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Abstract: We construct the first smooth horizonless supergravity solutions that have two

topologically-nontrivial three-cycles supported by flux, and that have the same mass and charges

as a non-extremal D1-D5-P black hole. Our configurations are solutions to six-dimensional

ungauged supergravity coupled to a tensor multiplet, and uplift to solutions of Type IIB su-

pergravity. The solutions represent multi-center generalizations of the non-BPS solutions of

Jejjala, Madden, Ross, and Titchener, which have over-rotating angular momenta. By adding

an additional Gibbons–Hawking center, we succeed in lowering one of the two angular mo-

menta below the cosmic censorship bound, and bringing the other very close to this bound.

Our results demonstrate that it is possible to construct multi-center horizonless solutions cor-

responding to non-extremal black holes, and offer the prospect of ultimately establishing that

finite-temperature black holes have nontrivial structure at the horizon.
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1 Introduction

The black hole information paradox [1] represents a long-standing challenge for any theory of

quantum gravity. Over the past few years, following its sharpening using quantum information

theory [2], it has become increasingly clear that in order to solve this paradox there must be new

physics at the black hole horizon. There are many arguments that lead to the same conclusion,

some focused on the experience of infalling observers [3–6] (see also [7]), some based on the

AdS-CFT correspondence [8, 9], and some based on quantizing fields at the horizon [10].

A common approach is to replace the vacuum at the black hole horizon by nontrivial struc-

ture that allows information to escape, thus preserving unitarity [11–15].1 However, attempts

1There are also approaches that involve postulating nonlocal physics outside black hole horizons [16–18].
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to construct structure at the horizon face three challenges. First, horizons are null surfaces,

and thus naive attempts to put structure there fail: massive objects fall through the horizon,

while massless fields dilute in a horizon-crossing time. Second, black holes have entropy, so any

structure replacing the horizon must have entropy large enough to reproduce the Bekenstein–

Hawking entropy of the black hole. Third, the size of a black hole horizon increases as one

increases Newton’s constant, GN , so that any kind of structure that might replace it should also

grow with GN in exactly the same way.

The most successful approach to constructing such structure, passing all of the above tests,

is the fuzzball programme in string theory [19–24]. In this programme one often considers semi-

classical microstates, which are well-described within supergravity. The resulting supergravity

solutions are known as “microstate geometries” or black hole solitons. These microstate geome-

tries have no horizon or singularities, but have nontrivial topology supported by fluxes, such

that the solutions have the mass and charges of a black hole. For large supersymmetric black

holes a very large number of such microstate geometries have been constructed (see for example

[12, 25–30]) and their entropy has been argued to reproduce the growth with charges of the

Bekenstein–Hawking entropy of the black hole [31]. Similarly, one can also construct microstate

geometries for extremal non-BPS black holes by starting from almost-BPS multi-center solutions

[32] and performing certain duality transformations [33]. Thus, for extremal black holes, this

programme has had considerable success.

However, non-extremal black holes present a much greater challenge. To date there exists

only a handful of exact microstate solutions that have the mass and charges of non-extremal

black holes. The earliest-known examples are the solutions of Jejjala, Madden, Ross and Titch-

ener (JMaRT) [34] and their generalizations [35–37]. The JMaRT solutions have more angular

momentum than a physical black hole with the same mass and charges, and hence correspond to

CFT states that are far away from the sector which dominates the black hole ensemble. In addi-

tion, these solutions have a single topologically-nontrivial cycle, and the methods originally used

to find these solutions do not appear useful for constructing solutions with more complicated

topologies.

Other smooth non-extremal geometries have been found by generalizing the known systems

describing extremal solutions, for example the running-Bolt solution [38] and its multi-center

generalization [39]. Unfortunately, it turns out that these solutions violate the BPS bound and do

not admit a spin structure [39, 40], and hence they are not good candidates for describing black

hole microstates. There is also a proposal for constructing microstates of neutral black holes [41],

which can be very long-lived, but do not appear to be described by stationary supergravity

solutions.

Besides the above exact solutions, there exists a proposal to build large classes of microstate

geometries for near-extremal black holes by placing negatively-charged probe supertubes in su-

persymmetric solutions [42, 43]. The action of these supertubes has metastable minima, but it

has recently been shown that these solutions are classically unstable to decay into supersym-

metric microstates [44].
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Given this state of affairs, it appears that the most promising direction towards building

smooth microstate geometries with the asymptotic mass and charges of non-extremal black holes

is to construct multi-centered generalizations of the JMaRT solution and similar solutions. The

first step in this direction was the discovery, by two of the present authors, of a partially-solvable

system of differential equations that describes solutions with non-extremal asymptotic structure,

and includes the JMaRT solutions [45].

This system, described in detail in Section 2, is built upon an auxiliary four-dimensional

Euclidean Einstein–Maxwell subsystem, similar to that of [46]. Thus, it allows one to start from

a known gravitational instanton with a set of desirable properties and to construct solutions

systematically. The four-dimensional instanton underlying the JMaRT solution contains a two-

dimensional surface, known as a bolt. It turns out that it is straightforward to construct solutions

with more topological cycles by starting from other instantons with Gibbons–Hawking centers

at a finite distance from the bolt. In principle this method can be used to construct solutions

with an arbitrary number of Gibbons–Hawking centers.

Our present goal is to construct black hole microstate geometries, which are asymptoti-

cally-flat solutions that have no horizons or closed timelike curves (CTCs) and are smooth

up to acceptable singularities.2 The purpose of this paper is to give a proof of principle of

the possibility of constructing multi-center generalizations of the JMaRT solutions, and more

generally, of constructing multi-bubble non-extremal black hole microstate geometries. We do

this by considering its simplest extension, obtained by adding to the bolt a single Gibbons–

Hawking center.

Our solution is the first smooth horizonless non-extremal black hole microstate geometry

that has more than one topologically-nontrivial three-cycle. The solution has two three-cycles:

the first is the three-dimensional bolt already present in the JMaRT solution, and the second

extends between the bolt and the additional Gibbons–Hawking center, and is supported by

nontrivial flux.

In the JMaRT solutions, both angular momenta are over-rotating with respect to the black

hole regime of parameters. In our solutions one angular momentum is within this bound, while

the other exceeds it by a rather small amount. Thus our construction represents a significant

improvement in this respect. We will discuss this in detail in due course.

The structure of this paper is as follows. In Section 2 we give a self-contained exposition

of the system of [45] in its six-dimensional incarnation, describing solutions of N = (1, 0) su-

pergravity in six dimensions coupled to a single tensor multiplet, or of Type IIB supergravity

compactified on T 4 or K3. We further present a class of solutions to this system, which in prin-

ciple allows for an arbitrary number of Gibbons–Hawking centers to be added to the JMaRT

bolt. We then proceed in Section 3 to perform a detailed analysis of the asymptotic structure,

2We emphasize the importance of constructing structure that replaces the black hole horizon using smooth
horizonless solutions, that can be described in a controllable way. Singular solutions can vastly over-count the
black hole entropy, and should therefore be discarded unless one can argue that they arise as limits of smooth
solutions, or that one understands the mechanism by which the singularity is resolved in string theory. For further
discussion, see [24].
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smoothness and absence of CTCs for a solution with a single additional Gibbons–Hawking center.

These requirements lead to a number of algebraic constraints on the parameters of the solution,

most of which can be solved explicitly, with three polynomial constraints remaining as nontriv-

ial conditions to be satisfied. In Section 4, we discuss the topology of the smooth solution and

the fluxes supporting it, commenting on the topology of solutions with more Gibbons–Hawking

centers. In Section 5 we solve the three remaining polynomial constraints, and present an ex-

plicit set of parameters that gives a smooth microstate geometry. Section 6 contains concluding

remarks, and the two appendices describe the relation of our six-dimensional ansatz to five- and

four-dimensional supergravity, and give the explicit expressions of the vector fields appearing in

our solution.

2 The ansatz for six-dimensional supergravity

We work in six-dimensional N = (1, 0) supergravity, coupled to a single tensor multiplet. The

field content of this theory is the metric, a two-form potential B, and a scalar φ. The theory is

a consistent truncation of Type IIB supergravity compactified on T 4, and also of the N = (2, 0)

effective six-dimensional supergravity describing Type IIB string theory compactified on K3.

The two-form potential in six dimensions descends from the IIB Ramond-Ramond two-form,

while the scalar field e2φ can be viewed both as the dilaton and the warp factor of the internal

T 4/K3, since the two are equal in this truncation.

From a string theory point of view, our system describes a D1-D5-P bound state where

the D1-branes wrap a circle with coordinate y, and D5-branes wrapping the y circle and the

internal T 4/K3, and where the momentum charge P is along y. We consider the internal

four-dimensional space to be microscopic, while the y circle S1
y is macroscopic, and so our six-

dimensional asymptotics are R
4,1 × S1

y . The resulting effective string in six dimensions carries

both electric and magnetic charge with respect to B [47].

To construct non-supersymmetric solutions to this theory, we use the partially-solvable sys-

tem of differential equations discovered in [45], whose solutions automatically solve the equations

of motion of supergravity. This system was found by considering the three-dimensional non-

linear sigma model over a para-quaternionic symmetric space that one obtains after dimensional

reduction of N = (1, 0) supergravity in six dimensions along one time-like and two space-like

isometries. The relevant equations are given in terms of the Ernst potentials underlying the so-

lutions to an auxiliary Euclidean Maxwell–Einstein subsystem (similar to other related systems

[39, 46]), which we now discuss.

All solutions to the four-dimensional Euclidean Maxwell–Einstein equations with one U(1)

isometry can be described in terms of an SL(3)/GL(2) non-linear sigma model coupled to

Euclidean gravity in three dimensions, upon reduction along the isometry. The relevant degrees

of freedom are the four Ernst potentials E± and Φ±, which satisfy the equations

(E+ + E− + Φ+Φ−

)

∆E± = 2(∇E± + Φ∓∇Φ±)∇E± ,
(E+ + E− + Φ+Φ−

)

∆Φ± = 2(∇E± + Φ∓∇Φ±)∇Φ± . (2.1)
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The potentials determine the three-dimensional Riemannian metric γij via

R(γ)ij =
(∂(iE+ + Φ−∂(iΦ+)(∂j)E− + Φ+∂j)Φ−)

(E+ + E− + Φ+Φ−)2
− ∂(iΦ+∂j)Φ−

E+ + E− + Φ+Φ−

. (2.2)

The four-dimensional metric is then determined by the potential V and the vector σ, which are

given by

V −1 = E+ + E− + Φ+Φ− , ⋆dσ = V 2 (dE+ − dE− + Φ−dΦ+ − Φ+dΦ−) . (2.3)

This four-dimensional metric does not appear explicitly in our Minkowski-signature six-dimen-

sional metric, however it will be convenient to use V and σ in the following.

2.1 Six-dimensional metric

In the partially-solvable system of [45], the Einstein-frame metric takes the form

ds2 =
H3√
H1H2

(dy +A3)2 − W

H3

√
H1H2

(dt+ k)2 +
√

H1H2

( 1

W
(dψ + w0)2 + γijdx

idxj
)

, (2.4)

where γij is the three-dimensional base of a solution to the Euclidean Maxwell–Einstein equa-

tions, as described above. Note that we write the metric in a form natural for a Kaluza–Klein

reduction to five dimensions, where the relevant Kaluza–Klein vector field is A3. The notation

A3 is motivated by the fact that it is one of the three gauge fields appearing symmetrically in

the resulting five-dimensional theory. The vectors A3 and k decompose as

A3 = A3
t (dt + ω) + α3 (dψ + w0) + w3 , k = ω +

µ

W
(dψ + w0) . (2.5)

The expressions for the scalar µ and the vectors ω, w0, w3 are given below, while the expressions

of A3
t and α3 are displayed in the next subsection in Eqs. (2.19) and (2.20) to emphasize the

triality symmetry of the system.

The ansatz is written in terms of three layers of functions. Firstly we have the four Ernst

potentials underlying a solution to the Euclidean Maxwell–Einstein equations. Secondly we have

four functions La, Ka, for a = 1, 2, that solve certain linear equations in the Maxwell–Einstein

background. Thirdly we have two functions, L3, K3 that solve linear equations in the same

background, with sources quadratic in La, Ka. The set of functions W , µ, HI (for I = 1, 2, 3)

appearing in the metric and gauge fields are given in terms of combinations of these 10 functions.

To write the ansatz, we split the index I = (a, 3), with a = 1, 2, and we introduce the

SO(1, 1) invariant metric3

ηab =

(

0 1

1 0

)

(2.6)

3This metric identifies the theory as the first in an infinite class of theories including n minimally coupled
tensor multiplets, for which a corresponding ansatz can be built using the expressions given in this section, upon
extending ηab to an SO(1, n) invariant metric.
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and its inverse ηab. The functions W , µ, HI are then given by

W =
1

16
(L3)2 − 1

4
V K1K2K3 Φ− ,

Ha =
1

4
ηabL

b(L3 − V Φ−KcL
c) +

1

4
(V Φ−L

1L2 −K3)Ka ,

H3 =
1

4
V (E− + Φ+Φ−)

(

(1 − V E+)K1K2 − E+L
3
)

+
1

4
V E2

+Φ−K3 ,

µ = −W Φ+ − 1

16

(

2 (1 − V E+)K1K2 − E+L
3
)

(K3 + V Φ−L
1L2)

− 1

16
V
(

2 E+Φ−K3 − (E− + Φ+Φ−)L3
)

KaL
a . (2.7)

Similarly, the vector fields w0 and w3 which appear in the metric are determined from the

first-order equations:

⋆dw0 =
1

4
dL3 − 1

2
V Φ−KadL

a − 1

2
V K3 Φ−dE+ +

1

2
V (L3 + V K1K2) Φ−dΦ+

+
1

4
K1K2 (dV + ⋆dσ) ,

⋆dw3 =
1

2
V
(

V −1dK3 − d(Φ−L
1L2) + (Ka + Φ−La) dL

a − La d(Ka + Φ−La) + 2K3 dE+

)

− V (L3 + V K1K2) dΦ+ + 2V L1L2 dΦ− +
1

2
(LaKa + Φ−L

1L2) ⋆ dσ , (2.8)

while the vector field, ω, corresponding to the time fibration, is determined by

4 ⋆ dω = d
(

Φ+L
3 − E+K3

)

+ V E−(KadL
a − LadKa) − V Φ+Φ−d(KaL

a)

+ 2V E−

(

K3 dE+ − (L3 + V K1K2)dΦ+

)

+ V KaL
a dE+

+ V E+Φ−d(L1L2) + V (Φ−dE+ − E+dΦ−)L1L2

− 2V 2Φ+(dE− + Φ+dΦ−)K1K2 − E+(KaL
a + Φ−L

1L2) ⋆ dσ . (2.9)

2.2 The matter fields

We next describe the ansatz for the matter content of the theory. Firstly, the scalar field, which

can be identified with the dilaton of the D1-D5 system, is given by

e2φ =
H1

H2
. (2.10)

The equation of motion for the two-form potential B,

d
(

e2φ ⋆6 H
)

= 0 , (2.11)

expressed in terms of the three-form field strength, H = dB, can be recast by introducing the

dual three-form field strength, H̃ = dB̃, as

eφ ⋆6 H + e−φH̃ = 0 . (2.12)
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The dual three-form H̃ = dB̃ can be thought of as a magnetic dual to H, similar to the dual

vector field strengths appearing in four-dimensional theories. The two-form B can be identified

with the Ramond-Ramond two-form potential of the D1-D5 system in Type IIB supergravity

on T 4/K3, whereas B̃ descends from the Ramond-Ramond 6-form wrapping T 4/K3.

The two-form potentials B and B̃ can be expressed in terms of three-dimensional quantities.

We first introduce the scalars Aat , βa and αa, with the latter identified as two of the three axions

in the reduction to four dimensions. We then introduce the three-dimensional one-forms va, w
a

and ba, which will be defined shortly. Finally, we define the two-forms in three dimensions, Ωa,

through

dΩa = va ∧ dw0 − ηabw
b ∧ dw3 + ba ∧ dω . (2.13)

In terms of these quantities, we have

B = A1
t (dy +w3) ∧ (dt+ ω) + α1 (dy + w3) ∧ (dψ + w0) − β2 (dt + ω) ∧ (dψ + w0)

− w1 ∧ (dy + w3) + b2 ∧ (dt+ ω) + v2 ∧ (dψ + w0) + Ω2 ,

B̃ = A2
t (dy +w3) ∧ (dt+ ω) + α2 (dy + w3) ∧ (dψ + w0) − β1 (dt + ω) ∧ (dψ + w0)

− w2 ∧ (dy + w3) + b1 ∧ (dt+ ω) + v1 ∧ (dψ + w0) + Ω1 . (2.14)

Note that the Ωa ensure that in H and H̃, the vectors wa, ba and va only appear through the

gauge-invariant quantities dwa, dba and dva. The Ωa vanish for axisymmetric solutions, since

all vector fields have components along the angular coordinate around the axis, implying that

their wedge products appearing in (2.13) vanish identically. We only construct axisymmetric

solutions in the current work, so we now set Ωa to zero.

The one-forms, wa, va, ba in (2.14) are determined in terms of the functions appearing in

the ansatz by solving the first-order equations

⋆dwa =
1

2
d
(

ηabKb − E+V (ηabKb + Φ−L
a)
)

+ E+V L
adΦ−

− E+V
2 (ηabKb + Φ−L

a)(dE− + Φ+dΦ−) , (2.15)

⋆dba = V (ηab Φ−dL
b + dKa) − ηab V L

bdΦ− − (ηab Φ− L
b +Ka) ⋆ dσ , (2.16)

⋆dva = − 2 ηabL
b V dE− − V d

(

Φ+Ka − (E+ + E−)ηabL
b
)

+
(

Φ+Ka − (E+ + E−)ηabL
b
)

⋆ dσ . (2.17)

Their explicit form can be obtained straightforwardly for any given solution to the system. The

scalars βa are given by

β1 = − 1

2H2

(

K3 + V (K1L
1 −K2L

2) − V Φ−L
1L2

)

,

β2 = − 1

2H1

(

K3 + V (K2L
2 −K1L

1) − V Φ−L
1L2

)

. (2.18)
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Finally, the electric components AIt , of the five-dimensional vectors AI are given by

A1
t =

1

4H1

(

L3 − 2V Φ− K2L
2
)

,

A2
t =

1

4H2

(

L3 − 2V Φ− K1L
1
)

,

A3
t =

1

4H3

(

(2V E+ − 1)L3 + 2 (V E+ − 1)V K1K2 + 2V K3Φ−E+

)

, (2.19)

while the three axions are

α1 =
1

4H1

(

V E−(K1L
1 −K2L

2) − Φ+L
3 + E+K3 − V

(

E+Φ−L
1L2 − Φ+Φ−KaL

a
))

,

α2 =
1

4H2

(

V E−(K2L
2 −K1L

1) − Φ+L
3 + E+K3 − V

(

E+Φ−L
1L2 − Φ+Φ−KaL

a
))

.

α3 =
1

4H3

(

(1 − 2V E+)Φ+L
3 + (1 − 2V Φ−Φ+)E+K3 + E+Φ−V L

1L2

−(1 − V E+)(KaL
a − 2V Φ+K1K2)

)

. (2.20)

Note that in the above we have given the components A3
t and α3 of the gauge field A3 in (2.5),

using a naming convention that highlights the triality that arises when the reduction to five-

and four-dimensional supergravity is performed. In Appendix A we give some details on the

dimensional reduction of this solution to lower dimensions.

This ansatz is rather complicated, but is solvable by construction. The equations of motion

satisfied by the Ernst potentials E±, Φ± and the Euclidean three-dimensional base metric are

displayed in (2.1)–(2.2). The six functions LI and KI solve a hierarchy of linear equations

defined by the Bianchi identities for the vectors dw0, dwI , dω, dva and dba in (2.8), (2.9), (2.15),

(2.16) and (2.17). Once these functions are obtained, the solution is completely determined.

2.3 Multi-center solutions

We now turn to particular solutions to the system of the previous subsection. We first choose

a Euclidean Einstein–Maxwell base, which defines the three-dimensional base metric and the

Ernst potentials appearing throughout the system of equations. As mentioned above, we will

allow for extra poles in the Ernst potentials, describing Gibbons–Hawking–like centers, however

we take the three-dimensional metric to be that of Euclidean Kerr–Newman throughout the

paper. This ensures the absence of conical singularities in the three-dimensional base metric.

Such singularities are related to attractive net forces between the centers, which vanish in our

ansatz.

It will be convenient to use spherical coordinates (r, θ, ϕ) in which the base metric takes the

form

γijdx
idxj =

(

r2 − c2 + a2 sin2 θ
)

(

dr2

r2 − c2
+ dθ2

)

+
(

r2 − c2) sin2 θ dϕ2 . (2.21)
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We can also express the metric in Weyl coordinates, defined through4

r± =
√

ρ2 + (z ∓ c)2 , 2 r = r+ + r− , 2 c cos θ = r− − r+ , (2.22)

in terms of which

γijdx
idxj =

r2 − c2 + a2 sin2 θ

r+r−
(dz2 + dρ2) + ρ2 dϕ2 . (2.23)

The fact that we impose a particular three-dimensional base, rather than solving for it

through (2.2), implies additional restrictions on the Ernst potentials. We therefore consider the

following ansatz for these potentials,

E+ = − 1 +
2 (r + a cos θ)

r + a cos θ +m+ + H (r + a cos θ + 1
m−

(c2 − a2))
,

E− = 1 − 2m−

r − a cos θ +m−
,

Φ+ =
1

e−

m+m− − (c2 − a2) +m− H
(

r + a cos θ + 1
m−

(c2 − a2)
)

r + a cos θ +m+ + H
(

r + a cos θ + 1
m−

(c2 − a2)
) ,

Φ− =
2 e−

r − a cos θ +m−
. (2.24)

It was shown in [45] that these potentials solve Eqs. (2.1) and (2.2) provided that H is a solution

to the following equation on the base:

∆H =
2 (c2 − a2) (r − a cos θ +m−)

(r2 − c2 + a2 sin2 θ)
(

m−(r + a cos θ) + c2 − a2
)∇(r + a cos θ) · ∇H (2.25)

This is a linear equation which is straightforward to solve, and its solutions can be superposed:

H = h+
∑

A

HA , (2.26)

where h is a constant. The functions HA have poles at additional centers that we denote by

xA. We will only consider axisymmetric solutions, for which the additional poles are all on

the rotation axis of the original Kerr–Newman solution, so that in Weyl coordinates we have

(zA, ρA) = (RA, 0). Then HA takes the form

HA =
8nA

(RA − a) (r + a cos θ + c2−a2

m−
)

(RA − a)r + (aRA − c2) cos θ
√

(RA − r cos θ)2 + (r2 − c2) sin2 θ
, (2.27)

where nA are constants parametrizing the residue of the function V at the poles.

In terms of the Einstein-Maxwell theory, the Ernst potentials (2.24) describe the Wick

4Note that we have interchanged the definitions of r+ and r− with respect to those of [45]; in our conventions
r+ vanishes at the North Pole.
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rotation of a Kerr-Newman black hole, when H = 0. In these coordinates, the horizon is at

r = c and remains a special locus in the full supergravity solution, as we will discuss in Section

3.2. The extra poles in H can be viewed as describing Gibbons–Hawking–type centers, as can

be verified by expanding the solution in their vicinity.

Given this base, one can solve the Bianchi identities for the vector fields dw0, dwI , dω, dva

and dba, given in (2.8), (2.9), and (2.15)–(2.17), to obtain the functions KI and LI . It was shown

in [45] that a particular solution to this system can be defined in terms of the Ernst potential

themselves as

Ka = ηabq
b + (E+ + 1)ηabl

b ,

La = pa −
(

E+ + 1 − V −1
) la

Φ−

,

K3 =
(

E+ + 1 − V −1
)2 V

Φ−

l1l2 + p3 V −
(

l3

Φ−

− q3

)

(V (E+ + 1) − 1) ,

L3 = − laKa (V (E+ + 1) − 1) − (p3Φ− + q1q2)V +
(

l3 − q3 Φ−

)

V (E+ + 1) , (2.28)

where lI , pI and qI for I = {1, 2, 3} are integration constants. The pI and qI are related to the

asymptotic charges, while the la parametrize the asymptotic values of the dilaton (2.10) and the

gyy component of the metric.

The above equations specify the solution for all the supergravity fields. Note that we have

been able to write the entire solution in terms of the functions E+ and V appearing in the

Maxwell–Einstein instanton. This is an artifact of the solution (2.28) representing a restricted

ansatz and not the most general solution to the system. Furthermore, it will turn out that this

ansatz cannot be used to construct smooth solutions with more than one additional Gibbons–

Hawking center. Nevertheless, we will see in the following that it includes smooth microstate

geometries with two nontrivial three-cycles.

3 Regular solutions to the system

From now on we will focus on solutions in which the function H has a single pole. In order to

simplify the required manipulations, it is useful to make some gauge transformations and coor-

dinate transformations on the solution obtained by directly substituting (2.28) in the relevant

expressions.

Firstly and most importantly, we shift away various asymptotic constants from the compo-

nents of the metric and two-forms B and B̃, using diffeomorphisms and gauge transformations

respectively. Specifically, shifting the asymptotic values of the scalars αa, βa and Aat to zero in

(2.14) is equivalent to a gauge transformation on the two-forms, provided that the vector fields
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are redefined as

wa →wa +Aat
∣

∣

∞
ω + αa

∣

∣

∞
w0 ,

va → va − βa
∣

∣

∞
ω + ηab α

b
∣

∣

∞
w3 ,

ba → ba + ηabA
b
t

∣

∣

∞
w3 + βa

∣

∣

∞
w0 , (3.1)

where we denoted the asymptotic values of the scalars by
∣

∣

∞
. In addition, one may remove the

asymptotic constants of A3
t and α3 appearing in the Kaluza–Klein gauge field A3 in (2.5) by

a diffeomorphism mixing the coordinate y with t and ψ at infinity, provided one imposes the

redefinition

va → va + α3
∣

∣

∞
ηab w

b ,

ba → ba +A3
t

∣

∣

∞
ηab w

b ,

βa →βa + α3
∣

∣

∞
ηab A

b
t . (3.2)

Finally, we shift away the constant values of ω, w3 and the wa at infinity by appropriate mixing

of the coordinates t, y with ϕ and a further gauge transformation on the two-forms respectively,

which do not induce any additional redefinitions. Henceforth, we assume that the transforma-

tions (3.1) and (3.2) have been applied on all fields. The relevant asymptotic constants appearing

are not illuminating and play no role in the following, so we refrain from giving them explicitly.

For later convenience we reparametrize the constant n1 appearing in H via (2.27) by n1 =
N
q1q2 . We also set the asymptotic constant h = −1, which is required for asymptotic flatness as

we will discuss next. Then the function H in (2.26) becomes

H = −1 +
8N

q1q2(R − a)
(

r + a cos θ + c2−a2

m−

)

(R − a)r + (aR− c2) cos θ
√

(R − r cos θ)2 + (r2 − c2) sin2 θ
, (3.3)

where R denotes the distance along the positive z axis from the origin to the Gibbons–Hawking

center. With this normalization, N will turn out to be quantized as an integer when we impose

smoothness.

3.1 General requirements for asymptotic flatness and regularity

As we have discussed, to obtain a D1-D5-P black hole microstate geometry, we require R
4,1 ×S1

asymptotics, smoothness, and no closed timelike curves (CTCs). As found in [45], for R
4,1 ×S1

asymptotics, the parameters in (2.28) are given by

lI = 0 , h = −1 , e− =
1 + x

q3
,

p1 = −1 − m−

2 (1 + x)
q1q3 , p2 = −1 − m−

2 (1 + x)
q2q3 , p3 =

m−

2 (1 + x)
q1q2q3 ,

m+ =
1

m−
(c2 − a2) − 4

q1q2
(x− 1) − 8

q1q2
N , (3.4)
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where x is a constant parametrizing e− that we introduce for convenience. The parameter m−

is also fixed:

m− =
1

4
(c2 − a2) q1q2 − q1 + q2

q1q2q3
(x2 − 1) − (1 + x)2

(q3)2
. (3.5)

We will mostly avoid using this explicit expression for ease of notation. With these choices, the

various functions behave asymptotically as

W =
1

r2
+ O(r−3) , HI =

1

r
+ O(r−2) , w0 = − cos θdϕ+ O(r−1) ,

µ

W
=

−Jψ + Jϕ cos θ

8 r
+ O(r−2) , ω = −Jϕ sin2 θ

8 r
dϕ+ O(r−2) , (3.6)

where Jψ and Jϕ stand respectively for the angular momenta along the directions ψ and ϕ, and

are given in (3.9) below. The coordinates y, ψ, ϕ are subject to the identifications

y ∼ y + 2πRy , ψ ∼ ψ + 4π , (ψ,ϕ) ∼ (ψ,ϕ) + (2π, 2π) , (3.7)

where Ry will be fixed in terms of other parameters in the solution in due course.

Note that we set all lI = 0, whereas strictly speaking only l3 = 0 is required to ensure that

the spacetime be asymptotically R1,4 × S1. These additional conditions moreover imply the

dilaton e2φ and gyy to tend to 1 at asymptotic infinity. There is no loss of generality in doing

this, since we keep the radius of the y circle explicitly as Ry, and since more general asymptotic

values of e2φ can be obtained straightforwardly by an appropriate rescaling.

Because the solution describes a microstate of a five-dimensional black hole, it is useful to

compute its five-dimensional asymptotic charges. The five dimensional solution (obtained by

reduction on the asymptotic circle) carries three total electric charges:

QI = 4
x2 − 1

qI+1qI+2
− (a2 − c2) qI+1qI+2 , (3.8)

where Qa for a = 1, 2 are defined in six dimensions as the asymptotic fluxes of the three-form H

and its dual H̃, as shown in Section 4, and R 2
yQ3 represents the asymptotic momentum along

the y direction.

The five-dimensional ADM mass and the angular momenta along the remaining two direc-

tions, ψ and φ, are given by5

MADM =
∑

I

EI ,

Jϕ = a

(

(a2 − c2) q1q2q3 + 4(x2 − 1)
∑

I

1

qI

)

+
16N(x+ 1)

q1q2q3

(R2 − c2)

(R− a)2
,

Jψ = 2x

(

(a2 − c2)
∑

I

qI + 4
x2 − 1

q1q2q3

)

, (3.9)

5We have used the explicit expression for R that will come later in (3.22) to simplify the second factor in Jϕ.
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where the constants EI are given by6

EI = 4
x2 − 1

qI+1qI+2
+ (a2 − c2) qI+1qI+2 , (3.10)

and satisfy the conditions

E2
I = Q2

I + 16(x2 − 1) (a2 − c2) . (3.11)

Our solution has coordinate singularities at the bolt and the additional center at the pole

of H in (3.3). To ensure smoothness, we must therefore show that various functions have poles

of the usual type compatible with regularity of the full metric. We first analyze the conditions

for regularity away from such special points, postponing an explicit discussion of these for the

next subsection.

The determinant of the metric is

g = H1H2(r2 − c2 + a2 sin2 θ)2 sin2 θ (3.12)

and so away from special points, the functions H1 and H2 cannot go to zero or infinity. Given

their 1/r behaviour at infinity, as in (3.6), it follows that H1 and H2 must be strictly positive

and finite everywhere away from the special points.

To find the conditions for the absence of CTCs, we take the line element and complete the

squares successively in y, ψ, ϕ. The metric in these periodic directions must not have negative

eigenvalues, so the three diagonal terms must be non-negative.

After completing the squares in y and ψ, the line element then takes the form

ds2 =
H3√
H1H2

(dy +A3)2 +
H1H2H3 − µ2

WH3

√
H1H2

[

(dψ + w0) − Wµ

H1H2H3 − µ2
(dt+ ω)

]2

+
√

H1H2

[

− W

H1H2H3 − µ2
(dt+ ω)2 + γijdx

idxj
]

. (3.13)

Firstly, considering the gyy component of the metric, we see that H3 must be positive. Similarly,

we see that from the prefactor of the ψ fiber combination that we require

H1H2H3 − µ2

W
≥ 0 . (3.14)

Finally, using the form of the 3D base metric (2.21) we complete the square on dϕ, obtaining

the prefactor

√

H1H2

[

− W

H1H2H3 − µ2
ω2
ϕ + (r2 − c2) sin2 θ

]

, (3.15)

6Note the redefinition with a factor of 4 with respect to [45] in order for EI to coincide with the charges in
the BPS limit.
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which gives the condition

(r2 − c2) sin2 θ ≥ W

H1H2H3 − µ2
ω2
ϕ . (3.16)

Note that this implies that ω must vanish when the left-hand side is zero, or when W/(H1H2H3−
µ2) has a pole. Using (3.6), one finds that (H1H2H3 − µ2)/W → 1/r as r → ∞, so ω must

vanish at r → ∞. All together, ω must vanish at r = c, at sin θ = 0, and as r → ∞.

In view of the fact that the regularity conditions are given explicitly in terms of the values

of the various vector fields, we present the explicit form of these fields throughout the solution in

Appendix B. These were obtained by using the expressions (2.28) in the relevant ansatze (2.8),

(2.9), (2.15) for the vector fields and imposing the redefinitions (3.1)–(3.2) above. All values of

vector fields appearing below should be understood to be obtained from the expressions in the

Appendix, upon taking the appropriate limits.

3.2 Regular nuts and bolts

Given the complexity of the explicit solution, we proceed in two steps. Firstly we investigate

the solution analytically around the special points, and secondly we analyze explicit examples of

the parameters, to show that it is possible to obtain everywhere smooth solutions. The explicit

examples will be discussed in Section 5; we now begin the analytic investigation.

The special points are characterized by the loci where some of the three U(1) isometries of

the solution, corresponding to the Killing vectors ∂y, ∂ψ and ∂ϕ, degenerate. The local geometry

around such loci can be made regular upon imposing appropriate conditions on the metric, so

that they can be viewed as smooth origins of certain subspaces. In order to study these special

regions, we consider a time-like slice of the full six-dimensional metric (2.4) and a Killing vector,

K, assumed to be a linear combination of the three U(1) isometries above.

Following [48], the locus K2 = 0 describes a set of fixed points of the isometry, which can

be characterized by considering the action of the isometry on the tangent space at the given

point. This action is generated by ∇aKb ≡ ∇[aKb] which, assuming it is nontrivial, must have

rank two or four in five Euclidean dimensions.

When ∇aKb has rank four, there will be a one-dimensional subspace that is invariant under

the action of the U(1) isometry K. The locus K2 = 0 is an isolated point in the remaining four

directions, so that the local geometry is that of (a smooth discrete quotient of) R
4 × S1, near

the origin of R4. We call this a nut, as it is the straightforward uplift on a circle of a standard

nut in four Euclidean dimensions [48]. Note, however, that there exist smooth discrete quotients

of R4 × S1 where the orbifold singularity present in R
4 is resolved in the total space. This is

precisely what happens at the special points of our solution.

Similarly, when ∇aKb has rank two, there will be a three-dimensional subspace that is

invariant under the action of the U(1) isometry K. Then ∇aKb only acts nontrivially on a two-

dimensional subspace of the tangent space at the fixed point, so that the local geometry is that

of a product of R2 times a three-dimensional invariant compact submanifold. We call this a bolt,
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after the corresponding rank-two fixed point appearing in four Euclidean dimensions [48]. In

this paper, we will only deal with simply-connected three-cycles, so that the local geometry near

the bolt is a smooth discrete quotient of R2 × S3, but other possibilities, for example S2 × S1,

may also exist.

Note that the notion of a bolt introduced above is based on whether this locus is a fixed point

of a single U(1) isometry, without any reference to possible additional isometries. It is common to

distinguish the U(1) isometries that define the structure of a solution from accidental isometries

that may occur in more restricted classes of solutions. For example, a general Gibbons–Hawking

instanton with N nuts only admits one U(1) isometry. It is only when all centers lie on the

same axis that the solution admits an extra U(1) isometry; this then defines fixed loci between

the centers which are bolts in the sense defined above. However, it is common terminology

not to refer to these as bolts, since they are an artifact of the additional U(1) isometry. This

is a general feature of axisymmetric solutions that have a flat three-dimensional base metric,

and which generally admit non-axisymmetric generalizations. Those include for instance the

supersymmetric limit of the JMaRT solution, for a = c [49, 50], whose three-dimensional base

metric is flat [51]. Therefore we will not refer to its S3 bubble as a bolt. On the contrary,

when the bolt locus is defined at a conical singularity of the three-dimensional base metric,

the two singular behaviors compensate each other to define a regular four or five-dimensional

Euclidean metric and the degenerating U(1) isometry is absolutely essential in describing the

local geometry. In practice, one only calls a bolt a degenerate locus that is in the second category.

The existence of such a bolt is a general feature of gravitational instantons originating

from non-extremal black hole solutions by analytic continuation to Euclidean signature. The

Killing horizon is by definition a codimension-two surface where the norm of the Killing vector

vanishes, such that after analytic continuation it leads to the singular locus of an isometry – a

bolt – provided the original black hole had a nontrivial surface gravity. The three-dimensional

base metric we use is that of a Euclidean non-extremal Kerr–Newman black hole, described by

the Ernst potentials (2.24) for H = 0. Thus the solutions described in this paper admit a Killing

vector with a nontrivial bolt homeomorphic to (the discrete quotient of) a three-sphere at r = c.

This is the case irrespectively of the number and positions of the extra poles of the function H.

The fact that the bolt is naturally associated to a Killing horizon with non-zero temperature in

Euclidean gravity is a sign that smooth solitons admitting a bolt are associated to non-extremal

black hole microstates.

For the metric (2.4), the relevant vector field KB collapsing on the bolt is of the type

KB = Ry∂y + (m + n)∂ψ − (m− n)∂ϕ , (3.17)

where Ry is the radius of the y circle and m and n are integers. For constant H this bolt is

the unique cycle of the solution and, as was shown in [45], the solution reduces to the JMaRT

solution [34].

In addition, we find that two linear combinations of the three U(1) isometries collapse at
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the two poles of the bolt and at the Gibbons–Hawking center located at the pole of H. Thus all

three special points of our solutions are nuts. We now proceed to discuss in turn the geometry

near the nuts and the bolt.

3.3 Geometry at the Gibbons–Hawking center

The Gibbons–Hawking center is located at r1 = 0 in the coordinates

r1 =
√

(R− r cos θ)2 + (r2 − c2) sin2 θ , cos θ1 =
r cos θ −R

r1
. (3.18)

The limits of the functions W and HI are

W =
N2

r 2
1

+ O(r −1
1 ) , HI = hEI

N

r1
+ O(r 0

1 ) , (3.19)

where we define the constants

hEI ≡
(

1 − 2 (x+ 1)

R− a

1

qI+1qI+2

)

, (3.20)

which must all be strictly positive. Given the behavior in (3.19), the absence of closed-time-like

curves requires from (3.14) and (3.16) that

µ

W

∣

∣

∣

∣

r1=0

= 0 , ω
∣

∣

r1=0
= 0. (3.21)

Each of these two conditions independently determines the distance R from the origin to the

Gibbons–Hawking center,

R = a+
16 (x + 1)2

(a2 − c2) (q1q2q3)2 + 4 (q1q2 + q2q3 + q3q1) (x+ 1)2
. (3.22)

The remaining vector fields in the metric all appear in the combinations

(

dψ + w0)|r1=0 = dψ + (N(1 − cos θ1) − 1)dϕ ,
(

dy + α3(dψ + w0) + w3
)

|r1=0 = dy −
(

(a2 − c2)q1q2q3

4(x+ 1)
+
x+ 1

q3

)

(dψ − dϕ) . (3.23)

The second vector field is manifestly well-defined in the new coordinate

yE = y −
(

(a2 − c2)q1q2q3

2(x+ 1)
+ 2

x+ 1

q3

)

ψ − ϕ

2
, (3.24)

whereas the first is discontinuous.
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In these coordinates, considering the spacelike slice given by dt = 0, the metric (2.4) becomes

ds2 =
hE3

√

hE1 h
E
2

dy 2
E (3.25)

+N
√

hE1 h
E
2

[

r1

(

d

(

ψ − ϕ

N

)

+ (1 − cos θ1)dϕ

)2

+
dr2

1

r1
+ r1(dθ2

1 + sin2 θ1dϕ
2)

]

.

Focusing temporarily on the second line in this metric, we recognize a Gibbons–Hawking self-

dual metric. If (ψ − ϕ) had period 4πN , this four-dimensional factor would simply be flat R
4,

with ψ−ϕ
N

being the appropriately normalized Hopf fibre coordinate on S3. Note that at infinity

we have the identification y ∼ y+2πRy at fixed ψ, ϕ. Thus in order for (ψ−ϕ) → (ψ−ϕ)+4πN

at fixed yE to be a closed orbit, in the change of coordinates (3.24) we require

−N

(

(a2 − c2)q1q2q3

2(x+ 1)
+ 2

x+ 1

q3

)

= N3Ry (3.26)

for some integer N3.

Next, the periodicity of the ψ and φ coordinates at infinity (3.7) means that the actual

periodicity of (ψ − ϕ) is 4π rather than 4πN , and the resulting space can be thought of as

arising via a Z|N | orbifold action7 on the smooth space described above. The Z|N | quotient acts

on both ψ and yE as

ψ → ψ + 4π , yE → yE +
2πN3

N
Ry , (3.27)

and therefore the quotient is smooth provided N3 and N are relative primes. More generally

the Euclidean base space has an orbifold singularity of degree gcd(N,N3).

3.4 Geometry at the bolt

The smoothness conditions at the bolt (r = c) are generalizations of those discussed in [45] and

in JMaRT [34]. At the bolt, the functions W , HI behave as

W
∣

∣

B
=
ŴB(θ)

sin4 θ
, HI

∣

∣

B
=
ĤB
I (θ)

sin2 θ
, µ

∣

∣

B
=
µ̂B(θ)

sin2 θ
, (3.28)

where we explicitly factor out the powers of sin θ which diverge at the poles of the bolt. The

ŴB , ĤB
I and µ̂B are regular functions of θ on the bolt, whose explicit expressions are not very

illuminating. Similarly, it is straightforward to compute that the gauge field components αI and

AIt are also regular functions at the bolt.

Turning to the vector fields, we consider the timelike fibration of the metric on the bolt,

noting that (3.22) automatically ensures that the vector field ω is single-valued on the bolt. One

7We often use the term ‘orbifold’ in the physics sense, to denote a discrete quotient of a manifold. If the
quotient results in no singularities, we denote it as a ‘smooth orbifold’.
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may then compute the value of this field at r = c, to find

ω
∣

∣

B
=
a2 − c2

8 a

(

2
∑

J

qJ − c q1q2q3
)

− 4

(

c
∑

I

qI+1qI+2 − 2

)

x2 − 1

8 a q1q2q3
(3.29)

+

[

16 − (a+ c)

(

(a2 − c2)
(q1q2q3)2

(x+ 1)2
+ 4

∑

I

qI+1qI+2

)]

(R − c) (x + 1)N

8 a q1q2q3 (R− a)
,

which must vanish in order to avoid Dirac-Misner string singularities. Moreover, the function

µ/W vanishes at the poles of the bolt due to (3.28), so that the full vector field, k, vanishes

on the symmetry axis. For N = 0, the condition that (3.29) be equal to zero reduces to the

regularity constraint one gets in the JMaRT solution. In the following we will assume that (3.29)

vanishes, although it is preferable not to solve it explicitly yet. In practice we allow ourselves

to define all quantities modulo terms proportional to ω
∣

∣

B
, that will eventually vanish once the

constraint is solved explicitly.

The vectors w0 and w3 are discontinuous on the symmetry axis at the poles of the bolt.

We consider therefore separately their value at the bolt (meaning in the limit r → c) and their

expression on the symmetry axis near the poles of the bolt. The values at the bolt are

w0
∣

∣

B
=
c

a
x+

(

1 +
c

a

)

(R− c)

(R− a)
N ,

wI
∣

∣

B
=

1

a q1q2q3

[

1

2
(a2 − c2)q1q2q3qI −

(

c qI
∑

J 6=I

qJ − 2

)

(x2 − 1)

+

(

4 − (a+ c) qI
∑

J 6=I

qJ
)

(R− c) (x + 1)N

(R− a)

]

, (3.30)

and the values on the symmetry axis near the poles of the bolt are

w0
∣

∣

θ=π, r>c
= 1 ,

wI
∣

∣

θ=π, r>c
= 0 ,

w0
∣

∣

θ=0, c<r<R
= 2N − 1 ,

wI
∣

∣

θ=0, c<r<R
= 2N

(

(a2 − c2)q1q2q3

4(x+ 1)
+
x+ 1

qI

)

.
(3.31)

To interpret the discontinuities at (r = c, cos θ = ±1) we turn to the six-dimensional metric

(2.4), in which both w0 and w3 appear explicitly. Considering a spacelike slice, dt = 0, we find

the following expression for the metric at the bolt

ds2
∣

∣

bolt
=

ĤB
3

√

ĤB
1 Ĥ

B
2

(

dy + α3 (dψ + w0|B) + w3|B
)2

+
ĤB

1 Ĥ
B
2 Ĥ

B
3 − µ̂ 2

B sin2 θ

ĤB
3

√

ĤB
1 Ĥ

B
2 ŴB

sin2 θ
(

dψ + w0|B
)2

+
√

ĤB
1 Ĥ

B
2

[

a2

(

dr2

r2 − c2
+ dθ2

)

+ (r2 − c2) dϕ2

]

. (3.32)
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At the poles of the bolt (i.e. cos θ = ±1), the second line in the above equation vanishes.

Thus the only dependence of the metric on the vector field dψ + w0 is through the vector

dy + α3(dψ + w0) + w3, which must be continuous at the poles. Provided that (3.29) vanishes,

the (single-valued) limits of α3 at the two poles satisfy

α3
∣

∣

(r=c,cos θ=±1)
= −

w3
∣

∣

B
− w3

∣

∣

cos θ=±1, c<r<R

w0
∣

∣

B
− w0

∣

∣

cos θ=±1, c<r<R

, (3.33)

and therefore the vector field is indeed continuous at the two poles.

The existence of a well-defined Killing vector KB defining the bolt requires the quantization

of some of the parameters. To see this, it is convenient to introduce coordinates φ−, rB , ψ−, ϕ−

in which the metric is manifestly well-defined on an open set excluding the North Pole θ = 0:

y = Ry φ− , r = c+
1

2c
r 2
B ,

ϕ = ϕ− − (m − n)φ− , ψ = ψ− − ϕ− + (m+ n)φ− , (3.34)

where m, n are the quantities appearing in the Killing vector (3.17) that degenerates at the bolt,

which becomes KB = ∂φ− . For compatibility of the periodicities, m and n must be integers.

The quantities a/c and x are determined in terms of these integers as

a

c
= m− n , x+

(a+ c)(R− c)

c (R − a)
N =

a

c
w0
ϕ

∣

∣

B
= m+ n . (3.35)

In addition, the radius of the y circle Ry is fixed to

Ry =
a

c
w3
ϕ

∣

∣

B
=

1

c q1q2q3

(

1
2 (a2 − c2)q1q2(q3)2 +

(

2 − c q3(q1 + q2)
)

(x2 − 1)

+

(

4 − (a+ c) q3(q1 + q2)

)

(R− c) (x+ 1)N

(R− a)

)

. (3.36)

Given this value of Ry, we observe that the constraint (3.26) is a nontrivial constraint on the

integers N and N3.

The metric in the vicinity of the bolt then reduces to

ds2
∣

∣

bolt
=





ĤB
3

√

ĤB
1 Ĥ

B
2





(

Ry
m− n

dϕ− + α3
(

dψ− +
2n

m− n
dϕ−

)

)2

+
ĤB

1 Ĥ
B
2 Ĥ

B
3 − µ̂ 2

B sin2 θ

ŴBĤ
B
3

√

ĤB
1 Ĥ

B
2

sin2 θ
(

dψ− +
2n

m− n
dϕ−

)2

+
√

ĤB
1 Ĥ

B
2 a

2

(

dr 2
B + r 2

Bdφ−
2

c2
+ dθ2

)

. (3.37)

The radial coordinate rB and the 2π-periodic coordinate φ− therefore parametrize R2 in radial
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coordinates, and the bolt metric is well-defined at a generic value of θ.

Geometry at the poles of the bolt

As mentioned earlier, the poles of the bolt are nuts. At the nuts, two U(1) isometries collapse.

In particular, the additional degenerate isometry at the South Pole θ = π follows from the fact

that

α3
∣

∣

r=c,θ=π
= −Ry

2n
(3.38)

with Ry given by (3.36). This means that the additional degenerate isometry is along ϕ− and

the leading dependence of the metric on dϕ− as written in (3.37) vanishes (the subleading terms

will appear in (3.41) below). One then finds that in the neighbourhood of the South Pole, the

geometry is the one of a regular Gibbons–Hawking nut times S1, so the space is locally S1 ×R
4.

To see this, we use the coordinates

r =
1

2

(

r− +
√

r 2
− − 4cr− cos θ− + 4c2

)

, cos θ =
1

2c

(

r− −
√

r 2
− − 4cr− cos θ− + 4c2

)

, (3.39)

and the constants

h−
I =

2 (x+ 1) − (a+ c) qI+1qI+2

8 c qI+1qI+2

[

2 (x+ 2N − 1) − (a− c) qI+1qI+2 +
4 (a− c)N

R− a

]

, (3.40)

in terms of which the metric (with dt = 0) in the neighborhood of r− = 0 reduces to

ds2
∣

∣

r−=0
=

h−
3

√

h−
1 h

−
2

(

Ry
2n
dψ−

)2

(3.41)

+
√

h−
1 h

−
2

(

1

r−
dr 2

− + r−

(

dθ 2
− + 2(1 − cos θ−)dφ−

2 + 2(1 + cos θ−)dϕ−
2
)

)

.

This is manifestly a local product of R4 with an S1 along dψ−, which remains finite in this limit.

In order to study the metric near the North Pole at θ = 0, one needs to change to a

coordinate system that is regular there, unlike the coordinates in (3.34). We therefore change

to spatial coordinates (φ+, ψ+, rB , θ, ϕ+), where

y = Ry(φ+ +N3ϕ+) , ψ = ψ+ + (1 − 2N)ϕ+ + (m + n)φ+ , ϕ = ϕ+ − (m− n)φ+ , (3.42)

with rB defined in the same way as in (3.34) and m, n still given by (3.35). This gives

(

dy + α3 (dψ + w0) + w3)
∣

∣

∣

r=c,θ=0
=

1 + (m− n)N3

−2m+ 2(m − n)N
Rydψ+ , (3.43)

and the degenerate isometry at the North Pole is associated to ϕ+.

In these coordinates, if φ+ is identified with period 2π, then rB, φ+ define polar coordinates

on R
2. To examine the periodicities more closely, note that the change of coordinates (3.42) is
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not unimodular, and its inverse is

φ+ =

y
Ry

−N3ϕ

1 + (m− n)N3
, ϕ+ = ϕ+

(m− n) ( y
Ry

−N3ϕ)

1 + (m− n)N3
,

ψ+ = ψ + (2N − 1)ϕ− 2
(m− (m− n)N) ( y

Ry
−N3ϕ)

1 + (m− n)N3
. (3.44)

We observe that ψ+ has period 4π, and that ϕ+ has period 2π. The periodicity of y induces the

identification

(φ+, ψ+, ϕ+) ∼ (φ+, ψ+, ϕ+) + 2π

(

1

1 + (m− n)N3
,−2(m − (m − n)N)

1 + (m− n)N3
,

(m− n)

1 + (m− n)N3

)

(3.45)

and we see that φ+ ∼ φ+ + 2π is contained in the full lattice of identifications. Since m−n and

1 + (m−n)N3 are relatively prime for any integer N3, the quotient is smooth at a generic point

of the bolt, consistently with the fact that the metric was manifestly regular in the coordinates

(3.34). However, the coordinate ϕ+ degenerates at the North Pole, and the orbifold action is

only free at this point if m− (m − n)N and 1 + (m− n)N3 are relative primes.

To examine the geometry at the North Pole, consider the coordinate change

r =
1

2

(

r+ +
√

r 2
+ + 4cr+ cos θ+ + 4c2

)

, cos θ =
1

2c

(
√

r 2
+ + 4cr+ cos θ+ + 4c2 − r+

)

.

(3.46)

We introduce the constants

h+
I =

2 (x+ 1) + (a− c) qI+1qI+2

8 c qI+1qI+2

(

2 (x+ 2N − 1) + (a+ c) qI+1qI+2 − 4 (a+ c)N

R− a

)

, (3.47)

in terms of which the metric (with dt = 0) then reduces at r+ → 0 to

ds2
∣

∣

r+=0
=

h+
3

√

h+
1 h

+
2

(

(1 + (m − n)N3)Ry
2m − 2(m− n)N

dψ+

)2

(3.48)

+
√

h+
1 h

+
2

(

1

r+
dr 2

+ + r+

(

dθ 2
+ + 2(1 + cos θ+)dφ+

2 + 2(1 − cos θ+)dϕ+
2)
)

.

Thus, similarly to the South Pole, the geometry at the North Pole is the product of a circle

(parametrized by ψ+) and a Gibbons–Hawking nut, with an orbifold action on S1 ×R
4 of order

1 + (m− n)N3 given by Eq. (3.45).

4 Topology and fluxes of the solutions

In this section we discuss the topology and fluxes of our solutions. Before discussing the topology

directly, we first examine the two-form potentials B and B̃ near each of the nut centers xA. We

then discuss the two homology 3-cycles of the solution, and give explicit expressions for the

fluxes associated to these two 3-cycles.
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4.1 Two-form potentials at the nut centers

We have seen in the last section that in the vicinity of each nut center xA (i.e. the South Pole

x− at r− = 0, the North Pole x+ at r+ = 0 and the extremal center xE at r1 = 0), the 5-

dimensional Riemannian base space is locally a smooth discrete quotient of S1 × R
4, with the

respective center as the origin of R4 in adapted coordinates.

In spherical coordinates, a regular 2-form on R
4 vanishes at the origin. In our solution, a

regular 2-form must similarly reduce at each of the xA to its component along time and the

S1 that remains finite at that center. We have checked explicitly that the two-form potentials

B and B̃ evaluated at each center xA admit constant components in the base generated by

dt, dy, dψ, dϕ by the wedge product. It follows that one can define a gauge transformation such

as to cancel the potential at the required point. The relevant expressions at each center are

rather long and not illuminating, so we refrain from displaying them. However, the difference of

the values of the two-form at the centers carry information about the fluxes, as we now discuss

in some detail.

Consider an open set, UA, including the center xA and excluding the others, on which the

regular 2-form potentials B(A), B̃(A), are defined as

B(A) ≡ B
∣

∣

UA
−B

∣

∣

A
, B̃(A) ≡ B̃

∣

∣

UA
− B̃

∣

∣

A
, (4.1)

where B|A is B evaluated at xA, which defines a constant gauge transformation implementing

(4.1). On the intersection UAB ≡ UA ∩UB , the two representatives are by construction patched

modulo a gauge transformation

B(A)
∣

∣

UAB
−B(B)

∣

∣

UAB
= B

∣

∣

B
−B

∣

∣

A
, (4.2)

and similarly for B̃. Explicitly, we find the following gauge transformations for the pullback of

the 2-form, B, on a time-like slice dt = 0:

2
(

B
∣

∣

E
−B

∣

∣

N

)

=F2

(

−N3 dϕ ∧ dψ − 1

Ry
(2N − 1) dϕ ∧ dy − 1

Ry
dψ ∧ dy

)

,

2
(

B
∣

∣

N
−B

∣

∣

S

)

= (Q2 +N3 F2)

(

dϕ ∧ dψ − m+ n

Ry
dϕ ∧ dy − m− n

Ry
dψ ∧ dy

)

, (4.3)

while the corresponding expressions for B̃ follow by exchanging the indices 1 ↔ 2 in all ex-

pressions. Here Qa are the total electric charges at asymptotic infinity (3.8) and Fa define the

fluxes

ηabFb =
(a− c) (R − c)

4c (R − 2a− c)

((a+ c) q1q3 − 2 (1 + x)) ((a + c) q2q3 − 2 (1 + x))

(a− c) q1q2q3 + 2 (1 + x)qa

×
(

(a2 − c2)

x+ 1
q1q2q3 + 2 (a + c) (q1 + q2) + 4

x− 1

q3

)

. (4.4)
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Note that the expressions of the gauge transformations become rather simple if we consider

the coordinates at the extremal center (3.24) and the South Pole (3.34). Introducing ψE as the

coordinate in which the metric component dψ+w0 is well-defined on the axis between the North

Pole and the extremal center, we obtain

2
(

B
∣

∣

E
−B

∣

∣

N

)

=F2
1

Ry
dyE ∧ dψE ≡ F2

1

Ry
dyE ∧ (dψ + (2N − 1)dϕ

)

,

2
(

B
∣

∣

N
−B

∣

∣

S

)

= (Q2 +N3 F2) dϕ− ∧ dψ− . (4.5)

4.2 Topology of the solutions

We observe that only two linearly independent two-forms with integer coefficients appear in

(4.3) and (4.5). This is a consequence of the presence of two inequivalent homology 3-cycles on

any time-like slice of the solution. One can derive this fact from the Mayer–Vietoris sequence

for the connected union of three spaces which are (smooth discrete quotients of) S1 × R
4. We

define the five-dimensional Riemannian space Mn through the recursive connected union (here
∼= denotes “homeomorphic to”):

Mn+1
∼= Mn ∪ S1 × R

4 , Mn ∩ S1 × R
4 ∼= S1 × S1 × R

2 , M0
∼= S1 × R

4 , (4.6)

with the requirement that Mn is simply connected for n ≥ 1. Note indeed that the Riemannian

base space of the solutions we describe in this paper are by construction simply connected

because there is a basis in which each of the U(1) isometries admits at least one fixed point.

The JMaRT solution is homeomorphic to M1, where the two S1 ×R
4 open sets are centered

at the poles of the bolt, and a regular section of the bolt is indeed diffeomorphic to S1 ×S1 ×R
2,

with the circles parametrized by ψ−, ϕ−. The bolt itself then defines a nontrivial 3-cycle, which

can be viewed as a retraction of the S3 present in the asymptotic R1,4 ×S1 region. For the union

(4.6), the Mayer–Vietoris sequence yields

· · · → Hk(S
1 × S1) → Hk(Mn) ⊕Hk(S

1) → Hk(Mn+1) → Hk−1(S1 × S1) → · · · (4.7)

Setting n = 0 we find for the JMaRT solution M1 the sequence

0 → H3(M1) → Z → 0 → H2(M1) → Z
2 → Z ⊕ Z → 0 , (4.8)

implying that H3(M1) = Z and H2(M1) is trivial, so one indeed finds that M1
∼= R

2 ×S3, and

we recover the nontrivial three-cycle of the JMaRT solution.

To analyze our solution, note that the effect of the pole in the function HA in (2.27) is to

add an extra nut which is locally diffeomorphic to a smooth discrete quotient of S1 × R
4. It

then follows that the solution displayed in this paper is homologically equivalent to M2 in (4.6),

obtained by one more recursion. The homology of our solution can thus be computed by the
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above Mayer–Vietoris sequence with n = 1, which reads

0 → Z → H3(M2) → Z → 0 → H2(M2) → Z
2 → Z → 0 , (4.9)

and implies that H3(M2) = Z
2, while H2(M2) = Z. Thus our solution includes two inequivalent

homology 3-cycles and one homology 2-cycle. Note that the details of the smooth discrete

quotient of S1 × R
4 do not play any role in this construction.

The Mayer–Vietoris sequence exhibits the isomorphism between the homology 3-cycles re-

lating to centers xA, and the S1 × S1 homology 2-cycle of the intersection UAB, given by the

restriction of the 3-cycle to the intersection. This isomorphism is dual to the isomorphism re-

lating the cohomology representative 3-form H, and the gauge transformation (4.2) patching B

on UAB .

A similar analysis to the above can be performed in the five-dimensional bubbling black

hole microstate solutions [12, 25–30], where one can find that each additional Gibbons–Hawking

center gives rise to an additional two-cycle.

4.3 Fluxes on the 3-cycles

One fundamental 3-cycle, Σ∞, is defined as the retraction of the asymptotic S3 to the interior,

as for the 3-cycle in the JMaRT solution. In our solution, it can be described as a surface with

dy = 0 and considering some path in r, θ coordinates from the South Pole to the Gibbons–

Hawking center. Given that the intersections UAB of the three open sets are nontrivial, one

would in principle need to consider a partition of unity in order to define the integrals for the

fluxes. We avoid that by introducing a cellular complex {CS , CE , CSE} such that

CS ⊂ US , CE ⊂ UE , CS ∩ CE ∼= ∅ , CSE ≡ CS ∩ CE , (4.10)

with

US ∪ UE ∼= CS ∪ CE ∪ CSE , CSE ∼= ∂CS ∩ USE ∼= ∂CE ∩ USE , (4.11)

so that one may replace US , UE by CS , CE in all considerations, but with their intersection

being retracted to the co-dimension one boundary CSE. The integral of the three-form can then

straightforwardly be computed as

1

4π2

∫

Σ∞

H =
1

4π2

(

∫

Σ∞∩CS

dB(S) +

∫

Σ∞∩CE

dB(E)

)

=
1

4π2

∫

Σ∞∩CSE

(

B(S) −B(E)
)

=
1

4π2

∫

Σ∞∩CSE

(

B
∣

∣

E
−B

∣

∣

S

)

=
1

8π2
Q2

∫

dϕ ∧ dψ = Q2 , (4.12)

which gives the D5-brane charge. By construction, the integral of H̃ on the same cycle gives the

D1-brane charge Q1.
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The second fundamental 3-cycle Σ1 can be defined in exactly the same way as the bubble

linking the North Pole to the Gibbons–Hawking center on the axis while wrapping ψE and yE

and with ϕ kept constant. One then computes the flux as

1

4π2

∫

Σ1

H =
1

4π2

(

∫

Σ1∩CN

dB(N) +

∫

Σ1∩CE

dB(E)

)

=
1

4π2

∫

Σ1∩CNE

(

B
∣

∣

E
−B

∣

∣

N

)

= F2 ,

(4.13)

with F2 defined in (4.4), and similarly one finds that the flux of H̃ over Σ1 is given by F1. Dirac

quantization therefore implies that the Fa are quantized fluxes in appropriate units.

The integral of the three-form field strength over any cycle is a linear combination of Q2

and F2 with integer coefficients; this is ensured by (4.3). In particular, on the bolt itself (at

r = c and dy = 0) one obtains

1

4π2

∫

ΣB

H = Q2 +N3F2 . (4.14)

A similar expression holds for the integral of H̃.

The charges Q1 and Q2 are quantized in string theory as follows. Taking a T 4 compactifi-

cation of type IIB for concreteness, we consider n1 D1-branes wrapped on the y-circle S1
y , and

n5 D5-branes wrapped on T 4 × S1
y . Then denoting the volume of the T 4 at infinity by (2π)4V

and the string coupling by gs, the supergravity charges take the standard form (see e.g. [52])

Q1 =
gsn1α

′3

V
, Q2 = gsn5α

′ . (4.15)

The flux F1 is quantized in the same way as the D1 charge, and similarly the flux F2 is quantized

in the same way as the D5 charge.

We thus observe the familiar story that these solitonic solutions are supported by fluxes, as

discussed in [40] and also by [53–55]. It would be interesting to verify explicitly that the Komar-

type integral defining the mass of our solution can be decomposed using the intersection form

of the Euclidean base space, as discussed in [53]. In addition, one could examine the analogous

formulae for the angular momenta as Komar-type integrals. We anticipate that this could be

used to show that flux quantization implies angular momentum quantization in the appropriate

units.

5 Explicit examples of smooth solutions

We now present explicit examples of smooth solutions of the type described in the previous

two sections. While most of the regularity and smoothness constraints have been imposed

analytically above, there remain three regularity conditions to be solved.

The first of the remaining regularity conditions is the condition that ω vanish at the bolt,

ω
∣

∣

B
= 0, where ω

∣

∣

B
is given in Eq. (3.29). Our second constraint comes from the regularity
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condition at the bolt, which relates x to m+n, given in Eq. (3.35). The third constraint is that

(3.26) must be solved by some integer N3.

A priori, one would wish to fix the integer N3 first and solve for the remaining parameters,

however the constraints cannot be solved analytically in terms of N3 and the other integer

parameters m, n, N . Therefore we take a different approach: we first solve for N3 in terms of

the other parameters, and then verify that the parameter space allows examples where N3 is an

integer.

To simplify the three constraints, we use the second condition (3.35) to eliminate N from

ω
∣

∣

B
in favour of m, n and x. Conveniently, this happens to also eliminate R from ω

∣

∣

B
. The first

regularity condition then becomes

(a2 − c2)q1q2q3
(

2
∑

J

qJ − c q1q2q3
)

− 4

(

c
∑

I

qI+1qI+2 − 2

)

(x2 − 1)

=

[

16 − (a+ c)

(

(a2 − c2)
(q1q2q3)2

(x+ 1)2
+ 4

∑

I

qI+1qI+2

)]

(x+ 1)
(

x− (m+ n)
)

(m − n+ 1)
, (5.1)

where we retain a in some places for ease of notation, but it should be understood that a takes

the value (m− n)c from (3.35).

We next eliminate R from the second condition (3.35), using (3.22). The second condition

then becomes

x− (m+ n) + (m − n+ 1)N =

cN
(

(m− n)2 − 1
) (a2 − c2) (q1q2q3)2 + 4 (q1q2 + q2q3 + q3q1) (x+ 1)2

16 (x + 1)2
. (5.2)

We thus have two polynomial constraints on the parameter space, (5.1) and (5.2), which we

choose to solve for the variables q3 and x. To solve these two polynomials simultaneously for q3,

we take the resultant with respect to q3, which (after removing overall factors) gives a quartic

in x depending on c, m, n, q1, q2, N . The full quartic would take more than a page to write

out, and is not particularly illuminating, so we do not reproduce it here.

In the limit N → 0, this quartic has a double root at x = m + n and another double root.

We focus on the two roots which tend to the JMaRT value m+ n in the N → 0 limit. We thus

obtain x in terms of c, m, n, q1, q2, N ; since this is a solution to a complicated quartic, the

answer obtained is algebraically very complex.

Next, the constraint (5.1) is quadratic in q3, enabling us to solve for q3 as a function of c,

m, n, q1, q2, N , x. We again select the root which joins smoothly to the JMaRT solution.

Given the algebraic complexity involved, we investigate the regularity of the solution by

scanning the parameter space numerically, as follows. The dimensionful parameter c merely sets

the scale of the system, so we work in units of c. Using the first two conditions, specifying values

for m, n, q1, q2, N determines in turn x, then q3. Then R is determined from (3.22) and N3

is given by the third regularity condition (3.26). Given such a set of parameters, we examine

the remaining regularity conditions that away from the special points HI are positive and finite,
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and that Eqs. (3.14) and (3.16) are satisfied.

Next, we investigate whether the parameter space allows N3 to be an integer. To do so, we

first find a region of parameter space that satisfies all other regularity checks, and we then tune

one of the parameters to make N3 come within some desired precision of an integer value.

As discussed around (3.27) and (3.45), the geometry will be free of orbifold singularities if

gcd(N,N3) = 1 and gcd(m− (m−n)N, 1 + (m−n)N3) = 1. We now describe such an example,

which is completely smooth.

From our numerical investigations, we did not find any smooth solutions with |N | ≤ 3,

however for N = −4 we found a region of parameter space that allows regular solutions. In this

region it appears that N3 can be tuned to be as close as desired to the quantized value N3 = 3;

we find a region in which N3 is within 10−8 of this value, both above and below the quantized

value.

A representative example of a solution is given by:

m = 3 , n = 1 , N = −4 , q2 = 0.5 c− 1
2 , q1 = 0.672558 c− 1

2 (5.3)

where N3 = 3 ± 10−8 has been approximately quantized by tuning q1.

This solution is well-behaved everywhere: both the orbifold actions (3.27) and (3.45) are

smooth quotients. In addition to being smooth at the special points, away from these points it

satisfies the regularity conditions discussed in Section 3.1.

Let us now describe some of the properties of the solution. The regime of small parameters

qI corresponds to the regime of large supergravity charges QI . Ultimately QI should be thought

of as macroscopic, but in our example we have kept the numbers relatively modest in units of

c for convenience. Rounding smaller quantities to three significant figures and larger quantities

to integers, the values of some quantities of interest in this solution are:

x = 62.3 , q3 = 12.8 c− 1
2 , R = 2.25 c , Ry = 13.3 c

1
2 ,

Q1 = 2392 c , Q2 = 1767 c , Q3 = 46156 c , MADM = 50408 c ,

F1 = −482 c , F2 = −364 c , Jψ = 452034 c
3
2 , Jϕ = 53503 c

3
2 .

(5.4)

Comparing to the regularity bound on angular momenta for a black hole carrying the charges

QI and the mass MADM, we find that the angular momentum Jϕ is below the regularity bound,

while Jψ is slightly over-rotating. To understand this, note that the behavior of the solution

at infinity is determined by the charges QI and the constants EI (3.10), which by (3.11) are

themselves determined by the charges and the ADM mass. A formal black hole solution with

the same charges, angular momenta and mass would have an entropy SBH = SL + SR, where

[56, 57]

(

SL

2π

)2

=
1

8

(√
(E1+Q1)(E2+Q2)(E3+Q3) +

∑

I

√
(EI +QI)(EI+1−QI+1)(EI+2−QI+2)

)2
− J 2

ψ ,

(

SR

2π

)2

=
1

8

(√
(E1−Q1)(E2−Q2)(E3−Q3) +

∑

I

√
(EI −QI)(EI+1+QI+1)(EI+2+QI+2)

)2
− J 2

ϕ . (5.5)
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In the BPS limit, EI → QI , and the above formula reduces to the familiar BMPV cosmic

censorship bound [58]. Using the expressions derived in Section 3.1, one obtains

(

SL

2π

)2

= −4

(

(a2 − c2)(q1 + q2 + q3) + 4
x2 − 1

q1q2q3

)2

,

(

SR

2π

)2

= −
(

c

(

(a2 − c2)q1q2q3 + 4
∑

I

x2 − 1

qI

)

+
16N(x + 1)(R2 − c2)

q1q2q3(R − a)2

)2

−32(a− c)(x+ 1)N(R2 − c2)

q1q2q3(R− a)2

(

(a2 − c2)q1q2q3 + 4
∑

I

x2 − 1

qI

)

. (5.6)

Therefore the solutions described in this paper necessarily have Jψ exceeding the cosmic censor-

ship bound, whereas Jϕ can possibly preserve the bound for a negative N . In our example Jϕ

is below the regularity bound and SR = 499712 c
3
2 , whereas Jψ exceeds the regularity bound by

a rather small amount,

J 2
ϕ

J 2
ϕ + (SR

2π )2
≈ 0.31 ,

J 2
ψ

J 2
ψ + (SL

2π )2
≈ 1 +

1

622
. (5.7)

Note moreover that Eq. (5.6) is only valid within the specific solution (2.28) discussed in this

paper, and is not a general property of solutions to the partially solvable system defined on the

Maxwell–Einstein instanton background (2.24). Within our understanding, there is no reason

to believe that the over-rotation is a general property of solutions to the system.

The over-rotation is to be expected; it is a feature which is also present in the JMaRT

solutions, and one may expect that adding a single center in a simple way would not change this

fact. Note nonetheless that the JMaRT solutions have the two angular momenta exceeding the

regularity bound, so that the addition of an extra Gibbons–Hawking center is an improvement

in this respect. In addition, we observe that the ADM mass is above but quite close to the BPS

bound
∑

I QI = 50315 c.

The ergoregion of the six-dimensional solution is larger than the scales of the charges QI , and

extends until around r = 11554 c. By contrast, the would-be ergoregion of the five-dimensional

solution obtained upon reduction along the y fiber is much smaller, extending to around r =

169 c; this is consistent with the fact that one regularity bound is satisfied, and the other

violated only weakly. The difference can be traced to the fact that the momentum charge in the

y direction Q3 is significantly larger than the D1 and D5 charges Q1 and Q2. In the JMaRT

solutions, in the near-BPS limit the ergoregion is deep inside an AdS3 ×S3 throat; interestingly,

as a result of the large ergoregion in the six-dimensional solution, there is no such throat in our

solution.

6 Discussion

In this paper we have constructed solutions to six-dimensional N = (1, 0) supergravity coupled

to a tensor multiplet that are the first non-extremal smooth horizonless solutions containing both

– 28 –



a bolt and an additional Gibbons–Hawking center. This center lies at a fixed distance from the

bolt, giving rise to two inequivalent 3-cycles supported by three-form flux. These solutions are

generalizations of the JMaRT solutions [34], and reduce to them upon removing the additional

Gibbons–Hawking center.

Our solutions have an asymptotic structure similar to that of non-extremal black holes in

five dimensions, albeit with one of the two angular momenta exceeding the regularity bound for

black holes. The fact that Jϕ is under-rotating and that Jψ is over-rotating only by a very small

amount is a significant improvement compared to the JMaRT solutions, for which both angular

momenta are over-rotating. In the context of the fuzzball proposal, our solutions should be

viewed as describing atypical semi-classical microstates of non-extremal D1-D5-P black holes.

At the level of the system of equations, there does not appear to be anything to indicate

that this atypicality should be a general feature of all solutions to this system. Rather, it

is a common feature of explicitly-constructible microstate geometries that their fluxes tend to

produce angular momenta larger than those of black holes, so to have Jϕ under-rotating in

this solution is a noteworthy feature. For supersymmetric multi-center solutions involving Nc

Gibbons–Hawking centers, the ratio between the square of Jψ and the product of the charges

has been estimated to be equal to one plus corrections of order 1/N2
c [59]. In our solution the

equivalent correction is approximately 1/622. One can think of the bolt as corresponding to

two Gibbons–Hawking centers, so in some sense our solution can be thought of as having three

centers, and thus the amount of over-rotation appears remarkably small.

In the future one would of course like to make the further improvement of obtaining solutions

that have both angular momenta within the black hole regime. The only known way to do this is

to consider specific multi-center solutions in which one can tune the fluxes in order to make the

distance between the centers arbitrarily small [12, 60]. One refers to these solutions as scaling

solutions [61]. Such microstate geometries play an important role in the fuzzball proposal, as

they naturally admit an arbitrary long throat, and have been argued [12] to be dual to typical

states of the D1-D5 orbifold CFT [62].

It is an exciting possibility that there may also exist a scaling regime for solutions far from

the BPS limit, and indeed far from extremality. In this case there would not be an AdS throat,

and the relevant physical parameter should be the redshift between the locus of the centers and

the asymptotic region, which could possibly be tuned to become arbitrary large as the centers

approach each other in the supergravity approximation.

To obtain scaling non-extremal solutions, the first necessary ingredient is of course to add

more centers, and in this paper we have given a proof of principle that this can be done.

Our solutions are not however in the scaling regime, and have a large ergoregion which is not

contained inside an AdS3 × S3 throat. Earlier experience with BPS solutions suggests that it is

difficult to construct axisymmetric scaling solutions with less than four centers [12, 63]. Since

our solution can be thought of as having three centers, if we had found scaling behavior it would

have been surprising.

In principle, it is straightforward to use our methods to construct solutions with an arbitrary
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number of centers, despite the complexity of the relevant equations. To obtain our solutions,

we worked in a restricted ansatz which explicitly disallows interaction between the extremal

centers. We expect that, upon turning on such interactions, one can obtain solutions with

enough Gibbons–Hawking centers to allow for a scaling behavior in the sense described above.

In the near-BPS limit, we expect that it should be possible to obtain a large AdS3 × S3 throat

encompassing all centers and any ergoregion.

It is an important problem to understand the stability of our solutions and their possible

microscopic interpretation. It is well-known that the JMaRT solutions are unstable to decay

via ergoregion emission [64]. Since in the near-BPS limit these solutions have large AdS3 × S3

regions, this instability can be studied holographically. In this limit the ergoregion is deep inside

the throat, and in the dual CFT the ergoregion emission is naturally interpreted as the Hawking

radiation emitted by the dual CFT states [65–67]. Until recently, the dual states had been known

for only a subset of parameters of the full JMaRT solutions, however recently the dual CFT

states of the most general JMaRT solutions have been identified [68], and the emission spectrum

and rate have been found to match between gravity and CFT for all parameters. While our

present solutions do not appear to have standard AdS3 × S3 throats, they do have ergoregions,

and thus one may also expect them to decay via ergoregion emission. It would be interesting to

investigate the corresponding decay rate and emission spectrum.

There has been recent work which constructs JMaRT solutions using inverse scattering

techniques [69]. These methods also offer the prospect of building multi-center generalizations

of JMaRT, and may provide a complementary line of enquiry to that described here.

Looking further to the future, it would be interesting to investigate the relationship between

our results and an interesting recent proposal involving long-string degrees of freedom at the

inner horizon of non-extremal black holes [70, 71]. More generally, it would be interesting to

gain further insight into how large a subset of the degrees of freedom of non-extremal black holes

can be described within supergravity.

Our construction of non-extremal multi-bubble microstate geometries represents a long-

sought-after technical advance, which we anticipate will enable the construction of many more

non-extremal solitonic supergravity solutions involving topological cycles supported by flux, and

thereby provide a deeper understanding of the quantum physics of non-extremal black holes.
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A Relation to the 5D and 4D ansatze

In this appendix we give a few comments on the reduction of the system solving six dimensional

N = (1, 0) supergravity described in Section 2 to five and four dimensional supergravity with

eight supercharges.

Upon reduction on the circle parametrized by y in (2.4), one obtains N = 1 supergravity

in five dimensions, coupled to two vector multiplets. There are three gauge fields in the theory,

with one belonging in the supergravity multiplet, appearing completely symmetrically in the

action. One is the Kaluza–Klein gauge field, A3 in (2.4), while the other two arise by reduction

of the two dual two-forms, B and B̃ as

B = (dy +A3) ∧A1 +B2 ,

B̃ = (dy +A3) ∧A2 +B1 . (A.1)

Here, the two-form fields Ba are dual to the field strengths of the Aa in five dimensions, i.e.

( H 2
1

H2H3

)

2
3
⋆5 F

1 = dB1 +A2 ∧ F 3 ,

( H 2
2

H1H3

)

2
3
⋆5 F

2 = dB2 +A1 ∧ F 3 , (A.2)

which follows from the six dimensional equation of motion (2.12). With these definitions, one

finds that the gauge fields are given by

AI =AIt (dt + ω) + αI (dψ + w0) + wI , (A.3)

for I = {1, 2, 3} and the components AIt , α
I and wI are given by (2.19)–(2.20) and (2.8).

The further reduction along the isometry described by the angle ψ in (2.4) leads to four

dimensional N = 2 supergravity coupled to three vector multiplets. Now, there are four gauge

fields, AΛ, for Λ = {0, I} = {0, 1, 2, 3}, with one belonging to the supergravity multiplet. The

reduction of the particular system of equations studied in this paper from five to four dimensions

was briefly discussed in the Appendix of [45], so we focus on the direct translation of the four

dimensional quantities into the six dimensional quantities of Section 2.

The metric in four dimensions takes the form

ds2
4 = −e2U (dt + ω)2 + e−2Uγijdx

idxj ,

e−4U = W−1
(

H1H2H3 − µ2
)

, (A.4)
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while the gauge fields and their electromagnetic duals are given by

AΛ = ζΛ(dt + ω) + dwΛ , AΛ = ζΛ(dt + ω) + dvΛ . (A.5)

Here, the dwΛ are given by (2.8) and (2.15), while the two of the dual dvΛ are given in (2.17),

with the remaining ones

⋆dv0 = 2V (Φ+dE− − E−dΦ+) + 2 E−Φ+ ⋆ dσ ,

⋆dv3 =V (E−dE+ − E+dE−) − E+E− ⋆ dσ , (A.6)

being automatically conserved due to the Ernst equations. The four-dimensional complex scalars

are given by

zI = αI + i
e−2U

HI
, (A.7)

where the axions αI are given in (2.20).

In view of (2.14), it is straightforward to lift any solution of four dimensional supergravity

to six dimensions, once the fields dba, βa, A
a
t are given in terms of four dimensional quantities.

The scalars Aat are given by

ζ0 = −e4Uµ , AIt = ζI + αI ζ0 , (A.8)

where we also give the timelike component of the Kaluza–Klein gauge field A3 and the function

µ in (2.4) in terms of the ζ’s. The remaining six dimensional quantities are given by

db1 +
H 2

1 W

H1H2H3 − µ2
∗3 dα

1 = ζ0dv1 + ζ1dw
0 − ζ3dw2 − ζ2dw3 +

(

ζ0ζ1 − ζ3ζ2
)

dω ,

db2 +
H 2

2 W

H1H2H3 − µ2
∗3 dα

2 = ζ0dv2 + ζ2dw
0 − ζ3dw1 − ζ1dw3 +

(

ζ0ζ2 − ζ3ζ1
)

dω , (A.9)

and

β1 = −(ζ1 + a2ζ3) , β2 = −(ζ2 + a1ζ3) . (A.10)

Conversely, one may invert (A.8)–(A.10) to obtain the four dimensional scalars ζΛ, ζ1, ζ2, without

the need to pass through the five dimensional theory. For completeness, we give the final two

components of the ζΛ:

ζ3 =
1

4
V E−

(

E2
+(K3 + V Φ−L

1L2 + V KaL
a) + 2 Φ+ K1K2

−E+(Φ+L
3 +KaL

a + 2V Φ+K1K2)
)

,

ζ0 =
1

2
V E−

(

Φ+ (Φ+L
3 − E+K3) − Φ+(1 + V E+)KaL

a + 2V Φ2
+K1K2

+E+ (2 − V Φ− Φ+)L1L2
)

. (A.11)
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B Expressions for vector fields

The explicit expressions for the vector fields are given in terms of the conserved vector currents

used in the construction of the solution in [45]. The relevant basis is given by

J0 =
dr

r2 − c2 + a2 sin2 θ
+

2 a2 cos θ (cos θ dr − r d cos θ)

(r2 − c2 + a2 sin2 θ)2
,

J1 =
d cos θ

r2 − c2 + a2 sin2 θ
+

2 r (cos θ dr − r d cos θ)

(r2 − c2 + a2 sin2 θ)2
,

J2 =
cos θ dr − r d cos θ

(r2 − c2 + a2 sin2 θ)2
,

J3 = dH +
c2 − a2

m−

dH (r − a cos θ +m−) − H d(r − a cos θ)

r2 − c2 + a2 sin2 θ

+ 2 a
c2 − a2

m−
H (r − a cos θ +m−)

cos θ dr − r d cos θ
(

r2 − c2 + a2 sin2 θ
)2 ,

J4 =
dH (

r + a cos θ + c2−a2

m−

)

+ H d(r + a cos θ)

r2 − c2 + a2 sin2 θ

+ 2 aH
(

r + a cos θ + c2−a2

m−

) cos θ dr − r d cos θ
(

r2 − c2 + a2 sin2 θ
)2 , (B.1)

which define the associated vector fields through Jג = ⋆dWג, as

W0 = − (r2 − c2) cos θ

r2 − c2 + a2 sin2 θ
dϕ ,

W1 =
r sin2 θ

r2 − c2 + a2 sin2 θ
dϕ ,

W2 =
1

2

sin2 θ

r2 − c2 + a2 sin2 θ
dϕ ,

W3 = Hc2 − a2

m−

(

cos θ + a sin2 θ
r − a cos θ +m−

r2 − c2 + a2 sin2 θ

)

dϕ

+
∑

A

HA

(

a+ r cos θ −
(R 2

A − c2)(r + a cos θ + c2−a2

m−
)

(RA − a)r + (aRA − c2) cos θ

)

dϕ ,

W4 = H
(a sin2 θ

(

r + a cos θ + c2−a2

m−

)

r2 − c2 + a2 sin2 θ
− cos θ

)

dϕ

+
∑

A

HA

r2 − c2 cos2 θ + c2−a2

m−
(r −RA cos θ)

(RA − a)r + (aRA − c2) cos θ
dϕ . (B.2)

We therefore give the relevant coefficients for each of the vector fields, employing a five-com-

ponent vector notation, so that the vectors given below should be contracted with the vector
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(W0, W1, W2, W3, W4 ):

w0 =
1

4















































e−(p3 + 2q3) −m−(laq
a + l3) + 1

2q
1q2(m+ −m−)

−a e−(p3 + 2q3) + am−(laq
a + l3) + 1

2a q
1q2(m− +m+)

−2 a (a2 − c2) (laq
a + l3) − a q1q2(a2 − c2)

−2 a e−m+p
3 + am−m+q

1q2

−1
2q

1q2

1
2 m−q

1q2 − e−p
3















































, (B.3)

w1 =
1

4









































−2 e−p
1 − q1(m− +m+)

−2 a e−p
1 − a q1(m− −m+)

2 a q1
(

a2 − c2 +m−m+
)

+ 4 a e−m+p
1

q1

2 e−p
1 +m−q

1









































, (B.4)

w3 =
1

4



























































1
e−

(a2 − c2 −m2
−) (laq

a + l3)

−2 e−p
1p2 + (m+ −m−)(paq

a + p3) − 2m−q
3

a
e−

(a2 − c2 −m2
−) (laq

a + l3)

+2 a e−p
1p2 + a (m− +m+)(paq

a + p3) + 2 am−q
3

4 a m−

e−
(a2 − c2) (laq

a + l3) − 2 a (a2 − c2 −m−m+) (paq
a + p3)

+4 a q3 (a2 − c2) − 4 a e−m+p
1p2

−paqa − p3

2 e−p
1p2 +m−(paq

a + p3)



























































, (B.5)
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ω =
1

8



























































1
e−

(a2 − c2 −m2
−) (laq

a + l3) + 1
e−

(a2 − c2 +m−m+) q1q2

+2 e−p
1p2 + (m+ +m−)(paq

a + p3) + 2m−q
3

− a
e−

(a2 − c2 +m2
−) (laq

a + l3) − a
e−

(a2 − c2 +m−m+) q1q2

+2 a e−p
1p2 − a (m+ −m−)(paq

a + p3) + 2 am−q
3

2 a (a2 − c2 +m−m+) (−paqa + p3) − 2 am−

e−
(a2 − c2 +m−m+) q1q2

+4 a q3 (a2 − c2) + 4 a e−m+p
1p2

−paqa − p3 − m−

e−
q1q2

−2 e−p
1p2 +m−(−paqa + p3) − m2

−

e−
q1q2



























































. (B.6)
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