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Abstract

Superstrata are bound states in string theory that carry D1, D5, and momen-
tum charges, and whose supergravity descriptions are parameterized by arbi-
trary functions of (at least) two variables. In the D1-D5 CFT, typical three-
charge states reside in high-degree twisted sectors, and their momentum charge
is carried by modes that individually have fractional momentum. Understand-
ing this momentum fractionation holographically is crucial for understanding
typical black-hole microstates in this system. We use solution-generating tech-
niques to add momentum to a multi-wound supertube and thereby construct
the first examples of asymptotically-flat superstrata. The resulting super-
gravity solutions are horizonless and smooth up to well-understood orbifold
singularities. Upon taking the AdS3 decoupling limit, our solutions are dual
to CFT states with momentum fractionation. We give a precise proposal for
these dual CFT states. Our construction establishes the very nontrivial fact
that large classes of CFT states with momentum fractionation can be realized
in the bulk as smooth horizonless supergravity solutions.

http://arxiv.org/abs/1601.05805v3
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1 Introduction

String theory has been successful in counting the microstates of black holes in the regime of

parameters where stringy effects overwhelm gravitational effects at the horizon scale. When

supersymmetry is present, this counting carries over to the regime of parameters where gravita-

tional effects are dominant at the horizon scale, and the entropy of these microstates reproduces

the Bekenstein-Hawking entropy of the black hole [1,2]. However, the exploration of the impli-

cations of this achievement for resolving the information paradox [3] and for understanding the

physics of an infalling observer [4,5] is still in its infancy. Indeed, very little is known about the

fate of the individual stringy microstates, counted in the zero-gravity regime, as one increases

the gravitational coupling and goes to the regime in which the configuration corresponds to a

classical black hole with a large event horizon.

There are several possibilities as to what this fate might be. One is that, as gravity becomes

stronger, all these microstates develop a horizon and end up looking identical to the black

hole [6–8]. Another is that some of the microstates that one constructs at zero gravitational

coupling will develop a horizon, and others will remain horizonless. A third possibility is that

none of these microstates develop a horizon, and they all grow into horizon-sized bound states

that have the same mass, charges and angular momentum as the black hole, but have no

horizon [9–16]. There are then a range of “sub-possibilities”: At one extreme, typical black-

hole microstates would not be describable in supergravity, but will be intrinsically quantum or

non-geometrical; at the other extreme, in the sector dual to the typical microstates, one could

find a basis of Hilbert space vectors that correspond to coherent states that have a supergravity

description, or at least a stringy limit thereof.

In the context of the AdS-CFT correspondence [17], one can similarly ask whether a typical

CFT microstate corresponds to a classical black hole with an event horizon, or to some horizon-

less configuration. The latter might either be impossible to describe in supergravity because of

large quantum fluctuations or stringy corrections, or might be described using a Hilbert state

basis given by smooth low-curvature solutions, or might correspond to some hybrid configura-

tion (such as an intrinsically quantum configuration lying in a smooth, horizonless supergravity

solution).

There exist pieces of evidence that can be taken as bringing support to any of these possible

outcomes, some founded on calculations, and some based more on intuition and conjecture.

Perhaps the strongest evidence that at least some microstates become smooth horizonless

supergravity solutions at strong gravitational coupling comes from the explicit construction

of numerous families of smooth horizonless solutions that have the same charges as black

holes [18]. The largest family of solutions are parametrized by arbitrary continuous functions

of two variables [19], and come from the back-reaction of certain families of superstrata [20].

Superstrata are string theory bound states whose counting has been argued to reproduce a

finite fraction of the entropy of three-charge supersymmetric black holes [21].

However, even if the existence of these large families of solutions rules out the possibility

that all the microstates one counts at zero gravity develop a horizon, it does not prove that all
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microstates remain horizonless, nor does it establish whether typical horizonless configurations

are smooth and describable in supergravity, or are instead non-geometric or strongly-curved.

For example, it has been argued [22] that for the two-charge D1-D5 black hole, the typical

states of the dual symmetric product orbifold CFT [23–26, 17] are not well-described by the

microstate geometries of [9,27,28] when the average harmonic of the two-charge profile function

becomes larger than
√
N1N5. The harmonics of the profile function correspond to the winding

of strands in the D1-D5 orbifold CFT; since typical three-charge microstates come from adding

momentum to CFT strands whose length is of order N1N5, one might naively conclude that all

typical three-charge microstate geometries would be strongly-curved and hence not describable

by supergravity.

There are also arguments that the bulk configurations dual to typical CFT states will be

non-geometrical. One such argument comes from an analysis of the possible supertube transi-

tions that can occur in three-charge systems, which indicate that the configurations resulting

from these transitions will be generically non-geometric [29]. It has also been suggested that the

states that carry fractionated momentum modes, which are the typical states that contribute

in the entropy counting, will involve multi-valued wavefunctions [19].

Furthermore, there are also conjectures that when tracking microstates of the D1-D5-P

system to the regime of parameters where gravity becomes important, only very few states will

give rise to horizonless geometries, while most states will correspond to a black hole with a

horizon [30]. According to this perspective, the more typical the state, the larger the likelihood

that its bulk dual will not be a horizonless solution, but will be a solution with a horizon.

The purpose of this paper is to provide evidence that these alternative scenarios are not

realized, by showing that highly-nontrivial CFT states whose momentum is carried by frac-

tionated carriers are dual to smooth horizonless supergravity solutions (with localized orbifold

singularities). We construct these solutions using a combination of two solution-generating

techniques: Spectral interchange (also known as spectral inversion) and adding charge den-

sity oscillations to a supertube. Spectral interchange is a transformation of the D1-D5(-P)

BPS solutions that interchanges the null coordinate along the D1 and D5 branes, v = t + y,

with the Gibbons-Hawking fiber of the transverse space [31,32]. Modifying the charge density

distribution along the supertube source profile has been studied, for example, in [27,33,34].

In this paper we show that by combining these techniques one can add y-momentum to a

seed solution with D1 and D5 charges, as follows: First perform a spectral inversion, then use a

charge density oscillation to introduce ψ-dependence and associated angular momentum, then

spectrally invert back to the original frame to obtain a new solution carrying v-dependence and

momentum. The ψ-dependent solutions in the spectrally inverted frame can be generated by

integrating the Green functions against the modified charge and angular momentum densities

along the supertube.

For our explicit construction, we apply this combination of techniques to a simple seed

solution – a multiwound circular D1-D5 supertube. The multiwinding of the seed solution is

what will allow us to study the physics of momentum fractionation. While in principle the
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Green function/spectral interchange method can be used to construct new general classes of

superstrata, a particular class of examples is amenable to a direct analysis of the equations gov-

erning all supersymmetric solutions of six-dimensional supergravity [35–38]. These equations

determine the various potentials that enter in the supergravity solution, and are arranged in

stages or layers, where the potentials to be solved for one layer satisfy linear equations sourced

by the potentials determined in previous layers [37].

Our solutions are regular up to the usual orbifold singularity at the location of the multi-

wound supertube. We arrange the regularity of our supergravity solutions by imposing con-

straints on Fourier modes and coefficients; this procedure is known as coiffuring [39–41]. We

find two classes of regular solutions, corresponding to two “Styles” of coiffuring. We analyze

the conserved charges and other properties of the solutions.

Our construction also yields the first examples of asymptotically-flat superstrata; in a

particular limit our solutions contain the generalization to asymptotically-flat space of one

class of the asymptotically-AdS superstrata constructed in [19].

Upon taking the decoupling limit, we obtain solutions that are asymptotically AdS3×S3×M
(where M is either T4 or K3) and we investigate the corresponding dual CFT description. We

do this by assembling a variety of clues. We observe that the relation between the y-momentum

and the angular momenta of the solutions suggest that the dual CFT states involve repeated

applications of fractionally moded SU(2) R-symmetry generators, and also that they can be

generated by fractional spectral flow [42] applied to a subset of strands of certain two-charge

seed states.

We then study the vevs of 1
4 -BPS operators and find that they have the right properties

to reproduce the vevs of the supergravity fields at the linearized level, using the technology

of [43, 28, 44]. We find however that the supergravity regularity constraints are not visible

at this order. Finally, by analyzing the possible two-charge seed solutions, we determine the

precise proposal for the CFT states dual to both styles of coiffuring in supergravity.

Prior to the present work, there were only two classes of supergravity solutions, one BPS

and one non-BPS [45,46], which had been shown to be dual to CFT states involving momentum

fractionation [47, 48].1 These states came from fractional spectral flow applied to all strands

of certain two-charge states, and hence are very special. One way to see this is that the AdS

region of their dual bulk solutions can be obtained from global AdS3 × S3 by a coordinate

transformation.2 In contrast, our technology produces supergravity solutions that are much

more general, and cannot be written in this way.

The remainder of this paper is structured as follows. In Section 2, we review the class of

five- and six-dimensional supergravity solutions of interest, the BPS equations they satisfy, and

the multiwound circular D1-D5 supertube. In Section 3, we apply the sequence of solution-

1There is a sense in which states obtained by the action of integer-moded generators acting on multi-wound
strands can be argued to involve momentum fractionation, however this fractionation is somewhat trivial and
does not correspond to degrees of freedom deep inside a throat [49–51]. Thus, by “CFT states involving
momentum fractionation” we mean states which cannot be written in terms of integer-moded generators acting
on R-R ground states.

2The same is true of the three-charge solutions obtained by integer spectral flow [52–54].
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generating techniques to add momentum to the seed solution. We perform a direct analysis

of the BPS equations in Section 4, and find two classes of regular solutions via coiffuring. In

Section 5, we first review the 1
4 -BPS states in the CFT, the 1

4 -BPS operators that are dual to

linearized supergravity field modes, and spectral flow. We then develop the precise proposal

for the CFT states dual to our supergravity solutions. Section 6 summarizes our results and

discusses open questions.

2 BPS solutions in supergravity

We work in type IIB string theory on R
4,1×S

1×M where M is T4 or K3. We take the size of

M to be microscopic and the S1 to be macroscopic. The S1 is parameterized by the coordinate

y which we take to have radius Ry,

y ∼ y + 2πRy . (2.1)

We reduce on M and work in the supergravity limit. The six-dimensional truncation of interest

is an N =1 supergravity coupled to two (anti-self-dual) tensor multiplets. This is the theory

in which the first superstrata were constructed [19]; the theory contains all the fields expected

from D1-D5-P string emission calculations [55]. The BPS system of equations describing all

1/8-BPS D1-D5-P solutions of this theory has been found in [38], and is a generalization of

the system discussed in [35,36] and greatly simplified in [37].

2.1 The BPS equations in six dimensions

To exploit the structure of the six-dimensional BPS equations, we work with null coordinates

u and v, defined by:

u ≡ 1√
2
(t− y) , v ≡ 1√

2
(t+ y) . (2.2)

The periodicity of the y circle induces an identification on u and v. It will be convenient to

parameterize this as follows:

(u, v) ∼ (u, v) + (−4πR, 4πR) , R ≡ Ry

2
√
2
. (2.3)

For supersymmetric solutions, the metric is required to have the local form:

ds26 = − 2√
P

(dv + β)
(
du+ ω + 1

2 F (dv + β)
)

+
√
P ds24(B) , (2.4)

Note that we can always shift F by a constant, c, by sending u→ u− 1
2cv and ω → ω − 1

2cβ.

Given our choice of t and y coordinates in (2.2), to obtain our desired asymptotics we require

that F vanishes at infinity throughout this paper.

Introducing the quantities Z3 and k via3

Z3 = 1− F
2
, k =

ω + β√
2

, (2.5)

3Note that in our conventions F is always negative.
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one can write the metric in the form

ds26 = − 1

Z3

√
P

(dt+ k)2 +
Z3√
P

[
dy +

(
1− Z−1

3

)
(dt+ k) +

β − ω√
2

]2
+

√
P ds24(B) . (2.6)

This form of the metric is useful in the analysis of closed time-like curves (CTC’s). In

particular, if there are closed curves whose length in the metric ds24(B) vanishes, then it is

essential that the remaining part of the metric does not make these curves time-like. The

relevant condition is manifest from (2.6): The danger arises if one chooses a curve along which

dy is related to the other angles such that the second square vanishes.4 We thus require that

for any such curve, in the limit where the length of the curve in ds24(B) tends to zero, the

one-form k acting on the tangent vector to the curve must also tend to zero (appropriately

quickly).

The four-dimensional base, B, has a metric, ds24, and is required to be an “almost hyper-

Kähler” manifold [35]. However we are going to simplify things by assuming that the base has

a Gibbons-Hawking metric:

ds24 = V −1
(
dψ +A)2 + V d~y · d~y , (2.7)

where the periodicity of ψ will be given below in (2.40) and where, on the flat R3 defined by

the coordinates ~y, one has:

∇2V = 0 , ~∇× ~A = ~∇V . (2.8)

We take V to have the form

V = h +

N∑

j=1

qj

|~y − ~y(j)| , (2.9)

for some fixed points, ~y(j) ∈ R
3, some charges, qj ∈ Z, and some constant h.

We will also require that the one-form, β, is v-independent and then the BPS equations

require that β has self-dual field strength:

Θ3 ≡ dβ = ∗4dβ , (2.10)

where ∗4 denotes the four-dimensional Hodge dual in the Gibbons-Hawking metric. We will

also assume that β is ψ-independent and solve the self-duality by taking

β =
K3

V
(dψ +A) + ~σ(3) · ~dy , (2.11)

4To see this, let us suppose that such curves are timelike, and let C1 be such a curve. C1 itself is not necessarily
closed; denote the y values at the start and end of the curve by y1 and y2. If y2 is not equal to y1 (modulo 2πRy),
consider y2 as the starting point of a new curve C2, similarly defined so that dy is related to the other angles
such that the second square vanishes. By iterating, one obtains a sequence of timelike-related points along the
y direction, with fixed values of the other coordinates. Since y is periodic, by iterating this procedure one either
obtains a CTC or comes arbitrarily close to obtaining a CTC, meaning that the spacetime has ‘almost-closed’
timelike curves and so fails to be ‘strongly causal’ as defined in [56].
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where K3 is harmonic on R
3 and

~∇× ~σ(3) = − ~∇K3 . (2.12)

The supergravity theory has three tensor gauge fields (one is in the graviton multiplet) and

two scalars (one in each tensor multiplet). The scalars may be thought of as the dilaton, Φ,

and axion, C0, of the IIB theory. The tensor fields of BPS solutions may be described in terms

of three potential functions, Z1, Z2, Z4 and three sets of two-forms, Θ1, Θ2, Θ4, on the base

B.
The BPS condition then requires a suitable generalization of the “floating brane Ansatz”

[57] in which the metric warp factor and scalars are expressed in terms of the potentials:

P = Z1 Z2 − Z2
4 , e2Φ =

Z2
1

P , C0 =
Z4

Z1
. (2.13)

Since we are allowing the scalars and tensor gauge fields (but not β or ds24) to depend upon v,

the BPS equations impose the following linear differential equations on the potentials and the

two-forms (ZI ,ΘI):
5

∗4 DŻ1 = DΘ2 , D ∗4 DZ1 = −Θ2 ∧ dβ , Θ2 = ∗4Θ2 , (2.14)

∗4 DŻ2 = DΘ1 , D ∗4 DZ2 = −Θ1 ∧ dβ , Θ1 = ∗4Θ1 , (2.15)

∗4 DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ dβ , Θ4 = ∗4Θ4 . (2.16)

where the dot denotes ∂
∂v , D is defined by

D ≡ d̃− β ∧ ∂

∂v
, (2.17)

and d̃ denotes the exterior differential on the spatial base B.
In (2.14)–(2.16), the first equation in each set involves four component equations, while

the second equation in each set is essentially an integrability condition for the first equation.

The self-duality condition reduces each ΘI to three independent components and adding in the

corresponding ZJ yields four independent functional components upon which there are four

constraints.

If we separate the ZI into their v-independent (zero-mode) and v-dependent parts,

ZI = Z
(0)
I + Z

(v)
I , then the v-dependent parts Z

(v)
I satisfy simpler equations, as follows. It

is convenient to define two-forms ξI via:

ΘI ≡ ∂vξI , I = 1, 2, 4 . (2.18)

5We define the d-dimensional Hodge star ∗d acting on a p-form to be

∗d (dx
m1 ∧ · · · ∧ dxmp) =

1

(d− p)!
dxn1 ∧ · · · ∧ dxnd−p ǫn1...nd−p

m1...mp ,

where we use the orientation ǫ+−1234 ≡ ǫvu1234 = ǫ1234 = 1. These are the conventions used in [35] and note
that they differ from the typical conventions for the Hodge dual.
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Then for the v-dependent parts, one can simplify the BPS equations (2.14)–(2.16) by integrat-

ing, as follows:

∗4 DZ(v)
1 = Dξ2 , ∗4 DZ(v)

2 = Dξ1 , ∗4 DZ(v)
4 = Dξ4 . (2.19)

The final set of BPS equations are linear differential equations for ω and F :

Dω + ∗4Dω = Z1Θ1 + Z2Θ2 −FΘ3 − 2Z4Θ4 , (2.20)

and a second-order constraint that follows from the vv component of Einstein’s equations6,

∗4D ∗4
(
ω̇ + 1

2 DF
)

= Ż1Ż2 + Z1Z̈2 + Z2Z̈1 − (Ż4)
2 − 2Z4Z̈4 − 1

2 ∗4
(
Θ1 ∧Θ2 −Θ4 ∧Θ4

)

= ∂2v(Z1Z2 − Z2
4 )− (Ż1Ż2 − (Ż4)

2)− 1
2 ∗4

(
Θ1 ∧Θ2 −Θ4 ∧Θ4

)
.
(2.21)

2.2 BPS solutions in five dimensions

We now recall how v-independent solutions reduce to five-dimensions and our discussion will

closely follow that of [34]. We will assume that the magnetic 2-forms, Θ(I), are independent

of the GH fiber coordinate, ψ. This means that one may use the same class of solutions as in

(2.11) by introducing more harmonic functions, KI , on R
3 and taking

Θ(I) = dB(I) , (2.22)

with

B(I) = V −1KI (dψ +A) + ~σ(I) · d~y , ~∇× ~σ(I) ≡ − ~∇KI . (2.23)

The sources in BPS equations for ZI (I = 1, 2, 3, 4) are independent of v and ψ and so the

inhomogeneous solutions for the functions ZI follow the standard form:

ZI = 1
2 CIJKV

−1KJKK + LI , (2.24)

where CIJK are the usual (completely symmetric) structure constants for supergravity coupled

to vector multiplets. The particular theory that we use can be written in this form if one sends

Z4 → −Z4 and takes

C123 = 1 , C344 = − 2 , (2.25)

with other (non-cyclically related) components equal to zero.

The functions LI in (2.24) are required to be harmonic on the GH base, B, and can be

allowed to depend upon all the coordinates, including ψ. Thus we have

∇2
(4)LI = 0 . (2.26)

One can then make a simple Ansatz for the angular momentum, one-form ω:

ω = µ(dψ +A) + ~̟ · d~y . (2.27)

6This simplified form is equivalent to (2.9b) of [58].
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If one introduces the covariant derivative

~D ≡ ~∇ − ~A ∂ψ , (2.28)

then the last BPS equation can be written as:

(µ~DV − V ~Dµ) + ~D × ~̟ + V ∂ψ ~̟ = − V

3∑

I=1

ZI ~∇
(
V −1KI

)
. (2.29)

The BPS equations have a gauge invariance: ω → ω + df and this reduces to:

µ→ µ + ∂ψf , ~̟ → ~̟ + ~Df , (2.30)

The Lorentz gauge-fixing condition, d ⋆4 ω = 0, reduces to

V 2 ∂ψµ + ~D · ~̟ = 0 , (2.31)

and we will impose this gauge choice.

Taking the covariant divergence, using ~D, of (2.29) and using the Lorentz gauge choice,

one obtains:

V
2 ∇2

(4)µ = ~D ·
(
V

3∑

I=1

ZI ~D
(
V −1KI

))
. (2.32)

It is useful to note that the four-dimensional Laplacian may be written as:

∇2
(4)F = V −1

[
V 2 ∂2ψF + ~D · ~DF

]
. (2.33)

The equation for µ is solved by taking:

µ = 1
6 V

−2CIJKK
IKJKK + 1

2 V
−1KILI + M , (2.34)

where, once again, M is a harmonic function on B.
Finally, we can use this solution back in (2.29) to simplify the right-hand side and obtain:

~D × ~̟ + V ∂ψ ~̟ = V ~DM −M ~DV +
1

2

(
KI ~DLI − LI ~DK

I
)
. (2.35)

Once again one sees the emergence of the familiar symplectic form on the right-hand side of

this equation. One can also verify that the covariant divergence (using ~D) generates an identity

that is trivially satisfied as a consequence of ~∇V = ~∇× ~A, (2.31), (2.34) and

∇2
(4)LI = ∇2

(4)M = 0 . (2.36)

An explicit, closed form for all the components of ~̟ was not given in [34], but for our solutions

we will be able to construct them.
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2.3 A round supertube in flat space

The simplest supertube Ansatz is to take the base, B, to be flat R
4 and set Θ3 and β to be

that of a simple magnetic monopole. There are two convenient ways to formulate this. First,

one can take β given by (2.11) and write R
4 in Gibbons-Hawking form using spherical polar

coordinates (ρ−, ϑ−, φ):

ds24 = V −1 (dψ +A)2 + V (dρ2− + ρ2− dϑ
2
− + ρ2− sin2 ϑ− dφ

2) , (2.37)

where in terms of the three-dimensional Cartesian coordinates y1, y2, y3 we have

V =
1

ρ−
, K3 =

kR

ρ+
, ρ± ≡

√
y21 + y22 + (y3 ∓ 1

2ℓ)
2 , (2.38)

where the dipole moment k is an integer. One then has:

A =
(y3 +

1
2ℓ)

ρ−
dφ , σ = − kR

(y3 − 1
2ℓ)

ρ+
dφ . (2.39)

The periodicity identifications on ψ and φ are as usual

ψ ∼ ψ + 4π , (ψ, φ) ∼ (ψ, φ) + (2π,−2π) . (2.40)

One can then follow through with the construction outlined in Section 2.2. However, we

subsequently want to make heavy use of the results and formalism employed in [19] and so we

will use this as an opportunity to introduce the geometry and flux components that make up

the second convenient description of supertubes.

One starts by describing the base manifold in terms of spherical bipolar coordinates, defined

by7

4 ρ+ = Σ ≡ (r2 + a2 cos2 θ) , 4 ρ− = Λ ≡ (r2 + a2 sin2 θ) , (2.41)

cos
ϑ−
2

=
(r2 + a2)1/2

Λ1/2
sin θ , sin

ϑ−
2

=
r cos θ

Λ1/2
, (2.42)

ψ = ϕ1 + ϕ2 , φ = ϕ1 − ϕ2 , ℓ ≡ 1
4 a

2 . (2.43)

The metric becomes:

ds24 = Σ

(
dr2

(r2 + a2)
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2 , (2.44)

and we choose the natural system of frames

e1 =
Σ1/2

(r2 + a2)1/2
dr , e2 = Σ1/2 dθ , e3 = (r2 + a2)1/2 sin θ dϕ1 , e4 = r cos θ dϕ2 .

(2.45)

7Our spherical bipolar angles ϕ1 and ϕ2 are related to those of [19] by ϕhere
1 = φthere, ϕhere

2 = ψthere.
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Following [19], it is convenient to introduce the self-dual two-forms Ω(1), Ω(2) and Ω(3):

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dϕ1 ∧ dϕ2 =

1

Σ (r2 + a2)
1

2 cos θ
(e1 ∧ e2 + e3 ∧ e4) ,

Ω(2) ≡ r

r2 + a2
dr ∧ dϕ2 + tan θ dθ ∧ dϕ1 =

1

Σ
1

2 (r2 + a2)
1

2 cos θ
(e1 ∧ e4 + e2 ∧ e3) ,

Ω(3) ≡ dr ∧ dϕ1

r
− cot θ dθ ∧ dϕ2 =

1

Σ
1

2 r sin θ
(e1 ∧ e3 − e2 ∧ e4) ,

(2.46)

and note that

∗4(Ω(1) ∧Ω(1)) =
2

(r2 + a2)Σ2 cos2 θ
, ∗4(Ω(2) ∧Ω(2)) =

2

(r2 + a2)Σ cos2 θ
,

∗4(Ω(3) ∧Ω(3)) =
2

r2Σ sin2 θ
, Ω(i) ∧ Ω(j) = 0, i 6= j.

(2.47)

The vector field β corresponding to the harmonic functions in (2.38) is

β̂ =
2 kRa2

Σ
(sin2 θ dϕ1 − cos2 θ dϕ2) + kR (dϕ1 + dϕ2) . (2.48)

To obtain flat asymptotics, we see from (2.6) that β and ω must vanish at infinity. We thus

make a coordinate transformation to gauge away the constant part of β̂, obtaining

β ≡ β1 dϕ1 + β2 dϕ2 =
2 kRa2

Σ
(sin2 θ dϕ1 − cos2 θ dϕ2) . (2.49)

The two-form Θ3 = dβ is given by

Θ3 = dβ =
4 kRa2

Σ2
((r2 + a2) cos2 θΩ(2) − r2 sin2 θΩ(3)) . (2.50)

The basic, round v-independent asymptotically-flat supertube solution is then given by:

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q2

Σ
, F = 0 , Z4 = 0 ,

Θ3 = dβ , ΘI = 0 , I = 1, 2, 4

ω ≡ ω1 dϕ1 + ω2 dϕ2 =
(
c1 +

J (r2 + a2)

a2Σ

)
dϕ1 +

(
c2 −

J r2

a2Σ

)
dϕ2 , (2.51)

where c1 and c2 are constants to be determined via regularity and asymptotics. The constants

Q1, Q2 and J are harmonic sources that encode charges and angular momentum.

At the center of space (r = 0, θ = 0) the size of the ϕ1-circle and of the ϕ2-circle collapse to

zero size as measured in the spatial base metric, ds24, in (2.4). Moreover, P goes to a constant

at the center of space. It is evident from this and the discussion around (2.6) that to avoid

closed time-like curves at the center of space one must have ω + β = 0 at r = 0, θ = 0. This

implies:

c1 = − J

a2
, c2 = 2kR . (2.52)
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In addition, ω must also fall off when r → ∞ and hence we require

J = 2 kR a2 . (2.53)

Thus ω is given by

ω =
2 kRa2

Σ
(sin2 θ dϕ1 + cos2 θ dϕ2) . (2.54)

Finally there is the regularity of the metric near the supertube, which means that as one

approaches Σ = 0, or r = 0, θ = π
2 , the metric must remain smooth. One can easily check that

the only potentially singular parts of the metric are the dϕ2
1 terms and these are proportional

to:

− 2√
P
β1 ω1 +

√
P a2 dϕ2

1 (2.55)

The vanishing of the singularity at Σ = 0 requires

J =
Q1Q2

4kR
⇒ a2 =

Q1Q2

k2R2
y

. (2.56)

Thus supertube regularity determines the radius, a, and the angular momentum, J , in terms

of the charges Q1, Q2 and the dipole charge k. We thus recover the supertube metric of [59]

and its Gibbons-Hawking description [60].

Having made these choices, the ψ-fiber limits to a fixed size as one approaches the super-

tube while the remaining part of the spatial metric limits to (in spherical polar coordinates

(ρ+, ϑ+, φ) centered around the supertube):

d̃s
2

4 =

√
Q1Q2

4 ℓ

[
16 ℓ

Q1Q2
ρ+

(
dy+ 1√

2
(σ−̟)

)2
+

1

ρ+
(dρ2++ρ2+ dϑ

2
++ρ2+ sin2 ϑ+ dφ

2)

]
. (2.57)

Setting ρ+ = 1
4r

2
+ and using (2.43) and (2.56) one obtains:

d̃s
2

4 =

√
Q1Q2

4 ℓ

[
dr2+ + 1

4 r
2
+

(
dϑ2+ + sin2 ϑ+ dφ

2 + 1
k2

[
1√
2R

(
dy + 1√

2
(σ −̟)

)]2)]
. (2.58)

Since Ry = 2
√
2R, one has y ∼ y + 4π

√
2R and so the coordinate y√

2R
has period 4π, which

means that the metric in (2.58) represents the standard Zk orbifold of R4.

3 Supertubes with momentum via spectral interchange

The original D1-D5 supertube solution [9, 27] was defined in terms of an arbitrary profile

function, ~F (v̂), in R
4. While this manifestly describes the shape of the supertube, the supertube

solution is not invariant under reparameterizations of v̂, indeed, reparameterizations encode the

choice of the charge-density functions. Put differently, the supertube can be given two charge

densities, ̺1 and ̺2, and an angular momentum density, ˆ̺. However, supertube regularity

and the absence of closed time-like curves (CTC’s) places two functional constraints (local

analogues of (2.56)) on these densities leaving a free choice of one function. This function
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encodes the degrees of freedom represented by the choice of reparameterization in the original

formulation.

Spectral interchange can then be combined with the addition of such a charge-density

fluctuation so as to generate a third (momentum) charge.

3.1 Spectral interchange in general

The idea behind spectral interchange is extremely simple. When the base space, B, has a

Gibbons-Hawking form then the entire solution can be written as a torus fibration over a flat

R
3. The torus is, of course, described by (v, ψ) and one can act on this torus with elements

of GL(2,Z)8. Since these transformations are generated by simple changes of coordinate,

they must map BPS solutions to BPS solutions. Some elements of this transformation group

generate what are known as gauge transformations [61] and generalized spectral flows [31],

that mix K3 and V . Of relevance later will be the gauge transformations:

KI → KI + αIV

LI → LI − CIJK α
JKK − 1

2 CIJK α
JαKV

M → M − 1
2 α

ILI + 1
12 CIJK

(
V αIαJαK + 3αIαJKK

)
. (3.1)

Such transformations are pure gauge in that, while they reshuffle the potentials, while leaving

the physical properties of the solution invariant.

Spectral interchange is a subset of the generalized spectral flow transformations [31], and

is simply the modular inversion that interchanges v and ψ on the torus [32]. It corresponds to

a global diffeomorphism on the fibers:

v → −ψ , ψ → −v ; ⇔ V ↔ K3 , A→ −ξ , ξ → −A . (3.2)

This mapping also interchanges all the harmonic functions that make up the BPS solutions

outlined in the previous section, as we now describe.

To make the mapping more precise, we must normalize the torus angles that we interchange.

The periodicity of the y circle (2.1) induces an identification on u and v. As described in (2.3)

above, we parameterize this as

(u, v) ∼ (u, v) + (−4πR, 4πR) . (3.3)

Recalling the periodicity identifications on ψ and φ given in (2.40), we see that the relevant

lengths are 4πR for v and 4π for ψ. Thus the spectral interchange is more precisely written

as:

v

R
→ −ψ , ψ → − v

R
. (3.4)

8Technically, one should restrict to the global diffeomorphisms, SL(2,Z), but if one allows orbifolds it is
sometimes convenient to use GL(2,Z).
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Setting Z4 = 0 and Θ(4) = 0, spectral interchange implies that the following must also give

a BPS solution:

Ṽ =
K3

R
, K̃3 = RV , K̃1 =

L2

R
, K̃2 =

L1

R
,

L̃1 = RK2 , L̃2 = RK1 , L̃3 = − 2M

R
, M̃ = − 1

2 RL3 (3.5)

where any ψ-dependence is converted to v-dependence in accordance with (3.4). Observe,

in particular, that if the LI have some non-trivial ψ-dependence, then K̃1, K̃2 and L̃3 and

hence F̃ inherit a non-trivial v-dependence. Thus the new solution involves a momentum wave

and carries a momentum charge. We now implement this general idea in a specific explicit

construction.

3.2 Spectral interchange: An example

Our goal it to obtain a supertube with a magnetic dipole, k, and generic momentum densities

and we will do this via spectral interchange.

Performing spectral interchange on the round k-wound supertube (2.51), combined with a

gauge transformation with parameters

α1 = − Q̄2

kR
, α2 = − Q̄1

kR
, α3 = 0 , Q̄i ≡ Qi

4
, i = 1, 2 , (3.6)

results in a solution specified by the harmonic functions

V =
k

ρ+
, K1 = K2 =

1

R
, K3 =

R

ρ−
, (3.7)

L1 =
Q̄1

k

1

ρ−
, L2 =

Q̄2

k

1

ρ−
, L3 =

(
k +

Q̄1 + Q̄2

kR2

)
, (3.8)

M = − 1

2
R +

1

2

Q̄1Q̄2

k2R

1

ρ−
. (3.9)

This solution describes a supertube that is singly-wound, in a base space which is R
4/Zk.

The spectral interchange has thus had the effect of exchanging the original Zk orbifold at the

location of the supertube for a Zk orbifold at the center of space, and the original smooth

center of space has become the location of a singly-wound supertube.

On this supertube in the spectrally-inverted frame, we introduce charge densities as studied

in [34],

V =
k

ρ+
, K1 = K2 =

1

R
, K3 =

R

ρ−
, (3.10)

L1 =
Q̄1

k
λ1(ψ, ~y) , L2 =

Q̄2

k
λ2(ψ, ~y) , L3 =

(
k +

Q̄1 + Q̄2

kR2

)
, (3.11)

M = − 1

2
R +

1

2

Q̄1Q̄2

k2R
j(ψ, ~y) , (3.12)
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where the λA and j are harmonic functions on R
4 written as a Gibbons-Hawking space, and

are sourced by normalized densities ̺1, ̺2, and ˆ̺ localized at the supertube location ~y = ~y−,

that is ρ− = 0 or (y1 = 0, y2 = 0, y3 = − ℓ
2):

λA(ψ, ~y) = 4π

∫
d3y′

∫ 4π

0
dψ′ Ĝ(ψ, ~y; ψ′, ~y ′) ̺A(ψ

′ − kφ′)δ3(~y ′ − ~y−) ,

j(ψ, ~y) = 4π

∫
d3y′

∫ 4π

0
dψ′ Ĝ(ψ, ~y; ψ′, ~y ′) ˆ̺(ψ′ − kφ′)δ3(~y ′ − ~y−) . (3.13)

The dependence of the densities on the combination of angles ψ − kφ will become clear when

we use the Green function on R
4/Zk in the next subsection to construct explicit solutions. For

now, we keep the discussion general to explain our overall strategy.

We now transform back to the original supertube frame, first performing the inverse gauge

transformation to (3.6) and then performing spectral inversion. This results in the new BPS

solution:

V =
1

ρ−
, K1 =

Q̄2

kR

(
λ2(− v

R , ~y) − 1

ρ−

)
, K2 =

Q̄1

kR

(
λ1(− v

R , ~y) − 1

ρ−

)
,

(3.14)

K3 =
kR

ρ+
, L1 = 1 +

Q̄1

ρ+
, L2 = 1 +

Q̄2

ρ+
, (3.15)

L3 = 1 − Q̄1Q̄2

(kR)2

(
j(− v

R , ~y) − λ1(− v
R , ~y)− λ2(− v

R , ~y) +
1

ρ−

)
, (3.16)

M = − kR

2
+

1

2

Q̄1Q̄2

kR

1

ρ+
. (3.17)

The form of V means that the base, B, has returned to flat R4. There is a supertube with

a dipole charge k (corresponding to a pole in K3), and charges Q̄A located at ρ+ = 0. In

addition, the harmonic functions λA and j describe a momentum wave along the v direction

that is sourced at ρ− = 0. We have therefore succeeded in adding momentum to a standard

two charge supertube solution.

Spectral interchange is simply a global diffeomorphism and so regularity conditions can be

imposed on the supertube in the spectral-inverted frame. Before we do this, one should note

that in the original seed solution (3.10)–(3.12), the parameters, Q̄A, could be absorbed into

the normalization of the charge densities, ̺A and ˆ̺. We are therefore free to adjust them in

some convenient manner and we choose to impose the constraint:

ℓ =
Q̄1Q̄2

(kR)2
. (3.18)

As we will see, this choice will mean that one of the supertube regularity conditions is auto-

matically satisfied for ̺A = ˆ̺ = 1.

Supertube regularity with varying charge density was extensively studied in [34] (follow-

ing [33]) where it was shown that the supertube (3.10)–(3.12) is regular if one imposes the
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following functional constraints at each point of the GH fiber:

lim
ρ−→0

ρ−
[
V µ − Z3K

3
]

= 0 , (3.19)

lim
ρ−→0

ρ2−
[
V Z1Z2 − Z3(K

3)2
]

= 0 . (3.20)

Using (3.18), the first equation can be reduced to

kR ( ˆ̺− 1) +
1

kR

[
Q̄1 (̺1 − 1) + Q̄2 (̺2 − 1)

]
= 0 , (3.21)

where ̺A and ˆ̺ are defined in (3.13). The second regularity condition (3.20), when combined

with (3.21) reduces to a simple, local constraint on the charge densities [34],

ˆ̺ = ̺1̺2 . (3.22)

The regularity conditions (3.21) and (3.22) can be thought of as “coiffuring” the charge

densities so as to achieve regularity. One should note that while one can certainly satisfy (3.21)

using finite sets of Fourier modes, the charge density condition, (3.22), generically requires

one of the Fourier series to be infinite. As we will see below, coiffuring and the holographic

interpretation of the modes is somewhat simpler if one switches on (Z4,Θ4). One could repeat

the foregoing analysis by introducing an additional charge density ̺4, however for ease of

presentation we will continue without introducing ̺4 explicitly, and introduce (Z4,Θ4) in

Section 4.

3.3 The Green function and mode expansions on an R
4/Zk base

To construct explicit solutions of the form (3.10)–(3.12), we need the scalar Green function for

a GH base space with V = k
ρ+

and with a source located at ρ− = 0. It is straightforward to

obtain this via a coordinate transformation of the standard flat R4 Green function, or one can

use the general result of Page [62]. One finds that the Green function for the response at the

point (ψ, ~y) caused by a source at the point (ψ′, ~y ′ = ~y−) defined by ρ− = 0 is:

Ĝ(ψ, ~y;ψ′, ~y ′) =
1

16π2ρ−

sinh
[
k
2 log

ρ++ℓ+ρ−
ρ++ℓ−ρ−

]

cosh
[
k
2 log

ρ++ℓ+ρ−
ρ++ℓ−ρ−

]
− cos

[
1
2 (ψ − ψ′)− k

2 (φ− φ′)
] . (3.23)

Note that this function depends upon the combination of angular coordinates:

ψ − kφ . (3.24)

This should not be surprising because the GH fiber is defined by (dψ + A) and, at ρ− = 0,

this becomes (dψ − kdφ). Thus the charge density functions and solutions will depend upon

precisely this mixture of angles, explaining the form of Eq. (3.13). If one expands the charge

densities into Fourier modes,

̺A(ψ − kφ) =
∑

n

bA,n e
in
2
(ψ−kφ) , (3.25)
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then the solutions are elementary to obtain from the Green function using contour integration

(see for example [40]):

λA(ψ, ~y) =
∑

n

bA,n
ρ−

[(
ρ+ − ρ− + ℓ

ρ+ + ρ− + ℓ

) k
2

e
i
2
(ψ−kφ)

]n
≡

∑

n

bA,n
ρ−

F̂n (3.26)

where F̂n is defined through the above equation. Similarly, for j we have

ˆ̺(ψ − kφ) =
∑

n

b̂n e
in
2
(ψ−kφ) , j(ψ, ~ρ−) =

∑

n

b̂n
ρ−

F̂n . (3.27)

Note that in the limit ρ− → 0 these reduce to the following simple forms:

λA(ψ, ~y) →
∑

n

bA,n
ρ−

ei
n
2
(ψ−kφ) =

̺A(ψ − kφ)

ρ−
, j(ψ, ~y) → ˆ̺(ψ − kφ)

ρ−
. (3.28)

Introducing spherical polar coordinates (ρ, ϑ, φ) centered at the origin (halfway between the

supertube and the GH center), we observe that for ρ≫ ℓ,

ρ± ≃ ρ

(
1 ∓ ℓ

2 ρ
cos ϑ

)
. (3.29)

This means that F̂n falls off as ρ−
kn
2 at large ρ:

F̂n ∼
(
ℓ(1− cos ϑ)

2 ρ

) kn
2

e
in
2
(ψ−kφ) (3.30)

and so higher orbifolds lead to more rapid fall-off at infinity.

When we come to imposing regularity constraints, we will find it useful to introduce non-

zero (Z4,Θ4). In principle one could repeat the above analysis with an additional density

profile function ̺4 and analyze the modified supertube regularity conditions in the spectral

inverted frame. Rather than pursue this route, we will find it more convenient to perform

a direct analysis of the BPS equations using the techniques of [19] to construct our explicit

solutions. This will lead to the complete solution in a manner that is well-adapted to coiffuring

and holography.

4 Adding momentum to the supertube

As we have seen, adding momentum to a supertube naturally leads us to consider v-dependent

fluctuations. We now do this by generalizing the circular supertube seed solution described in

Section 2.3. In this way we will also obtain the complete solution including all components of

the angular-momentum vector.

A natural way to construct v-dependent solutions is to introduce fluctuating charge-density

sources along the v-fiber above the center of space, r = 0, θ = 0 or ρ− = 0, as described in [32].

Indeed, the ψ-fiber pinches off at the center of space while the v-fiber remains finite:

(dv + β) → (dv − 2kR dϕ2) . (4.1)
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This means that a single-valued source introduced along the v-fiber must have a Fourier ex-

pansion with the following dependence:

e−ip(
v
2R

−kϕ2) , p ∈ Z . (4.2)

We will therefore seek solutions based upon these Fourier modes. Thus we define the phase:

ζ =
v

2R
− kϕ2 . (4.3)

4.1 The first layer of equations

Based upon the form of Eqs. (3.17), (3.26) and (3.27) and the results of [32,63,58,19] it is not

hard to infer a solution to the first layer of BPS equations. Define

∆ ≡ a cos θ

(r2 + a2)
1

2

, (4.4)

then a somewhat lengthy computation shows that the following fields satisfy the first layer of

equations (2.14)–(2.16) for some complex Fourier coefficients, b1 and b2:

ZA = 1 +
QA
Σ

(
1 + ∆kn (bA e

−inζ + b̄A e
inζ)

)
, A = 1, 2 , (4.5)

Θ1 = − nQ2

2R
∆kn

[
b2 e

−inζ (Ω(2) + ir sin θΩ(1)) + b̄2 e
inζ (Ω(2) − ir sin θΩ(1))

]
, (4.6)

Θ2 = − nQ1

2R
∆kn

[
b1 e

−inζ (Ω(2) + ir sin θΩ(1)) + b̄1 e
inζ (Ω(2) − ir sin θΩ(1))

]
, (4.7)

To these fields one can add a completely independent, purely oscillating set of modes for

(Z4,Θ4):

Z4 =
∆kp

Σ
(b4 e

−ipζ + b̄4 e
ipζ) , (4.8)

Θ4 = − p

2R
∆kp

[
b4 e

−ipζ (Ω(2) + ir sin θΩ(1)) + b̄4 e
ipζ (Ω(2) − ir sin θΩ(1))

]
. (4.9)

Regularity of the metric and dilaton factors mean that one should have ZA > 0 for A = 1, 2.

This means that the terms in the parentheses in (4.5) must be strictly positive and since

|∆| < 1 away from the source, one can certainly guarantee ZA > 0 by taking:

|bA| ≤ 1

2
, A = 1, 2 . (4.10)

One may be able to improve this bound slightly, but the important point is that |bA| will
always be bounded by a number of order 1.

4.2 The second layer of equations

Consider a single mode of ω and F :

ω = e−iqζ(ω̂rdr + ω̂θdθ + ω̂1dϕ1 + ω̂2dϕ2) , F = −W e−iqζ (4.11)
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then the differential operators in (2.20) and (2.21) may be written as:

Dω + ∗4Dω + F Θ3

≡ e−iqζ
[
(r2 + a2) cos θΩ(1) L(q)

1 + r sin θΩ(3) L(q)
3 +

(r2 + a2)

r
cos θΩ(2) L(q)

2

]
,

(4.12)

∗4 D ∗4
(
DF − 2 ω̇

)
≡ e−iqζ

[
L̂(q)W − i q

R
L(q)
0

]
, (4.13)

where we define

L(q)
0 ≡ 1

Σ

[1
r
∂r(r (r

2 + a2) ω̂r) +
1

sin θ cos θ
∂θ(sin θ cos θ ω̂θ) +

i kq a2

(r2 + a2)
ω̂1 +

i kq

cos2 θ
ω̂2

]
,

(4.14)

L(q)
1 ≡ (∂rω̂θ − ∂θω̂r)−

i kq

r(r2 + a2) sin θ cos θ
(r2ω̂1 − a2 sin2 θ ω̂2) , (4.15)

L(q)
2 ≡ 1

cos θ
∂rω̂2 +

r

(r2 + a2) sin θ
∂θω̂1 −

i kq r2

Σcos θ
ω̂r −

i kqa2r sin θ

Σ (r2 + a2)
ω̂θ −

4kRa2r cos θ

Σ2
W ,

(4.16)

L(q)
3 ≡ 1

sin θ
∂rω̂1 −

1

r cos θ
∂θω̂2 −

i kq

Σcos θ
(a2 sin θ cos θ ω̂r − r ω̂θ) +

4kRa2r sin θ

Σ2
W ,

(4.17)

L̂(q)W ≡ 1

Σ

[1
r
∂r(r (r

2 + a2) ∂rW ) +
1

sin θ cos θ
∂θ(sin θ cos θ ∂θW )− k2q2(r2 + a2 sin2 θ)

(r2 + a2) cos2 θ
W

]
.

(4.18)

Using the solutions in (4.5)–(4.9), the source terms in (2.20) and (2.21) give rise, a priori,

to four non-trivial kinds of source terms:

1(a). Terms arising from products of modes with same phase. These depend upon e±2inζ and

have singularities involving Σ−2.

1(b). Terms arising from the product of a mode and a QA

Σ term. These depend upon e±inζ and

have singularities involving Σ−2.

2. Terms arising from the product of a mode and the constant (1) in ZA. These depend

upon e±inζ and have singularities involving Σ−1.

3. Terms arising from product of modes with the opposite phase. These are independent of

ζ and have singularities involving Σ−2.

However, the sources of types 1(a) and 1(b) are not really distinct in that the solution is the

same but simply with a different mode number. We therefore break down the sources into types

1,2 and 3 and write the particular equations that need to be solved and find the particular

solutions.

These systems of equations are:
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Source 1:

L(q)
1 = − i q

2R

∆kq r sin θ

Σ(r2 + a2) cos θ
, L(q)

3 = 0 ,

L(q)
2 = − q

2R

∆kq r

Σ(r2 + a2) cos θ
, L̂(q)W − i q

R
L(q)
0 =

q2

2R2

∆kq

Σ2
,

(4.19)

Source 2:

L(q)
1 = − i q

2R

∆kq r sin θ

(r2 + a2) cos θ
, L(q)

3 = 0 ,

L(q)
2 = − q

2R

∆kq r

(r2 + a2) cos θ
, L̂(q)W − i q

R
L(q)
0 =

q2

2R2

∆kq

Σ
,

(4.20)

Source 3:

L(q=0)
1 = 0 , L(q=0)

3 = 0 ,

L(q=0)
2 = − m

R

∆2mk r

Σ(r2 + a2) cos θ
, L̂(q=0)W =

m2

R2

∆2km

Σ(r2 + a2) cos2 θ
,

(4.21)

These equations have a gauge invariance associated with changing the u-coordinate:

u→ u+ f(xi, v) , ω → ω − df + β ∂vf , F → F − 2 ∂vf . (4.22)

In terms of the qth mode this becomes

(ω̂r, ω̂θ, ω̂1, ω̂2;W ) → (ω̂r, ω̂θ, ω̂1, ω̂2;W ) + (∂rh, ∂θh,
i kq a2 sin2 θ

Σ
h,
i kq r2

Σ
h;
i q

R
h) , (4.23)

for an arbitrary function h(xi) on the base, B. In particular, for q 6= 0 one can choose a gauge

with W = 0.

It is relatively easy to find the explicit solutions for each of these sources:

Solution for Source 1:

(ω̂r, ω̂θ, ω̂1, ω̂2;W ) =
∆kq

4 kR

(
− i

r(r2 + a2)
, 0,

sin2 θ

Σ
,
cos2 θ

Σ
; 0
)
, (4.24)

Solution for Source 2:

(ω̂r, ω̂θ, ω̂1, ω̂2;W ) =
∆kq

4 kR

(
− i

r
, i tan θ, 0, 1; 0

)
, (4.25)

Solution for Source 3:
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ω̂r = ω̂θ = 0 , W = − 1

4 k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2km

)
, (4.26)

ω̂1 =
1

2 kR

(r2 + a2)

Σ

((
∆2km − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+
Ĵ

a2
(r2 + a2)

Σ
+ ĉ1 , (4.27)

ω̂2 =
1

2 kR

r2

Σ

((
∆2km − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− Ĵ

a2
r2

Σ
+ ĉ2 , (4.28)

where Ĵ , ĉ1 and ĉ2 are constants to be determined.

4.3 The complete angular momentum vector

Writing the components of ω so as to include all the phases:

ω = (ωrdr + ωθdθ + ω1dϕ1 + ω2dϕ2) , (4.29)

putting together all the source terms and, for the moment setting b4 = 0, we find:

ωr = − iQ1Q2

4 kR

∆2kn

r(r2 + a2)

(
b1b2 e

−2inζ − b̄1b̄2 e
2inζ

)

− i

4 kR

∆kn

r(r2 + a2)

[(
(b1 + b2)Q1Q2 + (r2 + a2)(b1Q1 + b2Q2)

)
e−inζ

−
(
(b̄1 + b̄2)Q1Q2 + (r2 + a2)(b̄1Q1 + b̄2Q2)

)
einζ

]
(4.30)

ωθ =
i∆kn

4 kR
tan θ

(
(b1Q1 + b2Q2)e

−inζ − (b̄1Q1 + b̄2Q2)e
inζ

)
, (4.31)

ω1 =
Q1Q2

4 kR

∆2kn sin2 θ

Σ

(
b1b2 e

−2inζ + b̄1b̄2 e
2inζ

)

+
Q1Q2

4 kR

∆kn sin2 θ

Σ

(
(b1 + b2) e

−inζ + (b̄1 + b̄2) e
inζ

)

+
Q1Q2

2 kR
(b1b̄2 + b2b̄1)

(r2 + a2)

Σ

((
∆2kn − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+

J

a2
(r2 + a2)

Σ
+ c1 ,

(4.32)

ω2 =
Q1Q2

4 kR

∆2kn cos2 θ

Σ

(
b1b2 e

−2inζ + b̄1b̄2 e
2inζ

)

+
Q1Q2

4 kR

∆kn cos2 θ

Σ

(
(b1 + b2) e

−inζ + (b̄1 + b̄2) e
inζ

)

+
∆kn

4 kR

(
(b1Q1 + b2Q2) e

−inζ + (b̄1Q1 + b̄2Q2) e
inζ

)

+
Q1Q2

2 kR
(b1b̄2 + b2b̄1)

r2

Σ

((
∆2kn − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 , (4.33)

F =
Q1Q2

4 k2R2
(b1b̄2 + b2b̄1)

1

(r2 + a2 sin2 θ)

(
1−∆2kn

)
, (4.34)

where J , c1 and c2 are constants to be determined. Note that F vanishes at infinity.
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The solutions for (Z4,Θ4) will be allowed to have different moding from (ZA,ΘB), where

{A,B} = {1, 2}. Using (4.8) and (4.9) and the solutions for “Source 3,” we find

ωr =
i

4 kR

∆2kp

r(r2 + a2)

(
b24 e

−2ipζ − b̄24 e
2ipζ

)
, ωθ = 0 , (4.35)

ω1 = − 1

4 kR

∆2kp sin2 θ

Σ

(
b24 e

−2inζ + b̄24 e
2inζ

)
− |b4|2

kR

(r2 + a2)

Σ

((
∆2kn − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
,

(4.36)

ω2 = − 1

4 kR

∆2kp cos2 θ

Σ

(
b24 e

−2ipζ + b̄24 e
2ipζ

)
− |b4|2

kR

r2

Σ

((
∆2kp − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
, (4.37)

F = − |b4|2
2 k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2kp

)
. (4.38)

One should note that these solutions are singular: ωr diverges at r = 0. We therefore need

to smooth these solutions out by adjusting the Fourier coefficients appropriately.

4.4 Coiffuring and regularity

As we have discussed in Section 3.1, the core of this solution can be obtained via spectral

interchange [32]. Moreover, supertube regularity requires that the charge density functions

satisfy (3.21) and (3.22). The important point here this the (3.22) may be viewed as the

continuum analog of (2.56) and, as such, determines ˆ̺ in terms of ̺1 and ̺2 This can easily

be implemented explicitly in a finite Fourier expansion. On the other hand (3.21) and (3.22)

together mean that one cannot have a regular solution that involves finite Fourier series for

both ̺1 and ̺2: Regularity with only two fluctuating charge densities means (at least) one

of the two Fourier series must be infinite. Since the solution in this paper is the spectral

interchange of such a charge density fluctuation, the conclusion will be exactly the same.

In [19], regularity was achieved in a different manner: If one introduces one more charge

species one cancels the singular terms between the species in a process that is known as

“coiffuring” [39, 41, 40]. In the discussion above, the addition of the additional species is

represented by a new charge density, ̺4, and replaces the ̺1̺2 terms by ̺1̺2 − ̺24; one can

cancel the problematic quadratic terms and achieve regularity by simple linear constraints on

Fourier coefficients and this can be implemented in a finite Fourier series. Thus coiffuring

simply represents a very convenient way to solve the standard supertube regularity conditions

using finite Fourier expansions.

At a practical level, our problem is simply to cancel all the 1
r singularities in ωr and there

are two natural ways to achieve this.

4.4.1 Coiffuring: Style 1

The first is to give (Z4,Θ4) the same mode-dependence as the (ZA,ΘB). That is, to take p = n

in Eqs. (4.5)–(4.9) and then combine the corresponding contributions to ω and F .
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The singular terms that depend on e±2inζ are then cancelled by setting

b24 = Q1Q2 b1b2 . (4.39)

There are still singular terms that depend upon e±inζ and these can be cancelled (at r = 0)

by setting

(b1 + b2)Q1Q2 + a2 (b1Q1 + b2Q2) = 0 . (4.40)

Eliminating b1 and b2 in terms of b4 gives

b1 =
i b4
Q1

√
Q1 + a2

Q2 + a2
, b2 = − i b4

Q2

√
Q2 + a2

Q1 + a2
. (4.41)

The solution for F and ω then reduces to:

ωr = − i

4 kR

r∆kn

(r2 + a2)

[
(b1Q1 + b2Q2)e

−inζ − (b̄1Q1 + b̄2Q2)e
inζ

]
(4.42)

ωθ =
i∆kn

4 kR
tan θ

[
(b1Q1 + b2Q2)e

−inζ − (b̄1Q1 + b̄2Q2)e
inζ

]
, (4.43)

ω1 = − a2

4 kR

∆kn sin2 θ

Σ

[
(b1Q1 + b2Q2) e

−inζ + (b̄1Q1 + b̄2Q2) e
inζ

]

− 2 |b4|2
kR

(r2 + a2)

Σ

((
∆2kn − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+

J

a2
(r2 + a2)

Σ
+ c1 , (4.44)

ω2 =
r2

4 kR

∆kn

Σ

(
(b1Q1 + b2Q2) e

−inζ + (b̄1Q1 + b̄2Q2) e
inζ

)

− 2 |b4|2
kR

r2

Σ

((
∆2kn − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 , (4.45)

F = − |b4|2
k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2kn

)
, (4.46)

where J , c1 and c2 are constants to be determined.

One can, of course, do gauge transformations of the form (4.23) and set ωr or ωθ to zero.

It is amusing to note that if we choose Q1 = Q2 then (4.41) implies b1 = −b2 and every

oscillating term cancels from our expression for ω:

ωr = ωθ = 0 , (4.47)

ω1 = − 2 |b4|2
kR

(r2 + a2)

Σ

((
∆2kn − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+

J

a2
(r2 + a2)

Σ
+ c1 , (4.48)

ω2 = − 2 |b4|2
kR

r2

Σ

((
∆2kn − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 , (4.49)

This is analogous to the completely coiffured black rings and microstate geometries discussed

in [40,41].
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Returning to the more general Style 1 coiffuring (with independent Q1 and Q2), we wish

to examine the necessary conditions to avoid closed time-like curves9. As in Section 2.3 we

require that ω vanish at infinity and, as r → ∞, one finds that β vanishes and

ω + β →
(
J

a2
− 2 |b4|2
kR a2

+ c1

)
dϕ1 −

(
J

a2
− 2 |b4|2
kR a2

− c2

)
dϕ2 . (4.50)

At the center of space, r = 0, θ = 0, the ϕ1 and ϕ2 circles pinch off in the base metric ds24(B).
At r = 0, θ = 0 one finds:

ω + β →
(
J

a2
− 2 |b4|2
kR a2

+ c1

)
dϕ1 +

(
c2 − 2kR

)
dϕ2 (4.51)

which for the absence of CTC’s must vanish. Thus we require that:

c1 = −2 kR , c2 = 2 kR , J =
2 |b4|2
kR

+ 2 kR a2 . (4.52)

As noted earlier, regularity of the metric near the supertube means that as one approaches

Σ = 0, or r = 0, θ = π
2 , the metric must remain smooth. The only potentially singular terms

are proportional to dϕ2
1 but compared to simple supertube of Section 2.3, F is now finite as

one approaches the supertube and so (2.55) generalizes to:

6− 2√
P
β1

(
ω1 +

1
2 F β1

)
+

√
P a2 dϕ2

1 (4.53)

Collecting the singular terms terms and requiring that they vanish leads to a simple general-

ization of (2.56):

J =
1

4kR

[
Q1Q2 + 4 |b4|2

]
, (4.54)

and combined with (4.52) we obtain

a2 =
1

8 k2R2

[
Q1Q2 − 4 |b4|2

]
, (4.55)

which determines the radius of the supertube in terms of its electric charges.

Of particular significance is that, at infinity, one has

− F
2

∼ |b4|2
2k2R2

1

r2
∼ QP

r2
, (4.56)

which implies that the supertube now carries a momentum charge of

QP =
|b4|2
2k2R2

. (4.57)

Note also that (4.55) implies the following bounds:

|b4|2 <
Q1Q2

4
⇒ QP <

Q1Q2

8 k2R2
=

Q1Q2

k2R2
y

. (4.58)

9Following standard practice, we show that there are no CTC’s near the supertube and no CTC’s at infinity.
This is usually sufficient to guarantee the absence of CTC’s globally.
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More generally, it is instructive to rewrite (4.54) and (4.55) in terms of the momentum charge:

J = 2 kR (a2 + 2QP ) , a2 =
Q1Q2

8 k2R2
−QP . (4.59)

For future reference, it is convenient to extract the components of ω1 and ω2 that do not

contain powers of ∆:

ω̂1 ≡ − 2 |b4|2
kR

(r2 + a2)

Σ

(
− sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+

J

a2
(r2 + a2)

Σ
+ c1 , (4.60)

ω̂2 ≡ − 2 |b4|2
kR

r2

Σ

(
− cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 . (4.61)

The terms involving powers of ∆ represent higher multipoles arising from the oscillations and,

when kn is sufficiently large, these are highly suppressed in the regions r >> a. Thus the ω̂i
are the ‘higher-multipole-free’ components of the angular momentum. Substituting (4.52) into

(4.60) and (4.61) yields

ω̂1 ≡ 2 |b4|2
kR

a2 sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+
J

Σ
sin2 θ , ω̂2 ≡ − 2 |b4|2

kR

a2 sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+
J

Σ
cos2 θ .

(4.62)

Note that the first terms in these expressions vanish as r−4 when r → ∞ and hence for

sufficiently large kn, the asymptotic structure of ω is determined entirely by J :

ω̂ ∼ J

r2
(sin2 θdϕ1 + cos2 θdϕ2) . (4.63)

Recall from (2.49) that one has:

β ∼ 2 kRa2

r2
(sin2 θdϕ1 − cos2 θdϕ2) . (4.64)

It therefore follows that this configuration has angular momenta (here we switch back to the

physical y radius Ry = 2
√
2R for later use)

J1 =
1√
2
(J + 2 kRa2) =

Q1Q2

kRy
, J2 =

1√
2
(J − 2 kRa2) = kRyQP . (4.65)

and J should be identified with

JL ≡ 1

2
(J1 + J2) =

J√
2

=
1

2

Q1Q2

kRy
+

1

2
kRyQP . (4.66)

Also note that

JR ≡ 1

2
(J1 − J2) =

√
2 kRa2 =

1

2

Q1Q2

kRy
− 1

2
kRyQP . (4.67)

For later use, we record that in terms of b4, the angular momenta are

JL =
1

2

Q1Q2

kRy
+

2|b4|2
kRy

, JR =
1

2

Q1Q2

kRy
− 2|b4|2

kRy
. (4.68)
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We observe that, compared to the angular momenta of the original supertube solution in

Section 2.3, J1 is unchanged, JL has increased and JR has decreased. We will interpret this in

the CFT shortly.

Supersymmetric BMPV black holes [64] with macroscopic horizons exist in the regime of

parameters

Q1Q2QP − J2
L > 0 , JR = 0 . (4.69)

Indeed, see Appendix A and, specifically (A.6), where we have given the metric of the BMPV

black hole in our conventions.

It is useful to parameterize the momentum charge via:

QP = cp
Q1Q2

k2R2
y

, 0 ≤ cp < 1 , (4.70)

where the upper bound on cp is a rewriting of (4.58). Then using (4.66) we find

Q1Q2QP − J2
L = − (1− cp)

2

4

(
Q1Q2

kRy

)2

(4.71)

and so, in terms of the quantum numbers of a BMPV black hole, this geometry is “overspin-

ning” and becomes extremal in the scaling limit:

QP → Q1Q2

k2R2
y

⇒ a2 → 0 . (4.72)

To understand why our solutions are overspinning, note that the original supertube of Section

2.3 is overspinning (cP = 0) and as we add momentum QP , (4.59) shows that we must also

add a corresponding amount of angular momentum, and that a is adjusted according to (4.59)

such that we obtain (4.69).

4.4.2 Coiffuring: Style 2

For our second style of coiffuring, we employ the coiffuring technique used in [19]. We will see

in due course that the holographic dictionary is somewhat simpler for these solutions. The

first step is to set b2 = 0 and take n = 2p in Eqs. (4.5)–(4.9). The leading r−1 singularities are

cancelled by taking:

Q1(Q2 + a2)b1 = b24 , (4.73)

which fixes the Fourier coefficient b1 in terms of b4.
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This leads to the solution:

ωr = − iQ1

4 kR

∆2kp r

(r2 + a2)

[
b1e

−2ipζ − b̄1e
2ipζ

]
, ωθ =

iQ1 ∆
2kp

4 kR
tan θ

(
b1e

−2ipζ − b̄1e
2ipζ

)
,

(4.74)

ω1 = − Q1 a
2

4 kR

∆2kp sin2 θ

Σ

(
b1 e

−2ipζ + b̄1 e
2ipζ

)
− |b4|2

kR

(r2 + a2)

Σ

((
∆2kp − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)

+
J

a2
(r2 + a2)

Σ
+ c1 , (4.75)

ω2 =
Q1

4 kR

∆2kp r2 cos2 θ

Σ

(
b1 e

−2ipζ + b̄1 e
2ipζ

)
− |b4|2

kR

r2

Σ

((
∆2kp − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)

− J

a2
r2

Σ
+ c2 , (4.76)

F = − |b4|2
2 k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2kp

)
, (4.77)

The analysis of the absence of CTC’s proceeds exactly as before, giving:

c1 = −2 kR , c2 = 2 kR , J =
|b4|2
kR

+ 2 kR a2 . (4.78)

Regularity at the supertube once again requires (4.53) to be finite at Σ = 0. This yields

J =
1

4kR

[
Q1Q2 + 2 |b4|2

]
, (4.79)

and combined with (4.78) we obtain

a2 =
1

8 k2R2

[
Q1Q2 − 2 |b4|2

]
, (4.80)

which, again, determines the radius of the supertube in terms of its electric charges.

At infinity we now have

− F
2

∼ |b4|2
4 k2R2

1

r2
, (4.81)

which implies that the supertube now carries a momentum charge of

QP =
|b4|2

4 k2R2
. (4.82)

Since we have set b2 = 0 we have, in a sense, half as many oscillations and this leads to

halving of various quantities in this style of coiffuring.

As before, the positivity of (4.80) places a bound on |b4| which, in turn, results in the same

bound on the momentum charge:

|b4|2 ≤ Q1Q2

2
⇒ QP ≤ Q1Q2

8 k2R2
=

Q1Q2

k2R2
y

. (4.83)
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More generally, when (4.79) and (4.80) are rewritten in terms of the momentum charge we

obtain exactly the same conditions as in (4.59):

J = 2 kR (a2 + 2QP ) , a2 =
Q1Q2

8 k2R2
−QP . (4.84)

Furthermore, in terms of QP and J , the ‘higher-multipole-free’ components of the angular

momentum are identical to those of (4.62):

ω̂1 ≡ 4 kR a2QP sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+

J

Σ
sin2 θ , ω̂2 ≡ − 4 kR a2QP sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+

J

Σ
cos2 θ .

(4.85)

Thus the discussion of the asymptotic angular momenta is the same as in Section 4.4.1, and

we again have

JL =
1

2

Q1Q2

kRy
+

1

2
kRyQP , JR =

1

2

Q1Q2

kRy
− 1

2
kRyQP . (4.86)

The difference between Style 1 and Style 2 comes when we express the angular momenta in

terms of the respective coefficients of the oscillating terms. For Style 2, we obtain

JL =
1

2

Q1Q2

kRy
+

|b4|2
kRy

, JR =
1

2

Q1Q2

kRy
− |b4|2
kRy

. (4.87)

In the limit of k = 1, and taking b4 to be real, our Style 2 solution is the extension to

asymptotically flat space of a particular subset10 of the solutions constructed in [19].

4.4.3 The lowest harmonics

Recalling the form of ∆ in (4.4),

∆ ≡ a cos θ

(r2 + a2)
1

2

, (4.88)

we see that for low values of k, n and p, the powers of ∆ do not fall off strongly at infinity and

do not vanish very strongly at the ring (r = 0, θ = π
2 ). This can potentially lead to apparently

singular behavior at the ring and unusual asymptotics at infinity. We now examine this more

carefully.

First, note that for kn = 1 there is an additional singularity at r = 0, θ = π
2 in the first term

of ω1 in (4.44), and ωθ and ω2 both contain terms that oscillate and fall off as as r−1. However

these terms are absent when Q1 = Q2, and also in the decoupling limit, since they arise from

the solution to Source 2 as described in Section 4.2. Therefore there is a good asymptotically

AdS solution for kn = 1.

Restricting attention now to kn ≥ 2, in “Style 1” one sees that ωθ and ω2 both contain

terms that oscillate and fall off as as r−kn, while ωr falls off as r−(kn+1)dr. Similarly, in “Style

2”, one sees that ωθ and ω2 both contain terms that oscillate and fall off as as r−2kp, while

10This subset of the solutions in [19] is given by taking a single mode of that construction and setting m = k
in the notation of that paper.
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ωr falls off as r−(2kp+1)dr. Since we normally expect the angular momentum to appear as the

leading term and fall off as r−2 at infinity, the r−2 terms may, at first, seem anomalous.

However, these oscillating terms do not present a problem. The most direct way to see

this is to observe that they oscillate around the compactified y-circle and so average to zero

in any measurement of asymptotic charge at infinity in the non-compact space. Such terms

have also been encountered in other holographic solutions. Indeed, oscillating terms that fall

off as r−2 were encountered in [49–51] and [58] (see Eq. (5.21g)) where they arose through the

action of the underlying global chiral algebra. Consequently, angular momentum modes that

oscillate along y and fall off as r−2 in flat space represent physical solutions, and upon taking

the decoupling limit, the corresponding asymptotically-AdS solutions are dual to well-defined

CFT states.

4.5 Regularity bounds and CTC’s

As we have seen, there is a bound on the Fourier coefficients, |b4|, that resulted in a bound on

the momentum charge that was independent of the coiffuring style:

QP ≤ Q1Q2

4 k2R2
. (4.89)

In addition, the coiffuring conditions relate |b4| to the |bA| via (4.39) or (4.73) so that we have:

|b1b2| =
|b4|2
Q1Q2

≤ 1

4
or |b1| =

|b4|2
Q1(Q2 + a2)

<
1

2
, (4.90)

depending upon the coiffuring style. These conditions are completely consistent with the

bounds that we obtained earlier, (4.10), based upon the regularity of the ZA.

One can also examine the possibility of CTC’s in the ‘intermediate region’ where a2 ≪
r2 ≪ QX for all charges, Q1, Q2 and QP . We also assume kn or kp is sufficiently large that we

can drop such powers of ∆ everywhere and, in particular, work with the ‘higher-multipole-free’

components, ω̂i, of the angular momentum. In this intermediate region we have ZI ∼ QI

r2
and

the configuration looks like a BMPV black hole. Moreover, this region also contains the scaling

limit (4.72).

Since |F| ≫ 1 in the intermediate region, it is more natural to complete the squares in the

metric (2.4) by writing

ds26 =
1

F
√
P

(
du+ ω)2 − F√

P
(
dv + β + F−1(du+ ω)

)2
+

√
P ds24(B) , (4.91)

If one considers displacements only in the (v, ϕ1, ϕ2) directions and chooses dv so that the

middle term in (4.91) vanishes then the absence of closed timelike curves (CTC’s) requires:

− ω2 − F P
(
(r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2

)
≥ 0 . (4.92)

Dropping all powers of ∆k we can replace ω by ω̂. We will retain the 1’s in the ZA’s, relabelling

them by ε0 so as to keep track of them. The absence of a negative eigenvalue in this two
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dimensional metric results in an inequality on the determinant that may be simplified to:

(Q1 + ε0 Σ)(Q2 + ε0 Σ)QP − J2 ≥ 4 k2R2a8 sin2 θ cos2 θ

r2(r2 + a2)
, (4.93)

where ε0 = 1. Using (4.69) this identity simplifies to

ε0 (Q1 +Q2 + ε0 Σ)QP ≥ a4 (r2 + a2 sin2 θ)

r2(r2 + a2)
, (4.94)

which is generically satisfied in the intermediate region. Thus we have solutions without

CTC’s11 but that have the charges of overspinning BMPV black holes.

5 Dual CFT states

The spacetime CFT dual to gravity on AdS3 × S
3 × M is a non-linear sigma model on the

moduli space of instantons on M = T
4 or K3 [23,24,17]. As is usual in AdS/CFT duality, the

CFT is strongly coupled where gravity is weakly coupled, and vice versa. There is a locus in

the moduli space where the target space of the CFT is the symmetric orbifold MN/SN [25,26]

(see also the review [65]), and since the BPS spectrum does not change in the passage from

weak to strong coupling, one can hope to identify the CFT states in the orbifold theory which,

when transported across moduli space to the regime where supergravity is weakly coupled, are

dual to our geometries.

In the orbifold theory, the duals to black-hole states are the twisted sectors of the orb-

ifold containing long cycles that permute many copies of M. Most of the entropy comes

from oscillator excitations with fractional moding, and it has proven challenging to construct

solutions that map to CFT states involving such fractional oscillators (for some previous ex-

amples, see [47,48]). A major motivation for our construction is that it provides a large class

of supergravity solutions whose CFT duals involve fractionally-moded oscillators.

In this section we begin with a review of the structure of the symmetric product orbifold

CFT – covering both the structure of its supersymmetric ground states (in Section 5.1), and

the relation between BPS operators in the CFT and linearized mode operators in supergravity

(in Section 5.2).

Previous studies have considered spectral flow as a means of introducing momentum charge

to the system starting from a two-charge seed solution [52–54]. In CFT states where all strands

have windings which have a common divisor greater than one, there is the possibility to perform

fractional spectral flow [42] which can be used to generate three-charge solutions [47,48]. After

a brief review of spectral flow in Section 5.3, a proposal is made in Section 5.4 for the CFT

states dual to our geometries, built from fractional spectral flow on a subset of strands of

a suitable two-charge BPS seed state. These candidate dual states are shown to carry the

appropriate conserved quantum numbers, and reproduce at leading order the selection rules

11Strictly speaking we have only shown that there are no CTC’s near the supertube, in the intermediate
region and at infinity. Again, this should be sufficient to guarantee the absence of CTC’s globally.
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on the vevs of CFT operators dual to supergravity modes. The precise content of the dual

CFT states is then specified at the fully non-linear level by finding the CFT states dual to

a two-charge supertube profile that yield the CFT states we construct by fractional spectral

flow.

For the purpose of comparison, it will be somewhat more convenient to work in the F1-NS5

duality frame, where the background fields are all from the NS sector. NS-R parity is then

manifest (it is simply fermion parity in the CFT), and is an additional tool which can be used

to characterize states and operators.

5.1 1

4
-BPS states: Twisted sector ground states of the CFT

The vast majority of the 1
4 -BPS states of the symmetric orbifold (M)N/SN CFT are the

twisted sector ground states under the symmetric group. There is an independent twisted

sector for each conjugacy class in the orbifold group. In the symmetric group, one may write

elements of the group as words consisting of products of (non-overlapping) cyclic permutations

of the copies of M. The conjugacy class of a word is characterized simply by the lengths of

all the cycles in the word. Thus the conjugacy class is specified by the number nκ of cycles of

length κ, κ ∈ {1, . . . N}, and the total length (including cycles of length one) is
∑

i ni = N .

We will mostly focus on T
4, and comment on the modifications that result when K3 is

realized as T4/Z2, though, of course, the Ramond ground state structure is the same anywhere

on the K3 moduli space. The sigma model on the ℓth copy of M has bosonic fields X
(ℓ)

AȦ
and

fermions χ
(ℓ)
Aα, χ̄

(ℓ)
Aα̇. These carry labels under a variety of SU(2) symmetries:

• The doublets α, α̇ of the left and right (SU(2) × SU(2))R R-symmetry.

• The doublet Ȧ under a custodial SU(2)C which is a global symmetry of the N = (4, 4)

superalgebra. The supercurrents carry spin one-half under SU(2)C as well as under the

R-symmetry.

• The doublet A under an auxiliary SU(2)A. This SU(2)A is a symmetry for M = T
4,

but is broken by the holonomy of the connection for M = K3.

In a given twisted sector cycle, the bosons X
(ℓ)

AȦ
and fermions χ

(ℓ)
Aα, χ̄

(ℓ)
Aα̇ of the individual T4

CFTs are cyclically permuted:

X(ℓ)(e2πiz) = X(ℓ+1)(z) , ℓ = 0, . . . , κ− 1 , (5.1)

where X(κ) ≡ X(0); similarly for the fermions χ(ℓ), χ̄(ℓ). The twist operator for such a cyclic

orbifold is most conveniently expressed in terms of fields that diagonalize the twist action.

Define the “clock” fields that are discrete Fourier transforms of these “shift” fields

X(ν) =

κ−1∑

ℓ=0

exp
[
2πi

νℓ

κ

]
X(ℓ) , ν = 0, . . . , κ− 1 , (5.2)
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and similarly for the fermions χ(ν), χ̄(ν). The clock fields diagonalize the cyclic permutation

X(ν)(e2πiz) = e2πiν/κX(ν)(z) . (5.3)

A twist operator that implements these boundary conditions is the tensor product of standard

Zκ orbifold twist operators σ(ν/κ) for each clock sector.12 These have dimension hν,b = ν(κ−
ν)/κ2 for the bosonic twist operators, and hν,NS = (ν/κ)2 for NS sector fermion twist operators,

or hν,R = (ν/κ− 1/2)2 for the R sector fermion twists. Taking the product over all the clock

sectors yields the full twist operator for the cycle

Σ(κ) =

κ−1∏

ν=0

σ(ν/κ) , hΣ =




(κ− 1)/2 , NS ;

κ/4 , R .
(5.4)

These NS sector twist ground state operators are spin (κ − 1)/2 under both left- and right-

moving SU(2)R R-symmetries, as may be seen by bosonizing the clock fermions and building

the fermion twist operators as exponentials. Thus, these operators, and the states that they

create from the NS sector vacuum, are 1
4 -BPS, breaking half the supersymmetries of each

chirality. Additional BPS operators are obtained by combining the lowest-dimension twist

operator with the center-of-mass (ν = 0) fermion field. Similarly, the κ-cycle R sector ground

state operators preserve one quarter of the Ramond supersymmetries.

The monodromy (5.2) results in fractional mode expansions for the X(ν)

∂zX
(ν)(z) =

∑

m∈Z
x
(ν)
m+ν/κ z

−m−ν/κ−1

χ(ν)(z) =
∑

m∈Z
X (ν)
m+ν/κ z

−m−ν/κ , (5.5)

together with the oscillator commutation relations

[x
(ν)
m+ν/κ,x

(κ−ν)
−m′−ν/κ] = α′(m+ ν/κ)δmm′

[X (ν)
m+ν/κ,X

(κ−ν)
−m′−ν/κ] = α′(m+ ν/κ)δmm′ , (5.6)

where to reduce clutter the tangent space indices on the modes and fields have been suppressed

in these expressions.

At this point, one can assemble all the different clock sector modes into a single set of

“untwisted” (integer moded) T4 scalar fields X̂AȦ and fermions χ̂Aα, χ̂Aα̇ living on the κ-fold

cover of the cylinder. In order that the oscillator commutation relations remain canonical,

one must rescale the effective string tension α′ by a factor of κ, to α̂′ = α′/κ; the fractionated

oscillator mode energies are also κ times smaller than the energies of the the untwisted oscillator

modes.

12The full orbifold is of course non-abelian, but for the purpose of describing the spectrum, one can use abelian
orbifold terminology.
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The covering-space picture makes it clear that the R ground states carry spinor quantum

numbers in the target space, since the structure is the same as the worldsheet theory of free

perturbative strings. We can label the Ramond ground states for T4 as

|αα̇〉 , |AB〉 , |αB〉 , |Aα̇〉 ; (5.7)

for T
4/Z2 the fixed points provide sixteen more. One moves around in the space of ground

states by the action of the zero modes of the fermions χ̂Aα, χ̂Bα̇, which act as gamma matrices.

We will focus on two ground states in particular – the highest weight state |++〉 of the spin-1/2
multiplet, and the “singlet” combination of the auxiliary SU(2)A bispinor

|00〉 ≡ ǫAB |AB〉 . (5.8)

The covering space picture also leads to a somewhat more geometrical picture of the 1
4 -

BPS states in the Ramond sector. The conformal dimension of the ground state in the twisted

sector is determined by the covering space transformation z → zκ, for which the Schwarzian

derivative contribution to the stress tensor leads to

h
(κ)
0 =

κ

4
− 1

4κ
. (5.9)

One can then apply any operator O of the M = T
4 (or K3) SCFT to this ground state;

recalling that energies of the covering space theory are reduced by a factor of κ leads to the

spectrum

h
(κ)
O = h

(κ)
0 +

hO
κ

. (5.10)

The Ramond ground states of M are in one-to-one correspondence with the cohomology

of M;13 for instance, for M = T
4 the special spin-1/2 multiplet |αα̇〉 is associated to the

(0, 0), (0, 2), (2, 0) and (2, 2) cohomology, while the j = 0 states |AB〉 are associated to the

(1, 1) cohomology. Thus, in the κ-cycle twisted Ramond sector for T
4, the supersymmetric

ground states with h = κ/4 consist of one (j, j̄) = (1/2, 1/2) multiplet and a quartet of

singlets. In addition there are representations (1/2, 0) and (0, 1/2) which correspond to the

odd cohomology. The action of the fermion zero modes of χ, χ̄ moves one among these various

representations. A similar story holds for M = K3. If we realize K3 as a T
4/Z2 orbifold, we

obtain 16 additional singlets from the 2-cohomology associated to the 16 fixed points of the

orbifold, however there is no odd cohomology and so no (1/2, 0) or (0, 1/2) representations.

Under spectral flow, the operators that create these Ramond ground states from the vac-

uum transform into BPS short multiplet operators in the NS sector. We will discuss spectral

flow in more detail below; here we simply wish to note that spectral flow generates from any op-

erator with quantum numbers (L0, J3) = (h, j) a related set of flowed operators with quantum

numbers

L0 = h+ 2 j s+
c

6
s2 , J3 = j +

c

6
s , s ∈ 1

2
Z . (5.11)

13Since topologically twisting the supersymmetry of the sigma model relates the cohomology of the super-
symmetry charges to the cohomology of a Dolbeault-type operator on the target space.
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If the initial operator is in the R (NS) sector, then spectral flow by integer amounts leads to

another R (NS) operator, while spectral flow by odd half-integer amounts leads to NS (R)

operators.

Finally, the twist operator for the full word conjugacy class in the symmetric group is given

by the product of the twist operators for the n-component cycles in the word, for instance

Σ =

n∏

i=1

Σ
(κi)
i , hΣ =




(N − n)/2 , NS ;

N/4 , R ,
(5.12)

where we have used the fact that the sum of all the κi is N . In the NS sector, only if all the

polarizations αi, α̇i are aligned is the state BPS, since only then does the R-charge equal (plus

or minus) the scaling dimension. In the R sector, any choice of polarizations will do, and one

obtains a large degeneracy of BPS ground states carrying any S
3 angular momentum in the

tensor product (12)
⊗n. Note also that all the Ramond ground states are at zero energy once

we include the Casimir energy E0 = −c/24 = −N/4 for the CFT on a cylindrical geometry.

The geometries constructed in Sections 2–4 are dual to CFT states in the Ramond sector, so

henceforth we specialize to this sector. On the other hand, linearized excitations are NS sector

operators, and so we will be interested in these NS operators when probing a CFT state to see

what vevs of the supergravity fields are turned on in the supergravity background dual to this

CFT state.

5.2 1

4
-BPS operators: Linearized supergravity modes

The spectrum of linearized supergravity on AdS3×S
3 and its relation to the symmetric product

was worked out in [66,67] (see also [68,69]). The bosonic spectrum consists of

• T
4: the graviton, 5 self-dual (SD) plus 5 ASD tensors, 16 vectors, and 25 scalars;

• K3: the graviton, 5 SD plus 21 ASD tensors, and 105 scalars.

All these fields lie in short multiplets of the N =(4, 4) superconformal algebra. The R-charge

of these multiplets is a combination of the spatial momentum on S
3 and the tensor structure

of the fields. The left-moving R-charge content of an NS sector short multiplet consists of

state j j′ h

|Ψ〉 n/2 0 n/2

G− 1

2

|Ψ〉 (n− 1)/2 1/2 (n+ 1)/2

(G− 1

2

)2|Ψ〉 (n− 2)/2 0 (n+ 2)/2

(5.13)

where j is the spin under the SU(2)R R-symmetry, and j′ is the spin under the global (cus-

todial) SU(2)C of the N = 4 algebra; similarly for the right-moving structure. Short multi-

plets may also carry an additional auxiliary SU(2)A quantum number A,B associated to the
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fermions χαA, χ̄α̇A for T4. For K3, this is the SU(2) for which the connection has holonomy,

and so is not generically a good quantum number, however it is an “accidental” symmetry for

untwisted states of the T
4/Z2 orbifold locus and we can continue to use this labelling.

Consider the highest weight component of a short multiplet operator

O(κ)
m,m̄ = O(α1...αm),(α̇1...α̇m̄) (5.14)

of R-charge spins (2j + 1, 2j̄ + 1) = (m, m̄). Its single descendants are thus

OȦḂ
(α2...αm),(α̇2...α̇m̄) = Gα1Ȧ

− 1

2

Ḡα̇1Ḃ
− 1

2

O(α1...αm),(α̇1...α̇m̄) , (5.15)

where Ȧ, Ḃ are custodial SU(2)C indices (not to be confused with the auxiliary SU(2)A labels

A,B for the ground states in equation (5.7)); the double descendants are

O(α3...αm),(α̇3...α̇m̄) =
(
ǫȦḂG

α1Ȧ
− 1

2

Gα2Ḃ
− 1

2

)(
ǫȦ′Ḃ′Ḡ

α̇1Ȧ′

− 1

2

Ḡα̇2Ḃ′

− 1

2

)
O(α1...αm),(α̇1...α̇m̄) . (5.16)

One also has the helicity (m− m̄± 2)/2 fields one gets by taking the double-descendant only

on one side.14 These comprise the bosonic content of the supermultiplet.15

According to [66,67], the spectrum of N =(4, 4) short multiplets for type IIB supergravity

on AdS3 × S
3 ×K3 is

⊕m≥1

[
(m,m+ 2)S + (m+ 2,m)S + (m+ 2,m+ 2)S

]
+ nT

[
⊕m≥2 (m,m)S

]
, (5.17)

where m is the dimension of the SU(2)R representation. These supermultiplets expand into a

set of S3 harmonics (ignoring special restrictions at low angular momentum)

⊕m

(
(m,m± 4) + 4(m,m ± 3) + (nT + 7)(m,m ± 2)

+ (4nT + 8)(m,m ± 1) + (6nT + 8)(m,m)
)
. (5.18)

The number of ASD tensors nT = 21 is dictated by anomaly cancellation. These quantum

numbers result from the product of spherical harmonics on the S
3 with the representations of

the SO(4)L little group

(3,3) + 4(2,3) + 5(1,3) + nT (3,1) + 4nT (2,1) + 5nT (1,1) . (5.19)

Similarly, the spectrum of short multiplets for AdS3 × S
3 × T

4 is [66, 65]

⊕m≥1

[
(m,m+ 2)S + (m+ 2,m)S + (m+ 2,m+ 2)S

]

+ 5
[
⊕m≥2 (m,m)S

]
+ 4⊕m≥2

[
(m,m+ 1)S + (m+ 1,m)S

]
. (5.20)

14Note that the action of G
−

1

2

lowers the SU(2) spin while raising the SL(2) spin, so that the six-dimensional

helicity stays constant; similarly for Ḡ
−

1

2

. Thus the short multiplets with m− m̄ = ±2, whose highest weight

has spin one in both SU(2) and SL(2), contain the six-dimensional spin-two graviton polarizations.
15The lowest BPS operator in the short multiplet (k, k)S has special properties at low k. For k = 1 this

operator is the identity operator, and the higher components of the superfield are absent. For k = 2, the lowest
component has dimension h = h̄ = 1/2, and the double-descendant is null. Not until k = 3 is there a non-trivial
double-descendant operator.
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There is a one-to-one correspondence between single-particle supergravity modes and κ-

cycle Ramond ground states, by starting with the operators associated to the latter and per-

forming a single unit of spectral flow to the NS sector. The operators associated to a single

cycle of the symmetric group correspond to the single-particle modes in supergravity. The

cycle winds together κ copies of M, and thus has central charge c = 6κ. Under the spectral

flow operation (5.11), the j = 1/2 Ramond operators flow to one h = j = (κ − 1)/2 NS op-

erator (from the j3 = −1/2 polarization), and one h = j = (κ + 1)/2 NS operator (from the

j3 = +1/2 polarization).16 Similarly, the j = 0 operators flow to h = j = κ/2 operators.

The special spin-1/2 multiplet thus yields SU(2)R representations m = κ, κ + 2 after

spectral flow, while the spin-0 multiplets yield representation m = κ + 1 after spectral flow.

Combining left- and right-movers yields the spectra (5.17), (5.20). Note that for K3, the

Ramond operators have the same fermion parity on left and right, while for T
4, the left and

right fermion parity can be chosen independently since one can act with fermion zero modes

on left and right independently; this is the origin of the short multiplets (m,m± 1)S which

comprise the harmonic expansion of the vector supermultiplets.

The special spin (1/2, 1/2) Ramond ground states are universal, and upon spectral flow to

the NS sector are associated to the six-dimensional graviton, dilaton and NS B-field. Their

harmonics on the spatial S3 organize themselves into N =(4, 4) short multiplets

(κ, κ)S + (κ, κ+2)S + (κ+2, κ)S + (κ+2, κ+2)S (5.21)

comprising the lowest spin chiral primary O(κ)
m,m of the κ-cycle, which has m = κ, together

with the three additional chiral primaries built by tensoring with the κ-cycle currents J+

and/or J̄+ on O(κ)
κ,κ. The bosonic content of these multiplets consists of two six-dimensional

supergravity supermultiplets. The first, the graviton supermultiplet, contains the graviton

plus the self-dual part of the B-field, as well as four more self-dual, six-dimensional, two-form

tensor fields from the RR sector. The second, a six-dimensional tensor multiplet, contains

the ASD six-dimensional polarizations of the NS B-field, as well as the dilaton and four six-

dimensional scalars made from the triplet of RR fields C+
2 (the RR tensor which is self-dual on

T
4) together with the self-dual combination v4C0+C4 of the RR scalar and T

4 four-form. The

zero modes of these latter four scalars are moduli in the F1-NS5 duality frame. The m = m̄

CFT primaries map to linear combinations of supergravity field modes that diagonalize the

linearized field equations.17 In general, there are also non-linear corrections to the map between

CFT operators and supergravity field modes; in a typical correlator, these corrections are

suppressed by powers of the gravitational coupling, but in so-called extremal correlators (where

the conformal dimension of one operator is the sum of all the others) these non-linearities can

contribute at leading order.

16Note that the latter operator can also be obtained from the former by tensoring with the center-of-mass
current J+ of the κ-cycle. By κ-cycle currents, or center-of-mass currents, we mean the total SU(2) currents
built of the copies of T4 being sewn together in a particular cycle of length κ in a symmetric group word, rather
than the total R-currents of the entire theory.

17See [44] for a discussion of subtleties in this map.
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The highest weight, together with the double descendants of the quartet of super-

fields (5.21), yield the harmonic expansion of the six-dimensional graviton, the six-dimensional

NS B-field, and the six-dimensional dilaton. The quantum numbers (h, h̄, j, j̄) are the reso-

lution of the product of the spatial harmonic and the tensor structure onto states of definite

total spin in both SL(2) and SU(2). The graviton gMN and B-field BMN can have their

tensor polarizations either along AdS3, M,N = µ, ν, or along S
3, M,N = a, b. Of the two

indices, one transforms under the left SL(2)×SU(2), and the other transforms under the right

SL(2) × SU(2). An analysis of [69] shows that the physical combinations of tensor polariza-

tion and SL(2)× SU(2) spatial harmonic (h, j) = (λ, ℓ) are those whose total SL(2)× SU(2)

quantum numbers are (h, j) = (λ± 1, ℓ) or (λ, ℓ± 1). One can thus trace the six-dimensional

polarizations through the field transformation and resolution onto components of definite total

spin, in order to match supergravity fields with CFT operators at the linearized level. As

discussed above, beyond the leading order in the small field expansion, the map between CFT

operators and supergravity modes is non-linear.

The single descendants have the opposite NSR parity, and comprise a quartet of tensor

harmonics; this custodial SU(2)C bi-doublet can be decomposed into a scalar and self-dual

tensor on T
4/K3, and thus one obtains the self-dual six-dimensional polarizations of C2, as

well as C4 having two legs in six-dimensional and two legs along T
4/K3. Note that for κ = 2,

one finds the four RR moduli of the background; a null vector truncates the representation

from above, so that these components are in fact the highest components of the superfield –

a multiplet with h = j = 1/2 is an ultrashort multiplet, and thus perturbing by the single-

descendant operators preserves N =(4, 4) supersymmetry.

The remaining quartet O(κ)
AB of spin j = j̄ = κ/2 superfields (which have m = m̄ = κ+ 1),

comprise four additional tensor multiplets containing 4 ASD tensors and 20 scalars. The four

tensors appear in the lowest and highest components plus the helicity ±1 one-sided double-

descendants, and are the ASD parts of the RR tensors whose opposite chiralities are in the

gravity supermultiplets (5.21). These components also include the harmonics of four RR fixed

scalars (the ASD combinations of C0, C4 and C2 with polarization entirely on T
4/K3). The

single-descendants comprise 16 NS sector scalars – the polarizations of the graviton and B-field

along T
4/K3. For κ = 1, one has the 16 NS sector moduli of T4 (again these are ultrashort

multiplets, so the single-descendant is the highest component). The spectrum is then completed

either with the (m,m± 1)S vector multiplets for T4; or 16 more (κ, κ)S tensor multiplets for

K3 = T
4/Z2, with similar content.
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We summarize the short multiplet content of the κ-cycle sector of the gravity sector super-

multiplets in the following table, where (m, m̄) ∈ {(κ, κ), (κ, κ+2), (κ+2, κ), (κ + 2, κ + 2)}:

multiplet (2j + 1, 2j̄ + 1) SU(2)A sugra field

O(κ)
m,m̄ (m, m̄) 1 G,B,Φ

(G− 1

2

)2O(κ)
m,m̄ (m− 2, m̄) 1 G,B,Φ

(Ḡ− 1

2

)2O(κ)
m,m̄ (m, m̄− 2) 1 G,B,Φ

(G− 1

2

)2(Ḡ− 1

2

)2O(κ)
m,m̄ (m− 2, m̄− 2) 1 G,B,Φ

GȦ− 1

2

ḠḂ− 1

2

O(κ)
m,m̄ (m− 1, m̄− 1) 1⊕ 3 C+

2 , C
+
4 , C0

(5.22)

The RR six-dimensional tensor fields together with the six-dimensional tensor B field comprise

the five self-dual tensors in the six-dimensional N = (2, 0) graviton supermultiplet.

The remaining six-dimensional tensor supermultiplets contain the torus moduli fields, and

consist of:

multiplet (2j + 1, 2j̄ + 1) SU(2)A sugra field

O(κ)AB
κ+1,κ+1 (κ+ 1, κ+ 1) 1 C0, C

−
2 , C

−
4 tensors/scalars

(G− 1

2

)2O(κ)AB
κ+1,κ+1 (κ− 1, κ+ 1) 1 C−

2 , C
−
4 tensors

(Ḡ− 1

2

)2O(κ)AB
κ+1,κ+1 (κ+ 1, κ− 1) 1 C−

2 , C
−
4 tensors

(G− 1

2

)2(Ḡ− 1

2

)2O(κ)AB
κ+1,κ+1 (κ− 1, κ− 1) 1 C0, C

−
2 , C

−
4 tensors/scalars

GȦ− 1

2

ḠḂ− 1

2

O(κ)AB
κ+1,κ+1 (κ, κ) 1⊕ 3 G,B moduli

(5.23)

These four multiplets contain six-dimensional ASD RR tensors. In all of the tables, the

plus/minus superscript on tensors indicates their six-dimensional chirality. The additional

16 ASD tensor supermultiplets of the K3 theory arising from the fixed points of T4/Z2 are

similar in content to the above table. It is straightforward to work out the vector multiplets,

which only contain transverse vector polarizations and their fermionic superpartners.

Given the foregoing collection of SL(2, R)×SU(2) highest weights organized into N =(4, 4)

multiplets, the action of the lowering operators J−, J̄− of SU(2)L × SU(2)R and raising

operators L−1, L̄−1 of SL(2, R)L × SL(2, R)R fills out a complete basis of six-dimensional

spatial harmonics of the supergravity fields.

5.3 CFT spectral flow to 1

8
-BPS states

We need one more ingredient to specify the class of CFT states dual to the supergravity

geometries above. Spectral flow is a coherent deformation of the charge in a CFT with a U(1)

current. Any primary field O in such a theory can be written

O = ei
√
2αHΦ (5.24)
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where the U(1) current is bosonized as J = i∂H, and Φ is a U(1) singlet operator. Spectral

flow is then the deformation along α, which leads to a family of operators/states of dimension

and charge

h = hΦ + κα2 , q =
√
2κα (5.25)

where the normalization of the current is

J(z)J(w) ∼ κ

(z − w)2
, (5.26)

For an N = (4, 4) SCFT, the normalization of the SU(2) R-current J3 is set by the algebra,

κ = c/6, and the SU(2) spin of operators (5.24) is j3 = ακ.

One can decompose the 1/4-BPS twist operators under spectral flow as follows. Consider

the NS sector twist field for a cyclic permutation of order κ, with quantum numbers

c = 6κ , h = j3 =
(κ− 1)

2
. (5.27)

One can determine the dimension of the operator Φ via a spectral flow by an amount α =

−(κ− 1)/2κ that strips off the j3 charge; in this way one finds

hΦ =
κ

4
− 1

4κ
, (5.28)

the dimension (5.9) of the operator that implements the covering transformation z → zκ.

Spectral flow to the R sector shifts the j3 charge by κ/2, from j3 = (κ−1)/2 to j3 = −1/2. The

U(1) charge exponential now carries dimension 1/(4κ), resulting in the Ramond-sector twist

operator dimension κ/4, equation (5.12). Similarly, on T
4 one may regard the R-symmetry

singlet states |AB〉 as the result of acting on the state |Φ, α=0〉 by a spectral flow to spin

1/2 in the auxiliary SU(2)A (for T
4/Z2, there are 16 additional states coming from the fixed

points).

One can now obtain new R-sector states from the cyclic twist ground states |αα̇〉 and |AB〉
via spectral flow by an amount s/κ, s ∈ Z. This operation is fractional spectral flow on the

κ-cycle, but integer spectral flow on the covering space; it results in a series of 1
8 -BPS states,

for example

|++〉κ,s , hκ,s =
κ2 − 1

4κ
+

(s+ 1/2)2

κ
, j3κ,s = s+

1

2

|00〉κ,s , hκ,s =
κ

4
+
s2

κ
, j3κ,s = s , (5.29)

and corresponding operators. For a general conjugacy class in the symmetric group, one has

the choice of independent spectral flow on each component cycle.

States that survive the symmetric group quotient have h − h̄ ∈ Z for each cycle. In the

twisted sectors, a cycle of length κ has a Zκ projection on its Hilbert space18 that assigns

18In the g-twisted sector, one has a projection by the action of all group elements h that commute with g,
hgh−1 = g. This includes g itself, whose action imparts a phase to the fractional modes.
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charge ν/κ to the νth clock sector, and neutrality under this projection guarantees that states

have integer momentum, cycle by cycle. To satisfy this requirement, one must have s2/κ ∈ Z

for the |00〉 state, or s(s+ 1)/κ ∈ Z for the |++〉 state.
The generic state in this construction is obtained by taking tensor products of |αα̇〉κ,s and

|AB〉κ,s chosen independently for each cycle; these states are built from fractional spectral flow

under the J3 pertaining to that cycle only, and are subject to the integer momentum constraint

on each cycle (and the Z2 quotient for K3 = T
4/Z2). Note that the U(1) currents that we are

using to spectral flow are not present in the CFT away from the orbifold locus, apart from the

overall U(1). Nevertheless, at the orbifold locus they serve to generate states for us that are

protected by the BPS property as we move away from the orbifold locus in moduli space, and

so we can continue to characterize them through the use of this special property of the orbifold

theory.

The states spectrally flowed under J3 have an equivalent description in terms of descendant

states in the SU(2) current algebra; for example

|00〉κ,s = (J+
−s/κ)

s |00〉κ . (5.30)

This relation is straightforward to see in the covering space description, where this state can

be thought of in terms of the raising operator (J+
−s)

s acting on the current algebra vacuum

(recall the moding is rescaled by a factor κ on the covering space). The covering space SU(2)

current algebra has level one, and is entirely accounted for through bosonization. The operator

(J+
−s)

s is a Virasoro highest weight operator of spin s and dimension s2, and therefore must be

an exponential exp[i
√
2 sĤ] of the boson J3 = i∂Ĥ on the covering space, hence (5.30) indeed

implements a spectral flow transformation.

Finally, in the T
4 SCFT, spectral flow has a third interpretation in terms of shifting the

Fermi sea of the χ̂Aα, by populating all the modes in the Hilbert space up to and including

level s/κ. It is straightforward to check that this leads to the shifts (5.25) in energy and charge.

5.4 CFT duals of our superstrata

We now combine the ingredients discussed above to develop our proposal for the CFT duals of

our superstrata. We observed below Eq. (4.87) that our Style 2 solution, in the limit of k = 1,

is the extension to asymptotically flat space of a particular subset of solutions constructed

in [19]. The proposed dual CFT states [19, 70] can be written in terms of spectral flow on

chiral primary states. This suggests we look to similar states for candidate CFT duals of our

solutions. The fact that the wavenumber in v is a fraction 1/k of the wavenumber in ψ suggests

that we consider “fractional spectral flow” states of the sort described above.

The orbifold projection on cycles of length κ enforces integer momenta on each strand.

Consider spectral flow on Ramond sector |00〉κ cycles. Integer h − h̄ means that α2κ ∈ Z

in Eq. (5.29). One also wants j3 = k(h − h̄) so that the state corresponds to a supergravity

solution whose fields have a phase dependence which is a multiple of ζ = v
2R − kϕ2 (Eq. (4.3)).

Equation (5.25) then requires ακ = kα2κ; thus α = 1/k. Therefore κ should be a multiple of
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k2 in order for h− h̄ ∈ Z, i.e. κ = k2p̂ for some integer p̂. Then α = s/κ gives s = kp̂. Thus,

one component of the candidate CFT dual for Style 2 coiffuring is fractional spectral flow by

an amount α = 1/k on cycles |00〉k2p̂ of length k2p̂.

A second candidate component of the CFT dual arises from spectral flow on Ramond sector

cycles |++〉κ′ . Applying the same logic as above, one finds the criteria of integer h − h̄ and

spectral flow yielding j3 − j̄3 = k(h− h̄) result in a spectral flow by amount s′ = kn̂, and cycle

length κ′ = k(kn̂+ 1), for some n̂ ∈ Z.

Finally, a third candidate component of the CFT dual uses spectral flow on Ramond sector

cycles |−−〉κ′′ . Once again the spectral flow amount is s′′ = km̂, and the cycle length is

κ′′ = k(km̂− 1) for some m̂ ∈ Z.

The cycles excited by fractional spectral flow can also be expressed in terms of the action

of J+
−1/k, and we will find it convenient to do this. For |00〉 strands this follows from equa-

tion (5.30), and similarly for |±±〉 strands using the strand lengths and amounts of spectral

flow above. In addition, the supergravity solution is built on a “ground state” which is a

supertube of radius a and angular momentum Q1Q2/4kR, whose CFT dual consists of length

k cycles |++〉k whose number is proportional to a2.

A state which combines these supertube strands with the above longer cycles excited via

fractional spectral flow has the form

(
|++〉k

)n1 ∏

m̂,n̂,p̂

(
(J+

−1/k)
kp̂|00〉

k2p̂

)n2,p̂
(
(J+

−1/k)
kn̂|++〉k(kn̂+1)

)n3,n̂
(
(J+

−1/k)
km̂|−−〉k(km̂−1)

)n4,m̂

(5.31)

with appropriate conditions on the strand numbers so that the state carries the same quantum

numbers as the supergravity solution, Eqs. (4.5)–(4.9). Of course, one can write the above

tensor product with a single index p̂, but we will temporarily carry along m̂ and n̂ to emphasize

the differences between the strands. Ultimately, our proposed dual CFT states will be coherent

states built from superpositions of the states (5.31), as discussed in [43, 70]. The first check

that we have the right class of states is to show that the appropriate supergravity field modes

are turned on under a small deformation away from the parent supertube solution (i.e. when

the total number of copies taken up by the excited strands is small compared to the total

number of copies taken up by the unexcited base supertube strands).

5.4.1 Expectation values of supergravity mode operators

One can regard the cyclic twist components |00〉k2p̂ or |++〉k(kn̂+1) or |−−〉k(km̂−1) as excitations
above the supertube “ground state”. Supergravity field modes turned on by the coiffuring

procedure are associated to operators in the CFT having expectation values in the coherent

states built from the states (5.31). These operators will include those that have a matrix

element that annihilates one of the long cycles, and converts it into multiple copies of |++〉k.
Indeed, the order kp̂ anti-cyclic permutation

(
kp̂k, (kp̂−1)k, (kp̂−2)k, . . . , k

)
(5.32)
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acting on the cycle (
1, 2, 3, 4, . . . , k2p̂

)
(5.33)

results in the tensor product of kp̂ cycles of length k

(
1, . . . , k

) (
k+1, . . . , 2k

) (
2k+1, . . . , 3k

)
· · ·

(
(kp̂−1)k+1, . . . , kp̂k

)
, (5.34)

and similarly an anticyclic permutation of length kn̂+1 can convert a cycle of length k(kn̂+1)

into kn̂+1 cycles of length k, and an anticyclic permutation of length km̂−1 can convert a

cycle of length k(km̂−1) into km̂−1 cycles of length k.

The operators that mediate the appropriate matrix elements for the state (5.31) must also

soak up the currents that spectrally flow the state from the 1/4-BPS ground state in this twist

sector. Each k2p̂-cycle in this state carries (J3, J̄3) charges (kp̂, 0), while the final state has kp̂

extra cycles |++〉k, with charges (kp̂/2, kp̂/2), and so the operator that effects the transition

must have charge (−kp̂/2, kp̂/2). Similarly, each k(kn̂+1)-cycle has (J3, J̄3) = (kn̂+ 1
2 ,

1
2 ), while

the final state has charge (12(kn̂+1),
1
2 (kn̂+1)), and so the operator that mediates the transition

must have charge (−kn̂/2, kn̂/2); and each k(km̂−1)-cycle has (J3, J̄3) = (km̂− 1
2 ,−1

2 ), while

the final state has charge (12 (km̂−1), 12(km̂−1)), and so the operator that mediates the transition

must have charge (−km̂/2, km̂/2).
The BPS twist operator whose conjugacy class contains the kp̂-cycle (5.32) and which also

has these SU(2)R quantum numbers, and obeys selection rules of the auxiliary SU(2)A, is the

NS sector operator

ǫAB (J−
0 )kp̂O(kp̂)AB

kp̂+1,kp̂+1 . (5.35)

This component operator has (J3, J̄3) = (−kp̂/2, kp̂/2) and so carries the appropriate R-

charges to implement the matrix element that sends (n1, n2, n3, n4) to (n1+kp̂, n2−1, n3, n4).

Similarly, the NS sector operator

(J−
0 )kn̂O(kn̂+1)

kn̂+1,kn̂+1 (5.36)

has (J3, J̄3) = (−kn̂/2, kn̂/2) and so carries the appropriate quantum numbers to mediate the

transition (n1, n2, n3) → (n1+kn̂+1, n2, n3−1, n4); and the operator

(J−
0 )km̂O(km̂−1)

km̂+1,km̂+1 (5.37)

has the SU(2)R quantum numbers (J3, J̄3) = (−km̂/2, km̂/2) and mediates the transition

(n1, n2, n3, n4) → (n1+km̂−1, n2, n3, n4−1).19

Ward identities for the conformal group SL(2, R) × SL(2, R) guarantee a dependence

exp[ip̂v/2R] for the matrix elements mediated by the operator (5.35). The SU(2) × SU(2)

R-symmetry quantum numbers of this operator ensures that the matrix elements have the

angular dependence

exp
[
ikp̂ ϕ2/2

]
coskp̂ θ (5.38)

19The operator (5.35) is the spectral flow to the NS sector of the Ramond operator corresponding to the state
|00〉kp̂ (flowed in opposite directions on left and right), while the operator (5.36) is the spectral flow to the NS
sector of the Ramond operator corresponding to the state |−−〉kp̂+1, and the operator (5.37) corresponds to the
NS to R flow of the state |++〉km̂−1.
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on S
3. This angular dependence equates to the fact that the operator (5.35) is a twisted

chiral operator (SU(2)R lowest weight on the left and highest weight on the right). Similarly,

the operators (5.36) and (5.37) are twisted chiral operators that mediate analogous matrix

elements, whose coordinate dependences are the same apart from the substitution p̂ → n̂ and

p̂→ m̂, respectively. The leading asymptotic power of r in the matrix element is also dictated

by the scale dimension of the operator, and a matching power of akp̂ in the quantity ∆kp̂ comes

from the number of supertube k-cycles created when a cycle of length k2p̂ is annihilated.

The general solution of type IIB supergravity compactified on T
4 × S

1 that preserves the

same supercharges as the F1-NS5-P system and is invariant under rotations of T4 has the form

ds210 = −2Z2

P
(
dv + β

) [
du+ ω +

F
2

(
dv + β

)]
+ Z2 ds

2
4 + dŝ24 , (5.39a)

e2Φ =
Z2
2

P , (5.39b)

B2 = −Z2

P (du+ ω) ∧ (dv + β) , (5.39c)

B6 = v̂ol4 ∧
[
−Z1

P (du+ ω) ∧ (dv + β)

]
+ . . .

C0 =
Z4

Z2
, (5.39d)

C2 =
Z4

P (du+ ω) ∧ (dv + β) + . . . , (5.39e)

C4 =
Z4

Z2
v̂ol4 + . . . , (5.39f)

(5.39g)

with

P ≡ Z1 Z2 − Z2
4 . (5.40)

Here ds210 is the ten-dimensional string-frame metric, ds24 is the metric on the space transverse

to the branes, Φ is the dilaton, Bp and Cp are the NS-NS and RR gauge forms. (It is useful

to also list B6, the 6-form dual to B2, to make explicit the appearance of Z1 and Z2 as the

magnetic and electric components of the NS B-field.) The flat metric on T
4 is denoted by dŝ24

and the corresponding volume form by v̂ol4. For further discussion, see [43,38,19,70].

In the supergravity solution (5.39), the harmonic function Z4 appears in the RR scalars C0

and C4 as well as in the six-dimensional C2 tensor field in the F1-NS5 frame, and carries the

quantum numbers leading to the angular dependence (5.38). The operator (5.35) corresponds

(in the F1-NS5 duality frame) to the scalar C0v4 − C4 and the six-dimensional tensor C−
2 ,

according to (5.23), and its matrix elements carry the appropriate angular dependence. Thus

for both coiffuring styles, we expect that there should be a vev of this operator proportional

to b4. When one builds coherent states out of the building blocks (5.31), one determines the

average number of of strands n̄2 such that it reproduces this vev [43,70].

The harmonic functions Z1,2 appear in the electric and magnetic components of the six-

dimensional NS B-field and the dilaton in this duality frame, with angular dependence of the
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form (5.38), where p̂ = n = p for Style 1 and p̂ = n = 2p for Style 2. The operators (5.36),

(5.37) correspond to the supermultiplet (5.22) containing the six-dimensional NS B-field and

the dilaton. Their matrix elements also have angular dependence of the form (5.38), with the

same replacements for the two coiffuring styles, and imply the corresponding vevs for the dual

CFT coherent states.

Thus we have all the ingredients to reproduce the coiffured supergravity solutions of Sec-

tion 4 from the CFT, and it is natural to anticipate that the average numbers of excited |00〉k2p̂
strands n̄2,p̂ will be related to the coefficient b4, and average number of excited |++〉k2n̂+k and

|−−〉k2m̂−k strands n̄3,n̂, n̄4,m̂ will be related to the coefficients b1, b2. This is indeed what we

will find.

The coiffuring construction imposes relations on the mode amplitudes and frequencies in

order that the supergravity solution is regular at r = 0. These restrictions are not apparent

in the CFT states in the linearized analysis, which, a priori, allows independent values for the

cycle length quantum numbers (p̂, n̂, m̂) and the corresponding amplitudes (n2,p̂, n3,n̂, n4,m̂).

For coiffuring Style 1 in supergravity, one has n = p and the amplitude relations (4.39)-

(4.40); for Style 2, one has n = 2p together with the amplitude restrictions b2 = 0 and (4.73).

For Style 2, at leading order there is no amplitude for b1 (since b1 ∼ b24) and b2 = 0, hence there

is no linearized vev for the NS B-field; this suggests that Style 2 corresponds to a state with

n3,n̂ = n4,m̂ = 0 in the CFT. The vev of the B-field at second order in b4 could be accounted

for by the non-linearities in the CFT-supergravity mode map, and indeed we will show this to

be true in the next subsection.

For Style 1, an amplitude at leading order in b4 is present for all of the m = n = p modes of

the NS B-field, but in the CFT it seems that the amplitude of the corresponding vevs can be

independently varied – at this point there appears to be no restriction on the relative numbers

(n2,p̂, n3,n̂, n4,m̂) of the different kinds of strands at leading order. Again, to understand these

restrictions, it is necessary to understand the relation between supergravity modes and CFT

fields at the non-linear level.

Instead of trying to carry through the somewhat daunting task of determining the non-

linear corrections to the supergravity-CFT map, we will instead proceed somewhat differently,

and determine what strands are present in the CFT (and in what amounts) by an analysis of

the two-charge solutions on which the coiffured solutions are based.

5.4.2 Information from two-charge solutions

Our proposed dual CFT states involve fractional spectral flow on a two-charge 1
4 -BPS state,

and spectral flow does not change the strand content of a BPS state. Therefore, we can

determine the amounts of the various types of strands present (at the fully non-linear level) in

both styles of coiffuring, by studying the known map between CFT and supergravity for the

two-charge system [9,71,43,28].

The harmonic functions determining the geometry of a circular F1-NS5 supertube in the
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decoupling limit are

Z2 =
Q2

L

∫ L

0

1

|xi − gi(v̂)|2
dv̂ , Z4 = −Q2

L

∫ L

0

ġ5(v̂)

|xi − gi(v̂)|2
dv̂ , (5.41a)

Z1 =
Q2

L

∫ L

0

|ġi(v̂)|2 + |ġ5(v̂)|2
|xi − gi(v̂)|2

dv̂ , (5.41b)

A = −Q2

L

∫ L

0

ġj(v̂) dx
j

|xi − gi(v̂)|2
dv̂ , dB = − ∗4 dA , ds24 = dxidxi , (5.41c)

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , (5.41d)

where the dot on the profile functions indicates a derivative with respect to v̂ and ∗4 is the

dual with respect to the flat transverse R
4 parametrized by xi.

The onebrane charge is given by

Q1 =
Q2

L

∫ L

0

(
|ġi(v̂)|2 + |ġ5(v̂)|2

)
dv̂ . (5.42)

The quantities Q1, Q2 are related to quantized onebrane and fivebrane numbers n1, n5 by

Q1 =
(2π)4 n1 g

2
s α

′3

V4
, Q2 = n5 α

′ , (5.43)

where V4 is the coordinate volume of T4.

The circular supertube profile is is given by

g1 + ig2 = a exp[2πikv̂/L] . (5.44)

It will prove convenient to denote x = x1 + ix2, y = x3 + ix4, and parametrize the profile by

ξ ≡ 2πkv̂/L. Since the supertubes of interest run around the same profile k times, the integral

is simply k times the integral over the range ξ ∈ (0, 2π). The further change of variables

z = eiξ , and the use of z̄ = 1/z for an integral along the unit circle in z, converts the integrals

into contour integrals for which we can use the method of residues, for example

Z2 =
Q2

2πi

∮
dz

z

1

(x− az)(x̄− a/z) + yȳ
. (5.45)

The poles in the integrand are located at

z± =
w̃ ±

√
w̃2 − 4xx̄a2

2x̄a
, (5.46)

where w̃ = xx̄+ yȳ + a2, and so

Z2 =
Q2√

w̃2 − 4xx̄a2
. (5.47)

Converting from Cartesian coordinates to spherical bipolar ones

x = r̃ sin θ̃eiϕ1 , y = r̃ cos θ̃eiϕ2

r̃ =
√
r2 + a2 sin2 θ , cos θ̃ =

r cos θ√
r2 + a2 sin2 θ

(5.48)
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leads to the correct form of Z2 in the decoupling limit,

Z2 =
Q2

r2 + a2 cos2 θ
=
Q2

Σ
. (5.49)

Next, we introduce ν = kp for convenience and we add a g5 term to the profile function,

g5(v̂) = − 2b4
νkRy

sin

(
2πk

L
ν v̂

)
=

−b4
iνkRy

(zν − z−ν) , (5.50)

where b4 is real, and corresponds to the magnitude of the quantity b4 in the supergravity (4.8).

The quantity that corresponds to the phase of the supergravity b4 is a shift in v̂ in (5.50). In

what follows, for both Style 1 and Style 2, we will take b4 to be real, both for convenience and

for ease of comparison to [19]. This g5 term in the profile function gives rise to the following

contour integral expression for the harmonic function Z4:

Z4 = b4
1

2πi

∮
dz

z

zν + z−ν

(x− az)(x̄− a/z) + yȳ
. (5.51)

The zν term yields the result

b4
zν−

(−ax̄)(z− − z+)
. (5.52)

The denominator gives again the factor of Σ; furthermore, one has

z−
z+

=
a2 sin2 θ

r2 + a2
, z+z− = e2iϕ1 . (5.53)

One can then rewrite zν− as

zν− =

(
z−
z+

)ν/2
(z+z−)

ν/2 =
(a2 sin2 θ
r2 + a2

)ν/2
eiνϕ1 . (5.54)

The harmonic function depends on the combination sin θ eiϕ1 rather than cos θ eiϕ2 because

the linearized supergravity modes getting a vev correspond to chiral rather than twisted-chiral

operators in the CFT. The fractional spectral flow operation converts one to the other.

One is looking to match the structure in [19] equation (3.11c) which is

(
a2 sin2 θ

r2 + a2

)ν/2
cos νϕ1

Σ
=

(z−/z+)ν/2
(
(z+z−)ν/2 + (z+z−)−ν/2

)

2(−ax̄)(z− − z+)
; (5.55)

this is exactly what is found once the contribution from the z−ν term in (5.51) is added. So

the seed Z4 is

Z4 = 2b4

(
a2 sin2 θ

r2 + a2

)ν/2
cos νϕ1

Σ
. (5.56)

47



5.4.3 Style 2

For coiffuring Style 2, the harmonic function Z1 exhibited in [19] equation (3.11a) for the

corresponding two-charge seed solution, translated into our conventions is

Z1 =
Q1

Σ
+

2b24
Q2

(
a2 sin2 θ

r2 + a2

)ν
cos 2νϕ1

Σ
(5.57)

which follows from equation (5.41b). Thus we see that Style 2 coiffuring is the result solely

of exciting |00〉 strands of length κ = kν = k2p; the strength b1 ∝ b24 of the vev is entirely

accounted for by non-linear effects of the |00〉 strands, and so no additional contribution corre-

sponding to nonzero n3,n̂, n4,m̂ is necessary. The corresponding two-charge solution is precisely

as in [19], and the spectral flow that adds the third charge simply turns vevs from chiral to

twisted-chiral – under fractional spectral flow, the factor sinν θ eiνϕ1 turns into cosν θ eiνϕ2 ,

which is what we see in the coiffured harmonic functions of Section 4 above.

5.4.4 Style 1

It remains to match Style 1 to a set of supertube strands in a two-charge solution prior

to spectral flow and coiffuring. We expect to at least have strands of length k(kp + c) for

c = {−1, 0,+1}, since vevs for the operators (5.35)-(5.37) must appear at linear order in b4.

The c = ±1 strands correspond to |±±〉 cycles and so in general will affect the location of the

supertube profile in the transverse R
4. Introducing |++〉k(kp+1) and |−−〉k(kp−1) strands, the

deformation profile becomes

g1 + ig2 = az + b−z
−(kp−1) + b+z

kp+1 = z
(
a+ b−z

−ν + b+z
ν
)
, (5.58)

where ν = kp and z = exp(2πikv̂/L).

For small amplitude deformation b± ≪ a, there are no new poles inside the contour of

integration, and the pole in the integrand will still be close to z−. We can map the profile back

to a unit-velocity circular profile (i.e. g1 + ig2 = aeiw) via a single-valued conformal map, at

the cost of a Jacobian for the transformation. In general this leads to an infinite series in the

expressions for Z1 and Z2 if there are only one or two lengths of strand in the profile g1 + ig2;

since we wish to engineer a finite Fourier series for Z1 and Z2, the dual CFT state will have a

series of strand lengths involving all possible multiples of p.

Working firstly to leading order in b±, consider the profile

(g1 + ig2)(v̂) = a exp
[
iw

(
ξ(v̂)

)]
, ξ(v̂) =

2πkv̂

L
, w(ξ) = ξ − b

ν
cos νξ + . . . (5.59)

where we set b+ = b− ≡ −iab/2ν in order that the map is a proper element of Diff (S1). Here

again ξ serves as a rescaled periodic coordinate which ranges over [0, 2πk). The motivation for

considering such a profile comes from coiffuring – the idea is that coordinate transformations

on the supertube worldvolume apply a density perturbation to the round supertube without

perturbing its location in space. The fivebrane and onebrane charge densities will no longer be
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constant along the supertube. Expanding this profile out to leading order in b reproduces (5.58).

Such a change of variable has no effect on Z4 (which is reparametrization invariant) but it will

change Z1 and Z2. The integration measure picks up a factor

dv̂ → dw
(dw
dv̂

)−1
,

dw

dv̂
=
dw

dξ

dξ

dv̂
(5.60)

where we have expanded the Jacobian factor to clarify that w means w
(
ξ(v̂)

)
as above. Simi-

larly the “energy densities” in the numerator of Z1 in (5.41) pick up a factor

|(ġ1 + iġ2)(v̂)|2 + |ġ5(v̂)|2 →
(dw
dv̂

)2(
|(g′1 + ig′2)(w)|2 + |g′5(w)|2

)
(5.61)

where primes denote derivatives with respect to the argument. Again evaluating the factors of

(dw/dv̂) to leading order in b one finds that in the new integration variable w, the integrand of

Z2 is modified by a factor of 1− b sin νw in (5.41a), while the integrand of Z1 gets a factor of

1+ b sin νw (in addition to the corresponding factors of 2πk/L). We then find the same sort of

integral we encountered in (5.41b), with the same result. Our primitive approximations give

b1 = −b2, which is appropriate for a2 ≪ Q1, Q2; the latter is a consequence of the decoupling

limit.

In principle one can proceed order-by-order in a series expansion in bI , (I = 1, 2, 4), working

out the non-linear map between the v̂ coordinate frame in which the strand content is specified,

and the w coordinate frame in which the supertube profile is a constant velocity parametrization

of a circle. However, ultimately we are interested in the harmonic functions ZI having a single

non-trivial Fourier coefficient. In Style 1, the perturbation to Z2 looks like (5.51) with ν = kp

and a coefficient b2; and Z4 is the same but with a coefficient b4. These simple forms suggest

that the more straightforward route is to work directly in the w coordinate frame and only

implicitly specify the coordinate map via its inverse,

v̂(ξ) =
L

2πk
ξ , ξ(w) = w +

b

ν
cos νw . (5.62)

Plugging this into (5.41a) gives exactly the right result for Z2 and Z4 in Style 1, using

(g1 + ig2)(v̂) = a exp
[
iw

(
ξ(v̂)

)]
, g5(v̂) = − 2b4

νkRy
sin

[
ν w

(
ξ(v̂)

)]
. (5.63)

We have now used up almost all our freedom to specify the state; all that remains are the

amplitudes b, b4. The integral for Z1 is

Z1 =
k2R2

y

2πQ2

∫ 2π

0
dw

(dw
dξ

)−1
(
|(g′1 + ig′2)(w)|2 + |g′5(w)|2

)
(dw/dξ)2

|x− (g′1 + ig′2)(w)|2 + |y|2

=
k2R2

y

2πQ2

∫ 2π

0
dw

a2 + (2b4/kRy)
2 cos2 νw

1− b sin νw

1

|x− aeiw|2 + |y|2 (5.64)

where we have used the relation

L =
2πQ2

Ry
. (5.65)
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Let us choose

b2 =
(2b4/kRy)

2

(2b4/kRy)2 + a2
=

4b24
Q1Q2

, (5.66)

where the second equality is the analog of the gravity regularity condition (4.55). Then the

factor in the integrand becomes

a2 + (2b4/kRy)
2 cos2 νw

1− b sin νw
= (a2 + (2b4/kRy)

2)
(
1 + b sin νw

)
=
Q1Q2

k2R2
y

(
1 + b sin νw

)
, (5.67)

where the last equality comes from evaluating the expression (5.42). All harmonic functions

have only terms that are constant or a single S
3 harmonic of the form (5.54), with m = n = p

and b1 = −b2 = ib4/
√
Q1Q2. These results agree precisely with the decoupling limit a2 ≪

Q1, Q2 of the amplitude relations (4.41) of Style 1 coiffuring in supergravity.

For these two-charge solutions, the mode amplitude restrictions do not come from requiring

regularity of the supergravity solution – all the two-charge solutions are non-singular. Rather,

the restriction comes from the somewhat arbitrary requirement that the harmonic functions

contain only a single Fourier mode rather than a combination of modes of different wavenum-

bers.

It is worth reiterating that the map between supergravity and CFT takes place in the

v̂ coordinate frame, which is only implicitly specified above through the relation (5.62). In

the v̂ coordinates the solution is very complicated and has in principle all values of m̂, n̂, p̂

turned on. The non-zero values of m̂, n̂ are given by the non-zero Fourier coefficients of

(g1 + ig2)(v̂) = a exp[iw(ξ(v̂))],

cn =

∫ 2π

0

dξ

2π
e−inξ eiw(ξ) =

∫ 2π

0

dw

2π

dξ

dw
e−inξ(w)+iw (5.68)

and are predominantly concentrated on the lowest modes. Expanding in b,

cn =

∫ 2π

0

dw

2π

(
1 + b cos(νw)

)
ei(1−n)w

∞∑

ℓ=0

1

ℓ!

(−inb cos νw
ν

)ℓ
(5.69)

one sees that the only nonzero Fourier coefficients occur for n = 1 + qν, q ∈ Z, generaliz-

ing (5.58). Of these non-zero Fourier coefficients, the positive values of n give the non-zero

values of m̂, and the negative values of n give the non-zero values of n̂. Thus we see that m̂

and n̂ must be multiples of p, the mode number of the supergravity solution. Similarly, the

non-zero values of p̂ are all multiples of p.

In addition, reality of the conformal map implies c1+qν = c∗1−qν , which in turn means that

for each q, the average numbers of |++〉k(qkp+1) and |−−〉k(qkp−1) strands are equal. Finally,

note that in the quantum theory, there is a maximum mode number N = N1N5 and so one

cannot precisely generate Style 1 because the Fourier expansion is necessarily finite; the result

will differ at the 1/N level.

For kp = 1, this family of states has a somewhat degenerate limit, since the length of the

|−−〉k(kp−1) strands is zero. This simply means that this particular strand type is absent for

kp = 1, while the other strands remain as described above. In particular, the average numbers

of |++〉k(qkp+1) and |−−〉k(qkp−1) strands are equal for q ≥ 2.
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5.4.5 Summary of proposed dual CFT states

In both Style 1 and Style 2, we start with a two-charge seed solution, determined by a profile

function. The general dictionary for two-charge states is discussed in [43, 28, 70]. We now

describe how it applies to our two-charge seed states. Given a profile function, the non-zero

Fourier coefficients specify the types of strands involved in the dual CFT state, and the values

of the Fourier coefficients control the coefficients of the individual terms in the coherent state

superposition.

Style 2

As shown in the previous subsection, the Style 2 seed solution is determined by the profile

function (5.44), (5.50):

(g1 + ig2)(v̂) = a exp

(
i
2πk

L
v̂

)
, g5(v̂) = − 2b4

νkRy
sin

(
2πk

L
ν v̂

)
. (5.70)

Since both g1 + ig2 and g5 have only a single Fourier mode, the dual CFT state contains just

two types of strands,

|++〉k , |00〉
k2p

, (5.71)

where the excited strands are only of one type, given by p̂ = p.

To form the coherent state, one considers all partitions of the N1N5 copies of the CFT

into strands of the two above types. Then one forms a sum in which the coefficients of these

different partitions are controlled in a specific way by the two non-zero Fourier coefficients of

the profile function (5.70) (for more details, see in particular the discussion in [70]).

Given this seed two-charge state, we excite all strands except for the |++〉k strands in

the way described in Section 5.4, so that the resulting three-charge state is composed only of

strands of type

|++〉k , (J+
−1/k)

kp|00〉
k2p

. (5.72)

The coefficients in the coherent state sum remain as in the two-charge seed solution.

Style 1

For Style 1, the seed solution is given by the profile function

(g1 + ig2)(v̂) = a exp
[
iw

(
ξ(v̂)

)]
, g5(v̂) = − 2b4

νkRy
sin

[
ν w

(
ξ(v̂)

)]
(5.73)

where from (5.62) we specify the map implicitly through its inverse,

v̂(ξ) =
L

2πk
ξ , ξ(w) = w +

b

ν
cos νw . (5.74)

Since both g1+ ig2 and g5 have an infinite Fourier series, the types of CFT strands present are

those of type

|++〉k , |00〉
k2p̂

, |++〉k(kn̂+1) , |−−〉k(km̂−1) , (5.75)
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where m̂, n̂, p̂ can be any independent multiples of p, compatible with the total number of

strands being N1N5. The coherent state has many more ingredients, however the coefficients

in the superposition are again fully specified by the Fourier coefficients of the profile function

(5.73). Therefore all the coefficients are determined by the parameter b4 (since b4 fixes b and

a).

Given this seed two-charge state, we again excite all strands except for the |++〉k strands

in the way described in Section 5.4, so that the resulting three-charge state is composed only

of strands of type

|++〉k , (J+
−1/k)

kp̂|00〉
k2p̂

, (J+
−1/k)

kn̂|++〉k(kn̂+1) , (J+
−1/k)

km̂|−−〉k(km̂−1) , (5.76)

where again the values of m̂, n̂, p̂ are independent multiples of p, compatible with the total

number of strands being N1N5, and the coefficients in the coherent state sum remain as in the

two-charge seed solution.

Finally, note that, at the level of counting free parameters in the solutions, we expect there

to be good agreement more generally between coiffured deformations of circular supertubes on

the supergravity side, and fractional spectral flows of circular two-charge seed solutions on the

CFT side. On the CFT side, one has two functional degrees of freedom – the specification of

the profile of the |00〉 strands embodied in the function g5, and the diffeomorphism w(ξ) that

changes the parametrization of the round supertube. On the supergravity side, the diffeomor-

phism w(ξ) corresponds to the charge densities ̺1 and ̺4 discussed in Section 3.2, and the

profile of the |00〉 strands corresponds to the function Z4. In Section 3.2 we saw that in the

absence of Z4 there are three functions and two functional constraints, leaving one functional

degree of freedom; adding in Z4 gives two functional degrees of freedom, which agrees with the

CFT.

There are interesting parallels between the supergravity construction of Section 3 and the

appearance of density fluctuations in the CFT. However the relationship is not direct. In the

CFT, the density profile appears in the two-charge seed solutions before applying fractional

spectral flow; on the gravity side, the density perturbations were introduced in a spectrally

inverted frame, and then a second spectral inversion was applied to transform back to the

original frame. The density fluctuations were thus applied to a supertube that does not have

a simple, direct relationship to the original D1-D5 CFT. There is also the technical distinction

in that the construction of Section 3 initially involves three apparently independent charge

density functions that must then satisfy the constraints of supertube regularity (3.19) and

(3.20), leaving only one independent density function. In this section, the density fluctuation

is introduced via a combination of the g5 profile and (in Style 1) a conformal map of the round

supertube profile, which, via the Lunin-Mathur map, automatically maintains the supertube

regularity conditions. It would be very interesting to investigate this relationship in more

detail.
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5.5 Comparison of conserved charges

We now compare the angular momenta J3, J̄3 and the momentum charge QP , and demonstrate

the agreement between our supergravity solutions and our proposed dual CFT states. For ease

of comparison to the supergravity discussion in Section 4.4, we revert to the D1-D5 duality

frame.

The discussion that follows requires a certain amount of notation to write the charges

explicitly, however the reasons that underlie the agreement can be stated simply.

Firstly, all our momentum excitations can be expressed in terms of the action of powers of

J+
− 1

k

. Secondly, for each p̂ the average numbers of the strands of length k2p̂ + k and k2p̂ − k

are equal, because of their origin as the (real-valued) two-charge density profile. Therefore

adding momentum p̂ requires, on average, k2p̂ strands of the CFT. This fact leads to the

relation between the angular momenta J3, J̄3 and the momentum charge QP observed in the

supergravity, as we now show explicitly.

5.5.1 Style 2

For Style 2, we have a coherent state which is a sum of terms of the form

(
|++〉k

)n1
(
(J+

−1/k)
kp|00〉

k2p

)n2

, (5.77)

where the sum runs over all n2 such that

kn1 + (k2p)n2 = N1N5 , (5.78)

weighted with coefficients as described in the previous subsection.

For Style 2 coiffuring, from (4.82) and (4.86) we have on the gravity side

QP =
2|b4|2
k2R2

y

, JR =
1

2

Q1Q2

kRy
− 1

2
kRyQP , JL = JR + kRyQP . (5.79)

In the CFT, the expectation value of the momentum L0 − L̄0 in the Style 2 state is

Np = p n̄2 . (5.80)

The total number of strands is N1N5; this determines n̄1 in terms of n̄2 (or Np) as

n̄1 =
N1N5

k
− kNp . (5.81)

Then the CFT ̄3 is

̄3 =
n̄1
2

=
1

2

N1N5

k
− k

2
Np . (5.82)

We convert the supergravity charges to quantized charges using

Q1 =
gsN1α

′3

V
, Q5 = gsN5α

′ , QP =
g2sNPα

′4

R2
yV

,
π

4G(5)
=

V Ry
g2sα

′4 (5.83)
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which lead to the useful relations

π

4G(5)

Q1Q5

Ry
= N1N5 ,

π

4G(5)
RyQP = NP . (5.84)

Thus we obtain

̄3grav =
π

4G(5)
JR =

1

2

N1N5

k
− k

2
Np (5.85)

which agrees with the CFT. Next, the CFT j3 is

j3 =
n̄1
2

+ (kp)n̄2 = ̄3 + kNp . (5.86)

Comparing to the gravity solution we have

j3grav =
π

4G(5)
JL = ̄3grav + kNp (5.87)

which is also in agreement. Then by comparing the momentum charge we obtain the map

between |b4|2 and n̄2:

NP =
π

4G(5)
RyQP ⇒ p n̄2 =

( π

4G(5)

) 2|b4|2
k2Ry

. (5.88)

5.5.2 Style 1

For Style 1, we first consider kp > 1. As described above, the ingredients in the coherent state

sum are

(
|++〉k

)n1 ∏

p̂∈pZ

(
(J+

−1/k)
kp̂|00〉

k2p̂

)n2,p̂
(
(J+

−1/k)
kp̂|++〉k(kp̂+1)

)n3,p̂
(
(J+

−1/k)
kp̂|−−〉k(kp̂−1)

)n4,p̂

(5.89)

For Style 1 coiffuring, from (4.57), (4.66) and (4.67) we have on the gravity side

QP =
4|b4|2
k2R2

y

, JR =
1

2

Q1Q2

kRy
− 1

2
kRyQP , JL = JR + kRyQP . (5.90)

In the CFT, each individual element in the coherent state sum has momentum eigenvalue

∑

p̂∈pZ
p̂ (n2,p̂ + n3,p̂ + n4,p̂) (5.91)

and so the expectation value of L0 − L̄0 again involves the average numbers of strands,

Np =
∑

p̂∈pZ
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) . (5.92)

Since the total number of strands is N1N5, we have

kn̄1 +
∑

p̂∈pZ

[
(k2p̂)n̄2,p̂ + (k2p̂+ k)n̄3,p̂ + (k2p̂− k)n̄4,p̂

]
= N1N5 . (5.93)
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Because the density profile function w(ξ) is real, we have the relation on the average numbers

n̄3,p̂ = n̄4,p̂ for all p̂ . (5.94)

Therefore we have

kn̄1 +
∑

p̂∈pZ
(k2p̂) (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) = N1N5 (5.95)

and so, as for the Style 2 states, n̄1 is given by

n̄1 =
N1N5

k
− kNp . (5.96)

Next, the CFT ̄3 is

̄3 =
1

2


n̄1 +

∑

p̂∈pZ
(n̄3,p̂ − n̄4,p̂)


 =

n̄1
2

=
1

2

N1N5

k
− k

2
Np . (5.97)

The gravity ̄3 is

̄3grav =
1

2

N1N5

k
− k

2
Np , (5.98)

so we find perfect agreement.

The CFT j3 is

j3 =
1

2


n̄1 +

∑

p̂∈pZ
(n̄3,p̂ − n̄4,p̂)


+

∑

p̂∈pZ
(kp̂) (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) = ̄3 + kNp . (5.99)

Comparing to the gravity we have

j3grav =
π

4G(5)
JL = ̄3grav + kNp (5.100)

and so we again find perfect agreement.

Finally, by comparing the momentum charge we obtain the map between |b4|2 and the

average numbers of excited CFT strands,

NP =
π

4G(5)
RyQP ⇒

∑

p̂∈pZ
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) =

( π

4G(5)

) 4|b4|2
k2Ry

. (5.101)

For kp = 1, the analysis contains minor differences, however the expressions for j3 and

̄3 in terms of N1, N5, NP are the same as those given in (5.98) and (5.100), as we show in

Appendix C. Thus the conserved charges agree for all values of k and p.

Therefore we find exact agreement of conserved charges between gravity and CFT, provid-

ing supporting evidence for our proposal. It would be interesting to scrutinize our proposal

further with the tools of precision holography [43,28,44,70].
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5.6 Comments on momentum fractionation

The fractional spectral flow that we perform results in filled Fermi seas on the excited strands.

One way to see this is to observe that the SU(2)R current algebra has the identity

(J+
−1/k)

kp̂ |00〉
k2p̂

= J+

− 2kp̂−1

k2p̂

· · · J+
− 5

k2p̂

J+
− 3

k2p̂

J+
− 1

k2p̂

|00〉
k2p̂

. (5.102)

Similar expressions apply for the |++〉 and |−−〉 strands.
So the CFT state can be written in different ways, and in one way of looking at our states,

we excite modes with the lowest possible energy compatible with the constraint of integer

momentum per strand. Saying this another way, spectral flow creates a state with the lowest

possible energy for a given angular momentum, or equivalently maximal angular momentum

for a given energy, so that there is no available free energy for thermal excitations of the state.

As one backs away from maximal angular momentum, one has the freedom to excite dif-

ferent modes, and the entropy increases. For instance, if we change one of the current raising

operators on the right-hand side of (5.102) from a J+ to a J3, the angular momentum is de-

creased by one unit but the energy and momentum remain the same; and there are kp distinct

ways to do this. Decrease the angular momentum by one more unit, and we can either have

one J− or two J3 with the rest remaining J+, and there are of order (kp)2 choices; and so on.

Such a deformation away from maximal spin preserves the BPS property of the CFT

state. It is interesting to ask what the gravitational description of such excitations will be,

and whether they will match those of the CFT. If we change the lowest modes with en-

ergy/momentum of order 1/k2p, we would expect to have made a change in the geometry in

the places with the deepest red-shift. Note that such BPS deformations are not available in

the two-charge seed on which the three-charge coiffured solution is based.

Since the CFT state has strands of length of order k2p, there are also non-BPS excitations

that have zero momentum and angular momentum, and energy of order 1/k2p. Such excitations

are also present in the two-charge seed states. In the supergravity, the non-BPS excitations

are described at the linearized level by solving wave equations in the superstratum geometry.

The supergravity solutions do not appear to have excitations at the scale 1/k2p suggested

by the CFT, however; in general, there seems to be a mismatch between the gap in supergravity

and in the CFT. The two-charge seed for Style 2 coiffuring is quite similar to a class of two-

charge solutions studied in [27], for which the gap was estimated to be a/b (with a related

to the number of |++〉 strands, b the number of T4 strands including |00〉 strands). In the

CFT, the gap depends only on the length κ of the strands and is independent of the relative

amounts a and b of the different kinds of strands. A preliminary study of the foregoing three-

charge geometries indicates that, similar to the examples of [27], the red-shift depends on the

amplitudes a and b, and that the deepest red-shifts are not kp times deeper than those of the

parent k-wound supertube.

In general, one can arrange that the throat in supergravity is deeper and results in a smaller

gap than in the orbifold CFT (e.g. supergravity duals to CFT states discussed in [27] having
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only short cycles but low total angular momentum), and in yet other examples the throat in

supergravity is shallower and results in a larger gap than in the orbifold CFT (e.g. the coiffured

geometries discussed in this paper when b is finite but much less than a). It would be useful

to understand better the cause of this discrepancy.

The two-charge seed geometries of Section 5.4 offer a qualitative explanation of the gap

in supergravity. The dual of the F1-P source in the Lunin-Mathur construction of two-

charge geometries [72] is a D1-D5 supertube smeared over the compact directions – the circle

parametrized by y and the compactification manifold M [9, 71,27,28]. When segments of the

unsmeared source approach one another, a throat opens and deepens in the geometry. This

property explains why the profile (5.44) results in a red-shift of order k – the supertube source

traces the same profile in the transverse space k times in the course of the supertube winding

the y circle, and is k times more compact (in R
4 coordinates); as a consequence, the harmonic

functions are k times bigger at their maximum, and the throat is k times deeper.

For a small perturbation of this profile, it may be that the oscillations of the profile are

kp times faster than the k-fold spiral of the supertube, but this is a small perturbative wiggle

and does not make the profile kp times more bunched together, and hence the deepest parts

of the throat do not exhibit a red-shift kp times deeper. However, as one shifts more of the

strands from |++〉 type to |00〉 type, the angular momentum is reduced, the source becomes

more compact, and the throat deepens.

It remains a puzzle why there is such a mismatch between the behavior of supergravity and

that of the CFT for such a coarse property of the geometry. The gap to non-BPS excitations

is of course not a robust property of the system, and could change dramatically as one passes

from the regime where the CFT is weakly coupled to the regime where it is strongly coupled

and gravity is a good approximation. Nevertheless, there are examples (see for instance [47])

where the gap can be matched on both sides of the duality. The presence or absence of

strands polarized in the T
4 directions appears to be an ingredient which influences whether

this quantity agrees between gravity and CFT; it would be useful to understand fully when

this comparison does and does not work.

6 Discussion

This work has expanded the construction of superstrata to include momentum-carrying modes

in deep AdS3 throats, in which the red-shift at the bottom of the throat is k times that

of a singly-wound supertube. Our construction started from a k-wound circular supertube

geometry. We performed spectral inversion on this solution, then altered its angular momentum

by adding charge density fluctuations along the supertube with a wavenumber kp for some

integer p, without deforming the shape of the supertube. We then brought the solution back

to the original frame, where these fluctuations became momentum-carrying excitations.

Our construction also produced the first examples of asymptotically-flat superstrata. We

built two classes of solutions, corresponding to two different ways of arranging the Fourier

coefficients in order to obtain smooth solutions (with the usual Zk orbifold singularities at the
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location of the supertube).

Taking the decoupling limit to obtain the corresponding asymptotically-AdS solutions,

we derived a proposal for the dual CFT states, for both classes of solutions. The starting

supertube is built from a macroscopic ensemble of cycles of length k in the twisted sector

of the symmetric orbifold CFT. The angular excitations in the CFT description are coherent

fractional spectral flows on additional cycles of the twisted sector state, whose length is of

order k2p. This fractional spectral flow can also be thought of either as acting of order kp

times with the fractionally-moded raising operator J+
−1/k, or as raising the Fermi seas on these

cycles by filling all the fermion modes with positive R-charge up to a level of order 1/k.

In our states, the fractionally-moded quanta in the CFT correspond to perfectly regular,

local excitations in the supergravity theory and not to non-geometric or multi-valued pertur-

bations. The bulk reflection of the fractional momentum carriers is rather the red-shift of the

perturbations down the supertube throat.

A small puzzle that remains is the apparent mismatch in the excitation gap of orbifold

CFT states and supergravity geometries discussed in Section 5.6. A very similar mismatch

was previously noted for certain two-charge solutions [27]. In the CFT, the gap is determined

by the length of the longest cycles in the twisted sector ground state. In the geometry, the

depth of the throat depends on other quantities, such as the relative proportions of the different

strands. The supergravity gap can be larger or smaller than the orbifold CFT gap. The gap

to non-BPS excitations is not protected in general, so this is not a serious problem for the

holographic duality. However there are examples (see for instance [47]) where the gap matches

between gravity and CFT. It would be interesting to understand when the gap should agree,

and when it should not.

Our solutions do not have all desired features of typical black-hole microstates: Their

angular momenta are over-spinning and the throats are not as deep as those of typical states.

The corresponding orbifold CFT states contain strands having length of order k2p, and so k

can at most be of order
√
N1N5, while the longer wavelength scale k2p is not apparent in the

geometry. Thus we regard the supergravity solutions presented here as a “proof of concept” of

a supergravity realization of momentum fractionation on superstrata, much like the solutions

in [19] are a proof of concept of the existence of superstrata solutions parameterized by arbitrary

functions of two variables.

For the future, one would like to improve on both of these (related) features: To lower

the angular momenta, and to deepen the throat further. First, regarding the angular mo-

menta, in Section 5.6 we identified CFT excitations that move away from the maximally

spinning/overspinning regime by reducing the angular momentum through a change in the

polarization of the R-symmetry currents acting on the two-charge seed. Using this freedom,

one can make available some of the free energy to wiggle the throat while remaining BPS.

Where in the throat the excitation lies should correlate with the degree of fractionation of the

modes whose polarizations are being adjusted in the CFT.

One place to look for these more general solutions on the supergravity side is to consider
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more generic superstrata, described by arbitrary functions of two variables. In this work we

have focused on a sub-class of solutions which are parameterized by functions of one variable.

This has been a choice made for technical convenience, to focus on the physics of momentum

fractionation in a tractable system. It would be interesting to generalize our solutions to

superstrata which are parametrized by functions of two variables and which exhibit momentum

fractionation. Looking further ahead, the generic CFT state deformations discussed above,

which stay BPS by deforming the polarizations of the spectral flow R-currents, will correspond

to deformations of the supergravity solution that depend on all all three angular variables

(v, ϕ1, ϕ2).

The next essential step in the study of superstrata is to construct states with deeper throats,

that are in a macroscopic scaling regime. Our solutions have throats k times deeper than the

first superstrata constructed in [19], and so represent progress in this direction. The standard

way to obtain a macroscopic scaling solution is to use at least three Gibbons-Hawking centers,

but it may also be possible to construct scaling solutions with two centers when the supertubes

fluctuate. As we noted above, for technical reasons we have focussed on some very particular

modes and this choice of modes meant that whenever we added momentum to the supertube we

also added a similar amount of angular momentum. Thus our solutions remained over-spinning

or extremal. As a result, we could not access the scaling region that is usually associated with

the microstates of a black hole with macroscopic horizon area. In this paper we added charges

to the supertube in a manner that precluded us from exploring such deep, scaling geometries.

In addition to the excitations discussed above that lower the angular momenta, more

broadly one can consider excitations that either have no angular momentum, or have neg-

ative angular momentum. In principle, by using these excitations one can add momentum to

the supertube in a way that takes the charges into the BMPV regime. The corresponding

black hole would then have a macroscopic horizon and the microstate geometry should then

scale and exhibit larger red-shifts and lower holographic energy gaps. This is presently under

investigation.

More generally, one may desire to embed superstrata and the kind of twisted-sector struc-

ture elucidated here, in multi-centered deep, scaling geometries since this is (as yet) the only

known way to access typical twisted-sector CFT states within the supergravity approximation.

On a technical level this will be challenging, since it means going beyond two centers and yet

our construction has made very heavy use of the flat R
4 base and the separability of various

wave equations in bipolar coordinates. However, this does not mean that it is impossible: The

scalar Green functions for charge density fluctuations in generic ambipolar backgrounds were

discussed in [34], and a three-centered Green function was constructed explicitly. So while this

may be very difficult, it is not completely out of reach. Moreover, we hope to find physical

arguments that illuminate what the geometries constructed in this paper will probe once they

are combined with generic superstrata and embedded in deep, scaling geometries.

Looking further to the future, it would be of great interest to study momentum fractionation

in non-supersymmetric microstates, as done in [48]. The recent construction of multi-bubble

non-BPS black-hole microstate geometries [73] offers the prospect of progress in this direction.
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A The BMPV black hole

To help establish normalizations, it is useful to give the standard BMPV black-hole metric [64]

in terms of the Ansatz used in this paper. Everything is, of course, v-independent and the

vector field, β, and the ΘI , are set to zero. For a BMPV black hole located at the center of

space (r = 0, θ = 0) the ZI are appropriately-sourced harmonic functions:

Z1 = 1 +
Q1

Λ
, Z2 = 1 +

Q2

Λ
, F = − 2Q3

Λ
, Z4 = 0 . (A.1)

The angular momentum vector, ω, is then simply the “harmonic” solution to the homogeneous

equation (2.20) with source at the center of space:

ω =
J

Λ2

(
(r2 + a2) sin2 θ dϕ1 − r2 cos2 θ dϕ2

)
. (A.2)

Note that as r → ∞ one has

ZI ∼ 1 +
QI
r2

, I = 1, 2, 3 , ω ∼ J

r2
(
sin2 θ dϕ1 − cos2 θ dϕ2

)
, (A.3)

which determine the charges and angular momenta of the black hole.

To make the asymptotic analysis of the metric in the vicinity of the center of space using

more standard spherical coordinates in the infinitesimal neighborhood of r = 0, θ = 0, one can

simply take:

r = λ sinχ , θ =
λ

a
cosχ . (A.4)

and expand to lowest order in λ. One then finds that the leading part of the metric becomes:

ds25 =
√
Q1Q2

[
dλ2

λ2
+ dχ2 + sin2 χ cos2 χ (dϕ1 − dϕ2)

2

+
2Q3

Q1Q2

(
dv − J

2Q3
(cos2 χdϕ1 + sin2 χdϕ2)

)2

+
(
1− J2

2Q1Q2Q3

)
(cos2 χdϕ1 + sin2 χdϕ2)

2

]
. (A.5)
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In particular, we see that with our normalizations one must impose the condition:

J2 ≤ 2Q1Q2Q3 ⇔ J2
L ≤ Q1Q2QP , (A.6)

where JL = J/
√
2 and QP = Q3.

B Reduction to five dimensions

There are two standard ways of reducing the six-dimensional solution, and the system of BPS

equations [35–38], to the standard, five-dimensional analogs found in may references (see, for

example, [11,74]). These two choices of reduction come from different embeddings of the five-

dimensional fields in the six-dimensional formulation; we summarize these two standard choices

here. The five-dimensional BPS equations are:

Θ(I) = ⋆4 Θ
(I) , (B.1)

∇2ZI = 1
2 CIJK ⋆4 (Θ

(J) ∧Θ(K)) , (B.2)

dk + ⋆4 dk = ZI Θ
(I) . (B.3)

Our goal will be to take v-independent, six-dimensional solutions and compactify on an S1 fiber

so that the system equations (2.14)–(2.16), (2.20) and (2.21) reduce to the five-dimensional

system.

B.1 Reduction 1

This is the canonical choice if F never vanishes and in particular, when F → −1 at infinity.

One can then write the metric (2.4) globally as

ds26 =
1√
P F

(du+ ω)2 − F√
P

(
dv + β + F−1(du+ ω)

)2
+

√
P ds24(B) . (B.4)

Upon making the identifications

F = − Z3 , u = t , v = t+ y , k = ω , Θ3 = dβ , (B.5)

the six-dimensional metric is given by

ds26 = − 1

Z3

√
P

(dt+ k)2 +
Z3√
P

[
dv + β − Z−1

3 (dt+ k)
]2

+
√
P ds24(B) , (B.6)

which can also be written as

ds26 = − 1

Z3

√
P

(dt+ k)2 +
Z3√
P

[
dy + (1− Z−1

3 )(dt+ k) + (β − k)
]2

+
√
P ds24(B) . (B.7)

Compactifying on the y-circle yields an overall warp factor of ( Z3√
P )

1/3 on the five-dimensional

metric and leads to

ds25 = −
(
Z3 P

)− 2

3 (dt+ k)2 +
(
Z3P

) 1

3 ds24(B) , (B.8)
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These identifications reduce the six-dimensional BPS system used in this paper directly to

the canonical five-dimensional system; this is the origin of how we have chosen to normalize

the flux fields like ΘI . However we have chosen the t, y coordinates (2.2), meaning that F → 0

at infinity, leading to a canonical embedding more closely associated with supertubes. We will

now describe this in more detail.

B.2 Reduction 2

In this reduction we use the coordinates (2.2):

u ≡ 1√
2
(t− y) , v ≡ 1√

2
(t+ y) . (B.9)

Then as described in (2.5), we introduce

Z3 = 1− F
2
, k =

ω + β√
2

, (B.10)

and complete the squares in the metric as in (2.6) to obtain

ds26 = − 1

Z3

√
P

(dt+ k)2 +
Z3√
P

[
dy +

(
1− Z−1

3

)
(dt+ k) +

β − ω√
2

]2
+

√
P ds24(B) . (B.11)

With these identifications one must make the following replacements and re-definitions for

the quantities defined in the body of this paper

ΘI →
√
2ΘI , I = 1, 2, 4 ; Θ3 =

√
2 dβ . (B.12)

Doing this, the BPS equations (2.14)–(2.16), (2.20) and (2.21) reduce to the five-dimensional

system (B.1)–(B.3). In particular, the terms arising from the constant in F = −2(Z3 − 1)

cancel in (2.20) against the terms Dβ + ∗4Dβ arising from the replacement ω =
√
2k− β.

C The lowest Style 1 modes

In this appendix we demonstrate the agreement of conserved charges for the lowest possible

modes in Style 1, those with kp = 1, following the analysis for kp > 1 done in Section 5.5.2.

For kp = 1, the dual CFT state is a particular superposition of states of the Style 1 type

(5.89),

(
|++〉1

)n1 ∏

p̂∈Z

(
(J+

−1)
p̂|00〉p̂

)n2,p̂
(
(J+

−1)
p̂|++〉p̂+1

)n3,p̂
(
(J+

−1)
p̂|−−〉p̂−1

)n4,p̂

(C.1)

As explained at the end of Section 5.4.4, the average numbers of |++〉k(kp̂+1) and |−−〉k(kp̂−1)

strands are equal for p̂ ≥ 2,

n̄3,p̂ = n̄4,p̂ for all p̂ ≥ 2 , (C.2)
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while the excited |−−〉 strands that would be counted by n4,1 would have length zero, which

does not exist. Therefore we set

n4,1 = 0 . (C.3)

This means that the excited |++〉2 strands that are counted by n3,1 are not balanced out by

corresponding |−−〉 strands. Nevertheless, the conserved charges will work out properly, as we

now show.

Since the total number of strands is N1N5, using (C.2) we obtain

n̄1 +
∑

p̂∈Z
[p̂n̄2,p̂ + (p̂+ 1)n̄3,p̂ + (p̂ − 1)n̄4,p̂] = N1N5

⇒ n̄1 +
∑

p̂∈Z
[p̂(n̄2,p̂ + n̄3,p̂ + n̄4,p̂)] + n̄3,1 = N1N5 (C.4)

and so n̄1 is given by

n̄1 = N1N5 −Np − n̄3,1 . (C.5)

Next, the CFT ̄3 is

̄3 =
1

2


n̄1 +

∑

p̂

(n̄3,p̂ − n̄4,p̂)


 =

1

2
(n̄1 + n̄3,1) =

1

2
N1N5 −

1

2
Np , (C.6)

in perfect agreement with the value of ̄3 computed from the gravity.

The CFT j3 is

j3 =
1

2


n̄1 +

∑

p̂

(n̄3,p̂ − n̄4,p̂)


+

∑

p̂∈Z
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂)

=
1

2
(n̄1 + n̄3,1) +

∑

p̂∈Z
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) = ̄3 + kNp . (C.7)

which again agrees exactly with the value of j3 computed from the gravity. The momentum

charge determines b4 just as for kn > 1, and so all conserved charges agree.

This agreement shows that comparing conserved charges alone does not put any constraint

on the value of n̄3,1. Of course, our proposal of Section 5.4 fixes n̄3,1 unambiguously, since

we have specified in principle all coefficients in the coherent state. To scrutinize our proposal

further, one would have to perform further holographic tests.

One can see how this agreement works in another way: Relative to the unexcited base

supertube |++〉1 strands, the difference in conserved charges is as follows. For each excited

|++〉2 strand, the change in ̄3 is ∆̄3 = −1/2; for j3 we have ∆j3 = 1 − 1/2 = 1/2; and we

have ∆P = 1. So regardless of the value of n̄3,1, the above expressions for j3 and ̄3 in terms

of N1, N5, NP are the same.
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