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Abstract

Building on earlier work of Biggs, James, Wilson and the author,

and using the Graver–Watkins description of the 14 classes of edge-

transitive maps, we complete the classification of the edge-transitive

embeddings of complete graphs.

MSC classification: 05C10 (primary); 20B25 (secondary).
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1 Introduction

A map on a surface is regular (sometimes called fully regular) or edge-
transitive if its automorphism group acts transitively on vertex-edge-face
flags or edges respectively. A map on an orientable surface is orientably
regular if its orientation-preserving automorphism group acts transitively on
arcs. The regular and orientably regular embeddings of complete graphs are
all known, as are their edge-transitive orientable embeddings. Here we com-
plete the classification of their edge-transitive embeddings by determining
their non-regular embeddings in non-orientable surfaces.

In 1971 Biggs [1], building on earlier work of Heffter [6], proved:

Theorem 1.1 The complete graph Kn has an orientably regular embedding
if and only if n is a prime power. �
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The maps Biggs constructed to prove that this condition is sufficient are
Cayley maps Mn(c) for the additive groups of finite fields Fn; in each case
the generating set is the multiplicative group F

∗

n = Fn \ {0}, taken in the
cyclic order 1, c, c2, . . . , cn−2 where c is a primitive element of Fn (that is, a
generator for the cyclic group F

∗

n).

Example For n = 4 we have F4 = {0, 1, c, c2 = c−1 = c + 1}, and the
corresponding map M4(c) is the tetrahedral map on the sphere. The Biggs
maps M5(2) and M7(3) are shown in Figure 1, with opposite sides of the
outer square and hexagon identified to form the torus maps {4, 4}1,2 and
{3, 6}1,2 in the notation of [3, §8.3 and §8.4]. Their mirror images are the
maps M5(3) ∼= {4, 4}2,1 and M7(5) ∼= {3, 6}2,1.

Figure 1: The Biggs maps M5(2) and M7(3)

In 1985 James and the author [10] proved that the Biggs maps Mn(c)
are the only orientably regular embeddings of complete graphs:

Theorem 1.2 A map M is an orientably regular embedding of Kn if and
only if M ∼= Mn(c) for some primitive element c of Fn. Moreover, Mn(c)
and Mn(c

′) are isomorphic (as oriented maps) if and only if c and c′ are
equivalent under a field automorphism of Fn. �

It follows that if n = pe for some prime p then there are, up to iso-
morphism, φ(n − 1)/e orientably regular embeddings of Kn, one for each
orbit of the Galois group of Fn (isomorphic to Ce, generated by the Frobe-
nius automorphism t 7→ tp) on the φ(n − 1) primitive elements of the field.
The orientation-preserving automorphism group of Mn(c) is the affine group
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AGL1(Fn); this map is regular if and only if n = 2, 3 or 4, in which case the
full automorphism group is isomorphic to V4, D6 or S4.

If n ≥ 3 the Petrie dual P (Mn(c)) of Mn(c) is a non-orientable edge-
transitive embedding of Kn, with the same automorphism group as Mn(c).

In [8] James classified the non-orientable regular embeddings of complete
graphs (see also [16] for an independent proof due to Wilson):

Theorem 1.3 The non-orientable regular embeddings of complete graphs Kn

are the maps {6, 2}3, {4, 3}3, {3, 5}5 and {5, 5}3 of characteristic 1, 1, 1 and
−3 for n = 3, 4, 6 and 6. �

Here the notation {p, q}r, from [3, §8.6 and Table 8], denotes the largest
map of type {p, q} with Petrie length r. The first three of these maps, on
the real projective plane, are the antipodal quotients of a hexagon, a cube
and an icosahedron on the sphere (see Figure 2, where antipodal boundary
points of the discs are identified). The first two are the Petrie duals of the
unique regular embeddings Mn(c) of K3 and K4 on the sphere, with the
same automorphism groups D6 and S4, while the last two are a Petrie dual
pair with automorphism group PSL2(5) ∼= A5.

Figure 2: Regular embeddings of Kn on the projective plane, n = 3, 4, 6

In [9] James extended Theorem 1.2 to a classification of the orientable
edge-transitive embeddings of Kn. If 3 < n = pe ≡ 3 mod (4) where p is
prime, and c is a primitive element of Fn, let Mn(c, j) be the Cayley map
for Fn with generating set F∗

n, where now the cyclic ordering is

1, cj, c2, cj+2, c4, cj+4, . . . , cn−3, cj+n−3

for some odd element j ∈ Zn−1 \ {1}. (Taking j = 1 gives the orientably
regular Biggs map Mn(c).)
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Theorem 1.4 A map M is an orientable edge-transitive embedding of Kn,
which is not orientably regular, if and only if M ∼= Mn(c, j) for some n, c
and j as above. As oriented maps, Mn(c, j) and Mn(c

′, j′) are isomorphic
if and only if c and c′ are equivalent under GalFn and j′ ≡ j or 2 − j
mod (n− 1). �

These James maps Mn(c, j) have automorphism group AHL1(Fn), the
unique subgroup of index 2 inAGL1(Fn); their Petrie duals are non-orientable
edge-transitive embeddings of Kn. The mirror image of Mn(c, j) is the map
Mn(c

−1, 2− j) ∼= Mn(c
−1, j).

Example The James map M7(5, 5) is shown in Figure 3, taken from [9].
Two of the identifications of sides of the outer 14-gon are indicated by the
letters A and B; the others can be found by C7 rotational symmetry. The
vertices are identified with the elements 0, 1, . . . , 6 of F7, in clockwise order.
There are seven triangular faces and three heptagons. The mirror image
M7(3, 3) of this map is given by reflection in the horizontal axis. Each of
these maps is a representation of the Fano plane, with the vertices as its
points and the triples incident with its triangular faces forming its lines.

A

A

B

B

Figure 3: An edge-transitive embedding M7(5, 5) of K7

These two maps M can be drawn as follows on Klein’s Riemann surface
(or quartic curve) K of genus 3 with automorphism group PSL2(7) (see [13],
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for instance), so that AutM (∼= C7⋊C3) is contained in AutK. Each of the
eight Sylow 7-subgroups S ∼= C7 of AutK preserves three of the 24 faces of the
AutK-invariant tessellation T = {7, 3}8 of K. These three faces are incident
with 21 of the 56 vertices of T , and there are 21 more vertices adjacent in
T to these. This leaves 14 vertices of T , at graph-theoretic distance 2 from
the S-invariant faces, forming two orbits under S. The vertices in each orbit,
joined pairwise by geodesics, determine a chiral pair of maps M ∼= M7(5, 5)
and M7(3, 3), each invariant under the normaliser AutM = S ⋊ C3 of S in
AutK. Figure 4 shows part of T , with the central face invariant under the
group S generated by rotation through 2π/7, and the orbits of S on vertices
of T yielding these two maps indicated in black and white. The vertices
of each map are the centres of the triangular faces of the other. The three
heptagonal faces of each map each contain one of the S-invariant faces of T .

A

A

B

B

Figure 4: Vertices of M7(5, 5) and M7(3, 3) on Klein’s surface

In order to complete the classification of edge-transitive embeddings of
complete graphs, it remains for us to deal with the non-regular non-orientable
cases. The main result of this paper is as follows:

Theorem 1.5 A map M is a non-orientable non-regular edge-transitive em-
bedding of a complete graph Kn if and only if M is isomorphic to the Petrie
dual of a Biggs map Mn(c) for n ≥ 5 or of a James map Mn(c, j) for n ≥ 7.
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As an immediate corollary we have the following classification of the
edge-transitive embeddings of complete graphs, showing that they are simply
the maps listed above:

Theorem 1.6 A map M is an edge-transitive embedding of a complete graph
Kn if and only if M is isomorphic to a Biggs map Mn(c) or its Petrie dual, a
James map Mn(c, j) or its Petrie dual, or one of the Petrie dual pair {3, 5}5
and {5, 5}3 of non-orientable regular embeddings of K6. �

A more detailed description of these maps is given in Section 5.

2 Algebraic theory of maps

Here we sketch the algebraic theory of maps developed in more detail else-
where: see [12], for example, and [5] for further background in topological
graph theory.

Each map M (possibly non-orientable or with non-empty boundary)
determines a permutation representation of the group

Γ = 〈R0, R1, R2 | R
2

i = (R0R2)
2 = 1〉 ∼= V4 ∗ C2

on the set Φ of flags φ = (v, e, f) of M, where v, e and f are a mutually
incident vertex, edge and face. For each φ ∈ Φ and each i = 0, 1, 2, there is
at most one flag φ′ 6= φ with the same j-dimensional components as φ for each
j 6= i (possibly none if φ is a boundary flag). Define ri to be the permutation
of Φ transposing each φ with φ′ if the latter exists, and fixing φ otherwise.
(See Figures 5 and 6 for the former and latter cases. In Figure 6 the broken
line represents part of the boundary of the map.) Since r2i = (r0r2)

2 = 1
there is a permutation representation

θ : Γ → G := 〈r0, r1, r2〉 ≤ SymΦ

of Γ on Φ, given by Ri 7→ ri.
Conversely, any permutation representation of Γ on a set Φ determines

a map M in which the vertices, edges and faces are identified with the orbits
on Φ of the subgroups 〈R1, R2〉 ∼= D∞, 〈R0, R2〉 ∼= V4 and 〈R0, R1〉 ∼= D∞,
incident when they have non-empty intersection.

The map M is connected if and only if Γ acts transitively on Φ, as we
will always assume. In this case the stabilisers in Γ of flags φ ∈ Φ form a
conjugacy class of subgroups M ≤ Γ, called map subgroups.
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v e

f

φ φr0
φr1

φr2 φr0r2

Figure 5: Generators ri of G acting on a flag φ = (v, e, f).

φr0 = φ

φr1 = φ φr2 = φ

Figure 6: Flags fixed by r0, r1 and r2.

The map M is finite (has finitely many flags) if and only if M has
finite index in Γ, and it has non-empty boundary if and only if M contains
a conjugate of some Ri, or equivalently some ri has a fixed point in Φ. In
particular, M is orientable and with empty boundary if and only if M is
contained in the even subgroup Γ+ of index 2 in Γ, consisting of the words
of even length in the generators Ri. We will assume unless stated otherwise
that all maps considered have empty boundary.

The automorphism group A = AutM of M is the centraliser of G in
SymΦ. Then A ∼= N/M where N := NΓ(M) is the normaliser ofM in Γ. The
map M is called regular if A is transitive on Φ, or equivalently G is a regular
permutation group, that is, M is normal in Γ; in this case A ∼= G ∼= Γ/M ,
and one can identify Φ with G, so that A and G are the left and right regular
representations of G. The map M is edge-transitive if A acts transitively on
its edges, or equivalently Γ = NE where E := 〈R0, R2〉 ∼= V4.

The (classical) dual D(M) of M corresponds to the image of M under
the automorphism δ of Γ fixing R1 and transposing R0 and R2. The Petrie
dual P (M) embeds the same graph as M, but the faces are transposed with
Petrie polygons, closed zig-zag paths turning alternately first right and first
left at the vertices ofM; this operation corresponds to the automorphism π of
Γ transposing R0 with R0R2 and fixing R1 and R2. Both of these operations
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D and P preserve automorphism groups and regularity, but D may change
the embedded graph, and P may change the underlying surface. The group
Ω = 〈D,P 〉 of map operations generated by D and P , introduced by Wilson
in [15], is isomorphic to S3, permuting vertices, faces and Petrie polygons;
it corresponds to the outer automorphism group OutΓ ∼= AutE ∼= S3 of Γ
acting on maps by permuting conjugacy classes of map subgroups [12].

3 Edge-transitive maps

In 1997 Graver and Watkins [4] partitioned the edge-transitive maps M
into 14 classes, distinguished by the isomorphism class of the quotient map
M/AutM; in that year, Wilson [17] gave a similar classification. These
classes T correspond to the 14 isomorphism classes of maps N (T ) with one
edge, shown in Figure 7, or equivalently to the 14 conjugacy classes of parent
groups, subgroups N = N(T ) of Γ satisfying Γ = NE (see [11, §4]). The
maps in Figure 7 are all on the closed disc, apart from N (2P ex), N (5) and
N (5∗) on the sphere, N (4P ) on the Möbius band and N (5P ) on the real pro-
jective plane. The 14 edge-transitive classes include class 1, consisting of the
regular maps, and class 2P ex, consisting of the chiral (non-regular) orientably
regular maps. Each map M in class T , with automorphism group A, is a
regular covering by A of the basic map N (T ) for that class; it corresponds
to a map subgroup M ≤ Γ with NΓ(M) = N(T ) and N(T )/M ∼= A.

The six rows of Figure 7 correspond to the orbits of Ω on the 14 classes:
the duals of the maps in class 2 form class 2∗, while the Petrie duals of
the latter form class 2P ; similar remarks apply to the classes 2 ex, 4 and 5,
whereas the classes 1 and 3 are invariant under Ω.

The Reidemeister-Schreier process, applied to the inclusions N(T ) ≤ Γ,
gives the following presentations and free product decompositions:

N(1) = Γ = 〈R0, R1, R2 | R
2

i = (R0R2)
2 = 1〉 ∼= V4 ∗ C2,

N(2) = 〈S1 = R1, S2 = RR0

1 , S3 = R2 | S
2

1 = S2

2 = S2

3 = 1〉 ∼= C2 ∗ C2 ∗ C2,

N(2 ex) = 〈S1 = R2, S = R0R1 | S
2

1 = 1〉 ∼= C2 ∗ C∞,

N(3) = 〈S0 = R1, S1 = RR0

1 , S2 = RR2

1 , S3 = RR0R2

1 | S2

i = 1〉 ∼= C2∗C2∗C2∗C2,

N(4) = 〈S1 = R1, S2 = RR2

1 , S = (R1R2)
R0 | S2

1 = S2

2 = 1〉 ∼= C2 ∗ C2 ∗ C∞,

N(5) = 〈S = R1R2, S
′ = SR0 | −〉 ∼= C∞ ∗ C∞

∼= F2.
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1

2 2∗ 2P

2 ex 2∗ex 2P ex

3

4 4∗ 4P

5 5∗ 5P

Figure 7: The basic maps N (T ) for the 14 edge-transitive classes T

(Here F2 denotes a free group of rank 2.) Applying elements of AutE ∼= Ω,
permuting R0, R2 and R0R2, gives presentations for the other (isomorphic)
parent groups in each orbit of Ω.

4 Proof of Theorem 1.5

It is easy to see that P (Mn(c)) and P (Mn(c, j)) have the stated properties.
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Conversely, if M is a non-regular non-orientable edge-transitive embed-
ding of Kn, then it is in one of the 10 edge-transitive classes T 6= 1, 2P ex, 5 or
5∗, since the maps in class 1 are regular, while those in the other three classes
are orientable. The cases n ≤ 3 are easily dealt with, so assume that n ≥ 4.
If T = 2∗ex or 5P then M = P (M′) for some edge-transitive embedding M′

of Kn in class 2P ex or 5∗; as such, M′ is orientable, so it is isomorphic to
a map Mn(c) or Mn(c, j) classified in Theorem 1.2 or 1.4, as required. We
may therefore assume that T 6= 2∗ex or 5P . This leaves only T = 2, 2∗, 2P ,
2 ex, 3, 4, 4∗ and 4P , so it is sufficient to eliminate these cases.

The edges of Kn may be identified with the distinct pairs of vertices,
so edge-transitivity implies that the group A = AutM permutes these pairs
transitively, that is, it acts 2-homogenously on the vertices. It permutes the
vertices faithfully since n ≥ 4, and transitively since Kn is not bipartite; the
latter property rules out classes T = 2, 3 and 4, since the corresponding
maps N (T ) have two vertices, so only the classes T = 2∗, 2P , 2 ex, 4∗ and
4P remain. If A has odd order then, as a quotient of the group N(T ) with a
free product decomposition given above, it must be cyclic; however, a cyclic
group cannot be 2-homogenous of degree n ≥ 4, so A has even order. It thus
has an element transposing two vertices, so it is 2-transitive on the vertices.

Each edge ofM is therefore reversed by some automorphism (a reflection
or half turn), so the single edge of N (T ) must be free, ruling out the classes
T = 2 ex, 4∗ and 4P . Only the classes 2∗ and 2P remain, with A sharply
2-transitive on the vertices (since M is not regular), and the stabiliser of
an edge generated by a reflection or a half-turn respectively, transposing its
two incident vertices. Zassenhaus [18] showed that any sharply 2-transitive
finite group can be identified with AGL1(F ) acting naturally on a near-field
F . Since M is a map, the stabiliser A0 of the vertex 0 must be a cyclic or
dihedral group of order n−1, acting regularly on the set F \{0} of neighbours
of 0. Now A acts on the vertices as a Frobenius group F ⋊ A0, so A0 is a
Frobenius complement; these contain at most one involution (see [7, Satz
V.18.1(a)] or [14, Theorem 18.1(iii)]), so they cannot be dihedral, and hence
A0 is cyclic. Since T = 2∗ or 2P , N(T ) is generated by involutions, and hence
so are its epimorphic images A and A0, giving n− 1 ≤ 2, a contradiction. �
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5 Summary of properties of the maps

The following basic properties of the maps classified in Theorem 1.6 are taken
from [1, 8, 9, 10] or have been demonstrated earlier in this paper.

For each prime power n = pe there are φ(n−1)/e Biggs maps Mn(c), all
orientable. The mirror image of Mn(c) is Mn(c

−1). For each n = 2, 3, 4 the
unique map Mn(c) is regular (in class 1), of type {2, 1}2, {3, 2}6 or {3, 3}4
and genus 0, with automorphism group V4, D6 or S4. For n ≥ 5 these maps
are orientably regular (in class 2P ex) with automorphism group AGL1(Fn);
they have type {m,n− 1}2p where m = (n− 1)/2 or n− 1 as n ≡ 3 mod (4)
or not, and have genus (n2 − 7n+ 4)/4 or (n− 1)(n− 4)/4 respectively.

The maps P (Mn(c)) for n ≥ 3 are non-orientable, with the same auto-
morphism group as Mn(c); they are in class 1 or 2∗ex as n ≤ 4 or n ≥ 5.
They have type {2p, n− 1}m where m is as above, and characteristic

χ = n

(

1−
n− 1

2
+

n− 1

2p

)

.

If 3 < n = pe ≡ 3 mod (4), there are (n − 3)φ(n − 1)/4e James
maps Mn(c, j), all orientable, with mirror image Mn(c

−1, 2 − j). They are
in class 5∗, with automorphism group AHL1(Fn) consisting of the trans-
formations v 7→ av + b in AGL1(Fn) such that a is a non-zero square
in Fn. This group has two orbits on the faces: if j, 2 − j 6≡ (n − 1)/2
mod (n − 1) they have cardinality n(n − 1, j) and n(n − 1, 2 − j) and
the genus is n

4
((n− 3)− 2(n− 1, j)− 2(n− 1, 2− j)) + 1, whereas if j or

2− j ≡ (n− 1)/2 mod (n− 1) they have cardinality n and n(n− 1)/2p and
the genus is (n− 1)(n(p− 1)− 4p)/4p. There is a single orbit of n(n− 1)/l
Petrie polygons, each polygon having length l = 2(n− 1)/(n− 1, 2(j − 1)).

The maps P (Mn(c, j)) are non-orientable, with automorphism group
AHL1(Fn); they are in class 5P , and have type {l, n− 1} and characteristic

χ = n

(

1−
n− 1

2
+

n− 1

l

)

.

For n = 6 the Petrie dual pair {3, 5}5 and {5, 5}3 are non-orientable, with
χ = 1 and −3; they are regular, with automorphism group PSL2(5) ∼= A5.

These maps M are all vertex-transitive. Indeed, in all cases AutM
has a subgroup acting regularly on the vertices: when n is a prime power
there is a unique such subgroup, namely the additive group of Fn acting by
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translations, whereas when n = 6 there is a conjugacy classes of ten such
subgroups, isomorphic to S3. Apart from the James maps Mn(c, j), these
maps are all face-transitive. They are all arc-transitive with the exception of
the James maps and their Petrie duals.

6 Edge-transitive embeddings with boundary

As an addendum we show in Figure 8 those edge-transitive maps which embed
complete graphs Kn in surfaces with non-empty boundary. (A general theory
of maps with boundary was developed by Bryant and Singerman in [2].)

Figure 8: Edge-transitive embeddings of Kn with boundary, n = 2, 3

There are three maps each for n = 2 and 3, and none for n ≥ 4. (This
follows easily from a wider study of edge-transitive maps with boundary
in [11, §17].) The first five shown here are on the closed disc, while the last
is on the Möbius band. The first two embeddings of K2 are in class 1, while
the third is in class 2; their automorphism groups are isomorphic to V4, C2

and C2. The three embeddings of K3, all with automorphism group S3, are
in classes 1, 2∗ and 2P respectively.
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