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Abstract: Power spectra play an important role in the theory of inflation, and their ability to
reproduce current observational data to high accuracy is often considered a triumph of inflation,
largely because of a lack of credible alternatives. In previous work we introduced an alternative
picture for the cosmological power spectra based on the nonperturbative features of the quantum
version of Einstein’s gravity, instead of currently popular inflation models based on scalar fields.
The key ingredients in this new picture are the appearance of a nontrivial gravitational vacuum
condensate (directly related to the observed cosmological constant), and a calculable renormalization
group running of Newton’s G on cosmological scales. More importantly, one notes the absence of
any fundamental scalar fields in this approach. Results obtained previously were largely based
on a semi-analytical treatment, and thus, while generally transparent in their implementation,
often suffered from the limitations of various approximations and simplifying assumptions.
In this work, we extend and refine our previous calculations by laying out an updated and
extended analysis, which now utilizes a set of suitably modified state-of-the-art numerical programs
(ISiTGR, MGCAMB and MGCLASS) developed for observational cosmology. As a result, we are able
to remove some of the approximations employed in our previous studies, leading to a number of
novel and detailed physical predictions. These should help in potentially distinguishing the vacuum
condensate picture of quantum gravity from that of other models such as scalar field inflation.
Here, besides the matter power spectrum Pm(k), we work out, in detail, predictions for what are
referred to as the TT, TE, EE, BB angular spectra, as well as their closely related lensing spectra.
However, the current limited precision of observational data today (especially on large angular scales)
does not allow us yet to clearly prove or disprove either set of ideas. Nevertheless, by exploring in
more details the relationship between gravity and cosmological matter and radiation both analytically
and numerically, together with an expected future influx of increasingly accurate observational data,
one can hope that the new quantum gravitational picture can be subjected to further stringent tests
in the near future.

Keywords: quantum cosmology; quantum gravity; inflationary cosmology

1. Introduction

In cosmology, we know that the Universe is not perfectly homogeneous and isotropic, but rather
comprises of fluctuations in matter and energy densities. Furthermore, these fluctuations are
congregated and correlated in a rather specific manner. Detailed measurements reveals fluctuations of
various sizes follows a well-defined patterns, which can be quantified with correlation functions and
power spectra [1–4]. The question of why these density fluctuations are distributed the way they are
is thus an important one in cosmology. The conventional explanation for the shape of these power
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spectra is provided by inflation models, which are based on hypotheses of additional primordial scalar
fields called inflatons [5–7]. The shape of the observed power spectra are then derived from quantum
fluctuation of these primordial inflaton fields, and the agreement of this prediction with observations
to high accuracy has been widely regarded as a great triumph and confirmation for inflation [8].

In our previous works [9,10], we have offered an alternative explanation based on gravitational
fluctuations alone without inflation, which to our knowledge is the first-of-its-kind. While the theory
of quantum gravity remains speculative in the short-distance regime—due to both the infinite
number of allowed higher-order operators consistent with general covariance together with a lack
of experimental results in this regime, the long-distance or infrared limit of the theory is however in
principle well-defined and unique, governed primarily by the concept of universality. Nevertheless,
this long-distance quantum theory of gravity still suffers from being perturbatively nonrenormalizable,
rendering perturbation theory useless for calculating any quantum corrections in gravity. However,
in the past decades, well known field theory techniques have been extensively developed, applied
and even tested to high accuracy in various disciplines of physics where perturbation theory
fails (e.g., non-linear sigma model, Heisenberg magnets). It is thus highly conceivable that these
nonperturbative techniques may find use in deriving physical consequences for another perturbatively
nonrenormalizable theory such as gravity.

From previous efforts [11,12], it was shown that quantum effects of gravity may manifest
themselves not only on the extreme small (UV) scales, but also on the extreme large (IR), cosmological
scales. In particular, our works [9,10] have shown that, utilizing nonperturbative field theory methods,
much of the cosmological matter power spectrum can be derived and reproduced purely from Einstein
gravity and standard ΛCDM cosmology alone, without the need of any additional scalar fields as
advocated by inflation. We have shown that not only the predictions agree quite well with recent data
by the Planck Collaboration [13], but also that additional quantum effects predict subtle deviations
from the classical picture, which allows this approach to be testable in the near future with increasingly
powerful cosmological experiments.

In this paper, we extended our analysis in two major areas. First, we utilized a number of current
numerical cosmological programs, such as ISiTGR, MGCAMB and MGCLASS. Secondly, with the
help of these numerical programs, we generated predictions for all other cosmologically significant
spectra, including polarizations (CEE

l , CBB
l , CTE

l , etc.) and lensing spectra (Cφφ
l , CTφ

l , etc.). The paper is
organized as follows. In Section 2, we summarize the theoretical basis as relevant to present discussion.
Section 3 introduces the numerical programs we use. Section 4 presents the numerical results and
analysis. Finally, key points and future work are summarized in the conclusion.

2. Background

In this section, we will provide a brief review of the quantum theory of gravity and how it is
related to various power spectra that can be measured in cosmology. More detailed accounts of the
nonperturbative approach to quantum gravity and the derivation of the spectra can be found in
previous work [9–12]. The following will therefore only serve to summarize the key points and main
results that are relevant for the subsequent discussion.

Quantum gravity, the covariantly quantized theory of a massless spin-two particles, is in principle
a unique theory, as shown by Feynman some time ago [14,15], much like the Yang–Mills theory and
QED are for massless spin-one particles. In the covariant Feynman path integral approach, only two key
ingredients are needed to formulate the quantum theory—the gravitational action S

[
gµν

]
and the

functional measure over metrics
[
dgµν

]
, leading to the generating function

Z =
∫ [

d gµν

]
e

i
h̄ S[gµν] , (1)



Universe 2020, 6, 92 3 of 30

where all physical observables could in principle be derived from. For gravity the action is given by
the Einstein–Hilbert term appended by a cosmological constant

S
[
gµν

]
=

1
16πG

∫
d4x
√

g (R− 2λ) , (2)

where R is the scalar curvature, g being the determinant of the metric gµν(x), G Newton’s constant
and λ is the scaled cosmological constant (where a lower case is used here, as opposed to the more
popular upper case in cosmology, so as not to confuse it with the ultraviolet-cutoff in quantum field
theories that is commonly associated with Λ). The other key ingredient is the functional measure for the
metric field, which in the case of gravity describes an integration over all four metrics, with weighting
determined by the celebrated DeWitt form [16]. There are two important subtleties worth noting here.
Firstly, in principle, additional higher derivative terms that are consistent with general covariance
could be allowed in the action, but nevertheless will only affect physics at very short distances and will
not be relevant nor needed here for studying large-distance cosmological effects. Secondly, as in most
cases that the Feynman path integral can be written down, from non-relativistic quantum mechanics
to field theories, the formal definition of integrals requires the introduction of a lattice, in order to
properly account for the known fact that quantum paths are nowhere differentiable. It is therefore
a remarkable aspect that the theory, in a nonperturbative context, does not, at least in principle, seem to
require any additional extraneous ingredients, besides the standard ones mentioned above, to properly
define a quantum theory of gravity.

At the same time, gravity does present some rather difficult and fundamentally inherent
challenges, such as its well-known perturbatively nonrenormalizable feature due to a badly divergent
series in Newton’s constant G, the intensive computational power needed for any numerical calculation
due to it being a highly nonlinear theory, the conformal instability which makes the Euclidean path
integral potentially divergent, and further genuinely gravitational-specific technical complications
such as the fact that physical distances between spacetime points—which depend on the metric which
is a quantum entity—fluctuate.

Although these hurdles will ultimately need to be addressed in a complete and satisfactory
way, a comprehensive account is of course far beyond the scope of this paper. However, regarding
the perturbatively nonrenormalizable nature, some of the most interesting phenomena in physics
often stem from non-analytic behavior in the coupling constant and the existence of nontrivial
quantum condensates, which are hidden from and impossible to probe within perturbation theory
alone. It is therefore possible that certain challenges encountered in the case of gravity are likely the
result of inadequate perturbative treatments, and not necessarily a reflection of some fundamentally
insurmountable problem with the theory itself. Here, we shall take this as a motivation to utilize the
plethora of well-established nonperturbative methods to deal with other quantum field theories where
perturbation theory fails, and attempt to derive sensible physical predictions that can hopefully be
tested against observations. More detailed accounts on the other various issues associated with the
theory of quantum gravity can be found for example in [11,12], and references therein.

For our present discussion, we will mention several main results and ingredients from this
perspective. The nonperturbative treatments of quantum gravity via both Wilson’s 2 + ε double
expansion (both in G and the spacetime dimension) and the Regge–Wheeler lattice path integral
formulation [17] reveal the existence of a new quantum phase, involving a nontrivial gravitational
vacuum condensate [11]. Along with this comes a nonperturbative characteristic correlation length
scale, ξ, and a new set of non-trivial scaling exponents such as ν, as is common for well-studied
perturbatively non-renormalizable theories [18–23]. Together, these two parameters characterize
the quantum corrections to physical observables such as the long-distance behavior of invariant
correlation functions, as well as the renormalization group (RG) running of Newton’s constant G,
which in coordinate space leads to a covariant G(�) with � = gµν∇µ∇ν [12]. In particular, in can
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be shown [11,24] that for r < ξ, the connected correlation function of the scalar curvature over large
geodesic separation r ≡ |x− y| scales as

GR(r) = 〈 δR(x) δR(y) 〉 ∼ 1
r2(d−1/ν)

, (3)

where d here refers to the dimension of spacetime, and δR is the fluctuation in the scalar curvature.
Furthermore, the RG running of Newton’s constant can be expressed as

G(k) = G0


 1 + 2 c0

(
m2

k2

) 1
2ν

+O


(

m2

k2

) 1
ν




 (4)

where m ≡ 1/ξ is a characteristic nonperturbative mass scale, and 2 c0 ≈ 16.04 a nonperturbative
amplitude, which (unlike the universal exponent ν) cannot be obtained in perturbation theory, and thus
requires a genuinely nonperturbative approach, such as the Regge–Wheeler lattice formulation of
gravity [25–31].

Here we note the important roles played by the quantum parameters ν and ξ. The appearance of
a gravitational condensate is viewed as analogous to the (equally nonperturbative) gluon and chiral
condensates known to describe the physical vacuum of QCD, so that the genuinely nonperturbative
scale ξ (or equivalently m = 1/ξ) is in many ways analogous to the scaling violation parameter ΛM̄S of
QCD (Note that gravitons nevertheless stay massless the same way gluons do in QCD, and there is no
explicit violation of gauge or coordinate invariance). Similarly, the overall magnitude of such a scale
cannot be established from first principles, but should instead be linked with other length scales in the
theory, such as the observed cosmological constant scale

√
1/λ, or equivalently the (scalar) curvature

vacuum expectation value
〈
∫

d4x
√

g R 〉
〈
∫

d4x
√

g 〉 ≡ 〈 R 〉. (5)

The latter is related to the observed cosmological constant via the Einstein field equations

〈 R 〉 = 4λ . (6)

It follows that the observed cosmological constant λ can be used to infer the magnitude of
the gravitational vacuum condensate scale ξ. More specifically, the combination most natural to be
identified with ξ is

λ

3
=

1
ξ2 , (7)

such that ξ ∼
√

3/
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such that ξ ∼
√

3/˘ ' 5300 Mpc for the observed value of λ [11,32,33]. On the other hand, the other
key quantity—the universal scaling dimension ν, can be extracted via a number of methods, many of
which are summarized in [29–31,34–51]. Multiple avenues (including a simple geometric argument
that suggests ν = 1/(d− 1) for spacetime dimension of d ≥ 4 [12]) point to a value of ν−1 ' 3.0,
which will serve as a sufficiently good working value for this parameter in the following.

It should be noted that the nonperturbative scale ξ should also act as an infrared (IR) regulator,
such that, like in other quantum field theories, expressions in the “infrared” (i.e., as r → ∞,
or equivalently k→ 0) should be augmented by

1
k2 →

1
k2 + m2 (8)

where the quantity m = 1/ξ ' 2.8× 10−4 h Mpc−1, expressed in the dimensionless Hubble constant
h ' 0.67 for later convenience. Consequently, the augmented expression for the running of Newton’s
constant G becomes
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key quantity—the universal scaling dimension ν, can be extracted via a number of methods, many of
which are summarized in [29–31,34–51]. Multiple avenues (including a simple geometric argument
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which will serve as a sufficiently good working value for this parameter in the following.

It should be noted that the nonperturbative scale ξ should also act as an infrared (IR) regulator,
such that, like in other quantum field theories, expressions in the “infrared” (i.e., as r → ∞,
or equivalently k→ 0) should be augmented by

1
k2 →

1
k2 + m2 (8)

where the quantity m = 1/ξ ' 2.8× 10−4 h Mpc−1, expressed in the dimensionless Hubble constant
h ' 0.67 for later convenience. Consequently, the augmented expression for the running of Newton’s
constant G becomes
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G(k) = G0


 1 + 2 c0

(
m2

k2 + m2

) 1
2ν

+O


(

m2

k2 + m2

) 1
ν




 . (9)

The aim here is therefore to explore areas where these predictions can be put to a test.
The cosmological power spectra, which are closely related to correlation functions, and thus take
effects over large distances, provide a great testing ground for these quantum gravity effects.

To make contact with cosmological observations, the gravitational correlation function GR(r) in
Equation (3) has to be related to the cosmologically observed matter density correlation

Gρ(r; t, t′) ≡
〈

δm(x, t) δm(y, t′)
〉
=

1
V

∫

V
d3z δm(x + z, t) δm(y + z, t) , (10)

where r = |x− y|, and

δm(x, t) ≡ δρ(x, t)
ρ̄(t)

=
ρ(x, t)− ρ̄(t)

ρ̄(t)
. (11)

is the matter density contrast, which measures the fractional overdensity, or fluctuation, of matter
density ρ above the average background density ρ̄. In the literature, this correlation is more often
studied in Fourier-, or wavenumber-space, Gρ(k; t, t′) ≡ 〈 δ(k, t) δ(−k, t′) 〉, via a Fourier transform.
It is also common to bring these measurements to the same time, say t0, so that one can compare
density fluctuations of different scales as they are measured and appear today. The resultant object
Pm(k) is referred to as the matter power spectrum,

Pm(k) ≡ (2π)3〈 |δ(k, t0)|2 〉 = (2π)3F(t0)
2〈 |∆(k, t0)|2 〉 , (12)

where δ(k, t) ≡ F(t)∆(k, t0). The factor F(t) then simply follows the standard GR evolution formulas
as governed by the Friedmann–Robertson–Walker (FRW) metric. As a result, Pm(k) can be related to,
and extracted from, the real-space measurements via the inverse transform

Gρ(r; t, t′) =
∫ d3k

(2π)3 Gρ(k; t, t′) e−ik·(x−y)

=
1

2π2
F(t)F(t′)

F(t0)2

∫ ∞

0
dk k2 Pm(k)

sin (kr)
kr

.
(13)

It is often convenient to parameterize these correlators by a so-called scale-invariant spectrum,
which includes an amplitude and a scaling index, conventionally written as

Gρ(r; t0, t0) =
( r0

r

)γ
. (14)

Pm(k) =
a0

ks , (15)

It is then straightforward to relate the scaling indices using Equation (13), giving s = (d− 1)−γ =

3− γ. Note that Gρ(r; t0, t0) is sometimes referred to as ξ(r) in the literature, but we will use the former
to avoid confusion with the fundamental gravitational correlation length ξ.

To arrive at a prediction for the matter density fluctuations Gρ, Pm from gravitational fluctuations
GR, we make use of the Einstein field equations

Rµν −
1
2

gµνR + λgµν = 8πG Tµν . (16)
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In a matter dominated era, such as the one where galaxies and clusters are formed, the energy
momentum tensor follows a perfect pressureless fluid to first approximation. Hence, the trace
equation reads

R− 4λ = −8πG T . (17)

(For a perfect fluid the trace gives T = 3p− ρ, and thus T ' −ρ for a non-relativistic fluid.) Since
λ is a constant, the variations and hence correlations, are directly related as in

〈 δR(x) δR(y) 〉 = (8πG)2 〈 δρ(x) δρ(y) 〉 . (18)

As described above, quantum gravity predicts that, over large distances, the scalar curvature-
fluctuations scale as GR ≡ 〈 δR(x) δR(y) 〉 ∼ 1/r2. This implies that the matter density fluctuations
follow an analogous scaling relation

Gρ =
( r0

r

)2
(19)

as r → ∞, within the matter dominated era, and thus γ = 2. From the Fourier transform in
Equation (13), we get

Pm(k) =
a0

k
(20)

as k → 0 in wavenumber-space, in the matter dominated regime. This result of linear scaling
is a well-tested and well-supported result from decades of cosmological measurements of galaxy
correlations functions [52].

It should be noted that the scaling relation of Equation (3) with 2(d− 1/ν) = 2, and as a result
γ = 2 or s = 1, does not follow from simple dimensional arguments, (indeed the relevant correlation
function is dimensionless), and is instead a non-trivial result based on anomalous scaling dimensions
associated with quantum gravity in four dimensions. Indeed (as discussed for example in [11]) in
the weak field expansion the scaling result of Equation (3) would be rather different. In fact the
approximate value of γ = 2 for galaxy matter density correlations has been a long standing puzzle in
observational cosmology, see for example the cosmology monograph [1].

To extend beyond the linear matter dominated regime, the trace equation alone becomes
insufficient (since the trace of the energy momentum tensor for radiation vanishes), and the full
tensor equation has to be used. Furthermore, in a real universe with multiple fluid components,
interactions and transient behaviors have to be taken into account, which are governed by coupled
Boltzmann equations. However, these classical procedures are fully worked out in standard cosmology
texts [53,54]. Following [53], the matter power spectrum can be written in two parts—an initial
condition known as a primordial spectrumRo

k, and an interpolating function between the domains
known as a transfer function T (k). Thus, the full Pm(k) beyond the galaxy domain will take the form

Pm(k) = C0 (Ro
k)

2 k4 [T (κ)]2 , (21)

where C0 ≡ 4(2π)2 C2(ΩΛ/ΩM)/25 Ω2
M H4

0 is a constant of cosmological parameters, and the k4

factor for convenience. The transfer function is usually written in terms of κ ≡
√

2k/keq, a scaled
dimensionless wavenumber, with keq being the wavenumber at matter-radiation-equality. With this
decomposition, the transfer function is a fully classical solution of the set of Friedmann and Boltzmann
equations, capturing the nonlinear dynamics. This leaves the initial primordial function, which can be
parameterized as a scale-invariant spectrum

(R0
k)

2 = N2 1
k3

(
k

kR

)ns−1
, (22)

which is only parameterized by an amplitude N2 and a spectral index ns. kR is referred to as the
“pivot scale”, and is simply a reference scale, conventionally taken to be kR = 0.05 Mpc−1.
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While the transfer function T (κ)—the solution to the highly-coupled and nonlinear set of
Friedmann, Boltzmann and continuity differential equations—is difficult to solve, it is in principle
fully determined from classical dynamics. Moreover, assuming standard ΛCDM cosmology dynamics
and evolution, a semi-analytical interpolating formula for T (κ) [53] is known. As a result, if the initial
spectrum Ro

k, or more specifically the parameters N and ns, is set, then Pm(k) is fully determined.
To find N and ns, it can be done by matching. Since Equation (20) is known to be valid in the
galaxy and cluster domains, and Equation (21) is supposed to account for all wavenumber-scales,
these equations should overlap in the galaxy domain. So by matching Equation (20), which is fixed by
the scaling of curvature correlation functions, with Equation (21) in the overlapping region, N and ns

can be found, thus fully normalizing Pm(k). More precise details of this procedure, as well as detailed
comparison plots with the latest observational data, can be found in our previous work [9]. The key
resultant analytical prediction for Pm(k) from this procedure is also reproduced here in the later
plot as the solid blue curve in Figure 1, showing almost perfect fit to all observational data for
k� 3

√
2c0 m ' 5× 10−4 Mpc−1.

Figure 1. Comparison between the analytical vs. numerical predictions of the RG running of Newton’s
constant’s effect on the matter power spectrum Pm(k). The solid curves represent the analytical
predictions, with the top (blue), middle (green) and bottom (orange) representing the quantum
amplitude quantum amplitudes (see Equation (9)) c0 = 0, 1.146, 8.02, respectively (see Equation (9)),
of which their detailed derivations can be found in [9,10]. The corresponding dashed curves represent
the corresponding the numerical predictions generated by ISiTGR, showing very good general
consistency with the trend derived from analytical methods. The observational CMB and galaxy
data points, taken from the Planck (2018) collaboration [13] and Sloan Digital Sky Survey (SDSS)’s 14th
Data Release (DR14) [52] are also shown.

Finally for scales of k comparable to 3
√

2c0 m, additional quantum effects are expected to become
significant, due to the nontrivial vacuum condensation nature of gravity, enough to cause deviations
from the classical ΛCDM result of Pm(k). This scale is already hinted in for example Equation (4).
These modification can again be done either analytically or relying on a program numerically.
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Analytically, the effect of the RG running of Newton’s constant (Equation (4)) can be included via
dimensional analysis for the correct factors of G to include,

Pm(k) →
[

G0

G(k)

]2
Pm(k) , (23)

and IR regulations rather straightforwardly as per Equation (8), as is done in other similar quantum
condensate theories such as QCD or condensed matter theories. More details can again be found in [10].
These results are reproduced as a plot later (Figure 1) to compare with the fully-numerical results,
showing great agreement between them. Obtaining the latter, i.e., the numerical results, shall form the
focus and the remaining of this paper. Following similar analysis to determining Pm(k), other spectra
such as the angular temperature spectrum CTT

l , should be fully derivable from the primordial function
Ro

k, or specifically ns, which is set by the scaling of gravitational curvature fluctuations ν. In fact, many
spectra are only various variations of integral transforms with different physical observable quantities,
say, photon temperature and polarization, instead of mass density δρm. A brief review of that is given
in Section 4.2. Finally, it should be re-emphasized that in this picture, a scalar field is not an essential
ingredient to determineRo

k.
It should be noted that there are intrinsic uncertainties in some of the theoretical parameters of

this analytical approach as well—such as the value of the scaling dimensions of GR ν from Equation (3),
or the amplitude of the first order quantum corrections for the RG running of Newton’s G c0 from
Equation (4). These values have to be extracted from the highly nonlinear gravitational Feynman path
integral, and have to be done through either various analytical approximations, or more precisely
through numerical simulations. For example, from the latest lattice simulations results of the path
integral, it is found 1/ν ' 2.997(9) and c0 ' 8.02, with the latter an error that is estimated at
around 50%. Other methods, summarized in [11], including observational data as studied in [10],
all support the value ν ∼ 1/3. As eluded in this paper as well, this concordance for the value of ν with
various methods is not surprising, given the universality nature of this index ν. On the other hand,
the amplitude for quantum corrections c0 cannot be claimed to the same degree of confidence as ν,
other than an intuition that it should be some order-1 parameter. For example, from a comparison with
latest observational data for Pm(k) in [10], the data seem to best fit a value roughly 7 times smaller
(c0 ≈ 1.146) than that suggested by lattice simulation. So the agreement for c0 is less precise compared
to ν, and is only up to the order of magnitude. However, it should also be pointed out the theoretical
expression defining c0 possesses a slight degeneracy with the correlation length scale ξ (Equation (4)).
Hence, the data can also be interpreted as suggested as a value of ξ ∼ 14,000 Mpc, around 2.5 times
larger than the expected ξ ∼

√
3/λ, or, some combination of both instead. In principle, the inclusion

of IR regulation to the final expressions (Equation (9)) changes the shape of the curve and can in
principle break the degeneracy, but the current crudeness of the observational data in those regimes of
k is much too uncertain to make any conclusions as to the more favorable possibility. While we will
continue to primarily refer to studying the constraints on c0 for simplicity for the rest of this paper,
it should be kept in mind the possibility of this degeneracy. It is also hopeful that with increasingly
precise observational data in the future, complimented with looking at independent and orthogonal
observables that we are to present in this paper, a better constraint on these theoretical parameters
can be found.

Finally, it should be noted that the current most popular approach to explain the shape, or more
precisely, the index ns of the matter power spectrum is typically reliant on the fluctuations of postulated
primordial scalar fields from inflation models [55]. Given the long interest for understanding this
spectral index [56–58], the ability to derive this index, as well as the lack of competing theories, is thus
championed as a triumph of inflation. The picture reviewed here, where the correlations are explained
by nonperturbative critical scaling behaviors of gravitational fluctuations, is thus first-of-its-kind.
As discussed in this background, the formulation of this picture is in principle rather constricted
with little flexibility. As a result, this gravitational picture makes concrete predictions that can be
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concretely tested (or falsified), without suffering from the typical flexibilities in scalar-field-driven
inflation models, and thus offering a compelling alternative to the canonical inflation picture.

Having reviewed this analytic background, we will next present the numerical programs we used,
and the subsequent results for the cosmological spectra from effects of quantum gravity.

3. Numerical Programs

There are a variety of publicly available Einstein–Boltzmann (EB) solvers that have been in use for
the past two decades starting with CMBFAST [59]. The main independent programs are CAMB [60]
and CLASS [61] which solve the coupled Einstein–Boltzmann equations in a background FRW metric.
These codes are computed for ΛCDM cosmology with a limited set of choices for a parameterization
of equation of state for the Dark Energy (w). In all our programs we use w = −1, which considers dark
energy as a vacuum energy.

For modifications of gravity with a scale dependent gravitational constant, there are three EB
solvers. We used Integrated Software in Testing General Relativity (ISiTGR) [62] as the primary code to
generate power spectra. Then we compare with another two programs Modified Growth with CAMB
(MGCAMB) [63] and MGCLASS (CLASS version for phenomenological modified gravity) [64]. ISiTGR
and MGCAMB are patches for CAMB and COSMOMC [65] which was written in the FORTRAN
language, while MGCLASS is a patch for CLASS written in C. All three programs have implemented the
parameterization effective gravitational coupling (µ)—gravitation slip parameter (η) which sometimes
is denoted as γ. Those two parameters are defined as µ(a, k) ≡ G(a, k)/G0 and η(a, k) ≡ Φ/Ψ where
G0 is the laboratory value of Newton’s gravitational constant and Φ, Ψ are scalar potentials in the
conformal Newtonian gauge. The comparison of the three programs for no RG running of G as in
standard ΛCDM cosmology is shown in Figures 2 and 3.

c0=0 (ISiTGR)

c0=0 (MGCAMB)

c0=0 (MGCLASS)

10-4 0.001 0.010 0.100 1

10

100

1000

104

105

k [h Mpc-1]

P m
(k
)
[(

M
p

c
h-

1
)3
]

Figure 2. As an example we illustrate the Pm(k) predictions between the three programs—Integrated
Software in Testing General Relativity (ISiTGR) (blue), Modified Growth with CAMB (MGCAMB)
(orange) and Modified Growth with CLASS (MGCLASS) (green)—with their corresponding patches for
a modified Newton’s constant. This serves as a consistency check between the programs and a validity
check for their patches. The solid curves are generated from the respective original ΛCDM programs,
while the dashed curves are generated by each program’s modified Newton’s constant patch setting
µ(a, k) ≡ Gmod/GNewt = 1. It can be seen that ISiTGR is the most consistent, and hence reliable
program of the three, to investigate the effects of a modified Newton’s constant.
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One can see that while all three program’s ΛCDM predictions are generally consistent,
only ISiTGR’s modified Newton’s constant patch with µ(a, k) ≡ Gmod/GNewt = 1 (or equivalently
c0 = 0 in Equation (9)) is consistent with its original default-ΛCDM prediction. Matter power spectrum
from MGCLASS has a noticeable upper trend for small k from the ΛCDM curve, as shown in the left
plot in Figure 2. Figure 3 shows a significant deviation of MGCAMB’s CTφ

l from the ΛCDM curve.
Primarily due to this reason we chose ISiTGR over these two other programs.

ΛCDM (ISiTGR)

ΛCDM (MGCAMB)

ΛCDM (CLASS)

c0=0 (ISiTGR)

c0=0 (MGCAMB)

c0=0 (MGCLASS)

10 20 30 40 50

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

l

[l
(l
+

1
)]

3 2
C

l
T
ϕ
/2
π
(μ

K
)

Figure 3. Comparison of the CTφ
l predictions between the three programs—ISiTGR (blue), MGCAMB

(orange) and MGCLASS (green)—with their corresponding patches for a modified Newton’s constant.
This serves as a consistency check between the programs and a validity check for their patches.
The solid curves are generated from the respective original ΛCDM programs, while the dashed curves
are generated by each program’s modified Newton’s constant patch setting µ(a, k) ≡ Gmod/GNewt = 1.
It can be seen that ISiTGR is the most consistent, and hence reliable program of the three, to investigate
the effects of a modified Newton’s constant.

In the ISiTGR program all times are in conformal time, as is the case for CAMB. The growth
equations are written based on a perturbed FLRW metric in the Newtonian gauge,

ds2 = a(τ)2
[
−(1 + 2Ψ)dτ2 + (1− 2Φ)γijdxidxj

]
, (24)

where Φ and Ψ are scalar gravitational potentials, xi represents comoving coordinates and a(τ) is scale
factor at conformal time τ. For a flat universe the three dimensional spatial metric γij in cartesian
coordinates is given by

γij = δij, (25)

From now on we only discuss cosmology for a spatially flat universe (usually described in the
literature as the case k = 0).

There are four built in functional forms for selected modified cosmologies [66] and we used (µ)-
gravitation slip parameter (η) form. The modified growth equations are

k2Ψ = −4π Ga2µ(a, k)∑
i
[ρi∆i + 3ρi (1 + wi) σi] , (26)

and
k2 [Φ− η(a, k)Ψ] = 12π Ga2µ(a, k)∑

i
3ρi (1 + wi) σi (27)
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where wi and ρi are respectively the equation of state and density of ith particle species. Generally there
are three species which are radiation, non relativistic matter and dark energy. ∆i is the gauge-invariant,
rest-frame overdensity defined by,

∆i = δi + 3H
qi
k

, (28)

where H = ȧ/a is the Hubble’s constant in conformal time, fractional overdensity δi = δρ/ρ̄ and qi is
the heat flux, related with the peculiar velocity (θi)

qi = θi
1 + wi

k
. (29)

From the conservation of energy-momentum tensor of the perturbed matter fluids and for
uncoupled fluid species ∆i evolution is given by

∆i = 3(1 + wi)
(
Φ̇ + HΨ

)
+ 3Hwi∆i −

[
k2 + 3(H2 − Ḣ)

] qi
k
− 3H(1 + wi)σi . (30)

Secondary effects considered by ISiTGR are reionization,weak gravitational lensing and the
integrated Sachs–Wolfe (ISW) effect. For reionization it uses the same approach as in CAMB [67],
namely a simple tanh model for reionization fraction (xe), given by

xe(y) =
f
2

[
1 + tanh

y(zre)− y
∆y

]
, (31)

where y(z) = (1 + z)3/2 , zre is the red shift value where the xe = f /2, and ∆y is the fractional change
in y. The latter agrees with a Thomson scattering optical depth for an instantaneous reionzation which
occurred at zre. The treatment of weak lensing is discussed here later in Section 4.

Since the required formulation for µ(a, k), as appropriate for the quantum RG running of Newton’s
G described earlier, does not appear as an inbuilt function, we added a part with newly defined
functions µ(a, k), µ̇(a, k) for our need in the above equations. In accordance with Equation (9) we have

µ(a, k) = 1 + 2c0

(
m2

k2 + m2

) 1
2ν

, (32)

and µ̇(a, k) = 0.
As secondary effects, ISiTGR considers reionization, weak gravitational lensing and the ISW

effect. η(a, k) = 1 is assumed since there are no different modifications to the potentials. ISiTGR has
two binning methods but here we only used the traditional binning method. For all the power
spectra computations we set the tensor part to zero. The program computes 2-point self- and
cross-correlation functions for the temperature, E-mode and B-mode polarization and weak lensing
potential. Each generated power spectrum appears in two separate files, one with lensing and the
other without. In the following we use power spectra with gravitational lensing included. The values
of the cosmological parameters we used here as initial conditions are shown in Table 1.

In a previous paper [9,10] we used semi-analytic methods to solve for the matter power spectra
using semi-numerical approximations for the relevant transfer functions. In the current approach the
numerical programs solve the full set of Boltzmann equations, and uses integration techniques such
as adaptive Runge–Kutta method to integrate all the tightly coupled equations. Secondary effects
accounted for like reionization and integrated Sachs–Wolfe (ISW) effect are treated as a more general
case compared to our previous work.
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Table 1. Values used here for cosmological parameters in the ΛCDM model. We have used the
Planck-18 68% interval from CMB power spectra, in combination with CMB lensing reconstruction and
Baryonic Acoustic Oscillations (BAO).

Parameter Symbol Value

barryon density Ωbh2 2.242× 10−2

cold dark matter density Ωch2 1.1933× 10−1

acoustic scale angle 100 θ∗ 1.04
scalar amplitude As 2.105× 10−9

reionization optical depth τ 5.61× 10−2

scalar tilt ns 0.9665

Hubble constant H0 67.66 km s−1Mpc−1

curvature density Ωk 0
effective extra relativistic degrees of freedom Ne f f 3.046
CMB temperature temp_cmb 2.7255 K
equation of state of dark energy w −1

4. Numerical Results

In this section we present numerical results for the quantum gravitational corrections to the
various cosmological spectra (Pm(k), CTT

l , CTE
l , CEE

l , ...). This includes both the effects of an RG running
of Newton’s constant and the IR regulation, collectively achieved by replacing

G → G(k) = G0

[
1 + 2 c0

(
m2

k2 + m2

)3/2

+O
((

m2

k2 + m2

)3)]
. (33)

For simplicity, of the three numerical programs used for our analysis (ISiTGR, MGCAMB,
MGCLASS), only the results from the ISiTGR numerical program shall be plotted. The reason for this
choice is that we expect this program to provide better consistency and reliability in the particular
region considered (small k, small l), as explained in Section 3. Furthermore, all numerical results
presented here are generated using the latest values of the cosmological parameters as given by Planck
(2018) [13].

In the above, c0 is the coefficient that governs the amplitude of quantum corrections. For all the
following spectra, three different values of c0 = 0, 1.146 and 8.02 will be plotted. Lattice calculations
give c0 ≈ 8. However, being a non-universal parameter, it can depend on specific choices arising from
the way an ultraviolet cutoff is imposed. Therefore, not too much weight should not be placed on
this specific value, beyond perhaps the order of magnitude. In practice, this value could be further
constrained by experiments, which is precisely what these observations of cosmological spectra can
achieve. From previous work [10], using the approximate semi-analytical methods, we see that a value
of 8.02/7 ' 1.146 is generally favored.

4.1. Matter Power Spectrum Pm(k)

We start with the matter power spectrum Pm(k). Recall the definitions

Gρ(r; t, t′) ≡
〈

δρ(x, t) δρ(y, t′)
〉

, Pm(k) ∼ 〈 δρ(k) δρ(−k) 〉 , (34)

where the variable δρ ≡ (ρ− ρ̄)/ρ̄ is the fractional density fluctuations above the average, referred
to in cosmology as the mass-density contrast. The numerical results for Pm(k) obtained from the
numerical program (ISiTGR), for both the classical ΛCDM (i.e., c0 = 0) and quantum (c0 > 0) results,
as well as the respective analytical results (as derived in [9,10]), are shown and compared in Figure 1.

From Figure 1, we see that all the numerical results are generally consistent with the corresponding
analytical results from earlier work, which were obtained by following the semi-analytical interpolating
formulas from [53], and the implementation of the RG running following dimensional arguments.
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The small deviations may be attributed to the slightly older values of cosmological parameters [68]
and some analytic approximations used by Weinberg and Dicus’ interpolating formula for the transfer
function in [53], whereas the numerical results presented here use the latest cosmological parameter
values from the Planck collaboration [13]. Despite the small discrepancies, we see that the overall
trends, and the extra downwards bend due to the inclusion of the (IR regulated) RG running of
Newton’s constant, as predicted analytically using the semi-analytical formulas are in very good
agreement with the numerical predictions using the latest fitted cosmological parameters. This overall
general agreement between the analytical and numerical result provides a good verification and
confidence that the procedure of including a running Newton’s constant as presented above is reliable.

The same numerical analysis has now been repeated with the other two numerical programs
MGCAMB and MGCLASS, besides ISiTGR. The result of MGCAMB is in extremely good agreement
with ISiTGR, with its predictions for all three values of c0 almost completely overlapping with ISiTGR’s
result, giving additional confidence to the latter. However, while MGCLASS is relatively consistent
with ISiTGR for most of the angular spectrum results (as we will discuss later), its prediction for Pm(k)
shows a rather radical upturn below k = 10−3, which is at odds with both ISiTGR and MGCAMB,
as well as the analytical predictions (also shown and discussed earlier in Figure 2 and then in Section 3),
even for the c0 = 0 ΛCDM case. The pathological upturn at small-k and resultant disagreement of
MGCLASS (even with CLASS, the original ΛCDM program that MGCLASS is based on, when setting
c0 = 0) suggests some potentially unresolved issues in MGCLASS’s prediction for Pm(k), while the
consistent results between ISiTGR, MGCAMB and the analytical predictions should be treated in our
opinion with a higher reliability.

Given the more confident, and in principle more accurate, predictions from the numerical
programs as shown in Figure 1, it can be seen that the value of c0 ' 1.146 is a better overall fit
to the observational data from Planck, which is a consistent conclusion from our previous work that
was based exclusively on the early analytical results. Armed with the new tools of numerical programs,
we will now move on to present the numerical results for the other various correlation functions,
which will hopefully shed new insights to the validity of the quantum gravity effects in cosmology.

It should be noted that there is a slight degeneracy between c0 and ξ in the original expression for
the RG running of Newton’s G, as in Equation (9). A support of a smaller c0 from the observational data
can equivalently be mimicked by an increase in the vacuum condensate scale ξ. In fact, the apparently
better fit value of c0 ' 1.146, seven times smaller than the lattice predicted value of ≈8.0 ± 3.1, can be
mimicked by simply a factor of ∼1.9 larger in ξ. Technically, including IR regulation will change the
shape of the curve and break the degeneracy, which in principle could be fitted sophisticated say with
a Monte Carlo simulation. However, not only is that currently beyond the scope of this paper, the lack
of and crudeness of data points in the small-k regime will not render the exercise fruitful.

On the other hand, it may be instructive, amongst other physical motivations, to look at
the quantum effects on a variety of other spectra of cosmological significance with these numerical
programs. With independent quantities and measurements, the new plots may either provide additional
constraints to these quantum gravitational parameters, but also potential insights to the physics.

4.2. Angular Temperature Power Spectrum CTT
l

The TT power spectrum is one of the most important cosmological spectrum since it is measured
to high degree of accuracy, thus allowing for great insights in constraining various cosmological
models. Figure 4 shows the numerical predictions for the temperature-temperature (TT) angular power
spectrum CTT

l with and without the quantum effects. We will first briefly recall the definitions for CTT
l

and how theoretical predictions for it can be obtained, and then compare them against observational
data. Following notations in Weinberg [53], the temperature fluctuations ∆T can first be resolved into
spherical harmonics Ym

l (n̂)’s,

∆T(n̂) ≡ T(n̂)− T0 = ∑
lm

aT
lm Ym

l (n̂) , (35)
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where T(n̂) is the temperature in the direction n̂, T0 ≡ (1/4π)
∫

d2n̂ T(n̂) the average temperature
over the sky and the coefficients aT

lm quantifying the fluctuation for each harmonic. Since ∆T’s are real,
and the products of ∆Ts are rotationally invariant, one has

〈
∆T(n̂)∆T(n̂′)

〉
= ∑

lm
CTT

l Ym
l (n̂)Y−m

l (n̂′) = ∑
l

CTT
l

(
2l + 1

4π

)
Ll(n̂ · n̂′) . (36)

Here the Ll are the Legendre polynomials, and CTT
l is defined as

〈
aT

lm aT
l′m′
〉
≡ δll′δm−m′ C

TT
l , (37)

the 2-point correlation functions of aT
lm, the temperature fluctuation in “l”-space. Or equivalently,

CTT
l =

1
4π

∫
d2n̂ d2n̂′

〈
∆T(n̂)∆T(n̂′)

〉
Ll(n̂ · n̂′) , (38)

by inverting the transformation. As a result, the correlations for temperature-temperature fluctuations
are fully quantified with the CTT

l s. (Note that here we use Ll instead of the usual notation Pl for the
Legendre polynomials, in order to avoid confusion with the matter power spectra.)

Theoretically, since CMB photon temperatures and matter density are coupled, the CTT
l s are

therefore related to the matter power spectrum Pm(k), via integral transforms that involve spherical
Bessel functions and appropriate form factors and transfer functions. However, from transforming the
predictions from one set of observable to another, new insights, and potential constraints to the theory,
can be derived.

To do so, one can first use the Friedmann and continuity equations to relate the temperature
fluctuations to the metric perturbations, via suitable form factors F1,2(q), through

(
∆T(n̂)

T0

)
=
∫

d3q eiq·n̂ r(tL) [ F1(q) + iq̂ · n̂ F2(q) ] , (39)

where the latter are defined as

F1(q) = −
1
2

a2(tL)B̈q(tL)−
1
2

a(tL) ȧ(tL)Ḃq(tL) +
1
2

Eq(tL) +
δTq(tL)

T̄(tL)
, (40)

F2(q) = −q
(

1
2

a(tL)Ḃq(tL) +
δuγq(tL)

a(tL)

)
. (41)

Here the B and E functions are suitable decompositions of the metric perturbations, and δuγ is
the velocity potential for the CMB photons. It is known that these form factors simplify in certain
gauge choices. In the synchronous gauge, one has E = 0, whereas in the Newtonian gauge B = 0 and
E = 2Φ, which then gives

F1(q) = Φq(tL) +
δTq(tL)

T̄(tL)
, (42)

F2(q) = −
δuγq(tL)

a(tL)
. (43)

(Note that F1(q) and F2(q) are referred to as “F(q)” and “G(q)”, respectively in [53]. Here we will
use the former in order to avoid confusion with the expression for the running of Newton’s constant
G(k), as it will be implemented below. The above equations also assumed a sudden transition to
opacity on the CMB at a time tL, which nevertheless does not change the form of the basic equations
and only some of the details, which are later taken into account fully with the numerical programs,
discussed below.)
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Hence, given appropriate initial conditions, the functions Φ and δuγ, as well as the scale factor
a(t) and the function T(t), can all be obtained as solutions of the classical Friedmann equations.
These are then combined with the Boltzmann transport equations, as is done in standard cosmology,
which eventually leads to unambiguous predictions for the Cls. The solutions for F1,2(q) can be
parameterized in terms of transfer functions T (κ), S(κ) and ∆(κ), leading to the following expressions
for F1(q) and F2(q)

F1(q) =
Ro

q

5

[
3 T

(
q dT
aL

)
RL − (1 + RL)

− 1
4 e−

(
q dD
aL

)2

S
(

q dT
aL

)
cos

[
q dH
aL

+ ∆
(

q dT
aL

)]]
, (44)

F2(q) =
√

2
Ro

q

5
(1 + RL)

− 3
4 e−

(
q dD
aL

)2

S
(

q dT
aL

)
sin
[

q dH
aL

+ ∆
(

q dT
aL

)]
(45)

where aL = a(tL) = 1/(1 + zL), zL = 1090, dT = 0.1331 Mpc, dH = 0.1351 Mpc, dD = 0.008130 Mpc,
dA = 12.99 Mpc and RL ≡ 3ΩB(tL)/4 Ωγ(tL) = 0.6234 (the latest set of suitable parameters are taken
from Planck 2018 [13]). It is noteworthy at this stage to point out again that all three transfer functions
are completely determined by standard measured cosmological parameters, so that the only remaining
ingredient to fully determine the CTT

l coefficient is the initial (or primordial) spectrumRo
q, where q is

the wavenumber, and “o” refers to outside the horizon. Conventionally,Ro
q is parameterized by an

amplitude N and spectral index ns,

Ro
q = N q−3/2

(
q

qR

)(ns−1)/2
. (46)

Here the reference “pivot scale” is usually taken to be qR = 0.05 Mpc−1 by convention.
As a consequence, once the primary function Ro

q is somehow determined, classical cosmology is
then expected to fully determine the form of the CTT

l spectral coefficients. It is therefore possible
to write the CTT

l s fully, and explicitly, in terms of the primary function Ro
q. After expanding the

plane waves factor in a complete set of spherical harmonics and spherical Bessel functions, CTT
l from

Equation (38) becomes

CTT
l = 16π2 T2

0

∫ ∞

0
q2 dq

(
R0

k

)2 [
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2
, (47)

where rL = r (tL), and we have factored out the functionRo
q explicitly by defining F1(q) = (Ro

q) F̃1(q)
and F2(q) = (Ro

q) F̃2(q).
Now, recall that the matter power spectrum Pm(k) is given by

Pm (k) = C0

(
R0

k

)2
k4 [T (κ)]2 , (48)

which tells us that we can obtain a direct relation between the matter power spectrum Pm(k) and the
angular temperature coefficients CTT

l ,

CTT
l = 16π2 T2

0

∫ ∞

0
q2dq Pm(q)

[
C0 k4 T (κ)2

]−1 [
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2
, (49)

where q and k are related by q = a0k, and the scale factor “today” a0 can be taken to be 1. As a result,
the predictions on Pm(k) can be directly transformed into a prediction for CTT

l . Utilizing the same
parameters in the numerical programs, the effects of with and without the RG running of Newton’s
constant (with IR regulation) on CTT

l can then be generated.
Figure 4 shows the numerical result of c0 = 0 (no running) 1.146, and 8.02 with the blue, green

and orange curve, respectively, generated by ISitGR. The observational CMB data from Planck (2018),
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as well as an (error-weighted) cubic fit for ence, are also shown. Noticing that the point l = 2 is
anomalously low, with large uncertainty due to cosmic variance, the error-weighted fit shown in this
plot has not included the l = 2 point.

Figure 4. Comparison of the numerical prediction of the classical ΛCDM program vs. the numerical
predictions of the renormalization group (RG) running of Newton’s constant’s effect on the temperature
(TT) power spectrum CTT

l . The solid curves represent the numerical predictions generated by the
ISiTGR program, with the bottom (blue), middle (green) and top (orange) representing quantum
amplitudes (see Equation (9)) c0 = 0, 1.146, 8.02, respectively (see Equation (9)), showing a higher trend
at large angular scales (l < 20) as compared to the classical ΛCDM (no running) numerical curve.
The dashed curve represents an error-weighted cubic fit to the observational CMB data, from the Planck
(2018) collaboration [13].

From Figure 4, we see that the effects of a RG running of Newton’s constant generally cause
an upturn to the spectrum at low-ls, starting at roughly l = 20. It can also be seen that the orange
curve with a quantum amplitude (see Equation (9)) c0 = 8.02 (or ξ = 5300 Mpc) creates a much more
dramatic deviation, reaching a maximum of 140% larger in value compared to the blue, classical (c0 = 0)
ΛCDM curve, while the green curve with c0 = 1.146 (or roughly ξ ' 2.65× 5300 = 14,000 Mpc) has
a milder deviation of ≈24% from the classical result. Again, neglecting the anomalous l = 2 point,
the green curve with c0 = 1.146 is generally consistent with all observational data, arguably also
with the desirable feature of marginally going through the error bars of l = 5 and l = 6. On the
other hand, the orange c0 = 8.02 curve, while still lying within a few points’ error margins, is less
favorably supported by the data in this plot. It is also seen that its deviations starts earlier at a higher
value around l ∼ 22, which causes it to miss a few more error bars in the low l points. As a result,
the numerical results of this TT plot shows that the green c0 = 1.146 (or ξ ≈ 14,000 Mpc) curve is
currently a more favorable parameter than the orange one. Note that this is also consistent with the
discussion and conclusion from the matter power spectrum Pm(k) plot in Figure 1.

We also investigated the results with all 3 programs. However unlike Pm(k), the three programs
do not agree, despite being supplied with the same RG modified expression for Newton’s constant.
Figure 4 displays the result from ISiTGR, which seems to be the most consistent for all plots. MGCAMB
produces a much more dramatic upturn effect from the RG running at small ls, roughly having its
c0 = 1.146 curve coinciding with ISiTGR’s c0 = 8.02 curve, and the MGCAMB c0 = 8.02 curve
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even higher. On the other hand, MGCLASS predicts a much milder upturn, with its c0 = 8.02 curve
coinciding with ISiTGR’s c0 = 1.146 curve. In other words, MGCAMB seem to predict an upturn
around 7 times larger than ISiTGR, while MGCLASS seem to predict an upturn that is 7 times smaller
than ISiTGR. Given the blackbox nature of such programs, it is unclear of the cause of this different
given that all programs where supplied the same modification in Newton’s G. These programs,
designed for modified gravity models, are known to be less well-tested compared to their base
program (CAMB, CLASS), and it may not be surprising that two (or all) of them may be incorrect.
One consistency is that all three programs predicts an upturn at low l’s, just to a different degree,
roughly±1 order of magnitude. Hence, it is at best that we can conclude from these available programs
that the RG running of Newton’s G causes an upturn to roughly the order of magnitude presented
in Figure 4.

Perhaps even more intriguing is the disagreement with a naive analytical analysis.
From Equation (49), the first order estimate is that since CTT

l is the (weighted) integral of Pm(k)
over all k, a smaller Pm(k) caused by an RG running (c.f. Figure 1) should cause a smaller value of CTT

l .
In fact, if one assumes the transfer functions are not affected by the quantum corrections, the integral
Equation (49) can be performed numerically (as done in [10]), since the classical interpolating formulas
for the transfer functions are known, which does show a downturn, as naively expected, instead
of an upturn. This work utilizes programs that in principle modifies the initial Friedmann and
Boltzmann equations from the beginning, and includes any effects of the RG modified Newton’s G
into the solutions, and thus in principle more trustworthy. Given the opaque nature of such programs,
it remains further investigations through a more detailed study of the entangled initial set of coupled
differential equations to fully understand the disagreements between the programs and the first-order
analytical result, as well as the disagreement, and hence the reliability, within the numerical programs.

Nevertheless, given that these programs represents the most sophisticated tools currently, it is still
constructive to look at their predictions of the quantum effects on other modes and variables of the
CMB. For example, the theoretical predictions for the percentage deviations for c0 = 1.146 curve
with the classical curve is ∼37% on Pm(k) at its further available data point, while only ∼24% on
CTT

l . This reveals the fact that the quantum effects maybe more significant in different physical
variables. So by studying the predictions for different auto- and cross-correlations of different variables,
and comparing them to potentially independent data (e.g., ground-based measurements of E- and
B-mode polarizations as opposed to space-based measurements of CMB temperature), new constraints
and insight may be deduced. We will present the analysis and results of the other spectra of interest to
cosmology in the remaining of this section.

4.3. Temperature-E-Mode Power Spectrum CTE
l

The next few most popularly studied correlations on the CMB are the so-called E- and B-type
polarization modes. Here we will give a brief recap of the physics, and present the numerical
results of the quantum corrections from a RG running Newton’s constant, later compared with
the observational data.

Recall that observations of the CMB photons not only reveal their intensity (i.e., temperature)
from various directions, but also the photons’ polarizations, which can result from scattering on free
electrons either at the time of recombination, or during the later period of reionization. Measurements
on polarizations then reveal extra information in constraining the parameters arising from a running
of Newton’s constant.

Following notations in [53], CMB photon distributions are fully described through a number
density matrices nij(x, p, t), or, more usefully, the dimensionless version of its perturbation Jij(x, p̂, t)
(referred to as the dimensionless photon intensity perturbation matrix), related to nij via

Jij(x, p̂, t) ≡ 1
a2(t)

1
ρ̄γ(t)

∫ ∞

0
4π p3dp δnij(x, pp̂, t) . (50)
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In a line-of-sight direction n̂, Jij can be parameterized via

Jij(x,−n̂, t) =
2
T0




∆T(n̂) + Q(n̂) U(n̂)− iV(n̂) 0
U(n̂) + iV(n̂) ∆T(n̂)−Q(n̂) 0

0 0 0


 , (51)

where Q, U and V are three real functions of direction (with units of temperature), known as the Stokes
parameters, describing the photon’s polarizations. Notice that the photon temperature perturbations
are given by the trace

∆T(n̂)
T0

= 1
4 Jii(0,−n̂, t0) . (52)

It is these Stokes parameters that are measured in current observations of the CMB. Since the
scattering of light by non-relativistic electrons does not produce circular polarization, one expects
that all CMB photons will be linearly polarized, so that Jij is real, and therefore V = 0. For further
convenience in comparing with observations of 2-point functions, which respect spherical symmetry,
it is useful to expand the Stokes parameters Q(n̂) and U(n̂) seen in a direction n̂ in a series of
functions Ym

l (n̂)

Q(n̂) + iU(n̂) =
∞

∑
l=2

l

∑
m=−l

aP,lm Ym
l (n̂) , (53)

Ym
l (n̂) ≡ 2

√
(l − 2)!
(l + 2)!

e+i(n̂) e+j(n̂) ∇̃i∇̃j Ym
l (n̂) , (54)

where the subscript “P” in the coefficient aP,lm stands for “polarization”, ∇̃ is the angular part of the
gradient operator and e±(n̂) = (1,±i, 0)/

√
2 are the polarization vectors in the direction n̂. To further

satisfy the reality condition, one defines the amplitudes

aE,lm ≡ −
(

aP,lm + a∗P,lm

)
/2 , aB,lm ≡ i

(
aP,lm − a∗P,lm

)
/2 , (55)

so that their correlation functions
〈

a∗T,lm aT,l′m′
〉
= CTT

l δll′ δmm′ , (56)

〈
a∗T,lm aE,l′m′

〉
= CTE

l δll′δmm′ , (57)
〈

a∗E,lm aE,l′m′
〉
= CEE

l δll′δmm′ , (58)
〈

a∗B,lm aB,l′m′
〉
= CBB

l δll′δmm′ , (59)

are real and rotationally invariant. The above relations define the various angular power spectrum
functions CXX

l , where X = T, E, B. The superscripts E and B are referred to as E- and B-type
polarization, respectively, since under spatial-parity inversion, aE,lm 7→ (−1)l a∗E,lm, and similarly
for aT,lm, whereas aB,lm 7→ −(−1)l a∗B,lm. As a result of parity, there are no bilinear correlations between
B with either E or T. (i.e., CTB

l = CEB
l = 0.)

With this background, we shall present the numerical predictions for the corresponding spectra
with and without an RG running of Newton’s G, compared against the latest observational data.
We start with the TE spectrum. Figure 5 shows the numerical results with the observational data for
CTE

l . The lowest solid (blue) curve represents the classical (c0 = 0) spectrum, while the solid middle
(green) and top (orange) curve represents the effect of a RG running Newton’s constant with c0 = 1.146
and 8.02, respectively.
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Figure 5. Comparison of the numerical prediction of the classical ΛCDM program vs. the numerical
predictions of the RG running of Newton’s constant’s effect on the cross-temperature-E-mode-
polarization (TE) power spectrum CTE

l . The solid curves represent the numerical predictions generated
by the ISiTGR program, with the bottom (blue), middle (green) and top (orange) representing quantum
amplitudes (see Equation (9)) quantum amplitudes (see Equation (9)) c0 = 0, 1.146, 8.02, respectively.
Here again one finds higher trends at large angular scales (l < 10) as compared to the classical
(no running) numerical ΛCDM curve. The dashed curve represents an error-weighted cubic fit to the
observational CMB data from Planck (2018) [13].

It turns out new constraints for the RG running parameter c0 can be deduced with this new plot.
With the inclusion of the E-type polarization data, we see that this has further constraints on some
of the error bars in the low-l data points. This is due to the smaller error bars from the observational
data in the E-type polarization correlations in the low-l regime (see Figure 6). As a result, one sees that
the top c0 = 8.02 curve (orange) is strongly disfavored by this plot. Another observation is that the
difference between the c0 = 1.146 and the classical ΛCDM (c0 = 0) curve is about 60% in this TE plot,
which is a larger percentage deviation compared to ≈24% for the TT plot.

We also compared the results from the other two programs (MGCLASS and MGCAMB, not shown
on Figure 5). All the resultant curves of MGCLASS agree with ISiTGR for l > 30. But for l < 30,
the c0 = 8.02 curve of MGCLASS is about 36% lower than the corresponding ISiTGR curve.
All two curves with RG running from MGCLASS are within the error bars but due to the mismatch as
shown in the Figure 2, MGCLASS results should be investigated further. For MGCAMB, the curves
with RG running are significantly higher than ISiTGR, making them disfavored. In addition, there is
a slight horizontal shift for MGCAMB in l-space compared to the other two program, which should be
investigated further.

4.4. EE- Power Spectrum CEE
l

We move on to the EE spectrum. Figure 6 shows the numerical results with the observational data
for CEE

l . We also plotted an error-weighted cubic fit (dashed line) for the classical (c0 = 0) spectrum
(solid blue), as well as the quantum RG running of G for the above values for c0 (green and orange).
It can be seen that there is no significant deviation from standard ΛCDM prediction like in temperature
power spectra and all the curves are well within the data point error bars. We can see that in the large
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scales (l < 20) the errors are significantly small which makes T-E spectrum having smaller error bars
in the scale of interest in this paper.

When the other two programs are compared, there is no significant deviation to rule out any
any curve. There is no noticeable deviation for MGCAMB curves from ISiTGR for l < 20 but there is
a slight upward deviation for l > 20. With MGCLASS, the RG curves are smaller than ISiTGR making
smaller deviation from ΛCDM curve.

Figure 6. Comparison of the numerical prediction of the classical ΛCDM program vs. the numerical
predictions of the RG running of Newton’s constant’s effect on the E-mode (EE) power spectrum CEE

l .
The solid curves represent the numerical predictions generated by ISiTGR, with the bottom
(blue), middle (green) and top (orange) representing quantum amplitudes quantum amplitudes
(see Equation (9)) c0 = 0, 1.146, 8.02, respectively, showing slightly higher trends for large angular scales
(l < 10) as compared to the classical (no running) numerical ΛCDM curve. The dashed curve represents
error-weighted cubic fit for observational CMB data from the Planck (2018) collaboration [13].

4.5. BB- Power Spectrum CBB
l

Next we discuss about B-mode polarization power spectrum, here shown in Figure 7. We have
plotted an error-weighted quadratic fit (dashed line) for the classical (c0 = 0) spectrum (solid blue),
as well as the RG varying of Newton’s G for c0 = 1.146 (green). It can be seen that there is no noticeable
deviation from standard ΛCDM prediction like in the temperature power spectra, and all the curves
are well within the data point error bars. As a result of the unnoticeable deviation, we did not include
the c0 = 8.02 curve. In standard cosmology, due to weak lensing there is a partial conversion of the
E-mode to the B-mode polarization and it’s predicted to be considerable around l ∼ 1000 scale which
leaves large scale (l < 30) close to zero. Due to limitations in dust modeling and telescopes limitations
there are only data up to l = 29.
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Figure 7. Comparison of the numerical prediction of the classical ΛCDM program vs. the numerical
prediction of the RG running of Newton’s constant’s effect on the B-mode (BB) power spectrum CBB

l .
The solid curves represent the numerical predictions generated by ISiTGR, with the top (blue) and
bottom (green) representing c0 = 0, 1.146 respectively, showing no significant deviation with the
classical no running numerical ΛCDM curve. The dashed curve represents error-weighted quadratic
fit for observational CMB data from the Planck (2018) collaboration [13]. The other c0 = 8.02 curve,
like the c0 = 8.02 (green) curve, is consistent with zero (to around 1 part in 10,000). So any deviations
from the classical and c0 = 1.146 curve are too insignificant to be seen, and negligible relative to the
size of the error bars from the current latest data. Hence the c0 = 8.02 curve is not included in this plot
for clarity.

4.6. Lensing Power Spectrum Cφφ
l

The theory of CMB lensing is a vast topic on its own. Here, we will try to present the key defining
equations of the lensing spectrum, and then look at the numerical results of quantum gravitational
effects on the lensing potential spectra. A more complete account for the physics and observations can
be found in [53,69,70].

Consider a small deflection angle θ from the undeflected direction n̂ of a CMB photon,
with θ describing perpendicular direction to n̂, and |θ| � 1. Define the shear matrix Mab as

∆θa = ∑
b

Mab(rS, n̂) θb , (60)

where a, b run over the directions orthogonal to n̂, rS is the radial distance of the source from earth
in a Robertson–Walker coordinate system and δθa is the amount of deflection of θ. From standard
general relativistic calculations, the shear matrix can be related to the Newtonian potential of the lens
source (φ), via

Mab(rS, n̂) = 2
∫ rS

0
dr

r(rS, n̂) r
rS

[
∂2

∂ya∂yb
δφ(rn̂ + y, t)

]

y=0,t=tr

, (61)

where y is a small perpendicular deflection vector to n̂, and tr is the time for a photon that that
just reached us from radial coordinate r. Hence, the measurements of the shear matrix can yield
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information about perturbations to the gravitational potential (δφ) by masses spread along the line of
sight. Define the so-called lensing convergence field κ as

κ ≡ 1
2

TrM =
∫ rS

0
dr

r(rS, n̂) r
rS

[(
∇2 − ∂2

∂r2

)
δφ(rn̂ + y, t)

]

y=0,t=tr

. (62)

κ is particularly useful because, if the lensing is due to a collection of bodies all at about the same
radial coordinate rL, it can be directly related to the matter perturbations δρm. More explicitly, δφ falls
off rapidly for large distances, so that the factor r(r, rS)r can be replaced in a first approximation
with r(rL, rS)rL and similarly the second term with ∂2/∂r2 can be dropped. Then Poisson’s equation
a−2∇2δφ = 4πG δρm gives

κ =
4π G a2(trL) dA(LS) dA(EL)

dA(ES)

∫ rS

0
dr δρm(rn̂, tL) a(tL) , (63)

resulting in an expression directly linking κ to matter density fluctuations δρm. Hence, a measurement
of the value of κ for sources seen in one direction can reveal the total mass density of a cluster of
lensing masses that lies along that line of sight at distance rL (projected onto a plane perpendicular to
the line of sight). Since, as we have shown, gravity constraints the scaling of correlations of matter,
it should also do so for κ.

So, to project the convergence field κ onto the sky, we decompose it in a way that is analogous to
the other angular spectra,

κ(n̂) = ∑
lm

aκ,lm Ym
l (n̂) , (64)

with
aκ,lm = −2π il

∫
d3q q2 α(q)Ym∗

l (q̂)
∫ ∞

0
dr g(r) δφq(tr)

[
jl(qr) + j′′l (qr)

]
, (65)

with quantum noise fluctuation correlation

〈
α(q) α∗(q′)

〉
= δ3(q− q′) , (66)

which defines Cκκ
l 〈

aκ,lm a∗κ,l′m′
〉
= δll′ δmm′ Cκκ

l . (67)

Or more explicitly, by inverting the expression in Equation (67),

Cκκ
l = 4π2

∫ ∞

0
q6 dq

∣∣∣∣
∫ ∞

0
dr g(r) δφq(tr)

[
jl(qr) + j′′l (qr)

] ∣∣∣∣
2

. (68)

In the literature [69,70], it is often the correlation for the lensing potential Cφφ
l that is plotted,

instead of that of the lensing convergence field Cκκ
l , related by

κ (n̂) = 1
2 ∇2φ(n̂) . (69)

Finally, the cross-correlations CTφ
l and CEφ

l can be similarly defined in analogous to Equation (67)
with respective expansion coefficients aT,lm and aE,lm, similar to Equations (56)–(59). With this
background, we will present the numerical results of including a quantum RG running of Newton’s
constant for these spectra.

In Figure 8 for Cφφ
l we have plotted for the classical (c0 = 0) spectrum (solid blue), with as well

as for an RG running of G with the previously used values for c0 (green and orange). One can see
that there are a significant deviation which is up to 80% for c0 = 8.02, but only 10% for c0 = 1.146,
compared to the standard ΛCDM prediction. Due to current observational limitations there are only
three data points which lie inside our region of interest (l < 50). Apart from Planck collaboration
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(2018) data other projects such as the South Pole Telescope (SPT) [71] and the Atacama Cosmology
Telescope (ACT) [72] have few observational data points which mostly lie in the region l > 100.

Figure 8. Comparison of the numerical prediction of the classical ΛCDM program vs. the numerical
predictions of the RG running of Newton’s constant’s effect on the deflection lensing (φφ) power
spectrum Cφφ

l . The solid curves represent the numerical predictions generated by ISiTGR, with the
bottom (blue), middle (green) and top (orange) representing the quantum amplitudes (see Equation (9))
c0 = 0, 1.146, 8.02, respectively, showing just slightly higher trends at the very large angular scales
(l < 5) as compared to the classical (no quantum running) numerical ΛCDM curve. Only limited
observational data is available currently, especially at large angular scales (below l < 15).

4.7. Temperature-Lensing Power Spectrum CTφ
l

For the CTφ
l and CEφ

l power spectra there are no observational data points so far, and given Cφφ
l

having limited number of data points we do not expect to have any in the large scale region (l < 50).
In Figure 9 we show CTφ

l and we have plotted the classical (c0 = 0) spectrum (solid blue) with RG
with the above values for c0 (green and orange). It can be seen that there is significant deviation for
c0 = 8.02 which drops to negative values. The deviation begins for scales corresponding to l < 30.
For c0 = 1.146 it drops up to 30% of standard ΛCDM prediction.

4.8. Lensing-E-Mode Power Spectrum CEφ
l

In Figure 10 we show the results for CEφ
l , and we have plotted the classical ΛCDM (c0 = 0)

spectrum (solid blue) compared with the RG running of Newton’s G spectrum with the above values
for c0 (green and orange). It can be seen that there is significant deviation for c0 = 8.02 which drops
by more than 50% which gets ruled out. The deviation begins around scales corresponding to l < 30.
For c0 = 1.146 it drops within 20% of the standard ΛCDM prediction. Since for now there are limited
observational data points for Cφφ

l nothing can be done about ruling out any specific model. In the near
future with CMB-S4 (The next generation “Stage-4” ground-based CMB experiment) [73] more data on
Cφφ

l , CEφ
l might provide a good test for the models.
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Figure 9. Comparison of the numerical prediction of the classical ΛCDM program vs. numerical
predictions of the RG running of Newton’s constant’s effect on the cross-temperature-lensing
(Tφ) power spectrum CTφ

l . The solid curves represent the numerical predictions generated by
ISiTGR, with the bottom (blue), middle (green) and top (orange) representing quantum amplitudes
(see Equation (9)) c0 = 0, 1.146, 8.02, respectively, showing again just slightly higher trends at large
angular scales (l < 20) as compared to the classical no running numerical ΛCDM curve. No data with
reasonable errors are found so far for CTφ

l .
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Figure 10. Comparison of the numerical prediction of the classical ΛCDM program vs. numerical
predictions of the RG running of Newton’s constant’s effect on the cross-E-mode-lensing (Eφ) power
spectrum CEφ

l . The solid curves represent the numerical predictions generated by ISiTGR, with the
top (blue), middle (green) and bottom (orange) representing quantum amplitudes (see Equation (9))
quantum amplitudes (see Equation (9)) c0 = 0, 1.146, 8.02, respectively. showing this time smaller
trends at the large angular scales (l < 20) as compared to the classical no running numerical ΛCDM
curve. No data with reasonable errors are found so far for CEφ

l .
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5. Conclusions

In this paper, we have revisited the derivation of the matter and temperature power spectra
from the quantum theory of gravity without invoking any additional scalar fields from inflation,
which, to our knowledge, is the first of its kind. We reviewed that while the short-distance quantum
theory of gravity remains speculative, the long-distance behaviors are well known and primarily
governed by the renormalization group (RG) behaviors near its critical point. In particular, we reviewed
how the critical scaling dimension “s” of the correlation function of the scalar curvature fluctuations
at large distances directly governs the scalar spectral index “ns” of the cosmological spectra, as well
as the additional quantum gravitational effects, such as the (IR-regulated) renormalization group
running of the coupling constant (Newton’s constant) G, that will affect these spectra subtly at large
distances. We then presented the various numerical programs that we used in this work, and their
main results, to complement the previous mainly analytical analysis. We then utilized these programs
to further study other cosmological spectra of different modes. We compared these with latest available
observational data, and provided new constraints and insights to the parameters (c0, ξ) of the quantum
theory. We also discussed the possibility of verifying, or falsifying, some of these hypothesis with
increasingly powerful observational cosmology experiments in the future.

Using the numerical results, we find that especially the plots of the matter power spectrum Pm(k),
the angular temperature spectrum CTT

l , and the angular temperature-E-mode spectrum CTE
l - all play

an important role in revealing new insight to constraining the quantum amplitude c0, a parameter that
governs the size of quantum corrections due to the RG running of Newton’s constant. We find that all
three plots agreeably favor a value of c0 closer to around 1.15, rather than the naive estimate of ∼8.0.
This is particularly obvious in the new CTE

l plot from this work, with the c0 = 1.146 curve showing
a ∼60% deviation from the classical ΛCDM (no quantum running) curve. On the other hand, the
angular E-mode spectrum CEE

l and angular angular B-mode spectrum CBB
l plots are the least useful

in distinguishing the running effect, with the EE plot showing only a mild deviation of about 15%
from the classical prediction for the c0 = 1.146 curve, and the deviations on the BB plot are basically
consistent with zero. The three angular lensing spectra, Cφφ

l , CTφ
l and CEφ

l , are potentially feasible
candidates in providing further insights and constraints. Especially for the Tφ plot, showing around
20% and almost 150% deviation for the c0 = 1.146 and c0 = 8.02 curve respectively, from the classical
curve. However, all these latter spectra suffer from a lack of observational data in the low-l regime,
making it impossible to draw any conclusion about the favorability of the parameter or the RG running
in general at this stage.

However, although the percentage differences between the spectra with and without quantum
corrections are decently significant for scales below l < 10—ranging from ∼15–60% even with the
milder value of 1.146 for c0, the uncertainties from current observational data in those ranges are
unfortunately even larger. As a result, it is not yet possible to conclude at this stage the visibility
of these effects. At best, one can claim the slight hints of RG running from the smallest data point
in Pm(k), as well as the last few points (3 < l < 7, ignoring the anomalous l = 2 point) of CTT

l .
Nevertheless, with technology and precision of cosmological experiments improving at a rapid pace,
better observational data in this regime perhaps forms one of the most promising area where quantum
effects of gravity can be revealed and tested for the first time. This is a consequence of the concrete
predictions of the long-distance quantum effects, based on well-established renormalization group
analysis, as opposed to the still rather speculative short-distance theories of gravity.

From a theoretical perspective, the numerical results from this work also serve an important
purpose in ruling out the less favorable value of c0 = 8.0 for the quantum amplitude, but instead
suggesting a value around seven times smaller, closer to c0 = 1.15. We also noted that the uncertainties
in the observational data at low-ls cannot yet fully constrain the precise shape of the RG running,
allowing for the possibility that these various deviations can all be mimicked instead by a modified
value of ξ ≈ 14,000 Mpc, or around 2.5 times larger than the naive estimate ξ '

√
3/λ = 5300 Mpc.

As we discussed in the theory section (Section 2), unlike the universal critical scaling index ν
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(shown from various method to have a value very closed to ν = 1/3), the parameters c0 and ξ

do not necessarily follow from universality, but are instead confident only up to order of magnitudes.
While the observational data at this stage cannot yet exhibit the effects of RG running, they do provide
a useful constraint to the possible values of these theoretical parameters. In particular, as studied
in detail in our earlier work [10], even with the current observational data’s precision, they provide
an extremely stringent constraint on the allowed values of ν, down to at most a 1–2% deviation
from 1/3. This result not only provides a great verification of the values obtained from various
theoretical methods such as the Regge lattice calculations of the path integral, but perhaps the first
phenomenological test of the quantum theory of gravity in cosmology. It is thus hopeful that as
observational technology continues to improve, more insights can be gained regarding the values for
c0 and ξ. With more data and smaller error bars, one can further narrow down a best fit value for
the quantum amplitude c0 or vacuum condensate scale ξ by Markov Chain Monte Carlo (MCMC)
sampling in the ISiTGR program. In addition, ISiTGR is also capable of calculating tensor perturbations,
which can be used to test this quantum gravitational picture as soon as more observational data on that
becomes available. As a fundamentally tensor theory, this gravitational fluctuation picture is expected
to produce nontrivial predictions to those of scalar field based inflation models.

It should also be noted that the numerical programs show a very encouraging agreement with
the analytical results on the matter power spectrum Pm(k), as shown here in Figure 1. This agreement
provides great confidence in the analytical methodology used in [9], or as summarized here in Section 2.
The concordance between numerical and analytical results provides extra support on how the quantum
fluctuations of the gravitational field are linked to the fluctuations of the matter density field. However,
the numerical results for the effects of a RG running of G, suggesting an upturn at low ls, seem to
disagree with the analytical intuition that a lower Pm(k) should give a lower CTT

l , as suggested in
Equation (49). Since the derivation of Equation (49) is purely classical and does not involve any
quantum gravitation input, this suggests a lack of analytical understanding of the effects of a having
a modified RG running Newton’s constant on the Boltzmann equations, and thus their solutions of the
form factors F1 and F2 (Equations (44) and (45)). It is unclear analytically from the coupled differential
equations how the running of Newton’s G from Equation (33) affects their solutions, making it difficult
to translate the predictions on Pm(k), which agrees with the numerical results, to CTT

l . This is an area
under active further theoretical investigations, and will be addressed in future work. Nevertheless,
armed with the supposedly more comprehensive and reliable numerical programs, new insights should
be gained regarding the various quantum effects of gravity on the different cosmological spectra.

At first, the results presented in this paper might appear puzzling, since one usually associates
quantum fluctuations with microscopic, very short distance phenomena. This is in fact generally
incorrect, with superconductors, superfluids, phase transitions and white dwarf stars appearing as
well known examples of condensation and macroscopic quantum cooperative behavior. The point here
is that experience shows that the magnitude and scale for quantum fluctuations in quantum field theory
is instead generally related to an intrinsic dynamical length scale, here the gravitational correlation
length ξ, or equivalently the vacuum condensate 〈R〉 ∼ 1/ξ2 connected to it. In this QCD-like picture,
supported by extensive nonperturbative calculations on the lattice and in the continuum, quantum
fluctuations exist on all length scales and propagate from the microscopic to the macroscopic regime,
all the way up to the cosmological domain (since in the quantum theory the only relevant scale is
the vacuum condensate 〈R〉, which we know from observation is exceedingly small). This is not
unexpected, as the graviton is massless, and macroscopic effects thus arise because of strong infrared
divergences, again in a way that is similar to what happens in QCD, where perturbation also fails
completely in the infrared regime. Consequently, quantum fluctuations of the gravitational field are
not just primordial (t → 0) or microscopic (r → 0) in nature, instead they occur on all length scales
(including infrared scales) at all times, with specific features (such as a weak running of G) predicted
by the existence of those scale invariant quantum fluctuations, and with the parameter ξ setting the
scale for those very subtle quantum effects, again, in close analogy to QCD. Of course, such effects are
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entirely missed in ordinary perturbation theory, which is badly divergent due to a (largely invisible)
nontrivial vacuum condensation.

In conclusion, we have presented in this paper a compelling alternative picture for the various
observed cosmological spectra that is motivated by gravitational fluctuations. In this work, we provided
updated and extended analysis utilizing numerical programs in cosmology, as well as new physical
predictions that can potentially distinguish this perspective from that of standard scalar field inflation.
To this day inflation still forms one of the more popular approaches, but its full acceptance has
remained controversial [74–76]. While there exists a number of alternatives to the standard horizon
and flatness problems [77,78], the ability to explain the various cosmological power spectra has long
been one of the unique predictions from inflation-motivated models, and thus often considered as
one of the “major successes” for inflation. It is thus significant that this work provides an entirely
new alternative, which is in principle arguably more elegant as it only uses Einstein gravity and
standard (and well established) nonperturbative quantum field theory methods, without the usual
burden of flexibilities associated with inflation. Nevertheless, because of the limited precision of
current observational data, it is not yet possible to clearly prove or disprove either idea. In addition, a
complete address of various other cosmological problems such as the horizon and flatness problem,
the issue of cosmological initial conditions, quantum coherence of the initial state, etc. are out of the
scope of this paper, but are certainly interesting and important. It would remain as future work to
see how those can be integrated into the picture. Still, the possibility of an alternative explanation
without invoking the artificial machinery of scalar fields is significant, as it suggests that the observed
power spectra may not be a direct consequence nor a solid confirmation of inflation, as some literature
may suggest. By exploring in more details the relationship between gravity and cosmological matter
and radiation both analytically and numerically, together with the influx of new and increasingly
accurate observational data, one can hope that this hypothesis can be subjected to further stringent
tests in the future.
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