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Abstract—We present critical research challenges for the
development of smart building management systems (BMS) to
achieve low-carbon comfort. To date, work in this area has
focused on optimising single-scope aspects of building resources,
such as energy usage or thermal comfort, but there is a recent
shift toward BMS design that could simultaneously address
many aspects of building resources and comfort dimensions for
occupants, such as air quality, temperature, humidity, audible
noise levels, and related automated safety features. In this
paper, we discuss four research directions highlighting current
challenges in this domain that present opportunities for research:
(A) data limitations for machine learning, (B) multiple definitions
of comfort, (C) BMS usability and interfaces, and (D) safety
and security of automated BMS decision-making. Addressing
these challenges will enable the development of advanced human-
centred energy-saving buildings that meet the needs of occupants.

Index Terms—Agent-based modeling, human in the loop, green
buildings, energy management, environmental monitoring

I. INTRODUCTION

Smart buildings are buildings that have been designed to
meet the human and energy needs of their occupants through
technical infrastructure, functionality, and outcomes such as
less energy waste and greater satisfaction from the occupants
who use the building [1]. Smart buildings have the potential to
not only reduce the consumption of resources (e.g., reducing
costs, conserving gas, electricity, and water, reducing time and
effort spent planning or managing these), but also to vastly
improve the quality of life for individuals. Buildings of the
future may be designed from the ground up or existing build-
ings may be retrofitted with certain capabilities that contribute
to net-zero carbon goals and increased comfort. Historical
data can be collected to provide information about the indoor
environment of buildings from sensors that monitor and detect
changes of the environment. This data is valuable because it
enables researchers to build models of environments using
agent-based machine learning techniques like reinforcement
learning (RL). These models, such as Gnu-RL [2], can run
efficient simulations for the environment variables without
needing to interact directly with the real-world environment.
For example, a model like Gnu-RL has a shorter training
period (4 simulated days) compared to model-free algorithms
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(47.5 simulated years). Models of indoor environments can
then be used to create a type of automated system called a
building management system (BMS) [3], [4]. The machine
learning aspect of a BMS allows it to adapt and respond to
multiple types of human behaviour in the building.

Until recently, BMS design has focused on specific and
narrowly-defined niche problems such as optimising energy
consumption, or optimising thermal comfort. In fact, the
idea of smart building management systems is starting to
shift toward a more all-encompassing approach [5], [6] that
incorporates multiple variables simultaneously, such as occu-
pancy/activity modeling, resource consumption (e.g., lighting,
temperature, humidity, noise, etc), and especially the optimisa-
tion of energy-related resources to reduce carbon footprint. Air
quality is particularly important due to airborne transmission
of diseases like the SARS-CoV-2 virus and seasonal flu [7],
[8]. We envision smart buildings that also provide relevant
comfort information to their occupants in a manner that helps
occupants make informed choices.

A BMS can be designed with varying degrees of automated
decision-making [3]. It is an open problem to determine
how decision-making can be optimally distributed between a
BMS and humans in the loop. Some of the decision-making
may depend on the building type, the role of occupants, and
how various comfort-related variables are integrated into the
system. In this paper, we present a vision to some of the
challenges that the research community needs to address in
order to design a BMS for smart buildings. This paper provides
clarity on the numerous research activities that will contribute
to effective, relevant, usable, and safe systems.

II. RESEARCH DIRECTIONS AND CHALLENGES

This paper sets the agenda for four key research directions
and discusses the related challenges for each direction: (A)
overcoming data limitations, (B) integrating multiple defini-
tions of comfort, (C) designing usable interfaces, and (D)
mitigating safety concerns. Many of these challenges overlap
to some degree. In this section, we illuminate the most pressing
issues for each challenge and propose some directions for
future research.

A. Overcoming Data Limitations

Challenge. Incorporating comfort metrics into building
management systems and energy usage forecasting requires
innovative transfer learning solutions as well as the creation



of novel datasets (real or synthetic) that can be adapted to
multiple building types.

There are many different types of buildings that can benefit
from a decision-making system that learns to optimise both
comfort and resources. These buildings include schools, hos-
pitals, libraries, offices, museums, and private homes, among
others. Each building has different needs [3]–[5]. Likewise,
datasets that are meant to model variables from one type of
building may not be directly applicable to another type. For
example, it is a difficult challenge to develop a BMS system
for a school building that is fundamentally based on data
collected or simulated from an office building, because there
are different underlying assumptions in each case [5]. More
research is needed for transfer learning, which adapts data or
algorithms from one type building for the purpose of modeling
other types. The work of [5] identified four data-related areas
that must be considered in terms of transfer learning for BMS
design: building loads, occupancy/activity, building dynamics,
and energy systems. A comprehensive solution to the problem
of transfer learning could survey how these four categories
map between building types. This would effectively create a
typology of building features, allowing researchers to navigate
the transfer learning problem more effectively. Data must also
be representative of the building users and address potential
biases (e.g., if most of the occupants in a given dataset belong
to specific demographics).

There is a need for novel datasets (both synthetic and real-
world). Each existing dataset is in some sense “incomplete”,
meaning that no single dataset has all of the information to
build a reliable and safe BMS that is optimised for low-
carbon comfort. Even new datasets, such as AlphaBuilding [9]
and AlphaBuilding-MedOffice1, do not always have all of the
variables needed for modeling. For example, AlphaBuilding
includes simulated occupancy data, but the dataset is not suit-
able for RL algorithm development due to lack of interaction
modeling in the data. On the other hand, AlphaBuilding-
MedOffice and Gnu-RL [2] do not include occupancy informa-
tion, but are suitable for RL algorithms. Yet, they are limited to
medium-sized office buildings. Another challenge to be solved
is determining the amount of historical data necessary (e.g.,
weeks, months or years) for a BMS to be effectively deployed
to different environments. It is also not known how sensor
placement and sensor calibration might affect BMS algorithm
performance once deployed.

Real-world data is expensive and time-consuming to collect.
Depending on the variables being monitored this may involve
installing new sensors (such as monitoring air quality, humid-
ity, ventilation, and indoor/outdoor air temperature) and may
require obtaining consent from occupants (when monitoring
occupancy/activity levels). Additionally, it may be difficult
to obtain parallel financial cost information related to con-
sumption of resources. Real data is ultimately dependent upon
which sensors are installed in a building and their placement.
BMS design is limited to the variables that have corresponding

1https://github.com/WalterZWang/AlphaBuilding-MedOffice

data. Some sensors, such as CO2 are relatively inexpensive to
install, while others (e.g., video) that monitor occupancy or
activity levels are potentially more invasive and may require
extra data processing. Ideal solutions to addressing the overall
problem of data scarcity could meld together limited real-
world data with estimated or simulated data to create hybrid
datasets or to fill in small gaps where information from a
particular sensor is unavailable.

B. Integrating Multiple Definitions of Comfort

Challenge. Different types of buildings, occupants, and
usage scenarios require the consideration of new, multi-
dimensional comfort metrics. Similarly, these metrics may
need to be optimised at different levels of granularity, either
for groups of people or for areas of a building.

Conceptually, the idea of comfort is embodied by many
different variables. There is currently no single comfort metric
definition that can be optimised for smart buildings, yet this is
necessary for developing advanced BMS for smart buildings.
Comfort metrics are typically taken to be a collection of
metrics, with each one addressing a need separately [10].
In this research direction, we propose integrating multiple
definitions of comfort to identify ones that can be modeled
at coarse and fine granularity. For example, air quality could
be optimised and monitored at a building-level, whereas tem-
perature and ventilation could be optimised at a smaller scale.
Some of the comfort dimensions to consider are: temperature,
ventilation, humidity, air quality, noise levels, lighting, feelings
of perceived privacy, and water temperature in taps.

Previous work has established comfort standards, such as
the American Society of Heating, Refrigerating, and Air
Conditioning Engineers (ASHRAE). The ASHRAE Standard
55 defines thermal comfort in buildings and includes two
approaches to assess thermal comfort described as follows:
(1) the predictive approach (with PMV and PPD indices) and
(2) the adaptive approach (where indoor operative temperature
is related to mean outdoor air temperature). The acceptable
threshold is defined by 80% or more of occupants finding their
area thermally acceptable. There is also an ASHRAE Global
Thermal Comfort Database II, which is a large collection
of instances that combine objective measurements of indoor
temperatures with subjective or perceived comfort in each case
[11]. The database can be queried to obtain comfort settings
based on building type, occupancy, and subjective or objective
evaluations of comfort. Another metric is EN 16798-1:2019,
and this is a European standard that defines requirements
for indoor environmental domains, such as indoor air quality,
acoustics and lighting in regards to building design. This stan-
dard focuses on the design input parameters for the design of
buildings and systems, including occupants’ thermal comfort
[12].

There are many interrelated ASHRAE standards for building
comfort. Additional research in this area should seek to
incorporate multiple comfort standards and possible interac-
tions between environmental domains into RL-based machine



learning approaches to building management. This will allow
for modeling the interplay between multiple types of comfort
alongside multiple types of resource consumption [22]. Recent
work from [13] has attempted to create a BMS that uses
ASHRAE 55 to govern automatic control of natural and
artificial ventilation in a large building in Moscow, Russia. In
that simulation, individuals had direct control over the opening
or closing of windows, and the BMS adjusted accordingly
based on the individual decisions.

Apart from defining the elements that make up comfort, it
is also necessary to better understand which of these elements
can be optimised for individuals or groups. The answer may
depend on which comfort variable is under consideration, as
well as the type of building or usage/occupancy of a building.
For example, in a school, it might be preferable for some class-
rooms to have different settings from each other at different
times of day after taking into consideration the preferences of
classroom occupants as a group [14]. On the other hand, in
an office building that is composed of many single-occupancy
offices, it may be more appropriate to allow each office room
to be adjusted based on individual preferences. Another way
to frame the problem involves thinking of buildings in terms
of zones or regions, where each zone has particular settings.
Setting up zones that have particular comfort settings could be
facilitated by certain design aspects of a building, which may
have the effect of further reducing resource consumption.

C. Designing Usable Interfaces
Challenge. To maximise utility, a BMS should provide
services considering the human in the loop. The system
should provide information to occupants as well as incor-
porate feedback from occupants (or facilities management).
Therefore, there is a need to develop information sharing
techniques between humans and the smart system.

A recent review on human-building interfaces and their
relationship to human behavior, energy use and occupant com-
fort [21] has highlighted critical aspects of interfaces design
including ”the ease and access of control, interface/control
placement, poor interface/control design, lack of understand-
ing, and social-behavioral dynamics”.

We envision the development of a BMS approach for
smart buildings that simultaneously optimises multiple aspects
of comfort and utilisation of resources. It is important to
also consider how the BMS system can be designed to be
user-friendly. For example, it is not currently known how
to effectively exploit data visualisation for all of the data
received through sensors. New research should address how
to develop interfaces and visualisations capable of addressing
accessibility needs, indicating an overall building status, iden-
tifying areas where comfort is not being met, identifying areas
where comfort is achieved at a high cost of resources, and
similar summaries that may be relevant to a building facilities
manager or facilities department. This type of interface can be
achieved through additional research that explores how data
visualisation and user interface design affect human decision-
making, which in turn affects BMS decision-making.

In recent years, many office buildings have started utilising
hot-desks as a way to preserve office real-estate by allowing
workers to use any available desk. In a hot-desk scenario,
it may not be possible to create comfort conditions for
each individual because office occupants change constantly
or hot-desks are implemented as part of an open-office plan
[15]. Even a simple averaging among occupants may nullify
perceived indoor environment conditions or require tracking
of who is inside of a building and where.

Occupants who are allowed direct influence of the comfort
settings of a building are active consumers of environmental
comfort, whereas some occupants (e.g., visitors or hot-desk
employees) may be viewed as passive consumers. Other
passive consumers of environmental conditions can include
visitors to a museum, or visitors to a library. In the case
where occupants are passive consumers of comfort, it may
be reasonable to explore how “zones” can be used within the
building design. Occupants could be given information about
the settings of each zone upon entry to the building and then
the occupants can decide which areas of the building they
would like to be in (or avoid). A visualization of the building
status for passive consumers could include an interactive map
of the building with information about comfort settings (and
current conditions) in different areas. Occupancy could easily
be incorporated into such a visualization, for example when
visiting a museum to decide which areas and exhibits are
busiest, noisiest, or have the most lighting.

Occupant roles with respect to a building can potentially
impact the design of a BMS. In some cases, human-level
decisions may be left to a facilities manager who decides the
target settings and provides this as input to the BMS. In other
cases, the BMS can use techniques from machine learning
to learn preferences of occupants by monitoring how the
occupants respond to changes. The BMS can then use this to
automatically adapt and optimise its operation. The latter case
would require occupants to provide direct or indirect feedback.
For example, if the BMS is trying to learn a temperature and
it is too warm, the occupant may constantly open a window.
It would be left to the BMS to determine that this behavior
is related to a preferred temperature and not poor indoor
air quality (e.g., perceived ‘stuffiness’ or smell/odour). Given
the volume of variables that will be modeled and optimised
simultaneously, it may be intractable for a BMS to learn all
settings. We propose investigation of how occupants would
best co-create the BMS and learning conditions.

D. Mitigating Safety Concerns

Challenge. Smart building management systems require in-
vestigation into safety issues that could arise from differential
levels of autonomous decision making, including threats that
can be exploited maliciously, and provide means to mitigate
those risks to occupants.

Safety and automated decision-making are two important
aspects of smart buildings. Not all safety concerns are a direct
consequence of malicious activity. In the first instance, sensor



data networks need to be kept updated and protected, so that a
BMS can receive accurate data inputs. If the data at the sensor-
level is compromised, then this can impact safety in many
ways, in addition to compromising comfort and resources. Bad
sensor input could be the result of a simple sensor failure. New
comprehensive approaches are needed to detect when sensors
are starting to fail, as well as new strategies for sensor repair
and replacement.

The second type of safety consideration involves how a
BMS reacts to inputs. For example, if a BMS detects a fire
or other emergent hazard, what is the response? Recent work
from [16] has begun to explore conflict mediation for smart
buildings. The first step is to identify a conflict (e.g., a race
condition) and then offer a mediation action that suggests an
action for a human to perform in order to fix the conflict (e.g.,
turn off a sensor for a short period of time). Similarly, work
from [17] explored conflict mediation at the human level in so-
called “thermostat wars”. In that human in the loop scenario,
a room occupant was decidedly uncomfortable and requested
a vote to increase temperature. Several occupants voted ‘yes’
while some voted ‘no’. The system determined which action to
take and recommended some additional actions for occupants
who voted ’no’. Future work involving cooperative behavior
could explore the use of mechanism design [21], where
incentives influence occupant decisions.

The third type of safety consideration is whether the BMS
can be maliciously exploited by a bad actor. There is in-
creasing awareness among researchers that smart buildings
have vulnerabilities that could be exploited with relative ease
[19]. Such exploitation may involve, for example, disabling
air quality inputs to a BMS. Cyber-security work for this
aspect of smart building safety is already underway with
the creation of simulated datasets, such as the HVAC Attack
Database [20] (Heating, Ventilation, and Air Conditioning).
While this is a useful database, a variety of smart building
vulnerabilities should be explored in greater depth (e.g., total
loss of electricity, automatically locking doors, emergency
services) to understand safety risks.

III. DISCUSSION

Integrating comfort ideals into a BMS in a way that can
also optimise resource consumption is an ambitious goal, but
one that has far-reaching positive impacts for society. In this
paper, we have proposed four critical pathways for developing
research that can lead to successful smart, comfortable, and
green buildings. First, we described how data holds a critical
role for algorithm development. We discussed the limitations
of existing datasets and proposed increased research and in-
novation for transfer learning. Second, we highlighted current
and previous work on the development of comfort metrics
and discussed how some metrics (e.g., air quality) are well-
suited to be optimised at a holistic building-level while other
metrics are suitable to be optimised for individuals, depending
on the building type and usage. Third, we discussed how
information and user interfaces contribute to the usability of
a BMS depending on occupant roles. Finally, we presented

three types of safety concerns from physical sensor failures
to malicious cyber attacks and propose additional research in
this area to explore all aspects of safety.

The four challenges that we presented are intertwined in
terms of the variables that must be considered for comfort
and resources. We specifically emphasise that a smart BMS
does not need to be a fully-automated system but should
include human in the loop decision-making. Developing trust
in a BMS that is designed for low-carbon comfort requires
high usability and access to information as well as successful
mitigation of safety concerns.
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