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Abstract5

This paper investigates the impact of the engagement of individual farmers with6

Farm Advisory Services (FAS) on Total Factor Productivity (TFP) growth, as a7

relevant indicator of competitiveness under the vision of Sustainable Intensification8

(SI). Using farm-level data from the Irish dairy sector between 2008 and 2017,9

we estimate a random coefficients stochastic frontier model and construct a TFP10

growth index, extending Orea (2002) such that the contribution of FAS becomes an11

additional component of the index. The results indicate that the main driver of TFP12

growth was technical change and efficiency gains; a negative scale effect slowed down13

TFP growth, but this impact was counteracted by the positive contribution of FAS14

to productivity growth.15
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1 Introduction1

Sustainable Intensification (SI) is an emerging production model in agriculture, which2

aims at increasing output volume with the same or smaller quantities of inputs, thus3

minimizing the environmental pressures resulting from production (e.g. Tilman et al.4

2011; Garnett et al. 2013; Godfray and Garnett 2014; Campbell et al. 2014; Benton and5

Bailey 2019; Klerkx et al. 2019). Under this model, farmers are expected to adapt their6

production practices to various challenges, such as climatic change, and contribute to the7

Sustainable Development Goals for satisfying the increase in food demand from growth8

in world population (e.g. FAO 2009; Fedoroff et al. 2010; Campbell et al. 2014; United9

Nations 2014; Rossel and Bouma 2016; European Commision 2016).10

For SI to be realised, farmers need to combine their own tacit knowledge, obtained11

through experience and learning by doing, with external information coming from vari-12

ous other actors, such as other farmers, Farm Advisory Services (FAS) and researchers13

(Rossel and Bouma 2016). The interactions between the various actors are combined to14

form Agricultural Innovation Systems (AIS), which play a central role in the process of in-15

novation co-creation and knowledge transfer, using a “bottom-up” approach (e.g. Klerkx16

et al. 2012). Contrary to the linear “top-down” innovation model, where innovations are17

created and transferred from researchers to farmers, often neglecting local conditions and18

the particular objectives of the farmers, AIS are meant to support a shift from narrow19

production-based agricultural goals to wider sustainability in agricultural production and20

the rural communities. This is achieved by using knowledge instead of scarce (e.g. water)21

or harmful (e.g. chemicals) inputs, increasing productivity and maximizing farm incomes22

in a more sustainable manner (Bongiovanni and Lowenberg-DeBoer 2004; Mcbratney et23

al. 2005; Rossel and Bouma 2016; Lajoie-O’Malley et al. 2020). To foster these multi-actor24

innovation networks and knowledge co-production, FAS have switched from an expert role25

1



to broader facilitation and intermediation roles (Hall et al. 2003; Klerkx and Gildemacher1

2012; Knierim et al. 2017; Turner et al. 2016; Nettle et al. 2018; Rijswijk et al. 2019).2

In this demand driven innovation system, farmers and advisors co-produce a solution,3

tailored to farmers’ needs (Laurent et al. 2006; Labarthe and Laurent 2013b).4

In the context of EU farming, CAP and the Farm to Fork strategy recognize the role5

of the European Innovation Partnership for Agricultural Productivity and Sustainability6

(EIP-AGRI) in ensuring that farmers’ needs are communicated and linked better to other7

AIS actors and, in this way, promoting a “more competitive and sustainable agriculture8

that achieves more from less” (EIP-AGRI 2012). In particular, FAS is viewed as a key9

actor in fostering the uptake of relevant innovations at the farm level, which will assist10

farmers to become more competitive in a sustainable manner (European Commission11

2018a; European Commission 2018b; EU SCAR 2019).12

Despite the importance of FAS as a driver of productivity, previous empirical studies13

did not isolate the impact of FAS on Total Factor Productivity (TFP) growth. TFP is14

considered as one of the relevant indicators for monitoring the CAP objective of pro-15

moting viable food production, but also for evaluating the performance of the European16

Innovation Partnership (European Commision 2016). Consequently, TFP growth indices17

are widely used in empirical studies as reliable indicators of competitiveness, and to cap-18

ture different dimensions of sustainability, such as social or environmental, at the farm19

level (e.g. Brümmer et al. 2002; Färe et al. 2005; Newman and Matthews 2006; Hadley20

2006; Newman and Matthews 2006; Zhu and Oude Lansink 2010; Melfou et al. 2007;21

Emvalomatis 2012; Fuglie et al. 2016; O’Donnell 2012b; Murty et al. 2012; Sauer and22

Latacz-Lohmann 2015; Chambers and Serra 2018; Skevas et al. 2018; Coomes et al. 2018;23

Sidhoum et al. 2019; Skevas et al. 2021).24

This paper addressed this gap by using Stochastic Frontier Analysis (SFA) to assess25

the impact of FAS on TFP growth in the Irish dairy sector between 2008 and 2017.26

The contribution to the literature is twofold. First, it provides a novel methodological27
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approach for isolating the impact of FAS on TFP growth as an independent component,1

and further highlights the importance of accounting for unobserved heterogeneity. Second,2

it provides policy implications regarding TFP growth in the sector in the specific context3

of the CAP and Farm to Fork strategy.4

The remainder of the paper is organized as follows: Section 2 provides the background5

to this study and presents a conceptual framework that links the Irish dairy sector to the6

TFP growth literature, while accounting for the contribution of FAS. The methodology is7

presented in Section 3, while Section 4 describes the data and the empirical specification.8

Section 5 reports the results and Section 6 concludes with policy implications for the Irish9

dairy sector and a generalization to the EU dairy sector.10

2 Background and Conceptual Framework11

The Irish dairy sector contributes significantly to the wider Irish economy (DAFM 2015).12

The main competitive advantage of this sector is the low cost natural grass based feed13

system (Thorne et al. 2017): due to favourable climatic conditions and suitable soils for14

grass growth (Hennessy and Roosen 2003), Irish dairy farming is mostly spring-calving,15

grass based feed system (Läpple et al. 2012). Nevertheless, the grass based feed system16

has also two main drawbacks. First, farmers are exposed to extreme weather events that17

can raise production costs, such as in the “fodder crisis” of 2012-13 (Hennessy et al. 2015;18

European Parliament 2018). Second, the opportunities for further expansion of milk19

production are bounded by the seasonality of grass production (Hennessy et al. 2015).20

Land access and mobility (i.e. transferring of land between farmers and uses), presents21

a challenge for the growth of the Irish dairy sector (Hartvigsen 2014; O’Donoghue and22

Hennessy 2015). Unless smaller farmers exit the sector, there is little opportunity of23

acquisition of land and expansion of production in a post quota era without intensification,24

i.e. increase in the use of variable inputs, such as purchased feed and fertilizers. However,25
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intensification may result in environmental pollution (e.g. FAO 2013; Coomes et al. 2018),1

while the exit of smaller farms may undermine the SI of the Irish dairy sector. This is2

because small (EU) farms play a number of socio-economic roles, producing a range of3

public goods (Davidova et al. 2013; Dillon et al. 2017). Specifically, small farms maintain4

rural welfare, keep rural areas populated, contribute to the rural non-farm economy, and5

provide environmental public goods, such as attractive landscapes (Dillon et al. 2017).6

Thus, the existence of smaller farms is important for SI. In contrast, the disappearance of7

small farms is often linked to increased poverty, losses to the rural non-farm economy and8

depopulation, especially in remote areas, and might result in environmental degradation9

(Dillon et al. 2017).10

For these reasons, Ireland’s strategic plan for the agri-food sector, FoodWise 2025, has11

set as an explicit objective to foster the competitiveness of the Irish dairy sector, under the12

vision of SI (DAFM 2015). Specifically, FoodWise 2025 suggests that Irish dairy farmers13

should increase output volume with the same or less inputs, by better exploiting through14

the use of innovations the sector’s advantage in having access to the low cost grass based15

feed system (DAFM 2015). Ireland has one of the strongest and most integrated AIS in16

EU, in which, Teagasc FAS contributes to significant knowledge transfer to the Irish dairy17

sector (e.g. EIP-AGRI 2018; Läpple et al. 2016). In particular, Teagasc FAS, is delegated18

with supporting farmers in relation to their management and their technical demands19

and promotes innovations related to better grassland management, breeding techniques,20

cost management, i.e. the “core” technologies, that will allow farmers to make better use21

of their low cost feed system, without putting further pressures on the environment (e.g.22

O’Dwyer 2015; DAFM 2015; Läpple et al. 2019; Läpple and Sirr 2019).23

Previous empirical studies examining the evolution of TFP of the Irish dairy sector24

found a negative efficiency change and a positive scale effect for the period 1996-200825

(Carroll et al. 2008; Kazukauskas et al. 2010; Gillespie et al. 2015). For productivity26

growth to be in line with the SI vision, this should be driven by technological and efficiency27
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improvements (i.e. farmers learn to make better use of the newly acquired technology).1

Furthermore, it would be reasonable to expect negative scale effects in the period under2

investigation: although farms may become larger, the optimal scale of production due to3

technical progress may grow at a faster rate. In other words, given the importance of the4

grass based feed system and low land mobility, Irish dairy farmers cannot operate close to5

the optimal scale of production, thus slowing down TFP growth. Nevertheless, innovations6

such as those promoted by Teagasc FAS, can increase output from scarce resources (e.g.7

land) while minimising the use of harmful inputs (e.g. fertilizers and pesticides), enhancing8

productivity gains. This will ensure a more competitive and sustainable way of dairy9

farming, in line with SI.10

A large empirical literature exists that links innovation and TFP growth in the agricul-11

tural sector. Studies usually proxy innovation at the farm level by investment expenditure12

or a transformation of this expenditure to deal with the possible zero or negative observed13

values, in case of disinvestment (e.g. Silva and Stefanou 2007; Serra et al. 2011; Emval-14

omatis et al. 2011; Sauer and Latacz-Lohmann 2015; Sauer 2017; Minviel and Sipiläinen15

2018). Although innovations can increase productivity, this increase may come at the16

cost of another sustainability dimension, such as the environmental (e.g. FAO 2013). The17

impact of various AIS actors on productivity has been assessed using cross-sectional data,18

and as well as with panel data (e.g. Kalirajan 1981; Bravo-Ureta and Evenson 1994; Bravo-19

Ureta et al. 2012; Rao et al. 2012; Henningsen et al. 2015; Kumbhakar et al. 1991; O’ Neill20

et al. 1999; Carroll et al. 2008; Martinez-Cillero et al. 2018; Martinez-Cillero et al. 2019).21

In a related stream of literature, accounting for the contribution of environmental goods22

and services (e.g. products or services that aim to prevent or minimise environmental23

pressures, restoration of environmental damage) or improvement of resource management24

through education and training, on TFP growth has been suggested as a way of building25

a better SI metric (Melfou et al. 2007; Fuglie et al. 2016; European Commision 2016;26

Coomes et al. 2018).27

5



We extend the relevant literature by examining the impact of FAS, along with technical1

change, efficiency change and scale effect on TFP growth in the Irish dairy sector. Here,2

we further assume that farmers improve their technology by attaining better access to the3

“core” technologies, through contact with FAS (e.g. Dinar et al. 2007). FAS is viewed as a4

mediator in the process of adoption of innovations and practices that are consistent with5

the vision of SI. This implies that FAS contact can also result in better information flow,6

which can assist farmers regarding the input choices and access in technology embodied7

in inputs (Batte and Schnitkey 1989). The farmer’s tacit knowledge is combined with the8

information shared from FAS, so applied information at the farmer level is better adjusted9

to the farmer’s needs. From a theoretical perspective, tacit knowledge (passive learning,10

learning by doing), with farmer’s initial ability and information flows could be seen as the11

three core determinants of management (Stefanou 2009; Shee and Stefanou 2016; Batte12

and Schnitkey 1989), where better management shifts the production frontier outwards13

(Triebs and Kumbhakar 2018). The decision of a farmer to initiate and maintain contact14

with FAS is determined by a number of farmer characteristics such as age, marital status15

(Läpple et al. 2015), and it is assumed to be exogeneous to the employed technology, in16

the sense that causality runs only in one direction, from contact with FAS to adoption of17

management practices.18

3 Methodology19

3.1 TFP growth decomposition20

We use an output distance function to express mathematically the production technology21

while accounting for the multi-output nature of the production processes employed by Irish22

dairy farms (e.g. Newman and Matthews 2006). The output-oriented distance function23
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can be stated as:1

Do(x,y, F, t) = min

{
θ :

y

θ
∈ output possibility set at time t, given F

}
(1)

where the input and output vectors, x ∈ RN and y ∈ RM , are implicitly defined as2

a functions of time, t, and F is a measure of the interaction between the farmer and3

FAS, which affects the production technology. In the empirical application F is defined4

as a time varying binary variable that indicates whether a farmer contacted FAS in a5

particular year. It is conventional in the relevant literature to capture technical progress6

exogenously by t. In this context, the passage of time reflects the shift in the production7

frontier due to improvements in the production technology.8

The output oriented distance function returns the inverse of the maximum amount9

by which the output vector could be increased, but remain feasible, for a given level of10

inputs.1 The range of the distance function is the unit interval and the combinations of11

x, y, F and t for which its value is equal to one define the boundary of the production12

possibilities set. Thus, the distance function itself can be used to define technical efficiency13

as a function of its arguments:14

Do (y,x, F, t) = TE (2)

The TFP growth rate is defined as the weighted growth rate in outputs minus the15

weighted growth rate in inputs:16

d log TFP

dt
=

M∑
m=1

∂ logDo

∂ log ym
ŷm −

N∑
n=1

εn
ε
x̂n (3)

1The output-expanding view of efficiency taken here is in line with the vision of SI, in which farmers are
encouraged to maximize the amount of output, given the available resources. Despite the quota scheme
operating until 2014, we assume that the farmers’ objectives are still consistent with output expansion,
since quota was tradeable in Ireland (under some conditions) and between 2009-2014 dairy farmers were
allowed to increase the amount of milk output, by up to 1% per year.
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where εn = ∂ logDo

∂ log xn
, ε =

∑N
n=1 εn and a “hat” over a variable denotes growth rate (ŷm =1

∂ym
∂t
/ym for example). The weights used for the aggregation of the growth rates of outputs2

in (3) are the respective distance elasticities, while for the inputs the weights are the shares3

of distance elasticities in scale elasticity (see Orea 2002; Lovell 2003). If the property of4

linear homogeneity in outputs of the distance function is imposed, then the weights for5

outputs sum to unity (e.g. O’Donnell and Coelli 2005), while the weights for inputs sum6

to unity by construction. Under a cost minimization assumption the distance elasticity7

with respect to each input is equal to the share of the respective input in total cost. Under8

revenue maximization, the distance elasticity with respect to each output is equal to the9

share of the respective output in total revenue. Thus, under profit maximization, the10

distance elasticities can replace the input shares in cost and output shares in revenues11

in a conventional Törnqvist index. When these strict assumptions fail, then the distance12

elasticities can be viewed as approximations to the weights required by the Törnqvist13

index.14

Taking logs of both sides in (2), totally differentiating with respect to time, and re-15

arranging gives:16

M∑
m=1

∂ logDo

∂ log ym
ŷm +

N∑
n=1

∂ logDo

∂ log xn
x̂n +

∂ logDo

∂F
Ḟ +

∂ logDo

∂t
=

d log TE

dt
(4)

where Ḟ = ∂F
∂t
≈ Fit − Fit−1. Finally, solving (4) for

∑M
m=1

∂ logDo

∂ log ym
ŷm and inserting this in17

(3) gives:18

d log TFP

dt
=

d log TE

dt
− ∂ logDo

∂t
− (1 + ε)

N∑
n=1

εn
ε
x̂n −

∂ logDo

∂F
Ḟ (5)

This is the usual decomposition of TFP growth into technical efficiency change (TE),19

technical change (TC) and scale effects (SE) as in Orea (2002), appending FAS, which20

is an additional component that explains TFP growth due to F . This component comes21
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from isolating the impact of changes from one year to the next in farmer contact with1

FAS.2

The employed TFP growth index, similarly to other popular indices, such as the3

Fisher, fails to satisfy key axioms from index theory, including monotonicity, identity,4

commensurability, proportionality, circularity and transitivity (Njuki et al. 2019). For5

example, the identity axiom states that two farms which use exactly the same amounts6

of inputs and produce exactly the same amounts of outputs should have exactly the same7

TFP index. The transitivity axiom states that the direct comparison of the TFP difference8

between two farms should result in the same TFP change as an indirect comparison9

through another farm (O’Donnell 2012b; O’Donnell 2012a). See O’Donnell (2018) for10

a formal presentation of the axioms, indices that satisfy these axioms, and summary of11

empirical applications that construct “proper” TFP indeces, i.e. indices which can be12

written as a proper output index divided by a proper input index (that satisfy the eight13

axioms).14

3.2 Accounting for technological heterogeneity: Random Coef-15

ficients Model (RCM) specification16

In a stochastic frontier framework, the description of the production technology will in-17

fluence the measurement of TFP growth and its components (Kumbhakar et al. 2018)18

and although the assumption of homogeneous technology is convenient, it may not be19

realistic. Neglecting to account for technological heterogeneity may result in misleading20

characterizations of scale economies, elasticities of substitution and other measures of pro-21

duction structure (Kumbhakar et al. 2018). For example, Alvarez and del Corral (2010)22

compared the elasticity estimates produced by stochastic frontier models under homoge-23

nous and heterogeneous technologies, where heterogeneity was captured via a Latent Class24

Model (LCM). They used farm level data from the Spanish dairy sector between 1999 and25
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2006. The study showed that disregarding technological heterogeneity overestimates the1

marginal productivity of purchased feed per cow and the contribution of the scale effect2

to TFP growth for all farmers. We expect that not accounting for heterogeneity in our3

empirical investigation could result in biased estimates of the marginal productivity of4

inputs and the scale elasticity, as well as of the impact of FAS on productivity growth.5

Following Alvarez and del Corral (2010) and Kumbhakar and Orea (2004), one could6

proceed by modelling technological heterogeneity through a LCM, in which class member-7

ship depends on farm size.2 However, input marginal productivities as well as the effect of8

FAS on the production possibilities set could vary at the farm level, on many more factors,9

in addition to the scale of operations. For example, Teagasc FAS may also promote tacit10

technologies (Boyle 2012), in the sense that these are not fully embodied in purchased11

inputs, such as machinery or seeds (Evenson and Westphal 1995; Chatzimichael et al.12

2014). In this regard, variability of marginal effects among farmers may be due to factors13

that are not observed by the researcher, such as diverse learning preferences, accessibility14

to inputs, risk perception, risk tolerance, etc. (Carroll et al. 2008; Kilpatrick and Johns15

2003; Pasquini and Alexander 2005; Bowman and Zilberman 2013; Conradt et al. 2014;16

Saint-Cyr 2017; Trujillo-Barrera et al. 2016; Läpple et al. 2019). Instead, this paper uses17

an RCM, which can be viewed as a generalization of the LCM (Greene 2005). The main18

advantage of RCM is that it allows borrowing of strength from observations across farms19

and provides additional flexibility to the specification of the technology employed (Em-20

valomatis 2012). This is a particularly relevant issue when the sources of heterogeneity21

are not observed. In the RCM, the contribution of FAS, technical change and scale effects22

will depend on farm-specific unobserved heterogeneity, which is captured by farm-specific23

slope parameters (e.g. Kalirajan and Obwona 1994; Tsionas 2002; Emvalomatis 2012;24

2Labarthe and Laurent (2013a) and Labarthe and Laurent (2013b) suggest that some EU farmers may
proceed with different investments (e.g. in machinery, labour) in relation to the technology they employ.
Thus, the effect of FAS may vary with the scale of operation. In general, technical progress, and
especially embodied technical progress, tends to favour larger farms (e.g. Alvarez et al. 2012; Alvarez
and del Corral 2010).
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Njuki et al. 2019; Skevas 2019).1

Even though RCMs account for unobserved heterogeneity and add flexibility to the2

data generating process, they do not correct entirely for endogeneity that stems from the3

appearance of the normalizing output in both the left- and right-hand sides of the equa-4

tion to be estimated. This is a known issue with an extensive associated literature. As5

demonstrated by Roibás and Arias (2004), if random events affect the amounts of outputs6

non-proportionally, then the output ratios that appear as independent variables are mea-7

sured with error and, thus, the observed ratios are correlated with the noise component8

of the error term, vit. Given that farmers may attempt to reduce revenue variability by9

choosing output mixes such that random shocks counteract their effects on total revenue,10

it is rather unlikely that these shocks affect the two outputs proportionally. However,11

endogeneity is an especially difficult econometric problem in the SFA context, without12

an obvious solution (Mutter et al. 2013; Amsler et al. 2016). The Generalized Method13

of Momements (GMM) approach requires the selection of instrumental variables that are14

uncorrelated with the error term, which implies that is sensitive to the choice of instru-15

ments (O’Donnell 2010). A good choice for instruments are prices (e.g. Smith and Landry16

2021), which are usually unavailable in most farm level production studies. To the best17

of our knowledge, studies provide a possible way to account for input endogeneity (not18

necessarily for an input distance function or a panel data model) (e.g. Gudbrand et al.19

2018; Tsionas et al. 2015; Hung-pin and Kumbhakar 2021). The only possible method-20

ological approach accounting for output endogeneity in distance function is O’Donnell21

(2014). This approach has appealing methodological features, but comes with a major22

limitation, given the aims of our paper: it does not accommodate unobserved heterogene-23

ity. As argued above, neglecting to account for unobserved heterogeneity influences the24

estimates of TFP growth and its components, including the FAS effect, which is our main25

interest. Overall, accounting for endogeneity in an output distance function is still an26

open issue in the empirical literature.27
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Regarding the choice of the functional form of the distance function, translog appears1

to be preferred over Cobb Douglas in the literature, due to its flexibility with regards2

to the elasticity of substitution between inputs and outputs, as well as with respect to3

the curvature of the production possibilities set. Nevertheless, the RCM specification also4

allows for high flexibility (Emvalomatis 2012; Njuki et al. 2019), capturing the curvature of5

the underlying global distance function even when using restrictive local distance functions6

for each farm separately (Emvalomatis 2012). Using data from the German dairy sector,7

Emvalomatis (2012) found that formal test comparisons favour RCM specifications with8

fewer farm-specific parameters. This is crucial, since different functional forms may result9

in different elasticities and TFP growth results, and on the TFP index itself; and in turn,10

possibly different policy implications.11

Therefore, three different specifications are considered, following Emvalomatis (2012):12

1) a semitranslog RCM1, 2) a semitranslog RCM2 with fewer farm specific parameters13

that is used to assess whether the overparametarization of RCM1 affects estimates and14

3) a semitranslog Common Frontier Model (CFM) to all farms, as a reference model to15

compare results under homogeneous technologies. RCM1 is specified as:16

− log yMit = αi +
∑
n

αin log xnit +
∑
m

βim log

(
ymit
yMit

)

+
∑
`

∑
m

γi`m log

(
y`it
yMit

)
log

(
ymit
yMit

)

+ ηiFit + ρitFit + ζ1it+ ζ2it
2 +

∑
n

ξit log xnit

+
∑
m

ϕit log

(
ymit
yMit

)
+ vit + uit

(6)

where yMit is the normalizing output3, αi is a farm specific intercept, vit captures statistical17

3By definition, the distance function is homogeneous of degree one in outputs and imposing this property
can be achieved by dividing all outputs and the value of the distance function by the amount of the
normalizing output, yM . Taking the natural logarithm of both sides of the resulting expression and
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noise, assumed to be normally distributed with zero mean and precision (inverse variance)1

parameter τ , uit is a one-sided non-negative error term that captures technical inefficiency,2

assumed to be exponentially distributed with rate parameter λ (van den Broeck et al.3

1994). The technical efficiency of firm i in period t is defined as TEit = e−uit and4

is bounded between zero and unity. The dependent variable is negative and log(TEit)5

is subtracted from the right-hand side. This implies that the distance elasticities with6

respect to outputs should be positive and with respect to inputs negative.7

Parameters associated with F and t are expected to be negative in the distance specifi-8

cation. The passage of time is expected to move the frontier of the production possibilities9

set outwards, reflecting a technological improvement over time. This will be reflected in10

equation (1) by a reduction in the value of the distance function, as a smaller value for11

θ is now necessary to project an observed combination of inputs and outputs onto the12

boundary of the extended production possibilities set. A similar interpretation exists for13

F : a farmer who is receiving advice in year t is expected to alter the employed technology14

and shift the frontier (or the farm specific frontier in the case of RCM) outwards.15

A linear time trend captures neutral technical progress, and its interaction terms with16

inputs, F and normalised outputs are included to capture non-neutral technical progress.17

Specifically, the interaction term between t and F can be used to infer whether the18

impact of FAS on the frontier is increasing or decreasing over time. Second order terms19

for normalized outputs are also included so that the distance function is not restricted to20

be convex in the output dimension.21

The specification of RCM2 is similar to the one for RCM1, but with the quadratic22

time-trend term, as well as the interaction terms between time and inputs and outputs23

rearranging gives an expression where minus the logarithm of the normalizing output appears in the
left-hand side and the logarithm of the ratio of other outputs to the normalizing output in the right
hand side (e.g. Coelli and Perelman 1999).
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dropped:1

− log yMit = αi +
∑
n

αin log xnit +
∑
m

βim log

(
ymit
yMit

)

+
∑
`

∑
m

γi`m log

(
y`it
yMit

)
log

(
ymit
yMit

)

+ ηiFit + ρitFit + ζ1it+ vit + uit

(7)

To reduce the RCM1 model to the CFM, all farm specific slope coefficients are replaced2

by parameters that are common to all farms, similar to Aigner et al. (1977).3

The components of TFP growth are constructed after estimating RCM1, RCM2 and4

CFM. After estimating the parameters of the distance function, technical progress in the5

case of the RCM1 can be calculated as:6

∂ logDo

∂t
= ζ1i + 2ζ2it+

∑
n

ξni log xnit +
∑
m

ϕi log

(
ymit
yMit

)
(8)

where ζ1i and ζ2i capture neutral technical progress and the ξns non-neutral progress.7

The contribution of FAS to TFP growth consists of two parts, which are obtained by8

totally differentiating with respect to time the terms of the distance function that involve9

F : ηiFit+ρitFit. The first part comes from the partial derivative with respect to time and10

is equal to ρiFit. The second part is due to the dependence of F on time and is obtained11

as ∂ logDo

∂F
Ḟ ≈ (ηi + ρit) · (Fit − Fit−1). From a purely mathematical perspective, the first12

part could, alternatively, be included in the technical change component instead of the13

FAS effect. From a practical perspective, however, it is more appropriate to attribute this14

term to the FAS effect, as it comes to being only because farmers enter into contracts15

with FAS. Thus, we estimate and present a single aggregated FAS effect (in the results16

presented in Figure 1 below), that attributes both parts, ρiFit and (ηi + ρit) · (Fit − Fit−1)17

to the FAS effect.18
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Technical efficiency change is calculated as:1

d log TE

dt
≈ log TEit − log TEit−1 (9)

capturing the change in the efficiency score of a farmer between two consequent periods.2

Finally, the scale effect is calculated as:3

−(1 + εit)
N∑
n=1

εnit
εit

x̂nit (10)

with εnit =
∑
n

αin +
∑
n

ξn,it, εit =
∑
n

εnit and x̂nit = log xnit − log xnit−1 approximates the4

rate of change in the quantity of input n used by farm i between two adjacent years. The5

components of TFP growth for RCM2 are calculated in a similar way, but after dropping6

the non-neutral technical progress components related to inputs and outputs.7

Previous estimations of a RCM frontiers have been conducted in a classical/frequentist8

approach (Kalirajan and Obwona 1994) using simulated maximum likelihood (e.g. Greene9

2005; Njuki et al. 2019), as well as using Bayesian inference (e.g. Tsionas 2002; Emval-10

omatis 2012; Skevas 2019). We proceed with Bayesian techniques, as these are better11

suited to compare the three candidate models via Bayes factors (Kass and Raftery 1995).12

Details about the priors are presented in Appendix A, along with some background on13

model comparison using Bayes factors.14

4 Data15

We use data from Teagasc’s National Farm Survey (NFS) on Irish dairy specialist farms,16

observed between 2008 and 2017. The original dataset contains farms that are observed17

between 1 and all 10 years. To ensure that enough information per farm is available for18

precise estimation of the farm-specific parameters in the RCM models, we keep only farms19
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that are observed for at least five years. This results in a sample of 2323 total observations1

on 277 farms that remain in the sample for and average of 8.7 years.2

We define two categories of outputs: Milk output (y1), measured as the total revenue3

from milk production, and other output (y2), that consists of aggregate revenues from4

meat products, crops and other minor commodities (y2). Regarding inputs, we consider5

four categories: Capital (K) includes the value of machinery and buildings and total6

livestock value, Labor (L) is measured in labour units working on the farm, including7

both paid and unpaid labour, Land (A) is the utilized agricultural area, measured in8

hectares, Materials (M) consists of expenditures in seeds and plants, fertilizers, crop9

protection, energy, contract work, purchased feed, upkeep of buildings, machinery hire10

and upkeep of land. A farmer’s participation in FAS (F ) is measured by a time varying11

binary variable, where unity denotes that a farmer had a contract with Teagasc FAS ,12

without being obliged to do so by any scheme in any given year (e.g. Läpple et al. 2015).13

The qualification on the non-obligatory nature of the contract is imposed to ensure that14

F is related to the core technologies and not, for instance, with assistance to farms in15

schemes to fulfill bureaucratic requirements to receive subsidy payments (Cawley et al.16

2018). For each aggregate that is measured in monetary terms (y1, y2, K, M), price17

indices from EUROSTAT with 2010 as a base year are used to construct a Törnqvist18

index. Then, each aggregate variable was deflated accordingly. Summary statistics of the19

relevant variables and price indices are presented in Table 1.20
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Table (1) Summary Statistics, Irish dairy farms 2008-2017

Variables Mean Std. Dev Min Max

Milk (1000 e) 132.93 89.38 1.13 623.69

Other Output (1000 e) 59.06 42.64 1.18 424.06

Labor (Units) 1.70 0.65 0.7 6.93

Capital (1000 e) 291.83 196.85 8.80 1066.93

Materials (1000 e) 79.41 54.48 4.67 383.43

Area (Ha) 62.21 32.18 3.7 222.61

F* 0.51 0.45 0 1

Milk price index 0.96 0.09 0.78 1.09

Other output price index 1.03 0.04 0.96 1.09

Capital price index 1.02 0.01 1.00 1.05

Materials price index 0.99 0.06 0.89 1.07

* F is a binary variable that is equal to one if a farmer had a contract with

Teagasc FAS in each year. For example, the average number of years that

farmers had a contract with Teagasc FAS over the total number of years that

they remain in the sample is about 0.51, i.e. farmers on average had a contract

for almost half of the years for which they are observed.

5 Results1

The data for inputs and outputs are normalized by their geometric mean prior to estima-2

tion, leading to an interpretation of the parameters associated with the first-order terms3

as distance elasticities, evaluated at the geometric mean of the data. The results presented4

in this section are obtained using data augmentation techniques (Tanner and Wong 1987),5

which is a standard technique in Bayesian inference (Koop 2003) and a Markov chain with6
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a burn-in phase of 40,000 iterations and a total of 80,000 retained draws from the poste-1

rior. Table 2 presents the posterior means of the parameters from the three specifications.2

The reported numbers for CFM are for the common slope parameters and the mean of3

the random intercepts. For the two RCMs the parameters for farm i are grouped in a4

vector θi and the numbers reported in Table 2 are the estimated means, for each model,5

of the distributions of the θis. In general, the chains converge relatively fast, without any6

issues. Details on the convergence performance of the samplers are given in Appendix B.7

Table (2) Posterior means of the models’ parameters

Variable CFM RCM1 RCM2
constant -0.108* -0.050* -0.078*
logK -0.278* -0.336* -0.317*
logL -0.082* -0.075* -0.054*
logA -0.183* -0.234* -0.242*
logM -0.519* -0.249* -0.280*
log y2 0.312* 0.177* 0.189*
log2 y2 0.109* 0.107* 0.088*
t -0.014* -0.024* -0.023*
t2 -0.002* -0.004* -
t · logK 0.000 -0.012 -
t · logL -0.001 -0.009 -
t · logA 0.007 0.008 -
t · logM 0.000 0.010 -
t · log y2 -0.004 -0.011 -
F -0.050* -0.028 -0.041*
t · F 0.006* 0.012 0.004
Average TE 0.91 0.94 0.94
λ 10.56 17.72 17.478
σ2 0.025 0.002 0.003
RTS 1.062 0.893 0.893
Marg. log-lik. 502.53 -50.60 857.829
*The corresponding 90% credible interval does not contain zero.

The elasticities from the RCMs can be viewed as estimates of average distance elastic-8

ities, depicting the shape of the “average” distance function, in which the farms’ specific9

distance functions are located. For instance, the estimated distance elasticity with respect10

to y2 in CFM shows that if the farmer produces 1% more of other output (holding inputs11
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and milk output fixed) then the value of the distance function is increased by 0.31%,1

moving the farmer closer to the frontier. The distance elasticity with respect to y2 in2

the two RCMs shows that if a farmer produces 1% more of other output, then, ceteris3

paribus, the value of the distance function is increased by 0.177% and 0.189% in RCM14

and RCM2, respectively.5

The Bayes factors clearly favour RCM2 over CFM and RCM1, with the the marginal6

log-likelihood of RCM2 being much higher than the ones for CFM and RCM1. This7

suggests that RCM2 explains the data better compared to the other candidate models.8

It also suggests that increasing the number of farm-specific parameters to be estimated9

in a RCM may lead the Bayes factor to erroneously favour a homogeneous technology SF10

model.4 We further evaluated the performance of the models in relation to the regularity11

conditions. For RCM2, which is favoured by the Bayes Factor, we found that motonicity12

conditions are satisfied for all inputs, but are violated for other outputs at 2%. Quasi-13

convexity in outputs is violated at 46% of the observations. Detailed results are presented14

on Appendix C. Hence, for the rest of the section we focus on discussing the results from15

the RCM2 model. In Appendix B, we discuss and compare the estimated elasticities16

between the three models.17

The elasticity of the neutral component of technical progress is estimated at 0.23. The18

contribution of FAS to the outward shift of the frontier of the production possibilities set19

is estimated at 0.04. The model further shows that impact of FAS on the frontier is either20

increasing or decreasing over time (the credible intervals contain positive and negative21

values). We should, however, keep in mind that in the RCMs this is the average impact22

across farms and that farm-specific marginal effects could be significantly positive or23

negative.24

4A full translog specification could have been used for the CFM. Here, the semi-translog form is kept to
allow for an easier comparison of elasticities and TFP growth with RCM1. The semi-translog CFM is
compared with and favoured by the data over a common frontier model with a full translog specification
in inputs and outputs and including interactions with the time trend and FAS variables. The estimated
marginal log-likelihood is 483.884 for the full translog specification.
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One could possibly use investment levels as an alternative to the FAS variable, as these1

can be perceived as complementary innovation activities at the Irish dairy farm level (see2

Läpple et al. 2015). For example, FAS innovations are in the form of knowledge and3

information (e.g. Läpple and Hennessy 2015; Läpple et al. 2019) where a farmer may seek4

assistance from FAS to evaluate alternative plans of action before investing in the most5

appropriate one. Therefore, we further examine investment levels as a proxy of adjustment6

with respect to FAS technologies. Appendix C reports these results, showing that the7

above results are robust even when accounting for dynamic adjustments to production.8

Regarding the remaining elasticities, there are some interesting differences compared9

to studies in other EU dairy sectors. Skevas et al. (2018) found the labour and land elas-10

ticities of the German dairy sector between 2001 and 2009 at 0.039 and 0.107 respectively.11

In the Dutch dairy sector for the 2009-2016 period, Skevas (2020) found the elasticity of12

labour at 0.092 and land at 0.146. The elasticity of land in RCM2 is much higher when13

compared to these studies, reflecting the importance of land in the Irish dairy sector. It14

is also interesting that the labour elasticitity for the case of Ireland is much lower than15

in the Dutch dairy sector, but higher than in the German dairy sector. Differences in16

the elasticities can also be attributed to the differences in the employed methodologies of17

these studies.18

On average, the returns to scale (RTS) elasticity (−
∑

n εn) is 0.89. Please note that the19

RTS in the RCM models is a measure of local returns to scale, i.e. in the neighbourhood20

where the farms are currently operating (e.g. Emvalomatis 2012). Hence, decreasing the21

RTS indicate that the Irish dairy sector exhibits decreasing returns to scale, on average,22

at the points at which farms are observed. From an economic perspective, decreasing23

returns to scale may be attributed to limited accessibility to some inputs due to capital24

constraints, land fragmentation or limited access to raw materials or to regulated input25

markets (e.g. Karagiannis and Sarris 2005; Brümmer et al. 2006). Low land mobility is the26

most probable reason for the decreasing RTS in the results (O’Donoghue and Hennessy27
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2015).1

The average efficiency score is 0.94, with similar minima and maxima, at 0.71 and2

0.98, respectively, as in other relevant studies. Regarding efficiency scores in other EU3

dairy sectors, Skevas (2020) used a dynamic efficiency specification that accounts for4

spatial spillovers and estimated the average technical efficiency in the Dutch dairy sector5

at 0.843. For the 2001-2009 period in the German dairy sector, Skevas et al. (2018)6

estimated various stochastic frontier models, finding average technical efficiency scores to7

range between 86% and 95%. Using an RCM, Emvalomatis (2012) reported the average8

technical efficiency of German dairy farmers between 76% and 81% (1995-2004). An9

RCM was also used in Skevas (2019), who found the average efficiency of the German10

dairy sector at 0.921, that is close to the estimated average technical efficiency in RCM2.11

In Figure 1 below, we present how the TFP growth evolution and its components12

differs between the three estimated models. In the rest of the section, we explain the13

TFP growth, using the obtained elasticities from RCM2, and its components Technical14

Change (TC), Technical Efficiency (TE) change, Scale Effect (SE), and FAS effect evolved15

during the period under consideration; while in Appendix B we extend this discussion to16

a comparison across the three models. The average annual TFP growth is 2.10%, which17

was mostly driven by TC (2.12%). In the first half of the period 2008-2012, the TC growth18

is on average 1.8% In this period, farmers proceeded with significant on-farm investments19

in infrastructure and livestock, preparing for the post quota era (O’Dwyer 2015; Läpple20

and Sirr 2019), while output was allowed to increase annually only by 1%. The TC in the21

second half of the period (between 2012 and 2017) increases considerably compared to22

the first half. Hence, Irish dairy farmers probably benefited from recent market reforms,23

i.e. “Soft Landing” and abolition of the quota scheme (European Parliament 2018),24

improving their technology at a faster rate. Similar arguments are presented by Gillespie25

et al. (2015).26
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Figure (1) Total Factor Productivity (TFP) growth decomposition
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The efficiency change is almost 0.00%, on average. This is an important result that1

shows that, although dairy farmers achieved a high rate of technical progress, there are2
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also important catch up effects that are possible, where farmers need to use better the1

adopted technical innovations.2

Another interesting finding is that the scale effect varies considerably from year to3

year. The model shows a persistent negative sign for this component, which implies that4

farmers move further away from the optimal scale of the technology they utilize, i.e.5

they need further increases in scale to move closer to the constant-returns to scale part6

of the production technology. This could be attributed to low land mobility: as they7

start increasing milk output and herd size during this period, the lack of available land8

is possibly manifested as a negative scale effect. Finally, the model shows that FAS on9

average fostered TFP growth by 0.18%. This is close in magnitude to the average negative10

scale effect (-0.20%), suggesting that FAS “compensates” (almost) sufficiently for the low11

land mobility.12

6 Conclusions13

This paper extends previous empirical studies by examining the impact of Farm Advisory14

Services (FAS) on farm level Total Factor Productivity (TFP) growth in order to explain15

the contribution of FAS on competitiveness under the vision of Sustainabile Intensification16

(SI). Three TFP growth indices were constructed for the Irish dairy sector and for the17

period 2008-2017 period, using the estimates of a Common Frontier Model (CFM) and18

two Random Coefficient Models (RCMs). Model comparisons based on Bayes factors19

concluded that the data are explained better by RCM2, which accounts for unobserved20

heterogeneity in the slope coefficients of the distance function. This model also avoids21

overparametarizing the frontier specification, as is done by RCM1. RCM2 showed an22

average annual 2.10% TFP growth rate, driven overwhelmingly by 2.12% per annum23

growth in technical change over the period. TFP growth was inhibited by a negative24

scale effect (-0.20%), while the impact of efficiency change was 0.00%.25
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Furthermore, the impact of FAS on TFP growth was found to be positive on average1

(0.18%), but of diminishing magnitude over time. A possible explanation is that group2

discussion membership becomes counter-effective when groups continue operating with3

the same members for several years (discussion groups are widely used as a delivery4

method by Teagasc advisors (Läpple et al. 2019). This indicates the need for redesigning5

the discussion group members, for example, by mixing discussion groups with different6

members or group facilitators in order to enhance learning effects (Läpple et al. 2019).7

Another possible explanation for the declining effect of extension services on farm level8

performance may be due to the life-cycle effect of farmers growing older and beginning9

to disinvest (Läpple et al. 2019). Overall, RCM2 suggests that TFP growth was driven10

mainly through technology and efficiency gains, in line with the concept of SI.11

The approach used in this paper has a few caveats. The first regards the arbitrary12

binary measure of FAS and its apparent limitations of not not describing whether the13

farmers used the acquired knowledge from FAS. For example, some farmers may be inter-14

ested in obtaining knowledge and information with respect to breeding techniques, others15

for grassland management, or some other in all “core” technologies. In addition, not all16

farmers may choose the same delivery methods; for two farmers who are both interested17

in grassland management techniques, the impact of FAS may be higher for the farmer18

who will choose to participate in discussion group members as a delivery method, since19

he may learn faster to use this technology efficiently. It is noticed though in the data that20

most of the farmers who have a contract with FAS do so persistently, which implies that21

farmers indeed find advice and support helpful and perhaps adopt the FAS technologies.22

Furthermore, the binary measure does not provide more information regarding the qual-23

ity of interaction between farmers and advisors. This is, however, partly dealt with the24

flexibility of the RCM specifications, which allow the impact of FAS to vary across farms.25

Furthermore, there is an emerging literature that tries to explain the dynamics of26

weather (or climatic change etc.) on TFP growth (e.g. Njuki et al. 2020; Chambers and27
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Pieralli 2020). It would be interesting to include such determinants in our specification,1

and probably this topic would require a separate focus due to its individual importance.2

However, we did not have access to such variables: if such variables are available in the3

database of the Irish National Farm Survey collected by Teagasc, then these are not4

readily available for use. We are aware of a number of studies on farm level performance5

in Ireland that did not use such variables, possibly for the same reason: Newman and6

Matthews (2006), Newman and Matthews (2007), Carroll et al. (2008), Martinez-Cillero7

et al. (2018), Martinez-Cillero et al. (2019), Läpple et al. (2019), Balaine et al. (2020),8

and Bradfield et al. (2021). Furthermore, measures of weather conditions at the regional9

level would likely vary over time, but be relatively constant across farms for a given year.10

Thus, including them as independent variables could lead to a deterioration of the ability11

of the model to fit the data due to low variability in these variables and could possibly12

overparametetarize the model, as we discussed (e.g. resulting in most of farmers to being13

close to 100% efficient), leading to inconclusive results, as we explain above.14

Moreover, given that the TFP index employed in this paper is not proper (as discussed15

previously), this could be dealt by explicitly accounting for statistical noise. O’Donnell16

(2018) conceptualizes statistical noise as a combination of four errors: functional form17

errors, measurement errors, omitted variable errors, and included variable errors. The18

TFP index could be written as the product of proper TFPI numbers and a statistical19

noise index (SNI), which accounts for functional form errors, measurement errors, and20

omitted and included variable errors (Njuki et al. 2019).21

Methodologically, the paper also provides evidence that overaparametarizing an RCM22

in SFA estimation could lead to misleading results when model comparison is performed23

using Bayes factors, as shown previously in (Emvalomatis 2012). Furthermore, accounting24

for heterogeneity provides a different picture about the elasticities of purchased materials25

and the contribution of the scale effect to TFP growth. This is consistent with previous26

empirical findings (e.g. Alvarez and del Corral 2010; Emvalomatis 2012).27
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From a policy point of view, our findings provide support for the claim that FAS,1

indeed, fostered competitiveness under the vision of SI in a demand driven, “bottom up”2

process: Irish dairy farmers do not proceed with sufficient scale increases (possibly due3

to low land mobility), and hence, the negative scale effect inhibits overall TFP growth.4

However, the similar magnitudes (but opposite signs) of the scale and FAS effects indicates5

that the use of “core” technologies by Irish dairy farmers, counteracts the inhibiting6

impact of limited land availability: farmers are able to expand production volume without7

further environmental pressures that might arise from utilizing inputs such as purchased8

feeds, fertilizers, etc. This is achieved with use of the “core” technologies that allow9

Ireland’s dairy farmers to exploit better the competitive advantage of the grass-based10

feed system and be less reliant on materials such as purchased feeds, and hence more11

resilient on input price volatility shocks.12

From a EU policy perspective, TFP growth and its components indicate that the13

abolition of milk quotas increased competitiveness in the dairy sector, accelerating the14

technology update (as captured by the fast rate of technical progress). Furthermore,15

our results provide evidence that FAS fostered a more sustainable way of farming in line16

with the SI vision. FAS is part of the CAP 2021-2028 and Farm to Fork strategy for17

a more competitive and sustainable agriculture, highlighting that there is an ongoing18

need for improvement, for example, with the continuous promotion of technologies at19

the farm level through FAS and AIS. Otherwise, further increases in production volumes20

without improvements in resource use may result in higher GHG per unit product (GHG21

emissions intensity) (Lanigan et al. 2018). Future research could focus on examining the22

simultaneous impact of FAS on farm level productivity and environmental performance.23
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Appendices17

Appendix A18

A multivariate normal distribution for θ is used in CFM, with mean zero and precision19

matrix P , whose diagonal elements are equal to 0.001. Gamma priors are used for the20

two precision parameters:21

τ ∼ Gamma(aτ , bτ ) λ ∼ Gamma(aλ, bλ) (11)
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The shape, aτ , and rate, bτ , parameters are set equal to 0.001. An informative prior1

is required for λ, so aλ is set to one and bλ = − log(r∗it), where r∗it is the prior median2

efficiency and is equal 0.875 (van den Broeck et al. 1994).3

A hierarchical structure is imposed on the vector of farm-specific parameters, θi, in4

the RCMs, where θi ∼ N
(
θ̃,Ω

)
. A multivariate normal distribution is used as prior for5

θ̃, with mean zero and precision matrix P , whose diagonal elements are equal to 0.001. A6

Wishart prior is used for Ω, with degrees-of-freedom n and scale matrix V . The density7

of the Wishart distribution integrates to unity only if n ≥ K, where K is the number of8

independent variables. Therefore, n is set equal to K and V is diagonal (IK) as in Tsionas9

(2002). The same priors for τ and λ are used in the RCMs as in CFM.10

Model comparison is based on the Bayes factor, which summarizes “the evidence pro-11

vided by the data in favor of one scientific theory, represented by a statistical model, as12

opposed to another” (Kass and Raftery 1995, p. 777). Assuming there are two competing13

models M1 and M2, the Bayes Factor (BF) can be expressed as their relative posterior14

probabilities:15

BF =
p(M1|D)

p(M2|D)
=
p(D|M1)

p(D|M2)

Prob(M1)

Prob(M2)
(12)

where D represents the observed data, p(D|Mj) is the density of the data givenMj, and16

Prob(Mj) is the prior probability of Mj being the true model. The marginal density17

p(D|Mj) with respect to unobserved quantities and parameters is written as:18

p(D|Mj) =

∫
p(D|θj,Mj) π(θj|Mj) dθj (13)

where θj is the vector of parameters for model j and π(θj|Mj) is the prior density of θj19

under model j. It is a common practice to set equal prior model probabilities for competing20

models, and hence, model comparison is conducted by simply calculating the ratio of21

marginal likelihoods between the competing models. We approximate the logarithm of22

42



the marginal likelihood for each model using the Laplace-Metropolis estimator (Lewis and1

Raftery 1997).2

Appendix B3

Table 3 presents values for Geweke’s (1992) convergence diagnostic, as well as for the4

Simulation Inefficiency Factor (SIF) (Chib 2001) for each parameter and for each model.5

The convergence diagnostic tests whether the Markov chain used for sampling from the6

posterior distribution of the parameters has converged to its steady state. The convergence7

diagnostic Z is the difference between the means of the draws from the posterior for a8

parameter obtained, usually, from the first 10% of the draws and the last 50%, divided9

by the asymptotic standard error of their difference. If the chain has converged, the10

means of the values from the first and the second window should be similar and a Z-11

statistic smaller (in absolute value) than 1.96 leads to non-rejection of the hypothesis of12

convergence. According to Table 3, only the parameter associated with the log2 y2 variable13

and only for the the CFM model presents issues of convergence.14

Contrary to the convergence diagnostic, SIF is used to measure the performance of the15

sampler. By construction, a sampler that is based on a Markov chain produces autocorre-16

lated draws from the posterior distribution. This autocorrelation, however, drops steadily17

as draws are further apart in the chain and SIF is the number of successive iterations18

needed to obtain approxiamtely independent draws (Kim et al. 1998). According to Feng19

et al. (2019) a sampler achieves reasonable mixing performance when SIF is smaller than20

100. In our application all SIF values for all three models are much smaller than 100.21
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Table (3) Geweke diagnostics and SIF for each model

CFM RCM1 RCM2

Variable Z-score SIF Z-score SIF Z-score SIF

logK 1.46 1.83 -0.19 14.14 1.36 9.12

logL -0.08 2.28 1.45 14.98 -0.07 1.07

logA 0.17 1.78 -0.04 16.51 -0.61 9.50

logM -1.96 1.69 -0.36 10.29 -0.29 5.81

log y2 1.12 1.73 0.65 6.26 0.27 5.09

log2 y2 2.78 1.73 0.20 6.26 1.46 5.09

t -0.24 1.70 0.18 1.16 -0.45 2.59

t2 -0.10 1.66 -2.18 1.09 - -

t · logK -0.76 1.73 -0.69 1.14 - -

t · logL 0.21 1.65 1.31 1.13 - -

t · logA 0.84 1.61 -0.74 1.10 - -

t · logM -0.33 1.66 -0.37 1.17 - -

t · log y2 -0.06 1.79 -0.88 1.30 - -

F 0.07 1.73 0.35 1.06 0.95 11.75

t · F 0.30 1.71 -0.15 1.08 0.72 6.98

We further examine the differences between the three models in relation to their es-1

timated elasticities, TFP growth and its components. There are differences in input2

elasticities between the models, which are reflected in the returns to scale (RTS) elastic-3

ity. The RTS elasticity in CFM is slightly higher than unity (1.06), indicating that, on4

average, farms operate under increasing RTS. According to the RCMs, the production5

technology of the Irish dairy sector exhibits decreasing returns to scale (0.89), on average,6

at the points at which farms are observed. The average efficiency score according to CFM7
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is 0.91, with a minimum of 0.60 and a maximum of 0.94. Average efficiency in the RCMs1

is approximately 0.94, with similar minima and maxima at 0.71 and 0.98, respectively.2

Unsurprisingly, not accounting for unobserved heterogeneity deflates the estimated effi-3

ciency scores, as part of the heterogeneity is attributed to inefficiency (e.g. Kumbhakar4

et al. 2018; Njuki et al. 2019).5

The three models also present striking differences in the estimated marginal effects of6

the technology components, t and F . The RCMs provide a much higher point estimate7

for the neutral component of technical progress compared to the CFM. Moreover, the8

contribution of F in the RCMs is much lower when compared to the CFM. Both RCMs9

show that the impact of FAS on the frontier is either increasing or decreasing over time10

(the credible intervals contain positive and negative values).11

The three models exhibit some important differences about how TFP growth and its12

components Technical Change (TC) Technical Efficiency (TE) change, Scale Effect (SE),13

and FAS effect evolved during the period under consideration. The effect of technical14

progress is mostly positive in the first half of the period covered by the data, but it15

increases considerably between 2012 and 2017. Interestingly, the evolution of technical16

progress varies between the three models, with the over-parameterized RCM1 producing17

rather unrealistic results.5 Similarly, CFM is too restrictive and the evolution of the18

technical progress component depends heavily on a common parameter (the one associated19

with t2). A negative contribution of technical change on TFP growth is observed in the20

first three years of the period under consideration in RCM1. RCM2, which is favoured by21

the data, produces a much smoother evolution of the technical progress process during22

this adjustment period when compared to the very flexible RCM1 and the restrictive23

CFM.24

Another interesting finding is that the scale effect varies notably across the three25

5The growth rate of the technical progress component in the RCM1 model varies between -0.33% and
5.33%, which is much higher and more volatile compared to the results from the other two models. This
is probably due to the high flexibility introduced by the many farm-specific parameters.
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models. CFM reveals a positive scale effect, on average, over time (0.126%), with some1

negative estimates between 2010 and 2012. The positive scale effect shows that, on2

average, Irish dairy farmers experienced growth in TFP also because of increases in scale3

relative to the optimal scale implied by the model. The RCMs show a persistent negative4

sign for this component, which implies that farmers move further away from the optimal5

scale of the technology they utilize.6

Appendix C7

One could possibly use investment levels as an alternative to the FAS variable, as these8

can be perceived as complementary innovation activities at the Irish dairy farm level (see9

Läpple et al. 2015). For example, FAS innovations are in the form of knowledge and10

information (e.g. Läpple and Hennessy 2015; Läpple et al. 2019) where a farmer may seek11

assistance from FAS to evaluate alternative plans of action before investing in the most12

appropriate one. To capture this dynamic behaviour of farmers’ production we use the13

enhanced hyperbolic distance function proposed in Minviel and Sipiläinen (2018), which14

is defined as:15

DEH(x,y, F, k, I, t) = inf

{
θ > 0 : (yθ−1, xθ, Iθ−1) ∈ T

}
(14)

where y is a vector of outputs, x a vector of variable inputs, k a vector of quasi-fixed16

inputs, and I a vector of gross investments. In addition, θ is a small positive scalar which17

allows a simultaneous expansion of outputs and investments and contraction of variable18

inputs, to reach the boundary of the technology set T . The empirical specification of (14)19
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is:1

− log yMit = αi +
∑
n

αin log(xnity
M
it ) +

∑
m

βim log

(
ymit
yMit

)

+
∑
n

ξin log knit +
∑
`

∑
m

γi`m log

(
y`it
yMit

)
log

(
ymit
yMit

)

+ ηiFit + ρitFit + ζ1it+ κi

(
I

yMit

)
+ vit + uit

(15)

where we use the hyperbolic sine transformation for the investment variable: log(I +2

√
I2 + 1) and the quasi-fixed input k is the value of the farm capital (Minviel and3

Sipiläinen 2018). This specification (eq. 15) is labeled as Hyperbolic Distance Func-4

tion 1 (HDF1). Furthermore, Minviel and Sipiläinen (2018) utilize a panel data that5

covers 20 years and assume that utilized agricultural area is variable input. Since the6

we utilize a shorter panel and given the low land mobility, we are going to estimate a7

model where capital and area are quasi-fixed; we label this model as Hyperbolic Distance8

Function 2 (HDF2). Each of the model is estimated in a Markov chain with a burn-in9

phase of 40,000 iterations and a total of 80,000 retained draws from the posterior, similar10

to the model in the main text. The results are presented in Table 4 below.11

We observe that in both models, all the noise in this model is captured by the random12

coefficients: σ2
ν and the average Technical Efficiency (TE) are almost 0 (with the mass13

of efficiency distribution to be centered around the mean) (Table 4). According to the14

efficiency measurement literature these results suggest that the model fails to provide a15

good fit of the data in line with the economic theory (e.g. inefficiency is zero for the16

majority of farmers), and the results become unreliable and should not be trusted (e.g.17

Tsionas 2002; O’Donnell and Griffiths 2006; Galán et al. 2014). Furthermore, we further18

check for convergece using Geweke’s (1992) convergence diagnostic for the model above.19

The Z scores below in Table (4) indicate problems with convergence, adding to the fact20

that the models does not provide reliable results.21
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Table (4) Posterior means and Geweke diagnostics for HDF1 and HDF2

at 95% credible intervals

HDF1 HDF2

Variable Mean Z-score Mean Z-score

constant -0.00 0.35 0.00 1.98

logK -0.06* 0.34 0.00 -0.48

log(L · y2) 0.19* -1.65 0.32* -0.07

log(A · y2) 0.33* 1.44 - -

logA - - 0.01* 0.14

log(M · y2) 0.14* -1.11 0.25* -0.39

log y2 -0.06* 0.36 -0.07* 1.19

log2 y2 -0.03* -1.84 -0.03* 0.14

t 0.00 0.42 0.00 -0.61

I
yMit

0.00 -0.46 0.00 -0.15

F 0.00 2.03 0.01 -0.54

F · t 0.00 -1.13 0.00 0.50

σ2
ν 0.00 0.93 0.00 0.33

Average TE 0.99 0.98

*The corresponding 95% credible interval does not contain zero.

We estimate then again HDF1 and HDF2 using 10 Markov chains with a total of1

120,000 interations in each of the chains. The first 40,000 iterations are dropped for2

the burn-in phase and 1 out of 10 from the rest 80,000 draws are retaind in order to3

remove the influence of the potential auto-correlation. The posterior means of the revised4

HDF1 and HDF2 (now labeled reHDF1 and reHDF2 respecitvely) are presented in Table5

5 below. The results in Table 5 and in Table 4 are qualitatively similar. We report the6
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Geweke diagnostics for each of the model and each of estimated Markov chains in Table1

6 and Table 7. The results in the Tables indicate that the models still fail to converge2

succesfully.3

Table (5) Posterior means of HDF1 and HDF2 at 95%

Variable reHDF1 reHDF2

cons -0.00 -0.00

logK -0.06* 0.016

log(L · y2) 0.19* 0.30

log(A · y2) 0.33* -

logA - 0.02

log(M · y2) 0.14* 0.26

log y2 -0.06* -0.07

log2 y2 -0.03* -0.03

t 0.00 0.00

I
yMit

0.00 0.00

F 0.00 0.01

F · t 0.00 -0.00

σ2
ν 0.00 0.00

Average TE 0.99 0.98

*The corresponding 95% credible interval does not contain zero.
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Table (6) Geweke diagnostics for reHD1

Variable Chain1 Chain2 Chain3 Chain4 Chain5 Chain6 Chain7 Chain8 Chain9 Chain10

cons 0.44 -1.60 -0.98 0.12 -1.83 -0.88 -1.34 -2.18 -0.91 -1.55

logK 0.74 1.65 -0.19 3.53 -0.75 0.39 0.34 -0.24 -0.40 0.39

log(L · y2) 1.28 0.05 -0.59 0.85 -0.27 1.08 1.07 1.75 -0.17 0.84

log(A · y2) 1.05 0.44 1.65 -0.87 1.08 0.38 0.79 0.63 2.72 0.19

log(M · y2) -1.44 -1.28 -0.83 -0.09 0.98 -1.08 0.17 0.51 -2.11 -0.23

log y2 -0.00 -1.12 -0.22 1.38 -2.10 -0.61 1.4 0.53 0.34 0.18

log2 y2 -0.56 -0.82 -0.21 0.67 -0.53 -1.18 0.08 2.95 -1.32 -0.73

t 0.01 -0.28 -1.70 -0.18 -0.12 0.64 -2.06 0.05 0.32 -0.97

I
yMit

-0.71 0.53 -1.38 -0.55 -0.04 -1.04 -0.92 -1.10 0.37 -1.68

F 0.12 -0.84 -2.04 -0.41 -0.50 0.04 -0.30 2.07 -0.41 -0.20

t · F -0.15 0.94 2.21 -0.95 0.57 0.01 1.37 0.12 -1.45 1.28

σ2
ν 1.06 0.98 0.97 1.02 0.88 0.98 1.00 0.97 0.97 0.94

Table (7) Geweke diagnostics for reHD2

Variable Chain1 Chain2 Chain3 Chain4 Chain5 Chain6 Chain7 Chain8 Chain9 Chain10

cons -0.35 0.60 0.17 0.88 0.82 1.44 1.28 -0.63 -1.15 1.38

logK 0.09 0.00 0.29 2.09 0.23 0.51 1.74 0.07 -1.60 -0.64

log(L · y2) -1.67 -1.39 -1.25 -0.53 -1.39 -1.18 0.75 -1.43 -0.81 -0.78

logA -0.36 -0.66 1.33 -0.98 1.26 0.40 0.41 0.45 -1.05 0.84

log(M · y2) 1.05 1.78 1.10 -0.37 1.24 0.05 -1.68 1.25 1.21 0.23

log y2 -1.98 -0.44 -1.40 -0.11 -1.36 -0.25 0.49 0.24 0.29 -0.76

log2 y2 -0.10 1.57 -1.35 0.26 -0.198 1.23 0.70 0.21 1.07 1.35

t -0.38 0.40 0.96 -0.13 -2.41 0.62 1.05 1.22 1.23 1.12

I
yMit

0.40 -0.58 -0.08 2.02 -0.77 1.33 -1.71 -0.13 0.87 0.03

F 0.30 0.03 1.48 -1.30 -1.15 0.05 -1.09 -0.53 0.20 0.32

t · F 0.22 -1.57 -0.75 0.24 1.10 -0.28 -0.90 0.15 -1.11 -0.47

σ2
ν 1.53 0.99 0.50 0.79 0.81 0.78 0.41 0.99 1.22 0.92

We further explore the issue of investment and its impact on output in a dynamic1
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setting using investments as an additional independent variable in an output distance1

function. We estimate Model 1 (M1), which is the RCM2 specification, but using the2

hyperbolic sine trasformation of gross investments levels (denoted by I) instead of the3

FAS variable; Model 2 (M2), which is the RCM2, including both I and FAS; Model 34

(M3), which is the RCM2 including I , normalized by other output, y2 (i.e. I
yMit

); Model 45

that is the RCM2, but replacing F with the logarithm of I
yMit

. M3 is presented analytically6

as:7

− log yMit = αi +
∑
n

αin log(xnit) +
∑
m

βim log

(
ymit
yMit

)

+
∑
`

∑
m

γi`m log

(
y`it
yMit

)
log

(
ymit
yMit

)

+ ηiFit + ρitFit + ζ1it+ κi

(
I

yMit

)
+ vit + uit

(16)

The results are presented in Table (8). The models produce more resonable estimates8

in terms of efficiency, i.e. in line with economic theory. The elasticities with respect to I9

and I
yMit

are neglegible, i.e. very close to zero. This is not actually surprising in the case of10

the Irish dairy sector: information and knowledge are considered as more important than11

investments in the Irish AIS (see Läpple et al. 2015; Läpple et al. 2016; Läpple et al. 2019)12

for the SI of the Irish dairy sector (e.g. investments may result in productivity gains that13

might come at the cost of environmental pressures, investments may imply productivity14

gains mostly for larger farmers etc.). Investments may be more important for production15

in other EU dairy sectors, with different AIS structure and different production systems16

(e.g. more intensive). As an example, investments is an important innovation activity at17

the Dutch dairy sector, which is more intensive than the Irish dairy sector (see Reijs et al.18

2013): e.g. less machinery in the Irish dairy sector is needed as cows are mostly grazing19

and thus, the demands for cow housing are also lower (see Reijs et al. 2013). The log20
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marginal likelihood of these models are way less than the main model (RCM2) presented1

in the main text (857.829).2

Table (8) Posterior means of M1, M2 and M3

Variable M1 M2 M3 M4

cons -0.065* -0.074* -0.071* -0.073*

logK -0.347* -0.348* -0.351* -0.345

logL -0.057* -0.066* -0.064* -0.065

logA -0.238* -0.227* -0.230* -0.216

logM -0.282* -0.295* -0.351* -0.356

log y2 0.197* 0.198* 0.051* 0.051

log2 y2 0.090* 0.090* 0.003 0.004

t -0.022* -0.020* -0.021* -0.020*

I -0.005* -0.006 - -

I · I 0.001 0.001 -

F -0.040* - -0.20

F · t 0.005* - -0.020

I
yMit

- - 0.004 -0.000

Average TE 0.91 0.94 0.93 0.93

λ 10.56 17.72 13.37 13.64

σ2 0.025 0.002 0.005 0.005

Log Mag. Likelihood 502.53 -50.60 365.267 400.562

*The corresponding 90% credible interval does not contain zero.
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Appendix D1

The output distance function has to satisfy the theoretical regularity conditions of mono-2

tonicity and curvature. Monotonicity requires that the distance function is non-increasing3

in inputs (the the distance to the frontier cannot decrease by increasing only the amount4

of an input) and non-decreasing in outputs (the distance to the frontier cannot increase5

by increasing only the amount of an output). Mathematically:6

∂Do

∂xn
≤ 0⇔ k̄n ≡

∂ logDo

∂ log xn
≤ 0 and

∂Do

∂ym
≥ 0⇔ r̄m ≡

∂ logDo

∂ log ym
≥ 0 (17)

Regarding curvature, Do(y, x, t) must be quasi-convex in inputs and convex in outputs

(O’Donnell and Coelli 2005). For quasi-convexity in inputs we need to calculate the 5× 5

bordered Hessian:

F =



0 si1Doi

xi1

si2Doi

xi2
· · · siNDoi

xiN

si1Doi

xi1

si1(si1−1)Doi

x2i1

si1si2Doi

xi1xi2
· · · si1si2Doi

xi1xiN

si2Doi

xi2

si2si1Doi

xi2xi1

si2(si2−1)Doi

x2i2
· · · si2siNDoi

xi2xiN

...

siNDoi

xiN

siNsi1Doi

xiNxi1

siNsi2Doi

xiNxi2
· · · siN (siN−1)Doi

x2iN


where sin = αin + ξit for RCM1 and sin = αin for RCM2 Doi is an estimate of Do for7

observtion i using the linear homogeneity restrictions. Because can be taken as a common8

factor in the matrix above and since Doi > 0, there is no need to calculate this quantity,9

as it will not affect the sign of the principle minors. In short, we can ignore this term in10

all entries of F.11
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For convexity in outputs we need to calculate the Hessian (for two outputs):

H =

(2γi11 + ri1 (ri1 − 1)) Dio

y2i1
(γi12 + ri1ri2)

Dio

yi1yi2

(γi21 + ri2ri1)
Dio

yi2yi1
(2γi22 + ri2 (ri2 − 1)) Dio

y2i2


where:1

• ri1 = βi1 + 2γi11 log yi1 + γi12 log yi2 + ϕi1t2

• ri2 = βi2 + 2γi22 log yi2 + γi12 log yi1 + ϕi2t3

• Doi is an estimate of Do for observtion i and, as in the previous case, can be ignored.4

Thus Do is convex in outputs if:5

• (2γi11 + ri1 (ri1 − 1)) Dio

y2i1
≥ 0⇔ 2γi11 + ri1 (ri1 − 1) ≥ 0 and6

• (2γi11 + ri1 (ri1 − 1)) Dio

y2i1
(2γi22 + ri2 (ri2 − 1)) Dio

y2i2
−
[
(γi12 + ri1ri2)

Dio

yi1yi2

]2
≥ 0 which7

is equivalent to (2γi11 + ri1 (ri1 − 1)) (2γi22 + ri2 (ri2 − 1))− [(γi12 + ri1ri2)]
2 ≥ 08

Due to linear homogeneity ri1 = 1 − ri2 and γi11 = γi22 = −γi12. So, the two con-9

ditions collapse to 2γi22 ≥ ri1ri2. Notice here that we have 2 · γi22 on the left-hand10

side while O’Donnell and Coelli (2005) do not multiply the paramter by 2. This is be-11

cause (O’Donnell and Coelli 2005) multiply the double sum of second-order terms in their12

translog specification by 1
2
.13
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Table (9) Regularity violations (at the posterior mean) (%)

Condition CFM RCM1 RCM2

Monotonicity

k̄K ≤ 0 0 2 0

k̄L ≤ 0 0 20 0

k̄A ≤ 0 0 7 0

k̄M ≤ 0 0 8 0

r̄y2 ≥ 0 0.4 3 2

r̄y1 ≥ 0 0 0 0

Curvature

Quasi-convex in inputs - - -

Convex in outputs 44 21 46
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