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Rare genetic disorders, while individually rare, are collectively common. They represent
some of the most severe disorders affecting patients worldwide with significant morbidity
and mortality. Over the last decade, advances in genomic methods have significantly
uplifted diagnostic rates for patients and facilitated novel and targeted therapies.
However, many patients with rare genetic disorders still remain undiagnosed as the
genetic etiology of only a proportion of Mendelian conditions has been discovered
to date. This article explores existing strategies to identify novel Mendelian genes
and how these discoveries impact clinical care and therapeutics. We discuss the
importance of data sharing, phenotype-driven approaches, patient-led approaches,
utilization of large-scale genomic sequencing projects, constraint-based methods,
integration of multi-omics data, and gene-to-patient methods. We further consider the
health economic advantages of novel gene discovery and speculate on potential future
methods for improved clinical outcomes.

Keywords: Mendelian, novel gene discovery, disease–gene relationships, rare genetic disorders, genomics, rare
disease, genetics

INTRODUCTION

Rare genetic disorders affect 1-in-17 individuals in their lifetime (Turnbull et al., 2018). They
encompass some of the most severe disorders affecting patients worldwide, including childhood
cancers, neurodevelopmental disorders, and muscle diseases to name a few (Simpson, 2016). Many
are severe and life limiting, with significant morbidity and mortality. Indeed, 30% of children with
rare diseases die before their fifth birthdays (Rode, 2005). Many affected patients are wheelchair
bound and require respiratory support, feeding support, specialized community services, and
significant hospitalizations (Yoon et al., 1997; Dodge et al., 2011). This not only impacts the patients
involved but their caregivers and families as well.

Approximately 80% of rare diseases have a genetic basis, yet many of the underlying genes have
not yet been identified, nor has the wide spectrum of pathogenic variation been delineated for each
gene (Yoon et al., 1997; Dodge et al., 2011; Wright et al., 2018). As such, on average across all
specialties, the causal variant(s) are only identified in ∼30–40% of rare disease patients, leaving the
majority of patients and their families without a reliable prognosis, rendering medical care largely
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supportive and palliative (Retterer et al., 2016; Adams and Eng,
2018; Clark et al., 2018; Srivastava et al., 2019).

One of the biggest challenges in reaching a molecular
diagnosis is the paucity of scientific knowledge into the biological
function of all ∼20,000 human genes. Indeed, the disease
phenotypes have yet to be discovered for ∼50% of those
genes with a genomic signature suggesting haploinsufficiency
(Seaby and Ennis, 2020). Therefore, diagnosing rare diseases
is extremely challenging without a prior correlation between
a clinical phenotype and causative gene. New gene disorders
preclude detection when for every genome sequenced, millions
of variants of uncertain significance reside in genes of unknown
function (Smedley et al., 2015; Karczewski et al., 2020). Even the
best computational methods available at present will typically
overlook a gene of undetermined biological significance when
analyzing a patient’s exome (restricted to protein-coding regions
of DNA) or genome (all DNA regions). Therefore, new rare
genetic diseases will be overlooked until further studies are
undertaken or new methods are developed to uplift novel gene
discovery (Seaby and Ennis, 2020).

WHY IS NOVEL MENDELIAN GENE
DISCOVERY IMPORTANT?

The significance of uplifting novel Mendelian gene discovery is
not to be underestimated. Every new disease gene discovered
goes toward ending the notorious “diagnostic odyssey” of rare
disease. This pertains to rare disease patients who move between
specialties and undergo myriad diagnostic tests in search for a
unifying genetic explanation (Thevenon et al., 2016). For most,
these often expensive evaluations only elucidate the clinical
phenotype and seldom aid in diagnosis. In the United Kingdom,
over a 10-year period, undiagnosed rare diseases have cost NHS
England an average of £13,064 (US$18,279) per patient and in
excess of £3.4 billion (US$4.8 billion) in total (Imperial College
Health Partners, 2018). In Australia, the cost per diagnosis
using standard care is AU$27,050 (US$21,241), and in the
United States, the same cost basis was calculated at US$19,100
(Soden et al., 2014; Stark et al., 2017). While these figures all
showcase the cost burden of rare diseases, it is ill advised to
compare cost evaluations between countries due to differing
healthcare systems.

Novel discoveries directly impact diagnostic potential.
Diagnoses not only provide answers for patients and families
but have far-reaching clinical impact, including but not limited
to guiding personalized treatments; offering patient support
networks; collecting and gaining knowledge on disease trajectory
and prognosis; enabling participation in research studies;
informing reproductive choices; and impacting the health of
relatives. Even when little can be done therapeutically following
diagnosis, the importance of that diagnosis to patients and
families should not be overlooked; when a cause is identified, this
often alleviates guilt and blame felt by patients and families who
believe a given rare disease is their fault (Muir, 2016).

Novel gene discovery is critical in the research space to expand
biological understanding of human genes and variation and to

identify therapeutic drug targets that may lead to successful
and life-altering therapies (Legendre et al., 2013; Ribeil et al.,
2017; Mirmiran et al., 2019). Gene augmentation therapies
have been developed for a number of conditions, for example,
subretinal injection of adeno-associated virus vectors to deliver
RPE65 cDNA to treat Leber congenital amaurosis (MIM: 204100)
(Maguire et al., 2009; Pierce and Bennett, 2015) and the FDA-
approved one-time intravenous administration of SMN cDNA to
treat spinal muscular atrophy type 1 (MIM: 253300) (Mendell
et al., 2017; Beck et al., 2020). Small molecular therapies for
cystic fibrosis (MIM: 602421) are well studied and include
ivacaftor, which increases the time fraction that the cystic
fibrosis transmembrane conductance regulator (CFTR) channel
remains open, and lumacaftor, which increases the amount of
CFTR that reaches the cell surface (Wainwright et al., 2015;
Habib et al., 2019). Development of antisense oligonucleotides
is proving effective in preclinical and clinical studies to treat
neurodegenerative diseases (Smith et al., 2006; Ly and Miller,
2018); and it is hoped that identification of novel disease genes
may guide further protein targets.

In contrast to the development of new gene therapies, it is
not uncommon for existing therapies to be repurposed when
knowledge of a given gene and biological pathway is implicated
in diseases. For example, in 2011, autosomal recessive variants
in MTHFD1 (a gene involved in folate metabolism) were found
to cause combined immunodeficiency and megaloblastic anemia
with or without hyperhomocysteinemia (MIM: 617780) (Watkins
et al., 2011). Simple folic acid has proven life changing for
patients with recessive mutations in MTHFD1 (Burda et al., 2015;
Ramakrishnan et al., 2016).

THE PRIOR DECADE OF NOVEL GENE
DISCOVERY

Since the advent of next-generation sequencing (NGS)
technologies, there has been a stepwise acceleration in
novel gene discovery leading to uplifted diagnostic rates for
rare disease patients (Chong et al., 2015; Posey et al., 2019).
Between 2005 and 2009, there were ∼170 novel discoveries
per year. This is compared to ∼240 per year between 2010
and 2014 when NGS became widely adopted (Chong et al.,
2015). In the history of disease–gene relationship discovery,
NGS approaches are responsible for ∼36% of all reported
Mendelian disease genes. Their contribution to novel gene
discoveries is accelerating, with 87% of new gene disorders now
discovered using NGS approaches (Bamshad et al., 2019). Novel
discoveries are still progressing, although the pace of discovery
appears to have reached a steady state that balances the time
required to build international cohorts, undertake functional
experiments, and publish findings (Posey et al., 2019). Despite
this, approximately 250 new genes are added to the literature
annually, and a recent review predicted that more than 6,000
Mendelian conditions remain to be discovered (Bamshad et al.,
2019). Therefore, with thousands of monogenic disease–gene
relationships yet to be elucidated, there is clear evidence that
the recognition of disease-causing variation in the exome is far
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from saturated (Posey et al., 2019). For more data on the pace
of novel discoveries, we recommend the excellent review by
Bamshad et al. (2019).

TRADITIONAL FAMILY-BASED
APPROACHES TO DIAGNOSIS AND
NOVEL GENE DISCOVERY

At present, most exome and genome analyses are conducted
on a “per family” basis, that is, to say on a small number of
related individuals, most commonly a trio (parents and child).
Analyzing NGS data is labor-intensive, taking up to 20–40 h to
compile a report (Dewey et al., 2014). The challenge of handling
vast quantities of genomic data has improved with advancing
methods; however, for each exome or genome sequenced (and
depending on whether segregation analysis is available using
family studies), there are anywhere from tens to thousands
of plausible candidate variants (Adams and Eng, 2018). If a
variant is found in a known disease gene, a rapid diagnosis can
often be made with rigorous variant curation against laboratory
standard guidelines (Richards et al., 2015; Amendola et al., 2016).
However, for ∼60% of rare disease patients who undergo clinical
exome or genome sequencing, their sequencing report is non-
diagnostic, despite the fact that for many, the causal variant
is present but unrecognized in their sequencing results. New
diagnoses therefore cannot be made until new disease–gene
relationships are discovered and the full spectra of pathogenic or
disease-causing variants in known disease genes are elucidated
(Seaby and Ennis, 2020).

It is worth noting that there is a difference between
clinical testing and research-led sequencing studies. Clinical
testing typically focuses on variants in established or known
disease genes, whereas research studies have scope to evaluate
variants in genes of unknown function or not currently linked
to disease. Unless patients undergoing diagnostic testing are
additionally recruited into research studies, opportunities to
evaluate variants in new disease genes are limited. That said, there
is increasing involvement of diagnostic centers with research
laboratories and affiliated universities; indeed, many families are
now concomitantly offered diagnostic testing and recruitment
to further research studies. However, for these diagnostic
labs capable of bridging the gap between clinical testing and
research, many are ill-equipped to investigate the plethora of
plausible disease candidates remaining after variant filtration
and prioritization. Theoretically, the only way to establish new
diagnoses when novel genes are identified in a research setting
is to conduct functional experiments on all potential candidates.
This approach is proving a major bottleneck as most research
laboratories do not have the finances, nor the time or resources,
to support functionally validating a large number of candidate
variants without any guarantee that the selected variants are
disease causing. Few laboratories will invest resources into a
particular variant for one patient without additional kindreds
with overlapping phenotypes or prior published studies on the
gene’s function. Many current practices in gene discovery are still
hindered by a “bottom-up” approach that takes single-patient

cases that brings the phenotype to a novel gene; a piecemeal
approach limited by intensive functional experiments on genes
of equally predicted causality. Therefore, efforts in recent years
have focused on strategies to prioritize the best candidates for
functional follow-up.

STRATEGIES TO UPLIFT NOVEL GENE
DISCOVERY

Collaborative, Data-Sharing Approaches
Collaborative projects, data sharing, and building disease cohorts
have proven invaluable in genomics. In 2010, MLL2 (KMT2D)
was discovered as the cause of the Kabuki syndrome (MIM:
147920). Ten unrelated patients with the same characteristic
clinical phenotype underwent exome sequencing. Seven of the
10 individuals were found to have loss-of-function variants
in MLL2, which led to its disease association (Ng et al.,
2010). Historically, the approach of building a case series of
affected individuals has been a rate-limiting step, relying on
local connections or collaborations built through conferences
or publications. Given the rarity of monogenic disorders,
it can take many years to accrue sufficiently sized cohorts
with similar clinical features and genotypes. This method is
therefore inefficient and inadequate to rapidly support novel gene
discovery (Azzariti and Hamosh, 2020).

In 2017, the directors’ board of the American College of
Medical Genetics and Genomics released a position statement
on how genomic data sharing is critical to improving genetic
healthcare (ACMG Board of Directors, 2017). With an ever
more connected world, global efforts to share genotype and
phenotype data have proven essential in the endeavor of novel
gene discovery. Improved data governance, drives for open data
science, and advancing informatics methods have since led to the
practice of genomic matchmaking, facilitating researchers and
clinicians from across the globe to share phenotype/genotype
data for accelerated discoveries (Azzariti and Hamosh, 2020).

Matchmaker Exchange
In 2015, the Matchmaker Exchange (MME) was launched,
providing a systematic and robust approach to novel Mendelian
gene discovery by facilitating a mechanism for matching
patients across genomic centers, research laboratories, diagnostic
laboratories, and physicians through a federated network
(Figure 1) (Philippakis et al., 2015).

MME builds on the success of earlier genomic matchmaking
platforms by connecting datasets through an application
programming interface (API) enabling searches of multiple
databases with a single query. The advantage of using a federated
network enables individual submitters to maintain control and
autonomy over their data and keep the content up to date,
while ensuring compliance with their local and national data-
sharing policies (Azzariti and Hamosh, 2020). By identifying
additional affected kindreds with overlapping phenotypes, the
best candidate variants and genes can be targeted for functional
validation. The MME API has been widely adopted by scientists
and clinicians globally and has led to numerous international
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FIGURE 1 | The MME API and its connected nodes. MME uses a federated network of nine connected nodes. Image taken from
https://www.matchmakerexchange.org/.

collaborations and publications. One such example is the
discovery of a KMT2E-related neurodevelopmental disorder,
the O’Donnell-Luria-Rodan syndrome (MIM: 618512), following
identification of 38 individuals from 36 families, of which 28 were
ascertained using MME. This discovery goes beyond elucidating
disease–gene etiology and has identified a potential therapy
already widely used in healthcare that could be evaluated for this
syndrome (O’Donnell-Luria et al., 2019).

Patient-Led Approaches
It could be argued that no one is more invested in ending the
diagnostic odyssey of rare disease than affected individuals and
their families. In an era when patients are actively involved
in research studies as participants (Kaye et al., 2012), it is
unsurprising that patients and caregivers are also invested
in genomic matchmaking efforts (Lambertson et al., 2015).
Patients and families are beginning to take control of their
own data and utilize open data sharing and social media in
an effort to discover new genetic disorders. Embedded within
the MME API is a family-facing platform called MyGene2,
which gives patients and caregivers autonomy over their data,
facilitating direct data sharing when desired, while still enabling
scientists and clinicians to access these shared anonymized data
(Azzariti and Hamosh, 2020).

Social networking sites such as Facebook, Twitter, and
Instagram are also proving popular with patients/caregivers as

a matchmaking resource (Macnamara et al., 2019). In 2014,
Matthew and Cristina Might harnessed the power of social media
to identify additional cases of NGLY1 deficiency, leading to
identification of a new gene disorder (Might and Wilsey, 2014;
Might and Might, 2017). Following their son’s diagnosis, the
Might family explored options for conceiving a child unaffected
by the same condition. Their son’s diagnosis facilitated not only
conception of a healthy sibling but a pathway for other affected
families to conceive healthy children using preimplantation
genetic testing or non-invasive prenatal diagnostic testing (Might
and Might, 2017). The Might family created a legacy for
others to follow, having built a global community of families
providing mutual support, in addition to facilitating research and
international NGLY1 meetings (Might and Wilsey, 2014).

Inspired by the success of the Might family, families across the
globe have harnessed the networking potential of social media
to match with other affected kindreds with similar phenotypes
and genotypes. Indeed, social media additionally facilitated
the identification of three children with variants of uncertain
significance in KDM1A, leading to discovery of another novel
gene disorder (MIM: 616728) (Chong et al., 2016). The success
of such endeavors has now inspired the Undiagnosed Diseases
Network (UDN), started at the National Institute for Health in
2008, with 11 additional clinical sites across the United States,
to use social media in a similar way. With appropriate consent,
webpages are created for individual participants, showcasing the
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clinical phenotype, significant variants, and candidate genes. This
approach has proven successful in identifying additional affected
patients with variants in NACC1, leading to the discovery of its
associated phenotype (Macnamara et al., 2019).

Large-Scale Programs for Novel Gene
Discovery
Genomic sequencing has become increasingly affordable and
possible in recent years. However, exome and genome sequencing
are seldom first-line investigations, with many healthcare systems
and health insurance policies not covering the cost. This
has perhaps inspired the creation of large-scale international
sequencing programs, often with government funding, offering
exome and/or genome sequencing to thousands of rare
disease patients and their families. These projects benefit from
pooled resources and focus on diagnosing patients who were
undiagnosed following conventional clinical testing, in addition
to better elucidating the underlying mechanisms of Mendelian
diseases. Such examples include the United Kingdom’s 100,000
Genomes Project (100KGP) (Turnbull et al., 2018) and
Deciphering Developmental Disorders study (Firth et al., 2011)
as well as the United States’ Centers for Mendelian Genomics
(Bamshad et al., 2012). These programs benefit from sequencing
large numbers of patients with improved power to match
patients with similar genotypes and phenotypes, both internally
and through the MME (Philippakis et al., 2015). Furthermore,
most of these programs recruit patients for both clinical
diagnostics and follow-on research, meaning that where possible,
novel discoveries and variants of uncertain significance can be
investigated further; this has previously been a limitation of
clinical diagnostic studies (Seaby and Ennis, 2020). Consequently,
thousands of novel gene discoveries have been identified through
these projects. Indeed, by 2018, the Centers of Mendelian
Genomics had reported >3,500 disease gene–phenotype pairs,
expanding both known and novel disease gene associations
(Posey et al., 2019). And in 2020, 28 new genetic disorders
were discovered by leveraging data from the Deciphering
Developmental Disorders study (Kaplanis et al., 2020).

Phenotype-Driven Approaches
In recent years, novel gene discovery has shifted from phenotype-
driven methods to genotype-driven approaches, i.e., taking
genotype data and matching phenotypes to that genotype
through matchmaking efforts, though both remain important
(Bamshad et al., 2019). Efforts to standardize phenotype terms
through the Human Phenotype Ontology (HPO) database have
aided comparative statistics using a universal library of agreed
clinical terms involved in disease (Robinson et al., 2008). This
has paved the way for computational phenotype analyses that can
assess a candidate gene’s relevance to phenotype data observed
in patient(s). A number of tools (Table 1) have been developed
that estimate the similarity between HPO terms in an individual
and those representing disease in a database. By incorporating
phenotype ontology data across species, these tools are capable
of prioritizing candidate genes without known disease association
(Köhler et al., 2009; Schulz et al., 2011; Bauer et al., 2012). Similar

approaches have been commercialized, taking advantage of
advanced artificial intelligence to identify and rank potential
disease-causing variants following a multidimensional analysis;
examples include Fabric Genomics1 and Emedgene2. More
experience and data are needed to understand the strengths and
limitations of these tools.

One of the challenges for novel gene discovery is the
requirement for accurate and deep phenotyping. Optimally,
this should be collected longitudinally (Seaby and Ennis, 2020).
While HPO terms do help to standardize the recording of
phenotype information and indeed are used universally in many
databases including those connected through MME (Philippakis
et al., 2015), they are often only collected at a point in time
and may lack the “full narrative” of the clinical history. This
can be problematic when assessing new genotype–phenotype
correlations, since for many neurodevelopmental disorders,
phenotypes can significantly overlap. It can also be difficult
to weight the severity or prominence of clinical features as
the conversion to a list of terms tends to weight all the
features similarly.

Constraint-Based Approaches
Given the mutation rate and the Earth’s current population size,
we expect to observe every variant compatible with life in a living
human. Indeed, the aggregation of large population datasets has
begun to reveal the spectrum of damaging variants across the
human genome (Lek et al., 2016; Karczewski et al., 2020). It is
typical to observe approximately 100 loss-of-function variants
per genome with ∼20 genes completely inactivated (knockouts)
even in perfectly healthy individuals from the general population
(MacArthur et al., 2012). Population data can be utilized to
evaluate the strength of natural selection at the gene level and
to differentiate rare from common loss-of-function variants. As
deleterious variants are purged from human populations through
natural selection, there are opportunities to identify genes and
regions that are constrained for variation compared to expected
mutation rates, revealing which genes are most intolerant to
inactivation of one (haploinsufficient) or both (knockout) copies
(Samocha et al., 2014; Karczewski et al., 2020).

Loss-of-Function Constraint
Lek et al. (2016) (Kosmicki et al., 2017) defined a set of genes with
high probability of intolerance to heterozygous predicted loss-
of-function variation (pLI) modeled on ∼60,000 exomes from
the Exome Aggregation Consortium (ExAC) population database
(Lek et al., 2016). This pLI score can be used to identify candidate
haploinsufficient disease genes constrained for loss of function in
a dichotomous way; i.e., a gene is predicted to be haploinsufficient
(pLI > 0.9) or not (Figure 2).

Karczewski et al. (2020) refined the model and regenerated pLI
scores utilizing a larger dataset of ∼141,000 exomes and genomes
from the Genome Aggregation Database (gnomAD)3. The

1https://fabricgenomics.com/
2https://www.emedgene.com/
3https://gnomad.broadinstitute.org
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TABLE 1 | Four phenotype-driven tools for prioritization of known and novel disease genes.

Tool Principle Application Access

Exomiser (Smedley et al., 2015) Uses random-walk analysis of protein–protein
interaction networks, cross-species phenotype
comparisons, and a wide range of additional filters that
consider prediction models, disease segregation, and
allele frequency

Focused on identifying novel
and known disease genes

http://www.sanger.ac.uk/
science/tools/exomiser

eXtasy (Sifrim et al., 2013) Prioritizes non-synonymous variants predicted to be
pathogenic using a fusion methodology that integrates
multiple strategies in a phenotype-specific manner

Focused on identifying
candidates in novel and known
disease genes

http://extasy.esat.kuleuven.be/

Phevor (Singleton et al., 2014) Combines outputs of multiple biomedical ontologies
and propagates patient phenotype information across
and between ontologies for improved variant
interpretation

Focused on identifying
candidates in novel and known
disease genes

http://weatherby.genetics.utah.
edu/cgi-bin/Phevor/
PhevorWeb.html

Phen-Gen (Javed et al., 2014) Uses a systematic Bayesian framework which
combines patient sequencing data with phenotype
information for improved rare disease variant analysis of
both coding and non-coding variation

Focused on identifying
candidates in novel and known
disease genes

http://phen-gen.org/

Bioinformatic phenotype-driven tools for the detection and prioritization of variants in novel and known disease genes using the integration of patient genotype
and phenotype data.

FIGURE 2 | Comparison of the distribution of pLI and LOEUF. Panel (A) shows a histogram of human genes across the LOEUF spectrum displaying a continuous
pattern. Lower scores represent higher gene constraint (for loss of function). The histogram is colored by the LOEUF decile. Panel (B) shows a histogram of human
genes across the pLI spectrum. This spectrum is extremely dichotomous with the majority of genes skewed toward either 0 (not constrained for loss of function) or 1
(constrained for loss of function). This can help to discriminate genes that are likely to cause disease through haploinsufficiency (pLI > 0.9). The dichotomous nature
of pLI is by design, as initially the reference databases were too small to have adequate power to discern depletion for loss-of-function variation in small- to
medium-length genes. The pLI distribution is colored by the LOEUF decile to show the overlap between scores. Higher pLI scores correlate with lower LOEUF
scores as expected. The continuous nature of the LOEUF score provides more granular detail than pLI across the middle of the spectrum and can better stratify
genes with moderate levels of constraint that may be implicated in recessive disease.

authors also developed the Lower Observed/Expected Upper-
bound Fraction (LOEUF) score, a continuous metric which
places >19,000 human genes on a spectrum of intolerance to

inactivation (Figure 2). Genes with the lowest LOEUF scores, i.e.,
the fewest loss-of-function variants compared to an expectation,
are the most constrained for loss of function, highlighting
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their potential biological essentiality. Both LOEUF and pLI
were validated by comparison to several orthogonal indicators
of constraint and shown to be accurate at discriminating
haploinsufficient disease genes from autosomal recessive and
polymorphic (unconstrained) genes (Karczewski et al., 2020).
A companion paper by Collins et al. (2020) additionally showed
that structural variants share the same pattern of constraint
as LOEUF and are responsible for about a quarter of all rare
loss-of-function events per genome.

As LOEUF identifies genes constrained for loss-of-function
variation, we expect these genes to be enriched for dominant
disease genes and to lesser extent recessive disease genes. As
of January 2021, 65% of genes in the lowest LOEUF decile
are yet to have an OMIM disease association (calculated using
data from https://omim.org), highlighting thousands of high-
probability candidate disease genes awaiting discovery of the
associated phenotypes.

Missense Constraint
The majority of coding variants of uncertain clinical significance
are missense variants, as reported in ClinVar, a public
database where diagnostic laboratories and researchers share
variant classifications (i.e., pathogenic, benign, and uncertain
significance) (Pérez-Palma et al., 2019). Similar to methods
for assessing loss-of-function constraint, methods to identify
missense constraint have emerged by comparing the observed vs.
expected numbers of missense variants modeled on population
data (Lek et al., 2016; Samocha et al., 2017; Havrilla et al., 2019;
Hayeck et al., 2019; Pérez-Palma et al., 2020). However, missense
constraint varies across a gene; for example, unstructured regions
are often less constrained than important functional domains,
which has necessitated the development of regional missense
constraint models (Havrilla et al., 2019; Abramovs et al., 2020).
Furthermore, clustering patterns of pathogenic missense variants
vary depending on the inheritance pattern. Turner et al. (2015)
showed that dominant missense variants cluster more than
recessive variants. Therefore, testing for non-random clustering
patterns may identify novel regions of interest across large sample
sizes (Turner et al., 2015). The application of these metrics
has aided in the discovery of new gene disorders, including a
de novo missense variant in a constrained region of GABRA2
responsible for an early-onset epileptic encephalopathy (MIM:
618557) (Orenstein et al., 2018).

Model Organism Databases
Identifying the phenotypic effects of gene disruption may be
possible using model organisms when there is enough conserved
evolutionary function of the pathway/organ/system involving the
gene of interest. Where the functional consequences of most
human gene variants are yet to be established, model organism
databases serve as a useful resource. Indeed, 58% of human genes
have orthologs with disease-associated phenotypes reported in
at least one model organism (Mungall et al., 2017). Although
non-human models are not necessarily perfect proxies for human
diseases, they can still serve as important biological models,
particularly when data are aggregated across species.

Monarch Initiative
The Monarch Initiative4 is an open-science, collaborative project
that aims to integrate phenotype–genotype data from a variety
of species and sources (Mungall et al., 2017). Its user-friendly
web portal promotes rapid assessment of phenotypes of orthologs
in organisms and other species. Researchers can query genes,
phenotypes, and diseases to identify candidate disease genes.
Exomiser (Smedley et al., 2015) and Genomiser (Smedley
et al., 2016) have utilized the Monarch Initiative in their gene
prediction algorithms, which have led to diagnoses in participants
in the UDN including the aforementioned discovery that the
disruption of STIM1 results in the York platelet syndrome (MIM:
805070) (Bone et al., 2016).

Mouse Knockout Databases
Several mouse model organism databases exist including the
Mouse Genome Database (MGD) (Smith et al., 2017; Bult et al.,
2019), the Knockout Mouse Project (KOMP) (Austin et al.,
2004), and the International Mouse Phenotyping Consortium
(IMPC) (Meehan et al., 2017; Muñoz-Fuentes et al., 2018). These
projects are building comprehensive catalogs of mammalian
gene function, genotype–phenotype associations, and detailed
phenotype data from mouse knockouts of every protein-coding
gene (Muñoz-Fuentes et al., 2018; Bult et al., 2019). By 2019,
the IMPC has fully or partially phenotyped 5,861 mouse genes,
a third of which are non-viable (Muñoz-Fuentes et al., 2018;
Cacheiro et al., 2019). Data from IMPC have aided the discovery
of many novel Mendelian phenotypes (Bowl et al., 2017; Moore
et al., 2018; Rozman et al., 2018). That said, there is still much
more to be gleaned from mouse data; of the >10,000 mouse genes
linked to at least one non-lethal phenotype in a mutant strain in
MGD, Bamshad et al. (2019) showed that human orthologs for
72% of those genes are yet to be associated with a Mendelian
disorder, providing another rich data source for candidate genes
awaiting discovery of the human Mendelian phenotype.

Incomplete Penetrance
Identifying novel disease genes can be challenged by incomplete
penetrance, that is to say, when a disease-causing variant does
not always result in any clinical expression of the disease.
If a novel candidate gene has been associated with a given
phenotype, yet some or all alleles are incompletely penetrant,
then it can be difficult to gather sufficient evidence for a new
disease–gene association using traditional genetic evidence such
as case observations and familial segregation. To mitigate this,
larger cohorts that can support statistical association studies
must be pursued. Furthermore, researchers are exploring how
combinations of genomic variants such as oligogenic models
or co-inherited protective alleles, environmental exposures, and
mosaicism may impact the onset of Mendelian disorders (Gruber
and Bogunovic, 2020). One such approach is to specifically
identify individuals that are resilient to rare disease, despite
harboring pathogenic variants (Chen et al., 2016). Another
area of interest is how cis-regulatory variation may modify the
penetrance of coding variants (Castel et al., 2018).

4https://monarchinitiative.org
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FIGURE 3 | Gene-to-patient approach for improved rare disease diagnostics. Scenario (1) shows a traditional patient-to-gene approach. Following variant analysis,
rare disease patient A has several potential disease candidates, of which one (in black) is the disease-causing variant hidden within the sea of benign variation.
Without prior knowledge that any of these variants are causative, the only way to test their pathogenicity is by expensive functional studies on genes of equally
predicted causality. In scenario (2), the approach is reversed. High-confidence disease-causing variants in genes identified by constraint metrics and model organism
data can be matched to patients and compared to clinical phenotypes, circumventing the analytical noise precluding variant interpretation. In turn, this identifies the
best candidates for follow-up and for data sharing in the MME. Variants/genes that match to more than one patient with the same or overlapping phenotypes can
add credence to the method. Figure adapted from Seaby and Ennis (2020).

Gene-to-Patient Approaches
In recent years, government funding has invested in national
sequencing projects for rare disease (Turnbull et al., 2018;
Posey et al., 2019). Despite 100,000 individuals with rare
disease being sequenced in the United Kingdom as part
of the Genomics England 100KGP, the diagnostic rates are
similar to those reported elsewhere in the literature (Houses
of Parliament, 2015; Turnbull et al., 2018). However, the scale
of such datasets welcomes opportunities for new approaches to
novel gene discovery.

With increasing data available on genetic variation from a
variety of sources including gene constraint, mouse models, and
phenotype-driven methods, there is scope to utilize the power of
large cohort sizes for novel gene discovery. Instead of bringing
a patient to a gene, there are opportunities, with large enough
sample sizes, to be sufficiently powered to detect rare variation
and bring candidate genes to large genomic datasets from patients
(Figure 3). These “gene-to-patient” approaches are already being
applied to accelerate novel gene discovery and prioritize genes for
functional studies (Seaby and Ennis, 2020).

Integrating Multi-Omics Data
Multiple omics technologies such as epigenomics,
transcriptomics, metabolomics, microbiomics, and proteomics
are being adopted as approaches in the effort to delineate the
functional impact of genetic variation (Figure 4) (Hasin et al.,
2017). These integrative approaches can complement genomic
data and aid in the validation and discovery of novel genes.

FIGURE 4 | A multi-omics approach to precision medicine. Schematic
showing how the integration of multi-omics data is complementary and
important for precision medicine.

The Genotype-Tissue Expression (GTEx) project5 (Lonsdale
et al., 2013) provides a public repository of tissue-specific
gene expression and a multi-tissue reference for identifying

5https://gtexportal.org/home/
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variants associated with changes in gene expression or expression
quantitative trait loci (eQTL) (Stranger et al., 2017). The
GTEx consortium recently published results on their v8
release, providing insights into functional mechanisms and the
architecture of genetic regulation (GTEx Consortium, 2020). The
integration of transcriptome sequencing (RNA-seq) has led to
improved diagnostic rates for Mendelian diseases (Kremer et al.,
2017; Wai et al., 2020), even when no strong candidate variants
were identified from exome or genome data (Cummings et al.,
2017). Expression outliers, altered splicing, and allelic imbalance
in the transcriptome due to non-sense-mediated decay can all
be clues to candidate genes worth closer scrutiny in the exome
or genome data (Brechtmann et al., 2018; Green et al., 2018;
Mertes et al., 2021). Large-scale transcriptome data can also
be used in network analysis (Deelen et al., 2019). One caveat
with RNA-seq is that splicing aberrations and differential gene
expression are best assessed by sampling disease-relevant tissues.
However, these may not always be clinically accessible, e.g.,
brain tissue in neurodevelopmental disorders. Aicher et al. (2020)
showed that many splicing events in non-clinically accessible
tissues are lowly expressed and poorly evaluated from more
commonly accessible tissues such as skin and blood. The authors
developed a tool (MAJIQ-CAT) which allows researchers to
explore potentially accessible tissues that best represent splicing
in genes of interest (Aicher et al., 2020). A recent preprint
in 2021 describes an alternative approach that has advantages
over expression-based methods. Minimum Required Sequencing
Depth (MRSD) informs biosample selection (whole blood,
lymphoblastic cell lines, and skeletal muscle) by estimating the
minimum sequencing depth required from RNA-sequencing to
achieve desired coverage across a given gene or gene panel. The
authors reported high precision, and their results suggest that
lymphoblastic cell lines may be suitable for ∼70% of established
disease gene panels (Rowlands et al., 2021).

The Encyclopedia of DNA Elements (ENCODE) and
Roadmap Epigenomics projects have been instrumental in the
generation of human reference epigenomes and epigenome
maps, mainly from cell lines (Bernstein et al., 2010; Dunham
et al., 2012; Satterlee et al., 2019). These data have successfully
been used to conduct research on how the epigenome contributes
to human development, environmental factors, and disease
mechanisms (Dunham et al., 2012; Satterlee et al., 2019).
More specifically, one of most commonly studied epigenetic
phenomena, DNA methylation, is aiding diagnosis and gene
discovery. Alterations in DNA methylation patterns are
implicated in imprinting disorders and diseases of short tandem
repeat (STR) expansions. The application of DNA methylation
analyses has been successful in identifying molecular diagnoses
in neurodevelopmental disorders where clinical microarray and
other conventional genetic testing have been non-diagnostic
(Aref-Eshghi et al., 2019; Turinsky et al., 2020). LaCroix
et al. (2019) investigated cases of Baratela–Scott syndrome
(BSS) (MIM: 615777) and identified hypermethylation of
exon 1 of XYLT1 associated with a GGC expansion and gene
silencing. This not only confirmed BSS as a trinucleotide repeat
expansion disorder but also highlighted the relative prevalence
of methylation abnormalities in the disease pathogenesis of BSS.

The hypermethylated allele accounted for 50% of the pathogenic
alleles in their cohort, showcasing the importance of investigating
epigenetic changes in disease cohorts with missing heritability
(LaCroix et al., 2019).

National biobanks such as the United Kingdom Biobank
(Bycroft et al., 2018), United States All of Us Research Program
(Sankar and Parker, 2017), and Finland Biobank (FinnGen)
provide opportunities to study genomic data and phenotype
data alongside associated molecular markers from electronic
medical records. While their data are best studied in the context
of complex disease, they are also important in rare disease
by providing population-level allele frequencies, biomarker
results, and phenotypic information for comparative analyses.
Unlu et al. (2020) utilized Vanderbilt’s biobank BioVU to
identify a phenotypic profile that aided in the identification
of a novel Mendelian syndrome CATIFA (cleft lip, cataract,
tooth abnormality, intellectual disability, facial dysmorphism,
attention-deficit hyperactivity disorder) that is due to loss of
function of RIC1 (MIM: 618761).

The emerging application of metabolomics with
exome/genome sequencing is helping to improve diagnostic
rates in rare disease. Targeted and untargeted metabolomics
are proving successful in validating variants of uncertain
significance in inborn errors of metabolism (Graham et al.,
2018; Almontashiri et al., 2020). It is hoped that with increasing
research, metabolomics will continue to complement rich
genomic data and aid in discovery of novel genes.

These aforementioned approaches often applied in
combination have been pivotal both in clinical diagnostics
and in identification of novel candidate disease genes. For
example, a study in 2015 using epigenomics, comparative
genomics, and genome editing identified a pathway for
adipocyte thermogenesis regulation involving IRX3, IRX5, and
ARID5B in obesity (Claussnitzer et al., 2015), and in 2017,
the complex I assembly factor TIMMDC1 was established as
a novel mitochondrial disease–gene by utilizing genomic and
transcriptomic sequencing (Kremer et al., 2017).

DISCUSSION

The NGS era has undoubtedly accelerated novel Mendelian
gene discovery for significant patient benefit. Although in
recent years there has been increasing interest in the non-
coding space, there is still much to be gleaned from the
human exome (Bamshad et al., 2019; Posey et al., 2019).
Furthermore, disease–gene associations are complex; phenotypic
and functional consequences of variation across a gene are highly
variable and influenced by variant type, inheritance pattern,
and gene position. Following identification of the disease–gene
relationship, characterization of the full allelic series is needed.

With many strategies now available for novel gene discovery,
best practices are likely to benefit from the aggregation
of methods. Additionally, as drives for data uniformity are
developed and adopted (e.g., use of HPO terms, standardized
disease nomenclature, functional equivalence variant calling
pipelines, and joint calling data) (Regier et al., 2018), it will
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become far easier to automate bioinformatics pipelines that are
capable of processing and integrating data from a variety of rich
datasets to increase power for diagnosis and gene discovery.

Role of Data Sharing
It is unquestionable that open science and data sharing have
been pivotal in uplifting diagnoses and advancing the field
of genomic medicine. International collaborations are now
commonplace in matching patients across the globe with specific
genotypes, leading to high-impact publications on novel gene
discoveries (Philippakis et al., 2015; Azzariti and Hamosh, 2020).
Furthermore, the use of variant databases such as ClinVar6

have proven invaluable in providing the scientific community
with a repository of variants, classified by pathogenicity, that
can be applied to variant analysis for diagnostic interpretation
(Landrum et al., 2014).

The success of open data science has been further driven
by cloud computing. The presence of large datasets on cloud
platforms can facilitate the access of desired data within
a secure data-sharing platform. Examples include NHGRI’s
Genomic Data Science Analysis, Visualization, and Informatics
Lab (AnVIL) Space7 where rare disease data from the Centers for
Mendelian Genomics along with data from additional projects
such as 1,000 Genomes, Centers for Common Disease Genomics,
and GTEx can be accessed after application in dbGaP. Other
trusted research environments include NHLBI’s BioData Catalyst
cloud platform with TOPMed data; Genomics England Research
environment where 100 KGP data are stored and accessed;
and RD-Connect with rare disease genomic data from various
European sources. In these trusted research environments,
increasingly large amounts of data can be aggregated; researchers
can bring tools directly to the data and share these analysis
workflows, saving time, expense, and security risks of moving
and maintaining local copies of large genomic datasets. However,
data sharing presents its challenges. There is still urgent need
for an international code of conduct that provides clear, unified
data-sharing rules across jurisdictions that comply with regional
laws such as the European General Data Protection Regulation
(GDPR) and the United States’ Health insurance Portability and
Accountability Act (Phillips et al., 2020).

Addressing the Translational Gap
Our understanding of the genetic basis of rare disease is
constantly changing with new genes and variation being linked
to disease at a rapid pace. Given the direct application of
these discoveries to the clinical diagnosis of rare disease in
patients, guidance is needed for understanding what information
is ready to be incorporated into clinical care and what
mechanisms are needed to quickly translate that information into
medical practice. The Clinical Genome Resource (ClinGen) has
developed a systematic framework for evaluating genetic and
functional evidence for disease–gene relationships, enabling their
classification as definitive, strong, moderate limited, no human
evidence, disputed, or refuted with respect to their reported

6https://www.ncbi.nlm.nih.gov/clinvar/
7https://anvilproject.org/data/

role in disease (Strande et al., 2017). ClinGen supports Gene
Curation Expert Panels that bring together international groups
of disease and curation experts to evaluate gene–disease claims
in their respective fields8. ClinGen’s efforts are combined with
other public and private gene curation efforts and are accessible
within the Gene Curation Coalition database9. Currently, it is
recommended that a gene–disease relationship reach moderate
classification before it is included on predefined diagnostic gene
panels for specific conditions (Bean et al., 2020). However,
when performing exome and genome approaches on individuals
with rare disease, variation can be detected in genes that have
not yet been linked to disease but may be strong candidates.
Although practices vary between laboratories and countries,
some professional standards recommend reporting these findings
back to patients when there is a reasonable chance that new
evidence may evolve over time to strengthen the gene–disease
relationship, similar to the return of variants of uncertain
significance in genes already linked to the patient’s condition
(Richards et al., 2015; Rehder et al., 2021). This approach also
allows patients to be partners in solving the causes of rare
disease (Mnookin, 2014). It is hoped that such a framework will
achieve global recognition and be universally adopted to ensure
consistency in translating research findings into the clinic.

Clinical Impact of Novel Mendelian
Conditions
While novel gene discoveries widen the known functional
repertoire of disease genes, the focus and drive are ultimately
uplifting diagnosis rates and improving patient outcomes.
There have been thousands of pivotal Mendelian discoveries
throughout history, and each one is no more important than
another, at least not for the families involved.

Since the discovery of the CFTR gene in 1989 (Kerem
et al., 1989), we are now able to diagnose cystic fibrosis
(MIM: 602421) rapidly, predict pancreatic functional status,
and plan preventative care with modulator therapy (Ramsey
et al., 2011; Farrell et al., 2020). In 2004, the discovery that
hypermorphic or gain-of-function variants of PCSK9 cause
familial hypercholesterolemia type III (MIM: 603776) (Timms
et al., 2004) has led to the successful development and FDA
approval of monoclonal antibodies against PCSK9, which are also
used to treat non-familial forms of hypercholesterolemia (Blom
et al., 2014; Roth et al., 2014; Cannon et al., 2015; Kereiakes et al.,
2015). As more collaborative, cohort-based studies have emerged
in the NGS era, many candidate genes have been discovered that
have directly impacted treatment and clinical outcomes. In one
study on neurometabolic disorders, whole-exome sequencing
diagnosed 68% of patients and identified 11 novel candidate
genes, leading to a targeted intervention in 44% of patients
(Tarailo-Graovac et al., 2016).

Diagnosing Mendelian disorders as a direct result of novel
gene discovery not only impacts the primary patient involved
but their families and caregivers. Families of children with
rare genetic diseases are adversely impacted by lack of peer

8https://clinicalgenome.org/affiliation
9https://thegencc.org
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support groups and psychological support as well as delays
in diagnosis (Anderson et al., 2013). Parents of children with
rare disorders have called for better education, reduction in
avoidable diagnostic delays, and early access to interventions and
treatments (Zurynski et al., 2017). For many, a genetic diagnosis
can be life changing, even in the absence of a therapeutic
option (Lingen et al., 2016). Following diagnosis, quality of life
is often improved by participation in support groups that can
provide longitudinal prognostic information, genetic counseling,
and informed reproductive decisions with opportunities for pre-
implantation genetic diagnosis or prenatal testing particularly in
the case of inherited variants where there is a sizable recurrence
risk (Sexton et al., 2008; Wojcik et al., 2020).

Financial Impact of Novel Discoveries
Undiagnosed rare diseases are hugely expensive. A typical
patient’s diagnostic odyssey lasts an average of 8 years and costs
a total of $5,000,000 throughout a patient’s lifetime (Chong et al.,
2015). Two prospective Australian studies have shown that early
exome sequencing is making significant headway as a cost-saving
diagnostic approach. Stark et al. (2017) showed that integrating
whole-exome sequencing as a first-line test had an incremental
cost saving per additional diagnosis of (converted to United States
dollars) $1,543 (95% CI: $92–4,143). The cost per diagnosis
was $4,248 (95% CI: $3,425–5,588), $14,893 less than standard
diagnostic care (Stark et al., 2017). Tan et al. (2017) concluded
that whole-exome sequencing performed at initial presentation to
tertiary care resulted in an incremental cost saving of (converted
to United States dollars) $6,383 per additional diagnosis (95
CI: $3,045–10,900) compared with standard diagnostic care.
However, cost savings are only possible when sequencing can
identify the causal variant. Therefore, every new genetic disorder
identified, published, and shared in publicly available databases
will have wide-reaching diagnostic and cost-saving potential.
Taking the average of costs saved per additional diagnosis from
the two studies ($3,964) and extrapolating this on 100,000
patients could save an estimated US$400 million.

LOOKING TO THE FUTURE

It is estimated that by 2025, 60 million patients will have their
genome sequenced in a research or healthcare setting (Birney
et al., 2017). While the sheer volume of data poses computational
challenges, it also provides opportunities to learn more about
the genetic architecture of health and disease. However, this
necessitates improved methods for interpreting the spectrum
of functional variation across all genes and particularly in the
interpretation of non-coding variation, an area of investigation
still in its infancy but beginning to make headway. Indeed,

disruption of non-coding topologically associated domains have
been associated with limb malformations (Lupiáñez et al., 2015;
Spielmann et al., 2018), and non-coding variants upstream of
PRDM13 and CCNC have been linked to North Carolina macular
dystrophy (Small et al., 2016; Green et al., 2021). While efforts
like the Atlas of Variant Effect Alliance are working toward
achieving the mammoth goal of interpreting the impact of all
genomic variation, there is still a long way to go (Matreyek et al.,
2018; Jepsen et al., 2020). It is expected that as data pour in
across a variety of species and sources, more and more methods
will adopt machine learning and deep learning techniques to
find patterns and disease associations, but the utility of these
approaches is limited by the quality of the training data and
other factors influencing data interpretation. For novel gene
discovery, perhaps one of the most powerful resources would
be to build a publicly available human knockout database that
links naturally occurring null variants in genes and supportive
functional evidence to shared human phenotype data. This
is an exciting time for novel gene discovery—the end is by
no means in sight.
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