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Abstract

A lot of confusion surrounds the issue of black hole complementarity, because the ques-
tion has been considered without discussing the mechanism which guarantees unitarity.
Considering such a mechanism leads to the following: (1) The Hawking quanta with energy
E of order the black hole temperature T carry information, and so only appropriate pro-
cesses involving E ≫ T quanta can have any possible complementary description with an
information-free horizon; (2) The stretched horizon describes all possible black hole states
with a given mass M , and it must expand out to a distance sbubble before it can accept
additional infalling bits; (3) The Hawking radiation has a specific low temperature T , and
infalling quanta interact significantly with it only within a distance sα of the horizon. One
finds sα ≪ sbubble for E ≫ T , and this removes the argument against complementarity
recently made by Almheiri et al. In particular, the condition E ≫ T leads to the notion
of ‘fuzzball complementarity’, where the modes around the horizon are indeed correctly
entangled in the complementary picture to give the vacuum.

http://arxiv.org/abs/1306.5488v3
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1 Introduction

Hawking’s discovery of black hole evaporation led to a sharp puzzle [1]. Pairs of particles are

created at the horizon, with one member of the pair b escaping to infinity as radiation, and the

other member c falling into the hole and reducing its mass. The crucial point is that b and c are

entangled, so the entanglement entropy Sent of the emitted radiation {bi} with the remaining

hole keeps rising till we reach near the endpoint of evaporation. This is in sharp contrast to

the behavior of a normal body, where Sent starts to reduce after the halfway point and reaches

zero at the end of the evaporation process [2].

Hawking’s argument was very robust because it used only the assumption that the region

around the horizon was a piece of ‘normal’ spacetime. The result was recently shown to hold

even when small corrections to the leading order process are included [3]. More explicitly, the

result assumes that (i) the state at the horizon is close to the vacuum |0〉 that we have in the

lab, and (ii) the evolution Hamiltonian is also close to the laboratory Hamiltonian Hlab. Thus

we may state Hawking’s result as

H: If there is no nontrivial structure at the horizon, then Sent will keep rising until

near the endpoint of evaporation; it will not start reducing at the half-way point.

We can turn this around and write an exactly equivalent statement of Hawking’s result:

H’: If we want Sent to start reducing at some point, then we must have nontrivial

structure at the horizon.

There has been a lot of interest, as well as quite some confusion, generated by a recent paper

by Almheiri, Marolf, Polchinski and Sully (AMPS) [4] on whether it is possible to smoothly

fall into black holes.1 In the literature that followed, it appears that many people confused the

AMPS result with Hawking’s original statement H’. The difficulty that people had in arguing

1 For related earlier work see [5], and for a more complete list of references see [6].
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around the AMPS argument was then the same as the difficulty that people had all these years

in resolving Hawking’s paradox. This confusion, of course, does AMPS no service, since it

would subsume their argument into Hawking’s original statement. So we will start by removing

this confusion, and then proceed in the following steps:

(i) We recall the initial formulation of complementarity [7], which we denote ‘traditional

complementarity’. This notion was formulated before we understood how the information para-

dox was to be resolved, and involved postulating new physics in the form of a special kind of

nonlocality. We recall the AMPS argument against this ‘traditional complementarity’.

(ii) In recent years we have understood that the information paradox is solved through the

fuzzball construction in string theory, without invoking new physics beyond standard string

theory (see [8, 10] for reviews). This gives real rather than virtual degrees of freedom at

the horizon. A notion of complementarity was developed for this situation in [9, 10]; this

conjecture was denoted ‘fuzzball complementarity’ in [11]. This complementarity is based on

a crucial approximation E ≫ T which AMPS do not consider; thus their argument fails to

address fuzzball complementarity from the start. Here E is the energy relevant to the physical

process, and T is the Hawking temperature, both measured at infinity.

(iii) One might try to extend the AMPS argument to fuzzball complementarity, but here

one finds that AMPS miss the issues important in such an analysis:

(a) When a quantum with E ≫ T falls from afar onto the stretched horizon, a large number

of new degrees of freedom are created; these new degrees of freedom are not entangled with

anything, and it is their dynamics which is conjectured to be captured by the complementary

description.

(b) We expect that these new degrees of freedom are accessible when the infalling quantum

reaches the stretched horizon. AMPS assume that the stretched horizon does not respond

before the infalling quantum actually reaches it. For example, consider a Schwarzschild black

hole of mass M . The stretched horizon is a very special surface: its possible states exhaust all

the Exp[Sbek] states that are possible within area A = A(M), where Sbek is the Bekenstein-

Hawking entropy. If we could place a new quantum on this surface without first expanding

the surface, then we would have more than Exp[Sbek] states on a surface with area A(M); in

contradiction with what we expect from the stretched horizon. Thus the stretched horizon

should expand out before it is hit by the infalling quantum. With fuzzballs, the tunneling

mechanism that solves the information problem [12, 13] leads to the required expansion of the

stretched horizon, so the new degrees of freedom are indeed accessed before the time that AMPS

would consider in their analysis.

(c) One might be concerned that interaction with outgoing Hawking quanta might scatter

an infalling quantum into a new state before the new degrees of freedom are accessed; in this

case the excitation of the new degrees of freedom would not capture the state of the infalling

quantum. But Hawking radiation is radiation with a very particular (low) temperature T .

We estimate the required scattering cross section for E ≫ T and show that it is small at

the location where the new degrees of freedom are accessed. Thus the infalling quantum does
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not get destroyed by Hawking radiation before the new (unentangled) degrees of freedom are

accessible. As a result, the AMPS argument fails to rule out the existence of a complementary

description.

In short, the discussion around AMPS has missed the idea of how complementarity is to

be obtained. AMPS observe that Hawking modes with energy E ∼ T provide a nontrivial

structure near the horizon, since they are not in the vacuum state. As we have noted above,

this is guaranteed to be the case by Hawking’s statement H’. AMPS then worry that an infalling

observer cannot avoid interacting with these modes, so he will get ‘burnt’. But here they are

asking the wrong question. The point is not to look for a way to avoid interaction with this

structure near the horizon. Rather, what we are looking for is that an infalling quantum ‘smash’

onto this structure, and create excitations, in the same way that a graviton falling onto a stack

of D-branes ‘smashes’ and creates excitations of gluons. The gluons evolve in a way that can be

duplicated by free infall into AdS space, and we can ask if smashing onto the structure at the

black hole horizon is a process with a similar ‘complementary’ description. When we ask the

question this way, we come across the above issues (a)-(c), and find that the AMPS argument

does not rule out the conjecture of fuzzball complementarity.

2 Summary of the issues and the proposal of fuzzball comple-

mentarity

The discussion of complementarity becomes confusing if it is not accompanied by a discussion

of how the information problem is solved in the theory under consideration. In this section we

delineate the relevant issues: the information paradox, the idea of ‘traditional complementarity’

and the idea of ‘fuzzball complementarity’.

2.1 Structure at the horizon

Let us now return to our discussion of Hawking’s original result; as we had noted above, some

of the literature following AMPS has confused Hawking’s result with the AMPS argument. We

can further split Hawking’s statement H’ into two possibilities:

(a) We keep the state |0〉 but alter the dynamics by assuming (hitherto unknown) nonlocal

effects. Then the vacuum |0〉 will still produce entangled pairs, but nonlocal effects can remove

the entanglement at a later stage (see for example [14]). AMPS remark that this possibility leads

to awkward effects, which is of course true; all familiar physics arises from local Lagrangians.

(b) We alter the state |0〉 but keep the dynamics local. Note that in this case the vacuum

must be altered in modes down to the Planck length, not just at length scales of order the

horizon radius r0. This follows because if the wavemodes of order lp ≪ λ ≪ r0 were ‘normal’

then they would evolve to make entangled pairs (since we have now assumed that evolution is

normal at scales lp ≪ λ). Then we would again need nonlocality to remove the entanglement.

Here ‘normal’ refers to ordinary lab physics: evolution of long wavelength modes (λ ≫ lp) is

given by local quantum field theory on curved spacetime, with corrections controlled by some
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small parameter ǫ. These corrections may come from any quantum gravity effect, and all we

require is that ǫ → 0 as M → ∞, where M is the mass of the black hole.

In particular, since the main AMPS argument does not consider nonlocal effects, they are

automatically led to a situation where the vacuum is corrupted at all length scales.

A priori, there is a third possibility that must be ruled out first: invalidation of the Hawking

argument by ‘accumulation of small corrections’. We discuss this next, as the required argument

[3] provides the setup for the AMPS discussion.

2.2 Small corrections and strong subadditivity

In string theory we do not know of any long-distance nonlocal effects, so if we wish to have Sent
decrease at any point then we need to have a state other than |0〉 at the horizon; i.e., we need

black hole ‘hair’. This is of course the crux of the information paradox: if one can find hair,

then the state at the horizon is not |0〉, and Hawking’s argument will fail. String theorists did

not have, until recently, a construction of this hair, but many of them were still not worried

about Hawking’s paradox. The reason was based on the following misconception. Suppose the

horizon was a place with ‘normal physics’, and let us include a small correction, order ǫ ≪ 1

to the state of each created pair. The number of pairs N is very large, so it might be that

suitable choices of these small corrections would lead to a situation where Sent does decrease

in the manner expected of a normal body.

A priori, it is not wrong to think that small corrections might cause Sent to decrease.

Suppose the entangled pair at the first step is 1√
2
(|0〉b1 |0〉c1 + |1〉b1 |1〉c1). At the next step we

can have the state

|Ψ〉 =
1

2

(

|0〉b1 |0〉c1 [(1 + ǫ1)|0〉b2 |0〉c2 + (1− ǫ1)|1〉b2 |1〉c2 ]

+|1〉b1 |1〉c1 [(1 + ǫ′1)|0〉b2 |0〉c2 + (1− ǫ′1)|1〉b2 |1〉c2 ]
)

(2.1)

Note that the correction at each step can depend on everything in the hole at all earlier steps;

the only requirement is that the correction be small: |ǫ1| < ǫ, |ǫ′1| < ǫ. We have ∼ 2N correction

terms in general after N steps. Since N ∼ ( M
mp

)2 for a 3+1 dimensional black hole, it appears

a priori possible for small corrections to pile up to make Sent decrease after the halfway point

of evaporation.

In [3] it was proved, using strong subadditivity, that such small corrections cannot lead to

a decrease in Sent. AMPS invoked this argument in their analysis, so let us outline the steps in

[3]. Let {b1, . . . bN} ≡ {bi} be the quanta radiated in the first N steps, and {ci} their entangled

partners. The entanglement entropy at step N is Sent(N) = S({bi}). The created quanta at

the next step are bN+1, cN+1. We then have [3]:

(i) By direct computation, one obtains

S(bN+1 + cN+1) < ǫ . (2.2)

(ii) Similarly, by direct computation one obtains

S(cN+1) > ln 2− ǫ . (2.3)
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(iii) The unitary evolution of the hole does not affect quanta already emitted (we have

assumed that nonlocal effects, if any extend only to distances of order r0, and thus do not affect

quanta that have been emitted from the hole long ago). Thus we have

S({(bi}) = SN . (2.4)

(iv) The strong subadditivity inequality gives

S({bi}+ bN+1) + S(bN+1 + cN+1) ≥ S({bi}) + S(cN+1) . (2.5)

Using (i)-(iii) above we find that the entanglement entropy of the radiation after the (N +1)-th

time step, SN+1 ≡ S({bi}+ bN+1), satisfies

SN+1 > SN + ln 2− 2ǫ . (2.6)

Thus the entanglement of the hole with the emitted radiation must keep growing as long as

the physics at the horizon is ‘close to normal’; small corrections to each created pair cannot

accumulate over a large number of emissions N to lead to a decrease of Sent.
2 By the discussion

of Section 2.1, we then need to either have nonlocality, or we need to find ‘hair’3.

As we remarked above, some of the literature following AMPS suggested that AMPS had

a new argument for the existence of structure at the horizon. But such is not the case. AMPS

accept Hawking’s argument for structure at the horizon, and the above result of [3]. They

also note that nonlocalities can lead to awkward physical observations. This leaves only the

possibility of hair, and they agree that the fuzzball structure found in string theory is an

example of the structure at the horizon that they invoke in their discussion. Their actual

argument addresses something else: the possibility of complementarity, to which we now turn.

2.3 Traditional complementarity

Hawking’s paradox is a serious impediment to making a quantum theory of gravity, and one

might be willing to postulate new physics to bypass it. The idea of complementarity was

postulated by ’t Hooft, and developed by Susskind and others [7]. In its initial form, it was

a particular kind of nonlocality. Here we just summarize the main idea. One postulates that

different things can be seen by different observers:

(i) For the purposes of an observer outside the hole, one can imagine a stretched horizon,

placed at Planck distance from the usual horizon. This stretched horizon absorbs matter falling

2Some authors have misunderstood the physics going into deriving the result (2.6). For example in [15],
it was argued that one can make Sent decrease by making small corrections to the density matrix. But this
has nothing to do with the physics at hand; one has to start with the actual process involved in Hawking
emission and consider small corrections to the state obtained by evolution. Then (2.6) shows that Sent cannot
decrease. If we play formal games with the entries of the density matrix, then in terms of the physical state we
would be making arbitrary nonlocal corrections. These nonlocalities will typically stretch over distances of order
( M
mp

)2Rs ≈ 1077 km for a solar mass hole; this is the distance over which the Hawking quanta spread during the

evaporation process. By contrast the result (2.6) allows the correction to each emitted pair to depend on all the
details of what is in the hole at that emission step, but does not bring allow arbitrary nonlocalities stretching
across ∼ 1077 km.

3For further work on qubit models of Hawking radiation, see [16].
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on it, thermalizes it, and re-radiates it as low energy Hawking radiation, by a unitary process

similar to one that would occur on the surface of a normal body. We call this ‘Picture 1’.

(ii) An observer who falls into the hole does not notice the degrees of freedom of the stretched

horizon; he falls in smoothly, seeing just the traditional black hole metric where the state around

the horizon is the vacuum |0〉. We call this ‘Picture 2’.

(iii) Pictures 1 and 2 can be consistent because an observer who falls in soon hits the

singularity; there is not enough time for him to observe a conflict with the fact that his data

has been left on the stretched horizon in a different description.

There are of course immediate objections to the set of postulates (i)-(iii)4 . This kind of

complementarity was postulated before any ‘hair’ had been discovered at the horizon. Thus

there was no known physics that reflect the information from the stretched horizon in the

manner of postulate (i). Further, the degrees of freedom on the stretched horizon are ‘virtual’,

in the sense that they are not seen in the description of Picture 2; it is not clear what physics

would lead to such degrees of freedom.

But the most serious difficulty comes from the fact that this kind of complementarity is in

conflict with locality. We can study the entire process of black hole formation and evapora-

tion using a set of ‘good slices’ where the curvatures are always gentle everywhere; a detailed

description of this slicing can be found in [3]. If we assume that normal physics holds when

the curvature is low, then we get pair creation by Hawking’s process, not reflection from a

stretched horizon. So if we are to have complementarity, we need to find some reason why

the ‘good slicing’ through the horizon is invalid. But complementarity did not provide such a

reason. Thus we are left to simply argue that whenever we have enough matter in a region to

form a black hole, then some new physics takes over. Since there is no local reason to doubt

normal physics along the good slices, the reason must be nonlocal, over scales of order r0, the

horizon size.

This difficulty with complementarity was of course well known5. We can finally arrive at the

goal of the AMPS paper [4]. AMPS tried to make the above argument against complementarity

rigorous, by using the set-up of [3]. We will summarize the AMPS argument below. But in

what follows after that, we will argue that their discussion is misplaced in several ways, and in

particular does not address the idea of fuzzball complementarity which has been developed in

[9, 10].

4For the precise set of postulates formulated by Susskind et al., see the first reference of [7].
5For example, in the review [10], it was noted: “While this picture of complementarity appears to bypass

the information problem, it is unclear how we can reconcile it with the usual idea of Hamiltonian evolution on
Cauchy slices. Suppose we take the good coordinates (2.9) where a complete Cauchy surface has parts both
inside and outside the horizon... If we follow Hamiltonian evolution to a later Cauchy slice, we see Hawking’s
pair creation and the consequent entanglement between the inside and the outside. How can we bypass the
information problem that follows from this entanglement?”
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2.4 The AMPS argument

Let us now summarize the AMPS argument. The analysis of [3] reviewed in Section 2.2 showed

that a regular horizon implies rising entanglement. Equivalently, we can say that if entanglement

is to decrease, then the state at the horizon cannot be the vacuum. AMPS adapted this analysis

to suggest a crisp and elegant argument against complementarity [4], which we summarize as

follows:

(A) Consider Picture 1. The radiation {bi} from earlier steps of emission is near infinity.

The quantum that has just been emitted, bN+1 is outside, but close to the stretched horizon.

(B) Now consider Picture 2. We denote quanta in this picture with a prime ′. It is assumed

that everything outside the stretched horizon is identical between the two pictures:

{b′i} = {bi} (2.7)

b′N+1 = bN+1 . (2.8)

(C) In Picture 2 we assume that we have the vacuum at the horizon. Thus the mode across

the horizon c′N+1 is entangled with b′N+1 in the manner assumed in Hawking’s computation.

Thus (2.6) gives

S′
N+1 & S′

N + ln 2 . (2.9)

(AMPS ignore the small corrections, setting ǫ = 0.)

(D) In Picture 2 we were not looking for unitarity of evaporation, since the infalling observer

did not have time to measure the entanglement of emitted quanta. But by (2.7), (2.8) we have

S′
N = SN , S′

N+1 = SN+1. Thus we find that, in Picture 1,

SN+1 & SN + ln 2 (2.10)

This contradicts the fact that in Picture 1 we do want the entanglement to decrease, after the

halfway point, by approximately ln 2 per emitted bit.

This appears to be a crisp statement of the general problem that complementarity has

always faced; namely, that it is not compatible with the local evolution that creates Hawking’s

pairs. Note that the kind of complementarity proposed by Susskind involves a very particular

kind of nonlocality:

(i) We invoke nonlocal effects inside the horizon to argue that we should not use the ‘good

slicing’ that leads to Hawking’s problem of growing entanglement.

(ii) We limit this nonlocality very sharply, so that all physics outside the stretched horizon

is ‘normal’ local field theory.

The AMPS argument addresses this kind of complementarity, and attempts to rule it out

in a rigorous way.
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2.5 Real degrees of freedom at the horizon

To see which step in the AMPS analysis needs to be altered, it is helpful to begin not with

complementarity, but with the information problem. After all AMPS assume that Sent starts to

decrease at some point, so we should ask for the mechanism which allows Hawking’s computation

of rising Sent to be bypassed.

In string theory, we have now understood this mechanism. What we find is not a nonlocality,

but a complete set of black hole ‘hair’ – black hole microstate solutions end in a complicated

mess just outside the place where the horizon would have formed. These ‘fuzzball’ states radiate

just like a piece of coal, so there is no information paradox. One may think of the fuzzball surface

as a stretched horizon, but note that the degrees of freedom here are real, not virtual ones that

would appear only in a certain coordinate system.

When fuzzball solutions were initially found, one might have argued that there were two

possibilities:

(i) That all states of the hole were fuzzballs; i.e., no state had a ‘traditional horizon’ with

the vacuum |0〉 in its vicinity.

(ii) That some of the states of the hole were fuzzballs, but other states would have traditional

horizons. For example, as we go to more and more complicated fuzzballs, the state at the

fuzzball surface could start to behave like the vacuum |0〉 for all low energy physics, in particular

for the modes appearing in the Hawking process.

But if (ii) were true, how do we resolve Hawking’s problem of growing Sent? This is where

the idea of small corrections (discussed in Section 2.2) came in. Suppose that small corrections

of order ǫ ≪ 1 could be offset by the largeness of the number of pairs N , so that Sent could

start decreasing after some point instead of increasing monotonically. Then we could let the

black hole states be described by the traditional Schwarzschild metric to leading order, and

allow small quantum gravity effects to resolve Hawking’s puzzle. Of course, in this case one

would say that there was no Hawking puzzle in the first place; Hawking did only a leading order

computation, and subleading effects invalidate his conclusion.

But the inequality (2.6) derived in [3] showed that small corrections do not lead to a decrease

in Sent. We are therefore left only with the possibility (i); that is, all states of the hole are

fuzzballs.

With this understanding, we can now explain how complementarity should be defined.

2.6 The idea of fuzzball complementarity

We finally come to how complementarity should be defined in the presence of real degrees of

freedom. We proceed as follows:

(A) We have real degrees of freedom at the horizon. These degrees of freedom radiate

quanta at energies E ∼ T just like normal bodies do, with this radiation encoding details of the

black hole state. There should not be a complementary description where the physics of these
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quanta is replaced by physics in the traditional black hole background. The reason is simple:

the traditional hole does not exhibit the details of the black hole state, and so any radiation

deduced from it it cannot reproduce the details of the state which are carried by these E ∼ T

quanta. In particular, the relation (2.8) should not be assumed; in general we have

b′N+1 6= bN+1 . (2.11)

(B) What we can hope for is the following:

(i) We consider measurements in the frame of a lab, composed of E ≫ kT quanta, ‘falling

freely from far’ to the surface of the fuzzball [9]. For now, the reader can think of a lab falling

freely from outside the near-horizon region; later we shall give a more precise definition of

‘falling freely from far’. We describe such a process as a ‘hard-impact’ process.

For such hard-impact processes, we conjecture that, to a good approximation, the physics

is independent of which black hole microstate we have. This is just like the approximation used

in thermodynamics: for appropriate operators, the precise choice of microstate is irrelevant.

(ii) We then conjecture that the physics of these hard-impact processes can be reproduced,

to a good approximation, by using the traditional black hole background.

The idea is pictured in Fig. 1. In Fig. 1(a) we have the black hole microstate which ends in

a fuzzball structure before the horizon is reached. Probing this fuzzball surface with operators

gives correlation functions; for hard-impact processes involving E ≫ kT quanta, these correla-

tors will be approximately independent of the choice of fuzzball state. In Fig. 1(b) we have the

same correlator, now measured using the traditional black hole background. Now we do not

have the degrees of freedom of the fuzzball surface, but we do have the spacetime region which

is the interior of the horizon.

!"# !$#

Figure 1: (a) Probing the fuzzball with hard-impact, E ≫ T operators causes collective excitations of the
fuzzball surface. (b) The corresponding correlators are reproduced in a thermodynamic approximation
by the traditional black hole geometry, where we have no fuzzball structure but we use the geometry on
both sides of the horizon.

At first this proposal may look very strange. Do we have structure at the horizon, or don’t

we? If we fall onto the fuzzball surface, do we smash and burn, or don’t we?
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The situation is as follows:

(a) If we write the full string theory wavefunctional of a microstate, with no approximations,

we will not get the traditional hole with vacuum |0〉 at the horizon; in fact the wavefunctional

is supported on configurations that end in a messy string theoretic structure before the horizon

radius r0 is reached.

(b) Now consider a hard-impact process involving E ≫ kT quanta. The quanta cannot

penetrate the surface, since there is no ‘interior’ region; the spacetime ends around r ∼ r0. One

expects that the impact instead creates collective excitations of the fuzzball surface, which will

spread out from the point of impact.

(c) At this point one might be tempted to say that the quantum has ‘smashed onto the

fuzzball surface’, so in no sense can we say that we have fallen through. But consider the

following analogy with AdS/CFT duality, introduced in [11] and pictured in Fig. 2.

(d)(a) (b) (c)

Figure 2: (a) A graviton incident on a stack of D-branes (b) The graviton ‘smashes’ on the branes,
converting its energy into a very special state of gluons (collective excitation) (c) The incident graviton
in the dual AdS description (d) The graviton passes smoothly through the location where it had appeared
to ‘smash’ in the brane description.

In Fig. 2(a) we depict a graviton falling onto a stack of D3 branes. In Fig. 2(b), we see

a graviton hit the branes and transfer its energy into creating collective excitations of gluons

on the branes. In Fig. 2(c) we set up the same situation as Fig. 2(a) in the dual gravity

description. The crucial point is seen in Fig. 2(d): the infalling graviton does not ‘hit’ anything

at the location of the branes (indicated by the dashed line); it passes smoothly through into a

new spacetime region (the AdS interior) which did not exist in the CFT description.

So, in the AdS/CFT case, did the infalling graviton ‘smash and burn’ on hitting the branes,

or did it ‘feel nothing’ on reaching the location of the branes? In this case the answer is clear:

it is correct to say that the graviton ‘feels nothing’ when hitting the branes. This is easy to

see in the AdS description, but difficult to see in the CFT description. The key point is that

excitation created on the CFT is very special: it faithfully encodes the detailed wavefunction of

the infalling graviton. As discussed in [11], a necessary (but not sufficient) condition for such

faithful encoding is that the level density of states in the CFT is very high: thus a state |ψE〉 of
the graviton with energy E maps onto a state |ψ′

E〉 of the same energy E on the branes, giving

a unitary map
∑

i

Ci|ψEi
〉 →

∑

i

Ci|ψ′
Ei
〉 (2.12)
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which gives a faithful injective mapping of the Hilbert space of the infalling quantum into the

Hilbert space of the CFT. By contrast, if a graviton hits a concrete wall, it does ‘smash and

burn’, because the energy levels available are not dense enough to exactly match the energy

levels of the infalling graviton. Thus the excited state created on the concrete wall is not a

faithful map of the infalling wavefunction:

∑

i

Ci|ψEi
〉 →

∑

i

C̃i|ψ′
Ẽi
〉 (2.13)

and in general C̃i 6= Ci, Ẽi 6= Ei.

For the fuzzball situation, we do have a very dense set of energy levels, since the entropy

Sbek is very high. The conjecture is then that an E ≫ T graviton impacting hard onto the

fuzzball surface creates collective excitations of a very special form, which can be given an

(approximate) complementary description as free fall into the traditional hole. But there is one

important difference with the AdS/CFT case: the relation of Fig. 1 is an approximation valid

for E ≫ T .

2.7 The flaw in the AMPS argument

We can now see how the AMPS discussion heads in a wrong direction. AMPS note at one point

that their discussion applies also to fuzzball complementarity. But such is not the case, since

they do not address the issues relevant to such a complementarity. The following is a summary

of the issues that we will encounter:

(a) AMPS do not have any analogue of the condition of considering hard-impact processes

of E ≫ T quanta. Thus they seek to get a complementary description of all processes, including

those that describe the Hawking quanta with with E ∼ T . But these quanta are supposed to

carry the detailed information of the black hole microstate, and so should not be captured by

any description with an ‘information-free horizon’.

(b) When the infalling quantum lands on the stretched horizon (the fuzzball surface), then

new degrees of freedom are created, which are not entangled with the radiation at infinity. Let

Ni be the initial number of states of the stretched horizon; we assume that at this point the

hole is maximally entangled with the radiation at infinity. After an energy E ≫ T is added,

the number of states is Nf , with
Nf

Ni
≈ e

E
T ≫ 1 (2.14)

But only Ni states of the hole are entangled with infinity; the remainder are new, unentangled

degrees of freedom whose dynamics will be captured by the complementary description. Since

AMPS have no analogue of the E ≫ T condition, they have no analogue of (2.14) either.

(c) AMPS assume that their stretched horizon stays at a fixed location r0 until the infalling

quantum impacts it. But this appears to be an inconsistent assumption: the stretched horizon

should expand out to a larger radius before accepting the new quantum. The reason for this is

that the stretched horizon at its initial radius r0 + lp encodes all the Exp[Sbek] possible states
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of mass M . If a quantum of energy E could land on the stretched horizon without increasing

its area first, then we would have a strange situation. We would have created a new state of

the stretched horizon (the one with the new quantum added) but the area would still be the

old one. Thus the stretched horizon would have more than Exp[Sbek] states on a surface with

radius r0 + lp, and this contradicts the definition of the stretched horizon. With fuzzballs, we

note that the tunneling mechanism that resolves the information paradox makes the stretched

horizon move out before the incoming quantum lands on it. We argue that the stretched horizon

should move out by a distance

sbubble ∼
(E

T

)
1

(D−2)
lp (2.15)

before the new quantum lands on it.

(d) AMPS are concerned about the interaction between an infalling quantum and Hawking

quanta that are escaping from the hole. We find the proper distance from the horizon sα where

an incoming quantum interacts strongly with Hawking radiation quanta. We obtain

sα ∼
(E

T

)
1

2(D−2)
lp (2.16)

Thus we see that for E ≫ T , we have

sbubble ≫ sα . (2.17)

So we can excite the new degrees of freedom on the fuzzball before we get ‘burnt’ by interaction

with Hawking radiation. These new degrees of freedom are very large in number for E ≫ T

(Eq. (2.14)), and are unentangled with the radiation at infinity. The conjecture of fuzzball

complementarity says that the dynamics of these new degrees of freedom is encoded in the

complementary picture.

To summarize, the picture of fuzzball complementarity is different in several ways from

the picture of traditional complementarity. AMPS are concerned that an infalling quantum

interacts with the outgoing Hawking quanta. With fuzzballs, the Hawking quanta are just the

tail end of the fuzzball surface. The interaction of an infalling quantum with the fuzzball is

‘infinitely strong’, in the sense that nothing can pass through the fuzzball surface – there is

no interior region to pass through to. The question then is not whether we interact with the

fuzzball, it is how we interact with the fuzzball. We find that an infalling quantum excites

the new degrees of freedom (2.14) before it gets randomly scattered by the Hawking quanta.

The conjecture of fuzzball complementarity then says that we get collective oscillations of the

fuzzball, which would be encoded in the complementary description in a manner similar to

AdS/CFT duality.

3 The physics of real degrees of freedom at the horizon

In this section we recall the fuzzball construction which gives real degrees of freedom at the

horizon. These degrees of freedom give the long-sought ‘hair’ for the black hole, and resolve the

information paradox by removing the traditional horizon from the structure of the microstate.
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3.1 The difficulty of finding ‘hair’

The most direct way out of the Hawking puzzle would be to find that the state at the horizon

was not the vacuum |0〉. It is this vacuum that leads to the production of entangled pairs, and

if the state at the horizon was something other than |0〉, then it might be possible to have an

evolution that does not produce such an entanglement. But it turned out to be remarkably

difficult to find any configuration of the black hole that would not have the vacuum |0〉 at the
horizon. The geometry of the hole appears to be a standard one, determined completely to be

its conserved quantum numbers, with no possibility for any deformations. This failure to find

distortions of the hole is embodied in Wheeler’s statement - ‘black holes have no hair’.

!!"#$

u

Figure 3: The instability of ‘outgoing geodesics’ at the horizon. The horizontal axis is the radial
coordinate, and the vertical axis is an Eddington-Finkelstein coordinate. A null geodesic at r = 2M
headed radially outwards stays stuck at r = 2M , one slightly outside escapes to infinity while one slightly
inside falls to r = 0.

The underlying reason for ‘no hair’ is depicted in Fig. 3. The figure depicts the trajectories

of massless particles trying to fly radially outwards from the hole. If the particle starts outside

the horizon, then it ultimately escapes to infinity. If it starts at the horizon, then it stays at

the horizon forever. If it starts inside the horizon, then it is dragged to smaller r and falls

into the singularity. Thus the horizon is an unstable place; any particles placed there flow out

or fall in. Equivalently, we can say that the region around the horizon ‘stretches’ due to the

divergence of these trajectories, just like the stretching we get in the evolution of de Sitter space.

This stretching dilutes away any matter placed at the horizon, so that after a few e-foldings

the region around the horizon returns to the vacuum |0〉. The Hawking process then proceeds

again, producing entangled pairs.

AMPS try to construct a ‘firewall’ at the horizon by placing quanta around the horizon.

We note that this approach is just the same as early attempts to find ‘hair’ for black holes. In

these attempts people tried to solve the field equations for scalar, vector or gravitational fields

around the horizon, looking for solutions with different angular dependences Ylm(θ, φ). If they

had found such modes, then populating them with occupation numbers nlm would generate a

large number of states for the black hole, all different from |0〉 at the horizon. In fact, cutting

off the angular quantum number l when the wavelength reaches Planck scale gives roughly
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one mode per Planck area of the horizon, so the number of possible states {nlm} would be

order the Bekenstein entropy. But such attempts did not succeed, because there are no stable

deformation modes of the horizon. The AMPS firewall is found to be unstable for exactly the

same reason; deformations of the horizon soon return back to the vacuum.

3.2 ‘Hair’ in string theory: the fuzzball construction

The required hair at the horizon was finally found in string theory, through a nonperturbative

construction called the ‘fuzzball’. It is important to understand the nature of these fuzzball

states, since any conjecture on complementarity has to start with an understanding of the

structure at the horizon.

The simplest black hole in string theory is the two-charge extremal black hole. It turned out

to be possible to construct explicitly all the states of this hole, at the coupling where the black

hole would be expected [17]. Large classes of states have now been found for more complex

holes - the three-charge and four-charge holes [18], and some families of states have also been

constructed for the three-charge non-extremal black hole [19]. For recent work in this area, see

e.g. [20, 21, 22, 23, 24].

!"# !$# !%#

Figure 4: (a) Traditionally, it was assumed that in the black hole geometry the compact directions would
appear as a trivial tensor product with the 3+1 metric. (b) In the actual microstates in string theory
the compact directions pinch off to make KK monopoles/antimonopoles just outside the place where the
horizon would have been. (c) The resulting solutions are ‘fuzzballs’, which have no horizon or ‘interior’.

From these constructions we can see how the no-hair theorems are bypassed in string theory

(see [25] for a detailed discussion). A crucial role is played by the compact directions of space-

time. In earlier attempts to make hair, such directions were assumed to be trivially tensored

with the noncompact direction (Fig. 4(a)). But the states corresponding to black holes in string

theory are not of this type; a compact direction pinches off before reaching the location where

the horizon would have formed (Fig. 4(b)). There is a ‘twist’ in this pinch-off, so that the

overall local geometry is that of a KK monopole. At some other angular direction, the pinch-off

creates an anti-monopole, so the total monopole charge remains zero. The other objects in

string theory: fluxes, strings etc. are also present, in a way that supports these monopoles

to create a full solution to string theory. The crucial point is that spacetime ends when the
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compact circle pinches off; there is no sense in which one can pass through the fuzzball surface

into an ‘interior’ (Fig. 4(c)).

In addressing the AMPS argument below, it will also be important to understand how

Hawking radiation emerges from the fuzzball. In [26] it was found that radiation rate from

a family of nonextremal fuzzball microstates agreed exactly with the Hawking radiation rate

expected for those microstates. This radiation does not emerge by pair creation from a vacuum

|0〉 at the horizon; in fact we do not even have a horizon. What we find instead is that there are

ergoregions around the KK monopoles, and the radiation occurs by the process of ergoregion

emission [27]. This process creates pairs but no information paradox, since neither member of

the pair is lost by falling through a horizon. The point of importance to us is that the radiation

mode from the fuzzball is inseparable from the fuzzball geometry itself: the gravitational field in

the ergoregion slowly evolves, creating a train of gravitational waves that become the Hawking

radiation quanta as they move further out (Fig. 5). Equivalently, we can say that the near-

horizon Hawking radiation becomes very nonlinear and self-interacting as we follow it close to

the horizon, and this nonlinearity ends up creating an end to spacetime by pinching-off the

compact circles.

Figure 5: Hawking radiation is just the tail end of the fuzzball structure that ends the geometry outside
the horizon; thus there is no natural split between the degrees of freedom on the ‘stretched horizon’ and
the degrees of freedom in the Hawking radiation.

In short, the fuzzball surface and the near horizon radiation are inseparable manifestations

of the same gravitational structure at the horizon, and it is not natural to break up this structure

into a fuzzball surface and an emergent radiation. This fact will play an important role when

we discuss the behavior objects falling onto the fuzzball.

3.3 Resolution of the information paradox

In string theory we expect that all our states are fuzzballs with no regular horizon. Further

Hawking radiation arises from the surface of the fuzzball just like radiation from a piece of coal.

This resolves the information paradox.

One may now go back and ask the following. If a shell of mass M is collapsing under its

own gravity, then semi-classical physics suggests that it passes smoothly through its horizon

and forms the traditional black hole with horizon. How do fuzzballs alter this expectation? To

see the answer, we imagine placing our entire system in a large box (of size 100M , say) and

finding the exact energy eigenfunctions of the system |Ei〉. These state |Ei〉 are fuzzball states

which have a small ‘tail’ in the region r > 2M corresponding to the radiation from the fuzzball
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[27, 26]. The collapsing shell state |Ψ〉 is a very special linear superposition of these eigenstates

|Ψ〉 =
∑

i

Ci|Ei〉 (3.1)

This state evolves as

|Ψ〉 →
∑

i

Cie
−iEit|Ei〉 (3.2)

so that it transforms to a generic superposition of fuzzball states, which then radiate from their

surface in a unitary fashion. One may recast (3.2) in the language of tunneling. There is a very

small amplitude A ∼ Exp[−Scl] for tunneling from the shell state to a fuzzball state, where

Scl is the action for the process. But there are a very large number of states N ∼ Exp[Sbek]

to tunnel to, and one finds that these small and large numbers are such that they may cancel

[12, 13]. If they cancel, the wavefunction of the shell will spread over the large phase space of

fuzzball states, and we can say that the large measure term (from Sbek) in the path integral

destroys the semiclassical approximation. This effect that is not present in any theory that

does not have a complete set of horizonless microstates (fuzzballs).

3.4 Behavior of the stretched horizon

The AMPS argument assumes certain properties of the stretched horizon. In our case the

stretched horizon is just the fuzzball surface, and we can check if these assumed properties

are valid. In particular, AMPS assume that the stretched horizon does not respond to an

infalling quantum until the quantum actually lands on it. This does not look like a consistent

assumption, as we will now see:

(A) First consider the stretched horizon as an abstract concept defined for the purpose

of setting up complementarity. Suppose we have a black hole of mass M , horizon radius r0,

horizon area A and entropy Sbek(M). Let the stretched horizon to be a surface just outside r0.

All the states of the hole are supposed to be given by states of the stretched horizon. Thus

the stretched horizon should have Exp[Sbek] states. We can model these states by assuming

that the stretched horizon is packed to maximum density with Planck sized cells, with each cell

containing a bit in the form of a spin s = 1
2 . In an ‘old’ black hole, all these states are entangled

with the radiation at infinity. Now suppose a quantum with energy E lands on the stretched

horizon, without creating any prior deformation of the stretched horizon. We get a new state

of the stretched horizon, which is not among the Exp[Sbek] states that we already accounted

for.

But this does not appear reasonable in the context of the picture we have of the stretched

horizon, because we expect the stretched horizon with area A to have only Exp[Sbek] possible

states. To get more states, we should consider a stretched horizon with a larger area A. The

stretched horizon is very special surface, as depicted in Fig. 6. For the surface of a normal body,

depicted in Fig. 6(a), we have gaps between the atoms on the surface, so it is possible for an

infalling quantum to sit in one of these gaps without any prior expansion of the surface. In

Fig. 6(b) we depict the stretched horizon, which is packed with bits to maximum density. To

accept a new quantum carrying one bit of data, we would have to first expand the stretched
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horizon and create space for this bit. Thus we conclude that the stretched horizon should

expand before it accepts a new quantum.

(a) (b)

Figure 6: (a) At the surface or a normal body, new quanta can be added into gaps on the surface or by
pushing the existing atoms aside; this can happen because there is no constraint of having a new state
on that surface. (b) On the stretched horizon, we already have the maximum number of bits that can
be fitted into the area A; thus a new quantum can be accommodated only by first expanding the area
of the stretched horizon.

(B) With fuzzballs, the stretched horizon (fuzzball surface) is composed of real degrees of

freedom [28], and any dynamics of this stretched horizon should be a consequence of the normal

quantum evolution (3.2). This evolution implies that the stretched horizon ‘tunnels out’ from

its initial location to a new one when an infalling quantum approaches.

To see this, consider the fuzzballs states corresponding to the initial massM ; the surfaces of

these fuzzballs are located around a radius r0. Now suppose a quantum of energy E approaches

close to the location r0. We should write the state of the overall system in terms of fuzzball

states with energy M + E; these states have their structure peaked around a new location

r0 + δr0. The ‘dephasing’ (3.2) converts the initial state of black hole plus shell to a linear

combination of fuzzball states peaked at r0 + δr0. One may recast this normal evolution as a

‘tunneling’. But note that such behavior is an essential feature in the present context because

the fuzzballs of a given mass M give a complete set of states at the location of the stretched

horizon, and we must necessarily consider states extending to a larger radius if we are to add

energy E to the system.

Now let us return to the situation in Fig. 6(b). In general, if the incoming quantum deposits

E = nmp of energy, we expect that the stretched horizon would have to expand by n Planck

cells before it can accept the infalling quantum. Thus the ‘bubble’ depicted in Fig. 6(b) has

area

∆A ∼
( E

mp

)

lD−2
p . (3.3)

We will assume for concreteness in what follows below that this bubble has the intrinsic geom-

etry of a hemispherical surface protruding from the initial stretched horizon.6

6This appears to be a conservative assumption; in fact when two particles collide, the horizon forms in a very
elongated fashion [29], so we may expect that the bubble stretches out even further.
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4 Fuzzball complementarity

We can already see that complementarity with fuzzballs will have to be different from the

way AMPS start their discussion of complementarity. Traditional complementarity relied on

different reference frames to produce different effective physics; an observer staying outside

the hole would see information reflected by the stretched horizon, while an observer falling

in will not encounter the degrees of freedom implicit in the stretched horizon. This observer-

dependence of physics was a new postulate, not something that one had encountered elsewhere

in general relativity or string theory.

But with the fuzzball construction the situation is different. The fuzzball geometry is just a

regular solution to string theory; its intrinsic structure does not depend on which coordinates we

use to describe it. The geometric fact of importance is that spacetime ends at the place where

the compact circle pinches off to make monopoles/antimonopoles. In other words, we have real

degrees of freedom at the stretched horizon, not virtual ones that are observer dependent. The

fuzzball is really like a piece of coal, radiating quanta that carry the detailed information of its

structure.

In this situation any conjecture on complementarity must take the following form:

(a) The real degrees of freedom of the fuzzball have to radiate their detailed information

through the energy E ∼ T Hawking radiation quanta. Thus it should not be possible to replace

the fuzzball surface by an effective vacuum region as far as these E ∼ T modes are concerned.

(b) Consider a lab, composed of E ≫ T quanta, ‘falling freely from afar’ to the surface of

the fuzzball [9]. We describe such a process as a ‘hard-impact’ process. We can imagine that

such a hard impact creates collective oscillations of the fuzzball, which are relatively insensitive

to the precise choice of state of the fuzzball. It may then be possible that the Green’s functions

of these collective modes can be reproduced by an effective geometry that does have a smooth

horizon (Fig. 1). This effective geometry would be the complementary description.

Let us explain what we mean by E ≫ T quanta ‘falling freely from afar’ into a black hole

of radius r0. We start at a radius r with

r − r0 = β r0, β > 0 . (4.1)

At this location, let us set up a local orthonormal frame with axes along the Schwarzschild r, t

directions. We require that the infalling quantum’s energy Elocal (measured in this frame) be

much larger than the temperature of the local Hawking quanta (in the same frame)

Elocal ≫ Tlocal . (4.2)

We hold β fixed, and take the mass of the hole to large values:

M

mp

→ ∞ . (4.3)

This is the analog of the thermodynamic approximation, where we fix the operator we wish to

measure, and then take the size of the system to be large. As the ratio M/mp becomes larger

and larger, we expect that our complementary description becomes more and more accurate.
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These conditions define ‘free fall from afar’ into the black hole, and is the primary physical

situation in which we seek a complementary description in terms of free fall through a horizon.

The condition β > 0 implies that we can start falling from infinity, or from a location r = 3r0,

or even r = 1.1r0. By contrast, suppose we start at rest from a location that is given to be a

fixed distance from the horizon: e.g., r−r0 = 100lp and then fall in. This is a fine-tuned process,

which corresponds to gently lowering the quantum to a point near the horizon, and then letting

it fall in. We do not require a complementary description of such fine-tuned processes, since such

processes are the analog of measuring a fixed number of atoms in a gas: the thermodynamic

limit (4.3) does not improve the fluctuations in the measurement.

4.1 The statement of fuzzball complementarity

In [9] the complementarity depicted in Fig. 1 was formulated. This approach is based on earlier

work of Israel [30], Maldacena [31] and Van Raamsdonk [32], where the black hole spacetime

was written as an entangled sum of states (see [10] for a full discussion).
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Figure 7: (a) Minkowski space and its Rindler quadrants (Right, Left, Forward and Past). (b) The
Penrose diagram of the extended Schwarzschild hole. The region near the intersection of horizons is
similar in the two cases.

The essential idea can be seen from Fig. 7. Minkowski space can be decomposed into Rindler

quadrants. If we consider a scalar field φ, then the Minkowski vacuum state |0〉M can be written

as an entangled sum of states in the left and right Rindler quadrants:

|0〉M = C
∑

i

e−
Ei
2 |Ei〉L|Ei〉R, C =

(

∑

i

e−Ei

)− 1
2

(4.4)

For a scalar field φ, the states |Ei〉L, |Ei〉R are known explicitly in terms of Bessel functions.

One may ask: what is the corresponding split for the gravitational field? In particular, the

central region of the eternal black hole is similar to Minkowski space (Fig. 7(b)), so we may

expect a similar decomposition of the eternal black hole geometry

|g〉eternal = C
∑

k

e−
Ek
2T |gk〉L ⊗ |gk〉R, C =

(

∑

i

e−
Ei
T

)− 1
2

(4.5)

But what are the ‘Rindler’ states |gk〉? Most of the entropy for a given mass M comes from

states that are black holes. But if the black hole solution is the traditional one with a smooth
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horizon, then how do we distinguish different Rindler states |gk〉? This puzzle goes away when

we recognize that black hole microstates are fuzzballs, which have nontrivial structure were the

horizon would have been. In fact the fuzzballs are the natural candidates for the Rindler states

of gravity, since they end (by the pinch-off of a compact circle) in their own Rindler quadrant,

without leaking past the horizon.

We can recover Minkowski space as the central region of the black hole in the limitM → ∞.

The fuzzball states appear when we decompose the Minkowski vacuum state in gravity into left

(L) and right (R) pieces across a boundary surface. In particular we find that Rindler and de

Sitter entropies can be obtained as the entanglement entropy of the fuzzball states appearing

in such decompositions [10].

We can now arrive at complementarity by putting together two observations:

(A) Suppose we compute the expectation value of an operator ÔR which is localized in the

region outside the horizon of the black hole, but where we assume that the state corresponds

to the full eternal black hole. Noting the decomposition (4.4), we find

eternal〈0|ÔR|0〉eternal = C2
∑

i,j

e−
Ei
2T e−

Ej

2T L〈gi|gj〉L R〈gi|ÔR|gj〉R

= C2
∑

i

e−
Ei
T R〈gi|ÔR|gi〉R (4.6)

Thus the expectation value in the eternal black hole geometry is given by a thermal average

over fuzzball states.

(B) A given black hole is in one fuzzball state. But for a generic fuzzball state, and for

appropriate operators ÔR, we can approximate the expectation value by the ensemble average

over all fuzzballs

R〈gk|ÔR|gk〉R ≈ 1
∑

l e
−

El
T

∑

i

e−
Ei
T R〈gi|ÔR|gi〉R . (4.7)

Putting together (4.6) and (4.7) we get7

R〈gk|ÔR|gk〉R ≈ eternal〈0|ÔR|0〉eternal . (4.8)

This is the statement of fuzzball complementarity. That this is a kind of complementarity can

be seen as follows:

(i) On the LHS we compute with a gravitational state which has no horizon; spacetime ends

in a messy quantum set of degrees of freedom before the horizon is reached. We illustrate this

7Recently an approach to complementarity was developed in [33], which also used the idea of [31] about
entangled giving the eternal black hole. It should be noted that our proposal of fuzzball complementarity is quite
different: in particular [33] do not attempt to get complementarity through an approximation of a microstate
by its canonical ensemble. For us, the approximation sign in (4.7) is vital, because the real degrees of freedom
on at the horizon have a double duty: they have to carry details of the microstate for E ∼ T (so there is
no complementarity for such modes), and they have to provide a complementary description of E ≫ T infall.
Ref. [33], on the other hand, seeks to get a complementary description for all modes.
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Figure 8: (a) Computing a 1-point function in a generic fuzzball geometry; the operator excites the
complicated mess of degrees of freedom on the fuzzball surface (Picture 1). (b) For appropriate opera-
tors, the same correlator can be obtained to a good approximation by using the traditional black hole
geometry; now there are no degrees of freedom at the horizon but the paths in the path integral can
smoothly cross across the horizon into a new auxiliary spacetime region - the black hole interior (Picture
2). (c) In Picture 2, the state is such that we do have modes b′, c′ entangled as expected in the vacuum.

in Fig. 8(a), where we illustrate the computation of 〈ÔR〉 schematically by a path integral. The

operator ÔR excites the complicates degrees of freedom of the fuzzball.

(ii) On the RHS we compute with a spacetime which has a smooth horizon where the

gravitational field is in the vacuum state |0〉. In computing 〈ÔR〉 in Fig. 8(b) the paths in the

path integral smoothly cross the horizon back and forth, noticing nothing special at the horizon.

If we break the the vacuum |0〉 into modes b′, c′ across the horizon, then these modes are indeed

correctly entangled to make the vacuum state (Fig. 8(c)).

But the entanglement of b′, c′ noted in (ii) is exactly what AMPS had argued should not

be found. Thus we should now go back and see if one or more of their assumptions were

inappropriate. As we will discuss in more detail below, the crucial point will be that they do not

invoke any approximation of the kind in (4.7) which forces the complementarity to be accurate

only for ‘appropriate’ operators. The notion of appropriate operators here is the similar to the

notion of appropriate operators in statistical mechanics, where only for appropriate operators

can a generic microstate be replaced by a canonical ensemble average.

With fuzzballs, we see that Hawking quanta carry the information of the microstate, and

so detailed measurements of Hawking quanta cannot be in the class of appropriate operators.

Since these quanta have energy E ∼ T , where T is the temperature of the hole, we can say that

the complementary description should somehow involve excitations with E ≫ T .8 Fuzzball

complementarity focuses on hard-impact processes involving E ≫ T quanta as the processes of

physical interest, and conjectures that they are described by the traditional black hole.9

8Note that the value of T depends on the location and the reference frame; the temperature is high near the
horizon in the Schwarzschild frame, and the Hawking quanta at this location have a correspondingly high energy.

9A faulty understanding of fuzzball complementarity appeared in [15]; it is important to clear this miscon-
ception. This paper claims that if an observer measures one E ∼ T quantum, then (according to fuzzball
complementarity) he should have a full identification of the microstate. This is of course incorrect (and fuzzball
complementarity does not say this). Fuzzball complementarity states that hard-impact processes involvingE ≫ T
quanta are the processes of interest for the idea of complementarity, and conjectures that they are described by
the traditional black hole. Of course there are other simple processes involving E ∼ T quanta for which the
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Note that the decomposition of the Minkowski vacuum |0〉M into Rindler states is an opera-

tion done on one time slice. The same is true of the decomposition of |0〉eternal. Correspondingly,
the operator ÔR in (4.6) should be an operator defined on one time slice. In this situation we

get the approximation (4.8). But one can also consider processes where the relevant operators

cannot be made to lie on one time slice. This situation, for the black hole case, will occupy

us in what follows. We will comment on the analogous situation for Minkowski space in the

discussion at the end of the paper.

4.2 The failure of the relation b = b
′

We can now pinpoint where fuzzball complementarity differs from the kind of complementarity

assumed by AMPS (Fig. 9). In fuzzball complementarity the Hawing modes b outside the

horizon in Picture 1 do not agree with the corresponding modes b′ in Picture 2:

b 6= b′ . (4.9)

These Hawking modes are the E ∼ T quanta that are supposed to differentiate microstates,

and so they are not going to be reproduced by the complementary description. By contrast,

traditional complementarity does not provide any explanation for how Hawking’s puzzle will

be resolved. AMPS therefore start from the assumption

b = b′ . (4.10)

Because of this assumption, they miss the possibility of fuzzball complementarity.

(a) (b) (c)

Figure 9: (a) Traditional complementarity: we imagine that infalling matter is absorbed and re-radiated
from virtual degrees of freedom at a stretched horizon; these degrees of freedom are virtual because we
have found no ‘hair’ for the hole. (b) In the complementary picture, an infalling observer fails to see
anything at the location of the stretched horizon. (c) The situation with fuzzballs: real degrees of freedom
end the spacetime outside the horizon. These degrees of freedom must play two roles: (i) radiate Hawking
quanta at E ∼ T and (ii) account for any complementarity through collective oscillations generated by
hard impacts of E ≫ T quanta.

predictions of a typical microstate and the classical black hole agree, e.g. due to general statistical reasoning like
that used by Page [2].

23



4.3 The significance of E ≫ T

Let us now see in more detail how the condition E ≫ T will be relevant in bypassing the

argument of AMPS. Among all operators with E ≫ T are those that excite collective modes

of the fuzzball. Such collective modes, in turn, can be excited when the fuzzball is impacted

by heavy objects falling in from far outside the hole. Thus we are led to ask the following

question. Suppose a quantum with E ≫ T falls freely from afar onto the fuzzball surface. In

this situation can we conjecture a dynamics where we have a ‘complementary’ description?

When we impact a star, we do not expect complementarity, so what is special about im-

pacting the surface of a fuzzball? The key issue is the fact that the density of states of the

fuzzball, given through Sbek, grows extremely rapidly with energy. Thus the temperature

T =
dE

dS
=
dM

dS
(4.11)

is very small when the mass M of the hole is large.

Suppose we start with a black hole of mass M . This hole has Ni = Exp[Sbek[M ]] possible

fuzzball states |Ek〉. Now suppose we throw in a quantum with energy E ≫ T . The total

energy is now M + E, and the number of possible states is Nf = Exp[Sbek[M + E]]. We have

Exp[Sbek[M + E]] = Exp[Sbek[M ] + ∆S] ≈ Exp[Sbek[M ] +
E

T
] = Exp[Sbek[M ]] e

E
T (4.12)

where in the second step we have used the thermodynamic relation dE = TdS. Thus we find

Nf

Ni

=
Exp[Sbek[M + E]]

Exp[Sbek[M ]]
≈ e

E
T (4.13)

For E ≫ T we get
Nf

Ni

≫ 1 (4.14)

This means that when we impact the fuzzball at high energy, most of the phase space allowed

consists of new states that were not accessible before the impact.

Let us consider this observation in the context of the AMPS argument. AMPS wait until

the black hole has evaporated past its half-way point, so that its states are maximally entangled

with the emitted radiation R:

|Ψ〉initial =
1√
Ni

Ni
∑

i=1

|Ei〉 ⊗ |Ri〉 (4.15)

But (4.14) shows that when the maximally entangled hole is impacted by a quantum with

E ≫ T , then most of the allowed states of the hole will be new states. These new states are

not entangled with the radiation at infinity. This is the case because only Ni states of the

hole are entangled with the radiation, but the total number of possible states is Nf ≫ Ni.

The complementarity conjecture pertains to the dynamics of these unentangled Nf −Ni ≈ Nf

states. We can conjecture an evolution of these states which would correspond to collective

modes of the fuzzball, and look for a complementary description of this evolution.10

10This creation of new states is the content of the equation
∑

i
Ci|Fi〉 →

∑
j
C′

j |F
′

j〉 noted in [11]. The relevance
of new states is also noted in [38].
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4.4 The analogy between fuzzball complementarity and AdS/CFT

We do not, of course, know the full dynamics of fuzzball states under an impact with E ≫ T ,

so we cannot give the complementarity map in explicit form. What we do here is conjecture

a possible dynamics of fuzzballs to show how the AMPS argument fails to address fuzzball

complementarity.

There are two main features of fuzzball complementarity: (i) the approximation E ≫ T

and (ii) The notion that Green’s functions arising from collective modes of the fuzzball can be

obtained by using the traditional black hole geometry as an auxiliary spacetime. While (i) is

peculiar to the context of black holes emitting Hawking radiation, (ii) is the analogous to the

idea of AdS/CFT duality. We use this duality as an analogy, introduced in [11], to help set up

our conjecture on collective dynamics of fuzzballs. The following comments should help clarify

this analogy:

(A) In Fig. 10(a) we depict a quantum falling onto a stack of D-branes. The impact creates

a disturbance of gluons on the branes; this disturbance spreads away from the impact point in

ripples moving out at the speed of light (Fig. 10(b)).

In Fig. 10(c) we depict a high energy quantum impacting the fuzzball surface. We imagine

that the impact creates a large number of new monopoles/antimonopoles at the impact point.

This excitation then relaxes, with the monopole structure spreading out from the impact point

in circular ripples. The dynamics of this ripple is the collective dynamics of the fuzzball.

(a) (c)(b) (d)

Figure 10: (a) A quantum is incident on a stack of D-branes; (b) The quantum ‘smashes’ on the D-
branes, but its energy gets converted into ripples that spread out on the branes; (c) The analogous
situation with the fuzzball surface: a graviton is incident on the monopoles etc. making the fuzzball; (d)
The graviton ‘smashes’ onto the fuzzball surface, converting its energy to ripples that spread along the
fuzzball surface.

(B) In Fig. 11 we describe how quantities are measured in the AdS/CFT correspondence:

(i) In Fig. 11(a) and Fig. 11(b) we consider the computation of a 2-point correlator in the

CFT and AdS pictures, with a view to understanding the significance of the requirement E ≫ T

in the fuzzball case. We consider a situation where some low energy excitations are already

present on the D-branes; these are described by gravity quanta lying deep in the AdS region.

We now insert two local operators to measure a ‘high energy’ correlator. The inserted operators
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(d)(a)

X

X

(b) (c)

X

X

Figure 11: (a) A 2-point function in the CFT: there are some low energy excitations present, but the
correlator of interest is not sensitive to them; (b) The dual gravity picture: the low energy excitations
are localized deep in the AdS, they do not interfere with the paths contributing to the correlator; (c)
One can ask about boundary-bulk propagators in the gravity picture, but these must be re-expressed in
terms of boundary-boundary propagators before comparisons can be made with the CFT; (d) A typical
process of interaction in the bulk: while this is encoded in the boundary CFT, it is very difficult to
extract this encoding from correlators in the CFT.

create high energy excitations, which do not interact strongly with the low energy excitations

already present on the branes. In the gravity description we see this lack of interaction by the

fact that the paths contributing to the correlator lie near the AdS boundary, away from the

location of the low energy quanta. Thus we get a kind of universality: if we go to high energies,

we can expect to generate collective excitations that are insensitive to the precise starting state

of the system.

The computation of Fig. 11(a) corresponds to the computation in Fig. 1(a), and that in

Fig. 11(b) corresponds to Fig. 1(b). The fact that the precise choice of initial state did not

matter in Fig. 11 corresponds to the fact that the correlator in Fig. 1(a) is independent of the

precise choice of fuzzball.

(ii) One may ask: what happens if we fall onto the stack of D-branes? In the CFT, we

‘smash’, creating a large number of excitations that encode the data of the infalling object.

In the dual gravity description we pass smoothly into the AdS interior. In the latter case, we

might now want to ask about experiments conducted by the infalling observer after he falls

through into the AdS region. These questions involve a boundary to bulk propagator of the

kind depicted in Fig. 11(c), or bulk-to-bulk propagators. But the bulk points are not points in

the CFT, so what do such questions mean?

The answer is simple: the operator in the bulk can be expressed as a (complicated) com-

bination of operators in the boundary, and thus correlators like Fig. 11(c) can be rewritten as

linear combination of correlators Fig. 11(b) . A similar situation holds for fuzzball complemen-

tarity. The only true questions are those that can be measured at or outside fuzzball surface,

as in Fig. 1(a). The complementary description Fig. 1(b) obtains approximate answer to these

questions by using an auxiliary spacetime that has a smooth horizon leading to an interior re-

gion. One may try to start backwards and ask questions about operators in the interior region

in Fig. 1(b), but we would have to relate these ‘interior’ operators to operators that lie on the

fuzzball surface before we can use fuzzball complementarity to relate the two pictures.
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(iii) We pursue this further in Fig. 11(d), where we depict a simple question in the bulk. We

have two high energy quanta falling into the AdS, and we can ask if they collide before reaching

the bottom of AdS. In the black hole case the corresponding question relates to one inside the

horizon: ‘Do two particles in a lab collide before the lab hits the singularity?’. Again, we note

that the question in Fig. 11(d) can be asked in the dual CFT, but obtaining the answer will be

very complicated. Each infalling particle creates a set of expanding ripples on the CFT surface,

and we are asking a delicate question about the intersection of these ripples. In particular, the

products of the collision in Fig. 11(d) will fall into the bottom of AdS, and mix with the low

energy quanta present there. Thus in the CFT we will not know if the particles collided or

not until we examine all the data encoded in the CFT state. Analogously, in the black hole

case the infalling quanta of Fig. 1(a) will generate ripples on the fuzzball surface, but whether

the quanta collided or not in Fig. 1(b) before hitting the singularity will be something that is

delicately encoded in all the data on the fuzzball surface.

With these remarks, we proceed to examine experiments with fuzzballs in more detail.

5 Bypassing the AMPS argument

The AMPS argument requires that the hole be maximally entangled with the radiation R at

infinity, but we have seen in (4.14) that upon impact by a quantum with E ≫ T , most of the

accessible states are not entangled with R. Have we therefore completely bypassed the AMPS

argument?

The answer is yes, provided we check one thing: these new unentangled states can be

accessed before the infalling quantum is ‘scattered’ by interaction with Hawking quanta. In

this section we will give the computations which show that the scattering is indeed too small

to prevent complementarity. Before we start the computation, let us review our goal.

AMPS are concerned that an infalling quantum interacts with outgoing Hawking radiation.

But we have seen that with fuzzball complementarity, this is not the correct question. The

Hawking quanta are the ‘tail end’ of the nonlinear fuzzball structure that ends outside the

horizon location. Thus there is no way that we can ever avoid interaction with the Hawking

radiation – we cannot pass through the fuzzball surface to an interior, since there is no interior.

The correct question is not whether we interact with the Hawing radiation; it is how we interact

with this radiation.

Thus consider a quantum with energy E at infinity, falling towards the hole. There are two

possibilities:

(i) The probability of significant interaction with Hawking quanta far from the stretched

horizon is low. The principal interaction occurs near the stretched horizon, where the new,

unentangled degrees of freedom (4.14) are excited. The state created with these new degrees of

freedom in insensitive to the precise initial state of the fuzzball. The situation is then like that

in AdS/CFT duality, in the following sense. The infalling quantum has interacted (strongly)

with the nonlinear part of the Hawking radiation - i.e., the structure near the fuzzball surface.

But this interaction is similar to the one where an infalling quantum smashes onto a collection
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of D-branes. Then the excitations generated on the fuzzball surface can have a complementary

description where it falls smoothly through the horizon.

(ii) The probability of significant interaction with Hawking quanta far from the stretched

horizon is not low. In this the infalling quantum will be scattered into a new state, and this new

state will depend on the precise state of the radiation emerging from the black hole microstate.

In this situation we will still get new, unentangled degrees of freedom (4.14) when the quantum

reaches the fuzzball surface, but since the state of the quantum has already been altered by

scattering, the excitations on the fuzzball surface cannot be given a complementary description

where ‘nothing happens’ as we fall through a horizon.

The physical processes of interest are hard-impact processes involving E ≫ T quanta ‘falling

freely from far’, as described in (4.1)–(4.3). In this section we will see that for such processes

we get (i) rather than (ii). Where appropriate, for concreteness we shall consider the example

of a Schwarzschild black hole in D spacetime dimensions. As before, r0 shall denote the horizon

radius.

In the rest of this section, we proceed in the following steps:

(a) In Section 5.1 we begin with a warm-up exercise. AMPS envision measuring the Hawking

quanta b. We show that a detector ‘falling freely from far’, as specified in the condition (4.1),

cannot perform such a measurement because there is too little proper time left along its infall

trajectory to make the measurement. This is a ‘warm-up exercise’ in the sense that it illustrates

the constraints that arise when we use the E ≫ T condition, but it is not an important step

in what follows; we are really interested in scattering off b quanta, rather than the ability to

perform detailed measurements on them.

(b) In Section 5.2 we compute the cross section for scattering the infalling quantum off a

Hawking radiation quantum. We find that the scattering can be split into two classes: a large

impact parameter part where we get gentle spin-preserving deflections, and a hard scattering

part where the state of the infalling quantum is altered.

(c) In Section 5.3 we compute the distance sα from the horizon where hard scattering

becomes significant. We find that sα < sbubble, where sbubble is the distance from the horizon

where the new degrees of freedom (4.14) are expected to be accessed.

(d) In Section 5.4 we show that the ‘gentle deflection’ part of the scattering does not distort

the incoming quantum significantly by the time it reaches the fuzzball surface.

Putting all these computations together, we conclude that interactions with Hawking quanta

do not preclude the possibility of fuzzball complementarity.

5.1 The difficulty of ‘measuring’ a b quantum

AMPS imagine Gedanken experiments that measure the state of a b quantum near the horizon.

As a warm up exercise for the computations in the next section, it will be useful to note that
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such a measurement cannot be performed by observers that fall freely towards the hole from

afar.

Suppose we try to construct an apparatus that falls in towards the black hole and ‘measures’

a b quantum before crossing the horizon. As an example, we may hope to detect quanta of

energy ∼ 1TeV , which have a wavelength λ ∼ 1016lp. We should make our infalling detector

from quanta that interact with the radiation quanta. Further, we should be able to switch the

detector on and off appropriately; i.e., switch it on when we reach the location where the b

quantum is expected, and switch it off before the detector falls through the horizon.

We will now observe that under very general assumptions, it is not possible to construct

such an apparatus. More precisely, we will find that the interaction with the emerging radiation

is low unless we get very close to the fuzzball surface, and once we have fallen that close to the

fuzzball surface there is not enough proper time for the detector to respond to the measurement.

In detail, we proceed as follows:

(A) We assume that our detector is composed of quanta that, individually, have energies

lower than Planck energy

E . mp . (5.1)

This relation is satisfied, of course, by all the detectors that we have in our laboratory. (Violating

this condition will force us to consider string states; such states will have a size that grows with

E, and an interaction cross section that needs to be computed using details of string theory.)11

With the detector made of quanta satisfying (5.1), we find on general grounds that the

typical frequencies that can be detected will lie in the range ω . mp, and the time tswitching in

which the detector can be switched on and off must satisfy

tswitching & lp . (5.2)

(B) We will allow the detector to fall in freely from afar; i.e., we let it fall from a position

satisfying (4.1).

(C) We assume that our theory of gravity is string theory, where the low energy quanta

are in the graviton multiplet, and thus have all their interactions determined by a universal

coupling encoded in the Newton’s constant G. The interaction between gravitons grows with the

energy of the gravitons. As the infalling quantum comes closer to the horizon, the probability

of interaction with a radiation quantum increases. This increase happens for two reasons:

the infalling quantum becomes more energetic (as measured in a local static frame) and the

radiation quanta encountered also have a higher energy.

11If we use purely ingoing massless quanta to make the detector, then the proper time along the detector
trajectory will be zero, and the detector cannot respond to any interaction. Nevertheless, when the detector falls
close to the horizon, the quanta composing it would be moving with a speed close to the speed of light in the
Schwarzschild frame. We will deduce interaction cross sections from the cross sections for massless gravitons,
since all non-stringy states in string theory have interactions that are not too different from the interaction of
gravitons. For example, we can imagine that our particles have a mass m because they carry a momentum around
a compact direction of length L & lp, and the interactions of such quanta are obtained from the interactions of
10-d gravitons in string theory.
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Let us measure radial positions in terms of the proper distance s from the horizon, measured

along a constant t slice. Let the infalling quantum be a graviton with energy E at infinity, and

let T ∼ 1
r0

be the Hawking temperature. In Appendix A we show that the location where the

probability of interaction P with a radiation quantum becomes order unity is given by

sinteract ∼ (
E

T
)
1
4 lp . (5.3)

If the infalling quantum had started at a finite radius r̄ instead of at infinity, then the value of

s where P ∼ 1 would be even smaller. Thus we write

sinteract . (
E

T
)
1
4 lp . (5.4)

Noting that T ∼ 1
r0
, and using (5.1) we can rewrite this as

sinteract . (
r0
lp
)
1
4 lp . (5.5)

(D) Now we consider the proper time τavailable available on the trajectory of the infalling

quantum, between the time it is at s = sinteract and the time where it crosses the horizon at

s = 0. In Appendix B we consider a particle which starts at rest at r = r̄ and falls to the

location which is at proper distance s from the horizon. We assume that the starting value r̄

satisfies (4.1). Then we find that

τavailable ∼ (
sinteract
r0

) sinteract ≪ sinteract . (5.6)

(E) Putting together (5.5) and (5.6) we find

τavailable . (
lp
r0

)
1
2 lp ≪ lp . (5.7)

We had noted in Eq. (5.2) that we cannot switch on and off our measuring device in a time less

than lp. By contrast, here we see that we are required to perform this switching in a time that

is smaller than lp by a parametrically small factor (
lp
r0
)
1
2 . We conclude that we cannot make a

detector that will perform the postulated measurement of the quantum b.

5.2 The probability of interaction with a Hawking radiation quantum

We now come to the real question that is relevant to the AMPS discussion: in what manner

does an infalling quantum scatter off Hawking radiation quanta?

As in the above discussion, we measure radial positions in terms of the proper distance s

from the horizon, measured along a constant t slice. Let the infalling quantum be a graviton

with energy E at infinity, and let T ∼ 1
r0

be the Hawking temperature. On dimensional grounds

one may write for the interaction cross section

σ ∼ G2(ωω′)
D−2

2 (5.8)
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where ω, ω′ are the energies of the infalling and emerging gravitons measured in the local

orthonormal frame. We have (see Appendix A)

ω ∼ E(gtt)
− 1

2 ∼
(E

T

)1

s
, ω′ ∼ 1

s
. (5.9)

Of course the total cross section may diverge because of infrared effects leading to near-forward

scattering, but let us use (5.8) as an estimate of the probability of significant scattering. It is

shown in Appendix A that the probability of interaction P between the infalling graviton and

a Hawking quantum becomes order unity when we reach s of order

sinteract ∼ (
E

T
)
1
4 lp . (5.10)

We can go to a center of mass frame where the two quanta have equal energy; this requires

boosting along the radial direction by a boost factor

γ ∼ (
E

T
)
1
2 . (5.11)

The energies of the two colliding quanta in this center of mass frame are

Ecm ∼
(E

T

)
1
2 1

s
. (5.12)

For s ∼ sinteract, we have

Ecm ∼
(E

T

)
1
4
mp (5.13)

where mp is the Planck mass. For E ≫ T , we find

Ecm ≫ mp . (5.14)

Thus the interaction is at a transplanckian energy, and we need some understanding of gravi-

tational collisions at such energies. We use the analysis of [34] where it was argued that we can

break up the interaction into three classes:

(i) When the impact parameter is sufficiently small, the collision leads to a black hole. Let

the center of mass energy of the interaction be Ec, and let a black hole with mass Ec have

radius Rs. If the impact parameter is d . Rs, then the interaction leads to the formation of a

black hole.

(ii) There is an intermediate range of impact parameters

Rs . d . αRs (5.15)

where a black hole may not form, but the interaction is strong and dependent on the details of

the gravity theory. Here α is a constant factor, which does not scale with any parameters of

the problem.

(iii) For d & αRs we have weak gravitational scattering given by classical physics. The

interacting quanta deflect by a small angle, following geodesics in a weakly curved metric.
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We now combine (i) and (ii) into a single category, thus obtaining the following two domains

to examine:

(a) The domain with impact parameters

d . αRs (5.16)

where the gravitational interaction is strong. We will find that the probability of such interac-

tions is parametrically small in our context.

(b) The domain

d & αRs (5.17)

in which the deflection is parametrically small. The issue of importance for us is that in this

domain the motion of the interacting quanta is like the deflection of light by the sun: the

quantum moves along a geodesic which is deflecting through a small angle. In such a process

the spin of the quantum does not change, and we will see that the infalling graviton reaches the

surface of the fuzzball to generate collective oscillations. We have a similar situation in strong

interaction physics when a high energy quantum passes through a nucleus: the spin of the high

energy quantum does not flip, and we generate collective excitations of the nucleus.

5.3 The domain d . αRs

In Appendix C we find the probability Pα that a quantum that starts at infinity with energy E

interacts with a Hawking radiation quantum with impact parameter d . αRs. From Eq. (C.8)

we see that the probability Pα becomes order 1 when s is of order

sα ∼
(E

T

)
1

2(D−2)
α

D−3
D−2 lp ∼

(E

T

)
1

2(D−2)
lp (5.18)

where in the last step we noted that α is a constant which does not scale with any parameters

of the problem. Note that
sα

sinteract
∼

(E

T

)− D−4)
4(D−2)

(5.19)

so for D > 4 the value of s where the quanta interact strongly is less than the value given by

naive dimensional analysis.

We must now compare sα with the distance scale where we expect the tunneling effects

discussed in Section (3.3) to take place. Since we are throwing in an energy E, the entropy of

the hole will increase by ∆S ∼ E
T
, which corresponds to an area increase (using (3.3))

∆AE ∼
(E

T

)

lD−2
p . (5.20)

We have assumed that this area deformation starts with a hemispherical bubble of area AE

around the point where the infalling quantum would impact the surface. (That is, we assume

that if we go to the locally flat coordinates around the horizon, the intrinsic geometry of the
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bubble is that of a hemisphere. See also the comment in Footnote 6.) Such a hemisphere would

have radius

sbubble ∼ A
1

D−2

E ∼
(E

T

)
1

(D−2)
lp . (5.21)

We note that
sbubble
sα

∼
(E

T

)
1

2(D−2)
. (5.22)

Then for sufficiently large E/T we find

sbubble
sα

≫ 1 (5.23)

so we expect to excite the new degrees of freedom on the fuzzball surface much before we

interact strongly with a Hawking radiation quantum. Finally, we note that (5.20) corresponds

to creating a very large number of new degrees of freedom given by (4.13). The encoding

of information into the fuzzball surface starts when the phase space volume of newly excited

degrees of freedom becomes comparable to the phase space volume of already existing degrees

of freedom. In [37] a method was developed, in related computation, for estimating the point

where
Nnew

Ni
& e ≈ 2.7 . (5.24)

It was found that this point corresponds to a distance much larger than the analog of sbubble.

Thus one may expect that in our present case the encoding of data into the fuzzball degrees of

freedom starts well before the location sα.
12

5.4 The domain d & αRs

In this domain of impact parameters, we have gentle deflection of the incoming graviton, with

no change of its polarization. Such deflections are similar to the gravitational deflections en-

countered by a photon as it travels to us from a distant star. The light from the star reaches

us at a different point than it would if there were no deflections, but the image of the star is

still reproduced faithfully since the relative separation of photons and their spin do not alter

significantly under such deflections. We will now check that the deflections suffered by out in-

falling graviton are sufficiently small so that they do not alter the image of the infalling object

on the fuzzball surface.

We will now return to using the cross section σ suggested on dimensional grounds (which

is larger than the cross section σα for hard interactions). The question that we must address is

depicted in Fig. 12:

(i) In Fig. 12(a) we depict the infalling object as an array of particles stretching along a

direction y transverse to the radial direction. These particles have a transverse separation dy.

If nothing impedes the infall of the object, then the particles reach the fuzzball surface with

separation y, and create an excitation that leaves a faithful imprint of the object.

12In Appendix D we estimate the time along the infalling trajectory for this tunneling to occur.
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(a) (b) (c)

Figure 12: (a) A body made of three atoms (solid dots) falls towards the fuzzball surface. Alternatively,
we may consider the wavefunction of a quantum (wavy line). (b) The situation when the interactions
with the Hawking radiation quanta are significant: the atoms get scrambled, and the wavefunctions gets
severely distorted, all before reaching the fuzzball surface. (c) The situation where the deflections by
the Hawking quanta are small; the infalling object retails its character till it reaches the new degrees of
freedom available on the fuzzball surface.

(ii) In Fig. 12(b) we depict a situation where the particles of the infalling object hit the b

quanta near the horizon and scatter. Each particle suffers some deflection ∆y, so that it reaches

the fuzzball surface with a different value of y from the one that it started with. In this figure

we have depicted the situation where
∆y

dy
& 1 . (5.25)

In this situation when the particles reach the fuzzball surface and access new states, the data

of the infalling object has become distorted. Any complementary description provided by

excitation of the fuzzball surface will not be a faithful representation of the initial state of the

object.

(iii) In Fig. 12(c) we again have an interaction between the particles in the object and the

b quanta, but we depict a situation where

∆y

dy
≪ 1 . (5.26)

In this case the object reaches the fuzzball surface without significant distortion, and theNf−Ni

new states accessed at the fuzzball surface can capture its details and provide a complementary

description.

In Appendix E we show that the interaction of infalling objects with Hawking quanta b gives

us the situation (iii), not the situation (ii). More precisely, we use the estimate of interaction

cross section in Appendix A to recall that the probability of interaction of the infalling quanta

with a b quantum is small until we reach a distance s ∼ (E
T
)
1
4 lp from the horizon (see Eq. A.12).

Here E ≫ T is the energy of the infalling particle at infinity. At the point of interaction the

infalling quantum is highly blueshifted, so the collision process takes place in a frame that is

boosted by γ ∼
√

E
T

≫ 1 compared to the center-of-mass frame for the collision. One then
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finds for the transverse deflection

∆y . lp(
E

T
)−

1
4 ≪ lp . (5.27)

By contrast, the wavelength of the particles making the object and the separation between

particles are all assumed (Eq. 5.1) to be gives by a scale dy & lp. Thus for sufficiently large

E/T we find ∆y ≪ dy, which is the desired relation (5.26).13

The ‘gentle deflections’ that we get from the large impact parameter scattering have an

analog in the AdS/CFT case. Consider the infall in Fig. 11(d). The quanta deep in the AdS

lead to small deformations at the ‘neck’ of the geometry where the quantum enters the AdS;

these deformations are different for different choices of the quanta placed deep in the AdS. The

effect of this neck deformation on the infall is only slight; the spin and internal structure of the

infalling state is not altered by such deformations, and we have smooth infall in spite of these

deformations.

5.5 Summary of the above computations

Let us summarize the computations above that show how the AMPS argument is bypassed:

(a) The idea of fuzzball complementarity is that an infalling object does not avoid interaction

with the structure at the horizon (fuzzball surface); rather, the object ‘smashes’ onto this

structure in the same way that it would smash into a collection of D-branes. The excitations on

the fuzzball surface can then have a ‘complementary’ description involving smooth infall, just

like the interaction with D-branes could be replaced by smooth infall into AdS. There is one

difference however from the AdS case: for the black hole case we expect the complementary

description to become a good approximation only for hard-impact processes involving quanta

with energies much higher than the Hawking temperature: E ≫ T .

(b) AMPS use the fact that the states of the hole are maximally entangled with the radiation

at infinity after the half-way point of evaporation. But in Eq. (4.14) we see that when a

quantum with E ≫ T impacts such a black hole, then most of the accessible states of the

hole are not entangled with the radiation at infinity. These newly accessible states are the

analogue of the gluons that we create in AdS/CFT when the graviton hits the D-branes. It is

these newly accessed, unentangled degrees of freedom whose dynamics will be captured by the

complementary description.

(c) There is no fundamental distinction between the fuzzball surface and the Hawking quanta

in the near-horizon region: the radiation in this near horizon region is just the tail end of the

full nonlinear structure at the fuzzball surface. Equivalently, we can say that the Hawking

radiation becomes more and more strongly self-interacting as we closer to the fuzzball surface,

13We can also consider the scattering of the infalling quantum off charged Hawking quanta. In string theory
we can obtain such charged quanta from gravitons carrying momentum along a compact directions. But such
quanta have a mass m 6= 0, and are thus localized within a (fixed) distance s ∼ m−1 of the horizon. By contrast
the distance sbubble rises with E/T , so for large E/T we will not be scattered by charged Hawking quanta. (We
thank Don Marolf for raising the issue of charged Hawking quanta.)
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and this self-interaction leads to the pinching-off of compact directions to form KK monopole-

like structure at the horizon (where for generic states, it is understood that we are extrapolating

to Planck scale degrees of freedom). Thus the fuzzball construction provides a complete set

of ‘hair’ for the hole with the following structure: the spacetime ends in this KK monopole

structure before a horizon is reached, and the gravitational tail of this structure is the Hawking

radiation.

(d) When the infalling quantum comes close to the fuzzball surface, its energy E leads to

the creation of new KK monopole-antimonopole pairs; these are the new unentangled degrees

of freedom (4.14). We can then expect a complementary description of these new states. There

is however a possible problem: the infalling quantum might first scatter off the Hawking quanta

that are far from the fuzzball surface; i.e., it hits the ‘tail-end’ of the fuzzball structure in such a

way that its state changes ψi → ψf . In that case we would have a difficulty: even if the quantum

finally reaches close enough to the fuzzball surface to create new degrees of freedom (4.14), the

state it creates there would reflect ψf rather than ψi, so we would not have a complementary

description where ‘nothing happened’ as we fell through the horizon.

(e) To address the above concern, we computed the interaction of an infalling quantum with

the Hawking quanta. We find that hard scattering happens at a distance sα from the horizon.

But the new degrees of freedom are accessed at a distance sbubble from the horizon, where

sbubble ≫ sα for E ≫ T . This removes the concern noted in (d), and so fuzzball complementarity

is not ruled out by an AMPS type argument.14 (There is also a ‘long-distance’ component to

the scattering, but this does not alter the state ψi of the infalling quantum.)

(f) So we bypass the AMPS argument, and are back to the picture of fuzzball complemen-

tarity described in [11]: the infalling quantum (with E ≫ T ) hits the fuzzball and excites

collective excitations on its surface; the dynamics of these collective excitations is captured in

a complementary description of smooth infall.

Let us make a comment regarding the validity of effective field theory when we have structure

at the horizon as described in Section 2.1. If one asks about all possible low-energy processes,

effective field theory is not valid when we have such structure at the horizon. However, the

main claim of fuzzball complementarity is that hard-impact processes involving high-energy

quanta have an approximate dual description in terms of an effective field theory. The above

results show that the AMPS argument does not rule out such a complementarity.

14AMPS had noted that one may consider that the stretched horizon moves out before the infalling quantum
hits. But they dismissed this possibility, saying that in such a situation they can just consider interaction with
Hawking quanta further out [4]. But we see that such is not the case: the interaction with Hawking quanta
becomes significant at a given place since Hawking radiation has a very special (low) temperature, and the
stretched horizon automatically moves out to sbubble ≫ sα for E ≫ T by the same tunneling process that leads
to a resolution of the information paradox [12, 13].
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5.6 Comment on the Rindler decomposition of Minkowski space

Take a very large black hole with its traditional geometry, and consider a point just outside the

horizon. The local geometry approximates that of Rindler space, and extending the Rindler

metric past the horizons gives Minkowski space. This suggests that the idea of fuzzball comple-

mentarity developed above should also apply to the Rindler decomposition of Minkowski space.

We now comment on this.

As is well known, if we take any time slice of Minkowski space, then around any point on

such a slice we can make a decomposition of the Minkowski vacuum into a left and a right

Rindler wedge, as in Eq. (4.4). The conjecture of [9] is that for such a decomposition, we find

fuzzball states |Ei〉R, |Ei〉L on the right and left sides. So far, this applies on any given time

slice, and is exact.

Let us now investigate whether such a decomposition may also be used to give some de-

scription of the process of a quantum passing through a Rindler horizon. Consider a quantum

of mass m > 0 moving with some energy E, starting in the right Rindler wedge. For simplicity,

let us assume that the particle is not accelerating relative to the Minkowski background. Let

the particle be incident on the Rindler horizon.

Let us consider the description of this process provided by a decomposition of the Minkowski

vacuum into left and right Rindler fuzzballs. Of course, there are many such decompositions,

depending on the choice of Rindler frame relative to the rest frame of the quantum. We seek a

decomposition which has the following property: when the quantum impacts the surface of the

right Rindler fuzzball |Ei〉R, the subsequent evolution of the excitation of this surface gives a

good encoding of the information in the quantum. Of course, in Minkowski space, the quantum

passes through the Rindler horizon in a perfectly smooth way. The question here is whether

the Rindler fuzzball decomposition can reproduce this physics in any Rindler frame, to a good

approximation.

From what we have learnt above, the encoding of information becomes better the higher the

value of the energy E′ with which the quantum impacts the fuzzball, where here E′ is measured

in the rest frame of the fuzzball. In the case of the black hole, the energy E′ at impact depended

on the energy of the quantum at infinity and also on the black hole massM . Thus the accuracy

of encoding became better for larger M .

We now observe that in the case of Minkowski space, by choosing the Rindler frame appro-

priately we can make the accuracy as high as we want. For a black hole there is a particular rest

frame in which the fuzzball surface is at rest; this is the Schwarzschild frame where the metric

appears time independent. However when choosing a Rindler frame, firstly we may choose the

origin, and secondly, having fixed the origin, we can consider boosts on the T,X coordinates of

Minkowski space. Using these freedoms, we can arrange that when the quantum impacts the

fuzzball surface it does so with an energy E′ which can be chosen to be as large as we wish.

In particular, for any given starting distance from the origin, this can be achieved using the

boost freedom. See Appendix G for a demonstration of this. With such a choice of frame for

the Rindler decomposition, we get an accuracy for our ‘fuzzball complementarity’ which is as

good as we wish.
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6 Summary

The AMPS argument and the discussion around it have provided a good opportunity for us to

understand the new progress on black holes in the context of the longstanding puzzles in the

area. We have seen that the pieces of the puzzle have been available for some time, but the

way they fit together is very different from what most people had imagined. Let us review this

overall picture.

(A) AdS/CFT duality [35] is a beautiful relation among degrees of freedom in string theory.

Many people thought that this duality conjecture solved the information paradox. As explained

in [3], this is not the case; if anything, evidence for the correspondence sharpens the paradox.

The reason is simple. For energies below the black hole threshold we get agreements between

the CFT and gravity correlators, so we have more reason than ever to believe that the black

hole radiates like a normal body, with information emerging in the Hawking radiation. But

above the black hole threshold people just wrote down the AdS-Schwarzschild metric, and

for this metric the Hawking computation gives monotonically growing entanglement Sent so

information cannot emerge in the radiation. This conflict is the paradox.15

One might hope that Hawking’s argument was faulty, because small corrections to his leading

order computation could alter his conclusion – these corrections might cause Sent to start

reducing at some point. But the inequality (2.6) derived in [3] showed that this hope is false:

there is no way to get information in Hawking radiation unless the corrections at the horizon

are order unity.

(B) The information paradox is solved in string theory by actually finding the construction

of black hole ‘hair’: the fuzzballs are very nontrivial solutions of string theory, carrying the

quantum numbers of the black hole, but ending in a quantum mess before reaching the horizon

radius r0. Some people thought that fuzzballs only gave some microstates of the hole, and

that the other microstates would have a traditional horizon to a first approximation. But the

inequality (2.6) shows that in this case we cannot get information in the Hawking radiation.

Other people thought that as we move from simple fuzzball solutions to more complicated ones,

the fuzzball solution approaches the traditional hole with vacuum |0〉 at the horizon. This is

false as well: the evolution of Hawking modes does not tend towards the evolution in vacuum

as we go to more complicated fuzzballs. (If it did tend towards vacuum evolution, we would

again have the information problem, by (2.6).) In short, all states of the hole must be fuzzballs

where the Hawking modes do not evolve the way they do in vacuum.

(C) Finding the fuzzball structure of microstates solves the information paradox; the fuzzball

radiates from its surface like a normal body. But now we can ask a different question: is there

any significance to the traditional black hole metric? There are two aspects to the answer.

First, if we look at the Euclidean Schwarzschild metric, then it provides a saddle point for the

path integral over all gravitational solutions. Thus individual states in the Lorentzian section

are fuzzballs, but the thermal partition function over all fuzzballs can be expressed through

a Euclidean path integral. The Gibbons-Hawking analysis then suggests that the Euclidean

15See [10] for a more detailed discussion.
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Schwarzschild solution is a saddle point for the path integral; this saddle point is spherically

symmetric, while the individual Lorentzian microstates are not16.

But what about the Lorentzian section of the traditional black hole metric? Following

[30, 31, 32] we developed the notion of fuzzball complementarity where for hard-impact processes

with E ≫ T we can replace the complicated fuzzball surface by the eternal black hole metric.

The physics is analogous to AdS/CFT: impacting the fuzzball surface hard creates ripples

on this surface, just like hitting a collections of branes creates ripples on the branes. The

complementary description is infall into the eternal hole in the former case, and infall into AdS

in the latter. The only difference is that we need the condition E ≫ T for complementarity

in the black hole case, since we should have no complementarity for the modes that carry the

information of the microstate.

Thus AdS/CFT does not resolve the information paradox, but it provides the crucial under-

standing of the ‘infall problem’. These are opposite problems in a sense. Solving the information

problem requires a mechanism for emission that distinguishes microstates, and so requires the

construction of ‘hair’. The infall problem asks if in some approximation all microstates behave

the same, so that we may reproduce their dynamics by the traditional metric which has an

‘information free horizon’.

(D) Traditional complementarity was conjectured at a time when we did not have a con-

struction of hair to solve the information paradox; thus it was formulated as a set of rules

that could evade the information problem at the expense of a certain kind of nonlocal physics.

It is therefore not surprising that the discussion around the AMPS paper leads right back to

Hawking’s paradox, stated in H’ in Section 1.

Today we understand the quantum structure of black hole microstates, and the resolution of

the information paradox. Bringing in this perspective, we can see where the AMPS discussion

goes wrong. In particular, AMPS are concerned that an infalling quantum will interact with the

Hawking quanta. But as we have seen, such interaction is bound to occur when the microstates

are fuzzballs, since the Hawking radiation is just the tail end of the fuzzball, and one cannot

penetrate the fuzzball surface because there is no ‘interior’. The correct question is not whether

we interact with the radiation; rather it is how we interact with this radiation. If hard-impacts

of E ≫ T quanta excite collective modes on the fuzzball surface, then the dynamics of these

modes is what will be described by the complementary description.

The issue now is to check that an infalling quantum can excite collective excitations (using

the new degrees of freedom on the fuzzball surface) before it suffers random scattering by

Hawking quanta further away from the horizon. Our observation sbubble ≫ sα (for E ≫ T )

indicates that we can in fact get the required collective oscillations; thus we bypass the AMPS

argument.

We noted that even if one did not use any details of fuzzball dynamics, the properties

assumed by AMPS for the stretched horizon appear to be inconsistent. The stretched horizon of

area A encodes all Exp[Sbek] states of the hole; indeed AMPS assume a maximal entanglement

with all such states. If a new quantum with energy E could land on this stretched horizon

16Subleading corrections to the path integral can be found by expanding around the saddle point; thus the
metrics used in computations like [36] should be thought of as Euclidean rather than Lorentzian.
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without prior deformation of the stretched horizon, then we would have more than Exp[Sbek]

states with area A, and this does not appear natural with any definition of the stretched horizon.

To conclude, in this paper we have found that with fuzzball dynamics, the tunneling process

that solves the information paradox makes the fuzzball surface move out by tunneling in a way

that would allow complementarity to work.
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A Interaction cross-section for gravitons

We consider a graviton starting at infinity with energy E, falling radially in the Schwarzschild

metric in D spacetime dimensions

ds2 = −(1− rD−3
0

rD−3
)dt2 +

dr2

1− rD−3
0

rD−3

+ r2dΩ2
D−2 (A.1)

It will be useful to define s to be the radial distance measured from the horizon r = r0 along a

constant t slice

s =

∫ r

r′=r0

dr′

(1− rD−3
0

r′D−3 )
1
2

≈
√

4r0
D − 3

√
r − r0 (A.2)

where the second relation is for points close to the horizon

r − r0
r0

≪ 1 (A.3)

We wish to estimate the interaction cross section σ between this infalling graviton and

gravitons that are emerging as Hawing radiation. We proceed in the following steps:

(A) Let the interaction occur at a distance ∼ s from the horizon; we will assume (A.3) in

what follows. It will be useful to refer all computations to an orthonormal frame (t̂, r̂) at this

location with axis along the t, r directions. By dimensional analysis

σ ∼ G2(ωω′)
D−2

2 (A.4)

where ω, ω′ are the energies of the infalling and emerging gravitons measured in the local

orthonormal frame. We have

ω ∼ E(gtt)
− 1

2 ∼ E
r0
s

(A.5)

(B) The Hawking radiation at distance s from the horizon is described as follows. The

typical quantum has wavelength λ ∼ s, and the separation between quanta is also by distances
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of order λ ∼ s. Consider the region where distances from the horizon lie in the interval (s, 2s).

An infalling geodesic will cross ∼ 1 quanta in this interval, and the encountered quantum will

have

ω′ ∼ 1

s
(A.6)

The interaction cross section is then

σ ∼ G2(ωω′)
D−2

2 ∼ G2(
Er0
s2

)
D−2

2 (A.7)

The Hawking quantum occupied a traverse area

a ∼ λD−2 ∼ sD−2 (A.8)

Then the probability of interaction with the encountered Hawking quantum is

P ∼ σ

sD−2
∼ G2(

Er0
s2

)
D−2

2
1

sD−2
∼ (

lp
s
)2D−4(

E

T
)
D−2

2 (A.9)

where we have noted that G is related to the Planck length lp by G ∼ lD−2
p , and the Hawking

temperature is

T ∼ 1

r0
(A.10)

We note in passing that if the infalling quantum also had energy of order the Hawking temper-

ature, E ∼ T , then the interaction probability P becomes order unity at s ∼ lp; i.e., at Planck

distance from the horizon.

(C) To find the total probability of interaction with the Hawking radiation quanta, we

should take a value s̄ ∼ r0, and consider intervals of s of the kind (2s̄, s̄), ( s̄2 , s̄), (
s̄
4 ,

s̄
2) etc,

and add the probabilities of interaction in each interval. But due to the rapid rise of P with

decreasing s, the sum is dominated by the interval that is closest to the horizon. Thus if we

fall in from infinity to a distance s from the horizon, the total probability of interaction is

P ∼ (
lp
s
)2D−4(

E

T
)
D−2

2 (A.11)

We find that P ∼ 1 when

s ∼ (
E

T
)
1
4 lp . (A.12)

(D) Let us also note what would happen if we took an interaction cross section that did not

grow with the energy ω. Let the interaction cross section between the infalling quantum and a

graviton be σ0. Then the probability of interaction would be

P ∼ σ0
sD−2

(A.13)

so we get P ∼ 1 when

s ∼ σ
1

D−2

0 (A.14)
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This is a fixed distance from the horizon in Planck units. On the other hand, the energy of the

infalling quantum at this location is

Elocal ∼
Er0
s

∼ E
r0

σ
1

D−2

0

(A.15)

Thus any effects that grow with Elocal will dominate over the interaction with Hawking quanta

in the limit r0 → ∞.

B Proper time along an infalling geodesic

We consider with a particle falling radially in the metric (A.1). Let the particle start from rest

at r = r̄, where it has proper velocity

Uµ = (U t(r̄), 0) (B.1)

(We will write only the t, r components since only these will be nonzero.) From UµUµ = −1

we find U t(r̄) =
√

− 1
gtt(r̄)

. The quantity Ut = gttU
t is conserved along the motion; at r = r̄ we

find the value

Ut = −
√

−gtt(r̄) (B.2)

At position r, we have

Uµ = (U t, U r), gtt(U
t)2 + grr(U

r)2 = −1 (B.3)

Using (B.2), and noting that in the metric (A.1) we have grr = − 1
gtt

, we get

(U r)2 = −gtt(r̄) + gtt ≈ −gtt(r̄) (B.4)

where we have assumed that r̄ − r0 ∼ r0, and the value of r where U r is now being computed

satisfies (A.3). We have

grr ≈ (
2r0

(D − 3)
)2

1

s2
(B.5)

Thus the radial proper velocity in the local orthonormal frame is

ds

dτ
= U rg

1
2
rr = −(

2r0
(D − 3)

)
1

s
(−gtt(r̄))

1
2 (B.6)

The time to cross the horizon from a position s is then

τ =
d− 2

2r0

1

(−gtt(r̄))
1
2

∫ s

0
ds′s′ =

D − 3

2r0

1

(−gtt(r̄))
1
2

s2 (B.7)

To summarize, suppose we start at rest at r̄ with r̄ − r0 ∼ r0, and fall to a point close to the

horizon (proper distance from horizon s ≪ r0). Along this freely falling trajectory, there will

be a very short proper time

τ ∼ (
s

r0
) s≪ s (B.8)

left for the evolution from the position s to the horizon.
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C Cross section for black hole formation

In this Appendix we compute the cross section for the formation of a black hole upon collision

of an infalling quantum with a Hawking radiation quantum.

Let the infalling quantum start with an energy E at infinity. At a distance s from the

horizon, the energy of this quantum in the local orthonormal frame is (Eq. (A.5))

ω ∼ E
r0
s

∼ E

T

1

s
(C.1)

and the Hawking quantum b has energy (Eq. A.6))

ω′ ∼ 1

s
(C.2)

We can go to a center of mass frame where these two quanta have equal energy; this requires

boosting along the radial direction by a boost factor

γ ∼ (
E

T
)
1
2 (C.3)

The energies of the two colliding quanta in this center of mass frame are

Ecm ∼ (
E

T
)
1
2
1

s
(C.4)

A black hole with this energy will have a radius

Rs ∼ (lD−2
p Ecm)

1
D−3 ∼

(

lD−2
p (

E

T
)
1
2
1

s

)
1

D−3
(C.5)

The cross section for black hole formation is given on noting that the impact parameter should

be d ∼ Rs. We then find

σbh ∼
(

lD−2
p (

E

T
)
1
2
1

s

)
D−2
D−3

(C.6)

Following the argument leading to (A.9), we have for the probability of such a black hole forming

interaction

Pbh ∼ σbh
sD−2

∼
(

lD−2
p (

E

T
)
1
2
1

s

)
D−2
D−3 1

sD−2
(C.7)

We find Pbh ∼ 1 when

s ∼
(E

T

)
1

2(D−2)
lp (C.8)

If we allow a somewhat larger range of impact parameters d . αRs, then we find a cross section

σα ∼ αD−2σbh (C.9)

The probability of interaction is

Pα ∼ σα
sD−2

∼
(

lD−2
p (

E

T
)
1
2
1

s

)
D−2
D−3

αD−2 1

sD−2
(C.10)

We get Pα ∼ 1 when

s ∼
(E

T

)
1

2(D−2)
α

D−3
D−2 lp (C.11)
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D Time available for tunneling

From (5.21) we see that tunneling effects should start when the infalling quantum is at the

location

sbubble ∼
(E

T

)
1

(D−2)
lp (D.1)

From (5.18) we see that hard interactions with Hawking quanta occur at

sα ∼
(E

T

)
1

2(D−2)
lp ≪ sbubble (D.2)

The quantum that falls in from r − r0 & r0 has a velocity close to that of light in the local

orthonormal frame oriented along the t, r directions. Let us set t = 0 when the quantum is

at the location sbubble. We take the metric (A.1), and consider the proper velocity (U t, U r)

obtained from (B.2), (B.4):

U t = (1− rD−3
0

rD−3
)−1(1− rD−3

0

r̄D−3
)
1
2 , U r ≈ −(1− rD−3

0

r̄D−3
)
1
2 (D.3)

Thus
dt

dr
=
U t

U r
≈ − r0

(D − 3)

1

r − r0
(D.4)

The time to fall between a point ri to a point rf is

∆t ≈ r0
(D − 3)

[log(ri − r0)− log(rf − r0)] ≈
2r0

(D − 3)
log

si
sf

(D.5)

where in the second step we have used (A.2). In particular the time from the point sbubble to

sα is

∆t ∼ r0
(D − 2)(D − 3)

log
(E

T

)

(D.6)

In all of the above, we have assumed that E ≪ M , where M is the mass of the hole. But let

us for the moment consider the formation of a hole from the collision of two heavy quanta of

mass ∼ M each, so that E ∼ M . Then we have (taking the D = 4 Schwarzschild hole for

illustration)

∆T ∼M lnM (D.7)

We see that this is of order the scrambling time, when the black hole is expected to stabilize

to a thermal form.17

17In this analysis we follow the path of the infalling object to see how much Schwarzschild time we have available
for tunneling; thus we are following the path of an infalling object. This computation should be contrasted with
the picture depicted in Section 5 of [10], where the spacelike slice is held fixed at small r but evolved to later
times at large r.
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E Deflection caused by interaction with a b quantum

Consider the infalling quantum discussed in Appendix A. We have seen that the interaction

probability P becomes order unity at (see Eq. A.12)

s ∼ (
E

T
)
1
4 lp (E.1)

At this interaction point, in a local orthonormal frame the infalling quantum has energy

(Eq. (A.5))

ω ∼ E
r0
s

∼ E

T

1

s
(E.2)

and the Hawking quantum b has energy (Eq. A.6))

ω′ ∼ 1

s
(E.3)

Let x denote the radial direction (pointing inwards) and let y denote a space direction transverse

to the radial direction. We can go to the center-of-mass (cm) frame by a boost along the negative

x direction by an amount

γ ∼
√

Er0 ∼
√

E

T
≫ 1 (E.4)

where we have assumed that the infalling quantum has E ≫ T . Since γ ≫ 1, we will set all

particle masses to zero. After the interaction, the infalling quantum will have momenta pcmx , pcmy
in the cm frame. Boosting back to the original frame gives

py = pcmy , px = γpcmx + vγpcmt ≈ γpcmx + γ
√

(pcmx )2 + (pcmy )2 (E.5)

The angle θ that the infalling quantum makes with the x direction after scattering is give by

tan θ =
py
px

=
pcmy

γ
(

pcmx +
√

(pcmx )2 + (pcmy )2
) ≤ 1

γ
∼ (

E

T
)−

1
2 . (E.6)

We are interested in the value of the deflection ∆y that the quantum will have between the

point of interaction and reaching the fuzzball surface. We have

∆y = ∆x tan θ (E.7)

The value of ∆x can be found as follows. The near horizon geometry is Rindler, and can be

embedded into Minkowski space as the right Rindler quadrant. The infalling quantum follows

a trajectory that is close to an angle 450 in the Minkowski frame. We want to find ∆x for

the interval between the impact point and the point where the trajectory reaches the fuzzball

surface. We find

∆x =
s

2
(E.8)

Using (E.6) we get

∆y ≤ s

2
(
E

T
)−

1
2 (E.9)
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Using (E.1) we get

∆y . lp(
E

T
)
1
4 (
E

T
)−

1
2 = lp(

E

T
)−

1
4 ≪ lp (E.10)

Let us compare this to the wavelength λy that the infalling quantum had in the y direction. We

have assumed that in the rest frame of the infalling detector all quanta have energy Erest < mp.

Thus

λy >
1

mp
= lp (E.11)

Then for sufficiently large E/T , we find

∆y

λy
≪ 1 , (E.12)

that is, the deflection is much smaller than the wavelength of the quanta.

F Fine tuned measurements: dropping in a detector gently

In Section 5.1 we considered the measurements that could be performed on Hawking quanta b

when the detector fell in from a point that was not fine tuned to be close to the horizon. Here

we comment briefly on how the discussion changes when we do fine tune to drop the detector

in gently from a point close to the horizon.

Suppose we are interested in detecting quanta of wavelength λ & lp. These quanta are

found at a distance s̄ ∼ λ from the horizon. To detect these quanta, we need a proper time for

switching

τavailable & λ ∼ s̄ (F.1)

on the infalling trajectory between the position s̄ and the horizon s = 0. In [11] the proper

time between these positions was computed for different trajectories parametrized by α ≥ 0,

and it was found that

τavailable = s̄e−α ≤ s̄ (F.2)

The maximum value of τavailable is found for α = 0, which corresponds to dropping in with zero

radial velocity from the position r̄. From (F.1), (F.2), we find that we must drop the detector

from rest from a position s̄ ∼ λ. We now face several issues:

(i) Holding the detector at location s̄ before dropping causes it to feel acceleration radiation

of wavelength s̄ ∼ λ. So instead of detecting the b quantum that we were interested in, we may

pick up spurious quanta from this acceleration radiation.

(ii) We have to check that the detector quanta are able to interact with the b quanta. We

follow the steps in Appendix A, with a few changes. The radiation quantum still has energy

given by (A.6), so ω′ ∼ 1
s̄
. We let the quanta making the detector have energy ω̄ each. The

probability of interaction is

P ∼ 1

λD−2
G2(ωω̄)

D−2
2 ∼ (

ω̄

mp
)
D−2

2 (
lp
s̄
)
3(D−2)

2 (F.3)
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where we have used the fact that λ ∼ s̄. Since s̄ & lp, we can get P ∼ 1 only if we take ω̄ & mp,

which violates our assumption (5.1).

Detectors are always made, of course, with some amount of internal fine-tuning, so that the

detection probabilities are enhanced compared to the simple estimate above. But note that we

have constraints in the present situation from the fact that the detector must have a size no

more than ∼ λ and a time of detection that is also no more than ∼ λ.

(iii) The important issue for us, however, is the extreme fine tuning involved in lowering the

detector with zero velocity to the position s̄: instead of letting the detector fall in from s̄ ∼ r0,

we have first lowered it to s̄ ∼ λ. This ratio

R =
λ

r0
≪ 1 (F.4)

quantifies the required fine-tuning. In our example above, we were interested in detecting TeV

quanta, which had a wavelength λ ∼ 1016lp. To detect b quanta with this energy, we have to first

lower our detector to s̄ ∼ 1016lp, and then drop it in. The ratio R is ∼ 10−22 for a solar mass

hole. Since λ is fixed and r0 grows with the size of the hole, R is ‘parametrically small’. This

issue will be important when we come to fuzzball complementarity, since this complementarity

is expected to capture non-fine-tuned measurements, but not fine-tuned measurements. With

R satisfying (F.4), we are not in a situation where a quantum which is ‘freely falling from afar’

impacts the fuzzball surface.

G Passing through the Rindler horizon

In the right Rindler wedge, the Minkowski coordinates T , X are related to the Rindler coordi-

nates tR, xR via

T = rR sinh tR, X = rR cosh tR . (G.1)

Let the fuzzball surface be at a distance ǫ from the horizon. (We will assume ǫ ∼ lp.) Then the

Rindler trajectory of a point of the fuzzball surface is

T = ǫ sinh
τ1
ǫ
, X = ǫ cosh

τ1
ǫ

(G.2)

where τ1 is the proper time along this trajectory. The proper velocity of this point is

Uµ = (cosh
τ1
ǫ
, sinh

τ1
ǫ
) (G.3)

Now consider a particle of mass m > 0 moving towards this fuzzball surface from the right,

with trajectory

T = (coshα)τ2, X = −(sinhα)τ2 + d (G.4)

where α, d are constants setting the velocity and initial position of the particle and τ2 is the

proper time along the particle trajectory. The momentum of this particle is

Pµ = m(coshα,− sinhα) (G.5)
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Figure 13: The infalling particle impacting the fuzzball surface.

This particle will impact the fuzzball surface at some point. We wish to compute the

energy of this particle in the rest frame of the fuzzball surface, at the moment of this impact

(see Fig.13). This energy is given by

E′ = −PµUµ = m(coshα cosh
τ1
ǫ
+ sinhα sinh

τ1
ǫ
) . (G.6)

To find τ1 at the point of impact, we equate the values of T,X from the two trajectories, getting

(coshα)τ2 = ǫ sinh
τ1
ǫ

(G.7)

− (sinhα)τ2 + d = ǫ cosh
τ1
ǫ

(G.8)

The first of these relations gives

τ2 =
ǫ sinh τ1

ǫ

coshα
(G.9)

Substituting in the second relation gives

ǫ(coshα cosh
τ1
ǫ
+ sinhα sinh

τ1
ǫ
) = d coshα (G.10)

Using this in (G.6) we get

E′ =
md coshα

ǫ
(G.11)

Thus we see that we can make E′ arbitrarily large by a suitable choice of α, d. Choosing large d

means we perform the Rindler decomposition with the origin of the Minkowski coordinates far

from the present location of the particle; choosing large α means we perform the decomposition

in a frame where we have a high relative boost between the two frames. Note that for any d,

by taking α large we can make E′ arbitrarily large, so that the energy of the particle (in the

rest frame of the fuzzball surface) is high when it impacts the fuzzball surface.
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