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Abstract

Previously one of us introduced a family of groups GM
L (S), parametrized by

a finite flag complex L, a regular covering M of L, and a set S of integers. We
give conjectural descriptions of when GM

L (S) is either residually finite or virtually
torsion-free. In the case that M is a finite cover and S is periodic, there is an
extension with kernel GM

L (S) and infinite cyclic quotient that is a CAT(0) cubical
group. We conjecture that this group is virtually special. We relate these three
conjectures to each other and prove many cases of them.

1 Introduction

Bestvina-Brady groups are a family of infinite discrete groups that were constructed in
the 1990s to answer a long standing open question in homological group theory [2]; the
existence of non-finitely presented groups of type FP . In [16], one of us generalized the
Bestvina-Brady construction, producing an uncountable family of groups of type FP .
Further results concerning these groups can be found in [14, 5]. Our aim is to study some
of the other, non-homological, properties of these groups.

It is well-known that Bestvina-Brady groups are torsion-free, residually finite and
linear over Z. We address the question of when the groups introduced in [16] have these
and other related properties. In order to state our results, we first need to say a little
about the construction of the groups.

Bestvina-Brady groups are parametrized by a finite flag simplicial complex, and we
denote by BBL the group corresponding to the complex L. The map L 7→ BBL can be
viewed as a functor from the category of non-empty flag complexes and simplicial maps
to the category of groups.

The groups GM
L (S) introduced in [16] are parametrized by a finite connected flag

simplicial complex L, together with a connected regular (possibly infinite) covering M →
L of L and a set S ⊆ Z. For the applications to homological group theory the main case of
interest is when M is the universal covering, so [16] focussed mainly on that case, but see
the discussion in [16, section 21] for the general case. The group of deck transformations
of the regular covering M → L plays a major role in describing GM

L (S), so we introduce
the notation π(M,L) for this group. Of course, a choice of basepoints identifies π(M,L)
with the factor group π1(L)/π1(M) of the two fundamental groups.
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For fixed L and M , the groups GM
L (S) interpolate between two groups that are easily

described in terms of Bestvina-Brady groups: GM
L (Z) is BBL and GM

L (∅) is the semidi-
rect product BBMoπ(M,L), where the action of π(M,L) on M is used to define its
conjugation action on BBM . (Usually Bestvina-Brady groups are defined only for finite
complexes, because this is the case in which the homological finiteness properties of BBL

are controlled by the homology of L, but the definition makes sense for arbitrary flag
complexes such as M .)

The case S = Z is in some ways an exception, as will become apparent in the statement
of some of our results. This is because for every other S, GM

L (S) contains subgroups
isomorphic to π(M,L). Another exceptional case is when M is the trivial covering of L,
or equivalently π(M,L) = {1}; in this case GL

L(S) = BBL is independent of S.
It is not hard to decide which of the groups GM

L (S) are torsion-free.

Proposition 1.1. The group GM
L (S) is torsion-free if and only if either S = Z or π(M,L)

is torsion-free.

We give necessary conditions for GM
L (S) to be virtually torsion-free and to be residu-

ally finite. In the statement, a subset S of Z is said to be periodic if there exists n > 0
so that S + n = S, and the least such n is called the period of the set S.

Theorem 1.2. If GM
L (S) is virtually torsion-free then at least one of the following holds:

• S = Z;

• π(M,L) is torsion-free;

• π(M,L) is virtually torsion-free and S is periodic.

If GM
L (S) is residually finite then at least one of the following holds:

• S = Z;

• π(M,L) = {1};

• π(M,L) is residually finite and S is closed in the profinite topology on Z.

It seems plausible that these necessary conditions may also be sufficient, and so we
make the following conjectures.

Conjecture 1.3. If S is periodic and π(M,L) is virtually torsion-free then GM
L (S) is

virtually torsion-free.

Conjecture 1.4. If S is closed in the profinite topology on Z and π(M,L) is residually
finite then GM

L (S) is residually finite.

Some cases of the first part of Theorem 1.2 appeared as [23, thm. 3.1], and con-
jecture 1.3 of [15] discusses another context in which groups that are parametrized by
subsets of Z are expected to be virtually torsion-free if and only if the subset is periodic;
interestingly the opposite implication is the one that remains open for those groups. In
the 1970’s Dyson defined a family of groups L(S) for S ⊆ Z as amalgamations of two
copies of the lamplighter group, and she showed that L(S) is residually finite if and only if
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S is closed in Z [11]. The connection between residual finiteness of a group parametrized
by S ⊆ Z and the set S being closed arises in [11] for much the same reason as in our
work.

We offer some evidence for Conjectures 1.3 and 1.4. Firstly, we offer a reduction to a
smaller family of cases.

Theorem 1.5. If Conjecture 1.3 or Conjecture 1.4 holds whenever π(M,L) is finite and
S is periodic, then it holds in all cases.

Secondly, we establish all the conjectures under some hypotheses on the covering.

Theorem 1.6. Let Γ be a simplicial graph, obtained by subdividing each edge of another
graph into at least r pieces, and let ∆ → Γ be any finite regular covering of Γ. Suppose
that M is a connected component of M0, defined as the pullback

M0 ∆

L Γ

for some simplicial map L → Γ. For r ≥ 4 Conjecture 1.3 holds for (M,L) and for
r ≥ 12 Conjecture 1.4 holds for (M,L).

The hypotheses on the covering M → L split naturally into two parts, one topological
and one combinatorial. The topological hypothesis is that there is a graph Γ and a finite
regular covering p : ∆→ Γ, together with a map f : |L| → |Γ| of topological realizations,
such that |M | is a connected component of the pullback covering. We recall that the
pullback is the regular covering of |L| defined as {(x, y) ∈ |L|× |∆| : f(x) = p(y)}, with
the covering map (x, y) 7→ x. The combinatorial hypothesis is that the triangulation of
L (and hence also of M) is sufficiently fine that f is homotopic to a simplicial map from
L to a suitable subdivision Γ of Γ.

In the following corollary, we replace the topological hypothesis by a hypothesis that
involves only the fundamental groups π1(L) and π1(M), at the expense of making the
combinatorial hypothesis far less explicit.

Corollary 1.7. Suppose that there is a homomorphism f : π1(L) → F , for F a free
group and a finite-index normal subgroup N / F so that π1(M) = f−1(N). Then both
conjectures 1.3 and1.4 hold for sufficiently fine subdivisions (M ′, L′) of the pair (M,L).

The distinction between the topological and combinatorial hypotheses is a useful one.
If (M ′, L′) is a subdivision of (M,L), the homological finiteness properties of GM ′

L′ (S)
are similar to those of GM

L (S). So from the point of view of constructing examples, the
combinatorial hypotheses that we make can be ignored. However, we warn the reader
that there may be a topological obstruction to each of our conjectures, although we have
been unable to construct any counterexamples. In particular, in the case when L is a flag
triangulation of the projective plane RP 2 and M its universal cover, we have been able
to establish Conjecture 1.3 only for a small number of choices of S, including S = 2Z
which is a special case of Proposition 8.1. We see L = RP 2 as an important test case for
Conjecture 1.3.
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The proofs of many of our results use an action of the group GM
L (S) on a CAT(0)

cubical complex XM
L (S), which generalizes the action of BBL on the universal cover of

the Salvetti complex for the right-angled Artin group AL. The group GM
L (S) acts freely

except that some vertex stabilizers are isomorphic to π(M,L). In particular, the action is
proper if and only if π(M,L) is finite. The action of GM

L (S) on XM
L (S) has infinitely many

orbits of vertices and so is never cocompact. However, in the case when S is periodic of
period n there is a larger cocompact group of cubical automorphisms of XM

L (S) which
we denote by GM

L (S)onZ. The action of GM
L (S)onZ on XM

L (S) has n orbits of vertices
and the group contains GM

L (S) as a normal subgroup with infinite cyclic quotient.
In the case when both π(M,L) is finite and S is periodic of period n > 0, the group

GM
L (S)onZ is CAT(0) cubical in the sense that it acts properly and cocompactly on the

CAT(0) cube complex XM
L (S). We make a third conjecture concerning this case.

Conjecture 1.8. If π(M,L) is finite and S + n = S for some n > 0 then the CAT(0)
cubical group GM

L (S)onZ is virtually special in the sense of [12].

Haglund and Wise showed that virtually special groups are virtually torsion-free and
residually finite [12], and hence Conjecture 1.8 implies our other conjectures.

Proposition 1.9. Conjecture 1.8 for the complex L implies Conjectures 1.3 and 1.4 for
the complex L.

Rather more surprisingly, we show that, at least from the topological viewpoint, there
is no obstruction to Conjecture 1.8 provided that Conjecture 1.3 holds.

Theorem 1.10. Suppose that π(M,L) is finite and that S + n = S for some n > 0. If
GM
L (S) is virtually torsion-free, then for any sufficiently fine subdivision (M ′, L′) of the

pair (M,L), the group GM ′

L′ (S)onZ is virtually special. In particular, Conjecture 1.3 for L
implies Conjectures 1.8 and 1.4 for L′. The second barycentric subdivision is sufficiently
fine.

To show that GM
L (S) is virtually torsion-free, we rely on group presentations and

carefully chosen maps to finite groups. However, most of our other results rely heavily on
studying the cube complex XM

L (S). For example, to prove that a non-identity element
g ∈ GM

L (S) has non-identity image in GN
L (T ) for some finite cover N and periodic T ⊇ S

we show that we can choose N and T so that the geodesic in XM
L (S) from a base vertex

x0 to gx0 projects to a geodesic in XN
L (T ). All our results concerning residual finiteness

rely on proving cases of Conjecture 1.8. Like the action of BBL on the universal covering
of the Salvetti complex, the action of GM

L (S) on the CAT(0) cube complex XM
L (S) is

never cocompact, but it does have only finitely many orbits of hyperplanes. To show that
XM
L (S)/H is non-cocompact special for some torsion-free finite-index normal subgroup

H ≤ GM
L (S) we use the action of Q = GM

L (S)/H on the complex. Edges of XM
L (S)/H are

in free Q-orbits, but some of the vertices are in non-free orbits. As an example, to show
that a hyperplane in XM

L (S)/H cannot directly self-osculate we consider the stabilizer
in Q of the hyperplane. Provided that this stabilizer has trivial intersection with each
vertex stabilizer no direct inter-osculation can occur.

After reviewing some background material, we prove Theorem 1.2 in Section 3 and
Theorem 1.5 in Section 4. Sections 5 and 6 complete the proof of Theorem 1.10 and
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Section 7 completes the proof of Theorem 1.6. Sections 8 and 9 describe further examples,
and in Section 10 we use our results to construct groups with surprising combinations of
properties.

Much of this work was done while the second named author was working on his PhD
under the supervision of the first named author; further related work appears in the
second named author’s PhD thesis [24] and in [23]. The authors thank the referee for
their comments on an earlier version of this article.

2 Background

A flag complex is a simplicial complex L with the property that every finite clique within
its edge graph spans a simplex. The barycentric subdivision of any simplicial complex
is flag. The right-angled Artin group associated to a flag complex is the group with
generators the vertices of L, subject only to the relations that the ends of each edge
commute:

AL = 〈v ∈ L0 : [v, w] = 1 (v, w) ∈ L1〉.

This construction is functorial in L, in the sense that a simplicial map f : M → L induces
a group homomorphism f∗ : AM → AL defined on generating sets by f∗(v) = f(v).

There is a good model of the Eilenberg-Mac Lane space K(AL, 1), the Salvetti com-
plex, which we shall denote by TL. For v ∈ L0, let Tv be a copy of the unit circle,
viewed as a CW-complex with one 0-cell and one 1-cell. For each simplex σ of L, define
Tσ to be the product

∏
v∈σ Tv. This gives a functor from the simplices of L (including

the empty set, viewed as the unique −1-simplex) to CW-complexes and cellular maps,
and the complex TL is the colimit of this functor, which is a subcomplex of the product∏

v∈L0 Tv. Equivalently, TL is the polyhedral product of the pair (T, ∗)L.
The map L → TL can also be made strictly functorial, using the group structure on

the circle, where we insist that the 0-cell in the CW-complex T is the identity element of
the group. If f : M → L is a simplicial map of flag complexes, the group structure on
the torus is used to define a based map T(f) : TM → TL that induces f∗ : AM → AL on
fundamental groups. To describe T(f), view TM as a subcomplex of the torus TM0

and
similarly, view TL as a subcomplex of the torus TL0

. With this notation, the map T(f)
can be defined coordinatewise. For v ∈ L0, let U = f−1(v) ⊆M0. Now the v-coordinate
of T(f) takes (t1, . . . , tk) ∈ TU =

∏
u∈U Tu to the product t1 · · · tk ∈ Tv.

The Bestvina-Brady group BBL associated to a non-empty flag complex is the kernel
of the homomorphism AL → Z that sends each vertex to 1 ∈ (Z,+). Like AL, this is
functorial in the non-empty flag complex L; in particular, if ∗ denotes a 1-vertex complex
then BBL may be viewed as the kernel of the map AL → A∗ induced by the unique
(simplicial) map L → ∗. There is a good model for K(BBL, 1), defined as the infinite

cyclic covering T̃L of TL, which comes equipped with a Z-equivariant map to the universal
cover of T∗, which is a copy of R.

The complex TL has a single vertex. The link of this vertex is the sphericalization or
octahedralization S(L) of L. It has two vertices v+, v− for each vertex v ∈ L0, where for
any choices of signs εi, the vertices vε00 , . . . , v

εn
n span an n-simplex of S(L) if and only if

the vertices v0, . . . , vn span an n-simplex of L. In the case when L is itself an n-simplex,
S(L) is an n-sphere, triangulated as the boundary of the (n + 1)-dimensional analogue
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of the octahedron. The universal covering XL of TL is a CAT(0) cubical complex, on
which AL acts freely cellularly, wtih one orbit of vertices. There is an AL-equivariant
map XL → X∗ ∼= R which we view as a height function on XL; the subgroup BBL is the
subgroup of elements that act trivially on X∗, while each of the standard generators for
AL acts on X∗ ∼= R as translation by 1.

Provided that L is connected, the group BBL is generated by elements indexed by
the directed edges of L, where the directed edge a from x to y corresponds to the element
x−1y of BBL ≤ AL. The two directions of a directed edge correspond to mutually
inverse elements, and for each directed cycle (a1, . . . , al) and each integer n, the product
an1a

n
2 · · · anl is the identity. It can be shown that these relators, for all cycles and all

non-zero integers n, suffice to present BBL [10]. For directed cycles (a, b, c) of length 3,
the relators abc = 1 = a−1b−1c−1 imply that a, b and c commute and generate a group
isomorphic to Z2, so for cycles of length 3, only the relators for n = ±1 are needed.
See [10] for more details.

Now suppose that M is a connected regular covering of L, with π = π(M,L) as its
group of deck transformations. In this case π acts on the given presentations for AM and
BBM by permuting the generators and the relations. Thus we can form the semi-direct
products AMoπ and BBMoπ. The action of π on M also induces an action of π on
TM , which permutes the cells freely except that the vertex is fixed. In this way AMoπ
is realized geometrically as the group of all self-isomorphisms of XM that lift the action
of some element of π on TM . If H is a subgroup of AMoπ that maps isomorphically to
π under the map AMoπ → π, then H fixes a vertex of XM , and no other point of XM .
This follows from the facts that the action is by isometries, so the geodesic between two
fixed points would also be fixed, and that the group H acts freely on the link of the vertex
that it fixes. Thus in AMoπ, there is a bijective correspondence between the vertices of
XM and the subgroups H that map isomorphically to π. Furthermore, each such H is
its own normalizer, because the normalizer of H must act on the fixed point set XH

M but
H is the entire stabilizer of this set. Since there is just one AM -orbit of vertices in XM ,
all of these subgroups are conjugate in AMoπ.

Now consider the group BBMoπ. Under the action of BBMoπ, vertices of different
heights lie in different orbits, while vertices of the same height lie in the same orbit.
Hence one sees that the conjugacy classes in BBMoπ of vertex stabilizers are permuted
freely transitively by AM/BBM

∼= Z. Choosing for once and for all an equivariant
bijection between the set of conjugacy classes of vertex stabilizers in BBMoπ and the
group AM/BBM

∼= Z, we can index the conjugacy classes of vertex stabilizers by Z.
(Equivalently, this amounts to fixing a choice of splitting map π → BBMoπ.) For
S ⊆ Z, let N(S) denote the normal subgroup of BBMoπ generated by the stabilizers of
the vertices whose height lies in S. The group GM

L (S) can be defined as the factor group
BBMoπ/N(S). A geometric argument (essentially [16, lemmas 14.3,14.4]) shows that if
H is the stabilizer of a vertex of height not in S, then H ∩N(S) is trivial. The quotient
complex XM/N(S) has vertex links S(L) for the vertices of height in S and S(M) for the
vertices of height not in S. Since N(S) is generated by elements that fix a vertex of XM ,
the quotient complex XM/N(S) is simply connected. Hence by Gromov’s criterion it is
CAT(0), and we define it to be XM

L (S). The group GM
L (S) acts on it by isometries, freely

except that vertices whose height is not in S have stabilizer isomorphic to π.
Since the conjugate vN(S)v−1 of N(S) by any v ∈M0 is equal to N(S+1), for general
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S the subgroup BBM is the entire normalizer of N(S) inside AM . The only exceptions
to this are subsets S that are periodic: if S + n = S for some n > 0, then the normalizer
of N(S) contains the index n subgroup of AM which is the inverse image in AM of the
unique index n subgroup of AM/BBM

∼= Z. If we write H for this subgroup, then the
quotient H/N(S) is a (necessarily split) extension with kernel GM

L (S) and infinite cyclic
quotient, which we will denote by GM

L (S)onZ. Since H acts cocompactly on XM (with n
orbits of vertices), it follows that GM

L (S)onZ acts cocompactly on XM
L (S) = XM/N(S).

This is the group and action that feature in the statement of Conjecture 1.8.
The presentation that we gave for BBM gives rise to a presentation for each group

GM
L (S). For simplicity, we will focus mainly on the case when 0 ∈ S. Since for v ∈ M0,

we have that vN(S)v−1 = N(S+1), the only isomorphism type that is not covered by this
assumption is GM

L (∅) = BBMoπ. First consider the case S = {0}. Killing the standard
copy of π inside BBMoπ has the effect of identifying directed edges of M that lie in the
same π-orbit. Hence the group GM

L ({0}) has the directed edges of L as its generators.
The relators have a similar form to the relators in the presentation we described above
for BBL, except that we now have relators of the form an1a

n
2 · · · anl = 1 for all n ∈ Z, but

only for directed edge loops in L that lift to loops in M under the covering map. With
respect to this presentation, one may readily describe a representative of each conjugacy
class of vertex stabilizers. Fix a vertex v ∈ L and a lift v0 ∈ M of v. For each vertex v1

in the orbit π.v0, pick a directed edge loop (a1, . . . , al) in L that can be lifted to a path
in M from v0 to v1. Since the composite of one such loop with the reverse of another is
a directed loop in L that lifts to a loop in M , the group element defined by an1a

n
2 · · · anl

does not depend on the choice of the loop, only on v0 and v1. For each fixed n 6= 0,
these elements form a subgroup of GM

L (S) that is isomorphic to π. Different values of n
correspond to different conjugacy classes of subgroup.

In this way, we obtain a presentation for GM
L (S) whenever 0 ∈ S. The generators are

the directed edges of L. For each n ∈ S, we take the relators an1a
n
2 · · · anl for all directed

edge loops (a1, . . . , al). For each n /∈ S, we also take the relators an1a
n
2 · · · anl , but only for

those directed edge loops in L that lift to loops in M .
This presentation makes clear the functoriality of the group GM

L (S). Given any com-
mutative square of simplicial maps in which the vertical maps are coverings

M ′ → M
↓ ↓
L′ → L

and any inclusion S ′ ⊆ S ⊆ Z, there is an induced homomorphism GM ′

L′ (S ′)→ GM
L (S). In

particular this applies when L′ → L is a simplicial map and M ′ is obtained as a connected
component of the pullback of a covering M of L, and when L′ = L and M ′ is a covering
of L that factors through M .

For the sake of completeness, we now give some more details about the presentation for
GM
L (∅) and in particular, we describe representatives of the conjugacy classes of subgroups

isomorphic to π = π(M,L). The generators for GM
L (∅) will be the directed edges a, b, c, . . .

of M together with the elements g, h, j, . . . of π. We view π as acting on the left of M
via deck transformations, and for g ∈ π and a a directed edge of M , let g · a be the
directed edge obtained by acting on a by g. Thus the relations for GM

L (∅) = BBMoπ are
the relations previously described in the presentation for BBM , the relations that hold
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between the elements of π, and the conjugation relations which have the form gag−1 = g·a
for each g ∈ π and each directed edge a. If γ = (a1, . . . , al) is a directed edge path in M ,
it will be convenient to introduce the notation γ[n] for the group element an1a

n
2 · · · anl .

To construct representatives of the different conjugacy classes of subgroups isomorphic
to π, we first fix a vertex v ∈ M . Next, for each g ∈ π, choose a path γg from v to g · v.
If γ′g is another such choice, then the concatenation γg.γ′g of γg with the reverse of γ′g is
a closed loop in M . From this it follows that for each n ∈ Z, γg[n] = γ′g[n], so the group
element γg[n] does not depend on the choice of path γ. For each n ∈ Z, define a subset
π(n) of GM

L (∅) as
π(n) := {γg[n]g g ∈ π}.

We claim that π(n) is a subgroup of GM
L (∅) that is isomorphic to π. Since π(n) maps

bijectively to π under the map GM
L (∅) → π, this claim will follow provided that π(n) is

closed under multiplication.
For any g, h ∈ π, the directed path g · γh obtained by applying g to the path γh is a

path from g · v to gh · v. Hence the concatenation γg.(g · γh) is a directed path from v to
gh · v. From this it follows that in GM

L (∅)

γg[n]gγh[n]h = γg[n](gγh[n]g−1)gh = (γg.g · γh)[n]gh = γgh[n]gh.

Hence π(n) is closed under multiplication and is a subgroup isomorphic to π as claimed.
Replacing the vertex v by another vertex w ∈ M gives rise to a group that is conjugate
to the group π(n); just conjugate by the element γ[n], where γ is a path between v and
w. To show that the groups π(n) represent all of the different conjugacy classes one can
use a geometric argument. Alternatively, the description of the conjugation action of AM
on BBM in [10] can be used to show directly that the conjugate of π(n) by the vertex v,
viewed as one of the generators for AM , is equal to π(n+ 1).

The above description of the subgroups π(n) of GM
L (∅) gives a way to present each

GM
L (S) as a quotient of GM

L (∅). To the relations for GM
L (∅) one adds the relation γg[n]g =

1 for each n ∈ S and each g ∈ π.
Next we briefly recall some material concerning special cube complexes from [12]. A

hyperplane in a non-positively curved cube complex is an equivalence class of directed
edges under the relation generated by ‘form the opposite directed edges of a square’. A
hyperplane is 2-sided if it does not contain any pair of directed edges associated to a single
directed edge. Hyperplanes intersect if they contain directed edges that are adjacent sides
of a square. Two directed edges directly osculate if they are not contained in a square
and share the same terminal vertex. A hyperplane self-intersects if there is a square
containing two directed edges of the hyperplane as adjacent sides. A hyperplane directly
self-osculates if it contains two directed edges that directly osculate. Two hyperplanes
inter-osculate if they intersect and also contain a pair of directed edges that directly
osculate.

A locally CAT(0) cube complex is A-special if its hyperplanes are 2-sided and do not
self-intersect, directly self-osculate or inter-osculate. The fundamental group of a finite
A-special cube complex embeds in a right-angled Artin group and hence is torsion-free
and linear over Z, which implies that it is residually finite [12, thm. 1.1]. A special
locally CAT(0) cube complex is similar to an A-special complex except that hyperplanes
are not required to be 2-sided. For each of our complexes XM

L (S) the height function
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XM
L (S) → R allows one to distinguish upward and downward pointing directed edges.

For this reason every hyperplane in XM
L (S)/H is 2-sided for any H ≤ GM

L (S), and so
XM
L (S)/H is special if and only if it is A-special.

We close this section with some remarks concerning the profinite topology on Z. This
is the topology in which the basic open sets are the periodic subsets. Each periodic subset
is also closed, and it follows that every open set is a union of periodic sets and that every
closed set is an intersection of periodic sets. We make a more precise version of this
second statement below.

Lemma 2.1. Any S ⊆ Z that is closed in the profinite topology is the intersection of a
nested sequence T1 ⊇ T2 ⊇ T3 · · · of periodic sets. Furthermore, we may suppose that
S ∩ [−n, n] = Tn ∩ [−n, n].

Proof. Let n1, n2, n3, . . . be the elements of Z−S, enumerated so that |ni| ≤ |nj| whenever
i < j. Since S is closed, for each i we can find an open set Oi with ni ∈ Oi and S∩Oi = ∅.
Since the periodic sets form a basis for the topology, we may suppose in addition that Oi

is periodic. If we let Fi = Z − Oi then Fi is periodic, S ⊆ Fi, and ni /∈ Fi. From this it
follows that

⋂
i Fi = S. If we define Tn =

⋂2n+1
i=1 Fi then Tn has the properties claimed in

the statement.

The natural numbers N ⊂ Z is an easy example of a subset that is far from being
either open nor closed: the only closed set that contains N is Z and the only open set
contained in N is the empty set. We give a construction of a large collection of closed
subsets, starting with a Gödel numbering φ of the finite subsets of N. For F a finite
subset of N, define

φ(F ) =
∑
n∈F

10n,

with the usual convention that the empty sum is 0. The image of φ is the subset T (N)
consisting of all positive integers all of whose decimal digits are equal to 0 or 1. Now
for any S ⊆ N, define T (S) ⊆ Z to be the image under φ of the finite subsets of S;
equivalently T (S) is the positive integers with digits {0, 1}, where the nth digit is 0 when
n /∈ S.

Proposition 2.2. For each S ⊆ N, the set T (S) is closed. The set T (S) (resp. N−T (S))
is recursively enumerable if and only if S (resp. N− S) is.

Proof. For n ≥ 0, let Fn = (T (S) ∩ [0, 2.10n]) + 10n+1Z. Each Fn is periodic and
T (S) =

⋂
n Fn, which implies that T (S) is closed. The definition of T (S) gives a recursive

procedure for computing T (S) from S, showing that T (S) is recursively enumerable when
S is. Computing N−T (S) from N−S is slightly more complicated. To compute N−T (S),
fix an integer N and run for N steps an algorithm to generate elements of C := N − S,
keeping a list C(N) of the elements of C so obtained. Then output every integer in the
range [0, N ] that either has a decimal digit not equal to 0 or 1, or has its nth decimal
digit equal to 1 for some n ∈ C(N). Now repeat this procedure for increasing values of
N . For the converse statements, note that 10n ∈ T (S) if and only if n ∈ S. Thus a
recursive enumeration of T (S) (resp. N − T (S)) gives rise to a recursive enumeration of
S (resp. N− S).
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3 A set-valued invariant

In this section we prove Theorem 1.2 using a set-valued invariant of a group and a sequence
of elements, R(G,g) that was introduced in [16]. But first we prove Proposition 1.1.

Proof. (Proposition 1.1) GM
L (S) acts on the CAT(0) cubical complex XM

L (S), freely ex-
cept that vertices whose height is not in S have stabilizer isomorphic to π(M,L). Any
action of an element of finite order on any CAT(0) space must fix a point, and the claim
follows.

For a group G and a finite sequence g = (g1, . . . , gl) of elements of G, the invariant
R(G,g) is the subset of Z defined by

R(G,g) = {n ∈ Z : gn1 g
n
2 · · · gnl = 1}.

In [16, lemma 15.3], it was shown that in the case when G = GM
L (S) and g is the

sequence of generators spelling out an edge loop in L that does not lift to a loop in M ,
then R(G,g) = S. (This was stated only in the case when M is the universal cover, but
the same proof holds in general.) We require another property:

Proposition 3.1. If G is finite, R(G,g) is periodic. If G is residually finite, R(G,g) is
closed in the profinite topology on Z.

Proof. For the first statement, it suffices to make the weaker assumption that G has finite
exponent, m say. In this case for any n, gn+m

1 gn+m
2 · · · gn+m

l = gn1 g
n
2 · · · gnl , from which it

follows that R(G,g) = R(G,g) +m.
For the second statement, whenever f : G→ Q is a homomorphism from G to a finite

group, the first statement implies that R(Q, f(g)) is periodic. Since G is assumed to be
residually finite, gn1 · · · gnl is equal to the identity if and only if its image under each such
f : G → Q is. Hence R(G,g) is the intersection of a family of periodic sets of the form
R(Q, f(g)). This proves the claim.

Proof. (Theorem 1.2) Suppose firstly that GM
L (S) is virtually torsion-free. If S = Z or

π(M,L) is torsion-free, then we have already seen that GM
L (S) is torsion-free. Thus we

may suppose that S 6= Z and that π(M,L) contains some torsion. Since S 6= Z, GM
L (S)

contains subgroups isomorphic to π(M,L), and so π(M,L) must be virtually torsion-
free as claimed. Now let γ = (a1, . . . , al) be a directed edge loop in L that represents
a non-trivial torsion element in π(M,L). Thus γ does not lift to a closed loop in M
but there is some m > 1 the iterated loop γm does lift to a closed loop in M . Now
suppose that f : GM

L (S) → Q is a homomorphism to a finite group with torsion-free
kernel. For each n, an1 · · · anl is a torsion element of GM

L (S), and this element is equal
to the identity if and only if n ∈ S. Since the kernel of f is torsion-free, it follows that
R(Q, (f(a1), . . . , f(al)) = S, and so by Proposition 3.1, S must be periodic.

Next suppose thatGM
L (S) is residually finite. If either S = Z or π(M,L) is trivial, then

GM
L (S) is the Bestvina-Brady group BBL, which is residually finite. Thus we may assume

that π(M,L) 6= {1} and that S 6= Z. Since S 6= Z, GM
L (S) contains subgroups isomorphic

to π(M,L) and so π(M,L) must be residually finite as claimed. Now let (a1, . . . , al) be a
directed edge loop in L that does not lift to a loop in M . The element an1 · · · anl ∈ GM

L (S)
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is equal to the identity if and only if n ∈ S. Hence S = R(GM
L (S), (a1, . . . , al)) must be

closed in the profinite topology by Proposition 3.1.

4 Reduction to finite covers and periodic sets

The two theorems in this section, Theorems 4.1 and 4.2, together imply Theorem 1.5.

Theorem 4.1. Suppose that S is closed in the profinite topology. For any non-identity
element g ∈ GM

L (S) there is periodic T ⊇ S so that the image of g in GM
L (T ) is not the

identity.

Proof. This argument is based on one in [14]. If S is periodic there is nothing to prove.
If not, then S 6= ∅ and we may assume without loss of generality that 0 ∈ S, and
we may take as generators for GM

L (S) the directed edges of L. By Lemma 2.1 there
is a nested sequence T1 ⊇ T2 ⊇ · · · of periodic sets with intersection S and such that
Tn∩ [−n, n] = S∩ [−n, n]. It will suffice to show that the word length of any non-identity
element of GM

L (S) that maps to the identity in GM
L (Tn) tends to infinity with n.

Since 0 ∈ S, the group GM
L (S) acts freely on the vertices of height 0 in XM

L (S), and
the Cayley graph for GM

L (S) embeds in the height 0 subset of XM
L (S), with each generator

mapping to the diagonal of a square. Fix vo a vertex of height 0 in XM
L (S) and let γ be

the geodesic arc from v0 to gv0, and let fn denote the map fn : XM
L (S) → XM

L (Tn). if
fn ◦ γ is a geodesic arc in XM

L (Tn), then fn(gv0) 6= f(v0), which implies that fn(g) 6= 1.
This will happen unless γ passes through a vertex of XM

L (S) of height in Tn − S. By
the argument used in [14, lemma 3.2], this implies that the word length of g is strictly
greater than n

√
2/(d+ 1), where d is the dimension of L.

Theorem 4.2. If π(M,L) is residually finite, then for any non-identity element g ∈
GM
L (S), there is a finite regular cover N → L lying between M and L so that the image

of g in GN
L (S) is not the identity.

Proof. Let x be a point of XM
L (S) such that d(x, gx) is minimized. If d(x, gx) = 0, then x

must be a vertex, and g is contained in a conjugate of π(M,L) ≤ GM
L (S). By hypothesis

there is a finite quotient Q of π(M,L) in which the image of g is not the identity, and we
may choose N so that π(N,L) = Q.

Otherwise, let γ be the unique geodesic arc from x to gx in XM
L (S). If N → L is any

finite regular covering so that M also covers N , let f : XM
L (S)→ XN

L (S) be the induced
map of CAT(0) cubical complexes. If f ◦γ is a geodesic arc in XN

L (S), then f(x) 6= f(gx),
indicating that the image of g in GN

L (S) is not the identity. Thus it suffices to show that
we can choose N so that f ◦ γ is a geodesic arc. For any N , the map f will be a local
isometry except at the vertices with height in S, so if the interior of γ contains no such
vertices, we may take N = L. In any case, there are only finitely many such vertices.

For each vertex v that is contained in the interior of γ, the inward and outward
pointing parts of γ define a pair of points γ−, γ+ ∈ LkX(v) ∼= S(M) necessarily separated
by at least π in S(M). Now f ◦ γ is locally geodesic at f(v) provided that the distance in
Lkf(X)(f(v)) ∼= S(N) between f(γ−) and f(γ+) is also at least π. The open ball of radius
π in S(M) centred at γ− contains only finitely many points hγ+ of the orbit π(M,L)γ+,
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and none of these h is the identity. Since there are only finitely many vertices on γ, we
obtain a finite set {h1, . . . , hm} of non-identity elements of π(M,L) with the property
that f ◦ γ is a geodesic arc provided that f(hi) 6= 1 ∈ π(N,L) for each hi. Since π(M,L)
is residually finite, we can find such an N .

5 Simplicial approximations

If L′ is a subdivision of a flag complex L, a simplicial approximation to the identity is a
simplicial map f : L′ → L such that the induced map of topological spaces f∗ : |L′| → |L|
is homotopic to the identity map. If M → L is a covering, and M ′ → L′ is the induced
covering of L′, then any simplicial approximation to the identity for L will lift to a
π(M,L)-equivariant simplicial approximation to the identity for M .

Definition 5.1. A subdivision L′ of L is suitable if there is a simplicial approximation f
to the identity such that for any pair u, v of adjacent vertices of L′, the image f(St(u) ∪
St(v)) is contained in a single simplex of L.

Proposition 5.2. The second barycentric subdivision of any simplicial complex is suit-
able.

Proof. The vertices of the barycentric subdivision of L are indexed by the simplices of L,
with an edge joining the vertices τ, σ if and only if one of τ and σ is a face of the other.
There is a well-known description of a simplicial approximation in this case: fix a partial
order on the vertex set of L that is total when restricted to each simplex, and send the
vertex σ of the barycentric subdivision to the least vertex in L of the simplex σ.

The vertices of the second barycentric subdivision of L are indexed by chains σ =
σ0 < σ1 < · · · < σn of simplices of L, where σ and τ are joined by an edge if and only
if one is a subchain of the other. Write τ ⊆ σ to indicate that τ is a subchain of σ.
The natural choice of a partial order on the vertices of the barycentric subdivision is to
order by dimension of the corresponding simplex of L. With these choices, the composite
simplicial approximation from the second barycentric subdivision to L sends the vertex
σ to the least vertex of the simplex σ0, i.e., the least vertex of the minimal simplex in
the chain.

A vertex in the star St(σ) is either a subchain or a superchain of σ. If τ ⊆ σ, then the
minimal simplex τ0 of τ is contained in σn, the maximal simplex of σ. If instead τ ⊇ σ,
then τ0 is contained in σ0. In either case, the minimal vertex of the minimal simplex of
τ is a vertex of σn, and so f(St(σ)) is contained in the simplex σn.

If there is an edge in the second barycentric subdivision between σ and τ , then one
of the two chains is a subchain of the other, so we may suppose τ ⊆ σ. In this case the
maximal simplex τp is contained in the maximal simplex σn, and so f(St(τ) ∪ St(σ)) is
contained in the single simplex σn of L.

6 Special cube complexes

There is a natural identification of XM
L (S)/GM

L (S) with XL/BBL, so we start by consid-
ering the cube complex XL/BBL, and its quotient TL = XL/AL. The Salvetti complex
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TL has one vertex, edges in bijective correspondence with the vertex set L0 and squares
in bijective correspondence with L1. The map TL → T described earlier lifts to a map
XL/BBL → R such that the image of each vertex is an integer, and furthermore the
image of each n-cube of XL is an interval of length n.

We may view edges of XM
L (S) as being labelled by elements of L0 via the identification

of XM
L (S)/GM

L (S) = XL/BBL, and the squares of XM
L (S) as being labelled by elements

of L1. The function XL/BBL → R induces a height function on XM
L (S). This height

function and the labellings discussed above are preserved by the action of GM
L (S). In

XL/BBL there is one vertex of each height n ∈ Z, and for each x ∈ L0 there is one edge
labelled x whose vertices are of heights n and n+ 1. Directed edges either point upwards
or downwards, and the opposite sides of a square of XM

L (S) point the same way.
If H is a finite index normal subgroup of GM

L (S), it follows that XM
L (S)/H has finitely

many vertices of each height, and finitely many edges of each height. Moreover, the group
GM
L (S)/H acts freely and transitively on the edges with label x ∈ L0 of each fixed height.

This group acts transitively on the vertices of each fixed height too, but for vertices whose
height is not in S, the stabilizer of a vertex is the group π(M,L)/(π(M,L) ∩H).

Since the adjacent sides of each square have distinct labels in L0, no hyperplane of
XM
L (S)/H can self-intersect. Since the opposite sides of each square point either upwards

or downwards, no hyperplane in XM
L (S)/H can fail to be 2-sided. Thus to establish that

XM
L (S)/H is special, we only need to check that there are no direct self-osculations and

no inter-osculations.
Each simplex σ of L corresponds to a coordinate subtorus Tσ of TL, and this lifts to

a single infinite cylinder inside XL/BBL. If we identify the torus Tσ with the quotient
Rn+1/Zn+1, where σ is an n-simplex, then its preimage inside XL/BBL = XM

L (S)/GM
L (S)

is the quotient Rn+1/K, where K = {(m0, . . . ,mn) ∈ Zn+1 : m0+· · ·mn = 0}, a subgroup
of Zn+1 of rank n.

The link of a vertex of XM
L (S) is either S(L) for a vertex of height in S or S(M) for

a vertex of height not in S. If σ is any simplex of L, then the inverse image of σ in M
is a disjoint union of finitely many simplices σ1, . . . , σk of M , where k is the index of
the cover. The inverse image of S(σ) in S(M) is thus a disjoint union of k copies of the
n-sphere S(σ1) t . . . ,tS(σk).

To simplify the discussion, suppose from now on that π(M,L) is finite and that H
is torsion-free. In this case, the stabilizer in GM

L (S)/H of each vertex of XM
L (S)/H of

height not in S is isomorphic to π(M,L). By the observations above, the inverse image in
XM
L (S)/H of the cylinder of XL/BBL labelled by σ is a disjoint union of finite covers of

the cylinder, except that the vertices of the inverse image of height not in S are identified
in orbits of size π(M,L). The cylinders labelled by a given simplex are permuted by
GM
L (S)/H, and the stabilizer of each cylinder in this action is abelian and generated by

at most n elements: if the cylinder is Rn+1/K, and we view K as a subgroup of GM
L (S),

then the stabilizer is the group K/(K ∩H) ∼= KH/H ≤ GM
L (S)/H.

Lemma 6.1. If the intersection of two cylinders contains an edge e with a given label
in L0, then it contains an edge of each height with that same label.

Proof. If v is one of the vertices of the edge e, e defines a vertex of the link LkX(v) which
is either S(L) or S(M). By [16, prop. 7.3] the antipode of this point of LkX(v) is uniquely
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determined, and corresponds to an edge e′ of XM
L (S) with the same label as e but with

height differing by one from that of e. If e is contained in a cylinder C, then so is e′.

Definition 6.2. Say that edges e, e′ of XM
L (S)/H are cylinder equivalent if they have

the same label in L0 and there are r ≥ 0, edges e0, . . . , er and cylinders C1, . . . , Cr so that
each ei has the same label as e, and for 1 ≤ i ≤ r both ei−1 and ei are contained in the
cylinder Ci.

Let Q = GM
L (S)/H be the group of deck transformations of the branched cover

XM
L (S)/H → XL/BBL, so that Q acts freely on the edges of XM

L (S)/H and permutes
the cylinders.

Proposition 6.3. Suppose that e′ is an edge of the same height as e, and let P ≤ Q be
the subgroup generated by the stabilizers of all of the cylinders that contain e. Then e′ is
cylinder equivalent to e if and only if e′ lies in the orbit Pe.

Proof. By induction on the length r of the chain of cylinders used to establish the cylinder
equivalence. By Lemma 6.1, if e′ is cylinder equivalent to e, we may choose e0, . . . , er
and C1, . . . , Cr as in the definition with each ei having the same height as e. Let P1 be
the stabilizer in Q of C1. By transitivity, there exists g ∈ P1 so that ge = ge0 = e1.
Since there is a shorter cylinder equivalence from e1 to er, there exists g′ ∈ P so that
g′e1 = er = e′, and since P1 ≤ P , we see that g′g ∈ P and that (g′g)e = e′. This argument
can be reversed, giving the converse.

Proposition 6.4. If e and e′ are in the same hyperplane, then e and e′ are cylinder
equivalent.

Proof. Each square of XM
L (S)/H is contained in a cylinder.

Proposition 6.5. Suppose that S + n = S and that M → L is a finite regular cover. If
GM
L (S) is virtually (non-cocompact) special then GM

L (S)onZ is virtually special.

Proof. Suppose that H ≤ GM
L (S) is a finite-index subgroup such that XM

L (S)/H is a
special cube complex. Since GM

L (S) contains finitely many subgroups of a given index,
by passing to a subgroup if necessary we may assume that H is characteristic in GM

L (S),
so that nZ normalizes H. The action of nZ on XM

L (S)/H identifies vertices of different
heights, so it does not create any new pairs of edges where an osculation takes place. How-
ever, it may be that the compact cube complex XM

L (S)/(HonZ) has fewer hyperplanes
than XM

L (S)/H, which may cause extra interosculations or self-osculations. To avoid
this, note that nZ acts as permutations of the finitely many hyperplanes in XM

L (S)/H,
and so for some m > 0 the subgroup mnZ ≤ nZ preserves each hyperplane. For this m,
XM
L (S)/(HomnZ) will be special because XM

L (S)/H is by hypothesis.

Theorem 6.6. Suppose that M → L is a finite cover, and that θ : GM
L (S) → Q is a

homomorphism to a finite group such that the kernel of θ is torsion-free and such that for
any two adjacent vertices u, v ∈ L, the image under θ of the subgroup of GM

L (S) generated
by the edges of St(u)∪St(v) is abelian. Then GM

L (S) is (non-cocompact) virtually special.
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Proof. We construct a homomorphism to a larger finite group whose kernel will be shown
to be special. The abelianization H1(AL;Z) of the right-angled Artin group AL is free,
with basis the set L0, and the abelianization H1(BBL;Z) of BBL is the codimension one
summand consisting of all elements

∑
v nvv with

∑
v nv = 0. Now let m be the exponent

of the finite group Q, and let H = H1(BBL;Z/mZ) = H1(BBL;Z) ⊗ Z/mZ. The
quotient map φ : GM

L (S) → GM
L (Z) = BBL → H and θ together give a homomorphism

(θ, φ) : GM
L (S)→ Q×H, and it is this map whose kernel K will be shown to be special.

Note that every vertex stabilizer π(M,L) is in the kernel of the map from GM
L (S) to

BBL, and so every copy of π(M,L) is mapped by (θ, φ) to a subgroup of Q× {0}.
As remarked earlier, hyperplanes in XM

L (S)/K are always 2-sided and never self-
intersect, so we only need to rule out direct self-osculations and inter-osculations. Suppose
that e and e′ are adjacent edges of XM

L (S)/K of the same height that share a square, so
that the hyperplanes they belong to intersect, and let x be the vertex that is incident on
both e and e′. We claim that no other edge of the same height that is cylinder equivalent
to e or to e′ can be incident on x. Since hyperplanes are contained in cylinder equivalence
classes, this will imply that there are no direct self-osculations or inter-osculations.

To establish this claim, note that the labels in L0 attached to e and e′ are adjacent
vertices u, v.

The stabilizer of an n-cylinder of XM
L (S) in GM

L (S)/K is an abelian group. If the
cylinder is labelled by an n-simplex σ, then its stabilizer is the image in GM

L (S)/K of
the free abelian subgroup BBσ ≤ GM

L (S) which is of rank n. A cylinder of XM
L (S)/K

that contains the edge e corresponds to a simplex τ of L that contains u and similarly, a
cylinder that contains e′ corresponds to a simplex τ ′ of L that contains v. Any such τ, τ ′

are contained in the subcomplex J = St(u) ∪ St(v) of L. Since J is simply connected,
the subgroup of GM

L (S) generated by the edges of J is isomorphic to BBJ , and hence the
inclusion J → L induces a monomorphism H1(J ;Z/mZ) → H = H1(BBL;Z/mZ). By
hypothesis θ(BBJ) is an abelian subgroup of Q, necessarily of exponent dividing m. But
φ(BBJ) is the largest possible abelian quotient of BBJ of exponent m, and so it follows
that the image of BBJ under (θ, φ) has trivial intersection with Q× {0}.

The claim now follows, since any element of (θ, φ)(GM
L (S)) ≤ Q × H that fixes the

vertex x must lie in Q× {0}, whereas any element that sends either e or e′ to a cylinder
equivalent edge must lie in (θ, φ)(BBJ).

Proof. (Theorem 1.10.) The kernel of the map GM ′

L′ (S) → GM
L (S) is torsion-free, and

so if GM
L (S) → Q is any homomorphism with torsion-free kernel, then the composite

GM ′

L′ (S) → Q also has torsion-free kernel. Since for any two adjacent vertices u, v of L′,
the image of J = St(u)∪ St(v) is contained in a single simplex of L, the image in GM

L (S)
of the subgroup BBJ is abelian and hence so is its image in Q. Since GM ′

L′ (S) is virtually
special and S + n = S, Proposition 6.5 implies that GM ′

L′ (S)onZ is virtually special.

Corollary 6.7. Suppose that M is a finite cover of L and that there is a homomorphism
GM
L (S) → Q with torsion-free kernel, with Q is a finite abelian group. Then GM

L (S) is
virtually (non-cocompact) special, and if S + n = S then GM

L (S)onZ is virtually special.

Proof. Follows from Theorem 6.6 and Proposition 6.5.
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7 Covers pulled back from graphs

In this section we prove Theorem 1.6. We start with a Proposition in finite group theory.
Let AN and SN denote the alternating and symmetric groups on a finite set of size N , let
Cn denote a finite cyclic group of order n, The wreath product SN o Cn is a finite group
containing a normal subgroup isomorphic to the direct product (SN)n of n copies of SN ,
with quotient the cyclic group Cn. If ρ is a generator for the cyclic group Cn, conjugation
by ρ permutes the n copies of SN freely. If α denotes a permutation in SN , we write αi
with 1 ≤ i ≤ n for the element of the product (SN)n that has its ith component equal to
α and the other components equal to the identity. In the usual notation for elements of a
direct product, αi would be written as (1, . . . , 1, α, 1, . . . , 1). For permutations α, β, the
elements αi and βj commute if i 6= j ∈ Z/nZ, while αiβi = (αβ)i, and the conjugation
action of ρ is given by

ραiρ
−1 =

{
αi+1 i < n,

α1 i = n.

Proposition 7.1. Let α, β be elements of SN and let σ be the commutator αβα−1β−1.
For 1 ≤ k < n define elements a, b, c, d ∈ SN oCn, depending on k as well as N and n, by
the formulae

a = ρ, b = αnρ
−1α−1

n , c = αnβkρβ
−1
k α−1

n , d = βkρ
−1β−1

k .

For each k, the elements a, b, c, d all have order n, and for any integer j,

ajbjcjdj =

{
σk j ≡ k modulo n,

1 j 6≡ k modulo n.

Proof. Each of a, b, c, d is a conjugate of either ρ or ρ−1, so each has order n as claimed.
From this is follows that it suffices to check the claim concerning the order of ajbjcjdj for
1 ≤ j < n. For j in this range, since αn commutes with βk we see that

ajbjcjdj = ρj(αnρ
−jα−1

n )(αnβkρ
jβ−1
k α−1

n )(βkρ
−jβ−1

k )

= ρjαnρ
−j(α−1

n αnβk)ρ
j(β−1

k αnβk)ρ
−jβ−1

k

= (ρjαnρ
−j)βk(ρ

jα−1
n ρ−j)β−1

k

= αjβkα
−1
j β−1

k =

{
σk j = k

1 j 6= k.

Theorem 7.2. Let ∆→ Γ be a finite regular covering of graphs, and let Γ be a simplicial
graph obtained by subdividing each edge of Γ into at least r parts, with ∆ the corresponding
covering of Γ. For any periodic set S ⊆ Z and any r ≥ 4, the group G∆

Γ (S) is virtually
torsion-free.

Proof. If S = ∅ then G∆
Γ (S) is the semidirect product BB∆oπ(∆,Γ) which is clearly

virtually torsion-free. In all other cases, we may assume up to isomorphism that 0 ∈ S,
and we do so for the rest of this proof.

16



Embed the group π(∆,Γ) = π(∆,Γ) into a finite alternating group AN . Choose a
maximal tree T ⊆ Γ, and fix an orientation on the edges of Γ−T , so that the fundamental
group of Γ is naturally isomorphic to the free group on the set of edges of Γ − T . The
covering thus gives rise to a labelling σ of the directed edges of Γ by elements of AN ,
with the properties that every edge of T is labelled by the identity element and that the
product of the labels on the two different orientations of the same edge is the identity. The
labelling σ associates an element of AN to each directed edge path in Γ: if the directed
edge path is e1, e2, . . . , el, the associated element is σ(e1)σ(e2) · · ·σ(el). By definition, the
element of AN associated to a closed directed edge path will be the identity if and only
if this path lifts to a closed path in ∆.

The relators in the presentation for G∆
Γ (S) given in Section 2 are of the form ej1e

j
2 · · · e

j
l ,

where e1, . . . , ej is a closed directed edge path in Γ and either j ∈ S or the path lifts
to a closed path in ∆. Moreover, every non-identiy element of finite order in G∆

Γ (S) is
conjugate to an element of the form ej1e

j
2 · · · e

j
l , where j /∈ S and e1, . . . , el is a closed

directed edge path in Γ whose lift to ∆ is not a closed path. It follows that to construct
a homomorphism with torsion-free kernel from G∆

Γ (S) to a finite group, it suffices to
construct a labelling µ of the directed edges of Γ by the elements of a finite group so that
for j ∈ S and for every closed directed edge path e1, . . . , el in Γ, µ(e1)jµ(e2)j · · ·µ(el)

j = 1,
while for j /∈ S we have that µ(e1)jµ(e2)j · · ·µ(el)

j = 1 if and only if e1, . . . , el lifts to a
closed path in ∆.

Fix some n > 0 with S + n = S. First we consider the case when S = Z− (k + nZ)
for some k with 1 ≤ k < n. In this case, the finite group that will be the target of our
labelling µ is the wreath product SN o Cn. To ease the notation, we fix an orientation
on each of the edges of Γ and define the labelling µ on those directed edges of Γ that
are oriented in the same direction as our chosen orientation on the edge of Γ that they
are contained in. If e is a directed edge of Γ with our chosen orientation, σ(e) is an
element of the alternating group AN . It is known that every element of AN is equal to
the commutator of a pair of elements of SN [21]. Hence we may choose α(e), β(e) ∈ SN
with σ(e) = α(e)β(e)α(e)−1β(e)−1. Define elements a(e), b(e), c(e), d(e) of SN o Cn as in
the statement of Proposition 7.1. If the directed path in Γ that maps homeomorphically
to e with its given orientation is e1, . . . , er where r ≥ 4, define the labelling µ on these
edges by

µ(ei) =



a(e) i = 1

b(e) i = 2

c(e) i = 3

d(e) i = 4

1 i > 4.

By Proposition 7.1, for this labelling we have that

µ(e1)jµ(e2)jµ(e3)j · · ·µ(er)
j =

{
σ(e)k j ≡ k modulo n

1 j 6≡ k modulo n.

Here σ(e)k denotes the copy of σ(e) inside the kth direct factor in (SN)n < SN oCn. This
completes the proof in the case when S = Z− (k + nZ).

For the general case, rename the labelling µ used above as µ(k), to emphasize the
dependence on k. If S is any set with 0 ∈ S and S+n = S, define a finite set {k1, . . . , kl}
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as {1, . . . , n− 1} − S. For this S, define a new labelling µ of the edges of Γ by elements

of (SN o Cn)l, where the label attached to the edge e of Γ is

µ(e) = (µ(k1)(e), µ(k2)(e), . . . , µ(kl)(e)).

The labelling µ has the property that the product of the jth powers of the labels around
any closed path in Γ is the identity if j ∈ S, whereas for j ∈ S the product of the jth
powers of the labels around a closed path is equal to the identity if and only if the path
lifts to a closed path in ∆. Hence the kernel of the corresponding homomorphism is
torsion-free as required.

Proof. (Theorem 1.6) By Theorem 7.2 we see that the group G∆
Γ (S) is virtually torsion-

free in the case when S is periodic and Γ is a graph obtained from another graph Γ by
subdividing each edge into at least four pieces. If M → L is a covering obtained by
pulling back the regular covering ∆→ Γ along a simplicial map f : L→ Γ, then π(M,L)
is a subgroup of π(∆,Γ), and every finite subgroup of GM

L (S) maps isomorpically to
a subgroup of G∆

Γ (S) under the map induced by f . Hence in this case GM
L (S) is also

virtually torsion-free.
Now suppose that Γ̂ is obtained from Γ by subdividing each edge into exactly 4 pieces,

and that Γ is obtained from Γ by subdividing each edge into at least 12 pieces. In this case,
there is a map from Γ to Γ̂ with the property that the image of any three consecutive edges
of Γ is either a vertex or a single edge of Γ̂. In more detail, suppose that e is a directed
edge of Γ that is subdivided into ê1, ê2, ê3, ê4 ∈ Γ̂ and into e1, . . . , er ∈ Γ with r ≥ 12. In
this case, such a map is given explicitly by mapping e2, e5, er−4, er−1 homeomorphically
to the edges ê1, ê2, ê3, ê4 respectively and collapsing each other ej to a point. Thus if
M → L is obtained by pulling back the covering ∆ → Γ, then both the hypotheses of
Theorem 6.6 and Proposition 6.5 are satisfied and GM

L (S)onZ is virtually special, which
implies that Conjectures 1.3 and 1.4 hold in this case.

Remark 7.3. In Theorem 1.6 and Theorem 7.2, the hypothesis that each edge of Γ be
subdivided into at least r pieces can be replaced by a slightly weaker hypothesis: it is
sufficient for each edge of Γ− T to be subdivided into at least r pieces.

Proof. (Corollary 1.7) Let Γ be a rose (i.e., a 1-dimensional CW-complex with one vertex)
whose fundamental group is isomorphic to the free group F , and fix such an isomorphism.
A standard argument of obstruction theory shows that the homomorphism f : π1(L)→ F
is induced by some continuous map φ : |L| → Γ [13, Ch. 4.3]. To see this, view |L| as a
CW-complex, with cells the topological realizations of the simplices of L. Pick a maximal
tree T in L, and send every 0-cell and every 1-cell in |T | to the 0-cell of the rose. Every
other 1-cell |σ| of |L| represents a unique word in the free generators of F , and this word
can be used to define φ||σ|. Assume by induction that the map φ has been defined on the
n− 1-skeleton of L for some n ≥ 2. Since the universal cover of the rose Γ is a tree, the
higher homotopy groups of Γ are all trivial. Thus for each n-simplex σ, the map from the
(n− 1)-sphere to |Γ| defined as the restriction of φ to the boundary of σ can be extended
to a map from the n-disc to |Γ|. By doing this for each n-simplex, one extends σ to the
n-skeleton of |L|.

Let Γ be obtained from the rose Γ by subdividing each edge into 12 pieces. By the
simplicial approximation theorem [13, Ch. 2.C], there is an iterated barycentric subdi-
vision L′ of L with respect to which the map φ : |L′| = |L| → |Γ| = |Γ| is homotopic
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to a simplicial map ψ : L′ → Γ. If ∆ is the regular covering of Γ corresponding to the
finite-index normal subgroup N /F , the induced cover of L′ is a (possibly not connected)
regular covering of L′ with F/N as its group of deck transformations. The fundamental
group of each component of this covering is f−1(N), and we may take M ′ to be one of
these components.

8 Some torsion-free-by-cyclic examples

Proposition 8.1. Let p be a prime and suppose that S = pZ and that M → L is a
connected p-fold regular covering. Then GM

L (S)opZ is virtually special and so all of our
conjectures hold in this case.

Proof. The p-fold covering M is classified by an element of H1(L;Z/pZ), so let f : L1 →
Z/pZ = Fp be a cocycle representing this cohomology class. The cocycle f extends to
a group homomorphism GM

L (S) → Fp and this homomorphism is easily seen to have
torsion-free kernel. The claim now follows from Corollary 6.7.

9 An example in detail

We consider now the simplest case of Proposition 8.1 in detail; the case when p = 2,
S = 2Z and L is the boundary of a square. Let the edges of L be labelled a, b, c, d so that
a group presentation for GM

L (S) is

〈a, b, c, d : a2nb2nc2nd2n = 1 = (anbncndn)2, n ∈ Z〉.

There are fifteen index two subgroups of GM
L (S), indexed by the subset of the generators

{a, b, c, d} consisting of elements not in the subgroup. The torsion-free subgroups are
those in which abcd is not contained in the subgroup, or equivalently the set of generators
not in the subgroup has odd cardinality. The order four rotation of L induces a group of
four automorphisms of L, so up to isomorphism there are only two cases to consider: the
subgroup containing b, c, d but not a and the subgroup containing d but not containing
a, b, c.

The space XL/BBL, which is a classifying space for BBL = GM
L (Z), consists of

a union of four 2-dimensional cylinders. Label the four vertices of L by w, x, y, z, so
that the directed edges are a = (w, x), b = (x, y), c = (y, z) and d = (z, w). Let P
denote a copy of the plane R2, tesselated by squares with vertex set Z2 and 1-skeleton
(Z× R) ∪ (R× Z). Each of the four cylinders making up XL/BBL is isomorphic to the
quotient of P by the subgroup generated by (−1, 1), with the height function on P and
on P/〈(−1, 1)〉 given by (s, t) 7→ s+ t. In P/〈(−1, 1)〉, the images of the horizontal edges
all belong to one hyperplane and the images of the vertical edges all belong to a second
hyperplane.

If H is any of the eight torsion-free index two subgroups of GM
L (2Z), then XM

L (2Z)/H
is a 2-fold branched covering of XL/BBL, with branching only at the vertices of even
height. To better understand XM

L (2Z)/H, we first describe the subcomplexes Xa, Xb,
Xc and Xd consisting of the inverse images of the four cylinders of XL/BBL. The iso-
morphism type of such a subcomplex depends only on whether the letter that labels it is
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contained in the subgroup H or not, so consider Xh for some h ∈ {a, b, c, d}. The link of
an unbranched vertex of XM

L (2Z)/H is a copy of the octahedralization of L and the link
at a branched vertex is a copy of the octahedralization of M . Since the inverse image in
M of each edge of L is a disjoint union of two edges, the link of a branch vertex inside Xh

is a disjoint union of two squares (i.e., the octahedralization of a pair of disjoint edges).
If h ∈ H, then Xh consists of two copies of P/〈(−1, 1)〉, with each vertex of odd height
in one copy identified with the vertex in the other copy of the same height. If h /∈ H,
then instead Xh consists of one copy of a larger cylinder P/〈(−2, 2)〉, in which the two
vertices of each odd height are identified with each other.

To study the hyperplanes in the whole complex, we first consider the hyperplanes in
Xh. Suppose that u, v ∈ {w, x, y, z} are the vertices of the edge h. If h ∈ H, then Xh

contains two hyperplanes labelled u and two hyperplanes labelled v, one of each type in
each of the two copies of P/〈(−1, 1)〉. Each u-hyperplane intersects exactly one of the
two v-hyperplanes. In this case, viewing it as a complex in its own right, Xh is special.
If on the other hand h /∈ H, then as before there are two u-hyperplanes and two v-
hyperplanes, but this time each u-hyperplane intersects each v-hyperplane. Furthermore,
at every branch vertex two u-edges and two v-edges of each height all meet. The two
edges with the same label at the same height belong to different hyperplanes. Hence in
the case when h /∈ H, each u-hyperplane interosculates with each v-hyperplane, and Xh

itself is not special. Note also that if we define a line to be the image in Xh of either
R× {n} or {n} ×R for some integer n, then the edges in a single line alternate between
the two hyperplanes of Xh labelled by the relevant letter.

It follows from the above considerations that the complex XM
L (2Z) is never special.

In the case when a /∈ H and b, c, d ∈ H, the two w-hyperplanes in Xa become identified
in Xd, because the intersection of Xa and either of the cylinders of Xd consists of a line
that contains edges from both w-hyperplanes of Xa. Similarly, the two x-hyperplanes in
Xa become identified in Xb. Hence the whole complex contains one w-hyperplane and
one x-hyperplane, each of which self-osculates. The w-hyperplane and the x-hyperplane
also interosculate. There are two y-hyperplanes and two z-hyperplanes which are not
involved in any self-osculation or inter-osculation.

In the case when a, b, c /∈ H and d ∈ H, the two z-hyperplanes in Xc become identified
in Xd and the two w-hyperplanes in Za become identified in Xd. Thus there is just
one z-hyperplane and one w-hyperplane, each of which self-osculates. There are two x-
hyperplanes and two y-hyperplanes, each of which does not self-osculate. However, any
pair of hyperplanes labelled by the distinct ends of an edge interosculate with each other.

Thus we see that for H any of the torsion-free index two subgroups of GM
L (2Z), the

complex XM
L (2Z)/H fails to be special. The proof of Corollary 6.7 tells us that there is

an index 16 normal subgroup H ≤ GM
L (2Z) such that XM

L (2Z)/H is special and since
the quotient group has exponent 2, it follows that this H is the kernel of the map to
H1(GM

L (2Z);F2).
It can also be seen directly that this covering is special. In XM

L (2Z), ignoring for now
the identification of vertices that is responsible for the branching, the inverse image of each
of the four cylinders ofXL/BBL consists of 8 copies of the cylinder P/〈(−2, 2)〉. The edges
of a given height labelled by each fixed letter form a single free orbit for the action of Q =
H1(GM

L (2Z);F2) ∼= (C2)4. It can be shown that these edges all lie in distinct hyperplanes,
so that there are 16 distinct hyperplanes labelled with each letter. The vertices of odd
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height form a single Q-orbit of type Q/〈abcd〉, where we have identified the element abcd of
GM
L (2Z) and its image in Q. This already implies that no self-osculation or interosculation

can occur, without considering cylinder equivalence. However, to illustrate the special
case of our general argument, we discuss cylinder equivalence. The cylinder-equivalence
classes of edges labelled x correspond to the cosets Q/〈a, b〉 and the cylinder-equivalence
classes of edges labelled y correspond to the cosets Q/〈b, c〉. Since abcd /∈ 〈a, b, c〉, one
sees that if e, e′ are incident edges labelled x and y, then no edge cylinder equivalent
to e can be incident on any edge cylinder equivalent to either e or e′, except for e, e′

themselves. The cylinder equivalence classes for other edges are similar.

10 Two applications

In this section we use the cases of our conjectures that we have established to construct
some groups with surprising combinations of properties.

Theorem 10.1. For each m ≥ 6 there is a finitely generated group Gm with an infinite
presentation satisfying the C ′(1/m) small cancellation condition with the properties that
Gm is residually finite, torsion-free and embeds in a finitely presented group, but the word
problem for Gm is insoluble.

Proof. Fix some integer l ≥ 2m + 1, let L be a circle triangulated as the boundary of a
l-gon, and let M be the universal cover of L. The group Gm will be the group GM

L (T )
for a suitable set T ⊆ Z. Any such group is torsion-free by Proposition 1.1. As discussed
above, this group has the presentation

Gm = 〈 a1, . . . , al : an1a
n
2 · · · anl n ∈ T 〉.

The choice of l ≥ 2m+ 1 implies that for each T this presentation satisfies the C ′(1/m)
condition. The boundary of the l-gon may be viewed as a subdivision of the 1-edge CW-
structure on the circle, and so since l ≥ 12 the hypotheses of Theorem 1.6 are satisfied.
The subset T that we will choose will be of the form T = T (S) as in the statement
of Proposition 2.2, for some S ⊆ N. Each such set is closed in the profinite topology
on Z so by Theorem 1.6 Gm is residually finite. By [16, lemma 15.3] and the related
discussion in Section 3, the element an1 · · · anl is equal to the identity in Gm if and only
if n ∈ T = T (S). By Proposition 2.2, if S is recursively enumerable but N − S is not
(so that S is not recursive), there can be no algorithm to decide membership of T (S)
and so the word problem for Gm is insoluble. Since T (S) is recursively enumerable the
Higman embedding theorem [19, ch. IV.7] tells us that Gm can be embedded in a finitely
presented group.

Examples of residually finite groups with insoluble word problem that can be em-
bedded in finitely presented groups were constructed in the 1970’s by Dyson and by
Meskin [11, 20], but their examples contain torsion.

For any L and for M = L̃, it has been shown that GM
L (S), S 6= Z, has soluble word

problem if and only if π1(L) has soluble word problem and S is recursive [5, thm. 6.4].
A direct proof of this can be given in the case when L is the boundary of an l-gon for
l ≥ 13 as in the theorem above. Since an1 · · · anl = 1 if and only if n ∈ S, a solution to the
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word problem implies that S is recursive. Conversely, given a word of length N in the ai,
if S is recursive we may list the elements of S ∩ [−N/l,N/l] and thus list the relators in
the given presentation of length at most N . Since this presentation satisfies the C ′(1/6)
condition, any word of length N that is equal to the identity will contain more than half
of a dihedral permutation of a one of these relators as a subword.

Proposition 10.2. Let l ≥ 12 and let G be given by the presentation

G = 〈a1, a2, . . . , al : (an1a
n
2 · · · anl )2 = 1, n ∈ Z〉.

Then G is residually finite, but G is not virtually torsion-free and not linear in charac-
teristic zero. Every finite subgroup of G has order at most 2.

Proof. LetM → L be the 2-fold cover of the l-gon. The groupG given above is isomorphic
to GM

L ({0}). Any finite subset of Z is closed in the profinite topology, and any non-empty
finite subset is not periodic. Hence this group is residually finite by Theorem 1.6, and
is not virtually torsion-free by Theorem 1.2. Every non-trivial finite subgroup of G is
conjugate to the group generated by an1 · · · anl for some n 6= 0 and has order two. Any
finitely generated linear group in characteristic zero is virtually torsion-free [1], and so G
cannot be linear.
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