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Abstract
Studies of Crohn’s disease consistently implicate NOD2 as the most important gene in disease pathogenesis since first being identified in 2001. Since this point, genome-wide association, next-generation sequencing, and functional analyses have all confirmed a key role for NOD2, but despite this, NOD2 also has significant unresolved complexity. More recent studies have reinvigorated an early hypothesis that NOD2 may be a single-gene cause of disease, and the distinct ileal stricturing phenotype seen with NOD2-related disease presents an opportunity for personalised diagnosis, disease prediction and targeted therapy. 
The genomics of NOD2 has much that remains unknown, including the role of rare variation, phasing of variants across the haplotype block and the role of variation in the NOD2-regulatory regions. Here, we discuss the evidence and the unmet needs of NOD2-research, based on recently published evidence, and suggest methods that may meet these requirements.  










Introduction 
NOD2 is the most implicated gene in the aetiology of Crohn’s disease (CD)1. The role of NOD2 in development of CD has been acknowledged for over 20 years although the true extent of the involvement in disease pathogenesis is probably underestimated and remains largely unrecognised in the clinical setting. Heavily replicated genome wide association studies (GWAS) studies, contemporary next-generation sequencing data and novel functional annotation directly link NOD2 dysfunction to intestinal fibrosis and suggest NOD2’s contribution to Crohn’s disease has significant and unresolved complexity2–4. A fuller understanding of the relationship between specific NOD2 genetic variants, protein dysfunction and patient phenotypes has the potential to inform clinical management and have direct benefit to patients. In this article we discuss what is known about NOD2, including the evidence to suggest a significant potential for clinical translation, and discuss the limitations and gaps in current knowledge and data. Finally, we propose potential solutions to address this unmet need to translate the potential of NOD2 as a clinical tool into clinical practice. 
Clinical and molecular heterogeneity seen in CD has consistently pointed to multiple aetiologies, manifesting as different, but related, phenotypes with intestinal inflammation and a varied disease course. Differing complications and varying treatment response make better patient risk stratification a priority. The strong genetic component is well known, and was first suggested by twin studies, demonstrating a 50-60% heritability compared to other complex diseases5. Non-parametric linkage analysis by Hugot et al in 1996 implicated a locus on chromosome 16  6. The NOD2 gene was characterised in 2001 - now known to be expressed in granulocytes, dendritic cells and T-cells, with the highest expression in terminal ileal Paneth cells7. Further evidence detailing the protein function revealed the NOD2 gene encodes an intracellular receptor for the bacterial peptidoglycan muramyl dipeptide (MDP), that upon bacterial sensing, forms an active oligomer that recruits adaptor proteins to illicit a downstream signalling cascade that ultimately results in inflammatory gene expression, or stimulates autophagy through association with ATG16L18. 
The functional impact of damaging NOD2 variation largely elicits its effect through loss of proinflammatory NOD-signalling and impaired autophagy (through inability to interact with ATG16L1)9,10. Collectively there is impaired clearance of bacteria, resulting in upregulation of alternative inflammatory pathways including IL-1b, IL-18 and activation of the NLRP3 inflammasome9,10, figure 1. Knock-out Nod2 (-/-) murine models do not develop spontaneous colitis in sterile conditions, but develop inflammation upon the introductions of bacteria, which suggests a key triggering role for the microbiome in NOD2-related CD11. Further data implicate variation in genes and protein complexes across the NOD2-signaling pathway in the development of CD9. The route through which loss-of-function variation in multiple genes within a pro-inflammatory pathway translates to chronic inflammation is complex and is evidence would suggest this is through activation of alternative inflammatory pathways in response to impaired bacterial clearance9. Epistasis and other gene-gene modifier effects are less studied due to limitations in modelling approaches, but it appears possible that oligogenic forms of Crohn’s disease may exist, with the epicentre of genomic risk being at NOD29. 









Table 1- Glossary of key genetics/genomics terms
	Term
	Definition 

	Loci/Locus
	A specific location within the genome where a gene, genetic marker or variant is located

	Single nucleotide variant/polymorphism (SNV/P)
	A single change in the DNA sequence (single base change) at a specific location in the genome. Used as a marker in genome-wide association studies to assess the association between genetic variation and a phenotype.

	Linkage disequilibrium 
	The non-random association of alleles at different loci in the genome, often inherited as a block (a haplotype). 

	Coding vs non-coding region
	Coding regions of the genome including exonic regions of genes which can be transcribed and translated to proteins. Non-coding DNA makes up around 99% of the human genome and comprises intronic, intergenic, regulatory, promotor and untranslated regions. 

	Variants- missense, frameshift, splicing, synonymous + nonsense
	Variants (mutations) are changes within the genome compared to a reference genome. Humans harbour ~20 million variants in their genome (including coding and non-coding variants). Missense variants are changes that result in a single amino acid change in the translated protein. Frameshift variants change the reading frame of DNA, usually resulting in loss of function through introduction of a downstream and premature stop codon. Nonsense variants result in an immediate premature STOP codon and termination of translation.  



NOD2 association and functional studies 
Genome wide association studies (GWAS) and subsequent meta-analyses have consistently reported NOD2 as conferring the most significant genetic risk of Crohn’s disease12. The number of loci identified as risk factors for CD has incremented steadily over the last fifteen years and includes additional genes in the NOD2-signalling pathway, such as ATG16L1, CARD9 and RIPK213–15. The proteins encoded by these genes impact innate immunity through close interaction with NOD2. ATG16L1 is activated by muramyl dipeptide-stimulated NOD2 as an alternative to typical downstream nuclear factor kappa B (NF-κB) transcription9,10. RIPK2 has a key role in signal transduction from activated NOD2 to downstream NF-κB activation, whilst CARD9 acts synergistically with activated NOD2 to drive proinflammatory signalling10. The main pathway through which NOD2 acts, alongside the additional immune pathways and the impact of variants in specific areas of the gene can be seen in figure 2. 
[bookmark: _Hlk108612132]When considering specific GWAS associations within the NOD2 gene, the minor allele of the rs2066844 SNP encoding a missense change (R702W) is common to ~3.9% of north-west European population and confers an odds ratio of 2.0 (p = 2.27x10−217)4,16. Functional analysis of this variant through luceriferase reporter assays has confirmed reduced levels of NF-κB activation, greatly reduced response to lipopolysaccharide and peptidoglycan stimulation8,17. However, interpretation of the clinical relevance of a number of very strong association signals from across the NOD2 locus has been hampered because many of the reported SNPs are located in non-coding regions of the gene (such as rs2357623 and rs72796367) or have been proven to be functionally benign (rs5743271 and rs184788345)18. It is logical to conclude that many of these SNPs are in linkage disequilibrium with actual causative variants. The specific causal variants may be rare and fall within regulatory or promotor regions, or lie on the same haplotype as damaging, but unidentified, variants. Fine-mapping analysis by Elding et al confirmed significant additional genetic heterogeneity in NOD2, although these data also fail to capture the full estimates of heritability related to linkage studies implicated chromosome 16q, the genomic locus of NOD2, and points to the importance of regulatory and non-coding regions19. Rivas et al included detailed deep resequencing of GWAS loci in CD and which demonstrated haplotypes with multiple risk variants which may be indicative of additive effect of specific mutations20. Interestingly, this study evidenced further genetic heterogeneity and identified new haplotypes, not containing the established R702W, G908R, and L1007fs variants, that were independently associated with risk of Crohn’s disease, including five rare variants achieving genome-wide significance (R311W, S431L, R703C, N852S, and M863V). Importantly, R311W, R703C and M863V, were not tested for impact on NOD2 function as determined by cell line transfection of specific mutation, whereas S341L and N852S were shown to exhibit functional impact on NOD2 localisation and MDP-induced NF-kB activation. Previous functional data from Chamaillard et al identified no functional deficit on NF-kB activation for R311W, R703C or M863V when assessed as single variants transfected into a cell line21. However, the identification of these variants as being significantly associated with Crohn’s disease points to non-coding or non-assessed variants on the same haplotype being the actual cause of impaired NOD2 function. Additionally, whilst functional assays based on induction of the NOD2 pathway with MDP and assessment of NF-κB response are established and informative, these have often been used to assess the impact of single variants, rather than the confounding impact of multiple variants inherited in cis or compound heterozygosity where multiple variants are inherited in trans within an individual1,22. The widespread assessment of variation in individual patients is not possible as the number of permutations of different variant profiles is extremely high. Interestingly, Tanabe et al systematically introduced point mutations to affect 519/1040 amino acid residues within NOD2 and reported on 806 missense/nonsense variants22. Many of these variants impacted on downstream signalling but despite this huge repository of functional evidence, the modelling of unique mutational profile of individual patients is not possible with current in vitro or in silico techniques. Despite this, there is potential for high-throughput modelling which may be able to include phased NOD2 variant data in contemporary protein models, such as AlphaFold, may result in improved in silico determination of functional impact23. A summary of the main studies reporting functional evidence derived from NOD2 variants observed in humans can be seen in table 2. It is important to note that the risk of CD conferred by NOD2 is not replicated in Japanese or Chinese studies but has been associated through GWAS in African Americans populations24–26. Despite this, different NOD2 variants, not detected in European studies performed on predominantly Caucasian populations, may confer risk of disease in the Asian population, or that environmental factors may protect against disease. It is also possible that CD is driven by alterative molecular pathways in the Japanese and Chinese populations. 
The three ‘common’ coding risk variants
[bookmark: _Hlk108622994]Studies most frequently report on the three relatively common coding variants; R702W, G908R and L1007fs, (with allele frequencies in gnomAD (all populations) of 0.02605, 0.01128 and 0.015 respectively)16. These variants confer odds ratios (OR) for CD of 2-4 as heterozygotes and 20-40 as homozygotes27,28. All three of these variants have confirmed functional impact on protein function and downstream inflammatory signalling, through reduced levels of NF-κB activation and absent or greatly reduced response to lipopolysaccharide and peptidoglycan stimulation8,29,30. However, there are multiple much rarer variants documented across the gene that are too infrequent to test in association studies of common variation and are too rare to routinely genotype in genotype-phenotype studies31. Determining the overall impact of multiple variants within the same gene has been hampered by the inability of either GWAS genotyping or short-read next generation sequencing (NGS) data to resolve which variants are inherited together on a single parental chromosome. Whilst such phasing of variants to either the maternally or paternally inherited chromosomes can be estimated for common variants, this statistical approach fails to assign rare or novel variants due to inability to assign these variants to an estimated haplotype32. 
Next-generation sequencing
[bookmark: _Hlk108623611]Exome sequencing data has added further evidence to the of role of variation in NOD2 as a cause of CD. Independent studies have consistently reported on apparent autosomal recessive ‘monogenic’ NOD2-related disease, accounting for 7.3-10% of CD patients3,33. Exome sequencing across these two independent studies including adult and paediatric-onset patients, demonstrated a consistent pattern whereby carriage of an established NOD2 ‘risk’ variant was found with a much rarer variant in trans on the second parental chromosome. Additionally, across the three independent cohorts for which data is reported (Toronto Sick Kids Hospital, Southampton Children’s Hospital and RGC-GHS DiscovEHR adult IBD cohort), there is a strong signal connecting trans NOD2 variants and a diagnosis of Crohn’s disease specifically, as opposed to ulcerative colitis, 83%, 95% and 70.3% for respective cohorts. In data from Southampton Children’s Hospital, all potential compound heterozygote NOD2 variants across 20 paediatric patients were confirmed as being inherited in trans following segregation analysis, underpinning a recessive model (figure 3)3. Novel variants that often lack robust experimental evidence of function is repeatedly observed in these patients3,33. It is possible that there is a role for numerous other rare or novel NOD2 variants acting in combination with more common NOD2 variation in both paediatric and adult-onset CD. This appears likely to have been overlooked by studies focused on the three R702W, G908R and L1007fs variants identified by GWAS. 
Within the gnomAD v2.1.1 database (https://gnomad.broadinstitute.org), consisting of over 125,000 whole exome sequences and 15,000 whole genome sequences, 219 variants of uncertain significance are observed in NOD2, compared to only 9 pathogenic or likely pathogenic variants16.  Interestingly the well characterised L1007fs variant, highly implicated in Crohn’s disease pathogenesis with multiple studies reporting impact on immune function, is only reported as a variant of ‘conflicting interpretations of pathogenicity’ within ClinVar and is observed as homozygote in 113 individuals8,29,30,34. This lack of characterisation of both coding and non-coding NOD2 variants is hampering better understanding of NOD2 in CD. 
Although, initial studies implicating NOD2 pointed towards a recessive model of inheritance, most studies from the last 20 years have not routinely assessed whether NOD2 variants are inherited in cis or in trans 35. This includes population-based analyses assessing the impact of multiple NOD2 risk-alleles phase36. It appears at least possible that in healthy individuals, variants are more likely to be inherited in cis, and in those who develop CD the variants are in trans. This could be achieved by long-range sequencing of the entire NOD2 haplotype block, allowing phasing of coding and non-coding variants, providing allele-specific data to improve risk stratification using NOD2.  These studies would be complemented by experimental work assessing the functional impact of NOD2 haplotypes in cis and trans, potentially through stimulation of peripheral blood mononuclear cells37.
Specific very-early onset forms of NOD2-related Crohn’s disease are being increasingly reported in the literature, although penetrance for NOD2 variants appears far from 100% 38,39.  Girardelli et al identified a novel homozygous missense mutation, R426H, in a male patient with very-early onset Crohn’s disease. This variant triggered an apparent gain-of-function phenotype, with hyperinflammatory response to MDP-stimulation40. NOD2 gain-of-function, hyperinflammatory, variants typically result in Blau syndrome, however these data point to a broader, complex phenotype. 
Some caution must be taken in the interpretation of exome sequencing data, at least in part due to identification of many variants of unknown significance and difficulties of in silico modelling of the functional impact of multiple variants40,41. Next generation sequencing has also enabled identification of numerous monogenic forms of inflammatory bowel disease caused by genes directly interacting with NOD2, including loss of function variation in RIPK2, XIAP and CARD942. NOD2 has recently been included in a collated panel of monogenic IBD genes which are investigated as part of whole genome sequencing in very-early onset IBD (and selected other cases) in the United Kingdom43. However, the interpretation of this and other monogenic IBD genes, such as XIAP, MVK and COL7A1, which have penetrance below 100%, is complex 39. 

	Mutation
	Variant- DNA change and amino acid change 
	Functional evidence
	Reference

	Missense
	c.113G>T
p.R38M
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.315G>
p.A105T
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	D113N
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.413G>A
p.R138Q
	Inability to interact with RIPK2 and at least a 2-fold reduction in both basal activity and PGN-induced response
	Parkhouse et al17, Chamaillard et al21

	Missense
	c.469T>C
p.W157R
	Significantly reduced basal NFκB production and PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Missense
	c.484G>A 
p.V162I
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.566C>T
p.T189M
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.703C>T
p.R235C
	Significantly reduced PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Missense
	c.743T>G
p.L248R
	Impaired membrane association and were unable to signal in response to MDP
	Parkhouse et al17

	Missense
	c.866A>G
p.N289S
	>2-fold reduction in both basal activity and PGN-induced response
	Chamaillard et al21

	Missense
	c.871G>A 
p.D291S
	Significantly reduced basal NFκB production and PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Missense
	c.1042C>G
p.L348V
	Significantly reduced basal NFκB production and PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Nonsense
	c.1065G>A 
p.W355X
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.1070A>C 
p.D357A
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.1087A>T 
p.I363F
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.1321G>A
p.E441K
	Borderline reduction in both basal activity and PGN-induced response
	Chamaillard et al21

	Missense
	c.1387C>G 
p.P463A
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.1648C>G 
p.L550V
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense deletion
	c.1671 delCCTGGG
p.558delLG
	Significantly reduced basal NFκB production and PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Missense
	c.1834G>A
p.A612T
	>2-fold reduction in both basal activity and PGN-induced response
	Chamaillard et al21

	Missense
	c.1835C>T 
p.A612V
	Significantly reduced basal NFκB production and PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Missense
	c.2104C>T
p.R702W
	Reduced levels of NF-κB activation, greatly reduced response to lipopolysaccharide and peptidoglycan stimulation
	Bonen et al8,  Parkhouse et al17

	Missense
	c.2138G>A
p.R713H
	Major impairment of the PGN-response (<20% that of wildtype)
	Chamaillard et al21

	Missense
	c.2368C>T 
p.P727C
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.2264C>T
p.A755V
	Reduced levels of NF-κB activity by 25-54%
	Parkhouse et al17

	Missense
	c.2332G>A
P.E778K
	Significantly reduced basal NFκB production and PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Missense
	c.2368C>T 
p.R790W
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.2475C>G 
p.N825K
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.2527G>A
p.E843K
	Major impairment of the PGN-response (<20% that of wildtype )
	Chamaillard et al21

	Missense
	c.2546C>T 
p.A849V
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.2587A>G
p.M863V
	Significantly reduced basal NFκB production and PGN-induced NFκB activation compared to WT
	Chamaillard et al21

	Missense
	c.2555A>G
p.N852S
	N825K has impaired membrane association and were unable to signal in response to Muramyl Dipeptide 
	Parkhouse et al17

	Missense
	c.2719T>C 
p.W907R
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17

	Missense
	c.2722G>C
p.G908R
	Reduced levels of NF-κB activation, greatly reduced response to lipopolysaccharide and peptidoglycan stimulation
	Bonen et al8

	Missense
	p.A1007P
	Reduced levels of NF-κB activity by >15%
	Chamaillard et al21

	Missense frameshift
	c.G3016ins+C
p.A1007fs
	Reduced levels of NF-κB activation, no response to lipopolysaccharide and peptidoglycan stimulation
	Bonen et al8 

	Nonsense 
	c.3055C>T 
p.R1019X
	Reduced levels of NF-κB activity by >15% for MDP-induced NFκB production and activation of IL-8 promoter
	Parkhouse et al17


[bookmark: _Hlk98933785]
[bookmark: _Hlk108683823]Table 2-   A selection of NOD2 variants with published functional evidence demonstrating impact on protein function or downstream pathway activity from Bonen et al8, Parkhouse et al17 and Chamaillard et al21.  Data aligned to reference genome GRCh38. Studies did not always perform comparable functional assays on all variants and there is possibility that multiple mechanisms of action are present for most variants, even if this has not functionally been proven in the reporting study. 
The stricturing NOD2 phenotype 
[bookmark: _Hlk108621086][bookmark: _Hlk108623853][bookmark: _Hlk108621234][bookmark: _Hlk108623724][bookmark: _Hlk108612771]Shortly after NOD2’s identification, deleterious variation within the gene was reported to have a strong phenotypic association with fibrostenotic disease behaviour, which is replicated in paediatric and adult-onset disease44. The phenotype appears to be consistent across adult and paediatric populations, although more data is available from paediatric studies specifically related to stricturing disease when accounting for rare NOD2 variants. Studies also identified a strong association between deleterious NOD2 variation and terminal ileal disease location, which was believed to account for the increased stricturing disease risk45. However more recent data from ‘monogenic’ NOD2-related patients confirm a strong stricturing phenotype, with an odds ratio of >10 compared to CD without NOD2 variation, and this statistical association remained when accounting for terminal ileal disease location3. Furthermore, contemporary functional evidence points to a specific alteration of stromal regulation of fibroblasts through STAT3 and gp130 ligands in patients harbouring NOD2 variation, providing a mechanistic explanation for NOD2 dysfunction to trigger fibrosis and leading to a stricturing phenotype2. Additionally, this strong genotype-potential phenotype connection reinforces the potential for NOD2 to exist as a genomic tool for disease prediction, although the differing risk profiles of specific variants, or combinations of variants, has not yet been elucidated. There are additional data pointing towards significant variation in NOD2 increasing the chance of complicated disease and the need for surgery, but the potential of this as a predictive tool has not yet been brought to the clinic3,46. Furthermore, a precise diagnosis of NOD2-associated disease may allow new, or known therapies, to be targeted at an early stage of disease, preventing significant complications and the need for subsequent surgery through the prevention of irreversible fibrosis, although the potential of this remains hypothetical with no studies providing evidence to date 47. It appears increasingly feasible to utilise NOD2 as a genomic biomarker in stratified randomised control trials of therapy. This may provide the ability to modify risk in patients at high risk of disease progression. Furthermore, there is the potential for post-hoc analyses of RCTs that have already been conducted to identify patients most likely to respond to therapy based on underlying molecular cause of disease. 
Conclusions and future research
Despite the strong evidence of NOD2’s role in CD there are many unanswered questions. Current independent estimates identify NOD2 variation as potentially underpinning ~8% of CD, which would reflect 100,000s of individuals based on global CD prevalence3,33. NOD2 appears to have the potential to translate into clinical practice, as a precise diagnosis, a prediction tool and as a potential therapeutic target. The potential strategies to resolve and implement this consist of 1) sequencing that fully capture important upstream non-coding regulatory variants, promoter variants and deep intronic variation; 2) phased data to elucidate recessive inheritance patterns in adults and children; 3) systematic functional interpretation of variants; and 4) thorough longitudinal phenotyping in the context of specific genotypes. Expanding this examination to NOD2-signalling pathway genes may result in improved resolution. 
With contemporary sequencing techniques and access to vast numbers of patient samples, now may be the time to revisit some of these unresolved questions and implement clinical translation of NOD2 sequencing. 









Tables and Figures 
Table 1- Glossary of key genetics/genomics terms 
Table 2- NOD2 variants identified within our inflammatory bowel disease cohort of 1086 patients which have published functional evidence demonstrating impact on protein function or downstream pathway activity.  Data refer to reference genome GRCh38. 
Figure 1- Comparison of normal intestinal immune function with NOD2 variant induced immune dysregulation triggering impaired bacterial clearance and chronic increased alternative inflammatory pathways. MDP- muramyl dipeptide 
[bookmark: _Hlk108623263]Figure 2- The major NOD2 signalling pathway resulting in activation of NF-KB and additional proinflammatory signalling through the NLRP3 inflammasome and induction of autophagy through ATG16L1. Variants in NOD2 have been demonstrated to impact on 1) Deletions/stop gains prevent transcription or localisation, 2) Leucine-rich repeat variants such as G908R and L1007fs are located in the LRR and result in defective binding of MDP, likely preventing NOD2 oligomerisation and downstream signalling. Similarly, the R702W mutant is in the NOD domain and may also directly result in in defective oligomerisation, 3) Impair ATG16L1 induced autophagy, 4) CARD domain variants may reduce RIPK2 association with activated NOD2. Precise details of the impact of specific variants see table 2. The normal downstream sequalae of NOD2 activation can be seen in this figure which are variably impaired when patients harbour NOD2 variants functionally implicated in Crohn’s disease, resulting in impaired immune response to bacteria, barrier breakdown, dysbiosis and chronic inflammation.
Figure 3- Potential mechanism by which variants inherited on different chromosomes (in trans) will lead to two dysfunctional copies of the gene, whereas the same variants inherited on the same chromosome (in cis) would result in a preserved functional version of NOD2 as there is a still a fully functional copy of the NOD2 gene present. Typically, this would be elucidated through segregation analysis, where sequencing of the mother and father allows ascertainment of whether the variants are inherited on the same chromosome or separately on a maternal or paternal chromosome.
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