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Abstract
Weighted low-rank Hankel matrix optimization has long been used to reconstruct
contaminated signal or forecast missing values for time series of a wide class. The
Method of Alternating Projections (MAP) (i.e., alternatively projecting to a low-rank
matrix manifold and the Hankel matrix subspace) is a leading method. Despite its
wide use, MAP has long been criticized of lacking convergence and of ignoring the
weights used to reflect importance of the observed data. The most of known results
are in a local sense. In particular, the latest research shows that MAP may converge
at a linear rate provided that the initial point is close enough to a true solution and
a transversality condition is satisfied. In this paper, we propose a globalized variant
of MAP through a penalty approach. The proposed method inherits the favourable
local properties of MAP and has the same computational complexity. Moreover, it is
capable of handling a general weight matrix, is globally convergent, and enjoys local
linear convergence rate provided that the cutting off singular values are significantly
smaller than the kept ones. Furthermore, the newmethod also applies to complex data.
Extensive numerical experiments demonstrate the efficiency of the proposed method
against several popular variants of MAP.
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1 Introduction

In this paper, we are mainly interested in the numerical methods for the weighted
low-rank Hankel matrix optimization:

min f (X) := 1

2
‖W ◦ (X − A)‖, s.t. X ∈ Mr ∩ H

k×�, (1)

where Hk×� is the space of all k × � Hankel matrices in the real/complex field with
the standard trace inner product, ‖ · ‖ is the Frobenius norm,Mr is the set of matrices
whose ranks are not greater than a given rank r , A is given, and W is a given weight
matrixWi j ≥ 0. Here (A ◦ B) represents elementwise multiplication (e.g., Hadamard
product) between A and B. We note that the size of all matrices involved are of k × �.
The difficulties in solving (1) are with the low-rank constraint and how to effectively
handle a general weight matrix W , the latter of which is often overlooked in existing
literature. Our main purpose is to develop a novel, globally convergent algorithm for
(1) and its efficiency will be benchmarked against several state-of-the-art algorithms.

In what follows, we first explain an important application of (1) to time series
data, which will be tested in our numerical experiment part. We then review the latest
advances on algorithms relating to the alternating projection method. We finish this
section by explaining our approach and main contributions.

1.1 Applications in time series

Problem (1) arises from a large number of applications including signal processing,
system identification and finding the greatest common divisor between polynomials
[23]. Tomotivate our investigation on (1), let us consider a complex-valued time series
a = (a1, a2, . . . , an) of finite rank [17, Chp. 5]:

at =
m∑

s=1

Ps(t)λ
t
s, t = 1, 2, . . . , n (2)

where Ps(t) are a complex polynomial of degree (νs − 1) (νs are positive integers)
and λs ∈ C \ {0} are distinct. Define r := ν1 + . . . + νm (”:=” means ”define”). Then
it is known [29, Prop. 2.1] that the rank of the Hankel matrix A generated by a:
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A = H(a) :=

⎡

⎢⎢⎢⎣

a1 a2 · · · a�

a2 a3 · · · a�+1
...

...
...

...

ak ak+1 · · · an

⎤

⎥⎥⎥⎦

must be r , where the choice of (k, �) satisfies n = k + � − 1 and r ≤ k ≤ n − r + 1.
Suppose now that the time series a is contaminated and/or has missing values. To

reconstruct a, a natural approach is to computing its nearest time series x by the least
squares:

min
n∑

i=1

wi |ai − xi |2, s.t. rank(X) ≤ r , X = H(x), (3)

where w = (w1, . . . , wn) ≥ 0 are the corresponding weight vector emphasizing the
importance of each elements of a. The equivalent reformulation of (3) as (1) is obtained
by setting

W := H(
√
v ◦ √

w) and vi =
⎧
⎨

⎩

1/i for i = 1, . . . , k − 1
1/k for i = k, . . . , n − k + 1
1/(n − i + 1) for i = n − k + 2, . . . , n,

where v is known as the averaging vector ofHankelmatrix of size k×� (k ≤ �) and
√
w

is the elementwise square root of w. We note that the widely studied (1) withWi j ≡ 1
corresponds towi = 1/vi , which is known as the trapezoidweighting.Another popular
choice for financial time series is the exponential weights wi = exp(αi) for some
α > 0. We refer to [15, Sect. 2.4] for more comments on the choice of weights.

A special type of the time series of (2) arises from the spectral compressed sensing,
which has attracted considerable attention lately [4]. In its one dimensional case, at is
often a superposition of a few complex sinusoids:

at =
r∑

s=1

ds exp {(2π jωs − τs)t} , (4)

where j = √−1, r is the model order, ωs is the frequency of each sinusoid, and
ds 
= 0 is the weight of each sinusoid, and τs ≥ 0 is a damping factor. We note that (4)
is a special case of (2) with Ps(t) = ds (hence νs = 1) and λs = exp(2π jωs − τs).
If at is sampled at all integer values from 1 to n, we get a sample vector a ∈ C

n .
Consequently, the rank of H(a) must be r . However, in practice, only a subset Ω

of the sampling points {1, . . . , n} may be observed (possibly contaminated), leading
to the question of how to best reconstruct a(t) based on its partial observation ai on
Ω . This has led to the Hankel matrix completion/approximation problem of (1), see
[4, Sect. II.A] and [2, Sect. 2.1]. A popular choice of W in the spectral compressed
sensing is Wi j = 1 for all (i, j), resulting in the distance between X and A in (1)
being measured by the standard Frobenius norm. In this paper, we assume

Assumption 1 W is Hankel and non-negative (i.e., Wi j ≥ 0 for all (i, j)).
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1.2 On alternating projectionmethods

Low-rank matrix optimization is an active research area. Our short review is only able
to focus on a small group of those papers that motivated our research. We note that
there are four basic features about the problem (1): (i) X has to be low rank; (ii) X has
Hankel structure; (iii) the objective is weighted; and (iv) X may be complex valued.
The first feature is the most difficult one to handle because it causes the nonconvexity
of the problem. Many algorithms have been developed proposing different ways to
handle this low rank constraint. One of the most popular choices is to use the truncated
singular value decomposition to project X to be its nearest rank r matrix andwe denote
the projection by ΠMr (X). This has given rise to the basic Method of Alternating
Projections (MAP) (also known as the Cadzow method [1]): Given X0 ∈ H, update

Xν+1 = ΠH

(
ΠMr (X

ν)
)
, ν = 0, 1, 2, . . . (5)

where ΠH(·) is the orthogonal projection operator to the Hankel subspace H
k×�.

Despite its popularity in engineering sciences, Cadzow’s method can not guarantee
the convergence to an optimal solution. Even convergence occurs, not much is known
about where it converges to. It has also been criticized for completely ignoring the
objective function, see [5,6,8,14]. In particular, the weight matrix W does not enter
Cadzow’s method at all because the truncated SVD does not admit a closed-form
solution under aweighted norm.Gillard andZhigljavsky [16] proposed to replaceΠMr

by its diagonally weighted variants and studied how to best approximate the weight
matrix W by a diagonal weight matrix. Qi et. al. [25] proposed to use a sequential
diagonal weight matrices aiming to get a better approximation to the original weight
matrix. Despite the improved numerical convergence, those methods in [16,25] still
inherit the essential problem of convergence of Cadzow’s method. Recently, Lai and
Varghese [20] considered a similar method for a matrix completion problem and
established the linear convergence of their method under a kind of “transversality”
condition provided that the initial point is close enough to a true rank-r completion.
We refer to [7] for a more general transversality condition that ensures a local linear
convergence rate of MAP onto nonconvex sets.

Alternating projections ofΠMr (·) andΠH(·) also play an important role in the class
of iterative hard thresholding (IHT) algorithms for spectral compressed sensing. For
example, Cai et. al. [3] established the convergence of IHT in the statistical sense (i.e.,
with high probability) under a coherence assumption on the initial observation matrix
A. Although local convergence results (be in the sense of monotonically decreasing
[20] or in the statistical sense [3]) may be established forMAP under some conditions,
we are not aware of any existing global convergence results mainly due to the noncon-
vexity of the rank constraint. For the general weighted (1), it appears to be a difficult
task to develop a variant of MAP that enjoys both global and local linear convergence
properties. We will achieve this through a penalty approach.

Penalty approaches have long been used to develop globally convergent algorithms
for problems with rank constraints, see [10,12,13,21,22,27,32,33]. For example, Gao
[12] proposed the penalty function p(X) based on the following observation:
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rank(X) ≤ r ⇐⇒ p(X) := ‖X‖∗ −
r∑

i=1

σi (X) = 0,

where ‖X‖∗ is the nuclear norm of X and σ1(X) ≥ · · · σn(X) are the singular values of
X in nonincreasing order.However, the resultingmethod, aswell as those in [21,22,27],
has nothing to do with MAP any more and its implementation is not trivial.

1.3 Our approach andmain contributions

In this paper, we propose a new penalty function and develop a penalized method
whose main step is the alternating projections. We call it the penalized MAP (pMAP).
The new penalty function is the Euclidean distance function dMr (X) from X toMr :

dMr (X) := min {‖X − Z‖ | Z ∈ Mr } and define gr (X) := 1

2
d2
Mr

(X). (6)

Obviously, the original problem (1) is equivalent to

min f (X), s.t. dMr (X) = 0, X ∈ H.

We propose to solve the quadratic penalty problem with ρ > 0 being a penalty
parameter:

min Fρ(X) := f (X) + ρgr (X), s.t. X ∈ H. (7)

By following the standard argument [24, Thm. 17.1] for the classical quadratic penalty
method, one can establish that the global solution of (7) converges to that of (1) as
ρ approaches infinity provided the convergence happens. However, in practice, it is
probably as difficult to find a global solution of (7) as for the original problems. It
is hence important to establish the correspondence between the first-order stationary
points of (7) and that of (1). This is done in Theorem 1 under a generalized linear
independence condition.

The remaining task is to efficiently compute a stationary point of (7) for a given
ρ > 0. The key observation is that gr (X) can be represented as the difference of
two convex functions, which can be easily majorized (later on its meaning) to get a
majorization function g(m)

r (X , Xν) of gr (X) at the current iterate Xν . We then solve
the majorized subproblem:

Xν+1 = argmin f (X) + ρg(m)
r (X , Xν), s.t. X ∈ H. (8)

We will show that the update takes the following form:

Xν+1 = W (2)

ρ + W (2)
◦ A + ρ

ρ + W (2)
◦ ΠH(ΠMr (X

ν)), (9)
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where W (2) := W ◦ W and the division W (2)/(ρ + W (2)) is taken componentwise.
Compared with (5), this update is just a convex combination of the observation matrix
A and theMAP iterate in (5). In the special case thatW ≡ 0 (which completely ignores
the objective in (1)) or ρ = ∞, (9) reduces to MAP. We will analyze the convergence
behaviour of pMAP (9). In particular, we will establish the following among others.

(i) The objective function sequence {F(Xν, ρ)} will converge and ‖Xν+1 − Xν‖
converges to 0. Moreover, any limiting point of {Xν} is an approximate KKT
point of the original problem (1) provided that the penalty parameter is above
certain threshold (see Theorem 2).

(ii) If X̂ is an accumulation point of the iterate sequence {Xν}, then thewhole sequence
converges to X̂ at a linear rate provided that σr (X̂) � σr+1(X̂) (see Theorem 3).

Our results in (i) and (ii) provide satisfactory justification of pMAP. It is not only
globally convergent, but also enjoys a linear convergence rate under reasonable condi-
tions. Furthermore, we can assess the quality of the solution as an approximate KKT
of (1) if we are willing to increase the penalty parameter. Of course, balancing the
fidelity term f (X) and the penalty term is an important issue that is beyond the current
paper. The result in (ii) is practically important too. Existing empirical results show
that MAP often terminates at a point whose cut-off singular values (σi , i ≥ r + 1)
are significantly smaller than the kept singular values (σi , i ≤ r ). Such points are
often said to have a numerical rank r , but the theoretical rank is higher than r . This is
exactly the situation that was addressed in (ii). Those results are stated and proved for
real-valued matrices. We will extend them to the complex case, thanks to a technical
result (Proposion 2) that the subdifferential of gr (X) in complex domain can also
be computed in a similar fashion as in the real domain. To our best knowledge, this
is the first variant of MAP that can handle general weights and enjoys both global
convergence and locally linear convergence rate under a reasonable condition (i.e.,
σr � σr+1).

The paper is organized as follows. In the next section,wewill first set up our standard
notation and establish the convergence result for the quadratic penalty approach (7)
when ρ → ∞. Sect. 3 includes our method of pMAP and its convergence results when
ρ is fixed. In Sect. 4, we will address the issue of extension to the complex-valued
matrices, which arise from (2) and (4). The key concept used in this section is the
Wirtinger calculus, which allows us to extend our analysis from the real case to the
complex case. We report extensive numerical experiments in Sect. 5 and conclude the
paper in Sect. 6.

2 Quadratic penalty approach

The main purpose of this section is to establish the convergence of the stationary
points of the penalized problems (7) to that of the original problem (1) as the penalty
parameter ρ goes to∞. For the simplicity of our analysis, we focus on the real case.We
will extend our results to the complex case in Sect. 4. We first introduce the notation
used in this paper.

123



A penalized method of alternating projections for weighted… 423

2.1 Notation

For a nonnegative matrix such as the weight matrix W ,
√
W is its componentwise

square root matrix (
√
Wi j ). For a given matrix X ∈ C

k×�, we often use its singular
value decomposition (assume k ≤ �)

X = Udiag(σ1(X), . . . , σk(X))V T , (10)

where σ1(X) ≥ · · · ≥ σn(X) are the singular values of X and U ∈ C
k×k , V ∈ C

�×�

are the left and right singular vectors of X . For a given closed subset C ⊂ C
k×�, we

define the set of all projections from X to C by

PC(X) := argmin{‖X − Z‖ : Z ∈ C}.

If C is also convex, then PC(X) is unique. When C = Mr , PMr (X) may have multiple
elements. We define a particular element in PMr (X) that is based on the SVD (10):

ΠMr (X) = Urdiag(σ1(X), . . . , σr (X))V T
r ,

where Ur and Vr consist of the first r columns of U and V respectively.
Related to the function gr (X) defined in (6), the function

hr (X) := 1

2
‖X‖2F − gr (X), (11)

has the following properties by the classical result of Eckart and Young [9]:

dist2(X ,Mr ) = ‖X − ΠMr ‖2 = σ 2
r+1(X) + · · · + σ 2

n (X),

hr (X) = 1

2

(
σ 2
1 (X) + · · · + σ 2

r (X)
)

= 1

2
‖ΠMr (X)‖2.

It follows from [12, Prop. 2.16] that hr (X) is convex and the subdifferentials of hr (X)

and gr (X) in the sense of [26, Def. 8.3] are respectively given by

∂hr (X) = conv(PMr (X)) and ∂gr (X) = X − ∂hr (X), (12)

where conv(Ω) denotes the convex hull of the set Ω . Finally, we let Bε(X) denote the
ε-neighbourhood centred at X .

2.2 Convergence of quadratic penalty approach

The classical quadratic penalty methods try to solve a sequence of penalty problems:

Xν = argmin Fρν (X), s.t. X ∈ H, (13)
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where the sequence ρν > 0 is increasing and goes to ∞. By following the standard
argument (e.g., [24, Thm. 17.1]), one can establish that every limit of {Xν} is also a
global solution of (1). However, in practice, it is probably as difficult to find a global
solution for (13) as for the original problem (1). Therefore, only an approximate
solution of (13) is possible. To quantify the approximation, we recall the optimality
conditions relating to both the original and penalized problems.

Following the optimality theorem [26, Thm. 8.15], we define the first-order opti-
mality condition of problem (1) and (7):

Definition 1 (First-order optimality condition) X̂ ∈ H satisfies the first-order opti-
mality condition of (1) if

0 ∈ ∇ f (X̂) + λ̂∂dMr (X̂) + H
⊥, (14)

where λ̂ is the Lagrangian multiplier. Similarly, we say Xν ∈ H satisfies the first-order
optimality condition of the penalty problem (7) if

0 ∈ ∇ f (Xν) + ρν ∂gr (X
ν) + H

⊥. (15)

We generate Xν ∈ H such that the condition (15) is approximately satisfied:

‖PH(∇ f (Xν) + ρν(X
ν − ΠMr (X

ν)))‖ ≤ εν, (16)

where εν ↓ 0. We can establish the following convergence result.

Theorem 1 We assume the sequence {ρν} goes to ∞ and {εν} decreases to 0. Suppose
each approximate solution Xν is generated to satisfy (16).

Let X̂ be an accumulation point of {Xν} and we assume

∂dMr (X̂) ∩ H
⊥ = {0}. (17)

Then X̂ satisfies the first-order optimality condition (14).

Proof Suppose X̂ is the limiting point of the subsequence {Xν}K. We consider the
following two cases.

Case 1There exists an infinite subsequenceK1 ofK such that rank(Xν) ≤ r for ν ∈
K1. This would imply ∂gr (Xν) = {0}, which with (16) implies ‖PH(∇ f (Xν))‖ → 0.
Hence (14) holds at X̂ with the choice λ̂ = 0.

Case 2 There exists an index ν0 such that Xν /∈ Mr for all ν0 ≤ ν ∈
K. In this case, we assume that there exists an infinite subsequence K2 of K
such that

{
(Xν − ΠMr (X

ν))/dMr (X
ν)
}

has the limit v. We note that (Xν −
ΠMr (X

ν))/dMr (X
ν) ∈ ∂dMr (X

ν) for ν ≥ ν0 by [26, (8.53)]. Therefore, its limit
v ∈ ∂dMr (X̂) by the upper semicontinuity. By the assumption (17), we have v /∈ H

⊥
because v has the unit length. Since H is a subspace, PH(·) is a linear operator. It
follows from (16) that
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ρν‖PH(Xν − ΠMr (X
ν))‖ − ‖PH(∇ f (Xν))‖

≤ ‖PH(∇ f (Xν) + ρν(X
ν − ΠMr (X

ν))‖ ≤ εν.

Hence

‖PH(Xν − ΠMr (X
ν))‖ ≤ 1

ρν

(
εν + ‖PH(∇ f (Xν))‖

)
,

which, for ν ≥ ν0, is equivalent to

dMr (X
ν)‖PH(Xν − ΠMr (X

ν))/dMr (X
ν)‖ ≤ 1

ρν

(
εν + ‖PH(∇ f (Xν))‖

)
.

Taking limits on {Xν}ν∈K2 and using the fact ρν → ∞ leads to dMr (X̂)‖PH(v)‖ = 0.
Since v /∈ H

⊥, we have ‖PH(v)‖ > 0, which implies dMr (X̂) = 0. That is, X̂ is a
feasible point of (1). Now let λν := ρνdMr (X

ν), we then have

λν

Xν − ΠMr (X
ν)

dMr (X
ν)

= −∇ f (Xν) + ξν, ξν := ∇ f (Xν) + ρν(X
ν − ΠMr (X

ν)).

Projecting on both sides to H yields

λνPH

(
Xν − ΠMr (X

ν)

dMr (X
ν)

)
= PH(−∇ f (Xν)) + PH(ξν). (18)

Computing the inner product on both sides with PH((Xν − ΠMr (X
ν))/dMr (X

ν)),
taking limits on the sequence indexed by K2, and using the fact PH(ξν) → 0 due to
(16), we obtain

lim
ν∈K2

λν‖v‖2 = 〈v, PH(∇ f (X̂))〉.

We then have

λ̂ = lim
ν∈K2

λν = 1

‖v‖2 〈v, PH(∇ f (X̂))〉.

Taking limits on both sides of (18) yields

PH(∇ f (X̂) + λ̂v) = 0,

which is sufficient for

0 ∈ ∇ f (X̂) + λ̂∂dMr (X̂) + H
⊥.

This completes our result. ��
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Remark 1 Condition (17) can be interpreted as that any 0 
= v ∈ ∂dMr (X̂) is linearly
independent of any set of basis ofH⊥. Therefore, (17) can be seen as a generalization
of the linear independence assumption required in the classical quadratic penalty
method for a similar convergence result with all the functions involved being assumed
continuously differentiable, see [24, Thm. 17.2]. In fact, what we really needed in our
proof is that there exists a subsequence {(Xν −ΠMr (X

ν))/dMr (X
ν)} in Case (ii) such

that its limit v does not belong to H⊥. That could be much weaker than the sufficient
condition (17).

Theorem 1 establishes the global convergence of quadratic penalty method when
the penalty parameter approaches infinity, which drives gr (Xν) smaller and smaller.
In practice, however, we often fix ρ and solve for Xν . We are interested in how far Xν

is from being a first-order optimal point of the original problem. For this purpose, we
introduce the approximateKKTpoint, which keeps the first-order optimality condition
(15) with an additional requirement that gr (X) is small enough.

Definition 2 (ε-approximate KKT point) Consider the penalty problem (7) and ε > 0
is given. We say a point X̂ ∈ H is an ε-approximate KKT point of (1) if

0 ∈ ∇ f (X̂) + ρ ∂gr (X̂) + H
⊥ and gr (X̂) ≤ ε.

3 Themethod of pMAP

This section develops a new algorithm that solves the penalty problem (7), in par-
ticular for finding an approximate KKT point of (1). The first part is devoted to the
construction of a majorization function for the distance function dist(X ,Mr ). We then
describe pMAP based on the majorization introduced and establish its global and local
convergence.

3.1 Majorization and DC interpretation

We first recall the essential properties that a majorization function should have. Let
θ(·) be a real-valued function defined in a finite-dimensional space X . For a given
y ∈ X , we say a function θ(m)(·, y) : X �→ IR is a majorization of θ(·) at y if

θ(m)(x, y) ≥ θ(x), ∀ x ∈ X and θ(m)(y, y) = θ(y). (19)

Themotivation for employing the majorization is that the squared distance function
gr (X) is hard tominimize when coupled with f (X) under the Hankel matrix structure.
It is noted that

gr (X) = 1

2
‖X − ΠMr (X)‖2 ≤ 1

2
‖X − ΠMr (Z)‖2 := g(m)

r (X , Z), ∀ X , Z ∈ C
k×�

where the inequality used the fact thatΠMr (X) is a nearest point inMr to X . It is easy
to verify that g(m)

r (X , Z) is a majorization function of gr (X) at Z .
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The following way in deriving the majorization is crucial to our convergence anal-
ysis. We recall

hr (X) = 1

2
‖X‖2 − gr (X) = 1

2
‖X‖2 − 1

2
min

{
‖X − Z‖2 : Z ∈ Mr

}

= max

{
〈X , Z〉 − 1

2
‖Z‖2 : Z ∈ Mr

}
.

Being the pointwise maximum of linear functions when Z ∈ Mr is given, hr (X) is
convex. The convexity of hr (X) and (12) yields

hr (X) ≥ hr (Z) + 〈M, X − Z〉, ∀ X , Z ∈ R
k×�, M ∈ PMr (Z) (20)

which further implies

gr (X) = 1

2
‖X‖2 − hr (X)

≤ 1

2
‖X‖2 − hr (Z) − 〈ΠMr (Z), X − Z〉

= 1

2
‖X − ΠMr (Z)‖2

−1

2

(
‖ΠMr (Z)‖2 − ‖Z‖2 + ‖Z − ΠMr (Z)‖2 − 2〈ΠMr (Z), Z〉︸ ︷︷ ︸

=0

)

= 1

2
‖X − ΠMr (Z)‖2 = g(m)

r (X , Z).

In other words, gr (X) can be seen as Difference of Convex functions, the so-called
DC function. Using a subgradient is a common way to majorize DC functions, see
[12].

3.2 The pMAP algorithm

We recall that our main problem is (7). Our first step is to construct a majorized
function of Fρ(X) at the current iterate Xν :

F (m)
ρ (X , Xν) = 1

2
‖W ◦ (X − A)‖2 + ρg(m)

r (X , Xν)

= 1

2
‖W ◦ (X − A)‖2 + ρ

2
‖X − ΠMr (X

ν)‖2

= 1

2
‖W ◦ X‖2 + ρ

2
‖X‖2 − 〈W (2) ◦ A + ρΠMr (X

ν), X〉 + 1

2
‖W ◦ A‖2

+ρ

2
‖ΠMr (X

ν)‖2

= 1

2
‖
√

ρ + W (2) ◦ (X − Xν
ρ)‖2 + 1

2
‖W ◦ A‖2 + ρ

2
‖ΠMr (X

ν)‖2 − ρ + W (2)

2
‖Xν

ρ‖2,
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where

Xν
ρ := ρΠMr (X

ν) + W (2) ◦ A

ρ + W (2)
. (21)

Note that the division is in the sense of componentwise. The subproblem to be solved
at iteration ν is

Xν+1 = argmin F (m)
ρ (X , Xν) s.t. X ∈ H

= argmin
1

2
‖
√

ρ + W (2) ◦ (X − Xν
ρ)‖2 s.t. X ∈ H

= ΠH(Xν
ρ), (22)

where Xν
ρ is defined in (21). The last equation in (22) is due to Wρ := √

ρ + W (2)

being Hankel and computing Xν+1 in (22) is equivalent to averaging Xν
ρ along its all

anti-diagonals. Since A, ρ/(ρ +W (2)),W (2)/(ρ +W (2)) are all Hankel matrices (due
to Assumption 1), Xν+1 can be calculated through (9).

Algorithm 1 (pMAP)

1: Input data:Matrix A, weight matrix W , penalty parameter ρ, rank r , and the initial X0.
Set ν := 0.

2: Update X : Compute Xν+1 by (9).
3: Convergence check: Terminate if some stopping criterion is satisfied.

Remark 2 Being a direct consequence of employing the majorization technique, the
following decreasing property holds:

Fρ(Xν+1) ≤ F (m)
ρ (Xν+1, Xν) (property of majorization (19))

≤ F (m)
ρ (Xν, Xν) (because of (22))

= Fρ(Xν) (property of majorization (19)).

If Fρ is coercive (i.e., Fρ(X) → ∞ if ‖X‖ → ∞, which would be the case if we
require W > 0), the sequence {Xν} will be bounded.

Awidely used stopping criterion is ‖Xν+1−Xν‖ ≤ ε for some small tolerance ε >

0. We will see below that ‖Xν+1 − Xν‖ approaches zero and hence such convergence
check will eventually be satisfied. For our theoretical analysis, we assume that pMAP
generates an infinite sequence (e.g., let ε = 0).

3.3 Convergence of pMAP

We have more results on the convergence of pMAP.
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Theorem 2 Let {Xν} be the sequence generated by pMAP. The following holds.

(i) We have

Fρ(Xν+1) − Fρ(Xν) ≤ −ρ

2
‖Xν+1 − Xν‖2, k = 1, 2, . . . , .

Furthermore, ‖Xν+1 − Xν‖ → 0.
(ii) Let X̂ be an accumulation point of {Xν}. We then have

∇ f (X̂) + ρ(X̂ − ΠMr (X̂)) ∈ H
⊥.

Moreover, for a given ε > 0, if X0 ∈ Mr ∩ H and

ρ ≥ ρε := f (X0)

ε
,

then X̂ is an ε-approximate KKT point of (1).

Proof Wewill use a number of facts to establish (i). The first fact is due to the convexity
of f (X):

f (Xν) − f (Xν+1) ≥ 〈∇ f (Xν+1), Xν − Xν+1〉 (23)

The second fact is the identity

‖Xν+1‖2 − ‖Xν‖2 = 2〈Xν+1 − Xν, Xν+1〉 − ‖Xν+1 − Xν‖2 (24)

The third fact is due to the convexity of hr (X) defined in (11) andΠMr (X) ∈ ∂hr (X):

hr (X
ν+1) − hr (X

ν) ≥ 〈ΠMr (X
ν), Xν+1 − Xν〉 (25)

The last fact is the optimality condition of problem (22):

∇ f (Xν+1) + ρ(Xν+1 − ΠMr (X
ν)) ∈ H

⊥. (26)
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Combining all facts above leads to a sufficient decrease in Fρ(Xk):

Fρ(Xν+1) − Fρ(Xν)

= f (Xν+1) − f (Xν) + ρgr (X
ν+1) − ρgr (X

ν)

(23)≤ 〈∇ f (Xν+1), Xν+1 − Xν〉 + ρgr (X
ν+1) − ρgr (X

ν)

= 〈∇ f (Xν+1), Xν+1 − Xν〉 + ρ

2
(‖Xν+1‖2 − ‖Xν‖2) − ρ(hr (X

ν+1) − hr (X
ν))

(24)= 〈∇ f (Xν+1) + ρXν+1, Xν+1 − Xν〉 − ρ

2
(‖Xν+1 − Xν‖2)

− ρ(hr (X
ν+1) − hr (X

ν))

(25)≤ 〈∇ f (Xν+1) + ρXν+1 − ρΠMr (X
ν), Xν+1 − Xν〉 − ρ

2
‖Xν+1 − Xν‖2

(26)≤ −ρ

2
‖Xν+1 − Xν‖2

(27)

In the above we also used the fact that Xν+1 − Xν ∈ H. Since the sequence {Fρ(Xν)}
is non-increasing and is bounded from below by 0, we have ‖Xν+1 − Xν‖2 → 0.

(ii) Suppose X̂ is the limit of the subsequence {Xν}ν∈K. It follows from ‖Xν+1 −
Xν‖ → 0 that X̂ is also the limit of {Xν+1}ν∈K. Taking limits on both sides of (26)
and using the upper semi-continuity of the projections PMr (·) yields

∇ f (X̂) + ρ(X̂ − ΠMr (X̂)) ∈ H
⊥.

we use the fact that {Fρ(Xν)} is non-increasing to get

f (X0) = f (X0) + ρgr (X
0) = Fρ(X0) ≥ lim Fρ(Xν)

= Fρ(X̂) = f (X̂) + ρgr (X̂) ≥ ρgr (X̂).

The first equality holds because gr (X0) = 0 when X0 ∈ Mr . As a result,

gr (X̂) ≤ f (X0)

ρ
≤ f (X0)

ρε

= ε. (28)

Therefore, X̂ is an ε-approximate KKT point of (1). ��
We note that the first result (i) in Theorem 2 is standard in a majorization-

minimization scheme and can be proved in different ways, see, e.g., [32, Thm. 3.7].

3.4 Final rank and linear convergence

This part reports two results. One is on the final rank of the output of pMAP and the
rank is always bigger than the desired rank r unless A is already an optimal solution
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of (1). The other is on the conditions that ensure a linear convergence rate of pMAP.
For this purpose, we need the following result.

Proposition 1 [11, Thm. 25] Given the integer r > 0 and consider X̂ ∈ IRk×� of rank
(r + p) with p ≥ 0. Suppose the SVD of X̂ is represented as X̂ = ∑r+p

i=1 σiuivTi ,

where σ1(X̂) ≥ σ2(X̂) ≥ · · · ≥ σr+p(X̂) are the singular values of X̂ and ui , vi ,
i = 1, . . . , r + p are the left and right (normalized) eigenvectors. We assume
σr (X̂) > σr+1(X̂) so that the projection operator ΠMr (X) is uniquely defined in a
neighbourhood of X̂ . ThenΠMr (X) is differentiable at X̂ and the directional derivative
along the direction Y is given by

∇ ΠMr (X̂)(Y ) = ΠTMr (X̂)(Y )

+
∑

1≤i≤r
1≤ j≤p

[
σr+ j

σi − σr+ j
〈Y , Φ+

i,r+ j 〉Φ+
i,r+ j − σr+ j

σi + σr+ j
〈Y , Φ−

i,r+ j 〉Φ−
i,r+ j

]

where TMr (X̂) is the tangent subspace ofMr at X̂ and

Φ±
i,r+ j = 1√

2

(
ur+ jvTi ± uivTr+ j

)
.

Theorem 3 Assume that W > 0 and X̂ be an accumulation point of {Xν}. The follow-
ing hold.

(i) rank(X̂) > r unless A is already the optimal solution of (1).
(ii) Suppose X̂ has rank (r + p) with p > 0. Let σ1 ≥ σ2 ≥ · · · ≥ σk be the singular

values of X̂ . Define

w0 := min{Wi j } > 0, ε0 := w2
0

ρ
, ε1 := ε0

4 + 3ε0
, c := 1

1 + ε1
< 1.

Under the condition

σr

σr+1
≥ 8pr

ε0
+ 1,

it holds

‖Xν+1 − X̂‖ ≤ c‖Xν − X̂‖ for ν sufficiently large.

Consequently, the whole sequence {Xν} converges linearly to X̂ .

Proof (i) Suppose X̂ is the limit of the subsequence {Xν}k∈K. We assume rank(X̂) ≤
r . It follows from Theorem 2 that

{Xν+1}k∈K → X̂ and lim
k∈K

ΠMr (X
ν) = ΠMr (X̂) = X̂ .
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Taking limits on both sides of (9) and using the fact that X̂ is Hankel, we get

X̂ = W (2)

ρ + W (2)
◦ A + ρ

ρ + W (2)
◦ ΠH(ΠMr (X̂)) = W (2)

ρ + W (2)
◦ A + ρ

ρ + W (2)
◦ X̂ .

Under the assumption W > 0, we have X̂ = A. Consequently, rank(A) ≤ r ,
implying that A is the optimal solutionof (1). Therefore,wemust have rank(X̂) > r
if the given matrix A is not optimal already.

(ii) Let φ(X) := ΠH(ΠMr (X)). Since ΠMr (X) is differentiable at X̂ , so is φ(X).
Moreover, the directional derivative of φ(X) at X̂ along the direction Y is given
by

∇φ(X̂)Y = ΠH(∇ΠMr (X̂)Y ) and ‖∇φ(X̂)Y‖ ≤ ‖∇ΠMr (X̂)Y‖. (29)

The inequality above holds because ΠH(·) is an orthogonal projection to a subspace
and its operator norm is 1. The matrices in Proposition 1 have the following bounds.

‖Φ±
i,r+ j‖ ≤ 1√

2

(
‖ur+ jvTi ‖ + ‖uivTr+ j‖

)
≤ 1√

2
(1 + 1) = √

2,

‖〈Y , Φ±
i,r+ j 〉Φ±

i,r+ j‖ ≤ ‖Φ±
i,r+ j‖2‖Y‖ ≤ 2‖Y‖.

Therefore,
∥∥∥∥∥∥∥∥

∑

1≤i≤r
1≤ j≤p

[
σr+ j

σi − σr+ j
〈Y , Φ+

i,r+ j 〉Φ+
i,r+ j − σr+ j

σi + σr+ j
〈Y , Φ−

i,r+ j 〉Φ−
i,r+ j

]
∥∥∥∥∥∥∥∥

≤ 4
∑

1≤i≤r
1≤ j≤p

σr+ j

σi − σr+ j
‖Y‖ ≤ 4pr

σr+1

σr − σr+1
‖Y‖ ≤ w2

0

2ρ
‖Y‖ = 1

2
ε0‖Y‖. (30)

In the above, we used the fact that ψ(t) := t/(σr − t) is an increasing function of t
for t < σr . Proposition 1, (29) and (30) imply

‖∇φ(X̂)Y‖ ≤ ‖ΠTMr (X̂)(Y )‖ + ε0/2‖Y‖ ≤ ‖Y‖ + ε0/2‖Y‖ ≤ (1 + ε0/2)‖Y‖.

The second equality above used the fact that the operator norm of ΠTMr (X̂) is not

greater than 1 due to TMr (X̂) being a subspace. Since φ(·) is differentiable at X̂ , there
exists ε > 0 such that

‖φ(X) − φ(X̂) − ∇φ(X̂)(X − X̂)‖ ≤ 1

4
ε0‖X − X̂‖, ∀ X ∈ Bε(X̂).

Therefore,

‖φ(X) − φ(X̂)‖ ≤ ‖φ(X) − φ(X̂) − ∇φ(X̂)(X − X̂)‖ + ‖∇φ(X̂)(X − X̂)‖
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≤ 1

4
ε0‖X − X̂‖ + (1 + ε0/2)‖X − X̂‖ = (1 + 3ε0/4)‖X − X̂‖.

Now we are ready to quantify the error between Xν and X̂ whenever Xν ∈ Bε(X̂).

‖Xν+1 − X̂‖ =
∥∥∥∥

ρ

ρ + W (2)
◦ (φ(Xν) − φ(X̂))

∥∥∥∥ ≤ ρ

ρ + w2
0

‖φ(Xν) − φ(X̂)‖

≤ 1 + 3ε0/4

1 + ε0
‖Xν − X̂‖ = c‖Xν − X̂‖.

Consequently, Xν+1 ∈ Bε(X̂). Since {Xν}ν∈K converges to X̂ , Xν will eventually
falls in Bε(X̂), which implies that the whole sequence {Xν} will converge to X̂ and
eventually converges at a linear rate. ��

Remark 3 (Implication on MAP) When the weight matrix W = 0, pMAP reduces to
MAP according to (9). Theorem 2(i) implies

‖Xν+1 − ΠMr (X
ν+1)‖2 − ‖Xν − ΠMr (X

ν)‖2 ≤ −‖Xν+1 − Xν‖2, (31)

which obviously implies

‖Xν+1 − ΠMr (X
ν+1)‖ ≤ ‖Xν − ΠMr (X

ν)‖. (32)

The decrease property (32) was known in [5, Eq.(4.1)] and was used there to ascertain
that MAP is a descent algorithm. Our improved bound (31) says a lightly more that the
decrease each step in the function ‖X − ΠMr (X)‖ is strict unless the update becomes
unchanged. In this case (W = 0), the penalty parameter is just a scaling factor in
the objective, hence the KKT result in Theorem 2(ii) does not apply to MAP. This
probably explains why it is difficult to establish similar results for MAP.

Remark 4 (On linear convergence) In the general context of matrix completion, Lai
and Varghese [20] established a local linear convergence of MAP under the following
two assumptions. We describe them in terms of the Hankel matrix completion. (i)
The partially observed data a can be completed to a rank r Hankel matrix M . (ii) A
transversality condition (see [20, Thm. 2]) holds at M . We emphasize that the result
of [20] is a local result that requires that the initial point of MAP is close enough to M
and the rank r assumption of M is also crucial to their analysis, which also motivated
our proof. In contrast, our result is a global one and enjoys a linear convergence rate
near the limit under a more realistic assumption σr � σr+1. One may have noticed
that the convergence rate c though strictly less than 1 may be close to 1. This is often
numerically observed that MAP often converges slowly. But the more important point
here is that in such a situation it ensures that the whole sequence converges. This
global convergence justifies the widely used stopping criterion ‖Xν+1 − Xν‖ ≤ ε.
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4 Extension to complex-valuedmatrices

The results obtained in the previous sections are for real-valued matrices and they can
be extended to complex-valued matrices by employing what is known as theWirtinger
calculus [30]. We note that not all algorithms for Hankel matrix optimization have a
straightforward extension from the real case to the complex case, see [6] for comments
on some algorithms. We explain our extension below.

Suppose f : Cn �→ IR is a real-valued function in the complex domain. We write
z ∈ C

n as z = x + jy with x, y ∈ IRn . The conjugate z̄ := x − jy. Then we can
write the function f (z) in terms of its real variables x and y. With a slight abuse
of notation, we still denote it as f (x, y). In the case where the optimization of f (z)
can be equivalently represented as optimization of f in terms of its real variables,
the partial derivatives ∂ f (x, y)/∂x and ∂ f (x, y)/∂y would be sufficient. For other
cases where algorithms are preferred to be executed in the complex domain, then the
Wirtinger calculus [30] is more convenient to use and it is well explained (and derived)
in [19]. The R-derivative and the conjugate R-derivative of f in the complex domain
are defined respectively by

∂ f

∂z
= 1

2

(
∂ f

∂x
− j

∂ f

∂y

)
,

∂ f

∂ z̄
= 1

2

(
∂ f

∂x
+ j

∂ f

∂y

)
.

The R-derivatives in the complex domain play the same role as the derivatives in the
real domain because the following two first-order expansions are equivalent:

f (x + Δx, y + Δy) = f (x, y) + 〈∂ f /∂x, Δx〉
+〈∂ f /∂y, Δy〉 + o(‖Δx‖ + ‖Δy‖)

f (z + Δz) = f (z) + 2Re(〈@f/@Nz, z〉) + o(‖z‖). (33)

Here, we treat the partial derivatives as column vectors and Re(x) is the real part of x.
Note that in the first-order expansion in f (z + Δz) used the conjugate R-derivative.
Hence, we define the complex gradient to be∇ f (z) := 2∂ f /∂ z̄,when it exists. When
f is not differentiable, we can extend the subdifferential of f from the real case to the
complex case by generalizing (33).

In order to extend Theorem 1, we need to characterize ∂dMr (X) in the complex
domain. We may follow the route of [26] to conduct the extension. For example, we
may define the regular subgradient of dMr (X) [26, Def. 8.3] to its complex counterpart
by replacing the conjugate-gradient in the first-order expansion in (33) by a regular
subgradient. We then define subdifferential through regular subgradients. With this
definition in the complex domain, we may extend [26, (8.53)] to derive formulae for
∂dMr (X). What we needed in the proof of Theorem 1 is (X − ΠMr (X))/dMr (X) ∈
∂dMr (X) when X /∈ Mr . The proof of this result follows a straightforward extension
of the corresponding part in [26, (8.53)] and if reproduced here would take up much
space. Hence we omit it.

In order to extend the results in Sect. 3, we need the subdifferential of hr (X) in
order tomajorize gr (X). Since hr (X) is convex, its subdifferential is easy to define.We
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note that the inner product for the complex matrix space Ck×� is defined as 〈A, B〉 =
Trace(AH B), where A is the Hermitian conjugate, i.e., AH := A

T
.

Definition 3 The subdifferential ∂hr (X) is defined as

∂hr (X) =
{
S ∈ C

k×� | hr (Z) ≥ hr (X) + Re
(
〈S, Z − X〉

)}
.

The following result is really what we needed in order to extend the results in Sect. 3
to the complex domain.

Proposition 2 For any X ∈ C
k×�, we have PMr (X) ⊂ ∂hr (X).

Proof Let ΠMr (X) stand for any element in PMr (X). It is easy to verify the following
identities:

‖X − Z‖2 = ‖X‖2 + ‖Z‖2 − 2Re
(
〈X, Z〉

)
= ‖X‖2 + ‖Z‖2 − 2Re

(
〈Z, X〉

)
.(34)

We use (11) and (34) to compute

hr (Z) − hr (X) − Re
(
˙Mr (X), Z − X

)

= 1

2
‖ΠMr (Z)‖2 − 1

2
‖ΠMr (X)‖2 + 1

2
‖ΠMr (X) − Z‖2 − 1

2
‖ΠMr (X)‖2 − 1

2
‖Z‖2

︸ ︷︷ ︸
=−Re(〈˙Mr (X), Z〉)

+ 1

2
‖ΠMr (X)‖2 + 1

2
‖X‖2 − 1

2
‖ΠMr (X) − X‖2

︸ ︷︷ ︸
=Re(〈˙Mr (X), X〉)

= 1

2
‖ΠMr (Z)‖2 − 1

2
‖Z‖2 + 1

2
‖ΠMr (X) − Z‖2

−
(
1

2
‖ΠMr (X)‖2 − 1

2
‖X‖2 + 1

2
‖ΠMr (X) − X‖2

)

︸ ︷︷ ︸
=0

= 1

2
‖ΠMr (Z)‖2 − 1

2
‖Z‖2 + 1

2
‖ΠMr (X) − Z‖2

≥ 1

2
‖ΠMr (Z)‖2 − 1

2
‖Z‖2 + 1

2
‖ΠMr (Z) − Z‖2 = 0.

This proves the claim. ��
A direct consequence is that

∂gr (X) = X − ∂hr (X) ⊃ PMr (X)

and the majorization gr (X) through the subdifferential of hr (X) holds. The rest of the
extension is straightforward and we do not repeat it here.
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5 Numerical experiments

In this section we test two popular problems (time series denoising in real domain
and incomplete signal completion in complex domain) to demonstrate the numerical
performance of pMAP. The time series denoising problem aims to extract the noiseless
data from polluted observations by removing the noise components, while incomplete
signal completion problem tries to approximate the missing data in an incomplete
complex valued signal.

In both numerical experiments, a solver is terminated when any of the following
conditions is met

|Fρ(Xν+1) − Fρ(Xν)|
max{1, Fρ(Xν)} ≤ f tol, gr (X

ν+1) ≤ gtol or
‖Xν+1 − Xν‖

‖Xν‖ ≤ tol.

here tol, f tol, gtol are set at 10−5, 10−7 and 10−8, respectively. A solver will also be
terminated if it reaches the maximum iterations, setting at 200. All codes used were
written in MATLAB (2019a) and run on a laptop equipped with a 7th Generation Intel
Core i5-7200U CPU and 8GB memory card.

5.1 Time series denoising

5.1.1 Experiment introduction

In the first experiment we compare the proposed pMAP with some leading solvers
including Cadzow’s method (Cadzow, [14]) and Douglas-Rachford iterations (DRI,
[6]) for real-valued time series de-noising. In this test we randomly generate noiseless
time series a = (a1, a2, . . . , an) via the following process:

at =
r∑

s=1

ds(1 + αs)
t cos(2π t/βs − τs), for t = 1, 2, . . . , n

where all ds , αs , βs and τs follow uniform distribution as ds ∼ U [0, 103), αs ∼
U [−10−3, 10−3), βs ∼ U [6, 18) and τs ∼ U [−π, π). It is known that for any {l, k}
such that l + k − 1 = n, the rank of Hankel matrix A = T (a) ∈ R

l×k must be 2r
when both l and k are no smaller than 2r . We then construct the noisy time series y by
adding the noises series ε to a as y = a + ε, where ε = {ε1, ε2, . . . , εn} is the noise
component and εt = θ et‖e‖2 ‖a‖. Here et is the white noise with mean 0 and variance 1.
We considered two scenarios: {n, r} = {1000, 10} and {2000, 20}. For each scenario
we test three noise levels at θ = 0.1, 0.2 and 0.5.

We further consider two weight choices:

1. {W1}i, j = 1, for i = 1, . . . , l and j = 1, . . . , k;
2. {W2}i, j = 1

i+ j−1 , for i = 1, . . . , l and j = 1, . . . , k.

Both weights are standardised for comparison purpose (i.e.,W/‖W‖ was used). Note
that Cadzow’s method can only handle W1.
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(b)‖Xν+1 − Xν‖

Fig. 1 Plot of Fρ(Xν) and ‖Xν+1 − Xv‖ by pMAP with ρ fixed

5.1.2 Demonstration of convergence

Before coming to the numerical comparison, we first demonstrate the convergence
behaviour of Algorithm 1 under different updating strategy of ρ.We plot the sequences
of Fρ(Xν) in Fig. 1a with both W1 and W2. It can be observed that in both cases,
the functional value Fρ(Xν) decreases and converges. We further plot the sequence
of ‖Xν+1 − Xν‖ in Fig. 1b using the same example. We find that the sequence of
‖Xν+1 − Xν‖ is also decreasing and converges to zero, which is consistent with
Theorem 2.

The behaviours of σr+1
σr

are shown in Fig. 2 with respect to different ρ updating

strategies. In this and later experiments, ρ is initialised as ρ0 = 10−2 ×m/n2 where n
denotes the length of a time series andm stands for the amount of known observations,
which equals to n in this test. As shown in Fig. 2a, σr+1

σr
approaches zerowith increasing

ρ, which means gr (Xν) goes to zero as well. By contrast if ρ is fixed as ρν = ρ0 at
each iterate, Fig. 2b shows that σr+1

σr
decreases much slower than the first strategy. As a

result,wewill updateρ byρν+1 = 1.1ρν at each iteratewhenρν ≤ n×min(W ), where
min(W ) is the minimal weights in W . The behaviour of convergence of Algorithm 1
appears consistence for other choices.

5.1.3 Numerical results

The numerical results are reported in Table 1 including the number of iterations (Iter),
cpu time for computation (Time), root of mean square error (RMSE) for each solver
which is calculated as

RMSE :=
√∑

i∈I
(x̂i − ai )2/|I|.
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Fig. 2 Plot of
σr+1
σr

at each iterate by pMAP. ρ is updated by ρν+1 = 1.1ρν in (a) and fixed without
updating in (b)

where x̂ = {x̂1, . . . , x̂n} is obtained as x̂ = H−1(X̂) and X̂ is the estimated result from
a certain solver. I denotes the index set of all data to be predicted while |I| stands for
the size of I. Apparently smaller RMSEs indicate better solution qualities. Because
the Cadzow method does not allow users to select arbitrary weights apart from W1,
we will not report the numerical results for the Cadzow method under W2.

We also report success rate (SR) of each solver in Table 1. One instance is success-
fully de-noised if the relative gap between the RMSE of approximated solution and
the best possible RMSE is smaller than a pre-defined threshold, i.e.,

RMSEapprox − RMSEbest
RMSEbest

≤ threshold

In this experiment we set threshold = 10%. For any combinations of {n/r/θ}, all data
reported in Table 1 are the mean values over 50 randomly generated tests.

Our first observation on Table 1 is that when applying W = W1, pMAP reports the
best results in 3 examples out of 6 while DRI performs the best in the rest 3 examples.
In general, Cadzow, DRI and pMAP have very similar performance on estimation
accuracy under W1 because they are MAP-based algorithms.

When the weight matrix is set as W2, a significant improvement on the estimation
accuracy can be observed for DRI and pMAP comparing to the case W = W1. This
resultmatches our expectation becauseW2 assumes that all data have equal importance
by sharing the same weight, while W1 implies that data in the middle of a time series
are more weighted than the data at both ends.

For all {n/r/θ} combinations, our proposed solver with W2 always generated the
estimation results with lowest RMSEs. It is also important to mention that our pMAP
algorithm enjoys the most robust convergence result among all candidate solvers. As
a result, we conclude that our proposed pMAP algorithm is competitive and effective
in solving real-valued time series denoising problems.
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Table 1 Experiment results for
Cadzow iteration, DRI
(Douglas-Rachford iterations)
and our proposed pMAP,
including iterations (Iter), CPU
time in seconds (Time), Root of
mean square error (RMSE) and
success rate (SR). Results in this
table are the average of 50 trials

n/r/θ W pMAP Cadzow DRI

1000/10/0.1 W1 Iter 64.46 8.96 200.00

Time 3.77 0.31 20.68

RMSE 39.00 38.67 38.17

SR 1.00 1.00 0.98

W2 Iter 71.72 200.00

Time 3.14 20.69

RMSE 33.43 37.95

SR 1.00 0.30

1000/10/0.2 W1 Iter 72.00 8.38 200.00

Time 4.56 0.27 21.14

RMSE 39.67 39.69 39.69

SR 1.00 1.00 1.00

W2 Iter 78.36 200.00

Time 3.70 20.87

RMSE 34.19 39.46

SR 1.00 0.36

1000/10/0.5 W1 Iter 81.74 12.50 200.00

Time 4.95 0.44 20.41

RMSE 84.49 83.97 83.81

SR 1.00 1.00 0.98

W2 Iter 88.80 200.00

Time 4.04 20.40

RMSE 73.68 83.37

SR 1.00 0.26

2000/20/0.1 W1 Iter 58.00 9.56 200.00

Time 20.39 2.66 233.61

RMSE 30.25 30.33 30.26

SR 1.00 1.00 1.00

W2 Iter 64.60 200.00

Time 20.44 233.08

RMS 25.16 30.14

SR 1.00 0.10

2000/20/0.2 W1 Iter 65.00 14.96 200.00

Time 25.69 4.17 234.72

RMSE 52.71 52.26 52.20

SR 1.00 1.00 1.00

W2 Iter 71.98 200.00

Time 24.07 238.24

RMSE 44.59 52.01
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Table 1 continued n/r/θ W pMAP Cadzow DRI

SR 1.00 0.22

2000/20/0.5 W1 Iter 74.00 11.80 200.00

Time 29.47 3.40 234.85

RMSE 147.78 147.22 147.07

SR 1.00 1.00 1.00

W2 Iter 81.20 200.00

Time 26.98 235.46

RMSE 127.24 146.65

SR 1.00 0.28

5.2 Spectral sparse signal recovery

5.2.1 Experiment introduction

In this experiment, we consider the problem of recovering missing values in an
incomplete spectral sparse signal. We refer to [2,4] and the references therein
for its background in recovering signals which are spectrally sparse via off-grid
methodologies. We follow the suggestions in [2] to generate the experiment data
a = {a1, a2, . . . an} where

at =
r∑

s=1

dse
2π jωs t , for t ∈ {0, 1, . . . , n}

where j = √−1, r is the model order, ωs is the frequency of each sinusoid and
ds 
= 0 is the weight of each sinusoid. Bothωs and ds are randomly sampled following
uniform distributions, as ωs ∼ U [0, 1) and ds ∼ U [0, 2π). Indexes of missing data
are randomly sampled following uniform distribution. In this experiment we introduce
three sub-tests focusing on different purposes.

Test a: Incomplete signal recovery without noises In this sub-test we assume
only a subset Ω of the sampling points {1, . . . , n} are observed and we aim to recover
the signal by estimating the missing data. Here all observed data are noiseless. We use
success rate (SR) to measure the performance of the candidate methods in incomplete
signal recovery. We say the signal is successfully recovered if

‖x̂ − a‖
‖a‖ ≤ 10−3

where x̂ is the estimated signal.
In this test, signal length n is set to 499, 999 or 1999, respectively. The percentage

of known observations m
n is set to 30% or 60% where m stands for the amount of

known observations. All combinations of {n/m/r} used in this test can be found in
Table 2. To compare the performance of our proposed method, we further introduce
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three state-of-art solvers in spectral sparse signal recovery including Atomic Norm
Minimization (ANM [28]), Fast Iterative Hard Thresholding (FIHT [3]) and Projected
Gradient Descent (PGD [2]). W for each solver is defined as

Wi, j =
⎧
⎨

⎩

1/
√
i + j − 1 for i + j − 1 = 1, . . . , k − 1

1/
√
k for i + j − 1 = k, . . . , n − k + 1

1/
√

(n − i − j + 2) for i + j − 1 = n − k + 2, . . . , n,

if ai+ j−1 is observed, and Wi, j = 0 if it is missing.

Test b: Incomplete signal recovery with noises This sub-test still aims to recover
an incomplete spectral sparse signal, but some observed data are noisy while others are
noiseless. Here we follow the signal generating process the same as inTest a, however,
1
3m observations are polluted by random noises, as yi = ai +εi where εi = θ et‖e‖2 ‖a‖.
Here et is a complex stranded normal random variable and the noise level θ is set at
0.2. We assume the index set of polluted observations is known in advance.

The weight matrix W is set as follows. We give polluted observations very small
weights (say 1) and noiseless observations are assigned to much larger weights such
as 100. The missing data in the signal are given zero weight. This weighting scheme
is more reasonable than other choices as we place higher confidence in noiseless
data, less confidence in noisy data and no confidence in missing values. It is worth
noting that this weight matrix setting is for pMAP only because FIHT and PGD do not
support flexible weight choices. The rest settings of this sub-test such as the definition
of {n,m, r} are interpreted the same way as in Test a.

Test c:Recovermissingdatawith inaccurately estimated rank In bothTest a and
Test b, we assume the objective rank r to be a known parameter. However, obtaining
the true information of objective rank is quite challenging inmany real applications. So
in this sub-testwewill examine the performances of candidate solvers in recovering the
incomplete spectral sparse signals while the objective rank r is incorrectly estimated.
Signal length n is set as 3999 and we assume that 30% data in a signal are randomly
or accurately observed without noises. True rank r is set as 15 but assumed to be
unknown in this test. It means for each solver, we will try different estimated rank r̂
ranges from 6 to 30. Success rates (SR) over 50 instances are reported to measure the
performance of each solver.

5.2.2 Numerical results

Test (a) The numerical results of this test are listed in Table 2 including total iterations
(Iter), CPU time in seconds (Time), RMSE and success rate (SR) for each solver.
Among all solvers, ANM enjoys the best global convergence result because it is a
convex relaxation method. However, the computational cost of ANM is much higher
than the rest solvers and it runs out of memories when n is larger than 500. At the same
time, it fails to generate better results comparing with other solvers. Hence we do not
report its performances in the rest part of this test problem. Although DRI performs
slightly better than the Cadzowmethod in terms of accuracy, both of these two solvers
failed to successfully recover any incomplete signals.
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We further note the fact that in some cases FIHT stoppedwithin a few iteration steps
and this behaviourmay lead to inferior solutions. Similar behaviourswere also reported
in another recent research (Fig. 3, [31]). Also with the increasing r , the performance
of PGD declines when the ratio between m and r keeps fixed. It is because PGD has
some assumptions on the lower bound ofm with respect to r (Theorem 2.1, [2]), which
may not hold in some cases. On the other hand, pMAP performs the best in 11 cases
out of 12 in terms of the SR.

We find that FIHT is more computational efficient than pMAP. This is the result of
using the subspace technique in FIHT (Alg. 2 in [3]), which is designed to approximate
the matrix projections on to a low rank subspace and therefore reduces the computa-
tional time from O(n3) (SVD) to O(nr2). Although this technique can be adapted to
our framework so as to reduce the computational cost, there would be no theoretical
guarantee for its convergence results. We leave this potential improvement for future
researches.

Some applications require to estimate the coefficients of a spectral sparse signal
based on the reconstructed signal, including the amplitude ds and the frequency ωs for
all s ∈ [1, 2, . . . , r ]. We use the method in [6, Fig.2] to reconstruct the coefficients of
recovered signals in this experiment. The reconstruction results are plotted in Fig. 3
over two randomly selected instances. It is easy to observe that when r = 20, FIHT
incorrectly estimated most of coefficients with significant errors while both PGD and
pMAP could successfully recover most of them. On the other hand when r increases
to 40, PGD performedworse than both FIHT and pMAP. There are several coefficients
that were accurately estimated by FIHT and pMAP, but failed to be recovered by PGD
(those unrecovered data points were shown by pointing arrows in Fig. 3d).

Test b) Table 3 lists the numerical results for this test including Iter, Time, RMSE
and SR for five solvers. Due to the interference of noises, we increase the threshold of
success rate to 10−2 tomake sure the numerical results are comparable andmeaningful.

Experimental results show that our proposed pMAP significantly outperforms the
rest four candidate solvers in all tests. All the competitive solvers failed to recover
any signals successfully in all cases (i.e., SR = 0 on average). We observed that
those solvers were capable of generating points with RMSE at a level of 10−2, but
encountered extreme difficulty in driving RMSE below 10−2. In contrast, the SR of
pMAP is at least 0.92. It might be due to the fact that in DRI, FIHT and PGD, the
weight of each observations can not be customised, which means these solvers have
to give equal weights to both noisy observations and noiseless observations. As a
result, their estimation results are significantly affected by noisy observations. This
test clearly demonstrates the advantage of pMAP by allowing customized weighting
schemes.

Test (c) The numerical results of recovering missing data with inaccurately esti-
mated rank experiment are plotted in Fig. 4 for each solver. When r̂ is smaller than 15,
success rate for all solvers are zero. It indicates that none of these solvers can recover
the incomplete signal successfully when there is a lack of coefficients information.
With r̂ exactly equals to 15, all three methods including FIHT, PGD and pMAP can
achieve 100% recovery rate. However when r̂ > 15, one can expect varying per-
formances of the three solvers. The success rates of both PGD and FIHT gradually
decline with the increasing r̂ and they finally reach around 40% when r̂ = 30. One
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Fig. 3 Spectral sparse signal coefficients reconstruction results byFIHT,PGDandpMAP, setting {n/m/r} =
{499/150/20} in (a, c, e) and {n/m/r} = {499/300/40} in (b, d, f), respectively. Black circles stand for
the true locations of coefficients while red stars stand for the estimated locations of coefficients
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Table 3 Numerical results for Cadzow, FIHT, PGD, DRI and our proposed pMAP on the noisy signal
recovery experiment, including iterations (Iter), CPU time in seconds (Time), root of mean square error
(RMSE) and success rate (SR). Results in this table are the average of 50 trials

n/r Cadzow DRI FIHT PGD pMAP

499/5 Iter 7.92 200.00 7.64 24.18 20.86

Time 0.16 8.62 0.05 0.19 0.80

RMSE 9.86E−01 5.95E−02 2.63E−02 2.63E−02 2.19E−03

SR 0 0 0 0 1

499/10 Iter 8.96 200.00 14.18 27.48 28.56

Time 0.22 9.51 0.11 0.22 1.00

RMSE 9.84E−01 9.58E−02 3.71E−02 3.70E−02 3.14E−03

SR 0 0 0 0 1

499/20 Iter 11.34 200.00 28.52 77.74 43.64

Time 0.58 9.32 0.31 1.12 1.93

RMSE 9.73E−01 1.71E−01 5.70E−02 5.64E−02 6.76E−03

SR 0 0 0 0 0.96

999/10 Iter 8.24 200.00 7.60 17.44 29.54

Time 1.01 58.22 0.10 0.24 5.46

RMSE 9.86E−01 6.16E−02 2.58E−02 2.58E−02 1.39E−03

SR 0 0 0 0 1

999/20 Iter 9.18 200.00 16.96 53.62 40.08

Time 2.12 58.09 0.26 1.03 10.26

RMSE 9.84E−01 1.07E−01 3.84E−02 3.83E−02 2.80E−03

SR 0 0 0 0 0.98

999/40 Iter 11.70 200.00 40.20 127.40 58.56

Time 5.77 57.51 1.07 3.84 30.70

RMSE 9.64E−01 1.78E−01 5.70E−02 5.64E−02 4.46E−03

SR 0 0 0 0 0.96

1999/20 Iter 8.56 200.00 9.78 31.38 45.34

Time 6.04 582.12 0.22 0.96 35.32

RMSE 9.97E−01 6.70E−02 2.56E−02 2.56E−02 9.33E−04

SR 0 0 0 0 1

1999/40 Iter 9.58 200.00 25.04 79.34 58.32

Time 13.52 580.73 0.99 3.67 87.16

RMSE 9.92E−01 1.04E−01 3.86E−02 3.85E−02 1.78E−03

SR 0 0 0 0 0.98

1999/80 Iter 11.88 200.00 64.78 169.96 85.40

Time 36.53 582.52 5.39 15.18 270.06

RMSE 9.74E−01 1.82E−01 5.70E−02 5.62E−02 4.03E−03

SR 0 0 0 0 0.92
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Fig. 4 SR when the input rank is
misappropriated for FIHT, PGD
and pMAP. n is set as 3999 and
30% observations are known.
True rank r is 15. Results in this
figure are the average of 50 trials
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Fig. 5 Performance comparison for candidate solvers in incomplete signal recovering when the input rank
is incorrectly estimated. True rank is 15 and input rank is 21. a Plots the relative gap between xν and xν+1

for each solver at each iteration, while b plots the singular values of final solution by each solver. Both
figures are with log base 10 scale

the other hand, SR of our proposed pMAP stays at 100% for any r̂ no smaller than
15, which indicates that pMAP is more robust to the overestimation of objective rank
than the other two solvers. One may wonder what has caused the failure of FIHT and
PGD in this case. We explain it below.

Figure 5 compares the PGD, FIHT and pMAP using a random incomplete signal
recovery example in terms of the relative error between the two consecutive iterates
xν+1 and xν . Figure 5a shows that the failures of both FIHT and PGD in recovering
incomplete signal was caused by the non-convergence behaviour. Figure 5b illustrates
the distribution of singular values at the final iterates for each algorithm. A noticeable
feature is that FIHT terminates too early because it cut off toomany singular values that
are not negligible, while PGD and pMAP cut off all comparably small eigenvalues.
However, PGD suffers from non-monotonic convergence as shown in Fig. 5a. In
contrast, the performance of pMAP just fits the situation studied in Theorem 3, which
ensures locally linear convergence when the cut-off singular values are negligible
comparing to the first 15 largest ones.
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6 Conclusion

In this paper, we studied the problem of approximating a low rank Hankel matrix
from the noisy and/or incomplete observation matrix under arbitrary weights. It is
very challenging to tackle this problem due to its non-convexity. We introduced the
framework of majorizationminimizationmethod such that this problem can be tackled
iteratively with non-increasing objective function values. We further showed that the
subproblem enjoys a closed form solution, which can be efficiently computed. We
demonstrated the global optimal convergence property of our approach pMAP by
assuming that the penalty parameter goes to infinity. We also showed that this method
will at least converge to an ε-approximateKKTpoint linearly if the penalty parameterρ
is above a threshold. This method can be extended to tackle complex-valued matrices
because the majorization gr (X) through the subdifferential of hr (X) holds in the
complex-valued case. In the computational experiments for both series denoising and
signal completion problems, pMAP usually outperforms other state-of-the-art solvers
in terms of approximation accuracy within reasonable computing times.

One of the important topics to be further investigated is whether the computing
cost of pMAP can be improved. For example, the subspace optimization technique
used in [3] can reduce the computing time significantly compared with partial SVD,
which is the major source of computing cost in pMAP. However, this technique at its
current form is likely to break the established convergence result of pMAP, simply
because it can not guarantee a closed form solution of each subproblem. Another
interesting future research topic is extending our proposed pMAP framework to other
rank-minimization related problems with similar structures, such as robust matrix
completion and robust principal component analysis.

One referee suggested to consider the exact penalty using the distance function
itself rather than its squared from, and use the majorization-minimization approach to
the penalized problem. While we recognized the benefit of using the squared distance
function aswell surveyed in [18], we also think the suggested approach isworth serious
investigation. The focus of the difficulty is on how to design an efficient majorization
function for the distance function. We leave this to our next research topic.
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