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Abstract—In a wind farm, the interactions between turbines
caused by wakes can significantly reduce the power output of
the wind farm. Cooperative control among the turbines has
the potential to improve the power output. However, existing
centralized power optimization methods are computationally
expensive and does not scale well for large wind farms, limiting
their practical use in real-time control for time-varying wind
conditions and turbine configuration (with adding or maintaining
of turbines). To address this problem, this paper proposes a
fully distributed power optimization method for wind farms
using alternating direction method of multipliers (ADMM).
The proposed method allows the wind farm power output
to be optimized in fully distributed manner with turbine-to-
turbine message passing over a mesh network, guarantees the
implemented control actions satisfy the control constraints of
all turbines, and provably converges to a stationary point of
the wind farm power optimization problem. Simulation results
demonstrate that the proposed method can significantly reduce
the computation time with hardly sacrificing the power gain
compared with centralized method and thus is computationally
efficient for real-time power optimization of large wind farms.

Index Terms—Large wind farms, power optimization, noncon-
vex optimization, distributed optimization, ADMM.

I. INTRODUCTION

IN recent years, wind power, as one of the most impor-
tant and prominent renewable resources, has experienced

a rapid development to address the challenges caused by
climate change, environmental pollution and increasing elec-
tricity demands [1]–[3]. According to the Global Wind Energy
Council Report [4], there has been more than 93GW new
wind power installation in 2020, which is an increase of
over 53% compared to that of 2019. The global cumulative
wind power capacity has risen up to 743GW with a growth
of more than 14% compared to 2019. With this promising
trend, advanced wind farm control policies are becoming
increasingly important to develop more profitable wind farms
[5], [6]. There are various wind farm control problems [7],
examples of which include power maximization [8], active
power control [9], [10], voltage and frequency control [11]. In
this paper, we aim to maximize the power out of wind farm
considering wake interactions among the turbines.
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In a wind farm, the turbines are often placed together
to reduce installation, operation and maintenance costs [12].
However, this can also create strong aerodynamic interactions
between turbines due to the existences of wakes, through
which the upstream turbines could significantly decrease the
wind speed and power output of downstream turbines and thus
affect the power generation performance of the whole wind
farm [13]. In practice, greedy policy is widely applied, where
each turbine optimizes its own power output by neglecting the
impact on downstream turbines. It often leads to suboptimal
power output of whole wind farm [8], [14], which can cause
over 30% power loss under some worst case scenarios [13].

Cooperative control between turbines considering the wake
interactions shows great potential to improve the power gen-
eration efficiency of wind farm [15], which increases the
power output of the wind farm by operating upstream turbines
suboptimally and allowing for higher power output at down-
stream turbines. Various cooperative control policies have been
proposed for wind farm power optimization, mainly including
data-driven methods and model-based methods.

Data-driven methods maximize the power output of wind
farm with only control inputs and some measurement data
obtained by interacting with the wind farm. A decentralized
safe experimentation dynamic (SED) method is proposed
using game theory in [8], which can optimize the power output
of wind farm without explicitly modeling the wake interactions
between turbines. Then in [16], a distributed zeroth-order
feedback optimization algorithm is developed using two-point
gradient estimators, which shows quicker convergence speed
than the SED method due to the efficient estimation of
gradient information. However, the above two methods only
consider the invariant wind conditions. In [17], a distributed
simultaneous perturbation approach (D-SPA) is developed, and
in [18], two discrete adaptive filtering algorithms (DAFA) are
proposed to optimize the power output of wind farm. Note that
the D-SPA and DAFA accommodate slowly changing wind
conditions. To deal with more complex wind conditions, a
hierarchical stochastic projected simplex method is proposed
in [19], which can quickly improve the power output of wind
farm due to the full use of the learned knowledge. It is worth
mentioning that the aforementioned methods do not require
a power generation model of wind farm. Therefore, they are
suitable for the wind farms that cannot be modelled easily,
such as wind farms sited in coteau or highland area. However,
a large number of measurement data are commonly required
by data-driven methods to achieve an optimum, often resulting
in slow convergence speed and likely lower power efficiency.

The model-based optimization methods usually have faster
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convergence speed compared to data-driven methods and can
improve the power output of wind farms in a short time thanks
to the use of power generation models, providing a better
choice for the wind farms whose power generation models
can be easily obtained. Most existing model-based optimiza-
tion methods are implemented in a centralized manner. For
example in [20], sequential convex programming is used to
maximize the power output of wind farm. And in [21], [22],
the particle swarm optimization algorithm is applied and the
results show that there is a noticeable increase in the amount of
wind farm power output. For small wind farms, the centralized
optimization methods can commonly be performed in real
time and thus have the ability to adapt to changing wind
and turbine conditions, e.g. individual turbines are unavailable
due to maintenance or new turbines are installed. However,
as modern wind farms tend to be large-scale, the above
centralized methods can face serious difficulties for real-
time control of large wind farms due to the more complex
nature of the power generation models (in particular, its high
dimensionality), which require significant computation load.

To address the above limitations, some model-based dis-
tributed optimization methods have been proposed for the large
wind farm power optimization. In [23], the power output of the
wind farm is maximized among the subsets using alternating
direction method of multipliers (ADMM), where all turbines
are grouped into smaller subsets based on wake interactions
between turbines. This is extended in [24] using a combi-
nation of ADMM and reinforcement learning to maximize
the power output of wind farm among the divided subsets.
A model-based distributed power optimization approach with
convergence guarantee is presented using proximal primal-
dual gradient method [25], which allows for turbines to be
optimized in parallel using local information. The simulation
results show that the above distributed optimization methods
are computationally efficient and can achieve real-time power
optimization of large wind farms.

Note however that none of the above model-based dis-
tributed optimization methods consider the control constraints
of turbines and thus cannot guarantee the feasibility of the
resulting control action. The infeasible control action cannot be
carried out by real turbines and even likely damages turbines,
thus increasing maintenance cost of whole wind farm, which
are not desired in practice. Though a saturation operation
on the control action can be applied before applying it to
the turbines, this ad-hoc approach would generally lead to
suboptimal wind farm power generation performance. Note
that a non-centralized predictive control strategy is proposed
in [9] for wind farm active power control, which considers
the turbine power limits and reduces the computational burden.
However, the strategy has difficulties in maximizing the power
output of the wind farm due to the underlying nonlinear wind
farm power generation model.

In this paper, we develop a ADMM-based distributed power
optimization method considering turbine control constraints
for large wind farms that can be modelled to efficiently achieve
real-time power optimization. The main contributions of this
paper are as follows: (a) The control constraints handling in
wind farm power optimization problem, that have great prac-

tice importance but have not been considered in the literatures,
have been considered in this paper by formulating the resulting
problem as a constrained nonconvex general form consensus
optimization problem. (b) A distributed optimization method
for constrained nonconvex general form consensus optimiza-
tion problem is proposed using ADMM, further extending the
results in [26], [27]. A rigorous convergence proof of the
resulting method is given. (c) The proposed method is applied
to the wind farm power optimization problem with control
constraints as an application example. The design ensures
implemented control action feasible for real turbines and it can
be shown that the method can provably identify a stationary
point of the wind farm power optimization problem under
moderate assumptions—note this is nontrivial due to the non-
convex nature of the power optimization problem. Meanwhile,
it allows for turbines to be optimized in fully parallel fashion
via turbine-to-turbine message passing over a mesh network
and thus guarantees high computation efficiency, scalability
and reliability.

The rest of this paper is organized as follows. In Section II,
the power optimization problem of wind farm is formulated. In
Section III, an ADMM-based distributed power optimization
method is proposed for large wind farms to achieve real-
time optimization. The convergence properties of the proposed
method are analyzed in Section IV. Simulation results are then
given to demonstrate the performance of the proposed method
in Section V. Finally, Section VI presents the conclusion and
possible directions for future research.

II. WIND FARM POWER OPTIMIZATION PROBLEM

In this section, the power generation model of wind farm is
introduced, and then the power optimization problem is given.

A. Power Model

A wind farm with n wind turbines is considered. Let N =
{1, 2, · · · , n} represent the set of all turbines. Suppose that the
blade disk planes of all turbines are perpendicular to the wind
direction. The control action of turbine i ∈N is then selected
as its axial induction factor (AIF) ui. The AIF is a measure
of the wind velocity decrease over turbine rotor plane and can
be controlled by the blade pitch and generator torque of the
turbine [28], which provides a relatively simple expression and
is widely used in wind farm control. The feasible domain of
the AIF ui is denoted as U i = {ui |ui,min ≤ ui ≤ ui,max},
where the ui,min and ui,max are respectively the lower bound
and upper bound of the ui, i ∈ N . The joint AIF of all
turbines is represented by the tuple u = (u1, · · · , un), whose
admissible set is denoted as U = U1× · · ·×Un and × is the
Cartesian product.

The aggregate wind velocity Vi({uj}j∈N i
) at an arbitrary

turbine i ∈N can be given by

Vi({uj}j∈N i
) = V∞ (1− δVi({uj}j∈N i

)) , (1)

where N i denotes the set of upstream turbines that are coupled
with turbine i through wakes, V∞ denotes the free-stream wind
speed, δVi({uj}j∈N i

) is the wind speed deficit at turbine i
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Fig. 1. Wake interaction example. (a) Wake interaction. (b) Cut-through at
downstream turbine i.

quantifying the reduction of the wind speed in wakes. The
power generated by turbine i can be represented as

Pi(ui; {uj}j∈N i
) = Kp,i(ui)Vi({uj}j∈N i

)
3
, (2)

where Kp,i (ui) = 1
2ρaAiCp,i (ui), ρa denotes air density, Ai

is the disk area generated by the blade of turbine i, Cp,i (ui)
is the power coefficient defined by

Cp,i (ui) = 4klui(1− ui)2, (3)

and kl is loss factor.
The goal of the wake interaction modelling is to identify

the wind speed deficit δVi({uj}j∈N i
) in (1). The FLOw

Redirection and Induction in Steady-state (FLORIS) model
[29] is used in this paper to represent the wake interactions
among the turbines due to its wide application in wind farm
control. According to the FLORIS model, the wind speed
deficit δVi({uj}j∈N i

) can be described as follows:

δVi

(
{uj}j∈N i

)
= 2

√√√√√∑
j∈N i

(
uj

3∑
q=1

cj,q (di(θ))aj,i,q

)2

,

(4)
where

aj,i,q = min
(
A

ol(θ)
j,i,q /Ai, 1

)
,

cj,q is the local wake decay coefficient of turbine j in qth wake
zone, di(θ) denotes the distance of turbine i from a common
vertex along the wind direction θ, Aol

j,i,q is the overlapping area
between the qth wake zone of turbine j and the disk area Ai
of turbine i and is related with wind direction θ. Consider the
wake interaction examples shown in Fig. 1. In Fig. 1(a), the
direction that the arrow points to represents wind direction and
between the top and bottom dotted lines denotes the wake area
of turbine j, where turbine i is affected by the wake of turbine
j due to non-zero overlapping area. Fig. 1(b) shows the cut-
through at downstream turbine i, where it can be observed that
Aol
j,i,2 and Aol

j,i,3 are not equal to 0. The details for FLORIS
model can be found in [29].

B. Problem Formulation

The power output of wind farm can be expressed as

P (u) =
∑n

i=1
Pi(ui; {uj}j∈N i

), (5)

which is the sum of the power generated by all turbines.
Then the power optimization problem of wind farm can be
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Fig. 2. Three-turbine wind farm example. (a) Wake interaction graph,
where nodes represent turbines and directed edges represent interactions
among the turbines via wakes. (b) Consensus network, where nodes represent
optimization variables and undirected edges represent consensus constraints.

formulated as follows:

maximize P (u)

subject to u ∈ U ,
(6)

Note that solving this optimization problem is not trivial as
it is a nonconvex optimization problem (due to the nature
of the power generation model described above) with bound
constraint and is high-dimensional for large wind farms.

Remark 1: From (2) and (3), it can be easily found that the
choice of ui = 1/3 for turbine i ∈ N results in maximum
power output (of turbine i) and is thus called greedy policy.
However, as mentioned earlier, the greedy policy might not be
optimal for problem (6) in maximizing the total power output
of wind farm due to the wake interactions among the turbines.

III. ADMM-BASED DISTRIBUTED POWER OPTIMIZATION
FOR LARGE WIND FARMS

In this section, the wind farm power optimization problem
is equivalently formulated as a constrained nonconvex general
form consensus optimization problem, for which a distributed
optimization method is proposed using ADMM. A fully dis-
tributed power optimization method is then developed for large
wind farms considering control constraints by applying the
proposed method.

A. Wind Farm Power Optimization as a General Form Con-
sensus Problem

To achieve the consensus formulation of wind farm power
optimization problem, we first need to characterize the wake
interactions among the turbines by considering graph nota-
tions. In a wind farm, the upstream turbines along the wind
direction likely decrease the wind speed and power output of
downstream turbines but not necessarily vice versa. Therefore
in this paper, a directed graph G=(N ,E) is used to capture the
interactions between turbines, where N = {1, · · · , n} denotes
the set of all turbines as mentioned earlier and E ⊆ N ×N
represents a set of directed edges. An edge (j, i) ∈ E implies
that the upstream turbine j reduces the wind speed and power
output of the downstream turbine i via its wake. Recall the
definition of N i and we have (j, i) ∈ E for ∀j ∈N i, i ∈N .
Note that once (j, i) ∈ E , (i, j) /∈ E . Let N̄ i denote the
set of downstream turbines that the turbine i affects by its
wake. A three-turbine wind farm example is shown in Fig.
2(a), where wind direction θ points horizontally from left to
right, N = {1, 2, 3} and E = {(1, 2), (1, 3), (2, 3)}; Turbine
1 is not interfered by any other turbines, turbine 2 is impacted
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by its upstream turbine 1 along θ, and turbine 3 is affected by
turbines 1 and 2, i.e., N 1=∅, N 2={1} and N 3={1, 2}; On
the other hand, the turbine 1 affects turbines 2 and 3 by its
wake, turbine 2 affects turbine 3, and turbine 3 does not impact
any other turbines, i.e., N̄ 1={2, 3}, N̄ 2={3}, N̄ 3=∅.

Let

fi(ui; {uj}j∈N i
) = −Pi(ui; {uj}j∈N i

). (7)

Based on (5), the wind farm power optimization problem (6)
is equivalent to

minimize
∑n

i=1
fi(ui; {uj}j∈N i

)

subject to u ∈ U .
(8)

According to graph G=(N ,E), the auxiliary optimization
variables {uj,i}j∈N i

are introduced for turbine i, where uj,i
denotes a copy of the control action uj of turbine j and
is stored locally at turbine i. Then the problem (8) can be
rewritten as a consensus optimization problem as follows:

minimize
∑n

i=1
fi(ui; {uj,i}j∈N i

)

subject to uj,i = uj , j ∈N i, i ∈N ,

u ∈ U .

(9)

where uj,i = uj is the consensus constraint of ensuring that
the optimization variable uj,i of turbine i is consistent with
the control action uj of the upstream turbine j ∈ N i. There
are |E| consensus constraints in (9), where |E| denotes the
cardinality of the set E . In the given three-turbine wind farm
example (see Fig. 2(a)), there are three consensus constraints,
i.e. u1,2 = u1, u1,3 = u1, u2,3 = u2 (see Fig. 2(b)).

The local variable xi = (ui, {uj,i}j∈N i
) is defined for

turbine i ∈ N . Let ni= |xi|. Note that the xi is composed
of the control action ui of turbine i and the introduced
auxiliary optimization variables {uj,i}j∈N i

for turbine i. Then
ni=1+ |N i|. The objective function in (9) can be denoted as∑n

i=1
fi (xi). (10)

In fact, each local variable xi consists of a selection of
the components of global variable u (i.e., joint AIF of all
turbines). This means that each component of local variable
xi corresponds to one element of global variable u. Define
h = Z (i, l) as a mapping from local variable index into global
variable index, which implies that the lth component of the
local variable xi corresponds to the hth component of global
variable u. Then in (9), the consensus constraints between
local variables and global variable can be rewritten as

(xi)l = uZ(i,l), l = 1, · · · , ni, i ∈N . (11)

In the three-turbine wind farm example shown by Fig. 2, x1 =
(u1), x2 = (u2, u1,2), x3 = (u3, u1,3, u2,3), 1 = Z(1, 1),
2 = Z(2, 1), 2 = Z(3, 3). Define ũi by (ũi)l = uZ(i,l),
l = 1, · · · , ni, i ∈ N . Intuitively, the ũi is made up of the
components of u that xi corresponds to. Then the consensus
constraints (11) can be further rewritten as

xi = ũi, i ∈N . (12)

Hence, the problem (9) can now be equivalently written into

minimize
∑n

i=1
fi (xi)

subject to xi = ũi, i ∈N ,

u ∈ U .

(13)

Remark 2: The (13) shows that the wind farm power
optimization problem (6) can be formulated as a constrained
general form consensus optimization problem, where each lo-
cal variable only contains a small number of the components of
global variable. However, it is nontrivial to solve the problem
(13) since this is a high-dimensional nonconvex optimization
problem for large wind farms which is often computationally
expensive but real-time control is required in practice to adapt
to time-varying wind conditions and turbine configuration.

Remark 3: Note that the wind farm power optimization
problem is formulated in (6) considering the control con-
straints of all turbines. In the equivalent formulation (13) of
problem (6), the control constraints are also considered. This
is different from the designs in [23]–[25], where the control
constraints that are often crucially important in applications
are not considered. However, the consideration of the con-
straints increases the solving difficulty of the problem and the
complexity of algorithm’s convergence analysis.

B. ADMM-based Distributed Optimization for Constrained
Nonconvex General Form Consensus Problem

The above problem (13) can be seen as a special case of
the following more general nonconvex general form consensus
optimization problem which we will consider first:

minimize
∑n

i=1
fi (xi) + h (u)

subject to xi = ũi, i ∈N ,

u ∈ U ,

(14)

where fi : Rni 7→ R is a smooth and possibly nonconvex
function, h : Rn 7→ R is a convex function, ni ≤ n, u =
(u1, · · · , un) is defined as global variable, ũi consists of the
components of u that xi corresponds to, N = {1, 2, · · · , n},
U is a closed convex set.

The augmented Lagrangian function is defined for (14) by

Lρ (x,u,λ) =
∑n

i=1
Li (xi, ũi,λi) + h (u) , (15)

where x = (x1, · · · ,xn), λ=(λ1, · · · ,λn) is dual variable,

Li (xi, ũi,λi) =fi (xi)+λTi (xi − ũi)+
ρ

2
‖xi − ũi‖2, (16)

and ρ > 0 is penalty parameter.
The problem (14) can be solved iteratively using ADMM

derived directly from (15) with the following steps:

uk+1 = argmin
u∈U

Lρ
(
xk,u,λk

)
, (17)

xk+1 = argmin
x
Lρ
(
x,uk+1,λk

)
, (18)

λk+1 = λk + ρ
(
xk+1 − ũk+1

)
, (19)

where ũk+1 =
(
ũk+1
1 , · · · , ũk+1

n

)
. Note that the augmented

Lagrangian function Lρ (x,u,λ) in (15) is fully separable
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Algorithm 1: ADMM-based Distributed Power Optimization
Method for Large Wind Farms

Initialization: x0
i , λ0

i , ρ
For k = 0, 1, · · ·

Step 1: Local communication
communicate with neighboring turbine j ∈ N̄ i and
obtain xk

j , λk
j

Step 2: Action update
update ui by (22) and obtain uk+1

i

Step 3: Local communication
communicate with neighboring turbine j ∈N i and
obtain uk+1

j , and then form ũk+1
i

Step 4: Local variable update
update xi by (20) and obtain xk+1

i

Step 5: Dual variable update
update λi by (21) and obtain λk+1

i

in all components of x and λ. Then in (18) and (19), the
update steps of x and λ can fully decouple across their own
components, namely:

xk+1
i = argmin

xi

Li
(
xi, ũ

k+1
i ,λki

)
, (20)

λk+1
i = λki + ρ

(
xk+1
i − ũk+1

i

)
, (21)

Therefore, the problem (14) can be solved by applying dis-
tributed ADMM composed of (17), (20) and (21).

C. ADMM-based Distributed Power Optimization

As mentioned earlier, the equivalent formulation (13) of
wind farm power optimization problem is a special case of
problem (14) that h (u) = 0. Then the (13) can be solved
directly using the resulting ADMM consisting of (17), (20)
and (21). As h (u) = 0 in (13), the augmented Lagrangian
function Lρ (x,u,λ) is fully separable in all components of
u and thus the update step of u in (17) can fully decouple
across its own components, namely:

uk+1
i =

∏
Ui

∑Z(j,l)=i
(

(xkj )
l
+ (1/ρ )(λkj )

l

)
∑
Z(j,l)=i 1

, (22)

where j ∈ N̄ i

⋃
{i}, l=1, · · · , nj , i ∈ N . Therefore, a

distributed power optimization algorithm, combination of (22),
(20) and (21), is proposed for large wind farms. It is further
tabulated as shown in Algorithm 1.

It is worth mentioning that in Algorithm 1, the turbine
i can calculate locally uk+1

i by (22) upon receiving xkj
and λkj from all neighboring turbines j ∈ N̄ i. It can also
compute locally xk+1

i by (20) after obtaining uk+1
j from all

neighboring turbines j ∈ N i and forming ũk+1
i . Meanwhile,

the calculation of λk+1
i can be independently carried out

at turbine i. Therefore, the proposed Algorithm 1 is fully
distributed, and All turbines can run this algorithm in parallel
manner by communicating with their neighboring turbines.

Remark 4: Recall that U = U1 × · · · × Un. The constraint
u ∈ U in (13) is equal to ui ∈ U i for any turbine i ∈ N .
In (22), the uk+1

i is found by projecting the average value of
the entries of xkj + (1/ρ)(λkj ) that correspond to the global
index i onto the feasible domain U i of ui, where the projection
operator ΠUi

(•) is used to handle the control constraint ui ∈
U i of turbine i. This implies that the developed Algorithm
1 for the problem (13) can guarantee the feasibility of the
optimal control action for real turbines.

IV. CONVERGENCE AND IMPLEMENTATION OF THE
PROPOSED METHOD

In this section, the convergence property of the proposed
method is analyzed and then its implementation is illustrated.

A. Convergence Analysis

While the convergence of ADMM can be shown for convex
problems, a rigorous proof for nonconvex problem is chal-
lenging. Recently, promising progress has been made on this
including the results in [26], [27]. In [26], for the noncon-
vex global variable consensus problem, the convergence of
asynchronous ADMM is analyzed. The convergence is further
analyzed in [27] for the unconstrained nonconvex general form
consensus optimization problem. This paper further extends
these results and considers constrained nonconvex general
form consensus optimization problem. Convergence using
ADMM for this problem is analyzed in detail and the wind
farm power optimization problem is studied as an application
example.

Assumption 1: ∇fi is Lipschitz continuous with positive
constant L > 0, such that for any x′i, x

′′
i ,

‖∇fi (x′i)−∇fi (x′′i )‖ ≤ L ‖x′i − x′′i ‖ . (23)

Assumption 2: The penality parameter ρ is chosen large
enough such that

1) The Li
(
xi, ũ

k+1
i ,λki

)
of problem (20) is strongly convex

with modulus γi, i.e. for any x′i, x
′′
i ,

Li
(
x′i, ũ

k+1
i ,λki

)
− Li

(
x′′i , ũ

k+1
i ,λki

)
≤∇xiLi

(
x′i, ũ

k+1
i ,λki

)T
(x′i − x′′i )− γi

2
‖x′i − x′′i ‖

2
.

(24)

2) ργi ≥ 2L2 and ρ ≥ L, i ∈N .
Assumption 3: The objective function of problem (14) has

a lower bound f∗ while satisfying the constraint.
Then, we have the following main theorem regarding the

convergence performance of the ADMM for problem (14).
Theorem 1: Suppose the above assumptions hold. Then the

iteration sequence
{
{xki },uk, {λki }

}
of the ADMM converges

to the set of stationary solutions of problem (14), i.e.

lim
k→∞

dist
(
({xki },uk, {λki }),Z∗

)
= 0, (25)

where Z∗ is the set of stationary solutions ({x∗i },u∗, {λ∗i })
of problem (14), i.e.

u* ∈ argmin
u∈U

h(u) +
∑n

i=1
〈λ∗i ,x∗i − ũi〉 , (26)

∇fi (x∗i ) + λ∗i=0, (27)
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Fig. 3. Control scheme of turbine i. (a) Control framework of turbine i. (b)
Algorithm flowchart of turbine i.

x∗i=ũ
∗
i , i ∈N , (28)

dist(y,Z∗) denotes the distance between a vector y and the
set Z∗, i.e.

dist (y,Z∗) = min
z∈Z∗

‖y − z‖. (29)

Proof: See the Appendix A. �
For wind farm power optimization problem, the Assumption

1 means that the gradients of the turbine power generation
models are required to be Lipschitz continuous. The As-
sumption 2 implies that the selected penality parameter ρ
in (16) should guarantee Li

(
xi, ũ

k+1
i ,λki

)
with nonconvex

turbine power generation models strongly convex with xi in
(20). Then the ρ should be chosen large enough to achieve
convergence when the proposed algorithm is implemented.
The Assumption 3 means that the power output of wind
farm is bounded above. It is worth mentioning that the above
assumptions are moderate—they are technical assumptions
needed to prove the convergence of the proposed method and
impose no restriction on how the turbines should be built
or controlled: The Assumption 1 and 3 can be trivially met
for physical systems including the wind turbine and one can
always find a large enough ρ such that Assumption 2 holds.
As a consequence, applying the proposed ADMM method
to wind farm power optimization problem has the following
convergence property:

Corollary 1: The iteration sequence
{
uk
}

generated by
Algorithm 1 converges to the set of stationary solutions of
problem (6).

B. Implementation
The control scheme of turbine i is given in Fig. 3, i ∈ N .

The scheme consists of neighbor identification module and
algorithm module, as shown in Fig. 3(a). The neighbor iden-
tification module of turbine i identifies its neighbor sets N i

1u

2  1 3
2u

1u

2 2,x  3 3,x 

3 3,x 

(a)

1u

2  1 3

2u 3u

(b)

Fig. 4. Three-turbine wind farm control example. (a) Turbine communication.
(b) Control implementation.

and N̄ i for newly measured wind direction θ. Note that the
neighbor sets may change with changes of wind direction
as different wind directions likely lead to different wake
interaction patterns among the turbines. The algorithm module
includes two submodules, namely communication module and
variable update module. The communication module collects
the information of neighboring turbines according to the
requirements of variable update module and identified neigh-
bor sets. The variable update module updates optimization
variables by using collecting information.

The flowchart of algorithm module of turbine i is detailedly
explained in Fig. 3(b), where the control action ui is updated
using (22) by exploiting the information from itself and its
neighbor set N̄ i, and local variable xi and dual variable λi are
updated using (20) and (21) by exploiting the information from
itself and its neighbor set N i. Note that if N̄ i=∅, the turbine
i is in the last row along the wind direction and its wake does
not affect any other turbines. In this case, the turbine i updates
its action ui only exploiting its own information. On the other
hand if N i=∅, the turbine i is in the first row along the wind
direction and no turbine can affect it by wakes, in which the
turbine i updates its variables xi and λi only exploiting its
own information. The optimal control action ui would be given
by algorithm module when the stopping criterion is satisfied.
Note that all the optimization variables of each turbine are
updated at the turbine in sequential manner. An illustrative
three-turbine wind farm control example is given in Fig. 4; Fig.
4(a) shows the communications between turbines for the wake
interaction graph in Fig. 2(a); Fig. 4(b) indicates that each
turbine controls independently its state using optimal control
action given by its algorithm module.

In the following text, we give some discussions on the
proposed algorithm:

(a) It is desired that the wind direction does not change
during the process of obtaining the optimal solution by the
proposed algorithm. Otherwise, the solution may be not opti-
mal for new wind direction. Note that the wind direction can
change on the time scale of minutes. This implies that the
presented algorithm should perform optimization on the order
of seconds to adapt to the changes in real time—as we will
see in later simulations, this is generally not a problem.

(b) Compared with the centralized method which may be
appealing in terms of communication cost as each turbine only
needs to communicate with wind farm controller, the proposed
distributed method likely leads to high communication burden
if each turbine communicates with its all coupling turbines.
However, note that only weak wake interaction exists for
two turbines with large spacing. Thus, it is reasonable for
each turbine to establish communication only with its coupled
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Fig. 5. Wind farm layout.

neighboring turbines. This can greatly reduce communication
cost at the expense of minor loss of wind farm power gain
than accurate distributed implementation.

In addition, the proposed distributed method also requires
that each turbine can decide its own action instead of receiving
the control action from wind farm controller (as in the cen-
tralized method). This requirement can be easily satisfied as
the computing unit is relative cheap (compared to the cost of
a turbine) and each turbine updates its action only by solving
a low dimensional optimization problem.

(c) Note that the decentralized optimization methods have
also potential to reduce computation burden due to their par-
allel computation. And the methods may require less commu-
nication than distributed optimization methods [10]. However,
a single point of failure, e.g., in wind farm controller, can
cause the whole wind farm to fail. The distributed optimization
can usually eliminate single point of failure and thus shows
higher reliability compared with decentralized optimization,
which is attractive for large wind farms due to the high demand
to reliability even if it implies more communication. To our
knowledge, there is no model-based decentralized optimization
method for the wind farm power optimization problem.

(d) Although this paper focuses on AIF-based control
strategy to improve the power generation performance of
wind farm, the proposed ADMM-based distributed power
optimization method can be applied to yaw-angle-based wake
redirection control without any difficulties, which is another
strategy to increase the power output of wind farm.

V. SIMULATION RESULTS

In this section, three simulation examples are given to
illustrate the performance of the proposed method for wind
farm power optimization. The greedy policy, where each
turbine aims to maximize its own power output without
considering the wake effect, is used as a baseline to show the
algorithm’s performance. The first example is performed in
wind farms with different sizes to demonstrate the scalability
of the proposed method. The second example verifies the
performance of the proposed method for large wind farms in
different wind directions. The third example tests the effect
of communication delay and loss on the performance of the
proposed method.

A. Wind Farms with Different Sizes

The wind farm layout shown in Fig. 5 is considered, where
the spacing between adjacent turbine pair is 560m. The power
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Fig. 6. Power trajectories of the wind farm under different algorithms.

TABLE I
CONVERGENCE PERFORMANCE OF THE DIFFERENT ALGORITHMS

Method Power gain Iterations Computation time

PSO 12.59% 95 1367.1s
CGAM 13.48% 25 580.1s
ADMM 13.46% 79 2.3s

generation model based on FLORIS model in [29] is used to
verify the performance of the proposed distributed ADMM.
The model parameters can be found in [29]. A common
control constraint U i = {ui |0.1 ≤ ui ≤ 0.33} is applied to
turbine i ∈N . The upstream wind speed V∞ is set as 8m/s.
The 40 degree wind direction is selected to demonstrate the
performance of the proposed method. The penalty parameter
ρ is set as 100. The xk+1

i in Step 4 of Algorithm 1 is obtained
by solving (20) using gradient method, where the gradient is
estimated using central difference formula and whose iteration
number is set as 25. The neighbor sets N i and N̄ i of turbine
i ∈N are defined for given wind direction by considering all
upstream turbines and downstream turbines of turbine i within
a distance of 4 turbine spacing, respectively.

For comparison purpose, a centralized optimization method,
the central-difference-formula-based gradient ascent method
(CGAM), is selected. It is designed by combining the gra-
dient ascent method and the estimated gradient using central
difference formula. Note that the gradient ascent method is
a very representative optimization method and generally has
fast convergence speed. Meanwhile, the central difference
formula is a popular approach to the approximation of gra-
dient. Therefore, the CGAM is selected as control group. In
addition, the particle swarm optimization (PSO) algorithm is
also selected as control group due to its wide application in
wind farm power optimization. All algorithms in this paper are
implemented with a PC of Intel(R) Core(TM) i7-8700 CPU
@ 3.20GHz, 32.GB RAM, and NVIDIA GeForce RTX 2070.
Note that the proposed distributed ADMM would be run in
fully parallel manner when applied to real wind farm.

Firstly, a 8 by 10 wind farm with layout shown in Fig. 5
is considered, replicating the Horns Rev wind farm layout.
Fig. 6 shows the normalized power trajectories of the wind



IEEE TRANSACTIONS ON POWER SYSTEMS 8

TABLE II
CONVERGENCE PERFORMANCE OF CGAM AND ADMM IN DIFFERENT

WIND FARM SIZES

Wind farm size
Power gain Computation time

(Layout) CGAM ADMM CGAM ADMM

36(6× 6) 9.97% 9.96% 31.2s 1.8s
64(8× 8) 12.57% 12.56% 313.8s 2.4s

100(10× 10) 14.49% 14.47% 1379.7s 2.7s

TABLE III
COMPUTATION TIME OF CGAM AND ADMM IN DIFFERENT WIND

DIRECTIONS

Method Average Minimum Maximum

CGAM 454.6s 276.7s 732.5s
ADMM 3.1s 0.4s 10.7s

farm under different algorithms. Table. I gives the power
gains achieved by centralized PSO, centralized CGAM, and
proposed distributed ADMM compared with greedy policy,
and the required iterations and computation time. From Fig.
6, it can be observed that the ADMM and CGAM signifi-
cantly improve the power output of wind farm compared with
greedy policy, which respectively achieve 13.46% and 13.48%
power gains as shown Table. I. Hence, these two algorithms
guarantee similar power generation performance. While the
more iterations are required for ADMM to converge, the time
that the ADMM takes in each iteration is much less than that
the CGAM requires, which results in that the ADMM only
takes 2.3s in optimization process but CGAM requires 580.1s.
Note that the PSO algorithm takes 1367.1s in 95 iterations
and generates lower power gain than another two methods.
Therefore, it can be concluded that the proposed distributed
ADMM significantly reduces the computation time without
sacrificing power gain compared with the centralized CGAM
and PSO algorithm.

Furtherly, three different-size wind farms are respectively
constructed using the layout shown in Fig. 5, including 36-, 64-
and 100-turbine wind farms. The convergence performance of
different algorithms for the wind farms are shown in Table. II.
From Table. II, the proposed distributed ADMM achieves simi-
lar power gain compared with centralized CGAM for different-
size wind farms but significantly reduces computational time.
Meanwhile, it can be also observed that the computation
time of the proposed method has no significant increase with
increasing wind farm size, whereby the time required by the
centralized CGAM increases exponentially. In addition, note
that the percentage of wind farm power gain increases with the
increment of wind farm size as the wake couplings between
turbines enhances. This implies that there is greater potential
to improve the power efficiency for larger wind farms.

B. Wind Farm with Different Wind Directions

The 80-turbine wind farm that replicating the Horns Rev
wind farm layout is considered again. All the parameters are
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Fig. 7. Power gain of CGAM and ADMM compared with greedy policy in
different wind directions.
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Fig. 8. Optimal actions generated by ADMM for different wind directions.

same as the Section V-A except for the wind direction. The
36 wind directions from 0 to 360 degree at every 10 degrees
are selected to verify the performance of the proposed method
in different wind directions. The simulation results are given
in Fig. 7, Fig. 8 and Table. III.

Fig. 7 indicates that the proposed distributed ADMM shows
similar power gain with centralized CGAM in given wind
directions. From Table. III, it can be observed that the av-
erage computation time and maximal computation time of
distributed ADMM in given wind directions are 3.1s and 10.7s,
respectively, which are far less than the average time on the
order of minutes that wind conditions change and thus are
suitable for real-time control of large wind farms to adapt to
the changes of wind conditions and turbine configuration. Note
that the average computation time of centralized CGAM is
454.6s and its maximal computation time is 732.5s. Therefore,
the proposed ADMM significantly reduces the computation
time in different wind directions compared with the centralized
method as the whole wind farm power optimization problem
is solved in a fully distributed manner. We also note that the
computation time of the proposed method is similar to the
results in [23], [25]. Different from [23], [25], the proposed
method in this paper is developed considering control con-
straints, which can guarantee the optimal solution satisfy the
control constraints of all turbines as can be clearly seen from
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Fig. 9. Power trajectories of the wind farm under ADMM considering
communication delay.

TABLE IV
CONVERGENCE SPEED OF ADMM CONSIDERING COMMUNICATION

DELAY

sd 0 1 2 3

Iterations 79 190 300 361
Computation time 2.3s 5.5s 8.7s 10.4s

Fig. 8. Meanwhile, the convergence property of the proposed
method is detailedly analyzed and a better convergence result
is obtained than [23], [25] as our design guarantees the
convergence of the control actions. The above are desired for
large wind farms to achieve real-time power optimization.

C. Effect of Communication Delay and Loss

The 80-turbine wind farm and the 40 degree wind direction
are selected again to demonstrate the performance of pro-
posed method considering communication uncertainties. The
proposed method is firstly implemented considering different
communication delays. Suppose that in each iteration, the
turbine i ∈ N receives the delayed information xk−sdj and
λk−sdj from the neighboring turbines j ∈ N̄ i and uk+1−sd

j

from the neighboring turbines j ∈ N i, where sd denotes the
communication delay. For different values of sd, the simulation
results are given in Fig. 9 and Table. IV. Fig. 9 shows that the
proposed distributed ADMM under different communication
delays can still significantly improve the power output of wind
farm compared with greedy policy, achieving similar power
generation performance with centralized CGAM. To converge,
the CGAM requires 25 iterations and totally takes 580.1s. The
iterations and computation time required by proposed ADMM
under different communication delays are given in Table.
IV. Note that the proposed ADMM requires more iterations
and computation time with increasing communication delay.
Nevertheless, the proposed ADMM still remarkably reduces
the computation time without sacrificing power gain compared
with the centralized CGAM.

Next, the proposed ADMM is carried out considering com-
munication loss. Assume that in each iteration, the turbine
i ∈ N can receive the information xkj and λkj from the
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Fig. 10. Power trajectories of the wind farm under ADMM considering
communication loss.

TABLE V
CONVERGENCE SPEED OF ADMM CONSIDERING COMMUNICATION LOSS

pl 0% 20% 40% 60%

Iterations 79 107 159 249
Computation time 2.3s 3.1s 4.6s 7.2s
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Fig. 11. Power gain of CGAM, ADMM and ADMM considering communi-
cation uncertainties compared with greedy policy in different wind directions.

neighboring turbines j ∈ N̄ i with probability 1 − pl and
can not obtain the information with probability pl due to the
loss, where pl is the communication loss rate. The setting
is also applied when the turbine i receives uk+1

j from the
neighboring turbines j ∈N i. The turbine i would perform the
iteration using the historical information without receiving new
information. For different values of pl, the simulation results
are given in Fig. 10 and Table. V. Fig. 10 shows that the
proposed distributed ADMM under different communication
losses can still significantly increase the power output of
wind farm than greedy policy, achieving similar power gain
as centralized CGAM. From Table. V, it can be observed
that the convergence speed of the proposed method decreases
with increasing communication loss. Even so, the proposed
ADMM can still achieve remarkable decrease in computation
time compared with the centralized CGAM (580.1s).

Finally, the proposed ADMM is run for different wind
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TABLE VI
COMPUTATION TIME OF CGAM, ADMM AND ADMM CONSIDERING
COMMUNICATION UNCERTAINTIES IN DIFFERENT WIND DIRECTIONS

Method Average Minimum Maximum

CGAM 454.6s 276.7s 732.5s
ADMM 3.1s 0.4s 10.7s

ADMM (sd = 2, pl = 40%) 13.7s 1.7s 44.1s

directions considering both communication delay and loss. The
36 wind directions from 0 to 360 degree at every 10 degrees
are selected again. The communication delay sd = 2 and
communication loss rate pl = 40% are used. The simulation
results are given in Fig. 11 and Table. VI. Fig. 11 indicates
that despite the existence of communication uncertainties (i.e.
both delay and loss), the proposed ADMM still shows similar
power gain with centralized CGAM. Table. VI shows that the
convergence speed of distributed ADMM is adversely affected
by the uncertainties. However, its average computation time is
still far less than the average time that wind conditions change
(in the order of minutes). Hence, the proposed ADMM is still
effective for real-time control of large wind farms when there
exist communication uncertainties.

VI. CONCLUSION

In this paper, a distributed power optimization method is
proposed using ADMM for large wind farms that can be
modelled to efficiently improve the power output in time-
varying wind conditions and turbine configuration. The pro-
posed method allows for turbines to be optimized in a fully
distributed way by using local information, and thus has high
computation efficiency, scalability and reliability. Meanwhile,
the method is developed considering turbine control con-
straints, guaranteeing the implemented optimal action feasible
for real turbines. Additionally, the convergence analysis of the
proposed method is given under moderate assumptions and
the result shows that it can converge to a stationary point
of the optimisation problem. Three simulation examples are
presented to demonstrate the effectiveness of the proposed
method. The first example shows that the proposed method
can significantly reduce the computation time in wind farms
with different sizes compared with centralized method, and
its computational time has no obvious increase with the
increasing wind farm size. The second example indicates
that the presented method can obviously improve the power
generation performance of large wind farms under different
wind conditions and its computation time is much lower than
that of the centralized method. The third example verifies that
the proposed method is still suitable for real-time control of
large wind farms on the effect of communication delay and
loss. These results show that the proposed algorithm provides
an efficient design for large wind farms to achieve real-time
power optimization to adapt to time-varying wind and turbine
conditions.

Note that the effect of communication delay and loss on
the proposed method is tested by simulation in Section V. Its
rigorous theoretical analysis will be our future research. While

the obtained results are promising, in this paper we have not
considered the effect of power generation model uncertainties
on wind farm power generation performance. An accurate
power generation model may not be obtained easily for the
wind farm sited in complex terrain due to complexities of
wake interactions. How to use available analytical model and
real-time power generation data to develop distributed power
optimization method for large wind farms is a key area of
our future research. Finally, our future research also includes
performing experimental tests on actual wind farms.
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APPENDIX A
PROOF OF THEOREM 1

Before proving Theorem 1, we first prove the following
Lemmas, which are key properties to guarantee the conver-
gence performance of distributed ADMM for (14).

Lemma 1: Suppose Assumption 1, 2 and 3 hold. We have
the following:

(a) The augmented Lagrangian function value sequence
{Lρ(xk,uk,λk)} is monotonically decreasing:

Lρ(xk+1,uk+1,λk+1)− Lρ(xk,uk,λk)

≤
∑n

i=1
(
L2

ρ
− γi

2
)‖xk+1

i − xki ‖
2 ≤ 0;

(30)

(b) The augmented Lagrangian function value sequence
{Lρ(xk,uk,λk)} is lower bounded:

Lρ(xk,uk,λk) ≥ f∗ > −∞. (31)

Proof: (a) The successive difference of the augmented
Lagrangian function value is splitted into two terms as follows:

Lρ(xk+1,uk+1,λk+1)− Lρ(xk,uk,λk)

=
[
Lρ(xk+1,uk+1,λk+1)− Lρ(xk+1,uk+1,λk)

]
+
[
Lρ(xk+1,uk+1,λk)− Lρ(xk,uk,λk)

]
.

(32)

Consider first term in (32). According to (15), (16) and (21),
we have

Lρ(xk+1,uk+1,λk+1)− Lρ(xk+1,uk+1,λk)

=
∑n

i=1

(
Li(xk+1

i , ũk+1
i ,λk+1

i )− Li(xk+1
i , ũk+1

i ,λki )
)

=
∑n

i=1
(λk+1

i − λki )
T

(xk+1
i − ũk+1

i )

=
∑n

i=1

1

ρ
(λk+1

i − λki )
T

(λk+1
i − λki ).

(33)

Then

Lρ(xk+1,uk+1,λk+1)− Lρ(xk+1,uk+1,λk)

=
∑n

i=1

1

ρ
‖λk+1

i − λki ‖
2
.

(34)

Using (16), we obtain the optimality condition of subproblem
(20) with respect to xi:

∇fi(xk+1
i ) + λki + ρ(xk+1

i − ũk+1
i ) = 0. (35)
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Combining (21) and (35), we have

∇fi(xk+1
i ) = −λk+1

i . (36)

Substituting (36) into (34) and using Assumption 1, we can
further get

Lρ(xk+1,uk+1,λk+1)− Lρ(xk+1,uk+1,λk)

≤
∑n

i=1

L2

ρ
‖xk+1

i − xki ‖
2
.

(37)

Consider the second term in (32). Using (15), we obtain

Lρ(xk+1,uk+1,λk)− Lρ(xk,uk,λk)

=
[
Lρ(xk+1,uk+1,λk)− Lρ(xk,uk+1,λk)

]
+
[
Lρ(xk,uk+1,λk)− Lρ(xk,uk,λk)

]
=
[∑n

i=1

(
Li(xk+1

i , ũk+1
i ,λki )− Li(xki , ũk+1

i ,λki )
)]

+
[
Lρ(xk,uk+1,λk)− Lρ(xk,uk,λk)

]
.

(38)

Since uk+1 is the optimal solution of the Lρ
(
xk,u,λk

)
with

respect to u in (17), we have

Lρ(xk,uk+1,λk)− Lρ(xk,uk,λk) ≤ 0. (39)

Then (38) can be rewritten as

Lρ(xk+1,uk+1,λk)− Lρ(xk,uk,λk)

≤
∑n

i=1

(
Li(xk+1

i , ũk+1
i ,λki )− Li(xki , ũk+1

i ,λki )
)
.

(40)

Combining (24) and (40) yields

Lρ(xk+1,uk+1,λk)− Lρ(xk,uk,λk)

≤
∑n

i=1
∇xi
Li(xk+1

i , ũk+1
i ,λki )

T
(xk+1
i − xki )

−
∑n

i=1

γi
2
‖xk+1

i − xki ‖
2
.

(41)

Since xk+1
i is the optimal solution of the Li(xi, ũk+1

i ,λki )
with respect to xi in (20), we get

∇xi
Li(xk+1

i , ũk+1
i ,λki )=0.

Then (41) can be rewritten as

Lρ(xk+1,uk+1,λk)− Lρ(xk,uk,λk)

≤−
∑n

i=1

γi
2
‖xk+1

i − xki ‖
2
.

(42)

According to (32), (37), and (42), we obtain

Lρ(xk+1,uk+1,λk+1)− Lρ(xk,uk,λk)

≤
∑n

i=1

L2

ρ
‖xk+1

i − xki ‖
2 −

∑n

i=1

γi
2
‖xk+1

i − xki ‖
2

=
∑n

i=1
(
L2

ρ
− γi

2
)‖xk+1

i − xki ‖
2
.

(43)

From (43) and ργi ≥ 2L2 (Assumption 2), we get that

Lρ(xk+1,uk+1,λk+1)− Lρ(xk,uk,λk)

≤
∑n

i=1
(
L2

ρ
− γi

2
)‖xk+1

i − xki ‖
2 ≤ 0.

Namely (30) holds.

(b) From (15), (16) and (36), we derive

Lρ(xk+1,uk+1,λk+1)

=
∑n

i=1

(
fi(x

k+1
i ) + (λk+1

i )
T

(xk+1
i − ũk+1

i )
)

+
ρ

2

∑n

i=1
‖xk+1

i − ũk+1
i ‖2 + h(uk+1)

=
∑n

i=1

(
fi(x

k+1
i ) +∇fi(xk+1

i )
T

(ũk+1
i − xk+1

i )
)

+
ρ

2

∑n

i=1
‖xk+1

i − ũk+1
i ‖2 + h(uk+1).

(44)

As ∇fi is Lipschitz continuous with positive constant L > 0
(Assumption 1), we have

fi(ũ
k+1
i ) ≤ fi(xk+1

i ) +∇fi(xk+1
i )

T
(ũk+1

i − xk+1
i )

+ (L/2)‖ũk+1
i − xk+1

i ‖2.
(45)

Using ρ ≥ L (Assumption 2), (44) and (45), we obtain

Lρ(xk+1,uk+1,λk+1) ≥
∑n

i=1
fi(ũ

k+1
i ) + h(uk+1).

According to Assumption 3, the (31) holds. �

Lemma 1 implies that if the assumptions are true, the aug-
mented Lagrangian function value sequence {Lρ(xk,uk,λk)}
converges using monotone bounded theorem. Next, we prove
another important Lemma.

Lemma 2: Suppose Assumption 1, 2 and 3 hold. Let
({x∗i },u∗, {λ∗i }) be any limit point of the iteration sequence{
{xki },uk, {λki }

}
generated by distributed ADMM. Then

u* ∈ argmin
u∈U

h(u) +
∑n

i=1
〈λ∗i ,x∗i − ũi〉 , (46)

∇fi (x∗i ) + λ∗i=0, (47)

x∗i=ũ
∗
i , i ∈N , (48)

which show that any limit point of distributed ADMM is a
stationary point of problem (14).

Proof: According to (30), we obtain

Lρ(x0,u0,λ0)− Lρ(xk+1,uk+1,λk+1)

=
[
Lρ(x0,u0,λ0)− Lρ(x1,u1,λ1)

]
+
[
Lρ(x1,u1,λ1)− Lρ(x2,u2,λ2)

]
+ · · ·+

[
Lρ(xk,uk,λk)− Lρ(xk+1,uk+1,λk+1)

]
≥
∑n

i=1
(
γi
2
− L2

ρ
)‖x1

i − x0
i ‖

2

+
∑n

i=1
(
γi
2
− L2

ρ
)‖x2

i − x1
i ‖

2

+ · · ·+
∑n

i=1
(
γi
2
− L2

ρ
)‖xk+1

i − xki ‖
2

≥
∑k

j=0

∑n

i=1
(
γi
2
− L2

ρ
)‖xj+1

i − xji‖
2
.

(49)

Using (31) yields

Lρ(x0,u0,λ0)− Lρ(xk+1,uk+1,λk+1)

=
[
Lρ(x0,u0,λ0)− f∗

]
+
[
f∗ − Lρ(xk+1,uk+1,λk+1)

]
≤Lρ(x0,u0,λ0)− f∗ <∞.

(50)
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From (49) and (50), we get∑k

j=0

∑n

i=1
(
γi
2
− L2

ρ
)‖xj+1

i − xji‖
2
<∞. (51)

As ργi ≥ 2L2 (Assumption 2) for all i, we have

lim
k→∞

‖xk+1
i − xki ‖ = 0. (52)

According to (36) and Assumption 1, we derive

‖λk+1
i − λki ‖ =‖∇fi(xk+1

i )−∇fi(xki )‖
≤L‖xk+1

i − xki ‖.
(53)

Based on (52) and (53) , we get

lim
k→∞

‖λk+1
i − λki ‖=0. (54)

Further using (21) and (54), we obtain

lim
k→∞

‖xk+1
i − ũk+1

i ‖=0, (55)

which means for any i,

x∗i=ũ
∗
i . (56)

Namely (48) holds.
Taking limit on both sides of (36), we have

∇fi(x*
i )+λ

*
i = 0.

Namely (47) holds.
Since uk+1 is the optimal solution of the Lρ(xk,u,λk)

with u ∈ U in (17), there is a gk+1 ∈ ∂h(uk+1) such that

−
∑n

i=1

〈
λki + ρ(xki − ũk+1

i ), ũi − ũk+1
i

〉
+
〈
gk+1,u− uk+1

〉
≥ 0, ∀u ∈ U .

(57)

Then

−
∑n

i=1

〈
λki + ρ(xki − ũk+1

i ), ũi − ũk+1
i

〉
+ h(u)− h(uk+1) ≥ 0, ∀u ∈ U .

(58)

Taking limit on both sides of (58) and applying (56) yields

h(u) +
∑n

i=1
〈λ∗i ,x∗i − ũi〉

≥h(u∗) +
∑n

i=1
〈λ∗i ,x∗i − ũ∗i 〉 , ∀u ∈ U .

(59)

This implies

u* ∈ argmin
u∈U

h(u) +
∑n

i=1
〈λ∗i ,x∗i − ũi〉 .

Namely (46) holds. �
Finally, we perform the proof of Theorem 1 using above

results in following contents.
Proof: We first prove that the sequences {uk}, {xki } and

{λki } lie in some compact sets. Obviously, the admissible set
U is a compact set. The (17) shows the sequence {uk} belongs
to the compact set U . This also means that ũki lies in a compact
set. Then from (55), we can get that {xki } belongs to a compact
set. The Lipschitz continuity of ∇fi and boundedness of {xki }
show that {∇fi(xki )} is a bounded sequence. Therefore using
(36), we can obtain that {λki } is a bounded sequence and thus
must lie in a compact set.

Then we prove main result (25) by contradiction. Suppose

that
lim
k→∞

dist
(
({xki },uk, {λki }),Z∗

)
6= 0. (60)

Hence there exists a ε > 0 such that for any positive integer
N , when N = 1, there is a positive integer k0 > N satisfying

dist
(

({xk0i },u
k0 , {λk0i }),Z

∗
)
> ε; (61)

When N = k0, there is a positive integer k1 > N satisfying

dist
(

({xk1i },u
k1 , {λk1i }),Z

∗
)
> ε; (62)

· · ·

When N = kj−1, there is a positive integer kj > N satisfying

dist
(

({xkji },u
kj , {λkji }),Z

∗
)
> ε; (63)

· · ·

Then we can obtain a subsequence {{xkji },ukj , {λ
kj
i }}

of the sequence
{{
xki
}
,uk,

{
λki
}}

satisfying for any a
{xkji },ukj , {λ

kj
i },

dist
(

({xkji },u
kj , {λkji }),Z

∗
)
> ε > 0. (64)

From the previous argument, we can easily obtain that
the subsequence {{xkji },ukj , {λ

kj
i }} also lie in some com-

pact sets. Then there exists a convergent subsequence
{{xkjli },ukjl , {λ

kjl
i }} for subsequence {{xkji },ukj , {λ

kj
i }}

such that

({xkjli },u
kjl , {λkjli })→ ({x̂i}, û, {λ̂i})(l→∞), (65)

where ({x̂i}, û, {λ̂i}) is limit point. By (65), there is L̄ > 0
such that for any l ≥ L̄,∥∥∥({xkjli },u

kjl , {λkjli })− ({x̂i}, û, {λ̂i})
∥∥∥ ≤ ε/2. (66)

Using Lemma 2 yields ({x̂i}, û, {λ̂i}) ∈ Z∗. Then we have

dist
(

({xkjli },u
kjl , {λkjli }),Z

∗
)

≤dist
(

({xkjli },u
kjl , {λkjli }), (û, {x̂i}, {λ̂i})

)
≤ε/2.

(67)

This contradicts to (64). Therefore (25) holds. �
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