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Abstract

The low-energy description of wrapped M5 branes in compactifications of
M-theory on a Calabi-Yau threefold times a circle is given by a conformal
field theory studied by Maldacena, Strominger and Witten and known as the
MSW CFT. Taking the threefold to be T6 or K3×T2, we construct a map
between a sub-sector of this CFT and a sub-sector of the D1-D5 CFT. We
demonstrate this map by considering a set of D1-D5 CFT states that have
smooth horizonless bulk duals, and explicitly constructing the supergravity
solutions dual to the corresponding states of the MSW CFT. We thus obtain
the largest known class of solutions dual to MSW CFT microstates, and
demonstrate that five-dimensional ungauged supergravity admits much larger
families of smooth horizonless solutions than previously known.
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1 Introduction

For around twenty years there have been two well-known routes to describe the entropy of BPS

black holes in some form of weak-coupling limit. The first of these was done using the original

perturbative, weak-coupling microstate counting of momentum excitations of the D1-D5 system

[1]. The corresponding three-charge black hole, in five dimensions, is obtained by compactifying

D1 and D5 branes of the IIB theory on M × S1, where M is either T4 or K3, and adding

momentum. When the size of the S1 wrapped by N1 D1 and N5 D5 branes is the largest scale in

the problem, the low-energy physics is given by a superconformal field theory (SCFT) with central

charge 6N1N5. There is now strong evidence that there is a locus in moduli space where this

SCFT is a symmetric product orbifold theory with target space MN/SN , where N = N1N5 [2].

This orbifold point is naturally thought of as the weak-coupling limit on the field theory side, and

it is far in moduli space from the region in which supergravity is weakly coupled (see for example

the review [3]).

The D1-D5 system has eight supersymmetries that, in terms of left- and right-moving modes,

are N = (4, 4). Adding NP units of left-moving momentum breaks the supersymmetry to (0, 4).

The state counting emerges from the ways of partitioning this momentum amongst the funda-

mental excitations of the SCFT, and the result matches the entropy of the three-charge black

hole in five dimensions.

The D1-D5 black string in six dimensions has a near-horizon limit that is AdS3 × S3. The

holographic duality between the strongly coupled D1-D5 CFT and supergravity on AdS3×S3 has

been widely studied and is, as far as these things go, relatively well understood. In particular, one

can often do “weak-coupling” calculations in the orbifold CFT that can be mapped to “strong-

coupling” physics described by the AdS3 × S3 supergravity dual of this theory. The computation

of BPS black hole entropy is one such example. However the holographic duality gives much

more information than simple entropy counts, enabling the study of strong-coupling physics of

individual microstates of the CFT, and their bulk descriptions (see, for example, [4–14]).

The second approach is to use the Maldacena-Strominger-Witten (MSW) [15] “string.” Here

one starts with a compactification of M-theory on a Calabi-Yau threefold to five dimensions.

One then wraps an M5 brane around a suitably chosen divisor to obtain a (1 + 1)-dimensional

string in five dimensions. This breaks the supersymmetry to N = (0, 4) right from the outset.

There is a (1 + 1)-dimensional SCFT on the worldvolume of this string and its central charge is

proportional to the number of moduli of the wrapped brane.1 This MSW string is wrapped around

another compactification circle to obtain a four-dimensional compact bound state. One can add

momentum excitations to the MSW string in a manner that preserves the (0, 4) supersymmetry,

and the entropy of these excitations matches (to leading order) the entropy of the corresponding

four-dimensional BPS black hole.

However, despite multiple attempts over the past twenty years, the holographic description of

the MSW black hole remains much more mysterious. The strongly-coupled physics of this CFT

is described by weakly-coupled supergravity in an asymptotically AdS3 × S2 ×CY geometry, but

1The central charge can be computed in terms of the intersection properties of the divisor through a simple
index theorem.

3



it appears that there does not exist an exactly solvable, symmetric-orbifold CFT anywhere in the

moduli space [16,17].

The purpose of this paper is to construct a map between a large sub-sector of the MSW CFT

and a large sub-sector of the D1-D5 CFT. Our construction has two steps. We first construct a

map between the Type IIB [global AdS3]×S3×T4 solution dual to the NS vacuum of the D1-D5

CFT (and Zκ orbifolds thereof) and the M-theory [global AdS3] × S2 × T6 solution dual to the

NS vacuum of the MSW CFT.2 The first step of this map converts the Zκ orbifold of the D1-D5

solutions into a smooth Zκ quotient on the Hopf fiber of the S3, which adds (the near-horizon

limit of) KK-monopole charge. The second step involves a known sequence of T-dualities and lift

to M-theory. We then observe that this map also takes all the D1-D5 microstate geometries that

are independent of the Hopf fiber into microstate geometries of the MSW system.

Very large families of microstate geometries of the D1-D5 CFT, parameterized by arbitrary

continuous functions of two (or perhaps even three) variables, have been constructed over the

past few years using superstratum technology [11, 13, 14]. In six dimensions, these solutions are

expanded into three sets of Fourier modes, labelled by (k,m, n). Our map takes the modes

with k = 2m to asymptotically AdS3 × S2 solutions dual to momentum-carrying microstates of

the MSW CFT. Since, in principle, D1-D5-P superstrata with generic (k,m, n) are described by

functions of three variables3, the restriction to enable the map to MSW CFT reduces this to

functions of two variables. In practice, in this paper we have constructed solutions with k = 2,

m = 1 and generic n and so our M-theory superstrata are parameterized by one integer n.

Extrapolating to superpositions of two modes will give, by the linearity of the BPS equations

of six-dimensional supergravity, smooth solutions parameterized by functions of one variable.4

Either way, we are able to build the largest known class of smooth microstate geometries for the

MSW black hole.

Precise dual CFT states for superstrata solutions have been identified [11–14], and our map

indicates that there is a one-to-one map between the subset of these states that are eigenstates of

the R-current J3
L corresponding to rotations around the Hopf fiber of the S3, and a certain class

of states of the MSW CFT. Given that the MSW CFT does not seem to have a weakly-coupled

symmetric orbifold description, the fact that one can map a sector of this CFT into a sector of

the D1-D5 CFT may provide leverage in analyzing some aspects of the MSW CFT, such as the

set of protected three-point functions where two of the operators are heavy and one is light.

The [global AdS3]×S2×T6 solution dual to the NS vacuum of the MSW CFT can be obtained

as an uplift of a Type IIA configuration with two fluxed D6 branes of opposite charges (the fluxes

give rise to D4 charges which uplift to the M5 charges of the M-theory solution). The geometric

transition that employs fluxed D6 (and anti-D6) branes to convert black holes and black rings

into smooth, horizonless geometries was first described in [20, 21]. A particular example of this

2More precisely, beginning with a set of D1-D5 R-R ground states that are related to (Zκ orbifolds of) [global
AdS3] × S3 × T4 [18, 19], we construct a map to the MSW maximally-spinning Ramond ground state, which is
related to [global AdS3]× S2 × T6 by spectral flow.

3Smooth solutions with generic Fourier modes have not yet been explicitly constructed, and it is conceivable
that interactions between such generic modes could introduce new, unanticipated singularities. This is why we are
using the phrasing “in principle.”

4Another way to build M-theory superstrata parameterized by a function of one variable is to impose the k = 2m
condition on the superstrata constructed in [11].
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was studied in [22] in which a fluxed D6-D6 bound state was used as a background to study the

dynamics of D0 branes and wrapped D2 branes. This is sometimes referred to black-hole and

black-ring “deconstruction” [22,23].

Adding D0 branes to the D6-D6 configuration corresponds, in the M-theory uplift, to adding

momentum along the AdS3 angular direction, and this configuration was studied in detail in

several papers almost a decade ago. There are several ways in which this can be done. First,

one can add “pure” D0’s, which are free to move on a hyperplane in the solution [22, 24, 25].

Uplifting this supergravity solution to M-theory gives rise to a singular supergravity PP-wave

solution, carrying angular momentum along both AdS3 and S2; however, this naive extrapolation

ignores the non-Abelian and non-linear dynamics of multiple D0-branes. A second way to add

momentum charge is to add a gas of supergravity modes directly in M-theory, in the smooth

[global AdS3]× S2 ×T6 solution. The entropy of this “supergraviton gas” [26] scales in the same

way as the added D0 branes described above [25]. However the back-reaction of this supergraviton

gas was not constructed.

The solutions we find are smooth M-theory geometries carrying the same charges as the

foregoing ensembles of states, the D0’s and the supergraviton gas, and so it is natural to think of

our solutions as examples of fully back-reacted smooth geometries associated to the supergraviton

gas, or to correctly-uplifted D0 branes. Indeed, the linearized limit of the superstratum modes is

explicitly a supergraviton gas in [global AdS3]× S2 × T6. Hence, at least outside the black-hole

regime of parameters, it may well be that some of our M-theory solutions are fully back-reacted

supergraviton gas states.

In the black-hole regime of parameters, one desires more entropy than is provided by the su-

pergraviton gas. There are other methods of incorporating D0-brane charge in this regime, which

often go beyond supergravity. For example, one can place branes in the type IIA background

that carry D0 charge as a worldvolume flux. One possibility is to add a D4-D2-D2-D0 center,

which uplifts in M-theory to a M5-M2-M2-P supertube that rotates along the AdS3 [27]. Since

supertubes can have arbitrary shapes [28], the solutions corresponding to these configurations can

have a non-trivial dependence on the M-theory circle; however, like the pure D0-brane sources,

these are again naively singular configurations. Estimates of the entropy of back-reacted solutions

thus far yield results sub-leading relative to the black hole entropy [27].

Another possibility is to add D0 branes via world-volume flux on a dipolar, egg-shaped D2-

brane [22]. Counting the Landau levels of this two-brane has been argued to reproduce the

BPS black hole entropy. This “egg-brane” uplifts in M theory to an M2 brane wrapping the S2

and spinning in AdS3, and the corresponding solution is also singular [29,30]. Moreover, simply

wrapping branes around this S2 adds yet another charge to the system, which either (a) introduces

an uncanceled tadpole which changes the asymptotics of the supergravity fields; or (b) breaks all

of the supersymmetry [31]. Either way, such configurations cannot represent BPS microstates of

the original black hole.

It is possible that smooth geometric oscillations of superstrata in deep scaling geometries

might contribute a finite fraction of black hole entropy [32], but this is by no means proven.

Such states lie well beyond the consideration of a supergraviton gas in the [global AdS3] × S2

background. Our construction gives new possibilities for deep superstrata in the M-theory frame,
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and thus represent another advance in the quest for a geometrical understanding of black hole

entropy. The fields that make smoothness of superstrata geometries possible are exactly of the

kind one expects to see when one considers the back-reaction of the momentum-carrying M5

brane source in the MSW system, or that are generated in string emission calculations [33] in a

U-dual four-charge configuration of D3 branes [34]5. We believe that this is not a coincidence but

rather an indication that our construction is closing in on a good holographic description of the

microstates of this system.

Besides its interest for understanding the MSW CFT, our map is also a very powerful solution-

generating device. Indeed, we will use it to construct new smooth solutions of five-dimensional

ungauged supergravity that are, in principle, parameterized by arbitrary functions of at least

one variable.6 There is a long history of constructing smooth solutions in this theory [20, 21,

35]. However, while these solutions have non-trivial topology, they also have much symmetry;

the solution spaces depend on several continuous parameters that describe the location of the

topological bubbles. Until now it was not known how to construct smooth solutions in these

theories parameterized by arbitrary continuous functions—such solutions were believed to exist

only in supergravity theories in space-time dimensions greater than or equal to six, such as those

in [4, 36, 11, 13, 14]. Our map thus, in principle, yields the largest family, to date, of smooth

solutions of five-dimensional ungauged supergravity. It also establishes that five-dimensional

supergravity can capture smooth, horizonless solutions with black-hole charges, to a much greater

extent than previously thought.

The structure of the presentation is as follows. In Section 2 we introduce the class of six-

dimensional BPS D1-D5-P geometries of interest, and the BPS equations that they satisfy. We

work with asymptotically AdS3 × S3 geometries that can be written as a torus fibration, with

the fiber coordinates (v, ψ) asymptotically identified with (roughly speaking) the AdS3 angular

coordinate and the Hopf fiber coordinate of S3 respectively. We introduce maps that involve an

SL(2,Q), action on the torus fiber and a redefinition of the periodicities of these coordinates, and

call these maps “spectral transformations”. In Section 3 we illustrate the action of a particular

spectral transformation on the example of the round, κ-wound multi-wound supertube solution.

This transformation introduces KK monopole charge into the D1-D5 system. We then recall the

known U-duality that relates the D1-D5-KKM system to the MSW system on T6 (or T2×K3).

In Section 4 we derive the effect of general SL(2,Q) transformations on the six-dimensional

metric and gauge fields. In Section 5 we apply our particular transformation to the D1-D5-P

superstrata of [37,11,14], and we work out an explicit example in detail in Section 6. In Section 7

we investigate the question of whether there is a weakly coupled symmetric orbifold CFT in the

moduli space of the MSW system, as there is for D1-D5. When the compactification manifold, M,

is T4, the energetics of U(1) charged excitations can be inferred from a supergravity analysis [17],

and places strong constraints on the CFT, leading to a no-go theorem. In Section 8 we discuss

our results, and the appendices contain various technical details.

5These fields are absent in the solutions of [24,29,30,27].
6For our explicit example solutions we will restrict attention to a sub-class of solutions parameterized by one

integer, however by the above discussion, the broader family of these solutions is in principle described by arbitrary
functions of at least one variable.
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2 D1-D5-P BPS solutions and spectral transformations

2.1 D1-D5-P BPS solutions

In the D1-D5-P frame, we work in type IIB string theory on M4,1 × S1 ×M, where M is either

T4 or K3. We shall take the size of M to be microscopic, and the S1 to be macroscopic. The S1

is parameterized by the coordinate y which we take to have radius Ry,

y ∼ y + 2πRy . (2.1)

We reduce on M and work in the low-energy supergravity limit. That is, we work with six-

dimensional, N = 1 supergravity coupled to two (anti-self-dual) tensor multiplets. This theory

contains all the fields expected from D1-D5-P string world-sheet calculations [33]. The system

of equations describing all 1
8 -BPS, D1-D5-P solutions of this theory was found in [38]; it is a

generalization of the system discussed in [39,40] and greatly simplified in [41]. For supersymmetric

solutions, the metric on M takes the local form:

ds26 = − 2√
P

(dv + β)
(
du+ ω + 1

2 F (dv + β)
)

+
√
P ds24(B) . (2.2)

The supersymmetry requires that all fields are independent of the null coordinate, u.

In parameterizing D1-D5-P solutions it is standard to relate u and v to the circle coordinate,

y, and a time coordinate t via

u = 1√
2
(t− y) , v = 1√

2
(t+ y) . (2.3)

However, there is some freedom in choosing such a relation, since the form of the metric (and the

ansatz in general) is invariant under the shift

u′ ≡ u − 1
2c0v , F ′ ≡ F + c0 , ω′ ≡ ω − 1

2 c0 β . (2.4)

Using this freedom, we will shortly choose a different relation between u, v, t and y that is more

natural for spectral transformations and for reduction to five dimensions.

While all the ansatz quantities may in principle depend upon v, throughout this paper we

shall require the metric, ds24(B), on the four-dimensional spatial base, and the fibration vector,

β, to be independent of v. This greatly simplifies the BPS equations and, in particular, requires

that the base metric be hyper-Kähler and that dβ be self-dual on B.
The metric and tensor gauge fields are determined as follows. We introduce an index I =

1, . . . , 4, and an index a that excludes I = 3 (which plays a preferred role): a = 1, 2, 4. The ansatz

then contains four functions Za and F , and four self-dual 2-forms, Θ(I), I = 1, . . . , 4. These can

depend both upon the base, B, and upon the v fiber. The function, F , appears directly in (2.2)

and the warp factor, P, in the metric is given by

P = Z1Z2 − Z2
4 . (2.5)

The vector field, β, defines Θ(3):

Θ(3) ≡ dβ , Θ(3) = ∗4Θ(3) . (2.6)
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The individual functions, Za, and the remaining 2-forms, Θ(a), encode the electric and magnetic

components of the tensor gauge fields. Recall that the N =1 supergravity multiplet contains a

self-dual tensor gauge field, so that adding two anti-self-dual tensor multiplets means that the

theory contains three tensor gauge fields.

Roughly speaking, the pairs (Z1,Θ
(2)) and (Z2,Θ

(1)) describe the fields sourced by the D1

and D5 brane distributions. The function, F , and the vector field, β, encode the details of the

third momentum charge. In the IIB description, the addition of (Z4,Θ
(4)) allows for a non-trivial

NS-NS B-field as well as a linear combination of the R-R axion and four-form potential with all

legs in the internal space M; these fields arise in D1-D5-P string world-sheet calculations [33], so

are expected to be generically present. For more details, see [38].

The remaining simplified BPS equations come in two layers of linear equations. To write

them, we denote by d(4) the exterior derivative on the four-dimensional base, and we define the

operator, D, acting on a p-form with legs on the four-dimensional base (and possibly depending

on v), by:

DΦ ≡ d(4)Φ − β ∧ ∂vΦ . (2.7)

The first layer of equations determines the Maxwell data. For notational convenience throughout

the paper, we work with a form of the BPS equations that is not explicitly covariant in the indices

a = 1, 2, 4. In particular, we will always label Θ4 with a downstairs index, while continuing to

refer to these quantities collectively as Θ(a); hopefully this will not cause confusion. The covariant

form of the BPS equations is given in Appendix A.7 In our conventions, the first layer of the BPS

equations takes the form

∗4DŻ1 = DΘ(2) , D ∗4 DZ1 = −Θ(2)∧ dβ , Θ(2) = ∗4Θ(2) ,

∗4DŻ2 = DΘ(1) , D ∗4 DZ2 = −Θ(1)∧ dβ , Θ(1) = ∗4Θ(1) ,

∗4DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ dβ , Θ4 = ∗4Θ4 .

(2.8)

The second layer of equations determines the other parts of the metric in terms of the Maxwell

data:

Dω + ∗4Dω + F dβ = Z1Θ
(1) + Z2Θ

(2) − 2Z4Θ4 ,

∗4D ∗4
(
ω̇ − 1

2 DF
)

= ∂2v (Z1Z2 − Z2
4 )− (Ż1Ż2 − (Ż4)

2)− 1
2 ∗4

(
Θ(1) ∧Θ(2) −Θ4 ∧Θ4

)
.

(2.9)

Throughout this paper we shall take the base metric to be a Gibbons–Hawking (GH) metric:

ds24 = V −1 (dψ +A)2 + V −1ds23 , ∇2
3V = 0 , ∗3dV = dA (2.10)

where ds23 is flat R3, ∇2
3 is the R3 Laplacian, and ∗3 is the R3 Hodge dual. This leads to the

following simple parametrization of solutions to (2.6):

β =
K3

V
(dψ +A) + ξ , ∇2

3K
3 = 0 , ∗3dK3 = −dξ . (2.11)

7To pass to the covariant form, one rescales (Z4,Θ4, G4) → (Z4,Θ4, G4)/
√
2; more details are given in Ap-

pendix A.
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The choice of a GH base also leads to a convenient decomposition of ω into its components

parallel and perpendicular to the ψ-fiber:

ω = µ (dψ +A) + ̟ . (2.12)

We record here the ansatz for the three-form field strengths in terms of the above data. A

discussion of how these field strengths appear in the corresponding Type IIB ansatz may be

found in [38] and a simplified version without (Z4,Θ4) may be found in [41]. The BPS ansatz for

the fluxes, where ds24 and β are v-independent, is given by:8

G(1) = d

[
−1

2

Z2

P (du+ ω) ∧ (dv + β)

]
+ 1

2 ∗4 DZ2 + 1
2 (dv + β) ∧Θ(1) ,

G(2) = d

[
−1

2

Z1

P (du+ ω) ∧ (dv + β)

]
+ 1

2 ∗4 DZ1 + 1
2 (dv + β) ∧Θ(2) , (2.13)

G4 = d

[
−1

2

Z4

P (du+ ω) ∧ (dv + β)

]
+ 1

2 ∗4 DZ4 + 1
2 (dv + β) ∧Θ4 .

These fields satisfy a twisted self-duality condition; since this is most conveniently expressed in

covariant form [43] (see also [44]), we give it in Appendix A.

2.2 Canonical transformations

As noted above around Eq. (2.4), there is some freedom in relating the (u, v) coordinates to the

time and spatial coordinates, (t, y). As will shortly become clear, it will be convenient for us to

use the following relation throughout this paper:

u = t , v = t+ y ; y ∼= y + 2πRy . (2.14)

One should note that the coordinates (t, y) are the same as those in Eq. (2.3). To get from

Eq. (2.3) to the above relation, one can make a shift (2.4) with c0 = −2, followed by a rescaling of

u′ by 1√
2
and v by

√
2, together with accompanying rescalings of the ansatz quantities, as follows.

First, we take c0 = −2 in (2.4) and define:

u′ ≡ u+ v , F ′ ≡ F − 2 , ω′ ≡ ω + β . (2.15)

Then we perform the rescalings:

ũ =
u′√
2
, ṽ =

√
2 v′ , F̃ =

F ′

2
, ω̃ =

1√
2
ω′ , β̃ =

√
2β′ , Θ̃(a) =

Θ(a)

√
2

(a = 1, 2, 4) .

(2.16)

One then arrives at (2.14) by dropping all the tildes.

Most importantly, with these re-scalings, the ansatz for the metric, the ansatz for the fluxes

and the BPS equations remain unchanged: the factors of
√
2 cancel throughout. Thus we are free

to use either coordinate representation, (2.3) or (2.14), solve the BPS equations and substitute

8Note that, following [42], we have rescaled Θ(1,2) → 1
2
Θ(1,2) relative to the conventions of [41]. See also Footnote

7.
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into the ansätze: both will produce BPS solutions. The resulting solutions will of course be related

by (2.15) and (2.16). We illustrate this point with a simple supertube solution in Appendix B.

The u = t parameterization is much more convenient when comparing six-dimensional solu-

tions to five-dimensional solutions. Assuming that F is everywhere negative, as it will be in our

solutions, one can write the metric as:

ds26 =
1√
P F

(du+ ω)2 − F√
P
(
dv + β + F−1(du+ ω)

)2
+

√
P ds24(B) . (2.17)

Since F is everywhere negative, the v coordinate is everywhere spacelike. Solutions with an

isometry along v can be reduced on v to obtain five-dimensional solutions. In this reduction, u is

the natural time coordinate in five dimensions. This is the advantage of the u = t parameterization

for our purposes.

Finally, to be clear: In this paper we will use (2.14) and u = t will be kept fixed in all spectral

transformations.

2.3 General Spectral Transformations

Note that for solutions with a GH base, the six-dimensional solution in the form (2.17), (2.10) is

written as a double circle fibration, defined by (v, ψ), over the R3 base of the GH metric. In this

paper we will exploit a set of maps that involve coordinate transformations of the (v, ψ) coordi-

nates. We consider maps that act on (v, ψ) with elements of SL(2,Q) and not just SL(2,Z), and

so in general one must be careful to specify how the map acts on the lattice of periodic identifi-

cations of these coordinates. Our maps consist of a composition of a coordinate transformation

and an accompanying redefinition of the lattice of coordinate identifications.

The coordinate transformation component of our map is an SL(2,Q) map that transforms a

solution written in terms of (v, ψ) coordinates to a solution written in terms of new coordinates

(v̂, ψ̂). We parameterize the SL(2,Q) action by rational numbers a,b, c and d subject to ad−bc =

1, as follows:

v

R
= a

v̂

R
+ b ψ̂ , ψ = c

v̂

R
+ dψ , R =

Ry
2
. (2.18)

For later convenience, in the above we have introduced the shorthand R for the ratio of the

periodicities of the v and ψ coordinates, so that the linear transformation acts on circles with the

same period of 4π. We emphasize again that the coordinate u is held fixed.

The lattice redefinition component of our map is as follows. We consider starting configura-

tions for which the lattice of identifications is9

v ∼= v + 2πRy , ψ ∼= ψ + 4π . (2.19)

We define the new lattice of identifications of the new solution to be

v̂ ∼= v̂ + 2πRy , ψ̂ ∼= ψ̂ + 4π , (2.20)

9For ease of exposition, here we suppress possible additional identifications that involve ψ and an angle in the
three-dimensional base; we will be more precise when we discuss explicit examples later.
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that is, the new lattice is not the one that would follow from making the coordinate transformation

(2.18) on the original lattice (2.19), but is redefined to be (2.20).

The fact that the lattice is redefined means that when the parameters of the map are non-

integer, the maps are in general not diffeomorphisms and can modify the presence or absence of

orbifold singularities in the spacetime, as has been observed in fractional spectral flow transfor-

mations [10]. We illustrate the above procedure by reviewing the example of fractional spectral

flow transformations of multi-wound circular D1-D5 supertubes in Appendix C. We will refer to

these maps as “spectral transformations”.

Having made the above transformation, one can recast the metric and tensor gauge fields back

into their BPS form but in terms of the new coordinates, (v̂, ψ̂). For example, one substitutes

the coordinate change (2.18) into the metric (2.17) and (2.10), and then rewrites the result as:

ds26 =
1√
P̂ F̂

(du+ω̂)2 − F̂√
P̂
(
dv̂+β̂+F̂−1(du+ω̂)

)2
+
√

P̂
(
V̂ −1 (dψ̂+Â)2+V̂ −1ds23

)
. (2.21)

This rearrangement of the background metric and tensor gauge fields in terms of the new fibers

defines new ‘hatted’ functions and differential forms in terms of the old functions and forms. We

will derive the explicit transformation rules for the individual ansatz quantities in Section 4, and

use these rules to transform the family of superstrata solutions that we consider.

After this transformation the local metric is still the same as the original one, so the back-

ground is still locally supersymmetric, and so the hatted ansatz quantities solve the BPS equations

in the form (2.8), (2.9). More specifically, if the original functions and forms in the solution de-

pend upon (v, ψ) then that dependence must, of course, be transformed to (v̂, ψ̂) using (2.18),

and the BPS equations satisfied by the hatted quantities will be those of (2.8) and (2.9) but with

(v, ψ) replaced by (v̂, ψ̂).

While the transformed solution is still locally supersymmetric, it is possible that the redefined

lattice of identifications may break some supersymmetry; indeed, we shall see that the transfor-

mation that we employ in the current work will break half of the eight real supersymmetries

preserved by the D1-D5 circular supertube solution.

2.4 Five-dimensional solutions and spectral transformations

Solutions that are independent of v can be dimensionally reduced from six to five dimensions.

The BPS equations become those of N = 2 supergravity coupled to three vector multiplets.

In particular, the description of the four vector fields of this theory involves totally symmetric

structure constants, CIJK. Indeed, for the system we are considering one has

C123 = 1 , C344 = −2 , (2.22)

with all other independent components equal to zero.10

The complete family of smooth solutions that are also ψ-independent may then be written as

10One can convert this to the canonical normalization (in which C344 = −1) by the procedure described in
Footnote 7.
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follows [35]:11

Θ(I) = dBI , BI ≡ KI

V
(dψ +A) + ξI , ∇2

3K
I = 0 , ∗3dKI = −dξI ;

ZI = LI +
1

2
CIJK

KJKK

V
, ∇2

3LI = 0 , (2.23)

µ =
M

2
+
KILI
2V

+
1

6
CIJK

KIKJKK

V 2
, ∇2

3M = 0 ,

with ̟ determined by

∗3 d̟ =
1

2

(
V dM −MdV +KIdLI − LIdK

I
)
. (2.24)

We now reduce the metric, (2.17), on the v-fiber. Following (2.14), we set u = t, and we relabel

ω and F in terms of their more standard five-dimensional analogs:

k ≡ ω , Z3 ≡ −F . (2.25)

This yields the standard five-dimensional metric:

ds25 = −(Z3P)−
2
3 (dt+ k)2 + (Z3 P)

1
3 ds24(B) . (2.26)

2.5 Spectral Transformations for v-independent solutions

The role of SL(2,Z) spectral transformations on (v, ψ) was studied in detail for v-independent

solutions in [45]. In particular, the spectral transformations could be reduced to transformations

on the the harmonic functions V,KI , LI and M . Moreover, from the five-dimensional perspec-

tive, any of the Maxwell fields can be promoted to the Kaluza-Klein field of the six-dimensional

formulation and so there as many different SL(2,Z) spectral transformations as there are vector

fields. Moreover, these SL(2,Z) actions do not commute and, in fact, generate some even larger

sub-group of the U-duality group.

The original study of spectral transformations was made for the system with two vector

multiplets (Z4 ≡ 0 and Θ4 ≡ 0) but the results can be recast in a form that is valid for five-

dimensional N = 2 supergravity coupled to (NV − 1) vector multiplets, and so we will give the

relevant general results.

The spectral transformations considered in [45] included two important sub-classes: “gauge

transformations” and “generalized spectral flows”. A gauge transformation is generated by choos-

ing one of the Maxwell fields as the KK field, then leaving ψ fixed and shifting v by a multiple of

ψ. The choices of uplift lead to NV gauge parameters, gI , and the gauge transformations reshuffle

the harmonic functions according to:

V̂ = V , K̂I = KI + gIV ,

L̂I = LI − CIJKg
JKK − 1

2
CIJKg

JgKV ,

M̂ = M − gILI +
1

2
CIJKg

IgJKK +
1

3!
CIJKg

IgJgKV . (2.27)

11Note that our convention for M differs from that of [35] by a factor of 2.
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While this is a highly non-trivial action on the harmonic functions, this transformation leaves the

physical fields, ZI ,Θ
(I), µ and ̟ invariant, and hence their designation as gauge transformations.

Spectral flows are induced by keeping v fixed and shifting ψ by a multiple of v. Again there

are NV ways to do this with NV parameters, γI , resulting in the full family of generalized spectral

flow transformations. They act on the harmonic functions as follows:

M̂ = M , L̂I = LI − γIM ,

K̂I = KI − CIJKγJLK +
1

2
CIJKγJγKM ,

V̂ = V + γIK
I − 1

2
CIJKγIγJLK +

1

3!
CIJKγIγJγKM . (2.28)

In contrast to the gauge transformations, these transformations have a complicated and very

non-trivial action on the five-dimensional physical fields (see [45]).

In our conventions, the polarization direction I = 3 in Eq. (2.28) corresponds to the (Kaluza-

Klein) vector field in five dimensions that lifts to metric in six dimensions. We reserve the term

“spectral flow” for generalized spectral flows in this polarization direction.

Spectral flow transformations have the same effect as the following large coordinate transfor-

mation, where the new coordinates are denoted with a hat:

ψ = ψ̂ + γ3 v̂ , v = v̂ , (2.29)

and where the other coordinates are invariant. In the D1-D5 system CFT, the world volume of

the CFT lies along the v-fiber and translations along this fiber are generated by the Hamiltonian,

L0. The ψ-fiber lies transverse to the D1 and D5 branes and so represents an R-symmetry

transformation. The above transformation is thus a CFT spectral flow; for a more detailed

discussion, see [5, 6, 10].

Similarly, a gauge transformation in the polarization direction 3 with parameter g3 has the

same effect as the following coordinate transformation, where again the new coordinates are

denoted with a hat:

v = v̂ + g3 ψ̂ , ψ = ψ̂ , (2.30)

and where the other coordinates are invariant. Note that, when the world-volume of the CFT lies

along the v-fiber, this seemingly trivial (from a supergravity point of view) transformation does

not appear to have a simple interpretation in the dual CFT. The transformation would appear

to reorient the world-volume of the CFT, and the question of whether there is any sensible

holographic interpretation of this gravity transformation remains somewhat mysterious.

However, if one interchanges the roles of ψ and v such that the world-volume of the CFT lies

along the ψ-fiber, and the Hopf fiber of the S3 lies along v, then (in our conventions) the above

gauge transformation would correspond to spectral flow in the left-moving sector of the CFT.
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3 The multi-wound supertube and mapping D1-D5 to MSW

Before proceeding to general spectral transformations, it is very instructive to see how spectral

transformations act on one of the most important v-independent BPS solutions: the multi-wound

supertube [18,19,28,46]. We start with its standard formulation as the smooth geometry of the

D1-D5 supertube, and we map it to M-theory with an SL(2,Q) spectral transformation and a

U-duality transformation. The SL(2,Q) spectral transformation introduces a KKM charge along

the Hopf fiber of the S3, and the D1, D5 and KKM charges transform under the U-duality into

three independent M5-brane charges underlying an MSW string, where the resulting configuration

is a particular form of that string, with specific dissolved M2-brane charges and specific angular

momenta.

There is the following interesting conundrum: the D1-D5 supertube is 1
4 -BPS, preserving eight

supersymmetries, while the MSW string is 1
8 -BPS and preserves only four supersymmetries. We

reconcile this difference by carefully examining the lattice of identifications, and showing that our

transformation accounts for the change in the number of supersymmetries.

3.1 The multi-wound D1-D5 supertube configuration

The canonical starting point for the multi-wound, circular D1-D5 supertube is the ansatz (2.2)

with a time coordinate, t, and the asymptotic S1 coordinate, y, related to the coordinates u, v

via (2.3) and with F = 0. However, as we stipulated earlier, we are going to use (2.14), and the

transformations (2.15) and (2.16) then imply that one must take F = −1. The precise relation

between the supertube with (2.3) and the supertube with (2.14) is given in Appendix B.

The κ-wound supertube is a two-centered configuration defined by the following harmonic

functions:

V =
1

r+
, K1 = K2 = 0 , K3 =

κRy
2

(
1

r−
− 1

r+

)
,

L1 =
Q1

4r−
, L2 =

Q5

4r−
, L3 = 1 , M =

Q1Q5

8κRy r−
. (3.1)

We write

Σ ≡ 4r− ≡ (r2 + a2 cos2 θ) , Λ ≡ 4r+ ≡ (r2 + a2 sin2 θ) . (3.2)

The base metric is flat R4, which we write as

ds24 = Σ

(
dr2

(r2 + a2)
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2 . (3.3)

The remaining ansatz quantities for the supertube are then:

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, F = −1 , Z4 = 0 ; Θ(I) = 0 , I = 1, 2, 4 ;

β =
κRya

2

Σ
(sin2 θ dϕ1 − cos2 θ dϕ2) , ω =

κRya
2

Σ
sin2 θ dϕ1 . (3.4)

The parameters are subject to the following regularity condition:

Q1Q5 = κ2R2
y a

2 . (3.5)
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This solution may be written in Gibbons–Hawking form by defining new coordinates, (ψ, φ, ϑ−)

via:

sin 1
2ϑ+ =

(r2 + a2)1/2

Λ1/2
sin θ , cos 1

2ϑ+ =
r

Λ1/2
cos θ , ψ = ϕ1 + ϕ2 , φ = ϕ2 − ϕ1 .

One then has

ds24 = V −1 (dψ +A)2 + V −1
[
dr2+ + r2+ (dϑ2+ + sin2 ϑ+dφ

2)
]
, (3.6)

V =
1

r+
=

4

Λ
, A = cos ϑ+ dφ =

(
(r2 + a2) sin2 θ − r2 cos2 θ

)

Λ
(dϕ1 − dϕ2) .

The decomposition of β in (2.11) is given by K3 in (3.1) and

ξ =
κRya

2

ΛΣ
(2r2 + a2) sin2 θ cos2 θ (dϕ1 − dϕ2) . (3.7)

The quantities r± measure the distances in the flat three-dimensional base between two centers,

defined by r± = 0; one can choose Cartesian coordinates in which we have

r± =
√
y21 + y22 + (y3 ∓ c)2 , c = 1

8 a
2 . (3.8)

This solution describes a κ-wound supertube, whose KKM dipole moment is κ. Given the above

choice of gauge for the one-form A, the lattice of identifications for this solution is generated by12

(y, ψ, φ) ∼ (y + 2πRy, ψ, φ) ,

(y, ψ, φ) ∼ (y, ψ + 4π, φ) , (3.9)

(y, ψ, φ) ∼ (y, ψ + 2π, φ+ 2π) .

There is a Zκ orbifold singularity at the supertube locus, as we will now review.

Introducing the coordinates

r = a sinh ζ , η = 2θ , ỹ =
y

κRy
, t̃ =

t

κRy
, (3.10)

the metric can be written as

ds26 =
√
Q1Q5

[
− cosh2 ζ dt̃

2
+ dζ2 + sinh2 ζ dỹ2

]
(3.11)

+

√
Q1Q5

4

[([
dψ − (dt̃+ dỹ)

]
+ cos η

[
dφ+ (dt̃− dỹ)

])2
+ dη2 + sin2 η

[
dφ+ (dt̃− dỹ)

]2
]
.

Under the further change of coordinates

ψ̃ = ψ − (t̃+ ỹ) , φ̃ = φ+ (t̃− ỹ) , (3.12)

we observe that the metric is locally AdS3×S3,

ds26 =
√
Q1Q5

[
− cosh2 ζ dt̃

2
+ dζ2 + sinh2 ζ dỹ2 +

1

4

((
dψ̃ + cos η dφ̃

)2
+ dη2 + sin2 η dφ̃2

)]
.

(3.13)

12By shifting ψ to ψ′ = ψ±φ one obtains A = (cosϑ−∓1)dφ, as appropriate for smooth coordinate patches around
the North and South Poles of the S2 respectively. The identifications on ψ′ and φ are then simply ψ′ ∼= ψ′ + 4π at
fixed φ, and φ ∼= φ+ 2π at fixed ψ′.
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The lattice of identifications in terms of the local AdS3×S3 coordinates is generated by

(
ỹ, ψ̃, φ̃

)
∼

(
ỹ +

2π

κ
, ψ̃ − 2π

κ
, φ̃− 2π

κ

)
,

(
ỹ, ψ̃, φ̃

)
∼

(
ỹ, ψ̃ + 4π, φ̃

)
, (3.14)

(
ỹ, ψ̃, φ̃

)
∼

(
ỹ, ψ̃ + 2π, φ̃+ 2π

)
.

When κ = 1, the full geometry is simply global AdS3×S3, and when κ > 1, the first identification

above is an orbifold identification that combines the AdS3 and the S3, and that gives rise to a

Zκ orbifold singularity at the location of the supertube, (r = 0, θ = π/2) [18,19] (see also [10]).

3.2 Spectral transformations of the supertube

We now perform an SL(2,Q) map on the above multi-wound supertube configuration, that maps

the solution to a form in which it can be straightforwardly dualized to the MSW frame. Our

SL(2,Q) map can be decomposed into a product of gauge and spectral flow transformations, and

it will be instructive to go through these steps.

We first perform a gauge transformation with parameters (g1, g2, g3) = (0, 0, 12κRy). The

resulting harmonic functions are:

V =
1

r+
, K1 = K2 = 0 , K3 =

κRy
2

1

r−
,

L1 =
Q1

4r−
, L2 =

Q5

4r−
, L3 = 1 , M = −κRy

2
+

Q1Q5

8κRy r−
. (3.15)

We next perform a (fractional) spectral flow transformation with parameters (γ1, γ2, γ3) =

(0, 0,−2/(κRy)). The resulting harmonic functions are:

V =
1

r+
− 1

r−
, K1 =

Q5

2κRy

1

r−
, K2 =

Q1

2κRy

1

r−
, K3 =

κRy
2

1

r−
,

L1 =
Q1

4r−
, L2 =

Q5

4r−
, L3 =

Q1Q5

4κ2R2
y r−

, M = −κRy
2

+
Q1Q5

8κRy r−
. (3.16)

Finally, we perform a gauge transformation with parameters (g1, g2, g3) = ( Q5

4κRy
, Q1

4κRy
,
κRy

4 ). The

resulting harmonic functions are (here I = 1, 2, 3 and we employ notation mod 3 for the I indices):

V =
1

r+
− 1

r−
, KI =

kI

2

(
1

r+
+

1

r−

)
,

LI = −k
I+1kI+2

4

(
1

r+
− 1

r−

)
, M =

k1k2k3

8

(
1

r+
+

1

r−

)
− k1k2k3

2c
. (3.17)

where we have defined

k1 ≡ Q5

2κRy
, k2 ≡ Q1

2κRy
, k3 ≡ κRy

2
. (3.18)

These harmonic functions are those that describe the MSW maximally-charged Ramond ground

state solution in five dimensions (related by right-moving spectral flow to the NS vacuum) [22,47],

as reviewed in Appendix D. We will review the duality map momentarily.
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The combination of these transformations corresponds to the following SL(2,Q) map on the

coordinates:
v

κRy
=

1

2
ψ̂ , ψ =

1

2
ψ̂ − 2

κRy
v̂ , (u, φ) fixed , (3.19)

and where as discussed above, we redefine the new lattice of identifications. The new lattice is

generated by the appropriate smooth identifications in the M-theory frame; combining (2.20) with

the appropriate smooth identification on φ as discussed around (D.10), the new identifications

are:

v̂ ∼= v̂ + 2πRy , ψ̂ ∼= ψ̂ + 4π , φ̂ ∼= φ̂+ 2π , (3.20)

where for each of the three generators in this equation, one holds the other two periodic coordi-

nates in the equation fixed.

Note that in the tilded coordinates, defined in (3.12), the coordinate transformation becomes

v

κRy
=

ψ̂

2
, ψ̃ = − v̂

k3
, (u, φ) fixed , (3.21)

which can be described as a (fractional) “spectral interchange” transformation [42] between ro-

tating versions of the AdS3 circle coordinate and the Hopf fiber coordinate of the S3. Indeed,

under this transformation, the metric (3.11) transforms to:

ds26 =
√
Q1Q5

[
− cosh2 ζ dt̃

2
+ dζ2 + sinh2 ζ dϕ2 +

1

4

((
dv̂

k3
+ cos η dφ̃

)2

+ dη2 + sin2 η dφ̃2

)]

(3.22)

where we define

ϕ ≡ ψ̂

2
− t̃ . (3.23)

It is interesting to re-interpret the coordinate transformation (3.21) in terms of the D1-D5 and

MSW CFTs. The relation between ψ̃ and ψ in (3.12) corresponds to spectral flow in the left-

moving sector of the D1-D5 CFT; the solution in terms of ψ corresponds to a particular Ramond

ground state, while the solution in terms of ψ̃ corresponds to the NS vacuum of the left-moving

sector. (The analogous statement holds for φ̃ and φ in terms of spectral flow in the right-moving

sector of the CFT.) The coordinate transformation in the tilded coordinates (3.21) is interesting,

as we see from it that v̂ is a rescaled version of ψ̃, the left-moving NS sector coordinate.

One can paraphrase these observations by describing the metric (3.22) as being written in

NS-NS sector coordinates, corresponding to the NS-NS vacuum of the dual CFT state, which has

L0 = L̄0 = 0 . (3.24)

If one rewrites φ̃ in terms of φ, one can describe the metric as being expressed in NS-R sector

coordinates, and corresponding to the NS-R ground state obtained from the NS-NS vacuum via

right-moving spectral flow with parameter 1/2, which has

L0 = 0 , L̄0 =
c

24
. (3.25)
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We will ultimately reduce on the v̂ fiber, and these quantum numbers will correspond respectively

to the NS vacuum and the maximally-charged R ground state of the MSW CFT (which we again

emphasize are related by right-moving spectral flow).

Let us analyze the lattice of identifications (3.20) that has resulted from our transformation.

The AdS3 angle coordinate ϕ has period 2π, which is the correct periodicity for a smooth global

AdS3. The combination that appears in place of the Hopf fiber of the S3 is v̂/k3, which has period

4π/κ, corresponding to a smooth Zκ quotient of the Hopf fiber, appropriate for the decoupling

limit of a D1-D5-KKM configuration with KKM charge κ.

Note now that the relation between the dimensionful parameters Q1, Q5 and the integer

number of D1 and D5 branes n1, n5 that correspond to this solution is changed, relative to the

solution without KKM charge. The Gaussian integral defining the charges is now done over

a range of the Hopf fiber coordinate that is smaller by a factor of κ, so that the actual new

supergravity charges are

Q̃1 =
Q1

κ
, Q̃5 =

Q5

κ
. (3.26)

Recalling the usual relation between Q̃1,5 and n1,5:

Q̃1 =
gsα

′3n1
V4

, Q̃5 = gsα
′n5 , (3.27)

we see that the relation between the integer brane numbers on the two sides of the map is

n1 =
N1

κ
, n5 =

N5

κ
. (3.28)

We note that using (3.26), the relation (3.18) becomes

k1 =
Q̃5

2Ry
, k2 =

Q̃1

2Ry
, k3 =

κRy
2

. (3.29)

so that, up to constant factors, the parameters kI correspond to the D1, D5 and KKM charges,

which map to the three different M5 charges in the M5-M5-M5 duality frame.

The other effect of the redefined lattice of identifications is that, in the asymptotically AdS3×
S3 geometry, it breaks the SU(2)L×SU(2)R symmetry of the S3 down to U(1)L×SU(2)R. Since

this is the R-symmetry, it must break the N = 4 superalgebra of the left-moving sector down

to an N =2 superalgebra with this U(1)L R-symmetry. Since these remaining supercharges are

charged under the translations along the Hopf fiber, they will not survive the dualization to M-

theory and thus the effect of reassigning the lattice identifications and compactifying is to break

all the left-moving supersymmetries even in the ground-state configuration we are studying here.

3.3 Mapping from D1-D5-KKM to M-theory

The duality map from D1-D5-KKM to M-theory involves T-duality on the Hopf fiber of the S3

and two directions in the T4, followed by an M-theory lift.13 This results in a solution which

13For early works on reduction and T-duality along Hopf fibers, see [48–50].
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asymptotically has a compact T6. The effect of these dualities from the point of view of the

lower-dimensional theory is encoded in a dimensional reduction on the Hopf fiber of the S3, to

five dimensions (see e.g. [51, 52]).

The SL(2,Q) transformation we have performed means that the ansatz quantities have already

been rearranged to make this step straightforward: the coordinate v̂ is precisely the Hopf fiber

of the S3.

The metric (3.22) can be written (using an obvious shorthand) as

ds26 =
√
Q1Q5 ds

2
AdS3 +

√
Q1Q5

4(k3)2

(
dv̂ + k3 cos ηdφ̃

)2
+

√
Q1Q5

4
ds2S2 . (3.30)

The reduction ansatz for the six-dimensional metric takes the form

ds26 ≡ e−3A(dv̂ + Â(3))2 + eA ds25 , (3.31)

so we obtain

ds25 =

(
Q1Q5

2k3

)2/3

ds2AdS3 +
1

4

(
Q1Q5

2k3

)2/3

ds2S2 . (3.32)

Using the relation (3.18), and as reviewed in Appendix D, this becomes exactly the decoupled

M5-M5-M5 metric in five dimensions that results from the set of harmonic functions (3.17) [22]

(see also [47,27,53]):

ds25 = R2
1

(
− cosh2 ζ dτ2 + dζ2 + sinh2 ζ dϕ2

)
+ R2

2

(
dη2 + sin2 η dφ̃2

)
, (3.33)

with

R1 = 2R2 = 4(k1k2k3)1/3 . (3.34)

Note that the smooth Zκ quotient on the Hopf fiber has migrated into an M5 charge, and thus

a parameter in the warp factors, and the five-dimensional solution is smooth AdS3 × S2 with

standard coordinate identifications.

4 General SL(2,Q) transformations in six dimensions

Having understood how to map the ground-state of the D1-D5 system onto that of the MSW

string, we now wish to extend our results to the transformation to families of left-moving excita-

tions. This includes spectral transformations of superstrata [11,13,14].

We start more generally by considering a generic BPS background that can depend on all

of the coordinates, except, of course, u. We recall our parameterization of the general spectral

transformations on (v, ψ) from Eq. (2.18):

v

R
= a

v̂

R
+ b ψ̂ , ψ = c

v̂

R
+ dψ , R =

Ry
2
. (4.1)

For convenience we also record here the values of a,b, c and d of our map given in Eq. (3.19):

v

κR
= ψ̂ , ψ =

1

2
ψ̂ − 1

κR
v̂ , (u, φ) fixed ⇔

(
a,b, c,d

)
=
(
0, κ,− 1

κ ,
1
2

)
. (4.2)

While this is the particular map of interest to us, for much of what follows we shall derive

expressions valid for general a,b, c and d.
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4.1 General spectral transformation of the metric functions

The first, and simplest, step in computing the effect of spectral transformations is to start with

the metric. The structure of the argument closely follows that of [45], however we use a more

convenient formulation that may be found in [42].

We first write the six-dimensional metric, (2.2), in terms of the double circle fibration and

quantities that will remain invariant under spectral transformations:

ds26 = −2H−1 (du+̟)α1 + H−3
[
Qα2

1 + α2
2

]
+ H d~y · d~y , (4.3)

where
α1 ≡ V (dv + β) = V (dv + ξ) + K3(dψ +A) ,

α2 ≡ K2
3 ν (dψ +A) − V 2 µ (dv + ξ) ,

(4.4)

and where the functions H, Q and ν are defined by:

H ≡ V
√
P , Q ≡ −(PF V + µ2V 2) , ν ≡ V

K3

( P
K3

− µ

)
. (4.5)

By definition, u and the three-dimensional base parametrized by ~y are inert under the spectral

transformation. Since the overall form of the ansatz (4.3) is required to remain invariant, it follows

immediately that H and α1 are invariant since they multiply d~y · d~y and du. Since α1 and H are

invariant, the invariance of the other terms that involve α1 and H implies that ̟, Q and α2
2 must

be invariant. A priori there could be a sign flip in the transformation of α2, but this is resolved

by examining the transformations of the gauge fields, as we shall see shortly.

We therefore find that, under the general spectral transformations (2.18), we have:

α̂1 = α1 , α̂2 = α2 , Ĥ = H , Q̂ = Q , ̟̂ = ̟ . (4.6)

The invariance of α1 implies:

V = d V̂ − c

R
K̂3 , K3 = −bR V̂ +a K̂3 , ξ = a ξ̂+bR Â , A =

c

R
ξ̂+d Â . (4.7)

Similarly, the invariance of α2 provides the transformations of µ and ν:

ν K2
3 = a (ν̂ K̂2

3 ) + bR (µ̂ V̂ 2) , µ V 2 =
c

R
(ν̂ K̂2

3 ) + d (µ̂ V̂ 2) . (4.8)

One can use this and the expression for ν in (4.5) to write

µ̂ =
V

V̂
µ − c

R

V

V̂ 2
P , µ =

V̂

V
µ̂ +

c

R

V̂

V 2
P̂ . (4.9)

The transformation of F then follows from the invariance of Q and the other transformations:

F̂ =
V̂

V
F + 2

c

R
µ − c2

R2
P V̂ −1 , F =

V

V̂
F̂ − 2

c

R
µ̂ − c2

R2
P̂ V −1 . (4.10)

Finally, we recall that P is given by (2.5) and that H = V
√
P is invariant. Indeed, by

examining ansatz for the tensor field strengths (2.13) in the next subsection, we shall see that
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each of the V Za is separately invariant (a = 1, 2, 4). An alternative way to see this is to note

that if the Za did transform into each other under spectral transformations then it would have

been evident in the older, well-understood v-independent spectral transformations reviewed in

Section 2.5. However, in such intrinsically five-dimensional solutions, the individual Z−1
a ’s are

electrostatic potentials of distinct fields and do not transform into one another. Either way, we

see that V Za is invariant for each a and so we have

V Za = V̂ Ẑa ⇒ Za =
V̂

d V̂ − c

R K̂3

Ẑa , a = 1, 2, 4 . (4.11)

4.2 General spectral transformation of the gauge fields

The last part of the spectral transformation that we will need is the transformations of the Θ(I).

Observe that the first “electrostatic” terms in the covariant version of the ansatz for the tensor

gauge fields in (A.6) can be written as

− 1

2

ηabZb
P (du+ ω) ∧ (dv + β) = −1

2

(ηabV Zb)

(V 2P)
(du+ ω) ∧ α1 . (4.12)

From the invariance of V
√
P , du and α1, it follows immediately that the V Za are separately

invariant under spectral transformations. Going one step further, one can write the two-form in

(4.12) in terms of α1∧α2 and conclude that the α2 is invariant under spectral transformations and

that there are, indeed, no sign changes. This proves the invariance claims made in the previous

subsection.

In analyzing the transformations of the rest of these gauge fields it is useful to introduce the

following operators:

~D ≡ ~∇ − ~A∂ψ − ~ξ ∂v , ð ≡ V ∂ψ − K3 ∂v . (4.13)

These operators are invariant under spectral transformations.

Thus far, our discussion has been applicable to general BPS solutions. In order to simplify

the algebra in disentangling the gauge fields we will now make the further assumption, which

underlies the broad class of solutions considered in this paper: namely that the four-dimensional

base metric, ds24(B), and the vector field, β, are independent of v. The other ansatz quantities

are allowed to depend on all the other coordinates (except u).

The last part of the spectral transformation can be extracted by noting that the two-form

dv ∧ dψ = dv̂ ∧ dψ̂ (4.14)

is an invariant, and therefore the components of the tensor field strengths proportional to this

two-form must also be invariant. We define one-forms, λ(a), on R3 via:

Θ(a) ≡ (1 + ∗4)
[
(dψ +A) ∧ λ(a)

]
, a = 1, 2 ; Θ4 ≡ (1 + ∗4)

[
(dψ +A) ∧ λ4

]
. (4.15)

Note that we have defined λ(1) and λ(2) with upstairs indices, and λ4 with a downstairs index,

corresponding to our conventions for the Θ quantities. The component of G(1) proportional to

dv ∧ dψ is
1

2

[
λ(1) + D

(
Z2

P µ

)
− ð

(
Z2

V P (du+̟)

)]
∧ dv ∧ dψ (4.16)

21



and a similar expression holds for G(2) and G4 in terms of λ(2), Z1 and λ4, Z4 respectively. Since

du, ̟, (ZaV ) and ð are all invariant under SL(2,Q) transformations, we see that

λ(1) + D

(
Z2µ

V P

)
, λ(2) + D

(
Z1µ

V P

)
, λ4 + D

(
Z4µ

V P

)
(4.17)

are invariant under SL(2,Q) transformations. Since D is invariant, it follows that:

λ̂(1) = λ(1)+
c

R
D(V̂ −1Z2) , λ̂(2) = λ(2)+

c

R
D(V̂ −1Z1) , λ̂4 = λ4+

c

R
D(V̂ −1Z4) , (4.18)

where we have used (4.9). From this, one obtains the transformed Θ̂(a) using:

Θ̂(a) ≡ (1 + ∗̂4)
[
(dψ̂ + Â) ∧ λ̂(a)

]
, a = 1, 2 ; Θ̂4 ≡ (1 + ∗̂4)

[
(dψ̂ + Â) ∧ λ̂4

]
. (4.19)

Note that the Hodge duality operations in Eqs. (4.15) and (4.19) involve the respective (in general

different) GH base metrics.

While the three-forms G(a) have several other components, their complete invariance under

the spectral transformation follows from the invariance of (4.17) and the transformation laws

given in Section 4.1.

5 Constructing M-theory superstrata

We now review the construction of superstrata in the D1-D5 frame and then map these solutions

across to the M-theory frame.

5.1 D1-D5-P Superstrata

The superstratum is obtained by adding momentum waves to the background of the circular

supertube [11,13]. Currently the most general solutions to the first layer, (2.8), of the BPS system

are known [37, 11, 14]. However not all the corresponding solutions to the second layer, (2.9),

are known explicitly. On the other hand, solutions based upon a single mode have been studied

extensively [11,14] and complete solutions can be obtained through straightforward computations.

In this section we will follow the same route and consider for concreteness the superstrata with a

single excited mode constructed in [14], generalized to κ > 1 (see [13] for a discussion). It should

be remembered that the BPS equations are linear and so extending to arbitrary superpositions

of modes is more of a technical, rather than conceptual, issue14.

In order to map to the M-theory frame, one must impose an isometry along the Hopf fiber

of the S3; our methods apply generally to any smooth solution with such an isometry. Since this

isometry is only necessary for the final step of reducing to five dimensions, we will first work more

generally, before eventually imposing the isometry in Section 5.2.3.

The four-dimensional base metric remains the flat R4 given in (3.3), which has the standard

orthonormal frame

e1 =
Σ1/2

(r2 + a2)1/2
dr , e2 = Σ1/2 dθ , e3 = (r2+a2)1/2 sin θ dϕ1 , e4 = r cos θ dϕ2 . (5.1)

14The difficulty lies in finding particular solutions of (2.9) in which the sources on the right-hand side come from
products of two generic but different modes.
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We define the self-dual two-forms Ω(1), Ω(2) and Ω(3):

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dϕ1 ∧ dϕ2 =

1

Σ (r2 + a2)
1
2 cos θ

(e1 ∧ e2 + e3 ∧ e4) ,

Ω(2) ≡ r

r2 + a2
dr ∧ dϕ2 + tan θ dθ ∧ dϕ1 =

1

Σ
1
2 (r2 + a2)

1
2 cos θ

(e1 ∧ e4 + e2 ∧ e3) ,

Ω(3) ≡ dr ∧ dϕ1

r
− cot θ dθ ∧ dϕ2 =

1

Σ
1
2 r sin θ

(e1 ∧ e3 − e2 ∧ e4) .

(5.2)

We take the one-form β to be that of a supertube, given in (3.4); the two-form Θ(3) = dβ is then

given by

Θ(3) =
2κRya

2

Σ2
((r2 + a2) cos2 θΩ(2) − r2 sin2 θΩ(3)) . (5.3)

The solutions have a non-trivial phase dependence that is parameterized by a positive integer k

and non-negative integers m, n subject to m ≤ k, and that takes the form of the combination

χk,m,n ≡ (m+ n) v
κRy

+ (k −m)ϕ1 −mϕ2 = (m+ n) v
κRy

+ 1
2(k − 2m)ψ − k

2 φ . (5.4)

In order to have a single-valued supergravity solution in this frame, one must take (m + n) to

be a multiple of κ. We will assume this for all solutions in the D1-D5-P frame. A more detailed

discussion of this point can be found in [13].

We also define:

∆k,m,n ≡ ak rn

(r2 + a2)
k+n
2

sink−m θ cosm θ . (5.5)

As discussed earlier, we work in the parameterization in which u is the natural time coordinate in

five dimensions, such that β and the Θ(I) are rescaled with respect to the conventions of [11,14],

as discussed in Appendix B. With this in mind, we take β and ds24 to be as given in Eqs. (3.4)

and (2.10), and consider the following solution [14] to the first layer of BPS equations (2.8):

Z1 =
Q1

Σ

(
1 +

b24
2a2 + b2

∆2k,2m,2n cosχ2k,2m,2n

)
, Z2 =

Q5

Σ
, Θ(1) = 0 ,

Z4 = b4
κRy
Σ

∆k,m,n cosχk,m,n ,

Θ(2) = − b24
κRy
2Q5

∆2k,2m,2n

[(
2(m+ n) r sin θ + 2n

(m
k

− 1
) Σ

r sin θ

)
sinχ2k,2m,2nΩ

(1)

+ cosχ2k,2m,2n

(
2m
(n
k
+ 1
)
Ω(2) + 2n

(m
k

− 1
)
Ω(3)

)]
,

Θ4 = b4∆k,m,n

[(
(m+ n) r sin θ + n

(m
k

− 1
) Σ

r sin θ

)
sinχk,m,nΩ

(1)

+ cosχk,m,n

(
m
(n
k
+ 1
)
Ω(2) + n

(m
k

− 1
)
Ω(3)

)]
.

(5.6)

Note that there is no summation over (k,m, n) and that we have chosen the Fourier modes in

(Z1,Θ
(2)) to be related to those of (Z4,Θ4). This is the now-standard “coiffuring procedure”

often used to obtain regular solutions [54,53,11,14]. In more detail, the (Z4,Θ4) system contains

mode-numbers (k,m, n) with Fourier coefficient b4, and the (Z1,Θ
(2)) system contains mode-

numbers (2k, 2m, 2n) with Fourier coefficient b24. For the simple solutions considered here, this
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means that the metric in fact has isometries along v, ψ, φ, even though the isometries are broken

by the tensor fields. (In more general superstratum solutions, only the null isometry along u will

be present in the metric). In particular, the oscillatory modes cancel in the metric function:

P = Z1Z2 − Z2
4 . (5.7)

There are, however, ‘RMS terms’, proportional to b24, that survive in P and in other parts of the

metric.

The charges and amplitudes of the oscillations are related through the following regularity

constraint:
Q1Q5

κ2R2
y

= a2 +
b2

2
, b2 ≡

[(
k

m

)(
k + n− 1

n

)]−1

b24 . (5.8)

For b = b4 = 0, this gives the radius relation (3.5) that emerges from the requirement that the

metric for the unexcited supertube be non-singular, up to the same Zκ orbifold singularity at

(r = 0, θ = π/2) discussed around Eq. (3.9).

One can also introduce frames based upon the GH form of the metric:

ẽ1 =
(ΛΣ)1/2

2 (Σ − Λ)1/2
(dψ +A) , ẽ2 =

(Σ− Λ)1/2

(r2 + a2)1/2
dr , (5.9)

ẽ3 = (Σ− Λ)1/2 dθ , ẽ4 =
(Σ − Λ)1/2

(ΛΣ)1/2
r (r2 + a2)1/2 sin θ cos θ dφ , (5.10)

and the standard self-dual two-forms, Ω̃(I):

Ω̃(1) ≡ ẽ1 ∧ ẽ2 + ẽ3 ∧ ẽ4 , Ω̃(2) ≡ ẽ1 ∧ ẽ3 − ẽ2 ∧ ẽ4 , Ω̃(3) ≡ ẽ1 ∧ ẽ4 + ẽ2 ∧ ẽ3 . (5.11)

Note that with the transformation of coordinates (3.6), the orientation and dualities of the ẽa
match those of the ea: e1 ∧ · · · ∧ e4 = ẽ1 ∧ · · · ∧ ẽ4.

5.2 Transforming the superstrata

In Section 3 we showed how to get to the M-theory frame by making the following coordinate

transformation on the class of solutions described in Section 5.1:

v

κR
= ψ̂ , ψ =

1

2
ψ̂ − 1

κR
v̂ , (u, φ) fixed ⇔

(
a,b, c,d

)
=
(
0, κ,− 1

κ ,
1
2

)
. (5.12)

Under this mapping, the phase dependence, given in (5.4), becomes

χ̂k,m,n = −(k − 2m) v̂
κRy

+ 1
2

(
n+ k

2

)
ψ̂ − k

2φ . (5.13)

The lattice of identifications is re-declared to be (3.20), so single-valuedness requires that (k−2m)

is a multiple of κ, and that k is even (recall that k is by definition a positive integer). We will

eventually impose an isometry along v̂, by setting k = 2m, however for most of the following we

shall keep both k and m in the analysis.
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5.2.1 Transforming the metric quantities

The six-dimensional metric is now expressed in the parameterization:

ds26 = − 2√
P̂

(dv̂ + β̂)
(
du+ ω̂ + 1

2 F̂ (dv̂ + β̂)
)

+
√
P̂ d̂s

2

4(B) . (5.14)

Using the transformation rules (4.7), the transformed functions and vector fields in the fibrations

are:

V̂ =
1

r+
− 1

r−
=

4(Σ− Λ)

ΛΣ
, Â = −2a2 (Σ + Λ)

ΛΣ
sin2 θ cos2 θ dφ , (5.15)

K̂3 =
κR

2

(
1

r+
+

1

r−

)
= κRy

(Σ + Λ)

ΛΣ
, ξ̂ = −κRy

(Σ − Λ)

2a2ΛΣ
r2 (r2 + a2) dφ . (5.16)

The vector field, β̂ is then given by:

β̂ =
K̂3

V̂
(dψ̂ + Â) + ξ̂ =

κRy
2 cos 2θ

((2 r2 + a2)

2 a2
dψ̂ − dφ

)
. (5.17)

One can also check that the two-form Θ(3) is given by:

Θ̂(3) = dβ̂ = −(1 + ∗̂4)
(κRy

4
(dψ̂ + Â) ∧

[
d
(Σ+ Λ

Σ− Λ

)])
, (5.18)

which matches the classic, five-dimensional form [20,21,35].

The four-dimensional metric becomes:

d̂s
2

4 =
ΛΣ

4 (Σ − Λ)
(dψ̂+Â)2 + (Σ−Λ)

(
dr2

(r2 + a2)
+ dθ2 +

r2 (r2 + a2)

ΛΣ
sin2 θ cos2 θ dφ2

)
. (5.19)

We also introduce frames based upon the GH form of the metric:

ê1 =
(ΛΣ)1/2

2 (Σ − Λ)1/2
(dψ̂ + Â) , ê2 =

(Σ− Λ)1/2

(r2 + a2)1/2
dr , (5.20)

ê3 = (Σ− Λ)1/2 dθ , ê4 =
(Σ − Λ)1/2

(ΛΣ)1/2
r (r2 + a2)1/2 sin θ cos θ dφ , (5.21)

and the standard self-dual two-forms, Ω̂(I):

Ω̂(1) ≡ ê1 ∧ ê2 + ê3 ∧ ê4 , Ω̂(2) ≡ ê1 ∧ ê3 − ê2 ∧ ê4 , Ω̂(3) ≡ ê1 ∧ ê4 + ê2 ∧ ê3 . (5.22)

Note that Σ − Λ = a2 cos 2θ vanishes at θ = π/4. The base metric and the forms are thus

singular on this locus. This is a standard feature of using an ambi-polar base on which V̂ vanishes.

The complete physical fields are, of course, completely smooth because locally we have simply

made a coordinate transformation of a smooth solution.

One can now perform the spectral transformation on the metric functions (4.11) to obtain:

Ẑ1 =
Q1

Σ− Λ
+ Ẑ

(osc)
1 , Ẑ

(osc)
1 ≡ Q1

Σ− Λ

b24
2a2 + b2

∆2k,2m,2n cos χ̂2k,2m,2n , Z2 =
Q5

Σ− Λ
.

(5.23)

Observe that the phase dependence has been converted to χ̂2k,2m,2n.
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5.2.2 Transforming the fluxes

To transform the magnetic fluxes we now extract the one-form, λ(2), defined in (4.15) by taking

the coefficient of dψ = (dϕ1 + dϕ2) in Θ(2). We find:

λ(2) = b24
κRy
2Q5

1

k
∆2k,2m,2n

[
r
(m(k + n)

r2 + a2
− n(k −m)

r2

)
cosχ2k,2m,2n dr

+
(
n(k −m) cot θ +m(k + n) tan θ

)
cosχ2k,2m,2n dθ

+
(
n(k −m)− k(m+ n)

r2 sin2 θ

Σ

)
sinχ2k,2m,2n dφ

]
.

(5.24)

Using (4.18) with c = − 1
κ , we have

λ̂(2) = λ(2) − 1

κR
D(V̂ −1Z1) , (5.25)

which leads to:

λ̂(2) = − 1

4κRy
d(3)
[
(Σ + Λ) Ẑ1

]
− a2 Ẑ

(osc)
1

2κRy

1

r (r2 + a2)

1

k
(k − 2m)

(
a2n+ (k + 2n)r2

)
cos 2θ dr

+
a2 Ẑ

(osc)
1

4κRy

1

sin θ cos θ

1

k
(k + 2n)

(
k + (k − 2m) cos 2θ

)
cos 2θ dθ

+
∂φẐ

(osc)
1

4κRy

1

k2
(
a2k(k + 2n) + 2(k − 2m)(a2n− kr2) cos 2θ

)
dφ , (5.26)

where d(3) is the exterior derivative on the R3 of the GH space.

One can then find Θ̂(2) using (4.19), whereupon one can explicitly verify that Ẑ1 and Θ̂(2)

satisfy the first layer of the equations:

∗̂4D̂(∂v̂Ẑ1) − D̂Θ̂(2) = 0 , D̂∗̂4D̂Ẑ1 = −Θ̂(2) ∧ dβ̂ , Θ̂(2) = ∗̂4Θ̂(2) , (5.27)

where

D̂ ≡ d̂(4) − β̂ ∧ ∂

∂v̂
, (5.28)

where in turn d̂(4) is the exterior derivative on the transformed four-dimensional base. The

remaining fluxes Θ̂(1) and Θ̂4 may be obtained similarly.

5.2.3 M-theory superstrata

To reduce to five dimensions we require solutions that are independent of the v̂-fiber. This means

restricting the modes to those with k = 2m, and hence with a phase, χ̂k,m,n, in (5.13) given by:

χ̂2m,m,n = 1
2 (n +m) ψ̂ − mφ . (5.29)

The expression for λ̂(2) then simplifies significantly:

λ̂(2) = − 1

4κRy
d(3)
[
(Σ + Λ) Ẑ1

]
+

a2(m+ n)

4κRy

[
4 Ẑ

(osc)
1 cot 2θ dθ + 1

m ∂φẐ
(osc)
1 dφ

]
. (5.30)
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The BPS equations also reduce to their five-dimensional form and, in particular, (5.27) implies

that Θ̂(2), is self-dual and closed:

d̂Θ̂(2) = 0 , Θ̂(2) = ∗̂4Θ̂(2) , (5.31)

and is thus “harmonic” on the GH base. One can explicitly verify this using (5.30) and (4.19).

The harmonic forms on a standard Riemannian GH base are well-known (see, for example,

[35]). For NC GH centers there are (NC − 1) independent, smooth harmonic forms given by the

expressions in (2.23). In particular, these harmonic forms are independent of the angles (ψ, φ). It

may therefore seem surprising that there is, in fact, a doubly infinite family of “harmonic forms”

emerging from our solutions. However, this is because the base is ambi-polar and hence singular

on the locus V̂ = 0. This singular locus enables the “harmonic forms” to have (singular) sources

on this locus and thus the system admits large families of solutions with oscillating magnetic

fluxes. Again, as with everything else in the ambi-polar formulation, the physical field strengths

must be smooth. In this paper smoothness is guaranteed because we derived the solution by a

coordinate change of a smooth six-dimensional solution.

Henceforth we will use the term pseudo-harmonic forms to refer to the generalized “harmonic

forms” that are singular on the degeneration locus (V̂ = 0) of an ambi-polar geometry, and yet

give rise to smooth physical fields in the complete solution.

The first analyses of five-dimensional BPS solutions were done over a decade ago [20, 21, 35]

and the pseudo-harmonic forms were missed in that analysis. Given the ambi-polar structure of

the base, many people were aware that the singular locus could allow the presence of new sources

that could generalize the usual known solutions. The problem was that there was a vast range of

singular sources available and no obvious systematic way to find precisely those sources that would

lead to smooth physical field strengths. That is, the possibility, let alone the classification, of

non-trivial pseudo-harmonic forms remained unclear. It is interesting to note that the possibility

of ambi-polar metrics was first found by Giusto and Mathur [55] by studying spectral flows of

smooth supertube geometries. In this paper we have used more general spectral transformations

to discover precisely how to go beyond the standard analogs of Riemannian harmonic forms in five

dimensions to obtain (hopefully complete15) families of pseudo-harmonic forms on our specific

ambi-polar geometry. It would be very interesting to see how pseudo-harmonic forms might be

characterized, in terms of the differential geometry, and then computed for generic ambi-polar

hyper-Kähler metrics.

The bottom line is that we have obtained a huge class of pseudo-harmonic forms and these

lead to new families of smooth five-dimensional solutions with fluctuating fluxes. As we have

argued above, these solutions must be dual to microstates of the MSW string.

6 An explicit example

We now give a complete explicit example. It is one of the family of solutions discussed in the

previous section and has parameters (k,m, n) = (2, 1, n). Since k = 2m, this can be dualized to

15Complete here means the complete family of pseudo-harmonic forms within the terms of our definition. Specif-
ically, while singular on the degeneration locus of ambi-polar geometries, pseudo-harmonic forms are required to
lead to smooth BPS solutions in five dimensions.
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a smooth five-dimensional solution.

6.1 The D1-D5-P superstrata

The quantities β and ds24 are again as given in Eqs. (3.4) and (2.10). The quantities of the first

layer of the BPS equations are as given in (5.6) with (k,m, n) = (2, 1, n), for a non-negative

integer, n, where (n+ 1) is a multiple of κ. The phase dependence of this solution is:

χ2,1,n = (n+ 1) v
κRy

− φ ⇒ χ̂2,1,n = 1
2 (n+ 1) ψ̂ − φ . (6.1)

The relation between b and b4 required for regularity is

b2 =
b24

2(n+ 1)
. (6.2)

Again generalizing the solution of [14] to κ > 1, the solution to the second layer of BPS equations

is:

F = − 1− b2

2a2
+

b24
2a2

∆4,2,2n

sin2 θ cos2 θ

(
Σ

4a2
+

1

2(n + 1)

r2(r2 + a2)

a4

)
,

ω = ω1dϕ1 + ω2dϕ2 , (6.3)

ω1 =
κRy
Σ

(
a2 + b2

2

)
sin2 θ − b24κRy

4Σ
∆4,2,2n

r2 + a2

a2

(
1 +

1

2(n + 1)

r2

a2 cos2 θ

)
,

ω2 =
b24κRy
4Σ

∆4,2,2n
r2

a2

(
1 +

1

2(n + 1)

r2 + a2

a2 sin2 θ

)
.

We record here the values of the other ansatz quantities that will be used when mapping to the

M-theory frame:

P =
Q1Q5

Σ2

(
1 − b24

2a2 + b2
∆4,2,2n

)
,

µ =
κRy
2Σ

(
a2 + b2

2

)
sin2 θ − b24

2

κRy
Σ

∆4,2,2n

(
1

4
− 1

2(n + 1)

r2(r2 + a2)

a4
cot 2θ

sin 2θ

)
, (6.4)

̟ =

[
−
(
a2 +

b2

2

)
κRy
Σ

r2

Λ
sin2 θ cos2 θ +

b24
4

κRy
Σ

r2

Λ
∆4,2,2n

r2 + a2

a2

(
1 +

1

2(n + 1)

(
1 +

2r2

a2

))]
dφ .

These quantities lead to a family of smooth, CTC-free solutions, due to the coiffuring ansatz

and appropriate choices of homogeneous solutions to the BPS equations [14].

6.2 The M-theory superstrata

To transform to the M-theory frame we convert the base metric to GH form and transform the

ansatz quantities recorded above. Using (4.11) and (4.2), the metric functions in the M-theory

frame are

Ẑ1 ≡ Q1

Σ− Λ
+ Z

(osc)
1 =

Q1

Σ− Λ

(
1 +

b24
2a2 + b2

∆4,2,2n cos χ̂4,2,2n

)
,

Ẑ2 =
Q5

Σ− Λ
, Ẑ4 =

b4κRy
Σ− Λ

∆2,1,n cos χ̂2,1,n , (6.5)

P̂ =
Q1Q5

(Σ− Λ)2

(
1 − b24

2a2 + b2
∆4,2,2n

)
.
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The one-forms, λ̂(I), are obtained from (4.18) with c = − 1
κ ,

λ̂(1) = − 1

κR
D(V̂ −1Z2) , λ̂(2) = λ(2) − 1

κR
D(V̂ −1Z1) , λ̂4 = λ4 −

1

κR
D(V̂ −1Z4) (6.6)

where we have used that Θ(1) = 0 from (5.6). We find

λ̂(1) = − d(3)

[
(Σ + Λ) Ẑ2

4κRy

]
,

λ̂(2) = − d(3)

[
(Σ + Λ) Ẑ1

4κRy

]
+

(n+ 1) a2

4κRy

[
4 cot 2θ Ẑ

(osc)
1 dθ +

(
∂φẐ

(osc)
1

)
dφ
]
, (6.7)

λ̂4 = − d(3)

[
(Σ + Λ) Ẑ4

4κRy

]
+

(n+ 1) a2

4κRy

[
2 cot 2θ Ẑ4 dθ +

(
∂φẐ4

)
dφ
]
,

where we recall our notation that d(3) is the exterior derivative on the R3 base of the GH space.

From the above expressions one obtains the Θ̂(a) using (4.19). These are manifestly self-dual,

and it is straightforward to verify that they are indeed closed.

The transformations that yield the last layer of the BPS system are (4.6), (4.9) and (4.10).

Using these with c = − 1
κ , we obtain:

F̂ = − 1

Σ− Λ

(
a2 +

b2

2
− b24

2

∆4,2,2n

sin2 2θ

)
,

µ̂ =
κRy

2(Σ− Λ)

[(
a2 + b2

2

)( Σ

Σ− Λ
− cos2 θ

)
(6.8)

+
b24
a2

∆4,2,2n

sin 2θ

(
2r2(r2 + a2)

1 + n
cot 2θ − a2(2r2 + a2) tan 2θ

)]
,

̟̂ = ̟ .

One can then verify that these quantities, together with the hatted quantities and ansatz given

in (5.14)–(5.19), do indeed satisfy the last layer of BPS equations for k = 2 and m = 1.

Smoothness in five dimensions requires that µ̂ and the ẐI are finite at the GH points while

the absence of CTC’s requires that µ̂ vanishes at the GH points. The GH points lie at (r, θ) =

(0, 0) and (r, θ) = (0, π/2) and if one sets r = 0 in (6.5) and (6.8), one has:

Ẑ1 =
Q1

a2 cos 2θ
, Ẑ2 =

Q5

a2 cos 2θ
, Ẑ4 = 0 ,

Ẑ3 = −F̂ =
1

a2 cos 2θ

(
a2 + b2

2

)
, µ̂ =

κRy
4 a2

(
a2 + b2

2

)
tan2 2θ .

(6.9)

A complete analysis of the global absence of CTCs is in general a difficult problem, often relying on

numerical tests, and is beyond the scope of this paper. Here we content ourselves with observing

that the five-dimensional solution satisfies the requisite local conditions, providing evidence that

the spectral transformation indeed maps the CTC-free D1-D5-P superstratum onto a CTC-free

solution in the M-theory frame.
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7 Comments on symmetric product orbifold CFTs

It is a tantalizing prospect that the D1-D5-KKM system might have a solvable CFT in its moduli

space, given that it is so similar to the D1-D5 system—differing only by a discrete identification on

the transverse angular S3. One might think that since, in the decoupling limit, the introduction

of KKM charge to the D1-D5 geometry amounts to a Znk
orbifold of the Hopf fiber of S3, that a

similar quotient of the dual CFT by a chiral R-symmetry rotation would yield the corresponding

dual CFT for the D1-D5-KKM system [56].16

The first part of the construction in this paper maps a multi-wound D1-D5 supertube to a

D1-D5-KKM bound state. It is tempting to translate this into a map between states of the D1-

D5 symmetric product orbifold CFT and the putative D1-D5-KKM symmetric product orbifold

CFT. The multi-wound D1-D5 supertube configuration described in Section 3 corresponds to a

R-R ground state of the D1-D5 CFT with N1N5/κ strands each of winding κ, with the same R-R

ground state on each strand.

If there existed a symmetric product D1-D5-KKM CFT, for n1 D1-branes and n5 D5-branes

and KKM charge nk = κ, then this CFT should have total number of strands

n1n5κ =
N1

κ

N5

κ
κ (7.1)

where we have used the relation between the brane numbers on the two sides of our map, given

in equation (3.28). The map appears to conserve the total number of strands, while mapping

strands of winding κ in the D1-D5 CFT to strands of winding 1 in the D1-D5-KKM CFT.

However, when M = T4, strong constraints arise from the structure of U(1) currents and the

energetics of states carrying the corresponding charges [16,17], as we now review.

7.1 Review of the D1-D5 CFT

To begin, consider type IIB supergravity compactified on T5. The moduli space of this theory is

the the 42-dimensional Γ\E6(6)/USp(8), where the U-duality group Γ is E6(6)(Z). Wrapped branes

and momentum excitations transform as a 27 under this group; the presence of the background D1-

D5 charge vector ~q reduces the moduli space to the 20-dimensional H~q\SO(5, 4)/(SO(5)×SO(4))

through the attractor mechanism [64], and the U-duality group reduces to the subgroup H~q ⊂
SO(5, 4;Z) ⊂ Γ that fixes ~q. The charge vector decomposes as

27 → (1⊕ 9)⊕ 16⊕ 1 (7.2)

where the 1⊕9 represent the “heavy” charges (branes wrapping the y circle, including the D1-D5

background; the second singlet is the momentum charge along the y circle; and the 16 comprises

branes and momentum along the T4 but not along the y circle.

Elements of SO(5, 4;Z) not in H~q do not preserve the charge vector ~q, instead they act as

finite motions on the moduli space H~q\SO(5, 4)/(SO(5)×SO(4)). Such transformations are not

symmetries of the CFT, any more than any other finite motion on the moduli space preserves the

CFT. What such finite motions do tell us is that, if there is a weak-coupling cusp in the moduli

16For related work on the microstates of the D1-D5-KKM system, see for example [57–63].
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space for a given pair of brane quanta (n1, n5), then there are other cusps in the moduli space

where the dual CFT becomes weakly coupled, one for each factorization of N = N1N5 into any

other pair of integers (N ′
1, N

′
5) with N = N ′

1N
′
5 [65,16]. Because these are motions on the moduli

space and not symmetries, the existence of a locus in the moduli space described by a symmetric

product orbifold in one cusp does not imply the existence of such a description in any other cusp.

The question then arises, in which cusp does the symmetric product orbifold (T4)N/SN lie?

The BPS mass formula for the 27 is on one hand protected by supersymmetry, and on the other

hand depends on the moduli and so determines the answer [16]. In the decoupling limit of the

D1-D5 system, the energetics of the 16 is (for a rectangular torus with all the antisymmetric

tensor moduli switched off)

hR =
1

4N1

4∑

i=1

(
pi

√
g
s

ri
+ wiD1

ri√
g
s

)2
+

1

4N5

4∑

i=1

(
wiF1

√
gs
v4
ri + wD3

i

√
v4
gs

1

ri

)2
. (7.3)

There is no invariant notion of the “level” of a U(1) current algebra, as the normalization of

the current-current two-point function is moduli dependent. For instance, from the previous

considerations we know that SO(5, 4;Z) transformations can change the values of n1 and n5 in

the above formula. One can however compare the energetics of charged states in the CFT with

the above expression. The symmetric product orbifold has four left-moving translation currents

(the diagonal sum of the translation currents in each copy of T4), which realize the first of the

two terms in Eq. (7.3), if we set N1 = N . The other eight charges can be realized as the winding

and momentum charges on a separate copy of T4. The presence of this additional component of

the CFT is necessary to realize all the U(1) currents and the wrapped brane charges they couple

to. Thus it is natural to associate the symmetric product orbifold with the weak-coupling cusp

of the moduli space where the appropriate low-energy description has N1 = N and N5 = 1.

7.2 The D1-D5-KKM CFT

The addition of KK-monopole charge compactifies one more dimension of the target space –

the fibered circle of the KK-monopole (the ψ circle), which is the Hopf fiber of S3 in the de-

coupling limit. One now has type IIB supergravity compactified on T6, whose moduli space is

E7(7)/SU(8). The charge vector ~q of wrapped branes and momentum on T6 transforms as a 56 of

E7(7). The background D1-D5-KKM charges break the moduli space down to the 28-dimensional

space H~q\F4(4)/(SU(2)×USp(6)), and the 56 decomposes as

56 → (1⊕ 26)⊕ (1⊕ 26)⊕ 1⊕ 1 (7.4)

where once again the first (1⊕ 26) is associated to the heavy background of branes wrapping the

y circle, and the second such factor is associated to wrapped branes and momentum along the

compactification S1ψ×T4 transverse to the y circle; the remaining two charges are KK-monopoles

whose fibered circle is the y circle, and momentum along the y circle. The (1 ⊕ 26) of wrapped

branes/momentum charges along S1ψ × T4 are again associated to a set of U(1) currents in the

CFT, and once again their energetics can be deduced from the decoupling limit of the BPS mass
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formula [17]

hR =
1

4n1

4∑

i=1

(
pi

√
g
s

ri
+ wiD1

ri√
g
s

)2
+

1

4n5

4∑

i=1

(
wiF1

√
gs
v4
ri + wD3

i

√
v4
gs

1

ri

)2
(7.5)

+
1

4nk

4∑

σ=1

(
wσD neσ + wD̃σ

1

eσ

)2
+

1

12n1n5nk

(
d1ψ n5 + pψ nk + d5ψ6789 n1

)2
.

Here the third octet of charges related to U(1)’s of “level” nk are (f1ψ, n5ψ6789, d3ψij), and the

eσ are the corresponding volumes of the cycles they wrap, in appropriate units.

Once again there is a cusp of the moduli space for every factorization of N into a triplet

of background charges n1, n5, and nk; the supergravity description of the CFT is thus merely

a low-energy effective field theory approximation. This fact also leads to a minor puzzle. The

only remnant of KK monopoles in the decoupling limit of the background is a Znk
quotient of

the angular S3, which breaks the SU(2)L×SU(2)R R-symmetry down to U(1)L×SU(2)R, and

the supersymmetry from (4, 4) to (0, 4). But when nk = 1, there is no quotient, and so it seems

that there is an unbroken (4, 4) supersymmetry. The resolution of this puzzle appears to be that

indeed an accidental left-moving N = 4 supersymmetry develops in the decoupling limit, on a

codimension 8 sub-locus of the cusp of the moduli space corresponding to nk = 1. The moduli

space of the D1-D5-KKM system is 28-dimensional, in contrast to the 20-dimensional moduli

space of the D1-D5 system; to get to any of the other supergravity limits with other values of nk,

one must turn on the additional eight moduli that break the accidental N = 4 supersymmetry of

the left-movers.

Again one can ask whether there is a symmetric product CFT WN/SN somewhere in the

moduli space. It is again reasonable to suppose that the component CFT W has four translation

currents to generate the winding/momentum contributions in the first term of equation (7.5).

The diagonal current that survives the orbifold projection yields a U(1) of “level” N and so can

only match the above energetics in the cusp where one of the background charges is N , and again

it is natural to take n5 = nk = 1 and n1 = N . The second and third terms on the RHS are then

the contributions of eight more currents of level one, and can be realized with a separate T8 CFT.

The last term in the wrapped brane energetics (7.5) is difficult to realize in a symmetric prod-

uct structure. With n1 = N , n5 = nk = 1, one seeks another current of level N . If the building

block is a c = 6 superconformal field theory on T4 (with once again an extra T4 × T4 CFT to re-

alize the “level-one” terms), the translation currents comprise c = 4, and their superpartners are

four free fermions comprising the remaining c = 2 (at least for the right-moving supersymmetric

chirality). Bilinears in the free fermions form a level-one SO(4)=SU(2)×SU(2) current algebra,

of which one SU(2) is the R-symmetry. The other, “auxiliary” SU(2) has energetics m2/4 for the

individual component CFT W, where m is the eigenvalue of Jaux
3 for this auxiliary (level-one)

SU(2) current algebra.17 The symmetric product structure then leads to an energetics m2/4N

under the diagonal Jaux
3 . This energetics of SU(2) level-one current algebra is thus incompatible

with the last term in equation (7.5) by a factor of 3, and any attempt to engineer the requisite

normalization naively leads to a breaking of the (0,4) supersymmetry.

17In the symmetric orbifold describing the D1-D5 system, this auxiliary SU(2) is an accidental symmetry of the
orbifold locus, and does not survive perturbations away from this locus.
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One can ask whether this lattice of auxiliary SU(2) charges with energiesm2/4N is a sublattice

of some larger lattice of CFT zero modes, which also contains the values present in (7.5). The

possibilities are constrained by the full structure of U(1) charges in supergravity. The (1 ⊕ 26)

charges of wrapped branes/momentum on S1ψ × T4 decompose as

(1, 1)⊕ (2, 6)⊕ (1, 14) (7.6)

under the local SU(2)×USp(6) symmetry of the moduli space of the D1-D5-KKM background.

The thirteen right-moving currents account for (1, 1) ⊕ (2, 6), with the singlet associated to the

last term in (7.5) and the second factor associated to the translation currents on the various copies

of T4; the remaining (1, 14) are related to left-moving currents, for which there is less information

due to the lack of supersymmetry in that chirality of the CFT. A reasonable assumption is that

twelve of the 14 are the left-moving counterparts of the first three terms in (7.5) where one flips

the relative sign of the “winding” and “momentum” contributions. There are two more special

currents whose energetics can then be determined from the local SU(2)×USp(6), leading to [17]
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1
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+
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4n5

4∑
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√
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ri − wD3
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√
v4
gs

1

ri

)2
(7.7)

+
1

4nk

4∑

σ=1

(
wσD eσ − wD̃σ

1

eσ

)2
+

1

4n1n5nk

(
d1ψ n5 − pψ nk

)2

+
1

12n1n5nk

(
d1ψ n5 + pψ nk − 2d5ψ6789 n1

)2
.

The spectrum of the one right-moving and two left-moving “special” currents associated to

the charges pψ, d1ψ , d5ψ6789 in (7.5), (7.7) has also arisen in a related context, in which spectral

flows were used to generate a class of nonsupersymmetric solutions.18 Indeed, the charged states

are all non-BPS, even though the starting point in the analysis is a BPS mass formula; after the

decoupling limit, none of the U(1) currents lie in the stress tensor supermultiplet, even though

before the decoupling limit, the right-moving charges did have that property. The U(1) charges

in the CFT are thus no longer R-charges, and therefore there is no BPS condition involving them.

Spectral flow remains a robust property of the CFT that follows from symmetry, and leads to the

same result as the combination of the decoupling limit of the BPS formula for the right-movers

and the moduli space considerations employed in [17] to obtain the charge spectrum. This gives

us further confidence in the applicability of these formulae, though with the caveat that the full

energy of any given state will typically not be saturated by the contributions of the U(1) charges.

A T4 symmetric product accounts for the first term in (7.7) via the left-moving T4 translation

currents, and similarly the second and third terms correlate with the corresponding terms in (7.5).

This leaves two additional left-moving currents of level N . The three “special” currents not

associated to torus translations (two left-moving and one right-moving), plus the right-moving

R-symmetry current, thus all have level N and soak up all the central charge of the right-moving

fermions in the symmetric product, and the corresponding remaining central charge of the left-

movers. Bosonizing all four currents leads to a (2,2) lattice of zero modes whose energetics must

match (7.5), (7.7).

18In comparing equation (7.5) above to the spectrum equation 5.24 of [63], one notes a typo of a missing factor
of 1/2 in the first term on the RHS of the latter.
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The energies of a general (2,2) lattice of zero-modes has the form

h#L =
1

4ρ2τ2

∣∣(n1 − τn2)− ρ(m2 + τm1)
∣∣2

h#R =
1

4ρ2τ2

∣∣(n1 − τn2)− ρ̄(m2 + τm1)
∣∣2 (7.8)

for complex ρ = ρ1 + iρ2, τ = τ1 + iτ2. Without loss of generality, we can write

m2 =
1

2
(mL +mR) , n2 =

1

2
(mL −mR) (7.9)

and interpret mR as the eigenvalue of J3
R of the R-symmetry. Demanding that mR appear only

in hR and only quadratically implies ρ = τ . The right-moving energetics (7.5) is reproduced for

τ1 = ρ1 = 1, τ2 = ρ2 =
√
3

h#R =
m2
R

4
+

(mL + 4m1 − n1)
2

12
(7.10)

if we identify

mL + 4m1 − n1 = d1ψ + pψ + d5ψ6789N . (7.11)

Examining the contribution of the charges to the left- and right-moving energies, the closest

match comes if we identify

mL = p5 − f5 , mL − n1 = p5 + f5 , 4m1 = d5ψ6789N (7.12)

which leads to a match between the lattice and supergravity expressions for the right-moving

energy. The difference between the supergravity and symmetric product formulae then becomes

hL − h#L =
(Nd5ψ6789)

2

4
− (Nd5ψ6789)p5

2
(7.13)

which is reminiscent of the structure of a spectral flow. The low-lying spectrum (energies much

less than order N) is only compatible with d5ψ6789 = 0. The lattice of such states, when chosen

to match the results of the BPS mass formula, cannot simultaneously accommodate the spectrum

of free fermion superpartners of the torus translation currents.

To summarize, supersymmetry and a symmetric product of c = 6 building blocks leads to a

lattice of U(1) charges which is not compatible with the lattice inferred from supergravity con-

siderations. The right-moving fermions which are the superpartners of right-moving translation

currents have R-charge 1/2 and dimension 1/2; on the other hand, that lattice of charges inferred

from supergravity does not have such a state in its spectrum. This throws considerable doubt on

the existence of a symmetric product orbifold locus in the moduli space of the MSW CFT.
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8 Discussion

Understanding the dynamics of multiple M5 branes has been one of the most challenging and

interesting issues in string theory for quite a number of years. There has been a huge effort

in understanding how M5-brane theories can describe strongly-coupled gauge theories in four

dimensions. Our purpose in this paper has been to study what should, perhaps, be one of the

simplest avatars of the M5-brane field theory: The (1+1)-dimensional MSWCFT that comes from

wrappings of an M5 brane on a very ample divisor of a Calabi-Yau manifold. This seemingly

simple CFT remains enigmatic, almost twenty years after it was first shown to be able to encode

microstate structure of four-dimensional black holes [15]. In this paper we have considered M5

branes wrapping 4-cycles in T6 and T2×K3, but our resulting M-theory solutions can be trivially

extended to compactifications with a more general field content.

As we have discussed, part of the difficulty in analyzing this CFT is that it does not seem

to have any point in its moduli space with a canonical description in terms of better-understood

conformal field theories, such as a symmetric orbifold theory. However, one can use holographic

methods to study this theory at strong coupling, and in this paper we have made significant

progress in that direction: We have obtained explicit families of smooth, horizonless solutions of

five-dimensional supergravity that are dual to families of BPS states of the MSW CFT.

We constructed these families of solutions to M-theory by deriving a map between them and

a class of states of the D1-D5 CFT, described as smooth, horizonless solutions to six-dimensional

supergravity. This was done by transforming asymptotically AdS3×S3×T4, D1-D5-P superstra-

tum solutions that are independent of the Hopf fiber of the S3 to asymptotically AdS3 × S2 × T6

solutions19 dual to momentum-carrying microstates of the MSW CFT. We therefore referred to

our new families of solutions as M-theory superstrata. In principle, one should be able to obtain

families of M-theory superstrata that depend on arbitrary functions of two variables (with arbi-

trary Fourier modes around the axis of the S2 and the spatial axis of the AdS3). In this paper

we have constructed solutions which have single Fourier mode excitations. However, based upon

the success of the superstratum program in six dimensions [11], we anticipate that one should

be able to find smooth, horizonless M-theory superstrata with general families of Fourier modes

excited.

It is important to emphasize that there are many more M-theory superstrata solutions con-

structed using our technology than those that we have directly mapped to smooth D1-D5-P

superstrata. As we have seen in Section 5, when the KKM charge, κ, is greater than one, the

smooth D1-D5-P superstrata map to M-theory superstrata with mode numbers along the AdS3
circle that are multiples of κ. However, once in the M-theory frame, nothing prevents us from

extrapolating these solutions to generic values of the mode numbers compatible with smoothness

and appropriate M-theory periodicities. Under our map these more generic M-theory superstrata

do not transform into geometric D1-D5-P states20, and yet they are perfectly good solutions.21

19Our solutions can trivially be extended by replacing T4 by K3 and T6 by T2×K3.
20A naive application of our map would give rise to solutions with multivalued fields, and if one extrapolates

the candidate dual CFT states of [13, 14] to the appropriate values of the parameters, one would not satisfy the
condition of integer momentum per strand. Thus a straightforward application of this holographic dictionary
suggests that these configurations should be discarded. For more discussion, see [13].

21Rather than using our map, one could also obtain these solutions by setting κ = 1 in the D1-D5 superstrata,
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As we have noted in the Introduction, there have been several earlier approaches to the

construction of solutions dual to momentum-carrying BPS microstates of the MSW CFT. The

common goal of this paper and of previous work has been to examine the spacetime structure of

the microstates of black holes with a macroscopically-large horizon area. In this system, these

black holes have a momentum charge along the AdS3 circle that, for given M5 charges, must

be larger than a certain threshold, which is of order the product of the three M5 charges; once

above this threshold, one is in the “black hole regime” of parameters. In Type IIA, the M5 and

momentum charges become D4 and D0 charges.

The microstate geometry corresponding to the maximally-spinning Ramond ground state of

the MSWCFT is obtained by blowing up the single-center D4-D4-D4 configuration to a two-center

fluxed D6-D6 configuration, whose M-theory uplift is [global AdS3]×S2×T6. The addition of D0

charge via back-reacted singular D0’s was studied in [22,47]. The degeneracy of such “D0-halo”

solutions was counted in [24, 25], and found to give rise to an entropy that matches that of an

M-theory supergraviton gas in [global AdS3]× S2 × T6 for sufficiently small D0 charge. The full

back-reaction of the supergraviton gas states has never been computed, but since our M-theory

superstratum solutions represent smooth waves in AdS3 × S2, one may expect that at least some

of them can be thought of as coming from back-reacted supergraviton gas states. Furthermore, if

the full non-Abelian and nonperturbative interactions of uplifted D0-branes results in solutions

that are non-singular and varying along the M-theory circle, one expects these solutions to also

resemble our M-theory superstrata. Hence, it may be that the smooth back-reacted solutions we

construct are the missing link needed to connect the entropy counts in the (non-back-reacted)

supergraviton gas and (singular) D0-halo approaches.

In the black-hole regime of parameters, the D0-halo entropy exhibits a sub-leading growth

with the charges compared to the black hole entropy [47]. On the other hand, in this regime

the solutions have large deep AdS2 throats with high redshifts, and so are no longer small per-

turbations of [global AdS3] × S2 × T6. A robust estimate of the number of states comprised by

superstrata remains to be carried out.

One can also add momentum by adding M2-branes that wrap the two-sphere of the AdS3×S2,

and that carry angular momentum on both the AdS3 and the S2 [22]. The entropy of these

configurations comes from the high degeneracy of the Landau levels that result from the dynamics

of the M2-branes on the compactification manifold in the presence of M5 flux [66,22,67], and has

been argued to scale in the same way as that of the black hole. The back-reaction of these “W-

brane” configurations is fully worked out only in some very simple examples [30]. However, on

general grounds one expects uncancelled tadpoles which give rise to asymptotics that are different

from the asymptotics of bulk duals of MSW CFT states. If, on the other hand, one cancels the

tadpoles using additional brane sources, there are no preserved supersymmetries whatsoever [31].

Furthermore, in more generic multi-center solutions, the corresponding W-brane configurations

also give rise to tadpoles, which can only cancel when the W-branes form a closed path among

the centers.22 Hence, when the multi-center solution has a throat of finite length, these additional

M2-brane bound states break at least another half of supersymmetry (giving 1
16 -BPS states), and

restricting to k = 2m, introducing the smooth Zκ quotient of the Hopf fiber by hand and U-dualizing.
22The counting of these closed paths gives an entropy that scales in the same way as the black hole entropy as a

function of the charges [68,69,67].
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typically all of the supersymmetry [31]. Thus these states cannot correspond to microstates of

the BPS MSW black hole.

Given the large entropy of the W-branes, one would like to somehow restore the broken

supersymmetry. This can only be achieved by going to a scaling limit, in which the throat

becomes infinitely deep. In the infinite-throat limit, the solitonic W-branes become massless,

new dynamical fields emerge (corresponding to the Higgs branch of the field theory for which

the W-branes are individual quanta) and the rich families of W-branes become reflections of the

rich degeneracies of the vacua of these new dynamical fields. Thus W-branes should provide a

semi-classical way to access the Higgs branch [67].

Another way to access the physics of the Higgs branch is via world-sheet disk amplitudes.

Using these techniques one can compute the supergravity back-reaction of D-brane bound states

upon an infinitesimal displacement on the Higgs branch. In the D1-D5 system, such calculations

demonstrate that the additional tensor multiplet described by (Z4, G4) is an integral part of

the back-reaction of generic Higgs-branch states [33]. Thus one expects the configurations that

result from condensing the W-branes to include such additional species of supergravity fields. For

four-charge black holes in four dimensions, in the D3-D3-D3-D3 system (which is U-dual to the

D1-D5-KKM-P and the M5-M5-M5-P systems), a similar string emission calculation was recently

performed [34,70], confirming the presence of this kind of additional species of supergravity fields

in the backreaction of these bound states.

Remarkably, these new species of supergravity fields are exactly those needed to give rise

to smooth superstrata solutions, via the coiffuring procedure we have used in Sections 5 and

6. Furthermore, if one back-reacts M5 branes of [15] wrapping smooth ample divisors inside

T6, one expects to source exactly these additional supergravity fields. If one combines these

two features with the fact that our M-theory superstrata solutions should be parameterized by

arbitrary continuous functions, and hence have a large entropy, it appears very likely that these

supergravity fields are a key component of the structure of typical black hole microstates.

Our results raise some interesting questions about the formal mathematical structures of five-

dimensional supergravity solutions. One should recall that the construction of smooth microstate

geometries in five dimensions was done via locally hyper-Kähler base metrics whose signature

changes from +4 to −4 on certain hypersurfaces. These singular base metrics are referred to

as ambi-polar or pseudo-hyper-Kähler base metrics, and the hypersurfaces where the signature

changes are referred to as “degeneration loci”. While the four-dimensional spatial base metric

is singular, all singularities cancel in the five-dimensional Lorentzian metric. There has been a

growing mathematical interest in the geometry of these ambi-polar spaces [71], generalizing the

notion of “folded” hyper-Kähler metrics [72,73]. Our results here indicate that harmonic analysis

on such manifolds might be extremely rich and interesting.

In particular, the first step in solving the BPS equations is to find smooth, harmonic two-

forms on the spatial base metric. In standard Riemannian geometry, this is a classical exercise and

the harmonic forms are dual to the homology cycles. The original work on microstate geometries

involving ambi-polar bases [20,21,35] simply translated the expressions for the standard harmonic

forms of Riemannian geometry. The solutions constructed in this paper have only one homology

cycle, but we have exhibited infinitely many “pseudo-harmonic” two-forms. We defined such
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two-forms to be those that are closed and co-closed (“harmonic”), potentially singular on the

degeneration loci of the base geometry, and yet lead to completely regular, five-dimensional BPS

solutions. This leads to several interesting questions. Firstly, how does our result generalize

to multi-centered ambi-polar GH metrics? More generally, what is the classification of pseudo-

harmonic two-forms? This paper shows that what seems to be a rigid topological problem actually

has an infinite amount of “wiggle room” on an ambi-polar base.

Returning to our map between states of the MSW and D1-D5 CFT’s, the results presented

here suggest that this map should contribute more deeply to our understanding of the physics

of four-charge black holes in four dimensions and to the question of how much entropy of these

black holes comes from smooth horizonless solutions. More broadly, we believe that our map

will also prove useful in gaining deeper understanding of the hitherto mysterious MSW CFT. As

we have seen, only a particular class of the MSW microstate geometries are related to D1-D5-P

ones, and hence only a sub-sector of the states of the MSW CFT is mapped to a sub-sector of

the D1-D5 CFT. It would be extremely interesting to explore and test possible extensions of this

correspondence.

Indeed, several important questions remain about our map. First, the map is defined in terms

of geometrical data, and it is interesting to see whether one can generalize it to other CFT states

that are not dual to smooth torus-independent horizonless supergravity solutions, but may involve

string or brane degrees of freedom, dependence on the internal directions, or high-curvature

corrections23. A pessimistic possibility is that our construction is merely an approximation that

relates particular geometrical solutions in the supergravity limit, but that does not map CFT

physics beyond small perturbations around the particular states that can be related to each

other. On the other hand, it is tempting to speculate that, if one accepts holography as a correct

description of all physics in asymptotically-AdS backgrounds (including all 1/N corrections), a

generalization of our map to degrees of freedom beyond six-dimensional supergravity may exist,

and it would be interesting to investigate its properties.

A related question is whether our map is simply a useful device for counting and classifying

certain MSW states, or whether it is capable of capturing other CFT data such as anomalous

dimensions or three-point functions. In the supergravity approximation, these quantities can in

principle be computed perturbatively around a given solution [74], giving one hope that additional

information about the MSW CFT could be gleaned.

One can reasonably expect at least some three-point functions to be mapped from one sector

of one CFT to another sector of the other CFT, because of non-renormalization theorems [75].

However, if one considers the four-point functions of an MSW operator that gets mapped to

a D1-D5 one, these four-point functions are computed by summing over all operators in the

intermediate channel, which may not belong to the relevant sub-sectors. Furthermore, generic

four-point functions are not protected when one deforms away from the free orbifold point of the

D1-D5 CFT to the supergravity point, and hence there is no reason to expect a map for this data.

Nevertheless, one might hope to use our map to find a prescription that allows one to calculate

23For example, one can imagine constructing ten-dimensional supergravity solutions dual to D1-D5 microstates
that have a non-trivial dependence on the torus coordinates, and therefore cannot be described in a six-dimensional
truncation. Our map would take these solutions into holographic duals of MSW microstates that contain an infinite
tower of Kaluza-Klein modes, and thus cannot be described in five-dimensional supergravity.
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at least certain conformal blocks of the MSW CFT from D1-D5 ones, which would already be

remarkable progress.

What is clear is that, as a CFT-to-CFT map, our construction is quite unusual. Indeed, to

go from the D1-D5 NS vacuum to the MSW one, one needs to perform a combination of spectral

flow transformations and “gauge” transformations. While spectral flow transformations have a

clear CFT interpretation, as the redefining of the CFT Hamiltonian by the addition of a term

proportional to the R-charge, the gauge transformation would appear to correspond to redefining

the R-charge by the addition of a term proportional to the Hamiltonian, which is much more

mysterious. Hence, while spectral flow is an operation that maps states to states within the CFT,

the gauge transformation appears to change the CFT itself. On the other hand, since the MSW

CFT does not appear to have any point in its moduli space with a symmetric product orbifold

description, a map of the type we have found may be the most one can hope for.
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A Covariant form of BPS ansatz and equations

To rewrite our ansatz in covariant form, we rescale (Z4,Θ4, G4) → (Z4,Θ4, G4)/
√
2. Then we

have

C123 = 1 , C344 = −1 . (A.1)

It should be understood that this rescaling holds throughout this Appendix (and only in this

Appendix). Then we define the (mostly-minus, light-cone) SO(1, 2) Minkowski metric via

ηab = C3ab ⇒ η12 = η21 = 1 , η33 = −1 . (A.2)

which can be used to raise and lower a, b indices, now that the above rescaling has been done.

After the rescaling we have

P = 1
2η

abZaZb = Z1Z2 − 1
2Z

2
4 . (A.3)

The first layer of the BPS equations then takes the form

∗4DŻa = ηabDΘ(b) , D ∗4 DZa = −ηabΘ(b)∧ dβ , Θ(a) = ∗4Θ(a) . (A.4)

The second layer becomes

Dω + ∗4Dω +F dβ = ZaΘ
(a) ,

∗4D ∗4
(
ω̇ − 1

2 DF
)

= P̈ − (Ż1Ż2 − 1
2 (Ż4)

2)− 1
4ηab ∗4Θ(a) ∧Θ(b) .

(A.5)

Our ansatz for the tensor fields is

G(a) = d

[
−1

2

ηabZb
P (du+ ω) ∧ (dv + β)

]
+ 1

2 η
ab ∗4DZb + 1

2 (dv + β) ∧Θ(a) . (A.6)

In our conventions, the twisted self-duality condition for the field strengths is

∗6 G(a) = Ma
bG

(b) , Mab =
ZaZb
P − ηab . (A.7)

B Circular D1-D5 supertube: parameterizations

In this appendix we recall the usual representation of a circular D1-D5 supertube solution within

the six-dimensional ansatz (2.2), and the relation to the representation used in this paper.

The usual representation (see, for example, [11,13]) is given using the coordinate transforma-

tion (2.3) and setting F = 0. This solution is then given by:

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, F = 0 , Z4 = 0 ; Θ(j) = 0 , j = 1, 2, 4 ;

β =
κRya

2

√
2Σ

(sin2 θ dϕ1 − cos2 θ dϕ2) , ω =
κRya

2

√
2Σ

(sin2 θ dϕ1 + cos2 θ dϕ2) . (B.1)

Using the transformations (2.15) and (2.16), we obtain the following solution:

ũ = t , ṽ = t+ y ,
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Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, F̃ = −1 , Z4 = 0 ; Θ(j) = 0 , j = 1, 2, 4 ;

β̃ =
κRya

2

Σ
(sin2 θ dϕ1 − cos2 θ dϕ2) , ω̃ =

ω + β√
2

=
κRya

2

Σ
sin2 θ dϕ1 . (B.2)

This is the form of the solution used in the main text in (3.4).

For superstratum solutions, the same redefinitions can be applied, and then the fields asymp-

tote to the form (B.2).

C Lattice of identifications and fractional spectral flow

In this appendix we illustrate the step of redefining the lattice of identifications, with the explicit

example of fractional spectral flow of a multi-wound circular D1-D5 supertube solution [10].

The starting configuration is the multi-wound circular D1-D5 supertube in the decoupling

limit, given in Eqs. (3.1)–(3.5). To this solution we apply a (fractional) spectral flow transforma-

tion (2.28) with parameters (γ1, γ2, γ3) = (0, 0,−s/(κR)), together with an accompanying gauge

transformation. The details and the resulting harmonic functions can be found in Appendix A

of [10]. Recall that we have defined R ≡ Ry/2.

The point that we emphasize here is that to generate the transformed solution, one inserts

these new harmonic functions into a “hatted” version of the general ansatz, as in (2.21), and im-

portantly, one takes the lattice of identifications to be the standard one in the hatted coordinates:

v̂ ∼ v̂ + 2πRy , ψ̂ ∼ ψ̂ + 4π . (C.1)

Equivalently, one can use the coordinate form of this fractional spectral flow transformation,

namely

ψ = ψ̂ − s

κR
v̂ , v = v̂ . (C.2)

and act with it on the explicit multi-wound circular supertube metric (3.11), again imposing

(C.1).

Since ψ̂ is the only coordinate that has transformed non-trivially, for ease of notation we shall

re-use the coordinates of the starting solution ζ, η, t̃, ỹ defined in (3.10), as well as φ, without

writing hats explicitly. Then the transformed decoupling-limit solution is:

ds26 =
√
Q1Q5

[
− cosh2 ζ dt̃

2
+ dζ2 + sinh2 ζ dỹ2

]
(C.3)

+

√
Q1Q5

4

[([
dψ̂ − (2s+ 1)(dt̃ + dỹ)

]
+ cos η

[
dφ+ (dt̃− dỹ)

])2
+ dη2 + sin2 η

[
dφ+ (dt̃− dỹ)

]2
]
.

As in the starting solution (s = 0), there is a coordinate change to bring the metric to local

AdS3 × S3 form. For the above transformed solution, it is of course

ψ′ = ψ̂ − (2s + 1)(t̃+ ỹ) , φ′ = φ+ (t̃− ỹ) . (C.4)

The combination of (C.1) and (C.4) gives rise to an interesting variety of orbifold singularities in

the core of these solutions, depending on the common divisors of the integer parameters s, s+ 1

and κ, as noted in [76] and analyzed in detail in [10].
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D MSW maximal-charge Ramond ground state solution

D.1 Coordinate conventions

We record here for convenience some of our coordinate conventions. We define the three-

dimensional distances r± from the centers, in Cartesian and cylindrical coordinates:

r± ≡
√
y21 + y22 + (y3 ∓ c)2 ≡

√
ρ2 + (z ∓ c)2 , c = 1

8 a
2 . (D.1)

We define angular coordinates measured from the z = y3 axis at the two centers via

cosϑ± =
z ∓ c

r±
. (D.2)

The relation between these coordinates and the (r, θ) coordinates used throughout the paper is

Σ ≡ 4r− ≡ (r2 + a2 cos2 θ) , Λ ≡ 4r+ ≡ (r2 + a2 sin2 θ) , (D.3)

cos 1
2ϑ− =

(r2 + a2)1/2

Σ1/2
cos θ , sin 1

2ϑ− =
r

Σ1/2
sin θ ,

cos 1
2ϑ+ =

r

Λ1/2
cos θ , sin 1

2ϑ+ =
(r2 + a2)1/2

Λ1/2
sin θ . (D.4)

Prolate spheroidal coordinates centered on r± = 0 are useful for writing the metric as global

AdS3:

z = c cosh 2ζ cos η , ρ = c sinh 2ζ sin η , ζ ≥ 0 , 0 ≤ η ≤ π . (D.5)

In particular, one has

r± = c (cosh 2ζ ∓ cos η) . (D.6)

D.2 MSW maximal-charge Ramond ground state solution

The five-dimensional MSW maximal-charge Ramond ground state solution is described by the

following harmonic functions. Using I = 1, 2, 3 and employing notation mod 3 for the I indices,

we have

V =
1

r+
− 1

r−
, KI =

kI

2

(
1

r+
+

1

r−

)
,

LI = −k
I+1kI+2

4

(
1

r+
− 1

r−

)
, M =

k1k2k3

8

(
1

r+
+

1

r−

)
− k1k2k3

2c
. (D.7)

The four-dimensional base metric can be written as

ds24 = V −1
(
dψ +A)2 + V (dρ2 + dz2 + ρ2dφ2) . (D.8)

We write the one-form A as

A = (cos ϑ+ − cos ϑ−)dφ . (D.9)

Note that in this gauge, near the GH centers, A ≃ (−1±cos ϑ±)dφ, so the lattice of identifications

that gives smoothness is (c.f. Footnote 12)

ψ ∼= ψ + 4π , φ ∼= φ+ 2π . (D.10)
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The one-form ̟ is given by

̟ = −k
1k2k3

4c

(
ρ2 + (z − c+ r+)(z + c− r−)

r+r−

)
dφ . (D.11)

The metric of this solution is that of global AdS3 × S2. To see this, we pass to the prolate

spheroidal coordinates (ζ, η) defined in (D.5), and define the coordinates

τ ≡ c

k1k2k3
t , ϕ ≡ 1

2
ψ − τ , φ̃ ≡ φ+ τ − ϕ , (D.12)

in terms of which the five-dimensional metric is manifestly global AdS3 × S2,

ds25 = R2
1

(
− cosh2 ζ dτ2 + dζ2 + sinh2 ζ dϕ2

)
+ R2

2

(
dη2 + sin2 η dφ̃2

)
, (D.13)

with

R1 = 2R2 = 4(k1k2k3)1/3 . (D.14)

Using the identity

c =
a2

8
=

Q1Q5

8κ2R2
y

=
k1k2k3

κRy
, (D.15)

the above change of coordinates can be written as

τ ≡ t

κRy
= t̃ , ϕ ≡ 1

2
ψ − t̃ , φ̃ ≡ φ+ t̃− ϕ . (D.16)
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