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Hybrid Nonlinear Transceiver Optimization for the
RIS-Aided MIMO Downlink

Qingyi Wang, Chengwen Xing, Changhao Du, Lian Zhao, and Lajos Hanzo

Abstract—The hybrid nonlinear transceiver optimization prob-
lem of reconfigurable intelligent surface (RIS)-aided multi-user
multiple-input multiple-output (MU-MIMO) downlink is inves-
tigated. Specifically, the Tomlinson-Harashima precoder (THP)
and the hybrid transmit precoder (TPC) of the base station are
jointly optimized with the linear digital receivers of mobile users.
The triangular feedback matrix of the THP is optimized and the
optimal solution is derived in closed form based on a matrix
inequality. Moreover, in order to tackle the nonconvexity of the
constant-modulus constraints imposed on the analog TPC, the
Majorization-Minimization (MM) based reconfigurable optimiza-
tion framework is proposed, which strikes a trade-off between
the implementation complexity and system performance in a
reconfigurable manner. Explicitly, our MM-based reconfigurable
optimization framework is capable of optimizing the analog
TPC in a dynamically reconfigurable manner on an element-by-
element, column-by-column, row-by-row or block-by-block basis.
Moreover, an MM-based reconfigurable algorithm is proposed
for the optimization of the phase shifting matrix at RIS, which
also suffers from constant-modulus constraints. In the proposed
MM-based reconfigurable algorithm, the RIS can be partitioned
into a series of subarrays for striking different performance vs.
complexity tradeoffs. Finally, our numerical results demonstrate
the performance advantages of the proposed nonlinear hybrid
transceiver optimization techniques.

Index Terms—Hybrid Transceiver, Nonlinear Transceiver, RIS,
Tomlinson-Harashima precoder, Optimization.

I. INTRODUCTION

FLAWLESS wireless communications require increased
throughput and reliability. The ultimate capacity limit

of C = B log(1 + SNR) [1] may be increased either by
bandwidth expansion or by increasing the signal-to-noise
ratio (SNR). However, the linear capacity increased with
the bandwidth is more promising than the logarithmic SNR-
based improvement. Hence high frequency millimeter wave
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(mmWave) and terahertz (THz) communications has attracted
a lot of attention from both academia and industry [2], [3].
For high frequency communications, the critical challenges
arise from three perspectives. Firstly, the amplifiers have to be
operated at a substantial power back-off at high frequencies.
Secondly, the path loss exponent is high. Thirdly, obstacles
often block high carrier frequences. In order to overcome these
problems, multiple antenna based arrays may be harnessed.

To elaborate briefly, multiple antenna arrays have the poten-
tial of compensating for the undesired effects of both the power
back-off and path loss. At high frequencies the wavelength
is short, hence the antenna arrays may be constructed in a
compact format. For example, at 30 GHz current state-of-the-
art, the wavelength is only 1 cm, hence numerous λ/2-spaced
antenna elements can be accommodated within a compact
physical space. However, large high-frequency arrays are very
costly. In order to strike a performance gain vs. hardware
cost trade-off, digital-analog hybrid antenna arrays have been
advocated [3], [4]. A typical hybrid antenna array consists
of an analog part and a digital part. In the analog part,
only the phases of antenna elements are adjustable, and the
dimensionality is typically higher than that of the digital part.
Hybrid multiple-input multiple-output (MIMO) systems have
been optimized in [3]–[16], [21]. In contrast to their fully-
digital counterparts, the constant-modulus constraints imposed
on the analog part are nonconvex, hence it is quite chal-
lenging to derive the optimal solutions in the closed form.
Researchers have proposed a variety of algorithms to deal
with the constant-modulus constraints imposed on the analog
transmit precoder (TPC). These algorithms can be roughly
classified into non-iterative and iterative algorithms. The non-
iterative algorithms such as the phase extraction [5] and
SVD-based methods [6], have low complexity but inevitably
exhibit limited performance. The iterative algorithms such
as stochastic successive convex approximation (SSCA) [7],
penalty-concave-convex procedure (CCCP) [8] and gradient
projection (GP) [9], invest computational complexity for seek-
ing improved performance. The authors of [10] successively
optimize the elements of the analog TPC successively while
keeping other elements fixed. Although the element-wise sub-
problem is easy to solve, the performance remains suboptimal
owing to relying on iterations among numerous variables. The
alternative direction method of multipliers (ADMM) [11]–[13]
and the majorization-minimization (MM) [14], [15] constitute
another pair of popular iterative algorithms used for optimizing
the TPC weights. The ADMM algorithm deals with the
constant-modulus constraint by introducing auxiliary variables
and it is best known for handling large-scale optimization
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TABLE I
BOLDLY CONTRASTING OUR CONTRIBUTIONS TO THE LITERATURE.

Keywords [7] [9] [10] [11] [14] [18] [24] [25] Proposed
Multiuser ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hybrid precoder ✓, SSCA ✓,GP ✓, element ✓,ADMM ✓,MM ✓
RIS ✓,GP ✓, element ✓, element ✓
Reconfigurability ✓
THP design ✓, PD ✓,ZF ✓,Cholesky ✓
Joint optimization ✓, partial ✓, fully

problems in a distributed manner. The step-size of the ADMM
algorithm also allows us to adjust the speed of convergence.
The MM algorithm usually utilizes the definition of a semi-
definite matrix and transforms the quadratic objective function
into linear objective functions. Although the MM algorithm
cannot solve the problem in a distributed way, it is guaranteed
to converge to a stationary point [17]. Given this benefit, we
employ a reconfigurable MM algorithm for optimizing the
TPC, which can strike a performance vs. complexity trade-off
by dynamically adjusting the optimized dimension of variables
in each iteration.

The above-mentioned contributions mainly focus on lin-
ear transceiver designs. The interference between users and
data streams can be further mitigated by employing a non-
linear transceiver. Nonlinear transceivers include Tomlinson-
Harashima precoders (THPs) [10], [18]–[24] at the trans-
mitters or decision feedback equalizers (DFEs) [20]–[24] at
the receivers. Most papers aim for optimizing the THPs and
DFEs using either zero-forcing (ZF) [18]–[20] or Cholesky
decomposition based methods [21]–[24]. However, the ZF
method achieves limited system performance owing to po-
tential noise-amplification, while the conventional Cholesky
decomposition-based method cannot be directly employed in
multiuser-MIMO (MU-MIMO) systems. The authors of [10]
addressed this problem by conceiving a partial derivative
(PD)-based method. To avoid the high complexity caused
by iterations between the receivers’ equalizers and the THP
feedback matrix, we conceive the Cholesky decomposition
based MU-MIMO solution, so that the receivers, as well as
the THP feedback matrix and the permutation matrix can be
jointly optimized.

For high frequency communications, propagation blockage
is a critical problem. As a remedy, reconfigurable intelligent
surfaces (RIS) can be harnessed to mitigate the line-of-sight
(LoS) blockage problem of high-frequency bands [29]. Hence
RIS-aided MIMO communications have been extensively stud-
ied in [9], [24]–[31]. Specifically, the transceiver designs of
RIS-aided single-user systems are investigated in [24], [29]–
[31], while their multi-user counterparts are researched in [9],
[24]–[29]. In RIS aided MIMO systems, the two-hop BS-
RIS-UE channels are cascaded [25], [26]. This fact makes
accurate channel estimation much more challenging than that
in traditional MIMO systems. The main challenge of the
transceiver optimization in RIS-aided communication systems
is reminiscent of hybrid analog-digital MIMO transceiver
optimization, because they are both subject to nonconvex
constant-modulus constraints [24].

In order to reap all the benefits of RISs, of hybrid beam-
forming, and of nonlinear THP, we investigate the nonlinear
hybrid transceiver optimization of the RIS-aided MU-MIMO
downlink. Explicitly, we jointly optimize the THP at the BS,
the analog TPC at the BS, the phase shifting matrix at the
RIS and the linear equalizers at the mobile users. Our novel
contributions are explicitly contrasted to the existing literature
in Table I, which are further detailed as follows:

• For the THP design at the BS, the lower triangular
feedback matrix is derived in closed form based on the
ubiquitous matrix inequality. This design is intrinsically
different from all existing solutions. Again, the triangular
matrix, the permutation matrix, the analog TPC, and the
digital TPC are jointly optimized. Moreover, we optimize
the THP feedback matrix of our MU-MIMO system using
the Cholesky decomposition. Although only a fully digital
architecture is considered at each mobile receiver, our
work can be readily extended to the scenario in which
both the transmitter and the receivers rely on hybrid
analog-digital structures. Moreover, the hybrid linear
transceiver optimization of MU-MIMO communications
can also be viewed as a special case of the optimization
problem.

• For the analog matrix optimization, a majorization-
minimization (MM) based reconfigurable optimization
framework is proposed, which can strike a compelling
performance vs. complexity trade-off. In contrast to the
existing MM-based algorithms, our reconfigurable opti-
mization framework is capable of optimizing the analog
TPC in a reconfigurable manner relying on an element-
by-element, column-by-column, row-by-row, or block-
by-block basis. This MM-based reconfigurable frame-
work is capable of avoiding any high-dimensional matrix
inversion operation at each iteration.

• An MM-based reconfigurable algorithm is proposed for
the optimization of the phase shifting matrix at the
RIS as well, which also suffers from constant-modulus
constraints. In the proposed MM-based reconfigurable al-
gorithm, the RIS can be divided into a series of subarrays
to realize specific performance vs. complexity tradeoffs
when performing the MM algorithm. Our simulations
show that the optimization of the phase shifting matrix
attains significant performance gains.

Notations: Consistent with our previous contributions, for
the basic matrix operations the symbols A∗, AT, and AH

represent the conjugate, transpose, and Hermitian transpose of
matrix A, respectively. For the eigenvalue related operations,
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Fig. 1. The diagram of RIS aided MU-MIMO downlink communication systems with THP at BS.

Tr(A) and det(A) are the trace and the determinant of
the complex matrix A, respectively. Furthermore, σi(A) and
λi(A) denotes the ith largest singular value and the ith largest
eigenvalue of A, respectively. For the construction of the sub-
matrix of A, [A]:,1:M denotes the first M columns of A. The
sub-matrix [A]N :M,N :M is formed from the N th row to the
M th row and from the N th column to the M th column of
A, while [A]i,i denotes the ith diagonal element of A. The
symbol E{·} denotes the statistcial expectation operator, while
A

1
2 is the Hermitian square root of the positive semi-definite

matrix A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1 we consider the RIS-aided multiple-
user multiple-input multiple-output (MU-MIMO) downlink of
a base station (BS), a RIS and K mobile terminals (MTs).
The BS and MTs are all equipped with multiple antennas. At
the BS, a hybrid antenna array is deployed, which can strike a
balance between the hardware cost and system performance.
At each compact MT, a fully digital antenna array is used. In
order to further improve the performance, a THP is adopted
at the BS.

The BS is equipped with Nt antennas and NRF RF chains
for transmiting a data vector dT =

[
dT
1 , . . . ,d

T
K

]
∈ CKNd ,

where dT
k is the signal destined for the kth Nrk -antenna user.

We denote the number of data streams sent to each user by Nd.
The data vector d is first processed by a THP, where the vector
passes through a successive interference pre-cancellation unit
composed of a modulo operator MOD [·] and a feedback
matrix BTHP ∈ CKNd×KNd . Using a modulo operator can
be seen as adding a perturbation vector q ∈ ZKNd + jZKNd

to the data vector d to create an effective data vector [1] of

s = d+ q. (1)

Furthermore, the effective data vector is first permuted by a
KNd × KNd permutation matrix L before passing through

the feedback matrix. Since L is determined by the precoding
order of data streams from different user, we can make the
following definition:

L = L̃⊗ INd
, (2)

where the arbitrary K × K permutation matrix L̃ denotes
the user permutation order. The feedback matrix BTHP is a
strictly lower triangular matrix. From the structure above, we
can deduce that the output of the THP structure is

u = C−1
THPLs, (3)

where

CTHP = BTHP + IKNd
. (4)

For an M-QAM constellation, the perturbation vector q is
composed of elements whose real and imaginary parts are
integer multiples of M , and the vector is specifically chosen
for ensuring that u lies within the boundaries of a square
whose side length is 2

√
M . As a result of the modulo opera-

tion, the elements of u are almost uncorrelated and uniformly
distributed over the boundary region, see [20]. The covariance
matrix of u is E

{
uuH

}
= σ2

uIKNd
, where σ2

u = M
M−1 . When

M is large, σ2
u can be approximated by 1.

The signal model of the RIS-aided MU-MIMO downlink is
given by

yk =HkFAFDu+ nk

=HkFAFDC
−1
THPLs+ nk, (5)

where yk is the signal received by the kth MT. The matrix Hk

denotes the channel between the BS and the kth MT which is
formulated as:

Hk = HD,k +HR,kΘHH
T , (6)

where HD,k, HR,k and HH
T represent the channels between

the BS and the kth MT, between the RIS and the kth MT as
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well as between the BS and RIS, respectively. The diagonal
matrix Θ is the phase adjusting matrix at the RIS [29], while
FA ∈ CNRF×Nt denotes the analog TPC at the BS. Further-
more, FD ∈ CNRF×KNd is the digital baseband TPC. Finally,
nk ∈ CNrk is the additive white Gaussian noise (AWGN) with
zero mean and covariance of Rnk

= E
{
nkn

H
k

}
= σ2

nk
INrk

,

i.e., we have nk ∼ CN
(
0, σ2

nk
INrk

)
. The BS obeys the

maximum transmit power constraint of:

E{Tr(FAFDuu
HFH

DFH
A )} = Tr(FAFDF

H
DFH

A ) ≤ P. (7)

At the kth MT, the digital reciver characterized by GDk
∈

CNrk
×Nd is adopted. As a consequence, the desired signal

recovered by the kth user is

rk = GH
Dk

HkFAFDu+GH
Dk

nk

= GH
Dk

HkFAFDC
−1
THPLs+GH

Dk
nk. (8)

The corresponding MSE matrix of the recovered signal equals

ΦMSEk
= E

{
(rk − sk) (rk − sk)

H
}

= E
{(

rk−AkL
HCTHPu

)(
rk−AkL

HCTHPu
)H}

= GH
Dk

HkFAFDF
H
DFH

AHH
k GDk

− 2ℜ
{
GH

Dk
HkFAFDC

H
THPLAH

k

}
+ σ2

nk
GH

Dk
GDk

+AkL
HCTHPC

H
THPLAH

k , (9)

where the first equality is based on sk = AkL
HCTHPu,

with Ak being the data selection matrix obeying the following
mathematical formula

Ak =
[
0Nd×(k−1)Nd

INd×Nd
0Nd×(K−k)Nd

]
. (10)

In order to eliminate the explicit effect of the power con-
straint, the digital TPC FD is transformed into the following
formula [10]

FD =

√
P√

Tr
(
FAFDF

H

DF
H
A

)
︸ ︷︷ ︸

≜α

FD, (11)

where α is a scaling factor. Based on the definition of α in
(11), the corresponding GDk

and Hk satisfy

GDk
=

1

σnk
α
GDk

,Hk = σnk
Hk, (12)

for which the power constraint in (7) is always satisfied. By
substituting (11) and (12) into the MSE matrix (9), the MSE
matrix is equivalent to the following form

ΦMSEk
= G

H

Dk
HkFAFDF

H

DF
H
AH

H

k GDk

− 2ℜ
{
G

H

Dk
HkFAFDC

H
THPLAH

k

}
+

1

P
Tr
(
FAFDF

H

DF
H
A

)
G

H

Dk
GDk

+AkL
HCTHPC

H
THPLAH

k . (13)

In a nutshell, the nonlinear transceiver optimization problem
of weighted MSE minimization can be formulated as

P1: min
FA,FD,

{GDk
∀k},

CTHP,Θ,L

K∑
k=1

Tr (WkΦMSEk
)

s.t.
∣∣∣[FA]n,m

∣∣∣ = 1,
∣∣∣[Θ]l,l

∣∣∣ = 1,∀n,m, l,

[CTHP]j,j = 1, [CTHP]i,j = 0, i < j,

L is a perturbation matrix, [Θ]l,p = 0, l ̸= p,

(14)

where Wk represents positive semidefinite weighting matrices.
It may be readily seen that the optimization variables in the
problem (14) are coupled in a complex nonlinear manner,
making the objective function non-convex. Moreover, both the
permutation matrix constraint imposed on L and the constant-
modulus constraint on FA are non-convex. These facts make
the problem P1 challenging to solve. In the following, we
propose an alternating optimization algorithm for solving the
nonlinear transceiver optimization problem P1.

Here, it is worth noting that although in this work we
focus on the hybrid nonlinear optimization, the proposed
algorithm can be directly extended to hybrid linear transceiver
optimization. Specifically, when the matrices CTHP and L are
set to identity matrices, upon adding some particular constant
terms, the optimization problem (14) can be transformed into
the following linear weighted MSE minimization:

P2: min
Wk,FA,FD,

{GDk
∀k},Θ

K∑
k=1

[Tr (WkΦMSEk
)− log det (Wk)−Nd]

s.t.
∣∣∣[FA]n,m

∣∣∣ = 1,∀n,m,∣∣∣[Θ]l,l

∣∣∣ = 1,
∣∣∣[Θ]l,p

∣∣∣ = 0, l ̸= p. (15)

In P2, when the positive semidefinite weighting matrices Wk

are also optimization variables, the optimization problem (15)
aims for maximizing the sum capacity of the MIMO downlink
[32]. On the other hand, when the weighting matrices Wk are
identity matrices, the optimization problem (15) is equivalent
to a standard MSE minimization based linear transceiver
design. Again, although only fully digital receivers are used
at each MT, our solution can be readily extended to the case
in which each MT is equipped with an analog-digital hybrid
receiver.

III. OPTIMIZATION OF THE DIGITAL TPC FD

In this section, we first focus on the optimization of the dig-
ital TPC FD. Since no constraints in problem P1 are imposed
on FD, the corresponding optimal solution in the alternating
optimization algorithm can be derived based on the complex-
valued matrix derivative. By keeping the other variables fixed
and ignoring the irrelevant terms in the objective function
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of problem (14), the subproblem with respect to FD can be
formulated as

P1-D: min
FD

Tr

{
K∑
k=1

WkG
H

Dk
HkFAFDF

H

DF
H
AH

H

kGDk

+
1

P
Tr
(
FAFDF

H

DF
H
A

)
G

H

Dk
GDk

− 2ℜ

{
K∑
k=1

WkG
H

Dk
HkFAFDC

H
THPA

H
k

}}
,

(16)

whose optimal solution can be derived in the following closed-
form:

FD =

[
K∑
k=1

FH
AH

H

kGDk
WkG

H

Dk
HkFA

+
1

P
Tr

(
K∑
k=1

WkG
H

Dk
GDk

)
FH
A FA

]−1

×

(
K∑
k=1

FH
AH

H

kGDk
WH

k AkCTHP

)
. (17)

In contrast to the classical WMMSE algorithm used for the
digital TPC optimization [32], there is no need to search for the
Lagrange multiplier, because the power constraint is implicitly
incorporated in the formulation.

IV. OPTIMIZATION OF FEEDBACK MATRIX CTHP,
PERMUTATION MATRIX L, AND DIGITAL RECEIVERS{

GDk

}
In this section, we focus our attention on the optimization of

the lower triangular feedback matrix CTHP, the permutation
matrix L, and the digital receivers

{
GDk

}
.

A. Optimization of Digital Receivers
{
GDk

}
For given CTHP, FA and FD, the optimization of the digital

receive equalizer of the kth user is a convex unconstrained
optimization problem. The optimal solution can be derived
by taking the derivative of the cost function in problem (14)
with respect to GDk

and setting it to zero. Then, the optimal
solution of GDk

may be derived in the following form:

GDk
= ΠkHkFAFDC

H
THPLAH

k , ∀k, (18)

where the positive definite matrix Πk is defined as follows:

Πk=

(
HkFAFDF

H

DF
H
AH

H

k +
1

P
Tr
(
FAFDF

H

DF
H
A

)
I

)−1

.

(19)

B. Optimization of the Lower Triangular Matrix CTHP

Given the digital TPC, we substitute the optimal solution
of the digital receiver in (18) into the MSE expression (13),
and reformulate the weighted MSE minimization problem P1
with respect to CTHP as

P1-C: min
CTHP

∑K

k=1
Tr
(
WkAkL

HCTHPMkC
H
THPLAH

k

)
s.t. [CTHP]j,j = 1, [CTHP]i,j = 0, i < j, (20)

where the positive definite matrix Mk is defined as

Mk =F
H

DF
H
AH

H

kΠ
H
kHkFAFDF

H

DF
H
AH

H

kΠkHkFAFD

− 2ℜ
{
F

H

DF
H
AH

H

kΠ
H
kHkFAFD

}
+ I

+
1

P
Tr
(
FAFDF

H

DF
H
A

)
F

H

DF
H

AH
H

kΠ
H
kΠkHkFAFD.

(21)

Based on the Cholesky decomposition, Wk can be written
in the following form:

Wk = LH
Wk

LWk
, (22)

where LWk
is a lower triangular matrix. Note that this

decomposition is different from the traditional Cholesky de-
composition in which LWk

is an upper triangular matrix. The
detailed derivation is given in Appendix A. For the objective
function of P1-C the following equalities hold:

Tr
(
WkAkL

HCTHPMkC
H
THPLAH

k

)
=Tr

(
LAH

kWkAkL
HCTHPMkC

H
THP

)
=Tr

(
LAH

kL
H
Wk

LWk
AkL

HCTHPMkC
H
THP

)
=Tr

(
LAH

kL
H
Wk

AkL
HLAH

kLWk
AkL

HCTHPMkC
H
THP

)
,

(23)

where the final equality comes from the facts that LHL = I
and AkA

H
k = I . Based on (23) and defining the following

lower triangular matrix

LDk
= LAH

kLWk
AkL

H, (24)

the optimization problem P1-C can be equivalently rewritten
as

min
CTHP

∑K

k=1
Tr
(
LDk

CTHPMkC
H
THPL

H
Dk

)
s.t. [CTHP]j,j = 1, [CTHP]i,j = 0, i < j. (25)

By taking the Cholesky decomposition of Mk,

Mk = LMk
LH

Mk
, (26)

we obtain a lower triangular matrix LMk
having positive

diagonal elements. Since CTHP is a lower triangular matrix,
LDk

CTHPLMk
is also a lower triangular matrix. Thus we

have

Tr
(
LDk

CTHPMkC
H
THPL

H
Dk

)
= ∥LDk

CTHPLMk
∥2F .

(27)

Based on the results in [33], we have the following inequalities

∥LDk
CTHPLMk

∥2F =

Nd∑
i=1

σ2
i (LDk

CTHPLMk
)

≥
Nd∑
i=1

λ2i (LDk
CTHPLMk

)

=
∑
i∈Sk

[LDk
LMk

]
2
i,i , (28)

where the index set Sk in the final equality is defined as

Sk =
{
i| [LDk

]i,i ̸= 0
}
. (29)
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The equality in the second line in (28) holds when
LDk

CTHPLMk
is normal. We would like to point out that a

lower triangular matrix is normal if and only if it is diagonal
[23], [24], [34, pp 132]. Therefore, LDk

CTHPLMk
equals

LDk
CTHPLMk

= Λk,

[Λk]i,i =

{
[LDk

LMk
]i,i , i ∈ Sk,

0, otherwise.
(30)

Thus we have

LDk
CTHP = ΛkL

−1
Mk

. (31)

By taking the sum on the both sides of (31), we have(
K∑
k=1

LDk

)
CTHP =

(
K∑
k=1

ΛkL
−1
Mk

)
. (32)

Note that according to the definition of LDk
,
∑K
k=1 LDk

is
of full rank. Therefore, the optimal solution of the feedback
matrix CTHP can be derived in the following form:

CTHP =

(
K∑
k=1

LDk

)−1( K∑
k=1

ΛkL
−1
Mk

)
. (33)

C. Optimization of the Permutation Matrix L

Based on the inequality (28), the minimum value of the
objective function in (20) equals

Tr (WkΦMSEk
) =

K∑
k=1

∑
i∈Sk

[LDk
LMk

]
2
i,i . (34)

By exploiting the definition of L in (2), we optimize
the K × K user-level permutation matrix L̃ instead of the
original L. We define the sequence of nonzero indices in
each column of L̃ as s1, . . . , sK . According to the proper-
ties of the permutation matrix, s1, . . . , sK are chosen from
1, . . . ,K without repetition. Moreover, based on the defini-
tion of LDk

= LAH
kLWk

AkL
H, LDk

is a block-diagonal
matrix with LWk

being its skth diagonal block. Therefore,∑
i∈Sk

[LDk
LMk

]
2
i,i can be calculated as

Qk = [LWk
]
2
1,1 [LMk

]
2
(sk−1)Nd+1,(sk−1)Nd+1 + . . .

+ [LWk
]
2
Nd,Nd

[LMk
]
2
skNd,skNd

. (35)

The problem becomes that of rearranging the sequence
1, . . . ,K for minimizing the value of

∑K
k=1Qk and assign this

sequence to s1, . . . , sK , which can be solved by employing a
greedy strategy.

V. OPTIMIZATION OF THE ANALOG TPC FA

In this section, we focus our attention on the optimization
of the analog TPC FA under constant modulus constraints. It
is worth noting that since the constant modulus constraints are

nonconvex, the optimization of FA is challenging. By defining
the function

F (FA) =Tr

[
FH
A

(
K∑
k=1

H
H

kGDk
WkG

H

Dk
Hk

)
FAFDF

H

D

+

K∑
k=1

1

P
Tr
(
FAFDF

H

DF
H
A

)
G

H

Dk
GDk

− 2ℜ

{
FAFDC

H
THPL

(
K∑
k=1

AH
kWkG

H

DHk

)}]
,

(35)

we can fix the other variables and rewrite the weighted MSE
minimization problem P1 w.r.t. FA as

P1-A: min
FA

F (FA)

s.t.
∣∣∣[FA]n,m

∣∣∣ = 1,∀n,m. (36)

In this problem, the analog matrix FA is optimized based
on the MM framework of [35]. However, the implementation
of the MM-based algorithms has high complexity of the
majorization operation. Hence, in order to reduce the com-
plexity, an MM-based reconfigurable optimization algorithm is
proposed, in which the analog matrix variables are partitioned
into a series of blocks. Moreover, the algorithm can adjust the
number of iterations for each block based on its performance
improvement in the previous iterations. For the analog matrix
FA, the MM-based reconfigurable algorithms can be designed
according to its general blocks, e.g., its columns, its rows,
or even its elements. This block-oriented MM-based reconfig-
urable algorithm is more general in terms of its mathematical
description, but the column-oriented and row-oriented MM-
based reconfigurable algorithms have clearer physical inter-
pretation. Each column of the analog precoder matrix FA

corresponds to phase shifters connected with a particular RF
chain, and each row of FA corresponds to phase shifters
connected with a particular antenna. In the following, these
three specific cases are investigated one by one. Moreover, a
simplified block-oriented MM-based reconfigurable algorithm
is conceived, in which the elements of each block have the
same phase. As a result, the corresponding computational
complexity can be significantly further reduced, albeit at the
cost of some performance degradation.

A. Block-Oriented MM-Based Reconfigurable Algorithm

In order to strike a balance between the computational
complexity and system performance, we hereby discuss a
general case, when FA is divided into arbitrary number of
blocks as:

FA =

 FA,1,1 . . . FA,1,LC

...
. . .

...
FA,LR,1 . . . FA,LR,LC

 , (37)
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where FA,i,j is an NR,i×NC,j block, while LC and LR denote
the number of partitions in the columns and rows, respectively.
By introducing

NR =

K∑
k=1

H
H

kGDk
WkG

H

Dk
Hk,

NT = FDF
H

D,

NL = FDC
H
THPL

(
K∑
k=1

AH
kWkG

H

Dk
Hk

)
, (38)

the objective function of P1-A can be constructed with respect
to the blocks of FA as (39), as shown at the bottom of the
page, where NR,i,j ∈ CNR,i×NR,j , NT,i,j ∈ CNC,i×NC,j and
NL,i,j ∈ CNC,i×NR,j are defined as

NR =

 NR,1,1 . . . NR,1,LC

...
. . .

...
NR,LC,1 . . . NR,LC,LC

 ,
NT =

 NT,1,1 . . . NT,1,LR

...
. . .

...
NT,LR,1 . . . NT,LR,LR

 ,
NL =

 NL,1,1 . . . NL,1,LR

...
. . .

...
NL,LC,1 . . . NL,LC,LR

 . (40)

For the block FA,i,j , when the other blocks of FA are fixed as
constant terms, the optimization problem with respect to the
block FA,i,j can be formulated as

min
FA,i,j

Tr

[(
NR,i,i+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)
I

)
FA,i,jNT,j,jF

H
A,i,j

− 2ℜ
{
MH

B,i,jFA,i,j

}]
s.t.
∣∣∣[FA,i,j ]m,n

∣∣∣ = 1, ∀m,n, (41)

where the matrix MB,i,j is defined as

MB,i,j=N
H
L,j,i−

LR∑
p=1

LC∑
q=1

NR,i,pFA,p,qNT,q,j+NR,i,iFA,i,jNT,j,j

−
K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

) LC∑
q=1,q ̸=j

FA,i,qNT,q,j . (42)

Upon defining

ÑR,i = λmax (NR,i,i) I,

ÑT,i = λmax (NT,i,i) I, (43)

with λmax (NR,i,i) being the maximum eigenvalue of NR,i,i,
we can conclude that (44) and (45) hold for arbitrary F

(0)
A,i,j ,

as shown at the top of the next page, where C1 and C2 are
terms irrelevant to FA,i,j , which can be omitted from the
optimization problem. The derivation of (44) and (45) can
be found in Appendix B. The equalities hold if and only if
NR,i,i=ÑR,i, NT,j,j=ÑT,j .

Via exploiting the inequality (44), the framework of
majorization-minimization can be exploited for solving the
optimization problem (41). At the tth iteration, the problem
to be solved is shown as (46) at the top of the next page,
where F

(t−1)
A,i,j is the optimal solution of the problem in the

(t−1)st iteration, F (0)
A,i,j is a chosen constant matrix. The term

Tr
((

ÑR,i+
∑K
k=1

1
P Tr

(
G

H

Dk
GDk

)
I
)
FA,i,jÑT,jF

H
A,i,j

)
is a constant value due to the constant-modulus constraints
on FA,i,j .

Upon defining

UB,i,j=

(
ÑR,i+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)
I

)
F

(t−1)
A,i,j

(
NT,j,j−ÑT,j

)
+
(
NR,i,i−ÑR,i

)
F

(t−1)
A,i,j

(
NT,j,j−ÑT,j

)
−MB,i,j ,

(47)

the optimization problem at the tth iteration in the MM process
can be reformulated as

min
FAB,i,j

ℜ
{
Tr
(
UH

B,i,jFA,i,j

)}
s.t.

∣∣∣[FA,i,j ]m,n

∣∣∣ = 1, ∀m,n. (48)

In order to derive the optimal solutions, the elements in FA,i,j

and UB,i,j are rewritten in the following form:

[FA,i,j ]m,n = ejϑi,j,m,n ,

[UB,i,j ]m,n = |bi,j,m,n| ejϖi,j,m,n ,∀m,n, (49)

based on which, the optimization problem (48) becomes
equivalent to

min
{ϑi,j,m,n,∀m,n}

NR,i∑
m=1

NC,j∑
n=1

|bi,j,m,n|cos(ϑi,j,m,n−ϖi,j,m,n). (50)

F(FA)=

LR∑
i=1

LC∑
j=1

Tr
(
NT,j,jF

H
A,i,jNR,i,iFA,i,j

)
+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)LR∑
i=1

LC∑
j=1

Tr
(
NT,j,jF

H
A,i,jFA,i,j

)
−2ℜ


LR∑
i=1

LC∑
j=1

Tr(NL,j,iFA,i,j)


+

LR∑
i=1

LC∑
j=1

(LR,LC)∑
(p,q)=(1,1),
(p,q)̸=(i,j)

Tr
(
NT,q,jF

H
A,i,jNR,i,pFA,p,q

)
+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

) LR∑
i=1

LC∑
j=1

LC∑
q=1,q ̸=j

Tr
(
NT,q,jF

H
A,i,jFA,i,q

)
+CFA

,

(39)
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Tr
(
NR,i,iFA,i,jNT,j,jF

H
A,i,j

)
≤Tr

[
ÑR,iFA,i,jÑT,jF

H
A,i,j+2ℜ

{(
NR,i,i−ÑR,i

)
F

(0)
A,i,jÑT,jF

H
A,i,j

+ÑRF
(0)
A,i,j

(
NT,j,j−ÑT,j

)
FH
A,i,j+

(
NR,i,i−ÑR,i

)
F

(0)
A,i,j

(
NT,j,j−ÑT,j

)
FH
A,i,j

}]
+C1,

(44)

Tr
(
FA,i,jNT,j,jF

H
A,i,j

)
≤Tr

[
FA,i,jÑT,jF

H
A,i,j + 2ℜ

{
F

(0)
A,i,j

(
NT,j,j − ÑT,j

)
FH
A,i,j

}]
+ C2, (45)

min Tr

[(
ÑR,i+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)
I

)
FA,i,jÑT,jF

H
A,i,j+2ℜ

{(
NR,i,i−ÑR,i

)
F

(t−1)
A,i,j ÑT,jF

H
A,i,j

}
+ 2ℜ

{(
ÑR,i +

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)
I

)
F

(t−1)
A,i,j

(
NT,j,j − ÑT,j

)
FH
A,i,j

}
− 2ℜ

{
MH

B,i,jFA,i,j

}]
s.t.

∣∣∣[FA,i,j ]m,n

∣∣∣ = 1, ∀m,n, (46)

The optimal solution of the optimization problem (50) is[
F

(n)
A,i,j

]
m,n

= ej(ϖi,j,m,n+π),∀m,n. (51)

It is worth noting that if we set LC = NRF and LR = Ntk ,
the majorization step (44) can be neglected, since the quadratic
term in (41) is already a constant value due to the constant-
modulus constraints.

In the previous discussions, each element of the block FA,i,j

has different phases. To further reduce the computational com-
plexity, the number of variables can be substantially reduced
by letting the elements in the same block share the same phase.
With this new constraint attached to problem (48), the cost
function can be recast as

ℜ
{
Tr
(
UH

B,i,jFA,i,j

)}
=ℜ


NR,i∑
m=1

NC,j∑
n=1

(
[UB,i,j ]

H
m,n [FA,i,j ]m,n

)

=ℜ


NR,i∑
m=1

NC,j∑
n=1

(
[UB,i,j ]

H
m,n

)
︸ ︷︷ ︸

|ui,j |ejιi,j

ejζi,j


,

(52)

where ζi,j is the phase of the elements in FA,i,j . The problem
can thus be transformed into

min
ζi,j

|ui,j | cos (ζi,j − ιi,j) , (53)

whose optimal solution is of the following form

ζi,j = ιi,j + π. (54)

In the following subsections, some special cases of the block-
oriented MM-based reconfigurable algorithm are investigated
in further depth with much clearer physical interpretations.

B. Column-Oriented MM-Based Reconfigurable Algorithm

In this subsection, each subbolck of FA only consists of a
fraction of the columns in FA. Specifically, the analog matrix
FA is divided into the following submatrices:

FA = [FAC,1, . . . ,FAC,LC
] , (55)

where FAC,l denotes the lth submatrix consisting of NC,l

columns of FA, and there are a total of LC submatrices.
Accordingly, NL defined in (38) is also partitioned as

NL =
[
NT

LR,1 . . . ,N
T
LR,LC

]T
, (56)

where NLR,i is a NC,i × Nt block in NL. Based on the
discussions of our block-oriented MM-based reconfigurable
algorithm, similar to (41) when the submatrices FAC,l for l ̸= i
are fixed, the optimization problem P1-A with respect to FAC,i

can be reformulated as follows

min
FAC,i

Tr

(
NT,i,iF

H
AC,iNRFAC,i − 2ℜ

{
MH

C,iFAC,i

}
+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)
NT,i,iF

H
AC,iFAC,i

)
s.t.

∣∣∣[FAC,i]m,n

∣∣∣ = 1, ∀m,n, (57)

where the matrix MC,i is defined as

MC,i =NH
LR,i −

LC∑
j=1,j ̸=i

NT,i,jNRFAC,j

−
K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

) NRF∑
j=1,j ̸=i

NT,i,jFAC,j . (58)

Upon defining

ÑR = λmax (NR) I, (59)

and denoting the optimal solution of FAC,i in the (t − 1)st

iteration of the proposed MM algorithm by F
(t−1)
AC,i

, similar
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to (48) the optimization problem at the tth iteration of the
proposed MM algorithm becomes:

min
FAC,i

ℜ
{
Tr
(
UH

C,iFAC,i

)}
s.t.

∣∣∣[FAC,i]m,n

∣∣∣ = 1, ∀m,n, (60)

where we have

UC,i=

(
ÑR+

∑K

k=1

1

P
Tr
(
G

H

Dk
GDk

)
I

)
F

(t−1)
AC,i

(
NT,i,i−ÑT,i

)
+
(
NR − ÑR

)
F

(t−1)
AC,i

(
NT,i,i − ÑT,i

)
+
(
NR − ÑR

)
F

(t−1)
AC,i

ÑT,i −MC,i. (61)

By recasting UC,i as

[UC,i]m,n = |ci,m,n| ejϕi,m,n ,∀m,n, (62)

the optimal solution of the optimization problem (60) is
obtained as [

F
(n)
AC,i

]
m,n

= ej(ϕi,m,n+π),∀m,n. (63)

C. Row-Oriented MM-Based Reconfigurable Algorithm

In order to reduce hardware cost and computational com-
plexity, in practical communication systems the number of
antennas is typically much larger than the number of RF
chains. Therefore, FA is a tall and skinny matrix. If we divide
FA into rows, the computational complexity can be further
reduced compared to dividing FA into columns. The matrix
FA can be partitioned as

FA =
[
FT
AR,1, . . . ,F

T
AR,LR

]T
, (64)

where FAR,l consists of the NC,l rows in FA. Accordingly,
NL in (38) is divided as

NL = [NLC,1 . . . ,NLC,LR ] , (65)

where NLC,i is an NRF ×NR,i block in NL.
Setting the other submatrices FAR,l for l ̸= i to constants,

the optimization problem P1-A with respect to FAR,i can be
rewritten as

min
FAR,i

Tr

[(
NR,i,i+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)
I

)
FAR,iNTF

H
AR,i

− 2ℜ
{
MH

C,iFAR,i

}]
s.t.

∣∣∣[FAR,i]m,n

∣∣∣ = 1, ∀m,n, (66)

where

MC,i =NH
LC,i−

LR∑
j=1,j ̸=i

NR,i,jFAR,jNT

−
K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

) LR∑
j=1,j ̸=i

FAC,jNT. (67)

Upon defining

ÑT = λmax (NT) I, (68)

and after replacing the cost function in the original problem
(66) by its upper bound, similar to (48) at the nth iteration in
the proposed MM algorithm, the optimization problem (66) is
reduced to the following optimization problem having a linear
objective function

min
FAR,i

ℜ
{
Tr
(
UH

R,iFAR,i

)}
s.t.

∣∣∣[FAR,i]m,n

∣∣∣ = 1, ∀m,n, (69)

where the coefficient matrix UR,i in (69) equals to

UR,i=

(
ÑR,i+

K∑
k=1

1

P
Tr
(
G

H

Dk
GDk

)
I

)
F

(n−1)
AR,i

(
NT−ÑT

)
+
(
NR,i,i − ÑR,i

)
F

(n−1)
AR,i

(
NT − ÑT

)
+
(
NR,i,i − ÑR,i

)
F

(n−1)
AR,i

ÑT −MC,i. (70)

Upon defining the (m,n)th elements in UR,i as

[UR,i]m,n = |ri,m,n| ejφi,m,n ,∀m,n, (71)

the optimal solution of the optimization problem (69) be-
comes: [

F
(n)
AR,i

]
m,n

= ej(φi,m,n+π),∀m,n. (72)

VI. OPTIMIZATION OF THE RIS PHASE SHIFTING
MATRIX Θ

In this section, we investigate the optimization of the
phase shifting matrix Θ of the RIS in our hybrid nonlinear
transceiver optimization. The MSE matrix of (13) can be
rewritten with respect to Θ as

ΦMSEk
=

1

σ2
n

G
H

Dk
HRk

ΘHH
TFAFDF

H

DF
H
AHTΘ

HHH
Rk

GDk

+ℜ
{

2

σ2
n

G
H

Dk
HRk

ΘHH
TFAFDF

H

DF
H
AHH

DGDk

− 2

σn
G

H

Dk
HRk

ΘHH
TFAFDC

H
THPLAH

k

}
+ CΘ.

(73)

By exploiting the structure of the diagonal matrix Θ, we can
reconstruct HRk

ΘHH
T as

HRk
ΘHH

T =
∑
l

θlhRk,lh
H
T,l, (74)

where θl denotes the lth diagonal element of Θ, hRk,l and
hT,l denote the lth column of the channel matrices HRk

and
HT, respectively, i.e.,

θl = [Θ]l,l, hRk,l = [HRk
]:,l, hT,l = [HT]:,l. (75)
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[Ωg]l,m=
1

σ2
n

K∑
k=1

Tr
(
WkG

H

Dk
hRk,lh

H
T,lFAFDF

H

DF
H
A hT,mhH

Rk,m
GDk

)
,

[ωg]l =
1

σn

K∑
k=1

Tr
(
WkG

H

Dk
hRk,lh

H
T,lFAFDC

H
THPLAH

k

)

− 1

σ2
n

K∑
k=1

Tr

WkG
H

Dk
hRk,lh

H
T,lFAFDF

H

DF
H
A

HDk
+

NS∑
n=1,n/∈Sg

hRk,nh
H
T,n

H

GDk

 . (81)

By substituting (74) into (73), the MSE matrix of (73) can be
reexpressed as

ΦMSEk

=
1

σ2
n

Ns∑
l=1

Ns∑
m=1

θlθ
∗
mG

H

Dk
hRk,lh

H
T,lFAFDF

H

DF
H
A hT,mhH

Rk,m
GDk

+ ℜ
{ Ns∑
l=1

2θl
σ2
n

G
H

Dk
hRk,lh

H
T,lFAFDF

H

DF
H
AHH

Dk
GDk

−
Ns∑
l=1

2θl
σn

G
H

Dk
hRk,lh

H
T,lFAFDC

H
THPLAH

k

}
+ CΘ. (76)

In order to simultaneously optimize the multiple diagonal
elements of Θ, we introduce the following vector

θ = [θ1, . . . , θNs
]
T (77)

and reconstruct the cost function of the weighted MSE min-
imization problem as a standard quadratic function. This
new problem can be solved by relying on our MM-based
reconfigurable optimization framework, which we propose for
optimizing the analog TPC. It is worth noting that, a RIS can
be extremely large in practical settings. In order to reduce
the computational complexity in the procedure of finding the
largest eigenvalue of a square matrix, the vector θ is divided
into G subarrays as follows:

θ =
[
θT
1 , . . . ,θ

T
G

]T
. (78)

Without loss of generality, the length of θg , the gth subvector
of θ, is denoted as Lg . The following set is defined as well

Sg={l|L1+. . .+Lg−1 < l ≤ L1+. . .+Lg, l ∈ Z}. (79)

Then, when the other partitions are fixed, the optimization
problem of the gth partition can be written in the following
form:

min
θg

θT
g Ωgθ

∗
g − 2ℜ

{
θT
g ωg

}
s.t.

∣∣[θg]l∣∣ = 1,∀l ∈ Sg, (80)

where we have (81) at the top of this page.
Upon defining the following upper bound matrix of Ωg

Ω̃g = λmax (Ωg) I, (82)

and exploiting the inequality (44) again, an upper bound of
the cost function of (80) in the nth iteration of the proposed
MM algorithm may be formulated as

θT
g Ω̃gθ

∗
g + 2ℜ

{
θT
g

(
Ωg − Ω̃g

)
θ(n−1)
g

∗
− θT

g ωg

}
, (83)

where θ(n−1)
g is the optimal solution of the problem in the (n−

1)st iteration, and the initial vector θ
(0)
g is a chosen constant

vector. Moreover, upon defining

vg =
(
Ωg − Ω̃g

)
θ(n−1)
g

∗
− ωg, (84)

the problem (80) can be recast as

min
θg

ℜ
{
vH
g θ

∗
g

}
s.t.

∣∣[θg]l∣∣ = 1, l = 1, . . . , Lg, (85)

where the vectors θg and vg are defined as

θg =
[
ejϑi,1 , . . . , e

jϑi,Ntk

]T
,

vg =
[
|vg,1| ejψg,1 , . . . ,

∣∣vg,Lg

∣∣ ejψg,Lg
]T
. (86)

Consequently, the optimization problem (83) becomes equiva-
lent to

min
{ϑg,l,∀l}

Lg∑
l=1

|vg,l| cos (ϑi,l + ψi,l) . (87)

The optimal solution of the optimization problem (87) can be
readily given by

θ(n)
g =

[
ej(π−ψg,1), . . . , ej(π−ψg,Lg )

]
. (88)

Based on the update steps of the subproblems above, we can
summarize the overall RIS-aided hybrid nonlinear transceiver
optimization procedure in Algorithm 1.

VII. SIMULATIONS AND DISCUSSIONS

In this section, several numerical simulations are carried
out for quantifying the performance of the proposed nonlin-
ear transceiver designs for RIS aided MU-MIMO downlink
communications. In the simulations the BS is equipped with
NRF = 8 RF chains and Nt = 32 antennas, and it transmits its
signals to K = 4 mobile terminals, each of which is equipped
with Nrk = 2 antennas. Moreover, the BS transmits Ndk = 2
data streams to each MT. A RIS having Ns = 32 elements is
deployed to facilitate the communications between the BS and
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Algorithm 1 Proposed algorithm for RIS-aided hybrid non-
linear transceiver design.

1: Objective: Minimize the weighted MSE in the objective
function of P1.

2: Initialize: Initial linear TPC F
(0)
D and F

(0)
A ; MT receivers

{G(0)
Dk

}; triangular feedback matrix C
(0)
THP; permutation

matrix L(0); RIS phase shifting matrix Φ(0); weighting
matrices Wk; convergence thredhold ϵ.

3: Calculate the initial F
(0)

D and {G(0)

Dk
} according to defi-

nitions in (11) and (12). Calculate θ(0) according to (74)
and (77).

4: repeat
5: Calculate the linear digital TPC F

(n+1)

D according to
(17).

6: Jointly calculate {G(n+1)

Dk
}, C(n+1)

THP and L(n+1):

Calculate the MT receivers {G(n+1)

Dk
} according to

(18).

Substitute {G(n+1)

Dk
}into the objective function of

P1, and jointly calculate the triangular feedback
matrix C

(n+1)
THP and the permutation matrix L(n+1)

according to (33) and the greedy strategy illustrated
in section-IV-C.

7: According to the complexity requirements, partition
F

(n+1)
A in an element-by-element, column-by-column,

row-by-row or block-by-block form, and calculate
F

(n+1)
A by an MM-based method following the steps

in section-V.
8: Rewrite the weighted MSE in P1 w.r.t. θ(n+1). Divide

θ(n+1) into G parts and calculate them according to
(88).

9: until
∣∣∣∑K

k=1Tr
(
WkΦ

(n+1)
MSEk

)
−
∑K
k=1Tr

(
WkΦ

(n)
MSEk

)∣∣∣≤ϵ.
10: Retrieve FD and {GDk

} according to (11) and (12).
Retrieve Θ according to (74) and (77).

11: Output: FD, FA, {GDk
}, CTHP, L and Φ.

MTs. The relative positions of the BS, the MTs and the RIS
are represented via Cartesian coordinate system, while the BS
is located at the origin of (0, 0, 0)m. The MTs are randomly
distributed inside a circle with (30, 0, 0)m being the center and
r = 5m being the radius. The RIS is located at (30, 0, 2)m.
The widely used Rician fast-fading channel is given by [24]

Hx =

√
βKR

1 +KR
HLoS
x +

√
β

1 +KR
HNLoS
x , (89)

where x is selected from D, k, R, k or T, while KR is
the Rician K factor, β = β0d

−αy is the pathloss coeffi-
cient. The reference pathloss at the unit distance is given by
β0 = −30dB. The parameter αx is defined as the pathloss
exponent, where αD,k = 3.6, αR,k = 1.6 and αT = 1.9.
The matrices HLoS

x and HNLoS
x denote the line-of-sight and

the non-line-of-sight component of the corresponding channel
Hx, respectively. Specifically, HLoS

x is usually described as
the product of two steering vectors, while the elements of
HNLoS
x follow the Rayleigh distribution having zero mean and
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Fig. 2. The convergences of the proposed nonlinear transceiver design and
the benchmark algorithm in the case of signal power = 10dBm, noise power
= -60dBm, K = 4, Nt = 32, Nrk = 8, Ndk = 2, and without RIS.

unit variance. For simplicity, in the simulations the weighting
matrices Wk in (14) are selected as identity matrices. In the
following figures, each curve is an average of 100 random
channel realizations.

Firstly, the optimization of the triangular matrix CTHP and
the permutation matrix L investigated is significantly different
from the existing MU-MIMO downlink solutions of [10]. The
most straightforward strategy for optimizing CTHP is based
on partial matrix derivatives. The disadvantage of this strategy
is that it requires iterations between CTHP and the MT re-
ceivers. Moreover, the permutation matrix is determined by the
channels characterized in [10], and its complex envelope does
not change during an iteration. However, in our algorithm,
CTHP, L and the MT receivers are jointly optimized. In
order to clearly demonstrate the performance advantages of the
optimization of CTHP, all the irrelevant terms are neglected.
Then, the fully digital settings are chosen in which both the
BS and MTs use fully digital transceivers. Additionally, the
RIS is not taken into account in this setting either. As shown
in Fig. 2, the proposed algorithm has significant performance
gains over the straightforward benchmark algorithm based on
the partial matrix derivatives. The performance gain comes
from the fact that in our algorithm the triangular matrix and
the receivers are jointly optimized instead of being optimized
in an alternating manner.

In Fig. 3, the performance gaps between the proposed
nonlinear hybrid transceiver and its nonlinear fully digital
counterpart are quantified. In the procedures of optimizing the
analog TPC FA and the phase adjusting matrix Θ, the MM-
based reconfigurable algorithms are implemented. Specifically,
in order to optimize the analog matrix, the proposed MM-
based reconfigurable algorithm is implemented on a matrix-
oriented manner. However, for the phase adjusting matrix
optimization, the RIS is divided into 4 subarrays and the MM-
based reconfigurable algorithm is implemented in a subarray-
by-subarray fashion. It can be observed that the performances
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Fig. 3. The performance comparisons between the proposed hybrid nonlinear
transceiver optimization and the fully digital counterpart in the case of
K = 4, Nrk = 8, Ndk = 2, with 32-antenna RIS, which is divided into
4 subarrays uniformly.

of the proposed hybrid transceivers and those of their corre-
sponding fully digital counterparts are close. Moreover, when
the BS is equipped with fewer antennas with respect to RF
chains, the performance gap between the hybrid and fully digi-
tal schemes becomes much smaller. A fully digital TPC having
32 antennas can be well approximated by a hybrid TPC having
8 RF chains. The results demonstrate that the proposed hybrid
nonlinear transceiver designs strike an attractive performance
vs. complexity tradeoff, and satisfactory performances can be
achieved at the cost of negligible performance losses.

Fig. 4 shows the performance of the proposed algorithms
when computing the analog TPC via using the MM-based
reconfigurable optimization algorithm at different granularity.
When FA is optimized on an element-by-element basis, we
keep all other elements fixed and follow the process of Section
V-A. Since the coefficients of quadratic terms are scalars, the
majorization step can be omitted without affecting the perfor-
mance. Observe that from a performance oriented perspective,
the matrix- and column-oriented MM-based reconfigurable al-
gorithms have much better performance than their element-by-
element oriented counterparts. Moreover, the column-oriented
reconfigurable algorithm has almost the same performance as
its matrix-oriented counterpart. It can be concluded that the
column-oriented reconfigurable algorithm strikes a convenient
performance vs. complexity tradeoff.

Our performance comparisons between the proposed hybrid
nonlinear transceiver designs operating with and without RIS
are demonstrated in Fig. 5. In this case, the MM-based
reconfigurable analog TPC optimization is also implemented
on a matrix-oriented manner, i.e., FA is optimized as a
whole. Additionally, the MM-based reconfigurable algorithm
used for the phase shifting matrix optimization at the RIS
is implemented on a subarray-by-subarray basis. It can be
concluded that the optimization of the phase adjusting matrix
at the RIS attains significant bit error rate (BER) gains at
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Fig. 4. The convergence behaviors of the proposed reconfigurable MM-based
algorithms.K = 4, Nt = 32, NRF = 8, Nrk = 8, Ndk = 2, with 32-
antenna RIS, which is divided into 4 subarrays uniformly.
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Fig. 5. The performance comparisons between the transceiver designs with
and without RIS.K = 4, NRF = 8, Nrk = 8, Ndk = 2, with 32-antenna
RIS, which is divided into 4 subarrays uniformly.

high SNRs compared to the system operating without RISs.
This conclusion demonstrates the performance advantage of
the RIS technology. Although the optimization under constant-
modulus constraints requires sophisticated optimization, it
attains substantial gains.

In terms of the complexity analysis, since the optimal FA

and Θ emerge from two layers of iteration, the computational
cost of the whole algorithm is dominated by these two parts.
Let us assume that the numbers of inner iterations required
for optimizing FA and Θ are given by IA and IΘ, respec-
tively. When FA is computed as a whole, the complexity
is on the order of O

(
IAN

2
t NRF + IANtN

2
RF

)
. When a re-

configurable optimization over rows (or columns) of FA is
employed, the complexity can be reduced to O

(
IAN

2
t NRF

)
(or O

(
IANtN

2
RF

)
). The minimum complexity of FA is as low
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as O (IANtNRF), when an element-wise approach is adopted.
Similarly, the complexity order of directly optimizing Θ is
given by O

(
IΘN

2
s

)
. When the RIS is divided into G parts,

the complexity order degrades to O
(
IΘGL

2
g

)
. The lowest

complexity order is O (IΘNs) when the RIS is optimized
in an element-by-element manner. Therefore, each iteration
of the algorithm enjoys a flexible complexity order, with the
range spanning from O

(
IAN

2
t NRF + IANtN

2
RF + IΘN

2
s

)
to

O (IANtNRF + IΘNs).

VIII. CONCLUSIONS

In a nutshell, we investigated the hybrid nonlinear
transceiver optimization of the RIS-aided MU-MIMO down-
link. Specifically, a RIS was deployed to facilitate communi-
cations between a BS and multiple MTs. A nonlinear TPC was
adopted at the BS, while the THP and the analog TPC of the
BS were jointly optimized both with the phase adjusting matrix
at the RIS and with the linear MT receivers. For the THP,
the triangular feedback matrix is designed beneficially, where
the corresponding optimal solution is derived in closed form.
Moreover, in order to tackle the nonconvexity of the constant-
modulus constraints imposed on the analog TPC, a MM-based
reconfigurable optimization framework was proposed, which
can strike an attractive balance between complexity and perfor-
mance. The MM-based reconfigurable optimization framework
is capable of optimizing the analog TPC on a block-by-block,
column-by-column, row-by-row or even element-by-element
basis. Moreover, an MM-based reconfigurable optimization
algorithm was also proposed for the optimization of the phase
adjusting matrix at the RIS, which also has to satisfy constant-
modulus constraints. We concluded by providing numerical
results for quantifying the performance advantages of the
proposed nonlinear hybrid transceiver optimizations over sev-
eral benchmark algorithms. The numerical results verified the
accuracy of the theoretical analysis.

APPENDIX A
CHOLESKY DECOMPOSITION IN AN UPPER-TRIANGULAR

VERSION

For a positive semi-definite matrix A, we can construct a
matrix B = PAPH, where P is a permutation matrix defined
as

P =

 1

. .
.

1

 . (90)

Based on the traditional definition of Cholesky decomposition
[34], we have

B = LLH = LPPHLH, (91)

where L is a lower-triangular matrix, and the second equality
holds because PPH = I . From (91), we have

A = PHBP = PHLPPHLHP = UUH, (92)

where U = PHLP is an upper-triangular matrix.

APPENDIX B
THE DERIVATION OF (44) AND (45)

The inequality (44) is derived as follows:

Tr
(
NR,i,iFA,i,jNT,j,jF

H
A,i,j

)
=

NC,j∑
m=1

Tr

([
FA,i,jN

1
2

T,j,j

]H
:,m

NR,i,i

[
FA,i,jN

1
2

T,j,j

]
:,m

)
(a)

≤
NC,j∑
m=1

Tr

([
FA,i,jN

1
2

T,j,j

]H
:,m

ÑR,i

[
FA,i,jN

1
2

T,j,j

]
:,m

+2ℜ
{[

FA,i,jN
1
2

T,i,i

]H
:,m

(
NR,i,i−ÑR,i

)[
F

(0)
A,i,jN

1
2

T,i,i

]
:,m

}
+
[
F

(0)
A,i,jN

1
2

T,i,i

]H
:,m

(
ÑR,i−NR,i,i

)[
F

(0)
A,i,jN

1
2

T,i,i

]
:,m

)
(93)

(b)

≤
NR,i∑
n=1

Tr

([
Ñ

1
2

R,iFA,i,j

]
n,:

ÑT,j

[
Ñ

1
2

R,iFA,i,j

]H
n,:

+2ℜ
{[

Ñ
1
2

R,iFA,i,j

]
n,:

(
NT,j,j−ÑT,j

)[
Ñ

1
2

R,iF
(0)
A,i,j
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n,:

}
+
[
Ñ

1
2

R,iF
(0)
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]
n,:

(
ÑT,j −NT,j,j

) [
Ñ

1
2

R,iF
(0)
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]H
n,:
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2
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]H
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(
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(0)
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H
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+ C1

=Tr
[
ÑR,iFA,i,jÑT,jF
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NR,i,i − ÑR,i

)
F

(0)
A,i,jÑT,jF
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+ ÑRF
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)
F

(0)
A,i,j

(
NT,j,j−ÑT,j
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(94)

where the inequality (a) comes from the fact that
ÑR,i − NR,i,i ⪰ 0. By exploiting the properties of positive
semi-definite matrices, we have xH

(
ÑR,i −NR,i,i

)
x ≥ 0

for an arbitrary vector x. Upon substituting([
FA,i,jN

1
2

T,j,j

]
:,m

−
[
F

(0)
A,i,jN

1
2

T,j,j

]
:,m

)
by x and rearrang-

ing the inequality, (a) is obtained. If we recast the first term in

(93),
∑NC,j

m=1 Tr

([
FA,i,jN

1
2

T,j,j

]H
:,m

ÑR,i

[
FA,i,jN

1
2

T,j,j

]
:,m

)
to

∑NR,i

n=1 Tr

([
Ñ

1
2

R,iFA,i,j

]
n,:

NT,j

[
Ñ

1
2

R,iFA,i,j

]H
n,:

)
, (b)

can be obtained for the same reason as (a) by exploiting the
positive semi-definite nature of ÑT,j −NT,j,j .
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The inequality (45) is derived from

Tr
(
FA,i,jNT,j,jF

H
A,i,j

)
(c)

≤
NR,i∑
n=1

(
[FA,i,j ]n,: ÑT,j [FA,i,j ]

H
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+ 2ℜ
{
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(
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) [
F

(0)
A,i,j
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}
+
[
F

(0)
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(
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) [
F

(0)
A,i,j

]H
n,:
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=Tr
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H
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F

(0)
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(
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)
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A,i,j
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+ C2, (95)

where the inequality (c) holds for the same reason as (b).
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