
Computers and Fluids 246 (2022) 105620

A
0

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Data-driven Multi-Grid solver for accelerated pressure projection
Gabriel D. Weymouth ∗

Engineering and Physical Sciences, University of Southampton, Southampton, UK
Data-Centric Engineering, Alan Turing Institute, London, UK
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, NL

A R T I C L E I N F O

Keywords:
Pressure projection
Linear algebra
Data-driven

A B S T R A C T

Pressure projection is the single most computationally expensive step in an unsteady incompressible fluid
simulation. This work demonstrates the ability of data-driven methods to accelerate the approximate solution
of the Poisson equation at the heart of pressure projection. Geometric Multi-Grid methods are identified as
linear convolutional encoder–decoder networks and a data-driven smoother is developed using automatic
differentiation to optimize the velocity-divergence projection. The new method is found to accelerate classic
Multi-Grid methods by a factor of two to three with no loss of accuracy on eleven 2D and 3D flow cases
including cases with dynamic immersed solid boundaries. The optimal parameters are found to transfer
nearly 100% effectiveness as the resolution is increased, providing a robust approach for accelerated pressure
projection of unsteady flows.
1. Introduction

Pressure projection is a bottleneck in high-speed unsteady incom-
pressible flow solvers. Constructing approximate solutions for the dis-
crete pressure Poisson system is the most expensive part of each
time-step as the elliptic equation requires communication through-
out the computational domain instead of being confined to a local
characteristic. As such, the proportional cost only grows in massively
parallel simulations due to the required communication across pro-
cesses. Methods such as artificial-compressibility [1], smooth-particle-
hydrodynamics [2], and particle-in-cell [3] attempt to side-step this
computational cost by modeling or otherwise under-resolving the pres-
sure evolution compared to the fluid’s momentum. However, these
approaches lead to significant errors in pressure forces, thereby making
them unsuitable for many applications or requiring explicit pressure
corrections, [2].

Advances in data-driven acceleration of flow solvers have mainly
focused on reducing simulation resolution using data-assimilation and
data-driven turbulence closures [4–8] without focusing on projection
explicitly. Many of these approaches utilize Convolutional Neural Net-
works (CNN), Fig. 1, which have been successfully applied in other
fluids applications such as super-resolution [9] and full field regres-
sion models [10]. The CNN’s inherent translation symmetry and the
encoder–decoder architecture’s reduction and expansion of the array
size both help constrain model learning capacity and generalize the
trained networks to unseen prediction cases.

∗ Correspondence to: Engineering and Physical Sciences, University of Southampton, Southampton, UK.
E-mail address: g.d.weymouth@tudelft.nl.
URL: https://weymouth.github.io/.

A few recent studies have applied machine-learning to accelerate
the critical projection step itself [11–13] using CNNs to predict the
pressure field given the projection source term. All of these method
assume a uniform grid without internal solid geometries, although [11]
uses a decomposition to handle different domain boundary conditions
and grid aspect ratios in 2D. Unfortunately, the methods cannot be
applied to most simulation problems and even state-of-the-art results
are still qualitative, with errors greater than 10% throughout much of
the domain [11].

A key insight to accelerating pressure projection is that classic Geo-
metric Multi-Grid (GMG) methods [14] are simply linear convolutional
encoder–decoder networks, Fig. 1. While there is a long history of op-
timizing multi-grid methods (both geometric [15] and algebraic [16]),
few of these have taken a direct data-driven approach. In [15], a sparse
approximate smoother is constructed by solving a series of least-square
matrix equations instead of a data-driven approach. This improved the
convergence properties on extremely skewed grids compared to Gauss–
Seidel smoothers, but not on more regular grids or when using a very
sparse (and therefore fast) approximate inverse.

Employing modern data-driven techniques could further acceler-
ate GMG without the loss of accuracy currently limiting CNN meth-
ods. Recent work has shown promising initial results in constructing
data-driven restriction and prolongation operators [17,18]. However,
improving the architecture of these operators is a very challenging
discrete optimization problem, limiting the results achieved thus far.
vailable online 12 August 2022
045-7930/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compfluid.2022.105620
Received 21 October 2021; Received in revised form 7 April 2022; Accepted 8 Aug
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ust 2022

http://www.elsevier.com/locate/compfluid
http://www.elsevier.com/locate/compfluid
mailto:g.d.weymouth@tudelft.nl
https://weymouth.github.io/
https://doi.org/10.1016/j.compfluid.2022.105620
https://doi.org/10.1016/j.compfluid.2022.105620
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2022.105620&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Fluids 246 (2022) 105620G.D. Weymouth

s
s

𝑥
t

𝐴

w
t
i
p

w

𝑥

T
t

e
P
c
t
(
s
r
r

Fig. 1. Sketch of a convolutional encoder–decoder network and/or a geometric multi-grid V-cycle. Data is restricted down to a reduced size for faster processing before being
pushed back up to the full size. A two-level V-cycle is shown, but this process repeats recursively between the largest and smallest grid levels.
V
s
S
t
o
a

3

d

s
t
s
n
p
t
e
t

Both [17,18] show improved convergence spectra compared to classic
GMG methods, but no overall speed-up.

Building on this foundation, this manuscript develops a novel data-
driven smoother which is optimized using automatic differentiation to
minimize the velocity-divergence over the full recursive GMG V-cycle.
This new framework achieves 2 to 3-fold acceleration compared to
standard GMG on eleven 2D and 3D benchmark projection problems
including those derived from unsteady Navier–Stokes simulations with
dynamic immersed boundaries. Moreover, since the new approach
maintains linearity in the pressure and the nonlinear dependence on the
matrix coefficients are scale-invariant, the data-optimized parameters
generalize extremely well to new flows and simulation resolutions.

2. Linear system description

The discrete Poisson equation in the projection step is defined as

𝐴𝑥 = 𝑏 (1)

where 𝑥 is the unknown pressure field vector, 𝑏 is the source term
proportional to the divergence of the velocity field to be projected, and
𝐴 is the discrete matrix for the Poisson operator. For a conservative
Poisson operator, 𝐴 is symmetric, has zero-sum rows and columns,
is negative semi-definite, and has a single zero eigenvalue. The zero
eigenvalue means the solution is unique up to an additive constant, in
agreement with the derivative action of the pressure on the velocity-
divergence. While it is possible to add an additional condition to the
matrix, this is not required and has no impact on the projection problem
or the measured pressure forces. The matrix is also extremely sparse.
While the solution vector size 𝑁 may easily be 106−108, a second-order
cheme on structured grids in 𝑀 dimensions result in only 𝑀 non-zero
ub-diagonals.

Iterative methods solve Eq. (1) by updating an approximate solution
𝑘 to a new solution 𝑥𝑘+1 with reduced error. As the problem is linear,
he equation for the update 𝜖 is simply

𝜖𝑘 = 𝑟𝑘 ≡ 𝑏 − 𝐴𝑥𝑘 (2)

here 𝑟 is the residual. In the context of the pressure Poisson equation,
he residual is the remaining divergence in the velocity field. Driv-
ng this residual to zero by updating the pressure is the goal of the
rojection step.

In practice, only an approximate solution for 𝜖 is obtained, after
hich the solution and residual are incremented
𝑘+1 = 𝑥𝑘 + 𝜖𝑘, 𝑟𝑘+1 = 𝑟𝑘 − 𝐴𝜖𝑘. (3)

his process is iterated until the velocity-divergence residual is reduced
o a specified tolerance, at which point the projection step is complete.

Geometric Multi-Grid (GMG) methods are among the fastest it-
rative solution approaches for variable coefficient discrete pressure
oisson equations. A single iteration of GMG is called a V-cycle and
onsists of (i) a solution precondition step, (ii) residual restriction down
o the reduced-size problem, (iii) approximate solution of this problem,
iv) solution prolongation back up to correct the fine grid, and (v)
olution smoothing. This process is recursive, being applied to the
educed-size problems until they are small enough to be solved directly,
2

esulting in 𝑂(𝑁) operations per V-cycle. The first four steps of the s
-cycle distribute the residual throughout the domain, which enables
imple and relatively fast stationary methods such as Gauss–Seidel or
uccessive Over Relation (SOR) to effectively smooth the local error in
he projected solution. The V-cycle can be repeated until convergence
r used as an efficient preconditioner for another iterative solver such
s Conjugate Gradient.

. Data-driven accelerated projection method

As the Poisson equation is elliptic, any element of the velocity-
ivergence residual 𝑟 potentially influences every element of the update

𝜖. Therefore the linear 𝑂(𝑁) scaling achieved by GMG is already
optimal. However, data-driven methods can still be used to accelerate
GMG projection by speeding-up and increasing the residual reduction
of each V-cycle iteration.

The linearity of Eq. (2) is a critical property which the data-driven
projection method must maintain. Without it, the projection method
cannot be applied iteratively to drive the velocity-divergence to the
required tolerance of the flow solver. However, this linearity is only
with respect to the update and residual fields. The GMG operators can
potentially be explicit nonlinear functions of 𝐴, embedding information
about the discrete problem and boundary conditions.

Which GMG operation is the best candidate for such an approach?
Significant effort has focused on the optimization of the prolonga-
tion operator and its transpose restriction operator. However, prolon-
gation/restriction operators are not explicit functions of 𝐴, making
their optimization mathematically and numerically complex [17,18].
And while CNN encoding/decoding are simple to optimize with back-
propagation, their nonlinear activation functions make them invalid in
this application.

Another option is the precondition operator, but a simple Jacobi
preconditioner

𝜖 = 𝐷−1𝑟 (4)

where 𝐷 is the diagonal of 𝐴, is sufficient for the V-cycle to dis-
tribute the residual throughout the domain and is as fast as possible;
being a single Schur (broadcasted) vector product. Therefore, for the
remainder of the paper we will use a simple Jacobi preconditioner and
uniform pooling/distribution for restriction/prolongation and focus on
a data-driven smoothing operator.

While more complex options are certainly possible, this work con-
siders a sparse approximate inverse as a smoother

𝜖 = �̃�−1𝑟 (5)

where �̃�−1 = 𝑓 (𝐴 |𝜃) is a parameterized pseudo-inverse with the
ame sparsity as 𝐴 and 𝜃 is the parameter vector. The advantage of
his pseudo-inverse smoother is speed. Unlike Gauss–Seidel or SOR
moothers, the sparse matrix–vector multiplication of Eq. (5) requires
o back-propagation and so can be vectorized in serial or parallel im-
lementations, offering a significant potential speed-up. Additionally,
he matrix 𝐴 is constant during the projection step (and often for an
ntire simulation), meaning �̃�−1 can be computed and stored ahead of
ime.

There are few constraints on �̃�−1: it must scale with 𝐴−1, and

ymmetry of 𝐴 implies the pseudo-inverse should also be symmetric.

Computers and Fluids 246 (2022) 105620G.D. Weymouth
Fig. 2. Examples from the 2D static (left), dipole (center), and sphere (right) synthetic cases. The initial residual 𝑟0 (row-1) and 10x residual after one data-driven V-cycle 10𝑟1

(row-2) plotted on the same scale. The solution after one data-driven V-cycle 𝑥1 (row-3) and its 10x error compared to a machine precision solution 10𝜖1 (row-4) plotted on the
same scale.
For simplicity, the diagonal and off-diagonal coefficients of �̃�−1 are
constructed independently

�̃�−1𝑖𝑖 =
𝑓𝑑 (𝑎𝑖𝑖∕𝑠 |𝜃𝑑)

𝑎𝑖𝑖
, �̃�−1𝑖𝑗 =

𝑓𝑜(𝑎𝑖𝑗∕𝑠 |𝜃𝑜)
𝑎𝑖𝑖 + 𝑎𝑗𝑗

(6)

where function inputs are scaled by the maximum off-diagonal 𝑠 =
max(𝐴 − 𝐷) and the outputs are scaled by the diagonal elements.
Note that 𝑓𝑜(0) = 0 is required to maintain the sparsity of �̃�−1 and
that a Jacobi smoother would use a diagonal function 𝑓𝑑 = 1 and
off-diagonal function 𝑓𝑜 = 0. With the optimization problem now
reduced to two normalized single-variable functions, the specific choice
of parameterization is not critical and a simple quadratic is chosen for
𝑓𝑑 and 𝑓𝑜. Using higher-order polynomials, splines, and interpolating
kernels did not significantly change the results.

The parameterized smoother is optimized for a set of training data
𝑋 = {𝐴, 𝑟0}. The loss is defined as the reduction in the log-𝐿2-norm of
the residual after each V-cycle iteration

𝐿 = log10(|𝑟𝑘+1|2∕|𝑟𝑘|2) (7)

This loss is averaged over each iteration and each example in the data-
set. Working directly with a residual loss has a number of advantages.
First and foremost, the purpose of the pressure projection step is to
drive the velocity-divergence residual to zero, making this the ultimate
judge of any projection method. Second, this incorporates problem-
specific residual data which would be missing from a metric based only
on the V-cycle operator. Finally, the residual is always available, unlike
the error with respect to the unknown exact pressure solution.
3

The optimal parameters of the accelerated GMG projection method
are then given by the minimization

�̂� = min
𝜃

𝐿(𝜃 |𝑋) (8)

The residual loss function is a highly nonlinear recursive function of the
parameters, but automatic differentiation (AD) is used to determine the
gradient ∇𝜃𝐿 and Hessian 𝐻𝜃𝜃𝐿 in a Newton’s method optimizer [19,
20]. The use of AD allows this data-driven solver to extend to an
arbitrary number of grid levels, avoiding inaccurate and potentially
unstable finite differences.

The data-driven solver and all test cases presented in the following
sections are implemented in the Julia programming language [21] and
available for reproduction [22].

4. Synthetic discrete Poisson system results

A set of six synthetic cases were developed to establish the ability
of the data-driven approach to project out residuals (i) on domain
boundaries, (ii) within the fluid, or (iii) on body boundaries. The three
2D cases and their highly localized residuals are shown in Fig. 2, and
each has a matching 3D case. The ‘static’ cases feature a random linear
pressure field generated by residuals on the domain boundaries (i).
The ‘dipole’ and ‘sphere’ cases feature residuals on a random dipole
in the fluid (ii) or on the boundary of a random immersed sphere (iii).
Neumann conditions are applied on the domain and sphere boundaries

Computers and Fluids 246 (2022) 105620G.D. Weymouth
Fig. 3. (a) Residual reduction factor |𝑟𝑘+1|∕|𝑟𝑘| over a single Multi-grid V-cycle on the ‘test’ case after tuning using the ‘train’ case. ‘Jacobi‘ is the V-cycle performance using a
classic Jacobi smoother, and ‘union’ refers to the solver trained on all of the synthetic cases. (b) Time to reduce pressure residual by 10−3 for classical and parameterized smoothers
on each synthetic case. Time is relative to a single Jacobi-smoothed V-cycle on each grid.
using the Boundary Data Immersion Method (BDIM) to adjust the 𝐴 ma-
trix coefficients, as described and validated in [23,24]. The generative
equations for each synthetic case are given in Appendix A.

A data-driven GMG solver is optimized for each synthetic case using
100 randomized training examples. Fig. 2 also shows the residual and
error of each case after one data-driven V-cycle. The results show that
the initially highly-localized residual is projected throughout the do-
main, without build-up of error on the domain or immersed boundaries.
Repeated V-cycles drives the residual and error to machine zero in
every case.

Fig. 3(a) quantifies the generalization performance of each trained
projection method on 100 unseen test examples across cases. The re-
sults for a Jacobi-smoothed GMG V-cycle are shown for comparison as
this is the initial condition for the untrained data-driven method. After
training, the data-driven method vastly outperform the Jacobi V-cycle,
doubling the residual loss on the 3D-dipole case and providing nearly
30-fold improvement on the 3D-static case. While the performance of
the data-driven projection method is best when testing and training on
the same case, most of the solvers still improve on the Jacobi-smoothed
GMG performance for cases outside of their training set. Indeed, the
solver trained on the 2D-sphere generalizes essentially as well as a
solver trained on the ‘union’ of the all training case data. The exceptions
are the static cases, with the solver trained on the 2D-static case failing
to converge on three of the other test cases. Note that despite identical
𝐴 matrices in the static and dipole cases, the performance of the those
solvers are completely different. This indicates that the data-driven
methods are specializing based on the residual data as well as the
matrix structure, a feature unique to this approach.

Finally, the acceleration of the data-driven projection method is
evaluated against high-performance GMG solvers using classic sta-
tionary smoothers; Gauss–Seidel (GS) and Successive-Over-Relaxation
(SOR). The ‘union’-trained data-driven solver is used and 100 tests are
generated for each case on different grids to test the ability of the
data-driven method to generalize to new grid sizes.

The results in Fig. 3(b) show that the data-driven method has no
issue projecting the velocity divergence on unseen grid sizes, reducing
the residual by 10−3 in only 2-5x the time of a single Jacobi-smoothed
V-cycle. This is chosen as our unit of time since Jacobi-smoothing
requires the smallest possible number of operations per V-cycle, nor-
malizing results across grids. As the pseudo-inverse smoother is many
times faster than the Gauss–Seidel and SOR smoothers, this results in
an overall 80%–210% speed-up (mean: 133%) relative to classic GMG
solvers. Note that this speed-up will be even more favorable in parallel
computation as the new smoother operates directly on the local residual
without back-propagation, eliminating any additional communication.
4

5. Unsteady incompressible simulation projection results

Five unsteady incompressible simulation cases were used to further
characterize the accelerated projection method, Fig. 4. The first three
cases are variations on standard unsteady flow benchmarks, while
the second two are variations of recent validated biologically-inspired
flows [24]. The simulations feature significantly different physics to test
the accelerated projection performance from flows with and without
background velocities, immersed geometries, body motion, and body
deformation, as well as using computational grids of different sizes
and aspect ratios. All simulations use the same extensively validated
unsteady incompressible Navier–Stokes BDIM solver [23,24] and 100
Poisson matrices 𝐴 and initial residuals 𝑟0 are copied from each un-
steady simulation to form the training and testing data. The details of
each case are found in Appendix B.

Fig. 4 shows the pressure solutions, initial residual field, and the
residual after a single V-cycle of the data-driven GMG method trained
on each case. The results show that the residual decreases throughout
the domain, including at the domain and immersed boundaries. This
is further verified by Fig. 5, which demonstrates that the unsteady
swimming shark pressure forces using the data-driven GMG solver is
indistinguishable from the Gauss–Seidel smoothed results. As such, the
new data-driven method is shown to produce uniformly valid solutions
despite only being trained to optimize the global residual loss.

Fig. 6(a) shows that when the data-driven method trained on the
synthetic cases of the previous section is transferred to these unseen
simulation cases, it reduces the residual 2.5 to 3.9 times more ef-
fectively than an untrained Jacobi-smoothed V-cycle. Indeed, without
any further training this transfer solver achieves 85%–95% of the
residual reduction of a smoother optimized for each new case. Even
more promising is that training on reduced-size simulations closes that
small gap almost completely. Training on a 1∕4th-scale simulation is
fast, requiring only 𝑁∕4𝑀 points (N/16 in 2D and N/64 in 3D) and
≈ 1∕4 the number of time steps, while achieving 99%–100% of the
residual reduction of training with full-scale data. Such an auto-tuning
approach enables a highly effective data-driven projection method to
be developed for any flow simulation case with very little overhead.
Fig. 6(b) shows that this data-driven method greatly accelerates the
projection step relative to the classic MG methods on these real flow
cases. The solver tuned on the reduced resolution cases provides 112%–
230% acceleration, and even the transferred solver provides a mean
acceleration of 120%.

Finally, the parameterized 𝑓𝑑 , 𝑓𝑜 functions used in the approximate

inverse Eq. (6) are shown in Fig. 7. It is interesting to note that the

Computers and Fluids 246 (2022) 105620G.D. Weymouth
Fig. 4. Snapshots from the five flow simulation cases showing the pressure solution (left), the initial residual |𝑟0| (middle), and after a single V-cycle |𝑟1| (right) using the
data-driven projection method. The TGV and donut flow are 3D, the flapping wing is dynamic without a background flow and the swimming shark is a deforming geometry. All
residuals are visualized on the same log-scale, 10−6 …10−1. The TGV and wing images have been zoomed in for display purposes.
Fig. 5. Integrated thrust and side pressure forces the swimming shark test case using the Gauss–Seidel (GS) and data-driven (�̃�−1) GMG solvers and |𝑟𝑘∕𝑟0| < 10−3 tolerance level.
diagonal functions are all somewhat centered on one, the value for the
Jacobi smoother. We also note that the ‘wing’ and ‘shark’ cases produce
5

parameterizations which are similar to each other but significantly
different than the others cases. This is reasonable as dynamic and

Computers and Fluids 246 (2022) 105620G.D. Weymouth
Fig. 6. (a) Residual reduction over a single Multi-grid V-cycle on the full-resolution case. The ‘transfer’ smoother has been trained on the union of the synthetic data sets from
Fig. 2. The 1

8
, 1
4
, 1
2

smoothers have been trained on simulations with the indicated reduced resolution in each spacial and temporal dimension. (b) Time to reduce pressure residual
by 10−3 for classical and parameterized smoothers on each simulation case. Time is relative to the time of a single V-cycle using the Jacobi smoother.
Fig. 7. (a) Diagonal and (b) off-diagonal parameterized functions after optimization on the 1/4-resolution case. The ‘transfer’ smoother was tuned on the synthetic cases and the
Jacobi smoother values are shown for comparison.
deforming geometries put unique burdens on the pressure projection
step, as shown in the longer convergence times for these cases shown
in Fig. 6(b). Adopting a data-driven and auto-tuned approach en-
ables these pressure-projection dominated cases to achieve significant
accelerations.

6. Conclusions

This manuscript develops a successful data-driven method to ac-
celerate the solution of discrete pressure Poisson systems found in
incompressible flow simulations. Geometric Multi-Grid (GMG) meth-
ods are identified as linear convolutional encoder–decoder networks
with optimal 𝑂(𝑁) scaling, and the matrix coefficients are identified
as a critical nonlinear input, not only the projection source-term, as
they embed information such as boundary conditions. Mathematical
constraints are used to further focus the learning capacity to a pa-
rameterized Jacobi-like Multi-grid smoother. The resulting data-driven
solver is within 33% of the minimum computational cost per V-cycle,
6

and shown to accelerate classic Gauss–Seidel and SOR smoothed GMG
solvers by 80%–233% on eleven simulation cases. Because of the
focused learning capacity, the generalization is excellent, enabling 90%
effective transfer learning from a synthetic data-set and nearly 100%
transfer from reduced resolution simulations.

The potential of machine learning advances to improve fluid dy-
namics is vast, but well-applied classical methods and constraints are
needed to focus this potential. Wherever possible, this work has made
the simplest choice in parameterization, leaving significant opportuni-
ties for future improvements. The flow cases in this manuscript use
Cartesian-grids, but this does not limit the generality of the projec-
tion problems as the resulting 𝐴 matrices are nonuniform due to the
presence of the immersed geometries. The current data-driven GMG
framework can therefore be readily extended to the nonuniform matri-
ces induced by stretched structured grids. Extensions to unstructured
grids would require the use of algebraic instead of geometric multi-
grid, and a similar data-driven sparse smoother could accelerate such
projection methods.

Computers and Fluids 246 (2022) 105620G.D. Weymouth

u

r
D
t

∮

w
s
1
t
𝑑

f
g

𝑎

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The author thanks the Lloyds Register Foundation for funding the
Data Centric Engineering Program of the Alan Turing Institute.

Appendix A. Synthetic case details

The synthetic cases are all generated with simple functions on
uniform 2D or 3D grid using 𝑛 grid cells in each direction. 𝑛 = 32
cells were used for the training data and the testing data in Fig. 3(a).
𝑛 = 64, 96 and 128 were used for the testing data in Fig. 3(b).

The 2D and 3D static cases are generated from a constant gradient
solution

𝑥𝑖 = �̂� ⋅ 𝑞𝑖

where 𝑞𝑖 is the vector to the center of grid-cell 𝑖 and �̂� is a random
nit vector. The matrix 𝐴 is defined by 𝑎𝑖𝑗 = 1 on cell faces, 𝑎𝑖𝑗 = 0 on

domain faces, and 𝑎𝑖𝑖 = −
∑

𝑗 𝑎𝑖𝑗 . The initial residual is then 𝑟0 = 𝐴𝑥
which is nonzero only on the domain boundaries.

The 2D and 3D dipole cases are generated using a localized residual
function

𝑟𝑖 = �̂� ⋅
(

𝑞𝑖 − �⃗�
)

𝑒−
|𝑞𝑖−�⃗�|

2

𝜎2

where �⃗� is a random location in the fluid domain and 𝜎 is a random
width. The same uniform 𝐴 matrix is used as in the static case.

The 2D and 3D sphere cases are generated using the residual from
an immersed sphere with random center �⃗� and radius 𝑠, moving in a
andom direction �̂� in an initially still fluid. Following the Boundary
ata Immersion Method [23,24] the conservative pressure equation is

hen

𝜕𝛺𝑖

𝜕𝜙
𝜕𝑛

𝛽 d𝑠 = ∮𝜕𝛺𝑖

𝑚𝑛 (1 − 𝛽)d𝑠

here 𝜕𝛺𝑖 are the faces of grid cell 𝑖, �̂� is the face normal, 𝜙 is the
caled pressure, and 𝛽 is a coefficient which smoothly transitions from

to 0 as a function of the signed distance 𝑑 from the grid cell face
o the immersed boundary. For example, a sphere has signed distance
= |𝑞 − �⃗�| − 𝑠, and we could use 𝛽 = min(1,max(0, 𝑑 + 1

2)).
This equation is applied on each unit cell using second order central-

inite difference and cell-center quadrature. For example, in 1D this
ives

𝑖,𝑖−1 = 𝛽𝑤𝑖 , 𝑎𝑖,𝑖+1 = 𝛽𝑒𝑖 , 𝑎𝑖𝑖 = −(𝛽𝑤𝑖 + 𝛽𝑒𝑖), 𝑎𝑖𝑗 = 0 else
𝑟𝑖 = −𝑚

(

𝛽𝑒𝑖 − 𝛽𝑤𝑖
)

where 𝛽𝑤,𝑒
𝑖 are the values on the west and east faces of cell 𝑖. The

residual is non-zero only in the immersed boundary transition region
where 𝛽𝑒 ≠ 𝛽𝑤.

Appendix B. Unsteady simulation case details

The details for the five unsteady flow cases shown in Fig. 4 are:

(a) 2D flow past a static circular cylinder: Radius 𝑟 = 32 grid cells,
domain size 16𝑟 by 8𝑟 cells, cylinder center (4𝑟, 4𝑟), and Reynolds
number Re = 𝑈𝑟∕𝜈 = 250.

(b) 3D flow past a static donut: Major radius 𝑅 = 32 cells, minor
radius 𝑟 = 𝑅∕4, domain size 8𝑅 by 4𝑅 by 4𝑅, center (2𝑅, 2𝑅, 2𝑅),
and Re = 𝑅𝑈∕𝜈 = 103.
7

(c) 3D Taylor–Green Vortex turbulent decay: initial velocity func-
tion 𝑢 = − sin(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧), 𝑣 = cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧), 𝑤 =
0 with 𝑘 = 𝜋∕𝑛, domain size 𝑛 = 128 cubed, and Re = 105.

(d) 2D flow induced by a flapping plate wing: Length 𝐿 = 64 cells,
initial position (3𝐿, 4𝐿), horizontal displacement 𝑥 = 𝐿 sin(𝜔𝑡),
rotation angle 𝛼 = 𝜋

4 cos(𝜔𝑡), domain size 6𝐿 by 6𝐿 cells, and
Re = 𝜔𝐿2∕𝜈 = 250.

(e) 2D flow past the undulating cross-section of a swimming shark:
Body length 𝐿 = 128 cells, domain size 4𝐿 by 2𝐿, undulation
wavenumber 𝑘 = 5.3∕𝐿, tail peak-to-peak amplitude 𝐴 = 0.2𝐿,
Strouhal number St = 𝑓𝐴∕𝑈 = 0.3, and Re = 𝑈𝐿∕𝜈 = 104.

Reduced resolution training data used for Fig. 6 uses the same setup as
above, except the resolution is decreased. For example, a 1

4 -resolution
wing simulation uses 𝐿 = 16 cells which reduces the amplitude of
motion and domain size proportionally.

References

[1] He X, Doolen GD, Clark T. Comparison of the lattice Boltzmann method and the
artificial compressibility method for Navier–Stokes equations. J Comput Phys
2002;179(2):439–51.

[2] Kiara A, Hendrickson K, Yue DK. SPH for incompressible free-surface flows. Part
I: Error analysis of the basic assumptions. Comput & Fluids 2013;86:611–24.

[3] Jiang C, Schroeder C, Teran J. An angular momentum conserving affine-particle-
in-cell method. J Comput Phys 2017;338:137–64.

[4] Asch M, Bocquet M, Nodet M. Data assimilation: methods, algorithms, and
applications. SIAM; 2016.

[5] Beck A, Flad D, Munz C-D. Deep neural networks for data-driven LES closure
models. J Comput Phys 2019;398:108910.

[6] Maulik R, San O, Rasheed A, Vedula P. Subgrid modelling for two-dimensional
turbulence using neural networks. J Fluid Mech 2019;858:122–44.

[7] Ling J, Kurzawski A, Templeton J. Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance. J Fluid Mech 2016;807:155–66.

[8] Font B, Weymouth GD, Nguyen V-T, Tutty OR. Deep learning of the
spanwise-averaged Navier–Stokes equations. J Comput Phys 2021;434:110199.

[9] Liu B, Tang J, Huang H, Lu X-Y. Deep learning methods for super-resolution
reconstruction of turbulent flows. Phys Fluids 2020;32(2):025105.

[10] Bhatnagar S, Afshar Y, Pan S, Duraisamy K, Kaushik S. Prediction of
aerodynamic flow fields using convolutional neural networks. Comput Mech
2019;64(2):525–45.

[11] Özbay AG, Hamzehloo A, Laizet S, Tzirakis P, Rizos G, Schuller B. Poisson CNN:
Convolutional neural networks for the solution of the Poisson equation on a
Cartesian mesh. Data-Centric Eng 2021;2.

[12] Xiao X, Zhou Y, Wang H, Yang X. A novel CNN-based Poisson solver for fluid
simulation. IEEE Trans Vis Comput Graphics 2020;26(3):1454–65.

[13] Ajuria Illarramendi E, Alguacil A, Bauerheim M, Misdariis A, Cuenot B, Benaz-
era E. Towards an hybrid computational strategy based on deep learning for
incompressible flows. In: AIAA Aviation 2020 forum. 2020, p. 3058.

[14] Briggs WL, Henson VE, McCormick SF. A multigrid tutorial. SIAM; 2000.
[15] Tang W-P, Wan WL. Sparse approximate inverse smoother for multigrid. SIAM

J Matrix Anal Appl 2000;21(4):1236–52.
[16] Brezina M, Falgout R, MacLachlan S, Manteuffel T, McCormick S, Ruge J.

Adaptive algebraic multigrid. SIAM J Sci Comput 2006;27(4):1261–86.
[17] Katrutsa A, Daulbaev T, Oseledets I. Black-box learning of multigrid

parameters. J Comput Appl Math 2020;368:112524. http://dx.doi.org/10.
1016/j.cam.2019.112524, URL https://www.sciencedirect.com/science/article/
pii/S0377042719305291.

[18] Greenfeld D, Galun M, Basri R, Yavneh I, Kimmel R. Learning to optimize
multigrid PDE solvers. In: International conference on machine learning. PMLR;
2019, p. 2415–23.

[19] Mogensen PK, Riseth AN. Optim: A mathematical optimization package for Julia.
J Open Source Softw. 2018;3(24):615. http://dx.doi.org/10.21105/joss.00615.

[20] Revels J, Lubin M, Papamarkou T. Forward-mode automatic differentiation in
Julia. 2016, arXiv:1607.07892 [Cs.MS].

[21] Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. SIAM Rev 2017;59(1):65–98.

[22] Weymouth GD. Data-driven geometric multi-grid for the poisson equation. 2021,
GitHub, URL https://github.com/weymouth/DataDrivenGMG.jl.

[23] Maertens AP, Weymouth GD. Accurate Cartesian-grid simulations of near-body
flows at intermediate Reynolds numbers. Comput Methods Appl Mech Engrg
2015;283:106–29.

[24] Lauber M, Weymouth GD, Limbert G. Immersed boundary simulations of flows
driven by moving thin membranes. J Comput Phys 2022;111076.

http://refhub.elsevier.com/S0045-7930(22)00221-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb1
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb2
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb3
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb4
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb5
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb6
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb6
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb6
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb7
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb7
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb7
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb8
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb9
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb10
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb11
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb12
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb12
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb12
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb13
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb14
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb15
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb16
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb16
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb16
http://dx.doi.org/10.1016/j.cam.2019.112524
http://dx.doi.org/10.1016/j.cam.2019.112524
http://dx.doi.org/10.1016/j.cam.2019.112524
https://www.sciencedirect.com/science/article/pii/S0377042719305291
https://www.sciencedirect.com/science/article/pii/S0377042719305291
https://www.sciencedirect.com/science/article/pii/S0377042719305291
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb18
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb18
http://dx.doi.org/10.21105/joss.00615
http://arxiv.org/abs/1607.07892
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb21
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb21
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb21
https://github.com/weymouth/DataDrivenGMG.jl
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb23
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb24
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb24
http://refhub.elsevier.com/S0045-7930(22)00221-3/sb24

	Data-driven Multi-Grid solver for accelerated pressure projection
	Introduction
	Linear system description
	Data-driven accelerated projection method
	Synthetic discrete Poisson system results
	Unsteady incompressible simulation projection results
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Synthetic case details
	Appendix B. Unsteady simulation case details
	References

