression for FCR from the 273

heuristic model is 274

yFCR[n] =
yf [n]

yw[n]
=

xf [n]

Rw(xm[n])
= Ts

n∑
i=1

Rf (xm[i])

Rw(xm[n])
(9) 275
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initial period where G(xm[n], u[n]) = β . The red dashed line indicates
a simulation duration of 34 days with a minimization duration of 9.5 days,
equivalent to Fig. 7

The objective for this strategy is to minimize yFCR[n]. In276

contrast to weight maximization and feed minimization, an277

analytical expression for the lowest possible FCR is non-278

trivial to determine. This is due to two simultaneous and279

opposing objectives, namely weight maximization and feed280

minimization, which depends on the simulation duration Ne281

as shown in Fig. 6.282

In Fig. 7 the strategies are compared, from which it follows283

that FCR minimization consists of an initial period of feed284

minimization followed by weight maximization – similar to285

the second state-of-the-art strategy. Feed minimization pro-286

duces the highest FCR, and is therefore excluded. More-287

over, weight maximization results in a 1.1% higher FCR than288

FCR minimization, which makes FCR minimization favorable289

despite the added complexity of another output and this290

objective will therefore be used in this work.291

III. BROILER FCR MINIMIZATION USING TERMINAL ILC292

A. Terminal Iterative Learning Control (TILC)293

TILC is a method that can be applied to a repeating process294

with the aim of iteratively learning the input sequence Uk ∈295

RNuNn such that the terminal process output Ỹk(Uk) ∈ RNy296

tracks the desired terminal reference R̃ ∈ RNy denoted by297

lim
k→∞

Ỹk(Uk) = R̃, (10)298

with the super-vector model used for control synthesis given299

by300

Ỹk(Uk) = P̃Uk + K̃, (11)301

where P̃ ∈ RNy×NuNn is the terminal system matrix, and302

K̃ ∈ RNy represents terminal effects unrelated to the input303

U ∈ RNuNn .304

This last problem can be solved using constrained Norm305

Optimal Point-To-Point ILC, which aims to track the output306

at specific samples using techniques also discussed in [17]307

and [18]. As TILC only aims to track the terminal output,308

TILC is a specialization of Point-To-Point ILC. Adapting the309

constrained Norm Optimal Point-To-Point ILC algorithm 1 in310
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Fig. 7. Visualization of different optimization strategies with Ne = 34 days,
Ts = 0.5 day and β = 0.85. A FCR difference of 1.14 · 10−3, equivalent
of 1.1%, exists between Growth maximization and FCR minimization, which
potentially makes FCR minimization a better strategy.

[18] to the special case of the TILC problem considered gives 311

312

Uk+1 = arg min
U∈Ω

∥∥Ẽk(U)
∥∥2

WẼ

+ ‖U − Uk‖2W∆U
(12a) 313

subject to 314

Ẽk(U) = R̃− Ỹk(U) and (12b) 315

Ỹk(U) = P̃U + K̃, (12c) 316

where Ω is the set of valid inputs, WẼ ∈ RNy×Ny is the 317

symmetric positive definite tracking error cost matrix, W∆U ∈ 318

RNuNn×NuNn is the symmetric positive definite input change 319

cost matrix and Ẽk(U) ∈ RNy is the terminal tracking error 320

given by (12b). The intuition behind (12) is to reduce the 321

terminal tracking error by finding an input in the neighborhood 322

of Uk that minimizes the cost function (12a). 323

The following results were established in [18] and are 324

repeated here for convenience, since they encapsulate the aim 325

of the control design under ideal conditions. 326

Theorem 1. If perfect tracking is feasible, i.e. ∃ U ∈ Ω such 327

that Ỹk(U) = R̃; then (12) achieves monotonic convergence 328
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to zero tracking error329 ∥∥∥Ẽk+1(Uk+1)
∥∥∥
WẼ

≤
∥∥∥Ẽk(Uk)

∥∥∥
WẼ

∀k ∈ Z+ (13)330

and331

lim
k→∞

Ẽk(Uk) = 0, lim
k→∞

Uk = Ū. (14)332

Theorem 2. If perfect tracking is not feasible, i.e. Ỹk(U) 6=333

R̃ ∀U ∈ Ω; then the input of (12) converges to334

lim
k→∞

Uk+1 = arg min
U∈Ω

∥∥R̃− P̃U − K̃∥∥2

WẼ

, (15)335

equivalent to the algorithm converging to the smallest possible336

tracking error. Moreover, this convergence is monotonic in the337

tracking error norm338 ∥∥∥Ẽk+1(Uk+1)
∥∥∥
WẼ

≤
∥∥∥Ẽk(Uk)

∥∥∥
WẼ

∀k ∈ Z+. (16)339

B. Data Driven Model340

This section provides an overview of the model, see [8] and341

[10] for a detailed description.342

The objective of the data driven model is to enable control343

synthesis without a mathematical broiler FCR model, by344

synthesizing P̃ and K̃ from (12c) using past production data.345

Using a nonlinear discrete time data driven model the aim is to346

capture the broiler growth dynamic using data from the past Nb347

trials, {{Uk−Nb+1, Dk−Nb+1, Yk−Nb+1}, . . . , {Uk, Dk, Yk}},348

where Dk denotes the disturbance vector and Nb data indexes349

are conveniently denoted by350

Bk = {k −Nb + 1, . . . , k}. (17)351

For data driven model synthesis at trial k, data from the352

trial indexes denoted by Bk−1 is required. Trial data prior353

to the first trial, k<1, are denoted as preliminary trials, e.g.,354

{U−2, D−2, Y−2}. Hence, a total of Nb preliminary trials are355

required for model synthesis for the first trial, k = 1, denoted356

by the indexes B0 = {1−Nb, . . . , 0}.357

The data driven model is chosen to be a nonlinear auto-358

regressive moving average model with exogenous input (NAR-359

MAX) type model implemented as a neural network with Nl360

input and output lags, a single hidden layer with NN neurons361

and a hyperbolic tangent activation function in the hidden362

layer:363

ŷk[n+ 1 | W, s] = W o tanh(X + θh) + θo (18)364

with365

X =

Nl−1∑
i=0

W h
y,iŷk[n− i | W, s] +W h

u,iuk[n− i] +W h
d,idk[n− i],366

where W o ∈ RNy×NN , X ∈ RNN , θo ∈ RNN , W h
y,i ∈367

RNN×Ny , W h
u,i ∈ RNN×Nu , W h

d,i ∈ RNN×Nd and θh ∈ RNN368

are model parameters stored in W , ŷk[n | W, s] is the model369

output at sample n, initialized at sample s with model weights370

W ∈ RNW . Initialization in this case is described by371

ŷk[n | W, s] = yk[n] ∀n ≤ s, (19)372

where n is implicitly lower bounded by the starting sample373

Ns, Ns ≤ n, for both yk[n], uk[n] and dk[n].374

0 5 10 15 20 25 30 35
0

2

4
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8

Samples k [·]

φ
(k
)
[·]

visualization of the cost shaping function φ(k)

k < Nφ
Nφ ≤ k < Ns,b
k = Ns,b

Fig. 8. Visualization of the cost shaping function φ(k) with Nφ = 20,
Ns,b = 34 and γ = 0.5. The blue, green and red values correspond to a
separate case of (20d).

To find the model weights, the following training procedure 375

was used 376

W(B) = arg min
W

∑
b∈B\min{B}

Jb(W)

#B − 1
(20a) 377

with 378

Jb(W) = ᾱ‖W‖2 +

NS∑
i=1

Ne∑
n=Si

Eb
Ny(Ne − Si + 1)

(20b) 379

Eb =

Ny∑
i=1


||Γb − ŷi||22 φ(k), k = Ns,b ∧ i = iw

||yi − ŷi||22 φ(k), k 6= Ns,b ∧ i = iw

||yi − ŷi||22, otherwise
(20c) 380

φ(k) =


1, k < Nφ

1 + (Ns,b −Nφ)(γ − 1), k = Ns,b

γ, otherwise
(20d) 381

where B is a set of batch-indices used for training, S = 382

{S1, . . . , SNS} is the set of NS ∈ Z+ initialization locations, 383

which was found to speed up training as described in [8], Γb 384

is the broiler slaughter weight of batch b, i.e. the true broiler 385

weight prior to slaughter, iw ∈ Z is the weight output index, 386

φ : Z+ → R is the weight cost shaping function, Nφ ∈ Z is 387

the start weight cost shaping sample number and γ ∈]0, 1[ is 388

the weight cost shaping parameter. 389

Automatic weighing pads are commonly used for weighing 390

broilers and is known to be negatively biased onwards from 391

day 15, which is represented by (6) in the heuristic model. In 392

[10] the weight cost shaping function φ : Z+ → R in (20c) 393

and (20d) was found to decrease the impact of this bias – 394

one example of φ is shown in Fig. 8. The slaughter weight is 395

considered very accurate and is included by overriding the last 396

measured local weight at sample k = Ns,b of each batch. Extra 397

emphasis is then placed on the slaughter weight at sample 398

k = Ns,b in the cost function, while samples beyond Nφ ∈ Z+ 399

are weighted less. 400

The cost function is minimized using the Levenberg- 401

Marquardt algorithm with early stopping applied on the oldest 402

batch index in B, denoted by min{B}, in Jmin{B}(W), to 403
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prevent overtraining. The regularization constant ᾱ ∈ R+ is404

found iteratively through Bayesian regularization to prevent405

overfitting. The model weights W are initialized using the406

Nguyen Widrow initialization scheme. For detailed informa-407

tion regarding the training see [8] and [10].408

As (20a) is not a convex optimization problem, the weights409

W(B) are not guaranteed to be the global minimum. To410

decrease the probability of finishing in a local minimum, the411

ensemble mean of Nm models trained with different initial412

model weights is used. The ensemble data driven model sim-413

ulated from sample Ns with data from batch b, {Yb, Db, Ub},414

is415

ŷk,b[n] =
1

Nm

Nm∑
l=1

ŷb[n | Wl(Bk\b), Ns], (21)416

where Wl(Bk\b) is the l’th training of W(Bk\b) with the417

batch indexes Bk\b to separate training data and simulation418

data. The terminal super-vector ensemble data driven model419

required for (12) is obtained by linearizing (21) along the420

trajectory of Ub (a past trial) using the first order Taylor421

expansion422

Ỹk(U) ≈ ˆ̃Yk,b + ˆ̃Pk,b(U − Ub) = ˆ̃Pk,bU + ˆ̃Kk,b (22)423

with424

ˆ̃Pk,b =
d ˆ̃Y k,b
dUTb

∣∣∣∣∣
Ub

and ˆ̃Kk,b = ˆ̃Yk,b(Ub)− ˆ̃Pk,bUb425

where U ∈ RNuNn is the super-vector input used in (12c) and426

Uk is the input for the current trial. The data driven model is427

retrained for every k and b. See [19] for detailed derivations428

of ˆ̃Pk,b and ˆ̃Kk,b.429

To use this model for FCR minimization requires an aug-430

mented data driven model, denoted by (·)∗. This model is431

given by432

Ỹ ∗k (U) =
Ỹ k,f (U)

Ỹ k,w(U)
(23)433

where Ỹ k,w(U) ∈ R+ and Ỹ k,f (U) ∈ R+, respectively,434

denote the weight and cumulative feed uptake – the equivalent435

of (2b). Linearizing in Ub by a first order Taylor expression436

similar to (22) results in437

Ỹ ∗k (U) ≈ ˆ̃Y ∗k,b(Uk) + ˆ̃P ∗k,b(U − Uk) = ˆ̃P ∗k,bU +K∗k,b (24)438

with439

ˆ̃P ∗k,b =
d ˆ̃Y ∗k,b(U)

d ˆ̃Y Tk,b(U)

d ˆ̃Yk,b(U)

dUT
=
d ˆ̃Y ∗k,b(U)

d ˆ̃Y Tk,b(U)

ˆ̃Pk,b and440

ˆ̃K∗k,b = ˆ̃Y ∗k,b(Uk)− ˆ̃P ∗k,bUk =
d ˆ̃Y ∗k,b(U)

d ˆ̃Y Tk,b(U)

ˆ̃Kk,b.441

C. Data Driven TILC Broiler FCR Minimization 442

The objective is to minimize the terminal broiler FCR, 443

which is unknown in broiler production. One reason for this 444

is that artificial genetic selection progressively increases the 445

growth rate. To account for this, the reference is redefined as 446

R̃∗k = Ỹ ∗k (Uk)−R, (25) 447

where R ∈ RNy+ is a trial-independent minimization vector 448

with positive elements and this method is termed minimizing 449

reference. As Ẽ∗k(Uk) = R̃∗k−Ỹ ∗k (Uk) = −R is constant, zero 450

tracking error is not possible by construction. Assuming that 451

Ỹ ∗k (Uk) is lower bounded by Ỹ ∗min ∈ RNy and in combination 452

with Theorem 2, the aim is to achieve 453

lim
k→∞

Ỹ ∗k (Uk) = Ỹ ∗min and lim
k→∞

R̃∗k = Ỹ ∗min −R. (26) 454

Since broiler growth is a nonlinear process, a local minimum 455

could be obtained instead of Ỹ ∗min. 456

In the following the so-called best recent trial index κk is 457

required and for Ỹ ∗i (Ui) ∈ R+ it is defined by 458

κk = arg min
i∈ [min(k−Nb, 0), k]

∥∥Ỹ ∗i (Ui)∥∥WẼ

, (27) 459

and serves as a feasible substitute for the best recent trial index 460

given by 461

arg min
i∈ [min(k−Nb, 0), k]

∥∥Ỹ ∗min − Ỹ ∗i (Ui)
∥∥
WẼ

. 462

The variable i is lower bounded by 0, which equals the 463

most recent preliminary trial and (27) is application-dependent. 464

To reduce the influence of the measurement weight bias on 465

κk, the slaughter weight Γk and measured cumulative feed 466

consumption Ỹk,f (Uk) is used: 467

κk = arg min
i∈ [min(k−Nb, 0), k]

∥∥∥∥∥ Ỹ i,f (Ui)

Γi

∥∥∥∥∥
WẼ

. (28) 468

To account for the uncertain nature of the augmented data 469

driven model given by (24), the TILC algorithm is modified 470

into a descent type algorithm, denoted anchoring, by solving 471

Uk+1 = arg min
U∈Ωk+1

∥∥Ẽ∗κk(U)
∥∥2

WẼ

+ ‖U − Uκk‖2W∆U
(29a) 472

subject to (25), (28) and 473

Ẽ∗κk(U) = R̃∗κk − Ỹ ∗κk(U) and (29b) 474

Ỹ ∗κk(U) = ˆ̃P ∗k,κkU + ˆ̃K∗k,κk (29c) 475

where Ωk+1 ∈ RNuNn is the set of valid trial dependent inputs. 476

Remark. The primary requirement for the algorithm outlined 477

in this subsection to work in practice is that ˆ̃P ∗k,κk approxi- 478

mates P̃ ∗k . 479

The input Uk+1 is rejected if it does not decrease the error 480

in (28) and Uκ is used instead of Uk+1 in the next trial. 481

This effectively ensures that the algorithm keeps exploring the 482

neighborhood of the recent best trial input Uκk until the data 483

driven model is sufficiently accurate to maximize the terminal 484

output norm in (28), as the data driven model always uses 485
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the most recent data from the last Nb trials. Consequently the486

data driven model ˆ̃P ∗k,κk is identical to the analytical model487

P̃ ∗κk under ideal conditions and constant reference. In this case488

κk = k as Ẽ∗k is monotonically decreasing in k.489

Remark. The convergence provided by Theorem 2 can no490

longer be guaranteed with the use of a data driven model, as491

the associated optimization problem is no longer guaranteed492

to be convex.493

The computable solution of (29) is494

Uk+1 = Uκk + arg min
∆U∈Ωk+1−Uκk

1

2
‖∆U‖2Q1

+QT2 ∆U (30)495

where496

Q1 = 2
(

ˆ̃P ∗Tk,κkWẼ
ˆ̃P ∗k,κk +W∆U

)
and497

Q2 = −2 ˆ̃P ∗Tk,κkWẼẼ
∗
κk

(Uκk)498

and ∆U = U − Uκk results in an algorithm of the form499

Uk+1 = F
(
Uκk , Ẽ

∗
κk

(Uκk)
)

= F
(
Uκk , R̃

∗
κk
− Ỹ ∗κk(Uκk)

)
500

that includes feedback action though the measured terminal501

output via the terms Ỹ ∗κk(Uκk) and ˆ̃P ∗k,κk . The slaughter weight502

is used to calculate Ẽ∗κk(Uκk), similar to (28), to reduce the503

influence of the weight measurement bias. If combined with504

maximizing reference then Ẽ∗k(Uκk) = R and Ỹ ∗κk(Uκk) is505

only used indirectly through ˆ̃P ∗k,κk . This problem can be solved506

using standard quadratic programming solvers, e.g. Matlab’s507

quadprog.508

D. Analytical Heuristic Model509

To evaluate the ILC algorithm formulated in subsec-510

tion III-C in simulation, an analytical linear terminal super-511

vector broiler growth model of Ỹk is required. This is obtained512

by linearizing (2) along the trajectory of Uk ∈ RNuNn using513

the first order Taylor expansion:514

Ỹk(U) ≈ Ỹk(Uk) + P̃k (U − Uk) = P̃kU + K̃k (31)515

with516

P̃k =
d Ỹk(Uk)

dUTk

∣∣∣∣∣
Uk

and K̃k = Ỹk(Uk)− P̃kUk,517

where P̃k ∈ RNy×NuNn is the terminal model matrix and518

K̃ ∈ RNy is the terminal output constant vector unrelated to519

the input U ∈ RNuNn .520

IV. SIMULATION CASE STUDY521

A. Description522

The objective is to investigate the ability of different con-523

figurations of the data driven optimization algorithm (29) to524

minimize the terminal FCR Ỹ ∗k of the heuristic broiler growth525

model given by (2). Specifically, the performance impact of526

the following is investigated:527

1) using the data driven model ˆ̃P ∗k,κk for control synthesis528

from (22), denoted by (D), compared to the unrealistic529

option of using the analytical super-vector model P̃ ∗κk530

for control synthesis from (31), denoted by (I), as shown 531

in Fig. 9b. 532

2) using anchoring from (29) though κk from (28), denoted 533

by (A), compared to disabling this term by forcing κk = 534

k, denoted by (·), as shown in Fig. 9c. 535

3) using the maximizing reference (25), denoted by (MR), 536

compared to unrealistic option of using the analytic 537

maximum given by 538

R̃∗k = Ỹmin =
¯
z[Ne], (32) 539

denoted by (·), as shown in Fig. 9d. 540

This results in a total of 8 different test configurations, some 541

of which are shown in Fig. 9. Each test is repeated 10 times 542

and the mean true terminal error, |Ỹ k − R̃max|, is used for 543

evaluation. 544

To investigate the necessity for iterative learning in this data 545

driven application, different values of W∆U are explored under 546

unconstrained conditions, i.e., Ωk = RNeNu , e.g. by using 547

W∆U = 0 with a perfect model under linear conditions results 548

in instantaneous convergence in a single trial. Specifically, if 549

W∆U = 0 has instantaneous convergence with the D+A+MR 550

algorithm compared to using W∆U > 0, then there is no need 551

for iterative learning. 552

B. Method and Model Configuration 553

The heuristic broiler growth model in section II was sim- 554

ulated between the initial sample Ns = 0 and the terminal 555

sample Ne = 35 with a sample interval of Ts = 0.5 days, 556

and is heuristically configured with β = 0.85 as the worst 557

case maturing rate, since feed and water consumption are the 558

dominating factors and correct temperature control is regarded 559

as a catalyst. Also α = 0.05 and σu = 0.75 [◦C] have been 560

used to give good overall sensitivity throughout the lifespan 561

of a broiler. 562

The data driven model in subsection III-B is generated with 563

Nm = 20 ensemble models using Nb = 10 preliminary 564

training batches, Nl = 3 input and output lags, NN = 7 565

neurons in the hidden layer and with NS = 5 initialization 566

locations at samples S = {0, 7, 14, 21, 28}. The preliminary 567

Nb trials required for training are generated using the pos- 568

itive input u[n] resulting in a 5% decreased maturing rate, 569

G(u[n], xm[n]) = 0.95, see the example in Fig. 10. 570

To ensure an identical initial input U0 for all the tests, the 571

most recent preliminary trial k = 0 does not have any added 572

input noise. Hence, the objective is to decrease the terminal 573

broiler FCR Ỹ ∗k by 0.0537. White noise with standard devia- 574

tion of 0.3 ◦C is added to the remaining Nb − 1 preliminary 575

trials, {1−Nb, . . . , −1}. This is considered realistic, as most 576

broiler farmers tend to use a too high temperature with little 577

variations from trial-to-trial. 578

Fast convergence conditions for the data driven TILC 579

broiler optimization algorithm are obtained by using a min- 580

imization constant of R = 0.04, terminal tracking er- 581

ror cost and input change cost of WẼ = 0.01−2 and 582

W∆U = diag
(
[1 ◦C]−2, . . . , [1 ◦C]−2

)
. The permitted tem- 583

perature change is restricted to avoid large input fluctuations 584
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Ỹ ∗k
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(a) D+A+MR (Nominal)
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(b) I+A+MR (Without D)
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with κk = k
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(c) D+MR (Without A)
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Uk+1

DNN (22)
ˆ̃P ∗k,κk
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Ỹ ∗min (32)

(d) D+A (Without MR)

Fig. 9. Illustration of some of the configurations of the broiler growth optimization algorithm tested in section IV. The shaded area denotes the controller, z−1

denotes a unit delay, a dashed signal contains information from the last Nb trials, {k−Nb + 1, . . . , k}, and a non-dashed signal only contains information
from trial k. See subsection IV-A a for detailed explanation.
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Fig. 10. Visualization of 10 preliminary trial data. Note that the large FCR
standard deviation is caused by the measured weight bias qw,bias[n].

caused by data driven modeling errors in ˆ̃P ∗k,κk . The valid585

input space Ωk+1 is therefore given by:586

ωk+1[n] = {u | −γ[n] ≤ u− uκk [n] ≤ γ[n]} with (33)587

γ[n] = 0.5 ◦C + nTs
1.5 ◦C

35 Days
588

where u ∈ R is the input and γ[n] is the lower and upper589

temperature change bound ranging from 0.5 ◦C on day 0 to 2590

◦C on day 35. This does not restrict the permitted input space591

Ωk+1 for k →∞ as it changes with uκk [n].592

C. Results593

A summary of the simulation results is provided in Table I.594

From Fig. 11a it can be concluded that anchoring does not595

provide benefits under ideal modeling conditions, as I and I+A596

are almost identical – exactly as expected. However, anchoring597

is beneficial in conjunction with the data driven model, as D 598

fails to minimize FCR while D+A converges, but significantly 599

slower than, e.g., I. This makes anchoring superior under data 600

driven modeling conditions. 601

From I+MR in Fig. 11b, it can be concluded that using 602

maximizing reference produces similar results to the unreal- 603

istic case where the smallest possible FCR is known. Also 604

MR does not improve the convergence conditions with a data 605

driven model, since D+MR and D do not converge to zero 606

error. 607

Using both MR and A, as shown in Fig. 11c, leads to 608

the conclusion that D+MR+A is the best performing im- 609

plementable configuration of the algorithm, as D does not 610

converge despite I and I+MR+A having superior performance. 611

The convergence difference between I and D+MR+A is sig- 612

nificant and is most notably caused by the measured weight 613

bias qw,bias[n]. To demonstrate that this is the case, removing 614

the bias results in Fig. 11d by enforcing qw,bias[n] = 0 results 615

in a slightly slower convergence rate compared to I and also 616

a final FCR offset of ≈ 0.01. 617

In Fig. 11e the D+MR+A algorithm is shown with different 618

input change cost W∆U , which demonstrates that if W∆U 619

is configured too low, then the algorithm does not converge. 620

Moreover, it suggests that iterative learning is required to solve 621

the data driven FCR minimization problem and that TILC 622

provides one possible solution. 623

TABLE I
ABSOLUTE FCR ERROR FOR THE DIFFERENT MODEL CONFIGURATIONS
OF THE LAST TRIAL (k = 30) OF THE SIMULATION RESULTS IN FIG. 11.

Model FCR Error [10−3] Model FCR Error [10−3]

I 1.4 D 60.3
I+A 1.4 D+A 19.6
I+MR 4.7 D+MR 51.1
I+MR+A 10.8 D+MR+A 24.2
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0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

Trial k [·]

F
C
R

E
rr
or
Ỹ
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Fig. 11. Simulation results – see section IV for detailed explanations.

V. EXPERIMENTAL STUDY 624

The results in this section are from an experimental study 625

undertaken in a state-of-the-art broiler house situated in 626

northern Denmark, also considered in [8] and [10]. Each 627

batch approximately contains 40, 000 ROSS 308 broilers and 628

an average duration of 34 days. A single production run 629

conducted between June 27 and August 30, 2018, is detailed 630

in the following. 631

A. Method Modification 632

This section details the modifications necessary for exper- 633

imental testing of the D+A+MR algorithm developed in sub- 634

section III-C. 635

1) Input Variable Selection (IVS): For detailed information 636

concerning the IVS algorithm see [8]. State-of-the-art broiler 637

production typically processes 5-8 batches per house per year. 638

The production parameters change over time as the broiler 639

house deteriorates and both the broiler and feed performance 640

increases. This effectively results in a parameter-drift, which 641

drastically reduces the amount of usable production data 642

(although the parameter-drift rate has not yet been fully 643

investigated). Furthermore, data quantity requirement scales 644

exponentially with the number of inputs, input and output 645

lags for the algorithm [8]. To alleviate this problem, mutual 646

information based IVS is used to select the most significant 647

inputs, input and output lags to make best use of the available 648

production data. 649

The IVS is included by modifying the structure of W h
u,i, 650

W h
y,i, an W h

d,i. For example, if the disturbances indexed by 1 651

and 3 are selected with delay of i = 2, Nd = 4 disturbances, 652

Nh = 3 hidden neurons, then W h
d,i is 653

W h
d,2 =

W1 0 W2 0
W3 0 W4 0
W5 0 W6 0

. (34) 654

All inputs and outputs are not guaranteed to be present in 655

all the available batches. To maximize the amount of available 656

information, up to Nb ∈ Z+ potential batches are selected for 657

the IVS algorithm by maximizing 658

Bk = arg max
B̃

Nd̃
(
B̃
)
·Nỹ

(
B̃
)
·min

{
#B̃, Nb

}
s.t. B̃ ⊆ {1−NPB , . . . , k − 1}

(35) 659

where Bk is the set of batches used for IVS and training 660

on trial k, B̃ is a set of potential batch indexes, Nb is the 661

maximum number of batches considered, Nd̃
(
B̃
)

and Nỹ
(
B̃
)

662

is the number of potential disturbances and outputs with batch 663

indexes B̃. Moreover, the temperature input, broiler weight 664

output and cumulative feed are required to form a potential 665

batch. 666

2) Normalized FCR cost function: Batches have different 667

durations, which makes FCR comparison difficult and there- 668

fore the FCR is normalized to the same weight ψ using the 669

performance measure 670

JFCR,ψ(yf , yw) =
yf

(
1− kw

ψ

)
+ yw

(
kf
ψ

)
− kf

yw − kw
(36) 671
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Fig. 12. ˆ̃Pk,κk and the mean ˆ̃P �
k,κk

for k = 0 of the experimental test.

where yf ∈ R+ is the average feed consumed per broiler, yw ∈672

R+ is the average slaughter weight, ψ = 2.2 kg, and kw =673

−1.110 kg and kf = −3.081 kg are correction factors. This674

cost cost function has been formulated using official regression675

formulas used by the Danish broiler industry [20, pp. 85] and676

replaces the augmented data driven model in (23) by677

Ỹ ∗k (U) = JFCR,ψ
(
Ỹ k,f (U), Ỹ k,w(U)

)
. (37)678

3) “Extended” TILC: In Fig. 12 the terminal system matrix679

ˆ̃P ∗k,κk for k = 0 is shown, which has a significant degree680

of “ripple” from day 21 onwards. This feature is caused by681

ripples in the training data and falsely suggests that FCR682

can be decreased by temperature fluctuations, as it results in683

either cold or heat stress. This promotes a loss of appetite684

and reduced growth during a period of desired maximum685

growth, according to the FCR minimization considerations686

in subsection II-B. A straightforward solution, available within687

point-to-point ILC framework, is to extend the terminal ILC688

design to include the last N� ∈ Z+ output samples, i.e.,689

Y �k =
[
y∗k[Ne −N� + 1] · · · y∗k[Ne]

]T ∈ RN�
+ . (38)690

The extended ILC problem now is691

Uk+1 = arg min
U∈Ωk+1

∥∥Ẽ�κk(U)
∥∥2

W�
Ẽ

+ ‖U − Uκk‖2W∆U
(39a)692

subject to (28),693

R̃�k = Ỹ �k (Uk)−R�, (39b)694

Ẽ�κk(U) = R̃�κk − Ỹ �κk(U) and (39c)695

Ỹ �κk(U) = ˆ̃P �k,κkU + ˆ̃K�k,κk (39d)696

where W �
Ẽ
∈ RN�×N� , R̃�k ∈ RN� , ˆ̃P �k,κk ∈ RN�×N� . Note697

that (28) remains unchanged, and this approach is within698

the point-to-point ILC framework. Moreover, a high number699

of output samples N� is undesirable, as it is equivalent to700

minimizing FCR over multiple days. This produces suboptimal701

results as shown in Fig. 6.702
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Fig. 13. Experimental results for k = 1 using the new design. The
FCR, broiler weight, feed consumption and measured temperature are shown
for trial k ∈ {0, 1} along with their difference in red. The temperature
fluctuations from day 25 are caused by outside weather conditions and cannot
be compensated for by the livestock stable climate control system.

B. Method Configuration 703

The input variable selection algorithm selects up to 2 704

variables from the available disturbances, e.g. CO2 denoted 705

by di[k | t] with index i, and up to 2 lags are selected per 706

disturbance and input, e.g. di[k − 1 | t] and di[k − 3 | t]. The 707

weight shape cost function is configured with Nφ = day 15, 708

and the extended TILC is configured with N� = 4 samples. 709

A total of Nm = 64 ensemble models are used, of which 710

the remaining settings are identical to the simulation study as 711

described in subsection IV-B. 712

C. Experimental Results 713

Fig. 13 shows relevant measured signals for k = 1, where 714

the FCR@2.2kg of trial k = 1 is approximately 6% smaller 715

compared to k = 0. The terminal broiler weight is 200g higher 716

and the terminal cumulative feed consumption is only 100g 717

higher, which is a disproportionate exchange rate. The initial 718

input change is approximately 0.5 ◦C lower for days 0−4 and 719

9− 15, and approximately 2 ◦C higher for day 27. The initial 720

decrease in temperature reduced the broiler growth rate, as the 721
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unusually high FCR due to an unusually cold winter, rendering the temperature
regulation unable to maintain the desired temperature.

operator reported mild signs of cold stress in the broilers on722

visual inspection.723

Applying the new design results in a FCR@2.2kg decrease724

of 5.9% (0.059) and an FCR decrease of 1.4% (0.014) for725

trial k = 1, calculated using the slaughter weight. In Fig. 14726

the historic performance of the house is given, which shows727

that trial k = 1 has a very promising historically low FCR.728

This result is very close to the trial-to-trial FCR decrease for729

the first trial in the simulation study in Fig. 11 with an FCR730

decrease of approximately 1% (0.01).731

These experimental results demonstrate the basic feasibility732

of the new design and provide a basis for onward development.733

A key outcome of these results is that data-driven models734

can give improvements on a trial-by-trial basis; however, the735

effects of anchoring require more trials for a comprehensive736

investigation. Biological systems tend to be highly variable,737

and short-term tests can sometimes give misleading results.738

VI. CONCLUSIONS AND FUTURE WORK739

In this paper a heuristic broiler growth model has been740

formulated and used to investigate the performance of a data741

driven feed conversion rate (FCR) optimization based ILC law742

in simulation and in practice. Traditional ILC is modified to743

minimize the terminal broiler FCR and to better cope with744

the uncertain nature of the data driven model. The heuristic745

broiler growth model is based on the experience of a broiler746

application expert and approximates the dynamic behavior747

between broiler weight, feed uptake and temperature, includ-748

ing a measurement weight bias commonly known to exist749

in state-of-the-art broiler production. Extensive simulation750

based studies confirm the potential of this approach, but the751

measurement weight bias is found to reduce the trial-to-trial752

convergence rate. The simulation study notably showed that753

iterative learning is required for FCR minimization.754

Further modifications were made to prepare the algorithm755

for experimental testing in a real broiler house, and a FCR756

reduction of 1.4% was obtained over a single operation in757

a broiler house with around 40, 000 broilers. It is worth758

noting that the broiler house used for the test documented759

in this paper is among the best-performing broiler producers760

in Denmark, and the potential FCR minimization potential of761

other producers could be expected to be even higher.762

Possible areas for future research include studying the long 763

term properties of this design as briefly discussed in the last 764

section and decreasing the effects of the measurement weight 765

bias. Also an investigation into whether or not the use of a rate 766

of change constraint could reduce temperature fluctuations. 767

Another area is to investigate if variance control could be used 768

to increase flock uniformity and end product consistency. 769
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