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Gravitational-wave astronomy has been a burgeoning field of research since the first
detection of a merging black hole binary in 2015 [3]. As gravitational-wave detector
sensitivity improves, our models must keep pace. The planned space-based detector
LISA will be sensitive to new gravitational wave sources, such as extreme-mass-ratio
inspirals (EMRIs). Precise extraction of EMRI parameters from LISA data will require
highly accurate waveform templates. These templates need models which include,
among other things, the dissipative piece of the second-order self-force in Kerr. This
thesis formulates methods to help calculate the second-order self-force in Kerr.

In the first part of the thesis, I develop a general framework for second-order
calculations by deriving a new form of the second-order Teukolsky equation. I show
that the source of this equation is well defined (in a highly regular gauge [151, 185])
for second-order self-force calculations. Additionally, I present methods for
calculating second-order gauge-invariants. I produce an algebraic method for
calculating a gauge-invariant. I also provide a formalism for calculating a
gauge-invariant associated with the Bondi–Sachs gauge (with a fixed BMS frame). The
asymptotically flat property of the Bondi–Sachs gauge is shown to circumvent
infrared divergences that arise in generic second-order calculations.

Next, I calculate a general formula for the second-order source, decomposed into
spherical harmonics, in Schwarzschild. Using this formula, I help to implement a
framework for quasi-circular inspirals in Schwarzschild. I transform the source to a
near-Bondi–Sachs gauge, increasing the asymptotic falloff by two orders in r. My
collaborator Ben Leather integrates the resulting source. From the resulting quantity,
we will extract fluxes and evolve inspirals to first post-adiabatic accuracy.

In the final part, I take a step toward implementation in Kerr by developing a new
method of constructing a more regular first-order perturbation [183]. To help
formulate this method, I implement Green–Hollands–Zimmerman metric
construction [86] for a stationary point-mass in flat spacetime.

http://www.southampton.ac.uk
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1

Preamble

This preamble endeavours to summarise my thesis for a non-expert audience
(physics/applied mathematics undergraduates and well-informed members of the
public).

The last century has shown General Relativity to be outstandingly successful at
describing gravity. It has survived every physical measurement that experimentalists
and astronomers have devised to test it. Improving on such tests will require probing
more extreme regimes of spacetime curvature to assess whether and where General
Relativity breaks down.

A new era for testing General Relativity began in 2015 when LIGO made the first
detection of gravitational waves [3]. Gravitational waves propagate outward at the
speed of light, expanding and contracting space and time as they pass. Einstein
predicted their existence due to General Relativity in 1916 [66]. The gravitational
waves LIGO first detected were produced billions of years ago by a merging binary
black hole system. The detection marked the dawn of a new era for astronomy in two
senses:

• the first detection of a whole new class of radiation with which to observe the
universe,

• the first direct observation of black holes.

As gravitational wave signals are weak, they are usually hidden beneath detector
noise. Extracting the wave signal from detector data requires matched filtering
techniques. matched filtering matches signals in the data to waveform templates. This
technique relies on using a bank of waveform templates from accurate source models.

Since 2015, there have been dozens of binary black hole detections (and a handful of
black hole-neutron star binaries and neutron star binaries) by the
LIGO/VIRGO/KAGRA collaboration. These detections have been rich in
astrophysical information and produced constraints on alternative theories of gravity.
Testing General Relativity further with gravitational wave astronomy will be possible
as detectors increase in sensitivity. However, this will require more precise models of
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the systems that produce gravitational waves. Improving the precision of binary
models in General Relativity is the subject of this thesis.

Before I discuss the type of model I have improved, allow me to explain why I chose
to pursue a Ph.D. as a relativist: General Relativity is undoubtedly a beautiful theory,
birthed out of the simple notion that gravity is fundamentally a manifestation of the
curvature of space and time. As the Einstein field equations (EFE) have proven
challenging to solve, there is still much to learn and achieve. Lastly, the interaction of
General Relativity with observations has just begun, and the next few decades of
gravitational wave research have the potential to become a golden age in physics.

Techniques for modelling systems that emit gravitational waves have been of
mathematical interest for over half a century. They have recently risen to prominence
due to the first detection of gravitational waves. Modelling gravitational wave sources
is not a simple task as the equations governing General Relativity, the EFE, are
challenging to solve. The Schwarzschild and Kerr solutions are two of the most
astrophysically relevant exact solutions to the EFE. These solutions describe stationary
black holes; however, being stationary, they do not emit gravitational waves. To model
gravitational waves-emitting systems, one must resort to solving the EFE
numerically [17] or finding approximate solutions using techniques like perturbation
theory [142]. This thesis concentrates on black hole perturbation theory which
calculates small perturbations to the Schwarzschild or Kerr solutions to build
approximate solutions to the EFE (which emit gravitational waves).

Models alone are insufficient to test physics; we also need observations to test them
against. One of the next logical steps in gravitational wave astronomy is building a
space-based interferometer. Current plans are for the Laser Interferometer Space
Antenna (LISA) to be launched in 2034 [58]; China is also planning two space-based
detectors [103, 165]. LISA will detect gravitational waves signals in the mHz
frequency band (a significantly lower frequency than LIGO), opening up the
possibility of detecting new types of gravitational waves sources. The primary
application of the work in this thesis will be modelling a key source for LISA,
extreme-mass-ratio inspirals (EMRIs). EMRIs occur when a compact stellar-mass object
(such as a black hole or neutron star) slowly inspirals into a supermassive black hole.

The evolution of an EMRI from bound orbit to merger is driven by the emission of
gravitational waves carrying energy and angular momentum away from the system.
The perturbation caused by the presence of the inspiraling object produces these
waves. The energy and angular momentum carried away by the waves correspond to
the work done (by a force) on the inspiralling object. This force, effectively generated
by the presence of the inspiraling object, acts on the object itself. Hence, the effect is
known as gravitational self-force. As the self-force is a small effect, it can be calculated
with high accuracy using black hole perturbation theory.
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EMRIs offer excellent testing grounds for General Relativity. The compact object
spends a long time (∼ 2 years) near the supermassive black hole. In this region, the
spacetime curvature is stronger (known as strong-field) than the regimes in which we
usually test General Relativity (e.g., the solar system). Additionally, the compact
object achieves relativistic velocities (∼ 0.3c) during an inspiral. Moreover, EMRIs are
detectable for O(105) space-filling orbits before the inspiraling object plunges into the
supermassive black hole. Hence, LISA observations of EMRIs will be excellent maps
of the spacetime around a supermassive black hole. For a review of the possible tests
of General Relativity and astrophysics that can be performed with EMRIs, see Refs.
[27, 18, 14]. To summarize, EMRIs are expected to be sensitive to violations of the
no-hair theorem, extra degrees of freedom beyond General Relativity, dark matter, and
astrophysical effects.

Precise extraction of an EMRI’s parameters from LISA measurements will require
highly accurate waveform models. These models must be calculated to what is known
as post-adiabatic order [69] accuracy. This high accuracy requirement can be understood
by considering that an EMRI will typically be in the LISA frequency band for
hundreds of thousands of orbits. Hence, even a small error in modelling a single orbit
will cause the accumulation of a significant error throughout the whole inspiral. These
highly accurate models require, amongst other things, contributions from the
second-perturbative-order self-force [69].

This thesis presents methods to help calculate the second-order self-force. Recently,
the first second-order self-force results have been published [156, 195, 194]. However,
these results specialize to a Schwarzschild black hole (which has no spin).
Astrophysical supermassive black holes are expected to have significant spin. Hence,
astrophysically accurate self-force models need to be for a Kerr black hole. Here, I
develop new second-order methods, applicable for self-force calculations in Kerr. I
derive an equation for calculating a second-order quantity in Kerr, from which the
self-force can likely be extracted. I also help solve this equation in Schwarzschild and
will soon calculate the second-order self-force (and compare the results with
Ref. [195]).
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Chapter 1

Introduction

In this chapter, I review the astrophysical motivation for this work: producing
high-accuracy waveform models of compact binaries for data analysis of gravitational
detector observations. I then provide introductory material on the mathematical tools
I will build on in later chapters. The premise is to motivate second-order self-force
calculations clearly and include the necessary groundwork for the reader to follow the
subsequent chapters.

1.1 Conventions

In this work, I use geometrical units where c = G = 1. I use a metric signature
(−,+,+,+) unless stated otherwise.

The index notation applies as follows:

• Lowercase Latin indices are abstract indices [191].

• Lowercase Greek indices are 4D tensor component indices (e.g., µ = {0, 1, 2, 3}).

• Capital Latin indices denote 2D components of tensors on the unit sphere (e.g.,
B ∈ {2, 3}).

• Lowercase Latin indices in square brackets are tetrad indices (e.g.,
[a] = {[1], [2], [3], [4]}).

Subscript or superscript numbers in round parentheses are labels representing the
order of the perturbation.

Generally, I am discussing vector and tensor fields but will drop the word fields for
conciseness.
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1.2 Gravitational-wave astronomy: state of play

Gravitational waves were predicted by Einstein using his theory of General Relativity
in 1916 [67]. Almost a century later, in 2015, the LIGO collaboration made the first
detection of gravitational waves [3]. The source of the signal LIGO detected was
produced around a billion years ago when a black hole binary merged. The two black
holes were initially of around 36 and 29 solar masses. During the inspiral and merger,
about three solar masses of energy were emitted in gravitational waves. The peak
power (for a few milliseconds) was greater than the electromagnetic luminosity of all
the stars in the universe combined. Still, detecting this signal was an astounding feat
as these waves changed the length of LIGO’s four-kilometre detector arms by only a
thousandth of a proton’s width.

Over the last seven years, more gravitational wave detections of binary systems have
steadily been made by the LIGO/VIRGO/KAGRA collaboration [5]. Fig. 1.1 [76] gives
a visual representation of the detections made as of November 7, 2021. Achieving the
incredible precision required to detect the gravitational waves produced by these
binaries has been a scientific endeavour on three fronts: technology, data science, and
modelling. Building the high precision detectors was a technological challenge.
However, the signals measured by these detectors are (usually) hidden under the
detector noise. Hence, extracting precision measurements from the detector’s data
requires using matched filtering with accurate waveform templates (of the source that
produced the signal). The modelling community produces these waveform templates.

Fig. 1.1 [76] shows the range of binaries detected to date. Most detections have been
black hole binaries; additionally, a few are neutron star-black hole binary and neutron
star binary detections have been made. However, the range of sources is limited by
the sensitivity of LIGO/VIRGO/KAGRA. Binaries with a black hole of mass > 200
solar masses produce gravitational waves with a frequency outside the sensitive
region of the LIGO/VIRGO/KAGRA frequency band.

The grey arrows in Fig. 1.1 [76] represent the difference in masses of the two objects in
the binary. Currently, the smallest mass ratio of a published LIGO/VIRGO/KAGRA
detection is around 0.04 [6]. Detecting smaller mass ratios is limited by the frequency
bandwidth of the LIGO/VIRGO/KAGRA detectors (as small mass ratio require the
primary object to have significant mass, which results in lower frequency gravitational
waves outside LIGO/VIRGO/KAGRA sensitivity bandwidth) and the modelling
capabilities used to make the waveform templates.
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FIGURE 1.1: The stellar graveyard: black holes and neutron stars detected using elec-
tromagnetic and gravitational wave signals. This includes the binaries detected by

LIGO/VIRGO/KAGRA as of November 7, 2021.[76]

1.3 Extreme-mass-ratio inspirals

Evidence shows that at the centre of each galaxy lies a supermassive black hole [161],
with masses reaching up to 109M⊙. Supermassive black holes were first indirectly
observed half a century ago [196] by examining orbits of stars near the galactic center,
and their existence astounded astronomers. In 2019 the Event Horizon Telescope
collaboration published the first image of a supermassive black hole [54] (see Fig. 1.2),
showing a ring generated by a hot, luminous accretion disk with a supermassive black
hole at its centre. In 2022, the Event Horizon Telescope collaboration also published an
image of Sagittarius A* [9]. The origin and evolution of supermassive black holes are
still relatively unknown. They are expected to have a close connection to the origin
and evolution of galaxies [161], and galactic centres are the only place where they
have been found.

Supermassive black hole are not alone in galactic centres; a busy neighbourhood of
orbiting stars surrounds them. Still, these stars rarely encroach close enough to merge
with the supermassive black hole. Hence, when a stellar-mass object is captured into a
sufficiently closely bound orbit around the supermassive black hole (e.g., see Fig. 1.3),
the pair become effectively isolated from their surroundings. Such a binary system
eventually is called an extreme-mass-ratio inspiral (EMRI).

General Relativity effects cause the dissipation of energy and angular momentum
away from the system. Hence, the orbit of the compact object is not stable. Over the
timescale years, the compact object evolves through progressively tighter bound orbits
until it eventually plunges into its enormous neighbour’s event horizon. The
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FIGURE 1.2: The first image of a supermassive black hole. Produced by the Event
Horizon Telescope collaboration using radio telescope observations of the supermas-

sive black hole M87* [54].

inspiralling object must be compact to prevent tidal forces from ripping it apart as it
travels closer to the supermassive black hole before reaching the merger.

EMRIs are characterised by their mass ratio,

ε =
µ

M
, (1.1)

where µ is the mass of the stellar-mass compact object and M is the mass of the
supermassive black hole. EMRIs are described as extreme due to the smallness of the
mass ratio (10−5 ≳ ε ≳ 10−8). They differ from the comparable mass binaries
(1 ≳ ε ≳ 10−1) which LIGO has detected [3]. A third class of binaries are intermediate
mass-ratio inspirals (IMRIs) (10−2 ≳ ε ≳ 10−4); these systems can occur when a
stellar-mass object inspirals into an intermediate-mass black hole, or an
intermediate-mass black hole inspirals into an supermassive black hole. Excitingly,
improvements to ground-based gravitational-wave detectors will make
LIGO/VIRGO/KAGRA more sensitive to IMRIs in future observation runs [11]. There
is a further class of binaries, so-called extremely-large mass-ratio inspirals (ε ≲ 10−8) [12].

In EMRIs, spacetime is strongly curved, and the velocities are highly relativistic.
Hence, even high-order post-Newtonian approximations do not achieve the required
accuracy to model full inspirals [23]. An added complication is that astrophysical
supermassive black holes are expected to have significant spin. The spacetime
surrounding such black holes is described by the Kerr metric [97]. Bound orbits
(geodesics) of Kerr spacetime are significantly more complicated than in the
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FIGURE 1.3: Examples of bound geodesics (blue lines) of a Kerr black hole. The orbit
on the left is a typical geodesic, having three frequencies and being space filling (within
a torus outlined in black). The orbit on the right is a 3 : 2 (r-θ) resonant orbit. Note
how resonant orbits are non-space filling, which impacts orbital evolution. Picture

taken from Ref. [23]

non-spinning black hole spacetime (Schwarzschild): in Kerr, to describe a generic orbit
requires the knowledge of its radial, polar, and azimuthal frequencies [48]. The three
fundamental frequencies correspond to three conserved quantities of Kerr geodesics:
energy, angular momentum, and the Carter constant [46]1.

Kerr is stationary and axially symmetric; i.e., the Kerr metric gab has two “Killing
vectors” Ξa

t and Ξa
ϕ which satisfy Lc

Ξgab = 0. Hence, the orbital energy and angular
momentum of Kerr geodesics are well-defined conserved quantities. The Carter
constant is a manifestation of the Kerr metric admitting a Killing tensor. The existence
of three fundamental frequencies reflects that not all Kerr geodesics exist on a single
plane; Kerr geodesics are generally space-filling in three dimensions, as illustrated by
Fig. 1.3.

Over a sufficiently short timescale, a Kerr geodesic will approximate an EMRI orbit
reasonably well. This is due to the curvature of the spacetime being dominated by the
presence of the supermassive black hole. However, unlike a test particle on a Kerr
geodesic, the mass of the compact object causes EMRIs to emit gravitational radiation.
The radiation dissipates either infinitely away from the system (to future null infinity,
I+) or into the supermassive black hole horizon (affecting the supermassive black
hole’s mass and spin). The loss of orbital energy and angular momentum results in an
error growing with time if one assumes the compact object remains on a single Kerr
geodesic. Instead, one can (roughly) consider the compact object to sit on a series of
Kerr geodesics, corresponding to orbital constants that slowly evolve with time. The

1As three fundamental frequencies are present, resonant orbits are significantly more likely to occur.
r − θ resonances (which are possible in Kerr) have the strongest impact on orbital evolution, see Fig. 1.3.
Hence, resonance contributions are significant when modelling EMRIs. The problem of resonances [70, 29]
is not addressed in this thesis; please see Refs. [186, 130] for the current progress.
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evolution of two Kerr geodesic constants (the orbital energy and angular momentum)
clearly corresponds to the energy and angular momentum dissipated away from the
system and into the supermassive black hole. However, the evolution of the Carter
constant is related to the emitted waves in a less obvious way (as I shall discuss in
Sec. 1.7.4).

1.4 LISA and detecting EMRIs

The progression of telescope sensitivity to new bandwidths of the electromagnetic
spectrum uncovered unseen sources of electromagnetic radiation. Similarly, new
gravitational wave detectors, sensitive to different bandwidths of gravitational wave
frequencies, will allow us to observe yet unseen gravitational wave sources. The LISA
mission plans to observe unexplored gravitational wave frequency regimes.

Like LIGO, LISA will be a laser interferometer instrument designed to detect
gravitational waves [58]. However, it will be housed in outer space rather than on
Earth. LISA will consist of three satellites suspended in a Lagrange point (of the
Earth-Sun binary system) trailing the Earth’s solar orbit by 50 million km [16]. China
is also planning two space-based detectors, TianQin [103] and Taiji [165].

Being situated in space brings many advantages. The lasers must travel in a vacuum
to avoid atmospheric noise; LIGO requires large vacuum tubes with cutting-edge
technology to produce the best possible vacuum [2] (whilst minimising thermal noise
from any equipment). For LISA, the near-vacuum of space is a convenient medium to
house a laser interferometer. With no need for tubes connecting the interferometer
arms, LISA will be O(105) times longer than LIGO, with an arm length of 2.5 × 106

km. This will help LISA reach peak sensitivity in the mHz band, a much lower
frequency than LIGO is sensitive to (as illustrated in Fig. 1.4 [44]). These
lower-frequency gravitational waves are undetectable on earth due to seismic noise,
another problem which LISA avoids by being in space. Within LISA’s frequency band
sit EMRIs with a mass ratio (ϵ) of 10−5 to 10−7 (amongst other binary signals and
gravitational waves from the early universe) [58].

LISA is expected to be sensitive to EMRI signals out to a redshift of z ≈ 4 [56]. While
LISA will be in the range of a large population of supermassive black holes, the
expected capture rate of compact stellar remnants into an EMRI system is low.
Current estimates expect tens to hundreds of detectable EMRIs over the LISA mission
lifetime [75].

When LISA begins to detect EMRIs, it will allow us to study the astrophysics of
galactic centres and supermassive black holes to impressive precision. It is predicted
that measurements of the mass and spin of the supermassive black hole can be
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FIGURE 1.4: The sensitivity curves of a selection of planned and operating gravita-
tional wave detectors (IPTA is International Pulsar Timing Array, CE is Cosmic Ex-
plorer, and ET is Einstein Telescope) and the sources they will be sensitive to. Pro-

duced using Ref. [44].

extracted from EMRI signals to a precision of 1 part in 104 [23]. Data will also be
collected on the so-called stellar relics present near the centres of galaxies.
Astronomers will observe the zoo of compact objects inspiraling into supermassive
black holes. Eventually, data analysts will be able to construct a mass distribution of
these compact objects. LISA will also be sensitive to IMRIs where an
intermediate-mass black hole (100M⊙ − 104M⊙) inspirals into a supermassive black
holes. Hence, LISA could then test whether intermediate-mass black holes exist near
galactic cores [58].

In addition, EMRI detections will be used to measure the universe’s rate of expansion.
EMRIs are potential standard sirens (the gravitational wave version of standard
candles) as their detection can be used to measure distance [91]. There are currently
two disagreeing measurements for the expansion of the universe (the Hubble
constant) using electromagnetic radiation measurements [162]. EMRIs and other
standard sirens could provide measurements to help resolve this tension.

EMRIs also offer a groundbreaking opportunity to test General Relativity. Measuring
EMRI signals in LISA data to the planned precision would constrain General
Relativity to one or more orders of magnitude higher than any other planned
experiment [13]. As an EMRI is detectable over the timescale of O(1) year, and Kerr
geodesics are space-filling, their signal allows us to produce a detailed map of the
spacetime. This makes EMRIs an excellent laboratory to test the Kerr hypothesis (i.e.,
testing the no-hair theorem). Ref. [27] gives a review of the astrophysical and General
Relativity effects to which LISA will be sensitive, highlighting how precise parameter
extraction from EMRIs is a crucial component of LISA science.
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However, EMRI signals will be dominated not only by LISA’s instrumental noise [23],
but by other types of astrophysical gravitational-wave signals, supermassive black
hole binaries [27]. Matched filtering is necessary to extract EMRI signals. It is expected
that detecting an EMRI within LISA data will only require so-called Kludge models
[52]. These models do not describe the precise physics which drive the motion of
EMRIs, but are quick to calculate and are probably sufficiently accurate to detect most
EMRI signals. However, measuring an EMRI requires higher precision than detecting
an EMRI. Waveform models must be highly accurate for precise parameter extraction,
with significantly less than 1 radian orbital error throughout the whole inspiral.
Kludge models are unable to achieve this level of accuracy.

1.5 Modelling EMRIs

Modeling EMRIs presents some distinct challenges as compared to modelling the
comparable-mass binary mergers observed by LIGO [23]. The numerical relativity
techniques utilised for comparable-mass binaries are not suitable for EMRIs because
an EMRI is a system of such contrasting length scales. Post-Minkowski methods are
not appropriate due to the strong field nature of EMRIs. Post-Newtonian methods
suffer a double shortfall because they take both a weak-field and small-velocity limit.
In contrast, the later stages of EMRIs are in the strong field and involve relativistic
velocities. The strengths and limitations of these methods when modelling
comparable-mass binaries and EMRIs are represented in Fig. 1.5. Additionally,
effective one-body theory [43] combines the knowledge of all these theories to model
binaries for all mass ratios and separations. As effective one-body theory is currently
calibrated with Numerical Relativity data, it is most accurate and reliable in the
comparable-mass regime.

The disparate mass scales in EMRIs provide a practical solution for modelling their
spacetimes: perturbatively expanding the metric in powers of the mass ratio ε. In
EMRIs, the background spacetime is Kerr, and the presence of the compact object
produces perturbations. These perturbations, in turn, affect the compact object’s
motion. One can consider the deviation of the motion of the compact object away
from a Kerr geodesic as the result of a force generated by the object’s own
gravitational field. Hence, this modelling method is known as self-force theory.

Before jumping into the details of self-force theory and black hole perturbation theory,
I conclude this section with an argument on why calculating the dissipative piece of
the second-order self-force is necessary for precise EMRI measurements.
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FIGURE 1.5: Visual representation of the regions of applicability for black hole binary
modeling techniques (here “mass ratio” is the lager mass divided by the smaller mass).

Taken from [21].

1.5.1 Why the second-order gravitational self-force is required

The self-force per unit mass (Fa
SF) the compact object experiences can be expanded in

orders of the mass ratio,

Fa
SF = εFa

(1) + ε2Fa
(2) +O(ε3). (1.2)

The effect of the self-force on the motion of the inspiraling object is described by the
object’s equation of motion,

ub∇bua = aa = (εFa
(1) + ε2Fa

(2)) +O(ε3), (1.3)

where ua is the four-velocity of the compact object and ∇b is the covariant derivative.
Hence, due to the self-force, the compact object does not remain on a geodesic of Kerr
spacetime.

Methods for calculating Fa
(1) have been the subject of a great amount of research over

the past few decades and are now at a mature stage. Fa
(1) can now be calculated for

generic orbits in Kerr [114]. However, precise parameter extraction will require
models which account for the dissipative piece of Fa

(2) [69]. Here, I give a brief scaling
argument for why this is necessary:

To begin the scaling argument, I show the long timescale (t) of an EMRI is O( 1
ε ). This

can be understood by comparing the orbital energy with how quickly energy is
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dissipated from the system through gravitational waves. The rate of energy
dissipation scales as Ė = dE

dt ∼ h(1)2ab ∼ ε2 [15]. The orbital energy of the compact object
is E ∼ µ. As t ∼ E

Ė and E
Ė ∼ µ

ε2 ∼ M
ε ; therefore, t ∼ 1

ε .

The error in the position (δzµ) is related to the error in the acceleration (δaµ) associated
with the self-force on the long timescale of the whole inspiral [145],

δzµ ∼ t2δaµ ∼ 1
ε2 δaµ. (1.4)

For δzµ to be small, δaµ = O(ε3) is necessary. Hence, the equation of motion (aµ) must
be calculated through to second order to achieve an accurate model over an entire
EMRI. That is the second-order self-force is required.

The self-force can be separated into a conservative piece (which conserves the orbital
energy of the system over an averaged orbit) and a dissipative piece (which radiates
orbital energy away from the system). Hinderer and Flanagan [69], through a more
rigorous argument, describe why only the dissipative second-order self-force effects
are required. To summarise, their key result is the following: the (radial, polar, and
azimuthal) phases of the inspiral (ϕi), over long time scales, have the expansion

ϕi(t, ε) =
1
ε

ϕ
{0}
i (t, ε) + ϕ

{1}
i (t, ε) +O(ε), (1.5)

where ϕ
{0}
i is dependent on dissipative first-order self-force and ϕ

{1}
i (t, ε) is dependent

on the complete first-order self-force and the dissipative second-order self-force [69].
Hence, to calculate ϕi(t, ε) through order ε0 the dissipative piece of the second-order
self-force must be calculated. Calculations including ϕ

{0}
i are know as adiabatic

accuracy, and calculations including up to and including ϕ
{1}
i are known as first-post

adiabatic accuracy (the numbers in curly brackets denote the post adiabatic order).

Fig. 1.6 shows a numerical approximation of the regimes where various modelling
methods are accurate. The data is produced by fitting Eq. (1.5) to Numerical Relativity
waveforms, and then assessing how large an error would accumulate if only the first
two terms are included. The Numerical Relativity waveforms are for quasi-circular
orbits in Schwarzschild and provides evidence that first-post adiabatic waveforms
have good accuracy in the ∼ 1 : 10 mass ratio regime. This estimate has been shown to
hold for first-post adiabatic waveforms for quasi-circular orbits in Schwarzschild in
Refs. [156, 195, 194]. This plot (and the results in Refs. [156, 195, 194]) clarify the
prediction of the regimes where methods are valid represented in Fig. 1.5.

1.6 Black hole perturbation theory and gravitational self-force

In this section, I review the key methods of self-force modelling. I describe a
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FIGURE 1.6: Estimates for the regions of applicability for black hole binary modeling
techniques. In red onesees that first-post adiabatic models perform well even in the

large mass-ratio regime. Taken from Ref. [188].

framework for black hole perturbation theory and summarise some first-order
self-force methods, focusing on which methods need to be extended to second order. I
then survey the current state of second-order self-force calculations and review the
Newman–Penrose formalism and Teukolsky equation.

1.6.1 Black hole perturbation theory framework

In General Relativity, metrics of physical spacetime are solutions to the EFE,

Gab[gab] = 8πTab, (1.6)

where Gab is the Einstein tensor, gab is the metric, and Tab is the stress-energy tensor. It
is challenging to find physically interesting exact solutions to Eq. (1.6) as Gab is
infinitely non-linear in its argument (gab). Also, as a tensor equation, Eq. (1.6) is
equivalent to 10 real scalar equations (6 of which are independent and 4 are
constraints corresponding to ∇aGab = 0). There are known analytical solutions to the
EFE, and the astrophysically relevant black hole solutions are Schwarzschild and Kerr
black holes. Finding these solutions relied on their temporal and axial symmetry. As
these solutions are stationary, they do not emit gravitational waves. Finding exact
solutions allowing for gravitational radiation is not feasible analytically. The desire for
calculating solutions which admit gravitational waves led to Numerical Relativity, a
method for solving Eq. (1.6) numerically. However, numerical solutions are
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computationally expensive and a numerical error is introduced. Approximate
solutions can also produce models of interesting physical phenomena and be
compared to measurements (to a given precision that the approximation is valid).
Perturbation theory can be used to find approximate solutions to Eq. (1.6) which emit
gravitational waves.

Perturbative expansions involves approximating a quantity, such as a tensor
A b1...bn

a1...am , with a series expansion (in terms of orders of a parameter λ). For example,

A b1...bn
a1...am

= A(0) b1...bn
a1...am + λA(1) b1...bn

a1...am + λ2A(2) b1...bn
a1...am + ... (1.7)

For this series to approximate A b1...bn
a1...am accurately, it requires |λ| ≪ 1. Therefore,

each successive order in the expansion will be smaller than the previous. The
disparate mass scales in an EMRI system make the mass ratio, ε, an ideal expansion
parameter for self-force calculations. As the mass ratio for an EMRI is O(10−5-10−7),
even a perturbative expansion truncated at second order provides an accurate
approximation.

The principal object in tensor geometry is the metric (gab). A perturbative expansion of
the metric is (conventionally) written as

gab = g(0)ab + εh(1)ab + ε2h(2)ab + ... + εnh(n)ab + ... (1.8)

Here, g(0)ab is the background metric and h(n)ab are the nth-order metric perturbations.
g(0)ab is a solution to the EFE (Eq. (1.6)) and plays a special role in perturbative
calculations as it is used for the raising and lowering of indices. Following
convention [191], g(0)ab is also associated to the covariant derivative ∇a (i.e.,
∇cg(0)ab := g(0);cab = 0). For this work I shall use the Kerr metric for g(0)ab (unless I specify
otherwise). For visual elegance, I simplify my notation, writing Eq. (1.8) as

gab = g(0)ab + h(1)ab + h(2)ab +O(ε3), (1.9)

where the metric perturbations h(n)ab have absorbed their corresponding power of the
expansion parameter (εn). Throughout this work, (n) superscripts or subscripts on
tensors indicate that they are O(εn). The superscript (0) on g(0)ab is often dropped for
succinctness.

Note, by enforcing gabgbc = δa
c it is straight forward to show that the the contravariant

metric takes the form,

gab = gab
(0) − hab

(1) + hac
(1)h

b
(1)c −

1
2

hab
(2) +O(ε3). (1.10)

Just as I have expanded tensors in orders of ε, one can expand the infinitely non-linear
behaviour of Gab as a series of tensors δnGab. Achieving a explicit expansion for the
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non-linear nature of Gab requires an explicit background metric which satisfies the EFE

Gab[gab] = 8πT(0)
ab , (1.11)

In this thesis, I assume gab satisfies the vacuum EFE (that is, T(0)
ab = 0). Kerr spacetime

satisfies this assumption. The EFE can then be expressed in orders of how many (n)
arguments it takes [191],

Gab[xab] = δGab[xab] + δ2Gab[xab, xab] + δ3Gab[xab, xab, xab] + ... (1.12)

where δnA := 1
n!

dn

dλn A
[︂

g(0)ab + λhab

]︂
|λ=0 for any tensor A and xab is some two-tensor.

Note, the form of δnGab depends on the background metric gab; but, as gab generally
remains fixed during a perturbative analysis, my notation does not explicitly write
δnGab as explicit functions of gab. δGab is called the linearised Einstein tensor, δ2Gab the
quadratic Einstein tensor, and so on.

I now express the left hand side of Eq. (1.6) using the expansions in Eq. (1.12) and
Eq. (1.9), this gives

Gab[gab] =δGab[g
(0)
ab + h(1)ab + h(2)ab + ...]

+ δ2Gab[g
(0)
ab + h(1)ab + h(2)ab + ..., h(1)ab + h(2)ab + ...] + ... (1.13)

To express the right hand side of Eq. (1.6) the stress-energy tensor can be expanded in
orders of ε. Eq. (1.6) therefore reads as

δGab[h
(1)
ab ] + δGab[h

(2)
ab ] + δ2Gab[h

(1)
ab , h(1)ab ] = 8π(T(1)

ab + T(2)
ab ) +O(ε3), (1.14)

where I have used that g(0)ab satisfies the vacuum EFE (that is, δnGab[gab] = 0 and
T(0)

ab = 0).

Eq. (1.14) can be solved to a given O(εn) by re-expressing it as a series of n equations
in ascending orders of ε:

δGab[h
(1)
ab ] =8πT(1)

ab (1.15)

δGab[h
(2)
ab ] =8πT(2)

ab − δ2Gab[h
(1)
ab , h(1)ab ] (1.16)

δGab[h
(3)
ab ] =... (1.17)

Hence, first-order perturbation theory involves finding a metric perturbation h(1)ab

which satisfies Eq. (1.15). Extending to second order boils down to finding a h(2)ab

satisfying Eq. (1.16) (for a h(1)ab which satisfies Eq. (1.15)).

To understand the equations needed to be solved in black hole perturbation theory, I
will express δGab[hab] and δ2Gab[hab, hab] in terms of hab. The Einstein tensor is the
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trace-reverse of the Ricci tensor, Gab = Rab (an over-line represents a trace reversal; i.e.,
Rab = Rab − 1

2 gabR, where R is the Ricci scalar R = gcdRcd). Hence, the linearised
Einstein and quadratic Einstein tensors are

δGab =δ

[︃
Rab −

1
2

gabR
]︃

=δRab −
1
2

gabδR, (1.18)

δ2Gab =δ2
[︃

Rab −
1
2

gabR
]︃

=δ2Rab −
1
2

(︂
gab

(︂
gcdδ2Rcd − 2hcdδRcd

)︂
+ 2habgcdδRcd

)︂
, (1.19)

where I have used that R(0)
ab = 0 (as Kerr is vacuum)2. δRab and δ2Rab can be expressed

as [152, 110]

δRab[hab] =
1
2

(︂
2hc

(a;b)c − h ;c
ab c − hc

c;ab

)︂
, (1.20)

δ2Rab[hab] =
1
2

(︃
hcd
(︂

hab;cd + hcd;ab − 2hc(a;b)d

)︂
+

(︃
1
2

hd
d;c − h d

c ;d

)︃(︂
2hc

(a;b) − h ;c
ab

)︂
+ h c;d

a hb[c;d] +
1
2

hcd
;ahcd;b

)︃
, (1.21)

in a vacuum background spacetime. By combining Eq. (1.18) and Eq. (1.20) one finds
an expression for the linearised Einstein tensor in terms of hab.

The complexity of δnGab increases significantly as one extends to higher orders in n.
Nevertheless, Eqs. (1.15), (1.16), and (1.17) show that every order of metric
perturbation can be calculated by solving the linear EFE with a source containing the
lower-order metric perturbations. That is, the hierarchical structure of Eqs. (1.15),
(1.16) and (1.17) places the increase in complexity into the source term (on the right
hand side). Because δGab is a linear operator, solving for a metric perturbation is much
more straightforward than solving the full EFE (Eq. (1.6)) for the full metric.

In a Kerr background spacetime, solving the linearised EFE is still challenging as it
reduces to a non-separable set of coupled PDEs. Solving Eq. (1.15) directly is possible
with numerical techniques [136]; however, these methods are generally slow due to
the disparate length scales and long inspiral timescales of EMRIs. In Secs. 1.7.3 and
1.8, I will review the commonly used method to indirectly solve the linearised EFE in
Kerr by using the Teukolsky equation and CCK metric reconstruction.

2Similarly, for self-force calculations δRcd[h
(1)
ab ] = 0 away from the worldline γ.
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1.6.2 Gauge freedom and perturbation theory

Before discussing self-force theory, I review the role of gauge freedom in General
Relativity and perturbation theory. Here, I discuss how gauge freedom manifests itself
in General Relativity and subsequently at each order in perturbation theory.

General Relativity admits four gauge degrees of freedom. These freedoms correspond
to diffeomorphisms on the spacetime manifold (in the so-called active view [148]).
Alternatively, one can consider them as the freedom to choose a coordinate system (in
the so-called passive view [148]).

The freedoms are permissible due to the EFEs, Eq. (1.6), being underdetermined [191].
There are ten EFEs (1.6), which admit four constraint equations (∇aGab = 0), leaving
six evolution equations; whereas a generic metric, gab, has ten independent
components. Hence, the system is underdetermined. The four degrees of freedom in
the metric left unconstrained by the EFE are gauge freedoms.

Additionally, General Relativity is locally Lorentz-invariant. That is, the theory is
covariant under the three boosts and three spatial rotations of local Lorentz
frames [48].

When one solves the field equations perturbatively, the background metric g(0)ab is
generally associated with a specific gauge. I refer to the gauge of the background
spacetime as the choice in coordinates. Each nth-order perturbation is accompanied
by a further four infinitesimal gauge degrees of freedom. The term infinitesimal
denotes that these are O(εn) gauge freedoms of h(n)ab . As ε is small, the infinitesimal
gauge freedoms are near identity transforms of the background coordinates [148]. For
succinctness, I refer to the infinitesimal gauge as simply the gauge (as is common in
self-force literature). Methods for calculating the metric perturbations are often
associated with particular gauge choices. These gauges may not be fully specified
(e.g., the Lorenz gauge, which I will define in Sec. 4.1.1, has some residual gauge
freedom).

The number of gauge freedoms, and complexity of gauge transformations, become
more involved the higher the order of the perturbation. This can be seen by examining
how each metric perturbation transforms under gauge transformations [148],

h(1)ab → h(1)ab + Lξ⃗(1)
g(0)ab (1.22)

h(2)ab → h(2)ab + Lξ⃗(2)
g(0)ab + Lξ⃗(1)

h(1)ab +
1
2
Lξ⃗(1)

Lξ⃗(1)
g(0)ab (1.23)

h(3)ab → ...,

where ξ⃗(1) and ξ⃗(2) are the first- and second-order gauge vectors respectively.
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One must also consider the limitations of individual gauges and the desire to calculate
measurable quantities easily. The extensivity of gauge freedom in General Relativity
accommodates gauges that obscure the physical geometry in certain regimes. For
example, using Schwarzschild coordinates to describe the Schwarzschild black hole
introduces coordinate singularities at the black hole horizon. As the coordinate
singularities are confined to a particular region, Schwarzschild coordinates can be
used to study physics away from the horizon. However, at the horizon, the singular
nature of the coordinates may obscure physical phenomena, such as a particle passing
through the horizon. Therefore, one must use a different gauge to probe the physical
geometry at the horizon. This example illustrates the meaning of describing a gauge
as bad; that is, a gauge that obscures the physical geometry in a region one is interested
in studying. Bad choices of gauge is a problem that occurs regularly in generic
self-force calculations. If a gauge is well behaved in a region of interest, then it is said
to be good. In this thesis I commonly tailor second-order self-force calculations to be
working in a good gauge.

1.6.2.1 Future null infinity and asymptotically flat gauges

Here, I review the definition of future null infinity (I +), explaining what I mean by a
good gauge there, and discuss why such gauges are said to be asymptotically flat.

Examining future null infinity poses a challenge as physical spacetimes are
unbounded. To overcome this difficulty, one can use Penrose compactification [137].
That is, use a conformal transformation to produce a bounded, nonphysical metric,
which contains a region representing asymptotic infinity of the physical spacetime
[191, 107]. The region, known as conformal infinity, can span all asymptotic endpoints
of the physical spacetime. A section of the asymptotic boundary of interest for
gravitational-wave emitting systems is I +, the surface of endpoints of outgoing null
geodesics (where energy and angular momentum are dissipated to). It is also
convenient to probe I + using a retarded time coordinate (u) [140], reaching I + by
taking r → ∞ whilst constraining u = constant.

The form of the metric at I + establishes whether the gauge is good there. If all
curvature terms appear at orders in r below that of Minkowski (flat spacetime), then
the gauge is said to be good at I +. This is equivalent to saying the gauge is
“asymptotically flat” as the spacetime asymptotes to flat spacetime. Repeating this
definition explicitly, first consider the metric of flat spacetime, the Minkowski metric

gM
µν =

⎛⎜⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin[θ]

⎞⎟⎟⎟⎟⎠ , (1.24)
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expressed in inertial polar coordinates. Hence, for a gauge to be asymptotically flat the
metric must satisfy

gµν − gM
µν =

⎛⎜⎜⎜⎜⎝
O(r−1) O(r−1) O(r0) O(r0)

O(r−1) O(r−1) O(r0) O(r0)

O(r0) O(r0) O(r1) O(r1)

O(r0) O(r0) O(r1) O(r1)

⎞⎟⎟⎟⎟⎠ , (1.25)

(in similar coordinates), and derivatives of gµν with respect to r (at fixed u) decay one
order more rapidly with r. Often, one talks about the metric perturbation being
asymptotically flat. This means h(n)µν satisfies

h(n)µν =

⎛⎜⎜⎜⎜⎝
O(r−1) O(r−1) O(r0) O(r0)

O(r−1) O(r−1) O(r0) O(r0)

O(r0) O(r0) O(r1) O(r1)

O(r0) O(r0) O(r1) O(r1)

⎞⎟⎟⎟⎟⎠ , (1.26)

and the derivative of hµν with respect to r (at fixed u) decays at least one order more
rapidly with r.

1.6.3 First-order self-force methods

I now turn my attention to self-force. Here, I cover some of the essential methods for
calculating first-order self-force.

1.6.3.1 Matched asymptotic expansions

In Sec. 1.6, I outlined how EMRIs are modelled using black hole perturbation theory
where the expansion parameter, ε, is the mass ratio and the background spacetime is
the Kerr spacetime of the supermassive black hole. This model, known as the outer
expansion, is applicable in regions where the presence of the supermassive black hole
dominates the curvature of the spacetime. However, in a region significantly close to
the compact object, r ∼ µ (where r is the distance from the compact object) [146], the
curvature generated by the presence of the compact object dominates. Hence, the
outer expansion breaks down (the outer expansion is only valid for r ≫ µ).

In the region where spacetime curvature is dominated by the presence of the compact
object, known as the inner region, a new perturbative expansion is required. An
appropriate background spacetime for the so-called inner expansion is the metric of the
compact object. In this thesis, I assume the compact object is a non-spinning and
described by the Schwarzschild metric outside the object (but the methods here also
extend to a spinning compact object [193, 112]).
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Crucially, the same expansion parameter, ε, is used in the inner expansion as used in
the outer expansion. This allows for matching the two asymptotic expansions in the
region where they meet (the buffer region).

For the inner expansion, r
ε is held fixed while the expansion is calculated in orders of ε.

The resulting metric expansion is

gab = gCO(0)
ab + H(1)

ab + H(2)
ab +O(ε3), (1.27)

where H(n)
ab are the nth-order metric perturbations (which are produced by the

presence of the supermassive black hole) and gCO(0)
ab is the metric of the compact object

in isolation (Schwarzschild metric with mass µ). This expansion is valid in the region
r ∼ µ.

The region µ ≪ r ≪ M, known as the buffer region, seemingly lies outside the
domains of validity of both expansions [23]. However, one can assume the matching
condition; that is, when re-expanding each expansion into the buffer region, the two
expansions must agree term by term in powers of r and ε (since they both are
expansions of the same metric [147]). The form of the metric in the buffer region also
provides information on the multipole moments of the compact object it surrounds as
the buffer region effectively lies at asymptotic infinity in the local spacetime of the
compact object [147]. One concludes that at distances µ ≪ r (in the outer region), the
only significant properties of the compact object are its multipole moments.

Matched asymptotic expansions have been used to derive definitions of the
stress-energy tensor of the compact object in the outer expansion. For the case of the
compact object being a Schwarzschild black hole, the stress-energy tensor is a point
mass (Eq. (1.31)). Matched asymptotic expansions have also been used to derive
equations of motion for the compact object.

1.6.3.2 The MiSaTaQuWa equation

A significant stride forward into first-order self-force was made in 1997 by Mino,
Sasaki and Tanaka [197] and Quinn and Wald [159]; they each derived a first-order
equation of motion for the compact object in terms of the first-order metric
perturbation. This is equivalent to providing an equation for the first-order self-force.
The equation of motion, known as the MiSaTaQuWa equation, can be written as [147]

aa = ubua
;b = −1

2
Pab(2h(1)tail

bc;d − h(1)tail
cd;b )ucud +O(ε2), (1.28)

where aa is the acceleration (away from geodesic motion) of the compact object, uα is
the four-velocity of the compact object, and Pab = gab + uaub. h(1)tail

ab is the piece of h(1)ab
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that has propagated from points in the past of the compact object’s worldline, γ (with
coordinates zµ).

1.6.3.3 The split into the regular and singular fields

As seen in the MiSaTaQuWa equation, Eq. (1.28), the motion of the compact object
does not depend on the entire metric perturbation h(1)ab . Detweiler and Whiting [59, 62]
showed that there is an alternative method to split h(1)ab (which is consistent with the
MiSaTaQuWa equation). This new split stemmed from a fundamental question which
initiated self-force research: what part of an object’s field affects its motion?

In electromagnetic theory, the importance of properly handling the self-field has long
been apparent. Radiation reaction is a clear manifestation of an object interacting with
its own field. That is, when a charged particle experiences a jerk (change in
acceleration) in a vacuum, it spontaneously emits electromagnetic radiation. The
radiation must derive from an interaction; hence, the jerked charge has interacted with
its own field. However, it is not immediately clear how to describe this interaction as
charged particles produce a singular electrostatic field at their position. Directly
calculating a force with a singular field would result in a singular self-interaction.
Theorists explained how a particle could interact with its own field by splitting the
field into a regular and singular piece, and proving that the object does not interact
with the singular piece [63]. The self-interaction with the regular part of the field
results in a regular self-force. Similarly, in General Relativity, one must consider which
(regular) part of the field an object interacts with and what singular part it does not
[23].

The regular part of the field can be described as part of an effective external field
which the object moves through. The effectively external metric compromises the
background metric and a regular piece of the metric perturbation. Detweiler and
Whiting applied this concept to the gravitational self-force problem by splitting the
metric perturbation into a regular (h(1)R

ab ) and self-field (h(1)Sab , or singular) piece [59, 62],

h(1)ab = h(1)Sab + h(1)R
ab . (1.29)

Where δG[h(1)Sab ] = 8πT(1)
ab and δG[h(1)R

ab ] = 0 [147]. To make the choice in split unique
constraints are required: h(1)Sab depends only on the instantaneous state and position of
the particle and h(1)R

ab is causal, depending only on the particle’s causal past [62]. The
split allows one to define an effective metric,

g̃ab = g(0)ab + h(1)R
ab . (1.30)

It has been shown that the compact object moves as a test particle in (on a geodesic of)
g̃ab, the effective metric, to first-order [197, 60, 62]. That is, Eq. (1.28) is equivalent to
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the geodesic equation in g̃ab. However, in practice, one calculates the self-force, with
Eq. (1.28) (replacing h(1)tail

ab with h(1)R
ab ), that the compact object experiences as it moves

through the background metric (g(0)ab ). The particular choice of the regular and
singular piece is a useful degree of freedom in self-force, subject to constraints that
E [h(1)Sab ] = 8πT(1)

ab and E [h(1)R
ab ] = 0.

1.6.3.4 The perturbed stress-energy tensor

Matched asymptotic expansions demonstrate that the appropriate stress-energy tensor
is a point-mass for a compact object that produces a Schwarzschild metric when in
isolation in its exterior. The point-mass stress-energy tensor is

Tab
(1) = µ

∫︂
γ

uaubδ4(x, z)dτ, (1.31)

where τ is proper time (in the background spacetime), uµ = dzµ/dτ is the
four-velocity of the compact object, and δ4(x, z) = δ4(xα−zα)√−g .

The second-order stress-energy tensor was first conjectured by Detweiler [61] as

Tab
(2) = −µ

2

∫︂
γ

uaub(gcd
(0) − ucud)h(1)R

cd δ4(x, z)dτ, (1.32)

and has recently been shown to hold in the highly regular and Lorenz gauge by
Ref. [185].

1.6.3.5 Puncture schemes

The singular nature of the stress-energy tensor relates to the singular behaviour in the
metric perturbation on the worldline (h(n)Sab ). Singularities can make equations
ill-defined, cause integrals not to converge, or cause numerical calculations to be very
slow. One method of handling singularities is subtracting singular behaviour away. To
do so, one can derive a puncture analytically, which approximates the singular
behaviour.

Here I will briefly describe using a puncture schemes to account for the singular
behaviour in the stress-energy tensor through second-order. For a more detailed
description see [23, 147]. The singular behaviour of h(1)ab results from the stress-energy
tensor, T(1)

ab . For h(2)ab , the singular behaviour derives from both h(1)ab and T(2)
ab . The field

equations for the puncture scheme can be formulated by extending the field-equations
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away from the worldline

δGab[h
(1)
ab ] =0 ∀ xα /∈ γ, (1.33)

δGab[h
(2)
ab ] =− δ2Gab[h

(1)
ab , h(1)ab ] ∀ xα /∈ γ, (1.34)

δGab[h
(3)
ab ] =..., (1.35)

Instead of using the singular stress-energy tensor on the worldline, one can introduce
a singular puncture which approximates h(n)Sab . Such a puncture can be calculated
analytically in an expansion in orders of r, and attenuated to zero outside of some
finite region containing the worldline. I label the puncture h(n)Pab , with h(n)Pab ≈ h(n)Sab .
h(n)Pab can be found by truncating the extension of the outer expansion of h(n)Sab at some
finite order of r. One can then define a “residual” field, h(n)Rab := h(n)ab − h(n)Pab , which
approximates the regular field h(n)Rab ≈ h(n)R

ab .

If h(n)Pab approximates h(n)Sab to a sufficiently high order in r, then the Taylor expansion
of h(n)Rab and h(n)R

ab can be made to be identical to any finite order [23]. h(1)Rab can
therefore be used in place of h(1)tail

ab in the MiSaTaQuWa equation, Eq. (1.28), to
calculate the first-order self-force.

Using punctures, one can rewrite the field equations (Eqs. (1.15) and (1.16)) to solve
for the residual field as

δGab[h
(1)R
ab ] =− δGab[h

(1)P
ab ], (1.36)

δGab[h
(2)R
ab ] =− δ2Gab[h

(1)
ab , h(1)ab ]− δGab[h

(2)P
ab ]. (1.37)

Eqs. (1.36) and (1.37) are smooth on the particle, making them well defined as a
distribution and straightforward to solve numerically. Eqs. (1.36) and (1.37) have been
defined by treating the derivatives as ordinary derivatives. If one treats the
derivatives as distributional, one obtains

δGab[h
(1)R
ab ] =T(1)

ab − δGab[h
(1)P
ab ], (1.38)

δGab[h
(2)R
ab ] =T(2)

ab − δ2Gab[h
(1)
ab , h(1)ab ]− δGab[h

(2)P
ab ], (1.39)

where the stress-energy perturbations (defined in Sec. 1.6.3.4) will cancel with the
distributional behaviour in δGab[h

(n)P
ab ]. However, to make Eq. (1.39) well defined, one

must work in a gauge where δ2Gab[h
(1)
ab , h(1)ab ] and T(2)

ab are well defined (such as the
highly regular gauge and Lorenz gauge [185]).

Alternatively to using a puncture scheme, one could work in a highly regular gauge
where Eq. (1.16) is well defined and integrable. Ref. [185] also showed δ2Gab[h

(1)
ab , h(1)ab ]

is well defined as a distribution in the Lorenz gauge using the definition of the
puncture δGab(h

(2)P
ab ).
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1.6.3.6 The self-consistent and Gralla-Wald approximations

So far, I have discussed how to calculate the self-force from h(1)ab . Nevertheless, to
model an EMRI, one must evolve the worldline of the compact object under the
influence of this force. The metric perturbation and worldline are interconnected. The
metric perturbation depends on the position of the compact object, and the worldline
depends on the self-force and, therefore, the metric perturbation. Two standard
approximations for the worldline’s evolution are the self-consistent approximation
and the Gralla-Wald approximation. I will summarise both approximations here (for a
detailed review, see [147]) and comment on their suitability for full EMRI calculations.
In the following section, I summarise the most promising evolution approximation for
modelling EMRIs, the two-timescale approximation.

The Gralla-Wald approximation: In the Gralla-Wald approximation the worldline
(γ) is expanded in orders of ε [85],

γ =γ(0) + γ(1) + γ(2) + ..., (1.40)

zµ(s, ε) =zµ

(0)(s) + zµ

(1)(s, ε) + zµ

(2)(s, ε) + ..., (1.41)

where γ(0) is the zeroth-order worldline (a geodesic of the background spacetime),
γ(1) can be considered as the first-order deviation from the zeroth-order worldline
(γ(0)) and so on.

As the metric perturbations arise from the presence of the compact object, they have a
dependence on the objects’ position (zµ(s, ε)) and velocity (żµ(s, ε) = dzµ

ds ), where s is a
generic time variable. That is, in the Gralla-Wald approximation, the metric is
expressed as [147]

gµν(x, ε; z, ż) = g(0)µν (x) + ∑
n>0

εnȟ
(n)
µν (x, ε; z(0), ..., za

(n−1), ż(0), ..., ż(n−1)). (1.42)

The issue with this approximation is that over the large time scales on which EMRI
inspirals occur, the deviation vectors zµ

(n)(s, ε) (for n ≥ 1) grow at least quadratically
with time, meaning this approximation breaks down well before modelling a whole
EMRI inspiral. This breakdown is apparent when you consider that the initial
geodesic, γ(0), is an inappropriate approximation for the late inspiral geodesics.

The self-consistent approximation: In the self-consistent approximation, to avoid
growing errors, one does not expand the worldline, leaving it exact. It is known as an
accelerated worldline, as it is not a geodesic in the background spacetime. The exact
worldline is labelled γε with coordinates zµ

ε . In the self-consistent approximation, the
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metric expansion can be written as

gµν(xa, ε; za
ε , ża

ε ) = g(0)µν (xa) + ∑
n>0

εnh(n)µν (xa; za
ε , ża

ε ). (1.43)

Note, in this approximation the ε dependence of the coefficients h(n)ab comes only
through za

ε and ża
ε .

The approximation’s self-consistency comes from the process that at each time-step za
ε

must being calculated simultaneously with h(n)µν (xa; zε, ża
ε ). The MiSaTaQuWa equation

was first derived in the first-order self-consistent approximation. More recently,
Pound [144] extended the self-consistent expansion to second order with a systematic
method that could be taken to any order.

The self-consistent approximation is more appropriate for modelling systems that
evolve through a worldline that eventually changes significantly from the initial
geodesic. However, the expansion does not capitalise on the slow evolution of an
EMRI inspiral [23], which effectively makes each EMRI orbit approximately geodesic
on the orbital time scale [119].

1.6.3.7 The two-timescale approximation

The two-timescale expansion takes advantage of the near periodicity of EMRI
inspirals whilst evolving the orbit without accumulating growing errors [98].
Quantities, such as the metric perturbation, are expressed in terms of both a slow-time
(t̃, which evolves at the speed of the whole inspiral) and fast times (the three orbital
phases φi). The slow timescale is related to the radiation reaction time, trr ∼ M

ε [119];
hence, the slow timescale on which the orbit evolves due to radiation reaction is
t̃ ∼ εt [69]. Here I overview how the two-timescale approximation is implemented for
generic orbits in Kerr [154, 119].

Before describing the two-timescale approximation I first introduce the
frequency-domain approach (which will have some similarities). The dependence on
the fast timescale can be expressed using the three orbital frequencies,
Ωi := {Ωr, Ωθ , Ωϕ} [154, 119]. This results in a leading order metric perturbation of
the form

h(1)ab = ∑
p,q,m

h(1),ωp,q,m
ab (xi)e−i(pΩr+qΩθ+mΩϕ)t, (1.44)

where ωp,q,m = pΩr + qΩθ + mΩϕ and xi := {r, θ, ϕ}. Eq. (1.44) is a time Fourier series
of the metric perturbation and is used in the self-force frequency-domain
approach [26]. The two-timescale approach appears similar to the frequency-domain
approach at leading order; however, to express the fast time dependency at higher
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orders requires replacing the t dependency (in Eq. (1.44)) with t dependent orbital
phases φi. The three phases are defined as [119]

φi :=
∫︂

Ωidt, (1.45)

where Ωi now depend on the slow time t̃. The phases are called “fast times” as they
evolve on the orbital timescale. In the two-timescale approach the metric
perturbations are expressed as

h(n)ab = ∑
p,q,m

h(n),ωp,q,m
ab (t̃, xi)e−i(pφr+qφθ+mφϕ). (1.46)

Eq. (1.46) is a discrete Fourier series in terms of the phases. Eq. (1.46) differs from the
conventional frequency domain approach (Eq. (1.44)) as t does not appear explicitly
and the frequencies (Ωi) and h(n),ωp,q,m

µν (t̃, xi) evolve on the slow timescale.

Putting Eq. (1.46) into the first- and second-order linearised EFE splits the equations
into frequency-domain like equations for h(n),ωp,q,m

µν (t̃, xi) for fixed t̃, and evolution

equations for h(n),ωp,q,m
µν (t̃, xi) and Ωi as functions of t̃ [119]. The first-order linearised

EFE in the two-timescale approximation is in a similar form to the first-order
frequency-domain approach. Whereas, the two timescale approximation introduces
slow time derivative terms to the right hand side of the second-order linearised EFE.
Once these terms are included, the second-order linearised EFE can be solved similarly
to the frequency-domain method. In Sec. 4.1.2, I describe how the two-timescale
approximation is implemented for quasi-circular orbits in Schwarzschild (which
illustrates how slow-time derivative terms appear in the general case).

1.6.4 Second-order self-force: state of play

I return to the desire to calculate the dissipative piece of second-order self-force (to
produce accurate EMRI inspiral models). Before reviewing the current state of the art
in second-order self-force results, I briefly review the progress in calculating
second-order perturbations in gravity outside of self-force research.

The general formalism for perturbations to generic background spacetimes has been
developed [180, 182, 42, 173]. There has been a significant scheme of work on
second-order calculations in cosmology [125, 111, 7, 181, 128, 139, 184, 30]. And there
have also been calculations on the second-order perturbations to Schwarzschild
spacetime relevant to collapsing stars [39, 40, 41]. There has also been progress for
second-order calculations restricted to vacuum perturbations
[141, 80, 79, 81, 132, 92, 129, 198]. Tangentially, there has also been a success in
formulating the post-Minkowski expansion to the nth-order [35, 34, 142], with a recent
resurgence of interest in scattering orbits [57]. Post-Newtonian methods have also
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been taken to a very high order [142, 32, 49]. Finally, there has been recent success in
calculating quasinormal modes to second-order [102, 163] using a form of the
second-order Teukolsky equation [45] (which I will discuss in Chap. 2).

The majority of self-force research has concerned developing and implementing
first-order methods, delivering important results and methods that will be used to
help model EMRIs. First-post adiabatic models require the full first-order self-force.
However, first-post adiabatic models also require the dissipative piece of the
second-order self-force [69]. Second-order self-force methods had been largely left
unexplored until the last decade. Preliminary work on the second-order calculations
began in 2006 by Rosenthal [164]. Ref. [61] also presents work on the subject.
Rigorous, complete results emerged in 2012, with the derivation of the second-order
equations of motion (an extension of the MiSaTaQuWa equation to second-order),
independently derived by Pound [146] and Gralla [84], using the self-consistent and
Gralla-Wald approximations respectively. These two derivations produce comparable
results, but a detailed analysis of their equivalence has not yet been produced. In
Ref. [146] the second-order equation of motion is given as

aa = ubua
;b = −1

2
Pac(g(0)dc − hRd

c )(2hRd(b;e) − hRbe;d)u
bue +O(ε3), (1.47)

where Pab = g(0)ab + uaub and hRab = h(1)Rab + h(2)Rab . Eq. (1.47) is equivalent to the
geodesic motion in g(0)ab + hRab. In Ref. [146] Pound showed Eq. (1.47) is valid in any
gauges smoothly related to the Lorenz gauge, and in Ref. [150] Pound showed the
validity extends to the highly regular class of gauges.

Eq. (1.47) is only consistent if the compact object is spherical and non-spinning.
Realistic post adiabatic models will require an equation of motion that includes the
spin and quadrupole moments of the compact object [23]. Attempting such a
derivation might lead to the issue of having more than one acceptable definition for
the centre of mass of the compact object.

A toy model implementation of second-order calculations was made in Ref. [101],
where some fictitious second-order modes were calculated (sourced by a handful of
h(1)ab modes) in the limited case of a head-on collision in a Schwarzschild background.
Recently, more realistic second-order calculations were made, modelling EMRIs for
quasi-circular orbits in Schwarzschild [156, 194, 195]. Precisely, the binding energy of
an EMRI was calculated to second order [156], followed by the energy flux [194], and
finally, waveforms were produced [195]. This breakthrough in second-order self-force
calculations took the best part of a decade to implement. However, astrophysically
realistic EMRI models will require a Kerr background (as supermassive black holes
are expected to have spin), so much work is needed.
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Ref. [195] shows compelling evidence that first-post adiabatic waveforms are accurate
well outside of the EMRI regime. The first-post adiabatic models in Ref. [195] show
good agreement with Numerical Relativity waveforms for mass-ratio as large as 1/10
(up to two orbits before the merger). This is encouraging news in the endeavour for
modelling IMRIs. Also, the first-post adiabatic waveforms take just seconds to
generate (and will be orders of magnitude faster once the code is converted from
Mathematica to C++) as the self-force data has been precomputed. Hence, the
waveform modelling calculations only need to call the self-force data to produce
waveforms. Numerical Relativity techniques cannot match this speed, a typical
Numerical Relativity binary simulation takes days to months to compute a waveform.
Additionally, first-post adiabatic waveform modelling can be achieved whilst leaving
the mass-ratio as a free parameter (see the 1PAT2 and 1PAF1 models in Ref. [195]). The
mass-ratio agnostic models do compromise on accuracy but could be used to speed up
data analysis.

1.7 The Newman–Penrose formalism and the Teukolsky
equation

Introductory courses to General Relativity generally introduce the theory using tensor
fields (such as the Riemann and Einstein tensors) and Christoffel symbols.
Alternatively, one can re-express geometric quantities as a school of scalar fields. This
can be achieved by defining a set of four basis vectors and contracting each tensor
index with said basis vectors. Choosing the set of basis vectors to be orthonormal,
with two real and two complex vectors, turns out to be particularly useful for
expressing and calculating perturbed quantities in Kerr spacetime [191].

1.7.1 The Newman–Penrose formalism

The Newman–Penrose (NP) formalism [131] constructs a basis spanning 3 + 1
spacetime using null vectors. A null vector (ka) satisfies

gabkakb = 0. (1.48)

Note, here I have defined the null vector relative to the background metric gab; ka is
therefore a background quantity. While the definitions in this section can be promoted
to the full spacetime metric gab, the NP formalism generally makes definitions using
the background metric. Perturbed NP quantities are then defined using the
background NP quantities and the metric perturbations. Hence, a null vector in the
full spacetime ka = ka + ka

(1) + ka
(2) + ..., where ka

(1) is a function of h(1)ab and the
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background NP quantities, and ka
(2) is a function of h(1)ab

2, h(2)ab , and the background NP
quantities.

The NP basis vectors are labeled ea
[a] = {ea

[1], ea
[2], ea

[3], ea
[4]} := {la, na, ma, m̄a} (where

indices in square brackets are tetrad indices) and are collectively referred to as a tetrad
(or tetrad legs). The vectors have the chosen properties that la and na are real and ma is
complex. Over-bars (m̄a) denote a complex conjugate. Conventionally, using a positive
metric signature, the orthonormal relationship of the tetrad takes the form

lana = −1, mam̄a = 1, (1.49)

where all other combinations of contracted tetrad vectors = 0 3. This implies the
existence of a fundamental matrix, η[a][b] := gabea

[a]e
b
[b], for raising and lowering tetrad

indices, which takes the form,

η[a][b] =

⎛⎜⎜⎜⎜⎝
0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟⎠ . (1.50)

Hence, e[a]a = {e[1]a, e[2]a, e[3]a, e[4]a} := {−na,−la, m̄a, ma}.

Similarly, gab = e[a]a e[b]b η[a][b] [131]; that is,

gab = −2l(anb) + 2m(am̄b), (1.51)

where curved brackets denote symmetrisation.

1.7.1.1 Ricci rotation coefficients

Instead of using Christoffel symbols to describe the metric connection, the NP
formalism uses Ricci rotation coefficients [191],

γ[c][a][b] = ek
[c]e[a]k;ie

i
[b]. (1.52)

By expressing the covariant derivative using the tetrad partial derivative (D) and the
connection (Γ̃), one obtains

ek
[c]e[a]k;ie

i
[b] = ek

[c]e
i
[b](Die[a]k + Γ̃j

ike[a]j) (1.53)

3Originally [131], the NP formalism was formulated with the metric having a negative signature, where
lana = 1 and mam̄a = −1. However, as current convention for modern research in General Relativity is
largely with a positive metric signature, I work with the positive signature convention (with NP conven-
tions consistent with Ref. [118]).
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Using the definition of the tetrad partial derivatives (Die[a]k = 0), one finds

γ[c][a][b] = ek
[c]e

i
[b]Γ̃

j
ike[a]j. (1.54)

That is, Ricci rotation coefficients are the metric connection (of the tetrad basis)
contracted with tetrad vectors. Note, as the tetrad basis is non-holonomic (Lea

[c]
eb
[d] ̸= 0)

and null, the Ricci rotation coefficients have different symmetry properties to the
Christoffel symbols (the connection coefficients for holonomic/coordinate
bases) [121]. Specifically, whereas Christoffel symbols are symmetric in the second
two indices, Ricci rotation coefficients are antisymmetric in the first two indices:

γ[c][a][b] = −γ[a][c][b]. (1.55)

Eq. (1.55) can be derived from η[a][b],c = (e[a]ded
[b]);c = 0 [48].

1.7.1.2 Spin coefficients

The (non-trivially zero by Eq. (1.55)) tetrad components of the Ricci-rotation
coefficients are conventionally represented using 12 complex scalars:

κ = −γ[3][1][1], τ = −γ[3][1][2], σ = −γ[3][1][3], ρ = −γ[3][1][4],

π = −γ[2][4][1], ν = −γ[2][4][2], µ = −γ[2][4][3], λ = −γ[2][4][4],

ϵ = −
γ[2][1][1] + γ[3][4][1]

2
, γ = −

γ[2][1][2] + γ[3][4][2]

2
,

β = −
γ[2][1][3] + γ[3][4][3]

2
, α = −

γ[2][1][4] + γ[3][4][4]

2
], (1.56)

known as spin coefficients. Note, ϵ, γ, β, and α contain two Ricci-rotation coefficients
because one of their Ricci-rotation coefficients is purely real, whilst the other is purely
complex. For example, by using the complex conjugate operation,
{l → l, n → n, m → m̄, m̄ → m} ({[1] → [1], [2] → [2], [3] → [4], [4] → [3]}). Hence, for
ϵ, γ[2][1][1] = γ[2][1][1] ⇒ Im[γ[2][1][1]] = 0 and
γ[3][4][1] = γ[4][3][1] = −γ[3][4][1] ⇒ Re[γ[3][4][1]] = 0. Therefore, the sum of these two
Ricci rotation coefficients gives a single complex scalar (ϵ).

I write the covariant derivative contracted with a tetrad vector as

ea
[b]∇aη := η|[b], (1.57)



1.7. The Newman–Penrose formalism and the Teukolsky equation

Alternatively, the tetrad components of the covariant derivative is written as

Dη := η|[1] := la∇aη, ∆η := η|[2] := na∇aη,

δη := η|[3] := ma∇aη, δη := η|[4] := ma∇aη. (1.58)

1.7.1.3 Ricci and Weyl curvature scalars

Another key curvature quantity in differential geometry is the Riemann tensor, which
can be split into the Ricci tensor and Weyl tensor. The Ricci tensor is the trace piece of
the Riemann tensor,

Rab =Rc
acb. (1.59)

In general, the Ricci tensor is related to the stress-energy tensor via the EFE, Eq. (1.6);
therefore, the Ricci tensor represents non-vacuum curvature.

The Weyl tensor (Cabcd) is defined as the trace-free part of the Riemann tensor (i.e., the
non-Ricci piece) and represents the vacuum curvature. Explicitly, it is expressed as

Cabcd =Rabcd −
1
2
(gacRbd − gbcRad − gadRbc + gbdRac)

+
1
6
(gacgbd − gadgbc)R. (1.60)

In the NP formalism one contracts the Weyl tensor with the various tetrad legs. The
ten degrees of freedom of the Weyl tensor can be expressed as five complex scalars
(known as Weyl scalars),

ψ0 =C[1][3][1][3], (1.61)

ψ1 =C[1][3][1][2], (1.62)

ψ2 =C[1][3][4][2], (1.63)

ψ3 =C[1][2][4][2], (1.64)

ψ4 =C[2][4][2][4]. (1.65)

One can similarly express the Ricci tensor as a set of four real scalars and three
complex scalars labeled Φij [48]. However, for the purpose of understanding their
physical significance, I instead replace components of the Ricci tensor with tetrad
components of the stress-energy tensor. The EFE informs us that R[a][b] = 8πT[a][b]

except R[1][2] = 8πT[3][4] and R[3][4] = 8πT[1][2] (as 8πTab is the trace-reverse of Rab

using the EFE).



34 Introduction

1.7.1.4 The Ricci and Bianchi identities in the NP formalism

The usefulness of the NP formalism becomes apparent when the Riemann tensor and
Bianchi identities are expressed using the NP scalars. Similarly to how the Riemann
tensor can be constructed from Christoffel symbols, it can also be expressed in terms
of spin coefficients, as follows. As a preliminary step, I express the Riemann tensors
using Ricci rotation coefficients by contracting the Riemann tensor with the tetrad
basis vectors,

ea
[a]e

b
[b]e

c
[c]e

d
[d]Rabcd = R[a][b][c][d] =− γ[a][b][c],[d] + γ[a][b][c],[d] (1.66)

+ γ[b][a][ f ](γ
[ f ]

[c] [d] − γ
[ f ]

[d] [c]) (1.67)

+ γ[ f ][a][c]γ
[ f ]

[b] [d] − γ[ f ][a][d]γ
[ f ]

[b] [c]. (1.68)

Deriving this relation uses the Ricci identity (Rabcdea
[a] = e[a]b;c;d − e[a]b;d;c) [48]. One can

then choose particular tetrad vectors for [a], [b], [c] and [d] in Eq. (1.66); e.g.,

R[1][3][1][3] = (D − ρ − ρ̄ − 3ϵ + ϵ̄)σ − (δ − τ + π̄ − ᾱ − 3β)κ. (1.69)

This form of the Riemann tensor is useful when equated with the Riemann tensor
deconstructed into its Ricci and Weyl tensor parts. In vacuum,

R[1][3][1][3] = C[1][3][1][3] = ψ0. (1.70)

Hence, Eq. (1.69) can be written as the equality

ψ0 = (D − ρ − ρ̄ − 3ϵ + ϵ̄)σ − (δ − τ + π̄ − ᾱ − 3β)κ. (1.71)

There are 36 linearly independent equalities one can derive from the Riemann tensor,
these are called Ricci identities. One can also express tetrad parallel derivatives acting
on the Riemann tensor (e.g., R[a][b][c][d]|[ f ]) in terms of NP spin coefficients. Hence, one
can also express the Bianchi identities, R[a][b]{[c][d]|[ f ]} = 0 (where the enclosed curly
bracket represent antisymmetrisation), in NP form, of which there are 20 independent
equations. See Ref. [48] for a full list of the Ricci and Bianchi identities in NP form.

1.7.1.5 Infinitesimal tetrad rotations

In the NP formalism, the choice of tetrad accounts for 6 degrees of freedom. These
freedoms are associated with the three local boosts and three local spatial rotations of
the tetrad [48] (as General Relativity is a locally Lorentz-invariant theory). In the
context of tetrad transformations, one refers to all six of these local Lorentz
transformations as tetrad rotations, and the choice of the tetrad is known as the tetrad
frame.
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As one moves to a perturbation set-up, the tetrad frame grows in complexity.
Similarly to how introducing perturbations introduces (infinitesimal) gauge degrees of
freedom, perturbations also introduce infinitesimal tetrad rotation degrees of freedom.
Keeping track of the tetrad frame and infinitesimal tetrad frame can be challenging, so
it is essential to be precise with one’s language when referring to the tetrad frame.

1.7.1.6 The Petrov type D nature of Kerr spacetime

The NP formalism is very convenient for describing spacetimes with coinciding
principle null vectors. Principle null vectors (ka) satisfy [191]

kbkck{eCa}bc{dk f } = 0. (1.72)

Generally, spacetimes have four principle null vectors. Whether a spacetime’s
principle null vectors coincide or not characterises their so-called Petrov type [48].

Kerr spacetime is Petrov type D as it has two principle null vectors (two pairs of
principle null vectors which coincide). The tetrad can be chosen such that la and na are
tangent to the principle null directions (la and na then represent the outgoing and
ingoing null geodesics from the black hole, respectively). Choosing such a tetrad basis
(in a Petrov type D background spacetime) causes four of the Weyl scalars and 4 of the
NP spin coefficients to vanish [48],

ψ0 = 0, ψ1 = 0, ψ3 = 0, ψ4 = 0, (1.73)

κ = 0, λ = 0, ν = 0, σ = 0. (1.74)

ϵ can also be made to vanish by using the remaining tetrad rotation degree of freedom
(that is, choosing a Kinnersley tetrad) [99]. This choice, however, destroys the
symmetry between na and la. To maintain this symmetry, one can use the Carter tetrad
[47] (with ϵ ̸= 0).

Note, κ = 0, λ = 0, ν = 0, σ = 0 is equivalent to la and na being shear free [48]. The
Goldberg-Sachs theorem [82] states that these conditions are also equivalent to the
spacetime being of Petrov type D [48]. In this work, I am interested in the Kerr metric,
which is Petrov type D. I will always use principle-null direction aligned tetrads, so
throughout the remainder of this thesis, the simplifications in Eq. (1.73) will generally
be made without comment.

1.7.2 The GHP formalism

Shortly after the NP formalism became popular, Geroch, Held and Penrose (GHP)
made a significant simplification to the method in Petrov type D spacetimes [77]. This
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simplification relies on symmetries of NP formalism while choosing two null vectors
to align with the principle null directions. Two degrees of tetrad rotation freedom
remain while constraining la and na to point in the principle null directions. These
freedoms can be associated with two constants (spin s and boost b weight) for (most)
NP quantities. The {b, s} weights of the tetrad vectors are, {1, 0}, {−1, 0}, {0, 1} and
{0,−1} for la, na, ma and m̄a respectively.

Additionally, there is a freedom to interchange la and na, for which GHP introduced a
prime notation. Hence, half of the NP spin coefficients can be related to the other half
by the prime notation,

κ′ := −ν, σ′ := −λ, ρ′ := −µ, τ′ := −π, β′ := −α, ϵ′ := −γ. (1.75)

Introducing a spin and boost weight highlights that four of the NP spin coefficients do
not have a well defined spin and boost weight (ϵ, ϵ′, β, and β′, the four spin
coefficients which consist of two Ricci rotation coefficients each). Additionally, the NP
derivatives do not have a well defined spin and boost weight. Instead, these quantities
can be combined to produce the GHP derivatives (which have well-defined spin and
boost weights),

Þη = (D − pϵ − qϵ̄)η, Þ′η = (∆ + pϵ′ + qϵ̄′)η,

ðη = (δ − pβ + qβ̄)η, ð′η = (δ̄ + pβ′ − qβ̄
′
)η, (1.76)

where p and q are GHP weights of the generic tensor η with spin-weight s = 1
2 (p − q)

and boost-weight b = 1
2 (p + q).

The {p, q} weights of the tetrad vectors are {1, 1}, {−1,−1}, {1,−1} and {−1, 1} for
la, na, ma and m̄a respectively (and for Þ, Þ′, ð and ð′ respectively). The product of a
scalar of type {p, q} with a scalar of type {r, s} is a scalar of type {p + r, q + s}. For
most of this thesis I work in the NP formalism, but in some sections the GHP
formalism will prove more useful.

1.7.3 The Teukolsky equation

At first appearance, the NP equations, the Ricci and Bianchi identities in NP form
(e.g., Eq. (1.71)), may look quite cumbersome. Manipulating such equations by hand is
a challenging task, and it is quite hard to believe that someone could find a useful
equation from this swamp of NP spin coefficients, yet that is precisely what Teukolsky
achieved. In the context of perturbation theory in Kerr, the Teukolsky equation is of
primary importance, as it is a separable hyperbolic differential equation for a quantity
containing the gauge-invariant content of the metric perturbation. Here I will present
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a brief outline of how the Teukolsky equation was derived. See Refs. [178, 48] for
complete derivations.

Deriving the Teukolsky equation involves manipulating a selection of perturbed
Bianchi and Ricci identities. For example, perturbing Eq. (1.71) gives

ψ
(1)
0 = (D(1) − ρ(1) − ρ̄(1) − 3ϵ(1) + ϵ̄(1))σ(0) − (δ(1) − τ(1) + π̄(1) − ᾱ(1) − 3β(1))κ(0)

+ (D(0) − ρ(0) − ρ̄(0) − 3ϵ(0) + ϵ̄(0))σ(1) − (δ(0) − τ(0) + π̄(0) − ᾱ(0) − 3β(0))κ(1).
(1.77)

I rewrite Eq. (1.77) whilst making the simplifications of working in Petrov type D and
omitting (0) labels for succinctness (they will generally be omitted in the rest of this
thesis), this gives

ψ
(1)
0 = (D − ρ − ρ̄ − 3ϵ + ϵ̄)σ(1) − (δ − τ + π̄ − ᾱ − 3β)κ(1). (1.78)

One can combine certain perturbed Bianchi and Ricci identities in NP form [48] (using
either Petrov type D Eq. (1.73) or Petrov Type-II simplifications) to eliminate all
first-order perturbed quantities except for ψ

(1)
4 (and T(1)

[a][b] which is assumed to be
known). This results in the Teukolsky equation,

[(∆ + 3γ − γ̄ + 4µ + µ̄)(D + 4ϵ − ρ)−
(δ̄ − τ̄ + β̄ + 3α + 4π)(δ − τ + 4β)− 3ψ2]ψ

(1)
4 = T4, (1.79)

where T4 is

T4 : = S4[8πT(1)
ab ]

= 4π

[︃
d̄(0)4

[︂
(δ̄ − 2τ̄ + 2α)T(1)

nm̄ − (∆ + 2γ − 2γ̄ + µ̄)T(1)
m̄m̄

]︂
+ d̄(0)3

[︂
(∆ + 2γ + 2µ̄)T(1)

nm̄ − (δ̄ − τ̄ + 2β̄ + 2α)T(1)
nn

]︂]︃
, (1.80)

where d̄(0)4 := ∆ + 3γ − γ̄ + 4µ + µ̄ and d̄(0)3 := δ̄ − τ̄ + β̄ + 3α + 4π. S4 is known as the
spin −2 Teukolsky source operator. In Type-D spacetimes, there is a similar spin +2
equation for ψ0, which can be derived by taking the GHP prime operation (la → na

and ma → m̄a) [77].

In a concise notation, I write Eq. (1.79) as

O4ψ
(1)
4 = S4[8πT(1)

ab ], (1.81)

which defines the spin −2 Teukolsky operator (O4).
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The Teukolsky equation has two remarkable properties. Firstly, as I mentioned, ψ
(1)
4

decouples from the other (unknown) first-order quantities. Secondly, the Teukolsky
equation is separable. Eq. (1.81), in Boyer–Lindquist (BL) coordinates (and using the
Kinnersley tetrad [99]4), can be written in terms of the spin −2 master Teukolsky
equation (where Ô4 denotes the master Teukolsky operator, for spin −2) [177],

Ô4[ρ
−4ψ

(1)
4 ] = −Σρ−4S4[8πT(1)

ab ], (1.82)

where Σ = r2 + a2 cos2[θ]. By using a Fourier transform (where the t and ϕ

dependencies become trivial as Kerr is stationary and axially symmetric), the master
Teukolsky operator is separable into a radial ODE and an angular (θ) ODE [177]. The
angular part of the master Teukolsky equation has an eigenbasis of solutions, the
spin-weighted spheroidal harmonics [177] (which reduce to spin-weighted spherical
harmonics when a = 0).

A desirable characteristic for quantities is gauge (and local Lorentz frame) invariance,
allowing for a simple comparison of results. ψ

(1)
4 is gauge (and infinitesimal tetrad

rotation invariant) [48] because ψ
(0)
4 = 0 (and ψ

(0)
3 = 0) in a principle-null-direction

aligned tetrad. ψ
(1)
4 also contains all the information about the vacuum piece of the

metric perturbation [190] (up to perturbations towards other Kerr solutions). ψ
(1)
4

includes the gravitational waves being emitted to I+ [178, 45] and into the Kerr black
hole horizon.

1.7.4 Balance laws

Obtaining the full first-order self-force requires calculating the first-order metric
perturbation (h(1)ab ). However, the dissipative piece of the first-order self-force can be
obtained from ψ

(1)
4 directly. This is useful as adiabatic EMRI models only require the

dissipative piece of the first-order self-force.

From ψ
(1)
4 , one can extract the gravitational wave fluxes being dissipated out to I+and

into the supermassive black hole horizon. At I+the formula for the power per unit
solid angle is [178]

d2E
dtdΩ

= lim
r→∞

r2

4πω2 |ψ
2
4(1)|. (1.83)

Using Eq. (1.83) and balance laws, one can calculate the corresponding change in
orbital energy. Similar equations hold at the horizon and for the angular momentum
dissipation [87]. Calculating the change in the Carter constant is more involved, but it

4There exists a separable master Teukolsky equation for all principle-null-direction aligned tetrads. For

the Carter tetrad Eq. (1.82) changes only by replacing ρ−4ψ
(1)
4 → ρ−2∆ψ

(1)
4 and ρ−4T(1)

ab → ρ−2∆T(1)
ab [154],

where ∆ = r2 − 2Mr + a2
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can also be extracted from ψ
(1)
4 [134, 68]. The change in the energy, angular

momentum, and Carter constant is equivalent to the dissipative piece of the first-order
self-force. From the evolution of the three constants of geodesic motion, one can
calculate the evolution of the fundamental frequencies of the orbit (similarly to the
two-timescale approximation) to adiabatic accuracy.

A similar shortcut may hold at second order. This would streamline post adiabatic
EMRI models as only the dissipative piece of the second-order self-force is required
(as well as the full first-order self-force). Concerning energy and angular momentum,
the second-order gravitational wave fluxes can be calculated from ψ

(2)
4 . Hence, to

calculate the dissipative piece of the second-order self-force, one only needs to provide
second-order flux balance laws. Recent, currently unpublished work [123], has
produced second-order flux balance laws for the energy and angular momentum, but
they are not yet in a form practical for application.

Additionally, a method for extracting the second-order evolution of the Carter
constant from ψ

(2)
4 will be necessary. This will require extending the methods in

Refs. [134, 68] to second-order. Alternatively, one could derive a Carter constant
balance law at first order and extend it to second-order. Assuming these efforts are
successful, the dissipative piece of the second-order self-force will be calculable from
ψ
(2)
4 .

1.8 CCK metric reconstruction.

Calculating ψ
(1)
4 is useful for obtaining the first-order gravitational waves and the

dissipative piece of the self-force, but calculating the conservative self-force requires
the complete metric perturbation. Also, as h(1)ab is an input in Eq. (1.16), one needs the
first-order metric perturbation to source second-order calculations.

In the past decade, the first-order self-force in Kerr has been obtained [114] by
calculating the metric perturbation using the Chrzanowski, Cohen, and Kegeles (CCK)
procedure of metric reconstruction [50, 53, 94]. This method reconstructs h(1)ab from ψ

(1)
4

(or ψ
(1)
0 ) using a Hertz potential as an intermediary step. Wald [190] succinctly

described the CCK metric reconstruction in a way that makes clear how it stems from
the Teukolsky equation and the linearised EFE. Here, I summarise Wald’s description.

To express the Wald identity, first I define the operator which takes one from h(1)ab to
ψ
(1)
4 as T4,

T4[h
(1)
ab ] = ψ

(1)
4 . (1.84)
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Hence, using the definition of E , the linearised EFE operator (equivalent to δGab in
Eq. (1.15)), the (spin −2) Teukolsky equation, Eq. (1.79), can be expressed as

O4T4[hab] = S4E [hab]. (1.85)

As hab can be an arbitrary symmetric rank 2 tensor in Eq. (1.85), Eq. (1.85) is an
operator identity

O4T4 = S4E , (1.86)

known as the spin −2 Wald identity [190]. A prime operation gives the spin +2 Wald
identity,

O0T0 = S0E , (1.87)

where I have used O0 ≡ O′
4, T0 ≡ T ′

4 , and S0 ≡ S ′
4. Note, E is unaffected by the prime

operation.

The key step in CCK metric reconstruction is to utilise the adjoint of the Wald identity,

T †
4 O0 = ES†

4 , (1.88)

Where E = E † and O†
4 = O0 has been used [190]. Suppose there exists a Hertz

potential, Φ, which satisfies O0[Φ] = 0; then, acting Eq. (1.88) on Φ gives

ES†
4 [Φ] = 0. (1.89)

Hence, S†
4 [Φ] satisfies the vacuum linearised EFE. Therefore, one can obtain a real

metric perturbation (ĥab) from Φ,

ĥab = Re[S†
4 [Φ]]ab. (1.90)

Crucially this proof only holds in vacuum (as Eq. (1.89) is homogeneous).

Calculating a vacuum metric perturbation in this way requires a Hertz potential. To
find an appropriate Hertz potential, one can use T4[ĥab] = ψ

(1)
4 . Assuming ψ

(1)
4 is

known (calculated from the Eq. (1.81)), one can solve the fourth-order differential
equation

T4[Re[S†
4 [Φ]]] = ψ

(1)
4 , (1.91)

for Φ. Similarly, one can calculate Φ from ψ
(1)
0 using

T ′
0 [Re[S†

4 [Φ]]] = ψ
(1)
0 . (1.92)
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By using the GHP prime operation, one can produce an analogous spin +2 CCK
procedure, where the metric is calculated from a Hertz potential satisfying O4[Φ] = 0
and ĥab = Re[S†

0 [Φ]]ab.

The CCK procedure may seem like a circuitous method for finding a solution to the
linearised EFE. However, all the equations involved are separable, whereas the
linearised EFE in Kerr are non-separable. Hence, CCK metric reconstruction is less
numerically expensive. This method has already been successfully used for first-order
self-force calculations in Kerr [114]. However, the vacuum condition makes it
inconsistent at second order. In Chap. 5, I discuss the extension of CCK metric
reconstruction to non-vacuum and second order[86].

1.8.1 The radiation gauges

The CCK procedure yields a metric perturbation in a radiation gauge. I will analyse
the metric perturbation produced by the spin +2 form of CCK metric reconstruction
to describe the radiation gauge. For this, I require the explicit form of S†

0 [Φ],

(S†
0Φ)ab =

1
2

[︂
− lalb(ð− τ)(ð+ 3τ)− mamb(Þ− ρ)(Þ+ 3ρ)

+ l(amb)
{︁
(Þ− ρ + ρ̄)(ð+ 3τ) + (ð− τ + τ̄′)(Þ+ 3ρ)

}︁]︂
Φ. (1.93)

As (S†
0Φ)ab has no na components, the metric perturbation satisfies [118]

ĥabla = 0; (1.94)

this gauge is known as the outgoing radiation gauge as conventionally la is aligned
with the outgoing principal null direction. For spin −2 CCK metric reconstruction, the
resulting metric is in the ingoing radiation gauge, ĥabna = 0.

Price, Shankar, and Whiting [158] showed that any metric perturbation (satisfying the
linearised EFE) can be transformed into the radiation gauge by using gauge degrees of
freedom. However, by again analysing the form of Eq. (1.93), one can clearly see there
is a further condition on the spin +2 (and spin −2) CCK metric perturbation:

ĥabmam̄b = 0. (1.95)

In the context of the radiation gauge, where hln = 0 by definition, Eq. (1.95) is
equivalent to the trace-free condition, gabhab = 0.

Satisfying Eqs. (1.95) and (1.95) for a generic non-vacuum metric perturbations
cannot, in general, be achieved with a gauge transformation [158]. A trace-free
radiation gauge metric perturbation satisfies Ell = 0 (see appendix A of Ref. [86]);
hence, the stress-energy tensor must satisfy Tll = 0. Therefore, the existence of a
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trace-free radiation gauge metric perturbation cannot be achieved with gauge
constraints alone; physical constraints on the stress-energy are also required. This
property is consistent with CCK metric reconstruction being derived under the
restriction of the perturbation being vacuum.

The vacuum condition may seem stringent. However, first-order self-force
calculations nearly satisfy this condition. The source (Tab) is vacuum everywhere
except on the worldline. Hence, CCK metric reconstruction can be used everywhere
off the worldline consistently. One can extend CCK metric reconstruction to include
the worldline, but the resulting metric perturbation does not satisfy the linearised EFE
on the worldline. The resulting metric perturbation must be “completed”, as I
describe in Sec 1.8.2.

In the presence of the particle, the radiation gauge suffers from pathological (gauge)
singularities. These can come in four forms. The first three are string-like singularities,
either emanating from the worldline of the particle out to infinity, from the worldline
to the supermassive black hole horizon, or both (see Fig. 1.7). The final, most useful
form restricts the singularity to a sphere (of constant BL radius) that intersects the
particle at each instant. Pound, Merlin, and Barack [116] formulated the no-string
radiation gauge to calculate the first-order self-force. They built the no-string solution
by effectively gluing together the smooth halves of two half-string gauges. This
process introduces a step function and delta function (with an unknown coefficient)
on the surface where the two gauges meet. However, one can still calculate the
first-order self-force by taking limits from both sides of the sphere. The radiation
no-string gauge were first used by Refs. [95, 96, 170, 171] for self-force calculations.
Building on this approach, the first-order self-force for generic orbits in Kerr has been
calculated by van de Meent and Shah [115, 113, 114]). In Ref. [115] the self-force results
were used to calculate some unknown high order Post-Newtonian terms.

As products of the first-order metric perturbation source second-order calculations,
the gauge singularities that arises in CCK metric reconstruction are problematic.
Products of radiation gauge singularities cause second-order equations to have
ill-defined sources. This major obstacle for second-order calculations is addressed in
Chap. 5.

1.8.2 Metric reconstruction completion piece

Initially, one may question how a perturbed Weyl scalar could contain sufficient
information to reconstruct an entire metric. Wald’s theorem [189] states that ψ

(1)
4 (ψ(1)

0 )
contains all the information in vacuum metric perturbations apart from mass and
angular momentum perturbations. Consequently, CCK metric reconstruction recovers
the entire metric perturbation, up to the mass and spin contributions. The mass and
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FIGURE 1.7: The various types of pathological singularities in the metric perturbations
produced from CCK metric reconstruction with a point particle source. All these so-
lutions are in the trace-free radiation gauge and do not satisfy the EFE on the particle.

Image courtesy of Adam Pound.

spin in the metric perturbation does not contribute to ψ
(1)
4 , corresponding to T4 having

a kernel.

The mass and spin perturbations are known as the completion piece. For globally
vacuum perturbations, the completion piece can be absorbed into the background
mass and spin parameters. Self-force perturbations are non-vacuum on the particle,
this effectively divides the spacetime into two vacuum regions (similarly to the
no-string gauge in Fig. 1.7), with different completion pieces in each region. One must
determine the relative difference between these two regions’ mass and angular
momentum content. Merlin et al. [118] developed a method for calculating the
completion piece by constructing gauge-invariant fields using the complete metric
perturbation. Imposing continuity off the particle (for these gauge-invariant fields)
constrained the mass and angular-momentum degrees of freedom, producing the
metric perturbation completion piece. Ref. [115] also provided a method for
calculating the completion piece. The completion piece is necessary to obtain a
solution to the EFE on the particles radius.

Additionally, there is a “gauge completion piece” [187]. This piece is required to
ensure that the coordinate frequencies have the same meaning on either side of the
no-string solution [104, 169, 31, 183]. The gauge completion piece is calculated by
imposing continuity of certain metric components at r = rp [104]. In Cap. 5, I give a
simpler method, with a more physical motivation, for calculating the gauge
completion piece (and completion piece).

Nevertheless, their remains a missing radial delta function in the no-string solution (to
completely satisfy the EFE). In Chap. 5 I show how the missing radial delta function
can be obtained using Ref. [86].
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1.9 Goals and summary of this thesis

A key ingredient in achieving LISA science goals is calculating the dissipative piece of
second-order self-force in Kerr. In the following chapters, I formulate methods to help
accomplish this, and I implement some of them in the simpler case of a Schwarzschild
background. The second-order methods are derived mainly from the extension of
first-order methods I have reviewed in this chapter. Whilst this work does not
encompass a complete formulation for calculating the second-order self-force in Kerr,
the methods provided show key progress and will likely perform crucial roles in
future efforts.

In Chap. 2, I analyse the second-order Teukolsky equation. I review the known
extension of the Teukolsky equation to second order [45], and discuss why it does not
appear to have a source that is well defined as a distribution for self-force calculations
(in a region containing the worldline). I then derive a new form of the second-order
Teukolsky equation and show its source to be integrable for self-force calculations (in
a highly regular gauge [151]). This new second-order Teukolsky equation solves for a
quantity similar to ψ

(2)
4 , which can be used as a starting point for second-order metric

reconstruction [86]. Alternatively, if it can be shown that the evolution of the Carter
constant can be extracted from ψ

(2)
4 (Sec. 1.7.4), the dissipative piece of the

second-order self-force could be extracted directly from ψ
(2)
4 . I round this chapter off

by deriving a quadratic Wald identity.

In Chap. 3, I present methods for calculating second-order gauge invariants. I
formalise practical methods for gauge fixing at first order. Using the valuable property
that ψ

(2)
4 transforms more simply than a generic second-order quantity, I develop

techniques for constructing second-order gauge-invariant quantities using first-order
gauge-fixing schemes. Further, I discuss how gauge invariants will be helpful for
EMRI calculations when they are associated with a good gauge. I provide a method for
gauge fixing to the Bondi–Sachs gauge and formulate a gauge-invariant5

asymptotically flat quantity by producing an algorithm to fix the BMS frame. By
working with these quantities that respect the spacetime’s physical asymptotic
flatness, this procedure entirely sidesteps one of the major hurdles in second-order
self-force calculations, infrared divergences [149].

Chap. 4 describes my role in a collaboration solving the second-order Teukolsky
equation in Schwarzschild for quasi-circular orbits. I present my key contributions,
summarise the full calculation, and discuss the significance of this work in the field of
self-force and gravitational wave science. I derive a general formula for calculating the
modes of the second-order Teukolsky source from the first-order metric perturbation

5The quantity is gauge invariant up to gauge transformations along the Killing vectors of Kerr space-
time. The remaining gauge freedoms will be constrained using the transformation of the first-order stress-
energy tensor in future work.
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in Schwarzschild. I then present the second-order Teukolsky source calculated from a
Lorenz gauge metric perturbation for quasi-circular orbits in Schwarzschild. I show
how the convergence of the source near I+can be improved by transforming towards
the Bondi–Sachs gauge. This improved convergence makes our method for solving
the radial Teukolsky equation viable with trivial boundary conditions (using
hyperboloidal slicing and spectral methods [106]). I also describe the mode
decompositions I have calculated for the slow-time-derivative piece of the source and
the correction to the puncture near the worldline. Finally, I summarise the remaining
pieces of the source that need including; once complete we will be able to calculate
fluxes, evolve inspirals and generate waveforms to first-post adiabatic accuracy.

In Chap. 5, I discuss the recent extension of CCK metric reconstruction to non-vacuum
perturbations [86] by Greens, Hollands, and Zimmerman (GHZ). I comment on
Ref. [86]’s prospect for helping second-order self-force calculations. I also summarise
my paper (with collaborators) [183] which formalises how to best implement GHZ for
self-force calculations. I present my major contribution to this work, implementing
GHZ at first order for a stationary perturbation in flat spacetime. This analysis gave
useful insights into implementing the method for non-stationary point mass in Kerr. It
also helped us to formalise a method for calculating a regular metric perturbation
using gauge transforms and a puncture scheme.

Finally, in Chap. 6, I conclude this thesis, summarising the significant results and their
effect on second-order self-force modelling. I also describe future avenues for progress
and exploration in second-order self-force.
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Chapter 2

Second-Order Teukolsky Equations

2.1 Introduction

The most direct method to perform second-order black hole perturbation theory is
solving the second-order linearised EFE, Eq. (1.16), for h(2)ab . However, in Kerr,
Eq. (1.16) is a set of ten non-separable equations (similarly to the first-order linearised
EFE equation, Eq. (1.15), as discussed in the previous chapter). Solving non-separable
PDEs directly for h(2)ab is computationally expensive. Methods are being developed to
integrate such r-θ (the t and ϕ dependencies separate trivially due to the symmetries
of the Kerr black hole) PDEs in the self-force problem. Recently, results have been
obtained for a scalar charge on a circular orbit around a Kerr black hole at first order
by solving the r-θ PDE numerically [136].

Alternatively, a natural approach to second-order calculations is extending the
separable first-order methods in Kerr. The Teukolsky equation (Eq. (1.79)) seems the
auspicious route forward, as it solves for a single variable and is separable into ODEs.
Their are two different extensions of the Teukolsky equation at second order: one by
Campanelli and Lousto [45], and one to be published in my work [174]. The second
case also appeared implicitly in the non-linear metric reconstruction formalism of
Ref. [86], which I refer to as GHZ metric reconstruction).

This chapter is split into three sections. In the first, I review the second-order
Teukolsky equation derived by Campanelli and Lousto [45] (providing minor
corrections to their expressions for the perturbed spin coefficients [102]). I also discuss
why its form is not integrable for general second-order self-force calculations. In the
second section, I present my derivation of the new form of the second-order Teukolsky
equation [174], which I show, in principle, has a well-defined source for self-force
calculations. In the final section, I derive a quadratic Wald identity by combining the
two second-order Teukolsky equations. The work in this chapter will be published in
Ref. [174] in the near future.
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2.2 The Campanelli–Lousto–Teukolsky equation

2.2.1 Overview

Campanelli and Lousto [45] successfully extended the Teukolsky equation to second
order in 1999. As described in Sec. 1.7.3, Teukolsky derived his eponymous equation
by manipulating certain first order perturbed Ricci and Bianchi identities within the
NP formalism. Campanelli and Lousto repeated this procedure up to any given order
(n) by using analogous manipulations. Crucially, they move all quantities of an order
less than n to the right-hand side (RHS), treating them as source terms. This produces
an nth-order Teukolsky equation,

O4[ψ
(n)
4 ] = S (n)

4CL[h
(1)
ab , . . . , h(n−1)

ab , h(1)ab , . . . , h(n−1)
ab ] + S (n)

4 [T(1)
ab , . . . , T(n)

ab , h(1)ab , . . . , h(n−1)
ab ].

(2.1)

As the same operator, O4, appears on the left-hand side as in the first order Teukolsky
equation (Eq. (1.81)) the Campanelli–Lousto–Teukolsky equation is separable. The
equation is for a quantity (ψ(n)

4 ) which contains all the information about the
second-order gravitational waves [45].

The Campanelli–Lousto–Teukolsky source terms are given by

S (n)
4CL[h

(1)
ab , . . . , h(n−1)

ab , h(1)ab , . . . , h(n−1)
ab ] =

n−1

∑
p=1

(︄[︂
d̄(0)3 (δ + 4β − τ)(n−p)

− d̄(0)4 (D + 4ϵ − ρ)(n−p)
]︂
ψ
(p)
4 −

[︂
d̄(0)3 (∆ + 4µ + 2γ)(n−p) − d̄(0)4 (δ̄ + 4π + 2α)(n−p)

]︂
ψ
(p)
3

+ 3
[︂
d̄(0)3 ν(n−p) − d̄(0)4 λ(n−p)

]︂
ψ
(p)
2 + 3

[︂
(d̄(0)3 − 3π)(n−p)ν(p) − (d̄(0)4 − 3µ)(n−p)λ(p)]

)︄
,

(2.2)

(note, S (n)
4CL is a non-linear operator) and

S (n)
4 [T(1)

ab , ...T(n)
ab , h(1)ab , ..h(n−1)

ab ] = 4π

[︄
n

∑
p=1

(︃
d̄(0)4

[︂
(δ̄ − 2τ̄ + 2α)(n−p)T(p)

nm̄

− (∆ + 2γ − 2γ̄ + µ̄)(n−p)T(p)
m̄m̄

]︂
+ d̄(0)3

[︂
(∆ + 2γ + 2µ̄)(n−p)T(p)

nm̄

− (δ̄ − τ̄ + 2β̄ + 2α)(n−p)T(p)
nn

]︂)︃]︄
. (2.3)

I present here some minor corrections to Ref. [45]: the sum in Eq. (2.6) runs to n
(rather than to n − 1), and corrected expressions for the perturbed spin coefficients
(κ(1), σ(1), ...) are given in Appendix A.
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For clarity, and to analyse the behaviour of the source, I explicitly express the
second-order Campanelli–Lousto–Teukolsky equation as

O4[ψ
(2)
4 ] = S (2)

4CL[h
(1)
ab , h(1)ab ] + S (2)

4 [T(1)
ab , T(2)

ab , h(1)ab ], (2.4)

where

S (2)
4CL[h

(1)
ab , h(1)ab ] =(︄[︂

d̄(0)3 (δ + 4β − τ)(1) − d̄(0)4 (D + 4ϵ − ρ)(1)
]︂
ψ
(1)
4 −[︂

d̄(0)3 (∆ + 4µ + 2γ)(1) − d̄(0)4 (δ̄ + 4π + 2α)(1)
]︂
ψ
(1)
3

+ 3
[︂
d̄(0)3 ν(1) − d̄(0)4 λ(1)

]︂
ψ
(1)
2 + 3

[︂
(d̄3 − 3π)(1)ν(1) − (d̄4 − 3µ)(1)λ(1)]

)︄
, (2.5)

and

S (2)
4 [T(1)

ab , T(2)
ab , h(1)ab ] =

4π

[︄
2

∑
p=1

(︃
d̄(0)4

[︂
(δ̄ − 2τ̄ + 2α)(2−p)T(p)

nm̄ − (∆ + 2γ − 2γ̄ + µ̄)(2−p)T(p)
m̄m̄

]︂
+ d̄(0)3

[︂
(∆ + 2γ + 2µ̄)(2−p)T(p)

nm̄ − (δ̄ − τ̄ + 2β̄ + 2α)(2−p)T(p)
nn

]︂)︃]︄
. (2.6)

To understand how S (n)
4 relates to the Teukolsky source operator S4 in (1.79), one can

observe how S (2)
4 naturally splits up into S4-like pieces. To show this, I define

S̃4[T
(1)
ab , h(1)ab ] :=4π

(︃
d̄(0)4

[︂
(δ̄ − 2τ̄ + 2α)(1)T(1)

nm̄ − (∆ + 2γ − 2γ̄ + µ̄)(1)T(1)
m̄m̄

]︂
+ d̄(0)3

[︂
(∆ + 2γ + 2µ̄)(1)T(1)

nm̄ − (δ̄ − τ̄ + 2β̄ + 2α)(1)T(1)
nn

]︂)︃
, (2.7)

which is identical to S4[T
(1)
ab ] except some of the zeroth-order quantities are now

first-order quantities (due to the dependence on h(1)ab ). I can now write Eq. (2.6) as

S (2)
4 [T(1)

ab , T(2)
ab , h(1)ab ] = S4[T

(2)
ab ] + S̃4[T

(1)
ab , h(1)ab ]. (2.8)

Note, in the first-order Teukolsky equation (Eq. (1.79)) S4 acts on T(1)
ab ; in the

second-order Campanelli–Lousto–Teukolsky equation, S4 acts on T(2)
ab .
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Ref. [45] also noted how ψ
(2)
4 contains both a linear-in-h(2)ab piece and a

quadratic-in-h(1)ab piece; that is,

ψ
(2)
4 = T4[h

(2)
ab ] + δ2ψ4[h

(1)
ab , h(1)ab ]

= ψ
(2)
4L + ψ

(2)
4Q , (2.9)

where ψ
(2)
4L = T4[h

(1)
ab ] and ψ

(2)
4Q = δ2ψ4[h

(1)
ab , h(1)ab ]. Eq. (2.9) defines the quadratic Weyl

scalar operator δ2ψ4 which I give in terms of NP quantities in a Mathematica notebook
in the supplementary materials (to derive this expression I used the perturbed tetrad
defined in App. A).

2.2.2 Utility in self-force calculations

For Eq. (2.4) to be solvable, its source must be well defined. The solution to Eq. (2.4)
can always be written as a four-dimensional integral of the source against a Green’s
function. But, for the solution to exist, S (2)

4CL[h
(1)
ab , h(1)ab ] must be well defined as a

distribution, such that its integral against a Green’s function is well defined. Here I
show, that for generic second-order self-force calculations, the singular nature of h(1)ab

and T(1)
ab near the worldline (γ) causes the source to be ill-defined.

As a preliminary investigation, I first show that S (2)
4CL[h

(1)
ab , h(1)ab ] is not locally integrable

(if it were locally integrable it would be well defined). In self-force, near the worldline,
generally, h(1)ab ∼ 1

r (where again r is the proper spatial distance from γ). The
second-order Campanelli–Lousto source, S (2)

4CL[h
(1)
ab , h(1)ab ] in Eq. (2.5), is a complicated

fourth-order differential operator, quadratic in h(1)ab . Hence, one can expect its most
singular scaling to be

S (2)
4CL[h

(1)
ab , h(1)ab ] ∼ (∂r∂rh(1)ab )(∂r∂rh(1)ab )

∼ r−6. (2.10)

Next, I check if S (2)
4CL[h

(1)
ab , h(1)ab ] is locally integrable by attempting to integrate within a

small region near the worldline (r < R),

∫︂ R

0
S (2)

4CL[h
(1)
ab , h(1)ab ]r

2dΩ (2.11)

∼
∫︂ R

0
r−6r2dΩ =

[︃
− 4π

3r3

]︃R

0
. (2.12)

Clearly − 4π
3r3 evaluated at r = 0 is not defined; hence, S (2)

4CL[h
(1)
ab , h(1)ab ] is not locally

integrable. This suggests Eq. (2.4) may not be well defined as a distribution on any
domain that includes r = 0.
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A lack of local integrability is not sufficient to show S (2)
4CL[h

(1)
ab , h(1)ab ] is ill-defined. It

could still be well defined as a distribution if it could be expressed as a linear operator
acting on a well-defined distribution. However, S (2)

4CL[h
(1)
ab , h(1)ab ] is expressed as a

quadratic operator acting on a singular distribution in Ref. [45], and hence, appears to
be not well defined. Terms may cancel, leaving a well-defined source (in certain
gauges), but this seems unlikely and challenging to prove due to the source being
highly convoluted and involving a quadratic operator.

There is an even more problematic part of the source, S̃4[T
(1)
ab , h(1)ab ], which is ill defined

as T(1)
ab and h(1)ab are both singular on γ. T(1)

ab contains a Dirac delta function, and h(1)ab

behaves as ∼ 1
r . Hence, the general form of S̃4[T

(1)
ab , h(1)ab ] is a differential operator

acting on 1
|xi−xi

p|2
δ3(xi − xi

p) (where xi
p is the spatial position of the worldline) near γ.

The quantity 1
|xi−xi

p|2
δ3(xi − xi

p) is manifestly ill-defined. Hence, this piece of the source
is very problematic, and it seems unlikely to be ameliorated by a gauge transform.

The remaining part of the source, S4[T
(2)
ab ], is well defined in specific gauges. S4[T

(2)
ab ]

can be shown to be well defined as a distribution as S is a smooth linear operator and
Ref. [185] has shown that in a highly regular gauge (and any gauge smoothly related
to the Lorenz gauge) T(2)

ab is well defined as a distribution. Hence, S4[T
(2)
ab ] is well

defined as a distribution in such gauges.

The issue of an ill-defined source is not exclusive to self-force. It can appear for any
second-order black hole perturbation theory calculation where there exists a point (or
set of points) where h(1)ab is singular. In Sec 2.3, I derive a second-order Teukolsky
equation with a source that is well defined as a distribution for any problem in which
δ2Gab[h

(1)
ab , h(1)ab ] and T(2)

ab is well defined (which includes the self-force problem in a
highly regular gauge [185]).

Alternatively, one could avoid the problem of an ill-defined source by implementing a
puncture scheme (see Sec. 1.6.3.5). To describe such a puncture scheme, I first consider
points close to but off the worldline. This region is vacuum, with T(1)

ab = 0 and
T(2)

ab = 0. To isolate the regular piece of ψ
(2)
4 , I introduce a puncture and residual split

for h(1)ab and h(2)ab . That is, h(1)ab = h(1)Rab + h(1)Pab and h(2)ab = h(2)Rab + h(2)Pab . The puncture
pieces h(1)Pab and h(2)Pab contain the singular behaviour and can be calculated
analytically [153]. I can define ψ

(2)P
4 as

ψ
(2)P
4 = T [h(2)Pab ] + δ2ψ4[h

(1)P
ab , h(1)Pab ] + δ2ψ4[h

(1)P
ab , h(1)Rab ] + δ2ψ4[h

(1)R
ab , h(1)Pab ]

= ψ
(2)P
4L + ψ

(2)P
4Q . (2.13)

Now one can solve Eq. (2.4) directly for the residual piece ψ
(2)R
4 , using

O[ψ
(2)R
4 ] = S (2)

4CL[h
(1)
ab , h(1)ab ] + S4[T

(2)
ab ] + S̃4[T

(1)
ab , h(1)ab ]−O[ψ

(2)P
4 ]. (2.14)
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This equality can be extended down to the worldline such that one can solve for a
ψ
(2)R
4 valid for any point in spacetime. The singular behaviour in ψ

(2)P
4Q will cancel

with the singular behaviour in S (2)
4CL[h

(1)
ab , h(1)ab ], S4[T

(2)
ab ], and S̃4[T

(1)
ab , h(1)ab ] making the

expression well defined distributionally.

2.2.3 Infinitesimal tetrad-rotation and gauge dependence of ψ
(2)
4

Note, ψ
(2)
4 (unlike ψ

(1)
4 ) is not infinitesimal tetrad rotation invariant. This can be seen

from the form of an infinitesimal tetrad rotation of type I , under which ψ
(2)
4

transforms as [48]

ψ
′(2)
4 =ψ

(2)
4 + 4aψ3 + 6a2ψ2 +O(ε3), (2.15)

where a is a complex function and a = O(ε). Given that ψ3 and ψ2 are also given as an
expansion in ε, one can write,

ψ
′(2)
4 =ψ

(2)
4 + 4a(ψ(0)

3 + ψ
(1)
3 ) + 6a2ψ

(0)
2 +O(ε3) (2.16)

=ψ
(2)
4 + 4aψ

(1)
3 + 6a2ψ

(0)
2 +O(ε3), (2.17)

where I have used ψ
(0)
3 = 0 in a Petrov type D background (with the tetrad basis

vectors la and na aligned with the principle null directions). As ψ
(1)
3 and ψ

(0)
2 are

non-zero, ψ
(2)
4 is not infinitesimal tetrad rotation invariant. Campanelli and Lousto

[45] give a method for constructing a infinitesimal tetrad rotation invariant quantity
from ψ

(2)
4 .

Similarly, unlike ψ
(1)
4 , ψ

(2)
4 is not (infinitesimal) gauge invariant. ψ

(2)
4 transforms under

a second-order gauge transformation (defined by the gauge vector ξa = ξa
(1) + ξa

(2)) as

ψ
′(2)
4 =ψ

(2)
4 + Lξ⃗(1)

ψ
(1)
4 +

1
2
Lξ⃗(1)

Lξ⃗(1)
ψ
(0)
4 + Lξ⃗(2)

ψ
(0)
4 (2.18)

=ψ
(2)
4 + Lξ⃗(1)

ψ
(1)
4 , (2.19)

where I have used ψ
(0)
4 = 0 in a Petrov type D background (again with the tetrad basis

null vectors la and na aligned with the principle null directions). This second-order
gauge transform is significantly simpler than an arbitrary second-order quantity
transformation, especially since there is no ξa

(2) dependence. This is a property which I

will take advantage of in Chap. 3). However, as ξa
(1) appears in Eq. (2.19), ψ

(2)
4 is not

gauge invariant. Campanelli and Lousto [45] also gave a method for constructing an
gauge-invariant quantity from ψ

(2)
4 ; however, their method involves solving PDEs, so

it is not ideal for practical application.
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2.3 The reduced second-order Teukolsky equation

2.3.1 Overview

Here I present a new form of the second-order Teukolsky equation. For want of a
better name, I shall call it the reduced second-order Teukolsky equation, to differentiate it
from the Campanelli–Lousto–Teukolsky Eq. (2.4). The reasoning for this name is that
it solves for a field variable that is purely dependent on h(2)ab (i.e., the field variable has
no direct dependence on h(1)ab ).

Like the Campanelli–Lousto–Teukolsky equation, Eq. (2.4), the reduced second-order
Teukolsky equation is separable; but, dissimilarly, it solves for a naturally infinitesimal
tetrad rotation invariant quantity. The significant advantage of the reduced
second-order Teukolsky equation is that its source is well defined as a distribution for
self-force calculations in a highly regular gauge [151] (as I will show in Sec. 2.3.2) and
hence is solvable without requiring a puncture scheme.

The derivation of the reduced second-order Teukolsky equation is straightforward
and can be trivially extended to any order. I begin with Wald’s operator identity [190],
Eq. (1.86). Applying this identity to h(2)ab , one obtains

O4T4[h
(2)
ab ] = S4E [h(2)ab ],

⇒ O4[ψ
(2)
4L ] = S4

[︁
T(2)

ab − δ2G[h(1)ab , h(1)ab ]
]︁
, (2.20)

the reduced second-order Teukolsky equation, where ψ
(2)
4L := T4[h

(2)
ab ] (see Eq. (2.9))

and I have used Eq. (1.16).

Similarly to Eq. (2.4), the operator on the LHS of Eq. (2.20) is the Teukolsky operator.
However, the Teukolsky operator is acting not on the complete ψ

(2)
4 , but only on ψ

(2)
4L

(the linear piece of ψ
(2)
4 , see Eq. (2.9)). No information is lost about h(2)ab by solving for

ψ
(2)
4L rather than ψ

(2)
4 , as they contain identical h(2)ab content. Subsequently, given that

h(1)ab is known, one can easily construct ψ
(2)
4 from ψ

(2)
4L using Eq. (2.9), if required. In

many gravitational wave contexts this will likely be unnecessary due to the leading
order asymptotic behaviour (as r → ∞, where r is the global radial coordinate) of ψ

(2)
4

and ψ
(2)
4L being identical in asymptotically flat gauges. As ψ

(2)
4Q is quadratic in h(1)ab ,

assuming h(1)ab is in an asymptotically gauge, then ψ
(2)
4Q must be O4(r−2); hence,

ψ
(2)
4 = ψ

(2)
4L +O(r−2).

The existence of the reduced second-order Teukolsky equation is implicit in the
non-linear metric reconstruction of Ref. [86] (which I will review in Chap. 5). It was
derived independently by myself and presented at GR22 in July 2019 [176], and will
be explicitly presented in the literature in my paper Ref. [174]. Next, I discuss the
infinitesimal tetrad rotation invariant nature of ψ2

4L and its gauge dependence.
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Following that, I analyse the advantages of Eq. (2.20) compared to Eq. (2.4), showing
its source is well defined in a highly regular gauge.

2.3.2 Enhanced utility in self-force calculations

The important difference between Eq. (2.4) and Eq. (2.20) is the form of their
respective sources. As discussed in Sec. 2.2.2, due to the singular behaviour of h(1)ab

(and T(1)
ab ) on γ, the source in Eq. (2.4) is not, in general, well defined for self-force

calculations. Now I shall show that the source of Eq. (2.20) is distributionally well
defined in a highly regular gauge.

First note, the Teukolsky source operator S4 (Eq. (1.80)), which appears on the RHS of
Eq. (2.20), is linear. Using distribution theory [74] one can prove that
S4
[︁
T(2)

ab − δ2G[h(1)ab , h(1)ab ]
]︁

is well defined as a distribution if T(2)
ab and δ2G[h(1)ab , h(1)ab ] are

both well defined as distributions (as S4 is linear and a linear operator acting on a well
defined distribution is well defined [74],).

First, I analyse if δ2G[h(1)ab , h(1)ab ] is well defined in a self-force context. In a generic
gauge δ2G[hab, hab] ∼ 1

r4 and not well defined as a distribution. Ref. [151, 185] show

that in the highly regular gauge δ2Gab[h
(1)
ab , h(1)ab ] is well defined. Pound [151] showed,

in a highly regular gauge, the most problematic part of δ2Gab behaves as,

δ2Gab[hHRS
ab , hHRS

ab ] ∼ 1
r2 , (2.21)

near γ where hHRS
ab is the singular part of the metric perturbation in the highly regular

gauge. Such a function is locally integrable, the r2 factor in
√︂

det(gµν) in Eq. (2.11)

makes the integral non-singular. That is, Pound [151] showed δ2G[hHR
ab , hHR

ab ] is well
defined as a distribution; hence, S4

[︁
δ2G[hHR

ab , hHR
ab ]
]︁
) is well defined as distribution.

There is, however, the issue of obtaining hHR
ab . Current first-order self-force

calculations for generic orbits in Kerr [114] use CCK metric reconstruction [50], which
puts the metric perturbation in the no-string radiation gauge. This results in h(1)ab

containing a delta function (with an unknown coefficient) and jump singularities on
the sphere containing the worldline. Chapter 5 discusses ameliorating these
singularities. Additionally, a method for performing a local gauge transformation
from the Lorenz gauge to a highly regular gauge is given in Sec. 3.7.

Ref. [185] has shown that T(2)
ab is also well defined as a distribution in a highly regular

gauge (and gauges smoothly related to the Lorenz gauge). Hence, in a highly regular
gauge (and gauges smoothly related to the Lorenz gauge) Eq. (2.20) has a well-defined
source and is solvable without requiring a puncture scheme.
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Whilst a puncture scheme may not be necessary to solve Eq. (2.20), it could still be
implemented to provide some advantages. A punctured source is less singular,
making the equation easier and faster to solve numerically. Also, a puncture scheme
equation will solve directly for a residual field. To calculate the full self-force residual
(or regular) fields are necessary. However, the dissipative piece of the second-order
self-force can likely be extracted from ψ

(2)
4L or its residual field (once appropriate flux

balance laws are derived). The disadvantage of a puncture scheme is it is challenging
and time consuming to implement.

Next, I summarise how to implement a puncture scheme with Eq. (2.20). First note, off
the worldline (γ) spacetime is vacuum; in this region Eq. (2.20) reduces to

O4[ψ
(2)
4L ] = S4

[︁
− δ2G[h(1)ab , h(1)ab ]

]︁
∀ xα /∈ γ.

The goal of a puncture scheme is to approximate the regular metric perturbation on γ

without introducing non-distributional singularities. Implementing a puncture
scheme (see Sec. 1.6.3.5) defines

h(2)ab = h(2)Rab + h(2)Pab , (2.22)

where h(2)Rab is the residual field and h(2)Pab the puncture field. The residual field
satisfies the second-order EFE equation

E [h(2)Rab ] = −δ2G[h(1)ab , h(1)ab ]− E [h(2)Pab ]. (2.23)

Returning to my derivation of the reduced second-order Teukolsky equation (Eq.
(2.20)), instead of applying the Wald operator identity (1.86) to h(2)ab , one can apply it to
h(2)Rab , giving

O4T4[h
(2)R
ab ] = S4E [h(2)Rab ],

⇒O4[ψ
(2)R
4L ] = S4

[︁
− δ2G[h(1)ab , h(1)ab ]− E [h(2)Pab ]

]︁
,

⇒O4[ψ
(2)R
4L ] = S4

[︁
− δ2G[h(1)ab , h(1)ab ]

]︁
−O4[ψ

2P
4L ] ∀ xα. (2.24)

By the definition of the puncture, the source of Eq. (2.24) is well defined as a
distribution (in any gauge); i.e., one can solve for a well defined ψ

(2)R
4L .

Far away from the worldline, ψ
(2)
4L = ψ

(2)R
4L . That is, the second-order gravitational

waves being dissipated away from the system are also contained in ψ
(2)R
4L . Hence, if

appropriate balance laws are derived, one expects that the dissipative piece of the
second-order self-force could be extracted from ψ

(2)R
4L directly. This could be used to

produce waveforms at first post-adiabatic accuracy. As discussed in Sec. 1.7.4, work
on deriving balance laws has already begun. If balance laws are unobtainable, one
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could instead use ψ
(2)
4L as a vital first step in second-order metric reconstruction, as I

discuss in Chap. 5.

2.3.3 The infinitesimal tetrad-rotation invariance and gauge dependence of
ψ2

4L

Solving the reduced second-order Teukolsky equation for ψ
(2)
4L offers the advantage

that ψ
(2)
4L is infinitesimal tetrad rotation invariant, unlike ψ

(2)
4 . This can be proved by

first noting that ψ
(1)
4 is infinitesimal tetrad rotation invariant [48] and ψ

(1)
4 := T4[h

(1)
ab ].

Since h(1)ab has no tetrad dependencies, T4 must also be infinitesimal tetrad rotation
invariant. Hence, ψ

(2)
4L := T4[h

(2)
ab ] is also infinitesimal tetrad rotation invariant (as h(2)ab ,

similarly, has no tetrad dependence). The infinitesimal tetrad dependence of ψ
(2)
4

comes solely in ψ
(2)
4Q . To derive the expression for ψ

(2)
4Q in the supplementary material I

used the perturbed tetrad defined in App. A.

The property of infinitesimal tetrad rotation invariance is beneficial because it is
equivalent to local Lorentz frame invariance [48], allowing for a straightforward
comparison of results and a freedom to choose an advantageous tetrad.

An adverse property of ψ
(2)
4L , like ψ

(2)
4 , is its (infinitesimal) gauge dependence (unlike

ψ
(1)
4 , which is gauge independent). Here, I analyse the precise gauge dependence of

ψ
(2)
4L , showing that (like ψ

(2)
4 ) its gauge dependence is significantly simpler than a

generic second-order scalar. This will lead us naturally onto Chapter 3, where I will
use this simplification to construct a gauge-independent version of ψ

(2)
4L (via gauge

fixing).

Using the definition of a gauge transformation in Sec. 1.6.2, and denoting quantities in
the new gauge with a prime, one finds that ψ

(2)
4L transforms as

ψ
′(2)
4L = T4[h

′(2)
ab ]

= T4[h
(2)
ab + Lξc

(2)
gab + Lξc

(1)
h(1)ab +

1
2
Lξc

(1)
Lξc

(1)
gab]

= ψ
(2)
4L + T4[Lξc

(1)
h(1)ab +

1
2
Lξc

(1)
Lξc

(1)
gab]. (2.25)

Here, I have used T4[Lξc
(2)

gab] = 0 (equivalent to ψ
(1)
4 being gauge invariant [48]).

Hence, no second-order gauge vector appears in this second-order gauge
transformation for ψ

(2)
4L . That is, ψ

(2)
4L is invariant under a second-order gauge

transformation. This is a significant simplification to the gauge transformation; but,
ψ
(2)
4L is still gauge dependent due to the presence of ξa

(1) in Eq. (2.25).
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2.4 The quadratic Wald identity

To finish the analysis of second-order Teukolsky equations, I show that the existence
of two distinct second-order Teukolsky equations implies the existence of a quadratic
Wald identity. Here I derive a quadratic Wald identity and discuss its relevance in
second-order calculations.

The derivation begins from the second-order Campanelli–Lousto-Teukolsky equation
(Eq. (2.4)), which I can express as

O4[ψ
(2)
4L ] +O4[ψ

(2)
4Q ] = S (2)

4CL[h
(1)
ab , h(1)ab ] + S4[T

(2)
ab ] + S̃4[T

(1)
ab , h(1)ab ], (2.26)

where I have used Eqs (2.8) & (2.9). I can replace O[ψ
(2)
4L ] using the reduced

second-order Teukolsky equation (Eq. (2.20)), giving

S4
[︁
T(2)

ab − δ2G[h(1)ab , h(1)ab ]
]︁
+O4[ψ

(2)
4Q ] = S (2)

4CL[h
(1)
ab , h(1)ab ] + S4[T

(2)
ab ] + S̃4[T

(1)
ab , h(1)ab ].

(2.27)

Moving δ2G[h(1)ab , h(1)ab ] to the right hand side, and cancelling the S4
[︁
T(2)

ab ] terms gives

O4[ψ
(2)
4Q ] = S4

[︁
δ2G[h(1)ab , h(1)ab ]

]︁
+ S (2)

4CL[h
(1)
ab , h(1)ab ] + S̃4[T

(1)
ab , h(1)ab ]. (2.28)

This is nearly an operator identity except for the T(1)
ab input. T(1)

ab can be replaced using
the linearised Einstein field equation, E [h(1)cd ]ab = T(1)

ab . Therefore, I can define
S̆4[h

(1)
ab , h(1)ab ] as

S̆4[h
(1)
ab , h(1)ab ] := S̃4[E [h(1)cd ]ab, h(1)ab ] = S̃4[T

(1)
ab , h(1)ab ]. (2.29)

Inputting Eq. (2.29) into Eq. (2.28), noting ψ
(2)
4Q := ψ

(2)
4Q [h

(1)
ab , h(1)ab ], gives a quadratic

operator identity

(O4ψ
(2)
4Q )[h

(1)
ab , h(1)ab ] = (S4

[︁
δ2G

]︁
+ S (2)

4CL + S̆4)[h
(1)
ab , h(1)ab ]. (2.30)

That is,

O4ψ
(2)
4Q = S4

[︁
δ2G

]︁
+ S (2)

4CL + S̆4. (2.31)

I name Eq. (2.31) the quadratic Wald identity due to its similarities with the (linear) Wald
identity, Eq. (1.86). Eq. (2.31) is far less elegant than the Wald identity, which suggests
it will be less useful for perturbative calculations. To understand the implications of
Eq. (2.31) on non-linear perturbation theory, S (2)

4CL and S̆ need to be studied further.
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Naively, one might have expected the Wald identity to extend to a quadratic form as

O4ψ
(2)
4Q = S4

[︁
δ2G

]︁
. (2.32)

But it seems unlikely this would hold as Eq. (2.31) informs one that this requires
S (2)

4CL + S̆4 = 0. The cancellations between S (2)
4CL and S̆4 have not yet been studied, but

if S (2)
4CL + S̆4 = 0 this would have huge implications on the

Campanelli-Lousto-Teukolsky equation, which would become

O4[ψ
(2)
4 ] = S4[T

(2)
ab ], (2.33)

which seems unlikely as generic second-order calculations are sourced by h(1)ab .
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Chapter 3

Gauge Fixing

In second-order perturbation theory, finding a gauge-invariant quantity is more
challenging than at first order. Gauge-invariants help compare results. They can also
help avoid problems that come from poor gauge choices and give straightforward
access to physical and geometrical information. Poor gauge choices can cause severe
problems in the self-force problem, such as increased singular behaviour on the
worldline and infrared divergences near I+and the horizon. A gauge-invariant can
exhibit undesirable behaviour as well, meaning it is insufficient to simply find a
generic gauge-invariant.

In this chapter, I develop methods for calculating gauge-invariants that are equal to
ψ
(2)
4L in fixed gauges. These invariants satisfy the reduced second-order Teukolsky

equation. I consider several such invariants. Ultimately, by choosing fixed gauges that
reflect the geometry of the perturbed spacetime (specifically, the null structure and
asymptotic structure), I ensure that the invariants have clear geometrical meaning and
manifestly represent the second-order waveform. The work in this chapter was
completed in collaboration with Jordan Moxon and will be published in Ref. [174]
shortly.

3.1 Gauge fixing second-order curvature scalars

As described in the previous chapter, should practical balance laws be derived,
Eq. (2.20) can be used to calculate the dissipative piece of the second-order self
self-force. However, ψ

(2)
4L is gauge dependent, meaning a poor choice in gauge may

obscure the gravitational wave (and therefore the dissipative piece of the second-order
self self-force) content in ψ

(2)
4L .

To avoid this issue, one can design a quantity ψ
′(2)
4L [h(1)ab ] that, no matter which gauge

h(1)ab is in, always takes the value ψ
(2)
4L would have in some specific well-behaved
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gauge. This method for calculating a gauge-invariant is equivalent to gauge
fixing [108]. Using gauge fixing to construct a gauge-invariant at second order has
been utilised before in cosmology modelling [126, 127, 128]. As ξa

(2) does not appear in

the gauge transformation equation of ψ
(2)
4L , it is much simpler to implement a gauge

fixing algorithm. Only the first-order gauge requires fixing to calculate a (gauge-fixed)
gauge-invariant ψ

′(2)
4L .

I re-express Eq. (2.25), writing ξa
(1) as a function of h(1)ab ,

ψ
′(2)
4L [h(2)ab , h(1)ab ] := T4[h

(2)
ab ] + T4

[︂
L

ξa
(1)[h

(1)
ab ]

h(1)ab +
1
2
L

ξa
(1)[h

(1)
ab ]

L
ξa
(1)[h

(1)
ab ]

gab

]︂
. (3.1)

I define the first-order gauge vector (ξa
(1)[h

(1)
ab ]) such that it takes one from any

first-order gauge to a specific, fully specified first-order gauge (labelled with a prime).
ξa
(1) can be calculated from h(1)ab through

h′(1)ab := h(1)ab + Lξc
(1)

gab, (3.2)

where h′(1)ab takes a fully specified, predetermined form.

Eq. (3.2) cannot fully specify ξc
(1) as gab admits Killing vectors. That is, the time and

azimuthal Killing vectors of Kerr spacetime satisfy Lξc
(1)

gab = 0. To remove the Killing
vector degrees of freedom from ξc

(1) one can use the gauge transformation of the stress
energy tensor

T′(1)
ab := T(1)

ab + Lξc
(1)

T(0)
ab . (3.3)

Assuming T(0)
ab does not admit the same Killing vectors as the background metric,

Eq. (3.3) can be used to constrain the Killing vector content in ξc
(1) from T(1)

ab (assuming

T′(1)
ab is predetermined).

The resulting ψ
′(2)
4L [h(1)ab ] in Eq. (3.1) will be, by definition, gauge invariant if the gauge

conditions uniquely specify ξa
(1). That is, identical results are acquired regardless of

which gauge the calculation is made in (if ξa
(1) is fully specified).

Ref. [45] sketched gauge fixing methods for ψ
(2)
4 and the

Campanelli–Lousto–Teukolsky equation (Eq. (2.4)). Here, I show how gauge fixing is
implemented for ψ

(2)
4L and the reduced second-order Teukolsky equation (Eq. (2.20)).

For the rest of this chapter, as I am only working with first-order gauge
transformations, I drop the superscript (1) on h(1)ab and ξa

(1), instead writing hab and ξa.

By implementing a gauge transform of the inputs for Eq. (2.20), one can calculate ψ
(2)
4L
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in the fixed gauge (ψ′(2)
4L ) using

O4[ψ
′(2)
4L ] = S4

[︁
T′(2)

ab − δ2G[h′ab, h′ab]
]︁

= S4

[︂
T(2)

ab + Lξa T(1)
ab − δ2G

[︁
(hab + Lξc gab), (hab + Lξc gab)

]︁]︂
. (3.4)

Hence, calculating ψ
′(2)
4L requires knowledge of both hab and ξc. I want to construct a

method such that ξc can be calculated from hab (in any gauge) and is associated with a
specific final gauge (with no residual gauge freedom). Ideally, the final gauge should
be good. In the context of EMRIs, I will discuss what properties make a gauge good in
specific regions of spacetime (in Sec. 3.2).

I present multiple methods for calculating a uniquely determined ξc[hab]. I give a
method to compute ξc algebraically from first-order quantities, but the resulting final
gauge is not asymptotically flat. Following that, I present a method for calculating the
gauge vector into the Bondi–Sachs gauge (an asymptotically flat gauge) by solving
ODEs along out-going null rays. To fully fix the Bondi–Sachs gauge, I also provide a
method for fixing the BMS frame. These methods can be implemented to calculate a
ψ
′(2)
4L associated with a fully fixed asymptotically flat gauge. The resulting ψ

′(2)
4L is an

invariant measure of the second-order radiation along the outgoing null rays of the
physical, perturbed spacetime.

3.2 Good gauge fixing for an EMRI

Gauge fixing to any fully fixed gauge helps compare results. However, problems may
have multiple physically significant regions where gauge-invariants associated with
good gauges (see Sec. 1.6.2) would be advantageous. For an EMRI, three physically
significant regions are evident: near the worldline (γ) of the inspiralling object, the
future horizon of the supermassive black hole (H+), and future null infinity (I +).
These three regions (and the required well-behaved gauges) are illustrated in Fig. 3.1.

The significance of the region near the compact object is the singularity on the
worldline; a highly regular gauge reduces the singular behaviour and makes the
source of Eq. (3.4) well defined. H+ and I+ share their reasoning for significance:
gravitational waves (i.e., energy and angular momentum) are emitted into both these
regions. Hence, extracting the energy and angular momentum dissipated into these
regions is aided by using a good gauge there (known as horizon regular or asymptotically
flat gauges respectively). In this thesis, I am primarily interested in transformations to
a good gauge at I +. In Sec. 3.6, I present a method to transform into the Bondi–Sachs
gauge (an asymptotically flat gauge, adapted to the null structure at I +).
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FIGURE 3.1: A Penrose diagram depicting an EMRI (and the gauges designed to
help model an ERMI). γ is the worldline of the inspiraling object; it is surrounded by
a highly regular gauge (to make second-order equations integrable). The black wave
lines emanating from γ to the future supermassive black hole horizon (H+) and future
null-infinity (I+) represent gravitational waves emitted to these regions. Each region
is partnered with a well-behaved gauge there: horizon regular and asymptotically flat

gauges, respectively.

3.3 Asymptotically regular gauge vectors

Before formulating methods to calculate ξa, I develop a method for assessing whether
a given ξa takes one from one asymptotically flat gauge to another. I do this by
assuming the initial and final gauges are asymptotically flat and use this assumption
to constrain the form of ξa. To begin, note that the metric perturbation transforms as

∆hab = Lξc gab = ξcgab,c + 2ξc
,(agb)c , (3.5)

where ∆hab := h′ab − hab. I constrain h′ab and hab to be asymptotically flat; i.e., they
must both be consistent with Eq. (1.26) near I +. I can now derive the expected
asymptotic behaviour of ξa. For example, examining the ∆htt component, one finds

∆htt = ξcgtt,c + 2ξc
,tgtc

= ξrgtt,r + ξθ gtt,θ + 2ξt
,tgtt + 2ξ

ϕ
,tgtϕ

⇒ O(r−1) = ξrO(r−2) + ξθO(r−3) + ξtO(r0) + ξϕO(r−1), (3.6)

Where I have inputted the Kerr metric in BL coordinate for gab, and assumed
∂tξ

α = O(ξα).

From Eq. (3.6) one can conclude that if ξr = O(r1), ξθ = O(r2), ξt = O(r−1),
ξϕ = O(r0) and the initial gauge is asymptotically flat, then the component htt in the
final gauge is also asymptotically flat. This is a strong constraint because there could
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be gauge transformation where the components of ξµ do not satisfy these conditions
but, due to cancellations in Eq. (3.6), htt is asymptotically flat in the final gauge.

If one repeats this analysis for the other components of ∆hab, one finds the constraints
presented in Table 3.1. Underlined in Table 3.1 are the strongest constraints:
ξt = O(r−1), ξr = O(r−1), ξθ = O(r−2) and ξϕ = O(r−2). Therefore, if a gauge vector
satisfies these constraints (in BL coordinates with a Kerr background spacetime), and
one starts in an asymptotically flat gauge, then all the metric perturbation components
in the final gauge are asymptotically flat; that is, the final gauge is asymptotically flat.

∆htt ξt = O(r−1), ξr = O(r1), ξθ = O(r2) and ξϕ = O(r0)

∆htr ξt
,r = O(r−1),ξr = O(r−1) and ξ

ϕ
,r = O(r0)

∆htθ ξt
,θ = O(r0), ξθ = O(r−2) and ξ

ϕ
,θ = O(r1)

∆htϕ ξt = O(r0), ξr = O(r2), ξθ = O(r1) and ξϕ = O(r−2)

∆hrr ξr
,r = O(r−1) and ξθ = O(r1)

∆hrθ ξr
,θ = O(r0), ξθ

,r = O(r−2)

∆hrϕ ξt
,r = O(r1), ξr = O(r0) and ξ

ϕ
,r = O(r−2)

∆hθθ ξr = O(r0), ξθ
,θ = O(r−1)

∆hθϕ ξ
ϕ
,θ = O(r2), ξθ = O(r−1), ξ

ϕ
,θ = O(r−1)

∆hϕϕ ξt = O(r2), ξr = O(r0), ξθ = O(r−1) and ξϕ = O(r−1)

TABLE 3.1: Constraints on the leading, large-r form of components of the gauge vector
at I+, calculated using the assumption that the gauge vector transforms from one
asymptotically flat gauges to another (with a Kerr background in BL coordinates). The

strongest constraints are underlined.

An interesting conclusion derivable from the constraints ξt = O(r−1), ξr = O(r−1),
ξθ = O(r−2) and ξϕ = O(r−2) is that the leading order expansion (in r at I+) of ψ

(2)
4 is

invariant under such gauge transformations. This can be shown by considering
spacetimes emitting gravitational waves in asymptotically flat gauges are expected to
have ψ

(2)
4 = O(r−1) (using the peeling theorem [191]). Further, I analyse the
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transformation of ψ
(2)
4 under ξa obeying the constraints above:

ψ
′(2)
4 = ψ

(2)
4 + Lξ⃗ψ

(1)
4 + Lξ⃗(2)

ψ
(0)
4 + Lξ⃗Lξ⃗ψ

(0)
4

= ψ
(2)
4 + Lξ⃗ψ

(1)
4

= ψ
(2)
4 + ξaψ

(1)
4 ,a

= ψ
(2)
4 +O(r−2), (3.7)

where I have used ψ
(0)
4 = 0 (as Kerr is Petrov type D [48]) and ψ

(1)
4 = O(r−1). Hence, I

can conclude from Eq. (3.7) that the leading-order large-r behaviour is invariant under
such transformations. This suggests the leading-order behaviour of ψ

(2)
4 is invariant in

all asymptotically flat gauges, but the proof is incomplete because the constraints on
ξa are strong. Still, this proof aligns with my expectations as the ∼ r−1 piece of ψ

(2)
4

should contain only gravitational waves in asymptotically flat gauges. As
gravitational waves are measurable they should be gauge independent (up to the
subtlety of the BMS frame which I discuss in Sec. 3.6.2).

3.4 “Constrained metric components” gauges

By reversing the analysis in Sec. 3.3, one could calculate the gauge vector components
by constraining metric perturbation in the final gauge to have specific component
values. A fully constrained gauge (and associated gauge vector) would require
constraints on four independent metric perturbation components (as there are four
gauge freedoms). This section discusses how to calculate such a gauge vector. The
resulting gauge vector corresponds to an asymptotically flat final gauge (if the initial
gauge is asymptotically flat) but involves solving a coupled set of linear PDEs. Solving
PDEs numerically is inefficient and the method does not address specifying a unique
solution. In the following section, I build on this method, finding a gauge vector that
can be calculated algebraically (in the frequency domain); however, this method
results in a non-asymptotically flat gauge.

Here, I assume one works in the frequency domain (i.e., any tensor can be written as
∝ ei(mϕ−ωt)). This makes the t and ϕ derivatives trivial.

First, I examine how the components htt, htϕ, and hϕϕ transform:

h′tt = htt + ξrgtt,r + ξθ gtt,θ − 2iωξtgtt − 2iωξϕgtϕ, (3.8)

h′tϕ = htϕ + ξrgtϕ,r + ξθ gtϕ,θ − iωξtgϕt − iωξϕgϕϕ + imξtgtt + imξϕgtϕ, (3.9)

h′ϕϕ = hϕϕ + ξrgϕϕ,r + ξθ gϕϕ,θ + 2imξtgϕt + 2imξϕgϕϕ, (3.10)
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these are algebraic equations as all the remaining derivatives act on the background
metric. These equations can be used to solve for ξµ algebraically, assuming hαβ is
known and h′tt, h′tϕ and h′ϕϕ are being set to specific functions (in order to constrain the
gauge). However, there are four unknowns (in ξµ) and only three equations to solve;
hence, the solution for ξµ will be under-constrained.

For a fully constrained ξµ a fourth equation is required. Unfortunately, the remaining
metric perturbation components transformations result in either ODEs or PDEs for ξµ,
making them more challenging to solve. For example, one of the simplest remaining
component transformations is that of hθθ ,

h′θθ = hθθ + ξrgθθ,r + ξθ gθθ,θ + 2ξθ
,θ gθθ . (3.11)

Similarly, assuming hθθ is known, and h′θθ is being constrained, one can now solve
simultaneously Eqs. (3.8), (3.9), (3.10) and (3.11) for a unique ξµ (up to a θ independent
integration constant). Finding ξµ now involves solving a linear ODE (ξθ

,θ) numerically
(with appropriate boundary conditions). However, the resulting final gauge is not
asymptotically flat (as I show next).

If one were to specify the form of h′tt, h′tϕ, h′θθ and h′ϕϕ in order to make the final gauge
asymptotically flat, naively, according to Eq. (1.26), one would choose: h′tt = O(r−1),
h′tϕ = O(r0), h′θθ = O(r1) and h′ϕϕ = O(r1). However, these constraints do not
constrain the other metric perturbation components to be asymptotically-flat. From
Table. 3.1, one sees the strongest constraints on ξt, ξr, ξθ , and ξϕ come from ∆htt, ∆htr

∆htθ , and ∆htϕ respectively. By constraining h′tt and h′tϕ in the calculation for ξα, I can
expect ξt = O(r−1) and ξϕ = O(r−2), which is sufficiently asymptotically-flat.
However, the strongest constraints on ξr and ξθ by constraining hB

tt, hB
tϕ, hB

θθ , and hB
ϕϕ

are ξr = O(r0) and ξθ = O(r−1), these are not sufficient fall offs for the final gauge to
be asymptotically flat (as ξr = O(r−1) and ξθ = O(r−2) is required, see Table. 3.1).
Hence, it appears that this method does not necessarily result in an asymptotically flat
gauge. Of course, as ξt = O(r−1), ξr = O(r−1), ξθ = O(r−2) and ξu = O(r−2) are
sufficient but not necessary conditions for the final gauge to be asymptotically-flat, it
is possible that due to some terms cancelling the final gauge may be
asymptotically-flat, but this could only be tested by explicitly calculating the metric
perturbation in the final gauge.

If one were to repeat the above method for calculating ξα, instead using the
transformations of the components htt, htr, htθ and htϕ, which provide the strongest
constraints in Table 3.1, then one can expect the resulting gauge to be asymptotically
flat (providing the initial gauge and the constraints on h′tt, h′tr, h′tθ and h′tϕ are
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asymptotically flat). htr and htθ transform as

h′tr = htr − iωξrgrr + ξt
,rgtt + ξ

ϕ
,rgtϕ, (3.12)

h′tθ = htθ − iωξθ gθθ + ξt
,θ gtt + ξ

ϕ
,θ gtϕ. (3.13)

Clearly, this choice makes the equations to solve for ξα much more challenging. The
previous components were chosen to minimise the number of r and θ derivatives
acting on ξα (to just one). Here, Eqs. (3.12) and (3.13) have a total of four (r or θ)
derivatives acting on ξα. Hence, solving Eqs. (3.8), (3.9), (3.12) and (3.13)
simultaneously results in a coupled system of two linear PDEs (and two coupled
algebraic equations). I have been unable to simplify the coupled PDEs; hence,
strenuous numerical methods would be required. The practical limitations of this
method motivated me to devise alternative schemes for finding a gauge vector to a
specific gauge. In the next subsection, I produce a method to algebraically calculate a
(non-asymptotically flat) gauge vector. In Sec. 3.6 I present a method for calculating
the gauge vector to the Bondi–Sachs gauge (which is asymptotically flat), which only
involves solving ODEs along out-going null rays.

3.5 Chandrasekhar-like gauges

Chandrasekhar introduced the concept of using a gauge transform to set ψ
(1)
2 = 0 [48].

This choice was designed to separate certain Bianchi identities. Here, however, I am
not motivated by these simplifications. Instead, I am motivated by how such a gauge
conditions can be used to calculate a fully constrained gauge vector (complementing
the methods in Sec. 3.4).

The Chandrasekhar gauge has been used before for similar motivations. Ref. [187]
used it to help calculate the periapsis advance. Also, Ref. [117] used the
Chandrasekhar class of gauges to construct first-order gauge-invariants. For
constructing a second-order gauge-invariant, I require a first-order gauge that is fully
constrained. Additional constraints are required since the Chandrasekhar gauge is not
fully constrained (fixing only two of the four gauge freedoms, as I shall show). Here, I
combine the Chandrasekhar gauge with constraints on certain metric perturbation
components to produce simultaneous equations for ξα. These equations can be solved
algebraically and result in a fully constrained final gauge.

Again, the Chandrasekhar gauge condition is ψ
′(1)
2 = 0, where ψ

′(1)
2 = ψ

(1)
2 + Lξ⃗ψ

(0)
2 .

Here I discuss a more general class of gauges, where ψ2 is replaced with any generic
scalar, ψ, for which ψ(0) ̸= 0.
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First, I observe how ψ(1) transforms,

ψ′(1) = ψ(1) + ξµψ
(0)
,µ . (3.14)

Specialising to a Kerr background, ψ
(0)
,t = ψ

(0)
,ϕ = 0 (as the spacetime is stationary and

axially symmetric). Hence,

ψ′(1) = ψ(1) + ξrψ
(0)
,r + ξθψ

(0)
,θ . (3.15)

If ψ(1) is complex then one can write a second, independent equation by taking the
complex conjugate (noting ξα is real),

ψ̄′(1) = ψ̄(1) + ξrψ̄(0)
,r + ξθψ̄

(0)
,θ , (3.16)

where over-bars denote the complex conjugate.

Assuming ψ(1) is known and ψ′(1) is being constrained (to a chosen function in the
resulting gauge), then Eq. (3.15) and Eq. (3.16) can be solved simultaneously for ξr

and ξθ , giving

ξr =

∆ψ̄(1) − ψ̄
(0)
,θ

ψ
(0)
,θ

∆ψ(1)

ψ̄(0)
,r − ψ̄

(0)
,θ

ψ
(0)
,θ

ψ
(0)
,r

, (3.17)

(3.18)

ξθ =
∆ψ̄(1) − ψ̄(0)

,r

ψ
(0)
,r

∆ψ(1)

ψ̄
(0)
,θ − ψ̄(0)

,r

ψ
(0)
,r

ψ
(0)
,θ

, (3.19)

where ∆ψ(1) = ψ′(1) − ψ(1). These equalities are defined for any complex scalar that is
perturbatively well defined and whose background value has both an r and θ

derivative which are non-zero (and at least one of which is complex).

This method for constraining ξr and ξθ is possible because the Kerr metric is a function
of r and θ. Due to the time and axial symmetry of Kerr spacetime, I cannot constrain ξt

and ξϕ using this method. To constrain ξt and ξϕ I can return to the transformations of
the metric perturbation components (Sec. 3.4). Analysing which components can be
solved algebraically for ξt and ξϕ tells us Eq. (3.8) and (3.9) are suitable. Additionally,
from Table 3.1, I know that ∆htt and ∆htϕ produce the strongest constraints on ξt and
ξϕ, so these equations are ideal choices to attempt to achieve a final asymptotically flat
gauge. However, the Chandrasekhar like gauge constraints seemingly result in a final
gauge that is generally not asymptotically flat (as I show Sec. 3.5.1).
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Eq. (3.8) and (3.9) solved simultaneously for ξt and ξϕ give

ξt =

−∆htt +
∆htϕ

gϕϕ
gtϕ

−m
ω

+ ξr
(︃

gtt,r − gtϕ,r
gϕϕ
gtϕ

−m
ω

)︃
+ ξθ

(︃
gtt,θ − gtϕ,θ

gϕϕ
gtϕ

−m
ω

)︃
iω(gtt + gtϕ)− imgtt

, (3.20)

ξϕ =
−∆htϕ + (

gtϕ
gtt

− m
ω )∆htt + ξr(︁gtϕ,r − (

gtϕ
gtt

− m
ω )gtt,r

)︁
+ ξθ(gtϕ,θ − (

gtϕ
gtt

− m
ω )gtt,θ

iωgϕϕ − imgtϕ − i( gtϕ
gtt

− m
ω )ωgtϕ

.

(3.21)

Note that these equations are not defined for stationary, axially symmetric modes
(m = ω = 0). I can insert ξr and ξθ calculated from Eqs. (3.17) and (3.19) into Eqs.
(3.20) and (3.21). This results in algebraic equations for a fully constrained gauge
vector.

ψ2 is an appropriate choice of scalar ψ: on a Kerr background it takes the form
ψ
(0)
2 = − M

(r−ia cos[θ])3 in BL coordinates coordinates [48], which is complex and has
complex, non-zero r and θ derivatives. I note, the NP spin coefficients ρ, β, π, τ, µ, γ

and α (also ϵ when not specifying to a Kinnersly tetrad) also obey these properties.
That is, there are many choices of gauges with which one can use this method, each
using a different scalar quantity; I call this class of gauges Chandrasekhar-like.
However, ψ2 has an additional benefit, making it the preferred scalar for gauge fixing.
In Petrov type-D spacetime (with a principal null direction aligned background
tetrad) ψ

(1)
2 is infinitesimal tetrad rotation invariant [48]. If one uses a

non-infinitesimal tetrad rotation invariant scalar for gauge fixing, then the gauge will
only be fixed for identical tetrads. Therefore, ψ := ψ2 is the ideal choice for gauge
fixing (unless one concurrently uses a technique for tetrad fixing at first order [45]).

There is also unbounded freedom in choosing the form the scalar field takes in the
final gauge (ψ′(1)). One might wish to exploit this freedom to calculate a gauge vector
such that the final gauge is asymptotically flat. However, in general,
Chandrasekhar-like gauges appear non-asymptotically flat for whatever choice of
scalar and function the perturbed scalar takes in the final gauge (unless the perturbed
scalar possesses a very unusual property), as I show in the next section.

3.5.1 The asymptotic irregularity of Chandrasekhar-like gauges

I shall analyse what form ξr and ξθ take when transforming to a Chandrasekhar-like
gauge, and compare to Table 3.1, providing evidence that the final gauge is not, in
general, asymptotically flat.
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Examining Eq. (3.17), taking
ψ̄
(0)
,θ

ψ
(0)
,θ

= O(r0), this gives

ξr = O
(︃

∆ψ̄(1) − ∆ψ(1)

ψ̄(0)
,r − ψ

(0)
,r

)︃

⇒ O(
1
r
) = O

(︃
ψ(1)

ψ
(0)
,r

)︃
⇒ O(

1
r
) = O

(︃
rψ(1)

ψ(0)

)︃
⇒ ψ(1) = O

(︃
ψ(0)

r2

)︃
, (3.22)

where, in the second line I have assumed ξr = O(r−1) to achieve an asymptotically
flat gauge transformation (see Sec. 3.3). Also, I have assumed ψ′(1) falls off quickly (as
one is free to choose ψ′(1)). Eq. (3.22) appears to hold an impossible constraint: it
would be challenging for the first-order perturbation of a scalar to behave a factor of
r2 orders less than its zeroth-order form near I+. From this, I can conclude that
generally Chandrasekhar-like gauges are non-asymptotically flat (regardless of what
form one chooses ψ′(1) to take in the final gauge). This analysis produces similar
results when analysing Eq. (3.19). Of course, there will exist choices for ψ′(1) which
result in an asymptotically flat final gauge; however, there is no obvious way to
predetermine an appropriate ψ′(1).

Whilst generic Chandrasekhar-like gauges are non-asymptotically flat, the algebraic
nature of finding its gauge vector makes it an excellent tool for comparing results.
Inputting the gauge vector into Eq. (3.1) results in a gauge invariant ψ

′(2)
4L up to gauge

transformations along the Killing vectors of Kerr spacetime.

3.6 The Bondi–Sachs gauge and fixing the BMS frame

So far, I have presented methods with limited success for calculating gauge vectors to
fixed asymptotically flat gauges. My only applicable method involves solving coupled
PDEs which is impractical for application. I will now present a method for calculating
the gauge vector to the Bondi–Sachs gauge (an asymptotically flat gauge), which
involves solving ODEs along out-going null-rays. Following this, to achieve a
gauge-invariant ψ

(2)
4L , I produce a method for fixing the Bondi–Metzner–Sachs (BMS)

frame at I+ (the remaining freedom in the Bondi–Sachs gauge). First, I outline basic
introductions to the Bondi–Sachs formalism, BMS transformations, and vector
spherical harmonics to familiarise the reader and present my notation.
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3.6.1 The Bondi–Sachs formalism

A well-studied asymptotically flat gauge is that of the Bondi–Sachs formalism. The
Bondi–Sachs gauge was designed specifically to analyse gravitational radiation at I+

[107], constructing spacetime out of successive out-going null hypersurfaces. I.e.,
working in Bondi–Sachs coordinates x̂µ = (u, r̂, x̂A) (where x̂A = (θ̂, ϕ̂)), the null
hypersurfaces are of constant u. Additionally, the angular coordinates are chosen such
that out-going null geodesics are of constant x̂A (as well as constant u). r̂ is therefore a
parameter on the null geodesics and is chosen such that (near I+) the surface element
on a two-surface of constant u and r̂ is identical to the surface element on a
geometrical sphere of radius r̂ [33, 71]. These four gauge conditions can be written as
guu = 0, guA = 0 (or gr̂r̂ = gr̂A = 0) and ∂r̂ det[ fAB] = 0 (where fAB is the angular
metric, per unit r̂2, on surfaces of constant u and r̂) for a totally generic asymptotically
flat metric gab. Asymptotic flatness requirements [191] also require the leading-order
large-r̂ behaviour of fAB to be qAB, the unit 2-sphere metric [71].

Applying these gauge conditions, a metric in the Bondi–Sachs gauge takes the form

gabdx̂adx̂b = −V
r̂

e2βdu2 − 2e2βdudr̂ + r̂2 fAB(dx̂A − UAdu)(dx̂B − UBdu), (3.23)

where V, β, UA and fAB are all functions of (u, r̂, x̂A). The functions V, β, UA and fAB

have six degrees of freedom (accounting for the gauge condition which restricts the
freedom of fAB and that fAB is symmetric). They accommodate the six physical
degrees of freedom of General Relativity, whilst the Bondi–Sachs gauge conditions
constrain all four gauge degrees of freedom (up to the BMS transformations, see
Sec. 3.6.2).

For physical solutions, one must also enforce that the metric satisfies the EFE (Eq.
(1.6)). For a stress-energy tensor with an appropriate fall off, the EFE constrains the
fall off at large r of the metric functions to be [71]

V = r̂ − 2MB − 2Z
r̂

+O(r̂−2), β = O(r̂−2)

fAB = qAB +
CAB

r̂
+O(r̂−2),

UA =
−DBCAB

r̂2 +
1
r̂3

[︂
− 2

3
NA +

1
16

DA(CBCCBC)

+
1
2

CABDCCBC

]︂
+O(r̂−4), (3.24)

where DA is the covariant derivative corresponding to qAB, MB is the Bondi mass
aspect, and NA is the angular momentum aspect. CAB is related to the the Bondi News
tensor (NAB := ∂uCAB), which contains the information about the gravitational waves
emitted to I+. Z relates to the BMS frame (as I will show in Sec. 3.6.7).
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3.6.2 The BMS symmetry group

Whilst most of the gauge freedom of General Relativity is constrained by working in
the Bondi–Sachs gauge, there is still residual freedom left corresponding to the choice
of coordinates on I+. I+ is preserved under diffeomorphisms of the BMS symmetry
group [107] and these transformations affect the form of the metric. The BMS group
contains not only the Poincare symmetry group of flat spacetime, but also an
infinite-dimensional subgroup known as supertranslations1. Here, I give a brief
overview of the BMS transformation. For more detailed, recent explanations please
see Refs. [71, 107, 55]. Alternatively, one can study the original work of Bondi, Van de
Burg and Metzner [36] and Sachs [167, 166].

The BMS symmetry group becomes apparent through examining the freedom within
the Bondi–Sachs gauge at I+. That is, analysing which transformations preserve both
the Bondi–Sachs gauge conditions (grr = grA = 0 and ∂r det[ fAB] = 0) and the
asymptotic fall offs of the Bondi–Sachs metric functions (Eq. (3.24)). Naively (as
physicists originally supposed [166]), one may expect I+ to have identical symmetries
in General Relativity as in Special Relativity. The motivation behind this expectation is
asymptotically flat spacetimes asymptote to Minkowski spacetime near I+. However,
as Refs. [36, 167, 166] found, the symmetries of I+ in General Relativity has a more
novel structure than Special Relativity.

The symmetries of I+in Special Relativity are the global symmetries of the Minkowski
spacetime. The symmetries of I+in General Relativity are the asymptotic symmetries
of asymptotically flat spacetimes in General Relativity. After a full analysis of the
symmetries of I+, the transformation vector (ξ⃗) does take similar forms in both
General Relativity and Special Relativity [166],

ξ⃗ =
[︂
α(θA) +

1
2

uDAYA(θB)
]︂
∂u + YA(θB)∂A, (3.25)

where YA(θB) satisfies

2D(AYB) − DCYCqAB = 0, (3.26)

and has the general solution

YA = DAχ − ϵABDBκ, (3.27)

where χ and κ are ℓ = 1 spherical harmonics [71] (accounting for the three rotational
and three boost degrees of freedom). However, there is a crucial difference between
the Special Relativity and General Relativity transformation vectors. This manifests

1There are extensions of the BMS symmetry group which include an additional infinite-dimensional
subgroup, known as superrotations [28]. I omit superrotations in my analysis as they involve singular
coordinates which I do not expect to occur in the perturbative calculation I am considering



72 Gauge Fixing

itself in the form of α(θA). In Special Relativity α(θA) is constrained to be a linear
combination of the l ∈ {0, 1} spherical harmonics (corresponding to the time and
three spatial translations). In General Relativity, α(θA) can be any linear combination
of twice differentiable functions of θA [166] (i.e., a linear combination of spherical
harmonics). This coined the term supertranslations, an infinite subgroup of the BMS
group corresponding to the infinite freedom to choose α(θA) (which includes the
ordinary time and spatial translations).

3.6.3 Vector spherical harmonics

During my analysis of the BMS frame in perturbation theory, I shall find it useful to
decompose vectors on the unit 2-sphere into vector spherical harmonics. I follow the
conventions (but not the notation) of Martel and Poisson [109]. Vector spherical
harmonics come in two types, even (Zlm

A ) and odd (Xlm
A ) parity, defined for l ≥ 1.

Vector harmonics are related to spherical harmonics (Ylm),

Zlm
A = DAYlm,

Xlm
A = −ϵ B

A DBYlm, (3.28)

where ϵAB is Levi–Civita tensor on the unit two-sphere [140].

3.6.4 Gauge fixing to the Bondi-Sachs gauge

Here, I give a method for calculating the gauge vector (ξ⃗) which takes the metric
perturbation into the (infinitesimal) Bondi–Sachs gauge from any initial gauge. The
gauge vector is calculated by solving an explicit, hierarchical set of ODEs, written in
NP form. The resulting metric perturbation ĥab (ĥab = hab + 2∇(aξb)) is in the
Bondi–Sachs gauge and hence is asymptotically flat and fully gauge fixed up to the
BMS freedoms (which I fix in Sec. 3.6.7). I assume that g(0)ab is the Kerr metric.

This scheme requires a tetrad where la is radial, and ma is angular in some
coordinates. For example, the Carter and Kinnersley tetrads obey these conditions in
Bondi-Sachs coordinates. Such a tetrad allows one to express the Bondi–Sachs
infinitesimal gauge conditions as ĥll = ĥlm = ĥmm̄ = 0. The conditions ĥll = ĥlm = 0
are trivial to derive by contracting la and ma with the metric perturbation of the form
Eq. (3.23). ĥmm̄ = 0 derives from Jacobi’s formula [140, 143] and ∂r det[ fAB] = 0.

Note that these infinitesimal gauge conditions are coordinate invariant. I, again, use
the Petrov type D simplifications in this section.
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I introduce the decomposition of the gauge vector ξα into its null tetrad components,

ξα = −lαξn − nαξl + mαξm̄ + m̄αξm. (3.29)

Using the constraints of the Bondi–Sachs infinitesimal gauge I solve for each
component of the gauge vector.

The conditions ĥll = ĥlm = 0 simplify to a hierarchical pair of radial ordinary
differential equations in NP form,

2Dξl − 2(ϵ + ϵ̄)ξl = −hll (3.30)

Dξm + (−ϵ + ϵ̄ + ρ̄)ξm = −hlm − δξl + (β + ᾱ + π̄)ξl . (3.31)

Eqs. (3.31) and (3.29) determine the components ξl and ξm up to integration constants
which correspond to choosing ξl and ξm on a single r = constant surface (a convenient
choice of surface is I+).

The angular trace free condition (ĥmm̄ = 0) expressed in NP form results in an
algebraic equation for ξn,

(ρ + ρ̄)ξn = −hmm̄ + (µ + µ̄)ξl + (α − β̄)ξm + (ᾱ − β)ξm̄ − δξm̄ − δ̄ξm. (3.32)

The u dependence of ξl and ξm (at I+) is constrained by the asymptotic falloff
conditions limr→∞ ĥru = 0 and limr→∞ ĥuA = 0, written in tetrad form as
hln|I+ = hnm|I+ = 0. These conditions result in simple ODEs along future null infinity
(further constraining ξl and ξm),

(∆ξl − (γ + γ̄)ξl)|I+ = (−hln − Dξn − (ϵ + ϵ̄)ξn + (π − τ̄)ξm + (π̄ − τ)ξm̄) |I+ ,
(3.33a)

(∆ξm + (γ̄ − γ − µ)ξm)|I+ = (−hnm − δξn − (β + ᾱ + τ)ξn)|I+ . (3.33b)

This (and Eq. (3.31)) fixes the remaining freedom of ξl and ξm, up to choosing a (u
independent) ∼ r0 piece of ξl and (u independent) ∼ r1 piece of ξm on a single sphere
at constant u (at I+). When working in the frequency domain, the above equations
constrain the oscillatory part of the gauge vector, and the zero frequency contribution
remains unfixed (corresponding to initial data).

I must also apply the condition ĥAB → 0 at I+. This constrains the trace-free piece of
ĥAB. The condition can be expressed as ĥmm|I+ = 0 and results in the ODE (assuming
the ϕ dependence of ξa and hab can be written as ∝ eimϕ)

2(δξm + (ᾱ − β)ξm)|I+ = (−hmm)|I+ . (3.34)



74 Gauge Fixing

Eq. (3.34) is only applied at a single u0 because the only remaining freedom in ξm is on
a single surface of I+at a single u0. This completes the collection of infinitesimal
gauge conditions. The remaining freedom to set the (u independent) r0 piece of ξl and
(u independent) r1 piece of ξm at a single cut of I+, corresponds to the BMS freedoms
as I will show in Sec. 3.6.7.

It is worth emphasising that this method uses a tetrad which has particular properties
when expressed in Bondi–Sachs coordinates, but one does not have to use
Bondi–Sachs coordinates when solving the above equations because the NP formalism
is coordinate covariant. In Appendix B I give a similar derivation that was completed
in Bondi–Sachs coordinates and motivated finding this covariant method.

3.6.5 Gauge fixing to the radiation gauge

At this point, I note the similarities between the (infinitesimal) Bondi–Sachs gauge and
the radiation gauge. The difference being, the Bondi–Sachs gauge imposes hmm̄ = 0
whereas the radiation gauge imposes hln = 0 instead (both gauges impose
hll = hlm = 0).

Therefore, it is straightforward to alter the infinitesimal gauge transformation in
Sec. 3.6.4 to give a transformation to the radiation infinitesimal gauge. One simply
solves Eqs. (3.30) and (3.31) for ξl and ξm, followed by

Dξn + (ϵ + ϵ̄)ξn = −hln − ∆ξl + (γ + γ̄)ξl + (π − τ̄)ξm + (π̄ − τ)ξm̄, (3.35)

for ξn. The resulting gauge vector will take one to the radiation infinitesimal gauge.

3.6.6 Kerr in Bondi-Sachs form and its associated BMS frame

The BMS symmetries are not unique to the Bondi–Sachs gauge. All generic
asymptotically flat gauges transform under the BMS group (as the group corresponds
to deformations of I+). However, here, I analyse the BMS symmetries of
perturbations to Kerr through the lens of Bondi–Sachs coordinates. Before I discuss
the BMS frame of a perturbed Kerr metric, I analyse the form of the Kerr metric in the
Bondi–Sachs gauge and its associated BMS frame. This analysis will provide useful
expressions relating the Bondi–Sachs coordinates to BL coordinates in Kerr (which I
will use in Sec. 3.6.7). It will inform me which BMS transformations (and their
infinitesimal counterparts) affect the form of the Kerr metric and which symmetries
are intrinsic to Kerr spacetime.

Multiple works have already expressed Kerr in Bondi–Sachs form. I comment on them
here: Fletcher [73] expresses the Kerr metric in generalized Bondi–Sachs form (where
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the angular metric gauge condition is not imposed). Bishop and Venter [33] express an
analytical form for the Kerr metric in Bondi–Sachs form. However, their expression for
their metric is highly non-trivial, containing integrals which must be evaluated
numerically. There also appear to be errors in Eqs. (35) and (36) of Ref. [33], which
become apparent upon evaluating their respective asymptotic limits (one would
expect j11 = 1 +O(r̂−1) and j1 = O(r̂−1), but evaluating their expression gives
j11 = 1

2 +O(r̂−1) and j1 = O(r̂3) respectively). Finally, Bai et al. [19] calculate an
asymptotic expansion for the Kerr metric in the BS gauge. Whilst the expansion is
incomplete (but can be evaluated to an arbitrarily high order iteratively), their results
are to a sufficiently high order for my analysis of the Kerr BMS frame.

The expansion for the Kerr metric in BS coordinates {u, r̂, θ̂, ϕ̂} in Ref. [19] is not
uniform in the order in r̂ (beyond Minkowski). Here, I restate their expansion up to a
consistent order:

ds2 = −
(︃

1 − 2M
r̂

+
Ma2(2 cos2[θ̂]− sin2[θ̂])

r̂3

)︃
du2 − 2dudr̂

+
6Ma2 sin[θ̂] cos[θ̂]

r̂2 dudθ̂ − 4Ma sin2[θ̂]

r̂
dudϕ̂ +

(︃
r̂2 − Ma2 sin2[θ̂]

r̂

)︃
dθ̂

2

+

(︃
r̂2 sin2[θ̂] +

Ma2 sin[θ̂]
r̂

)︃
dϕ̂

2
+O(r̂M−4), (3.36)

where O(r̂M−4) denotes that all additional terms are 4-th order in r̂ post Minkowski.
Note, Bai et al. [19] listed the dudϕ term as having an O(r−2) error. I have checked,
using the coordinate transformations as given in Bai, that the O(r−2) term vanishes,
leaving an O(r−3) = O(rM−4) error, consistent with the other components.

The coordinate transform in Ref. [19] from the Bondi–Sachs coordinates
(corresponding to the metric Eq. (3.36)) to BL coordinates {t, r, θ, ϕ} is

u = t + r + 2M log
[︂ r

2M

]︂
− 4M2 − 1

2 a2 sin2[θ]

r

− 4M3 − Ma2

r2 +O(r−3),

r̂ = r +
a2 sin2[θ]

2r
+

a2M sin2[θ]

2r2 +O(r−3),

θ̂ = θ +
a2 cos[θ] sin[θ]

2r2 +O(r−4),

ϕ̂ = ϕ +
Ma
r2 +

4M2a
3r3 +O(r−4). (3.37)
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And the coordinate transformation from BL to these Bondi–Sachs coordinates is

t = u − r̂ − 2M log
[︃

r̂
2M

]︃
+

4M2

r̂

+
4M3 − Ma2 + 3

2 Ma2 sin2 [︁θ̂]︁
r̂2 +O(r̂−3),

r = r̂ − a2 sin2 [︁θ̂]︁
2r̂

− Ma2 sin2 [︁θ̂]︁
2r̂2 +O(r̂−3),

θ = θ̂ − a2 cos
[︁
θ̂
]︁

sin
[︁
θ̂
]︁

2r̂2 +O(r̂−4),

ϕ = ϕ̂ − Ma
r̂2 − 4M2a

3r̂3 +O(r̂−4). (3.38)

Eq. (3.36) is not a unique form of the Kerr metric in the Bondi–Sachs gauge. It is
transformable under the BMS freedoms.

From Eq. (3.36), it is clear that the Bondi–Sachs metric quantities (Eq. (3.24)) take the
form

CAB = 0, MB = M, NA = {0,−3Ma}, (3.39)

in Kerr in this BMS frame. Another conclusion one can take from Eq. (3.36) is how
similar it is to the Kerr metric in BL coordinates: the Bondi mass aspect is simply the
Kerr mass and the angular momentum is (similarly to BL form) purely associated with
the azimuthal coordinate in this BMS frame. Also, as Kerr is stationary, no
gravitational waves are emitted from the system; hence, CAB must be independent of
u. As CAB = 0, the u independence holds and CAB is as simple as possible (making
this form preferable).

As I am concerned with BMS frame fixing, it is necessary to ask whether there are
residual BMS freedoms associated with Eq. (3.36); i.e., is the BMS frame fully fixed by
this expression for the metric. The answer presents itself by considering the
symmetries of Kerr spacetime: time and azimuthal symmetry. Time translations and
azimuthal rotations are BMS transformations which leave the form of Eq. (3.36)
invariant. Therefore, the frame is not fully fixed by the form of the metric. Later, I shall
prove that the other BMS degrees of freedom (two further rotations, three Lorentz
boosts, and the supertranslations) are fully constrained by the form of the Kerr metric
in Eq. (3.36). I achieve this by proving that their respective infinitesimal
transformations leave Eq. (3.36) non-invariant.

3.6.7 Fixing the BMS frame at first order

I now turn my attention to the BMS frame of a perturbation to Kerr in the infinitesimal
Bondi–Sachs gauge (ĥab, as calculated in Sec. 3.6). I.e., the infinitesimal BMS frame of
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the Bondi–Sachs infinitesimal gauge. The BMS freedoms correspond to the remaining
gauge freedoms within the family of Bondi–Sachs gauges. If one fully fixes the BMS
frame in a Bondi–Sachs gauge, one has a fully constrained the gauge.

The infinitesimal BMS frame fixing method I present is derived using similar methods
to how I fixed the infinitesimal gauge freedoms in earlier sections. I define a gauge
vector ξc (consistent with BMS vector form, Eq. (3.25)) such that ĥ

′
ab = ĥab + Lξc

(1)
gab

transforms to a fully specified infinitesimal gauge (ĥ
′
ab). For now, I assume the

background metric and Bondi–Sachs coordinates are consistent with the Bai et al.
Bondi–Sachs form [19] (discussed in the previous section). However, later, I convert
my resulting method to NP form, making it covariant. In this subsection, I use the
definitions and conventions given for BMS transformations in Sec. 3.6.2 and vector
spherical harmonics in Sec. 3.6.3.

In order to analyse the form of ĥ
′(1)
ab , one can express ĥ

′(1)
ab near I+ in orders of r̂. As I

do not want to analyse the metric perturbation directly at I+ (because this would
require a conformal transformation), instead I will analyse the form near I+. Hence, I
need to extend ξc (Eq. (3.25)) into the interior of the spacetime; Ref. [71] provides such
an expression in Bondi–Sachs coordinates,

ξ⃗ = f(1)∂u +
[︂
YA
(1) −

1
r̂

DA f(1) +
1

2r̂2 CAB
(0) DB f(1) +O(r̂−3, ε2)

]︂
∂A

−
[︂1

2
r̂DAYA

(1) −
1
2

D2 f(1) −
1
2r̂

UA
(0)DA f(1) +

1
4r̂

DA(DB f(1)C
AB
(0) ) +O(r̂−2, ε2)

]︂
∂r̂,

(3.40)

where f(1) := α(1)(θ
A) + 1

2 uDAYA
(1)(θ

B). Using the Bondi–Sachs Kerr metric given by

Bai et al. [19], I can make the simplifications C(0)
µν = 0 and U(0)

A = 0 (see Eq. (3.36)).
Hence, Eq. (3.40) simplifies to

ξ⃗ = f(1)∂u +
[︂
YA
(1) −

1
r̂

DA f(1) +O(r̂−3)
]︂
∂A −

[︂1
2

r̂DAYA
(1) −

1
2

D2 f(1) +O(r̂−2)
]︂
∂r̂.

(3.41)

This is still a complicated gauge vector, with multiple types of BMS transformations
affecting each component. To associate h′(1)ab to a specific infinitesimal BMS frame, I
must separate these degrees of freedom. This can be achieved by finding quantities
which transforms in such a way as to isolate each transformation, allowing each
degree of freedom to be fixed individually. To find conveniently transforming
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quantities, I begin by examining how the ĥuu component transforms,

∆ĥuu = ξcguu,c + 2ξc
,uguc

= ξ r̂guu,r̂ + 2ξu
,uguu + 2ξ r̂

,ugur̂ + 2ξ A
,uguA

=
3M

r̂
DAYA

(1) +
M
r̂2

(︂
2a(0) sin2[θ̂]Dϕ̂DAYA

(1) − D2α(1) −
u
2

D2DAYA
(1)

)︂
+O(r̂−3).

(3.42)

By isolating each order in r̂ of ∆huu, one finds

∆M(1) =
3M

2
DAYA

(1), (3.43)

∆Z(1) = − 1
r̂2

[︂
MD2α(1) +

Mu
2

D2DAYA
(1) − 2Ma(0) sin2[θ̂]Dϕ̂DAYA

(1)

]︂
, (3.44)

where ∆M(1) = M′(1)
B − M(1)

B and ∆Z = Z′(1) − Z(1) (and MB and Z are defined in
Eq. (3.23)). Note, Eq. (3.43) is identical to Eq. (2.18a) in Ref. [71] when C(0)

ab = 0 is
imposed.

Immediately one sees Eq. (3.43) isolates the boosts, in Eqs. (3.25) and (3.27), from the
other BMS transformations as DAYA

(1) = DADAχ(1) (i.e., DAϵABDBκ = 0). Also, by
fixing the boost frame using Eq. (3.43), one can isolate the supertranslations (α(1)) in
Eq. (3.44). To fix the boost frame I express YA

(1) in terms of modes. Eq. (3.27) becomes

YA
(1) =

+1

∑
m=−1

DADAχ
(1)
1,mYℓ,m − ϵABDBκ1,mYℓ,m. (3.45)

Similarly, one can express α(1), ∆M(1), and ∆Z(1) in terms of spherical harmonics.
Eq. (3.43) can now be rearranged to give an equation for χ

(1)
1,m

D2χ
(1)
1,mY1,m = −

2∆M(1)
1,mY1,m

3M
,

⇒ χ
(1)
1,m = −

∆M(1)
1,m

3M
, (3.46)

where in the second line I have used that D2 is the Laplacian on the unit two-sphere;
i.e., D2Yℓ,m = −ℓ(ℓ+ 1)Yℓ,m.

By using Eq. (3.46), Eq. (3.44) can be rearranged to solve for α
(1)
ℓ,m in terms of ∆Z(1)

ℓ,m and

∆M(1)
1,m ,

α
(1)
ℓ,m =

2
Mℓ(ℓ+ 1)

∆Z(1)
ℓ,m − 4iam

3Mℓ(ℓ+ 1)
∆M(1)

1,m −
u

3M
∆M(1)

1,m . (3.47)

Where I have again used that D2 is the unit two-sphere Laplacian. I have solved for
χ
(1)
1,m and α

(1)
ℓ,m (for ℓ > 1) algebraically in terms of ∆M(1)

1,m and ∆Z(1)
ℓ,m . One is therefore free
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to choose M′(1)
1,m and Z′(1) as they are purely BMS frame dependent. For simplicity, one

can choose M′(1)
1,m = 0 and Z′(1) = 0 (i.e., ∆M(1)

1,m = −M(1)
1,m and ∆Z(1)

ℓ,m = −Z(1)
ℓ,m ). These

choices, respectively, put the coordinate system into the center of momentum frame
and set the position of the origin to the center of mass of the first-order perturbation.

The remaining BMS transformations are the time translation (α0,0) and the three
rotations (κ1,m). I expect to be unable to constrain α0,0 and κ1,0 using the metric
perturbation as they correspond to the time and axial symmetry of Kerr spacetime
respectively. Alternatively, these freedoms could be fixed using the transformation of
the first-order stress-energy tensor, Eq. (3.3). The other rotations, as I will show, can be
constrained by fixing the form of N(1)

A . The transformation of N(1)
A is given in Eq.

(2.18c) of Ref. [71] (and can be also derived from the transformation of huA expanded
in r). Setting C(0)

ab = 0 and U(0)
A = 0 in that equation gives

∆N(1)
A = 3M(0)DA f(1) + LY⃗(1)

N(0)
A + DBYA

(1)N
(0)
A . (3.48)

I can isolate the BMS rotations by splitting the Lie derivative into the even and odd
piece, YA

(1) = YA
(1)e +YA

(1)o (where YA
(1)o corresponds to the rotations), equivalently to Eq.

(3.27). Rearranging Eq. (3.48) for LY⃗(1)o
N(0)

A (as YA
(1)e has already been fixed by fixing

χ
(1)
1,m) gives

LY⃗(1)o
N(0)

A = ∆N(1)
A − 3MDA f(1) −LY⃗(1)e

N(0)
A − DBYA

(1)N
(0)
A . (3.49)

This equation simplifies significantly when implementing a vector spherical harmonic
decomposition [88, 172]. Noting N(0)

A = {0,−3Ma sin2[θ̂]} ∝ X1,0
A , YA

(1)e ∝ ZA
1,m and

YA
(1)o ∝ XA

1,m, one finds

LY⃗(1)o
N(0)

A ∝ X1,±1
A ; (3.50)

LY⃗(1)e
N(0)

A ∝ X2,±1
A , X2,0

A ; (3.51)

DA f(1) ∝ Zℓ,m
A ; (3.52)

DBYA
(1)N

(0)
A ∝ Z1,±1

A , X2,±1
A , X2,0

A ; (3.53)

∆N(1)
A ∝ Zℓ,m

A , Xℓ,m
A . (3.54)

Here, I have used Eq. (3.28) to replace the vector harmonics with spherical harmonics,
converted the Lie and covariant derivatives to partial derivatives, explicitly evaluated
the angular derivatives, and then compared the resulting spherical harmonic
expression with Eq. (3.28) to deduce the vector harmonic content. As LY⃗(1)o

N(0)
A is

purely X1,±1
A , and the only other term which contains X1,±1

A elements is ∆N(1)
A , one
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finds the equality

L
Y⃗

1,±1
(1)o

N(0)
A = ∆N(1)o1,±1

A := ∆N(1)o
1,±1X1,±1

A , (3.55)

where ∆N(1)o1,±1
A is the X1,±1

A piece of ∆N(1)
A . As expected due to axial symmetry of

Kerr, Y⃗
10
(1)o does not contribute. By evaluating the Lie derivative (using

YA
(1)o = −εABDBκ

(1)
1,mY1,m), defining N such that N(0)

A = NX1,0
A and decomposing into

vector spherical harmonics, one finds

±2

√︃
3

2π
κ
(1)
1,±1NiX1,±1

A = ∆N(1)
o1,±1X1,±1. (3.56)

Noting that N = 2
√

3πMa (from Eq. (3.36)), I can now solve for κ
(1)
1,±1, giving

κ
(1)
1,±1 = ∓

i∆N(1)
o1,±1

3
√

2Ma
. (3.57)

That is, one can fix the BMS frame with respect to the rotations about the x- and y-axes
(corresponding to κ

(1)
1,±1). Again, for simplicity, one can chose N′(1)

o1,±1 = 0, resulting in

∆N(1)
o1,±1 = −N(1)

o1,±1. This choice can be understood as aligning the angular momentum
of the first-order perturbation along the z-axis.

In summary, one can solve for the gauge vector to a maximally fixed BMS frame by
solving Eqs. (3.47), (3.46) and (3.57) for α

(1)
ℓ≥1,m, χ

(1)
1,m and κ

(1)
1,±1 respectively. The gauge

vector Eq. (3.41) can be expressed as

ξ⃗ = f(1)∂u +
[︂
(DAχ

(1)
1,m − εABDBκ

(1)
1,m )Y1,m −

1
r̂

DA f(1) +O(r̂−3)
]︂
∂A

−
[︂1

2
r̂DA(DAχ

(1)
1,m − εABDBκ

(1)
1,m )Y1,m −

1
2

D2 f(1) +O(r̂−2)
]︂
∂r̂, (3.58)

with

f(1) : = α
(1)
ℓ,mYℓ,m(θ̂

A
) +

1
2

uDA(DAχ
(1)
1,m − εABDBκ

(1)
1,m )Y1,m. (3.59)

Eqs. (3.57), (3.46) and (3.47) fully fixes the infinitesimal supertranslation frame, the
infinitesimal boost frame, and two of the infinitesimal rotation frames to first order.
However, it leaves α0,0 and κ1,0 (the time translation and rotation around the z-axis
respectively) unconstrained. These freedoms could be fixed using Eq. (3.3). For a
self-force calculation, this would be equivalent to fixing the infinitesimal position of
the compact object at a given infinitesimal time, whilst remaining consistent with the
BMS frame fixing. This method is consistent for a Kerr background and any
background satisfying C(0)

AB = 0 and N(0)
A = NX1,0

A .
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3.6.8 Implementing BMS fixing in the Bondi–Sachs fixing method

The infinitesimal BMS fixing scheme described in Section 3.6.7 can be used to provide
boundary conditions for the Bondi–Sachs infinitesimal gauge fixing method in
Sec. 3.6. The resulting gauge vector calculation has no residual freedom (up to a time
translation and axial rotation), resulting in a fully fixed infinitesimal gauge. That is, an
infinitesimal Bondi–Sachs gauge with a fully fixed infinitesimal BMS frame.

The remaining freedom in the gauge vector calculation in Sec. 3.6.4 is in
Eqs. (3.33a) and (3.33b). There remains the freedom to choose the (u independent) ∼ r̂0

piece of ξl on a single cut on I+(which I label ξl |I+, r̂0, u0) and the freedom to choose
the ℓ = 1 (u independent) ∼ r1 piece of ξm on a single cut on I+(which I label
ξℓ=1

m |I+, r̂0, u0). Implementing the BMS frame fixing method to apply boundary
conditions gives (in Bondi–Sachs coordinates)

ξl |I+, r̂0, u0 = −A(α
(1)
ℓ,mYℓ,m +

1
2

uDAYA),

ξℓ=1
m |I+, r̂0, u0 = − r̂√

2
(Yθ + iYϕ), (3.60)

with YA
(1) = ∑1

m=−1 χ
(1)
1,mDAYℓ,m − κ1,mϵABDBYℓ,m and A is a factor corresponding to the

choice of tetrad (in the Carter tetrad A = 1 and in the Kinnersley tetrad A = 1√
2
). I

have used that lµ = {0, A, 0, 0}+O(r−1) and mµ = 1√
2r̂
{0, 0, 1, i

sin[θ̂]
}+O(r−2) in

Bondi–Sachs coordinates.

The strength of the tetrad transform method is its coordinate covariance.
Transforming between coordinate schemes is straightforward as ξ l and ξm are scalars.
Also Eq. (3.60) only constrains the leading-order r̂ dependency, plus retarded BL
coordinates (with u → t + r) are equivalent to Bondi–Sachs coordinates to leading
order in r in Kerr (see Eq. (3.37)). Hence, Eq. (3.60) is the same in retarded BL
coordinates and BS coordinates.

I now have expressions for the boundary conditions in the infinitesimal Bondi–Sachs
gauge fixing method in BL coordinates. The required inputs are α

(1)
ℓ≥1,m, χ

(1)
1,m and κ

(1)
1,±1.

Currently the explicit expressions for α
(1)
ℓ≥1,m, χ

(1)
1,m and κ

(1)
1,±1 (Eqs. (3.47), (3.46) and

(3.57)) require working in BS coordinates. I will now show how α
(1)
ℓ≥1,m, χ

(1)
1,m and κ

(1)
1,±1

can be obtained from BL coordinate metric perturbation. Again, this is
straightforward as the Bondi–Sachs coordinates are equivalent to retarded BL
coordinates to leading order in r in Kerr.

α
(1)
ℓ≥1,m, χ

(1)
1,m and κ

(1)
1,±1 are obtained from ∆M(1), ∆Z(1) and ∆N(1)

A in Eqs. (3.47), (3.46)

and (3.57). As ∆M(1) = M′(1)
B − M(1)

B , finding ∆M(1) requires choosing M′(1)
B ; an

obvious choice in self-force calculations is M′(1)
B = µ (for quasi-normal mode

calculations, there is no additional mass in the system, making the obvious choice
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M′(1)
B = 0). Similarly, choosing Z′(1) = 0 (placing the first-order center of mass at the

origin) and N′(1)
θ = 0 (aligning the angular momentum with the z-axis) are obvious

choices.

Additionally, to obtain ∆M(1), ∆Z(1) and ∆N(1)
A one needs M(1), Z(1) and N(1)

A . Such
functions are acquired from the components of the metric perturbation in Bondi–Sachs
coordinates, specifically, the components ĥ

(1)BS
uu and ĥ

(1)BS
uA (the superscript BS denotes

a quantity expressed in Bondi–Sachs coordinates), see Eq. (3.24). As I want to relate
these quantities to a metric perturbation in BL coordinates, I transform the
components using the BL to Bondi–Sachs coordinate transform in Bai et al. [19]
(Eq. (3.37)). This informs us that

ĥ
(1)BS
uu = ĥ

(1)BL
tt +O(r−3),

ĥ
(1)BS
uA = ĥ

(1)BL
tA +O(r−2), (3.61)

where ĥ
(1)BL
µν is the metric perturbation in the infinitesimal Bondi–Sachs gauge

expressed in BL coordinates. Therefore,

ĥ
(1)BL
tt =

M(1)
BL
r

+
Z(1)

BL
r2 +O(r−3),

ĥ
(1)BL
tA = U(1)BL

A − 2N(1)BL
A
3r

+O(r−2); (3.62)

that is, M(1) = M(1)
BL , Z(1) = Z(1)

BL and N(1)
A = N(1)BL

A . Hence, I can write Eqs. (3.47),
(3.46) and (3.57) as

α
(1)
ℓ,m =

2
Mℓ(ℓ+ 1)

∆Z(1)
BLℓ,m −

4iam
3Mℓ(ℓ+ 1)

∆M(1)
BL1,m −

u
3M

∆M(1)
BL1,m,

χ
(1)
1,m = −

∆M(1)
BL1,m

3M
, (3.63)

κ
(1)
1,±1 = ∓

i∆N(1)
BL o1,±1

3
√

2Ma
. (3.64)

These are the required inputs for Eq. (3.60) in BL coordinates.

This completes my formalism for transforming to an infinitesimal Bondi–Sachs gauge
with a fully fixed infinitesimal BMS frame. The methods in Secs. 3.6.4, 3.6.7, and 3.6.8
combine to produce a practical way of calculating a gauge vector (ξa). This gauge
vector can be inputted into Eq. (3.4) to solve for a fully fixed asymptotically flat
infinitesimal gauge-invariant quantity (up to time translations and z-axis rotations).
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3.6.9 Demonstrating gauge invariance up to Killing symmetries

In this section, I demonstrate that the Bondi–Sachs gauge fixing method with BMS
frame fixing, and Chandrasekhar-like gauge fixing, produces a gauge invariant ψ

′(2)
4L

up to the Killing symmetries of Kerr spacetime. To achieve this I examine how ψ
′(2)
4L

transforms under a generic gauge transformation associated to the gauge vector
ζa
(1) [37]. Quantities in this new gauge will be labelled with a tilde.

Under such a gauge transform, the metric perturbations transform as

h(1)ab → h̃(1)ab = h(1)ab + Lζc
(1)

g(0)ab (3.65)

h(2)ab → h̃(2)ab = h(2)ab + Lζc
(2)

g(0)ab + Lζc
(1)

h(1)ab +
1
2
Lζc

(1)
Lζc

(1)
g(0)ab (3.66)

Using the scheme in Sec. 3.6 with the boundary conditions in Eq. (3.60) and (3.63) one
can calculate the vector ξa

(1) in the new gauge, ξ̃
a
(1). It can be shown that ξa

(1) in the new
gauge is

ξa
(1) → ξ̃

a
(1) = ξa

(1) − ζa
(1) + Ξa

(1), (3.67)

where Ξa
(1) is the part of ζa

(1) that is tangent to the Killing vectors of Kerr spacetime.

Next, I want to assess the form of ψ
′(2)
4L in the new gauge. By gauge transforming

Eq. (3.1) to the new gauge, ψ
′(2)
4L transforms as

ψ
′(2)
4L → ψ̃

′(2)
4L = T4

[︂
h(2)ab + Lζc

(2)
g(0)ab + Lζc

(1)
h(1)ab +

1
2
Lζc

(1)
Lζc

(1)
g(0)ab

+
[︂
L(ξa

(1)−ζa
(1)+Ξa

(1))

(︂
h(1)ab + Lζc

(1)
g(0)ab

)︂
+

1
2
L(ξa

(1)−ζa
(1)+Ξa

(1))
L(ξa

(1)−ζa
(1)+Ξa

(1))
gab

]︂
.

(3.68)

Expanding L(ξa
(1)−ζa

(1)+Ξa
(1))

= Lξa
(1)
−Lζa

(1)
+ LΞa

(1)
, using LΞc

(1)
gab = 0, and

T4[LXc gab] = 0 (for any vector Xc), one finds some terms cancel, giving

ψ̃
′(2)
4L = T4

[︂
h(2)ab + Lξc

(1)
h(1)ab +

1
2
Lξc

(1)
Lξc

(1)
gab

+
1
2

(︂
Lξc

(1)
Lζc

(1)
gab −Lζc

(1)
Lξc

(1)
gab

)︂
+ LΞc

(1)
h(1)ab +

1
2
LΞc

(1)
Lξc

(1)
gab

]︂
. (3.69)

The second line in Eq. (3.69) is equal to 1
2T4

[︂
L[ξc,ζd]e gab

]︂
= 0, where I have used the

property of the Lie derivative that Lξc
(1)
Lζc

(1)
gab −Lζc

(1)
Lξc

(1)
gab = L[ξc,ζd]c [157] and

T4[LXc gab] = 0 (for any vector Xc). Hence, noting that the top line in Eq. (3.69) is equal
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to ψ
′(2)
4L ,

ψ̃
′(2)
4L = ψ

′(2)
4L + T4

[︂
LΞc

(1)
h(1)ab +

1
2
LΞc

(1)
Lξc

(1)
gab

]︂
. (3.70)

Note, ζa
(1) does not appear in Eq. (3.3) except in its contribution to Ξa

(1) (its Killing

vector content). Therefore, I have shown that ψ
′(2)
4L is gauge invariant up to gauge

transformations along the Killing vectors of Kerr spacetime.

By fixing the Killing vector freedom using Eq. (3.3), the resulting ξa
(1) will transform as

ξa
(1) → ξ̂

a
(1) = ξa

(1) − ζa
(1) and Eq. (3.69) will become ψ̃

′(2)
4L = ψ

′(2)
4L . That is, this analysis

shows that once I have fixed the Killing vector freedom using Eq. (3.3), ψ
′(2)
4L will be

completely gauge invariant for the Bondi–Sachs gauge with BMS fixing scheme and
the Chandrasekhar-like gauge fixing scheme.

3.6.10 Asymptotic behaviour of the reduced second-order Teukolsky
source in the Bondi–Sachs gauge

To complete my analysis on how the Bondi–Sachs gauge will aid second-order
calculations, I analyse the form of the reduced second-order Teukolsky source in the
Bondi–Sachs gauge near I+. I am interested in the leading-order-in-r falloff to
determine the behaviour of the retarded solution of the reduced second-order
Teukolsky equation (defined as an integral against the retarded Green’s function). In
summary, I show that source in the Bondi–Sachs gauge converges two orders in r
faster than the source in a generic gauge. I also show how the leading-order piece of
ψ
(2)
4L , which contains the gravitational waves being emitted to I+, manifestly behaves

as a gravitational wave (in the sense of being a homogeneous perturbation of flat
spacetime) in the Bondi–Sachs gauge.

In order to achieve a separable reduced second-order Teukolsky equation, one must
express the equation in master Teukolsky form (similarly to Eq. (1.82)). In the
Kinnersley tetrad, it takes the form

Ô4

[︂
ρ−4ψ

(2)
4L

]︂
= 2ρ−4Σ S4

[︂
T(2)

ab − δ2Gab

[︂
h(1)cd , h(1)e f

]︂]︂
, (3.71)

∼ r6S4

[︂
δ2Gab

[︂
h(1)cd , h(1)e f

]︂]︂
, (3.72)

where in the second line I have expressed the leading-order asymptotic behaviour
near I+(using that T(2)

ab = 0 away from the worldline, ρ ∼ 1
r , and Σ ∼ r2).

In a generic gauge, asymptotically flat gauge the leading-order asymptotic behaviour
of δ2Gab

[︂
h(1)cd , h(1)e f

]︂
∼ r−2 [152, 185]. This can be shown from h(1)αβ ∼ zαβ[u,θ,ϕ]

r in an
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asymptotically flat gauge, noting that u derivatives of h(1)αβ also behave as ∼ r−1, and

δ2Gab

[︂
h(1)cd , h(1)e f

]︂
∼ ∂u∂uh(1)cd h(1)cd .

As S4 contains terms which behave as ∼ ∂u, S4

[︂
δ2Gab

[︂
h(1)cd , h(1)e f

]︂]︂
∼ r−2. Hence, the

source of the master Teukolsky equation (Eq. (3.71)) behaves as ∼ r4.

As Ô4 ∼ r2(−∂2
u + ∂2

r ), and ρ−4 ∼ r4, sourcing the master Teukolsky equation with
∼ r4 is equivalent to sourcing ψ

(2)
4L at O(r−2),

Ô4

[︂
ρ−4ψ

(2)
4L

]︂
∼ r4 ⇒ (−∂2

u + ∂2
r )ψ

(2)
4L ∼ r−2. (3.73)

This is problematic as the solution to this equation will contain ψ
(2)
4L ∼ log[r]

r terms
caused by the source. Additionally, the retarded greens function integral may not
converge [149]. The divergence makes determining the correct boundary conditions
highly non-trivial. This is known as the infrared divergence problem in
self-force [149]. In Refs. [156, 194, 195], to calculate the boundary conditions a
time-domain post-Minkowski solution at large r was used (similarly to Ref. [149]).

In a physically motivated gauge, I conjecture that the ∼ 1
r behaviour in ψ

(2)
4L is

source-free. My reasoning, according to the Peeling theorem [138], the leading-order
behaviour of ψ

(2)
4L will appear at O(r−1), which is where the gravitational waves

appear. Gravitational waves are vacuum solutions. Hence, the order in r where
gravitational waves appear should be source free. A source present at S4 = O(r−2)

will obscure the gravitational waves in ψ
(2)
4L in a generic gauge, making it more

challenging to extract the gravitational wave information.

Next, I show how working in the Bondi–Sachs gauge (a “physically motivated”
gauge) avoids the infrared divergence problem. I show that in the Bondi–Sachs gauge
the source is more regular, behaving as S4 = O(r−4) (and sourcing (−∂2

u + ∂2
r )ψ

(2)
4L at

O(r−4), meaning gravitational waves alone appear in the ∼ r−1 piece of ψ
(2)
4L ).

I begin by analysing the behaviour of S4 in GHP form,

S4[δ
2Gab] =

1
2
(︁
ð′ − τ̄ − 4τ′)︁ (︁(︁Þ′ − 2ρ̄′

)︁
δ2Gnm̄ −

(︁
ð′ − τ̄

)︁
δ2Gnn

)︁
+

1
2
(︁
Þ′ − 4ρ − ρ̄′

)︁ (︁(︁
ð′ − 2τ̄′)︁ δ2Gnm̄ −

(︁
Þ′ − ρ̄′

)︁
δ2Gm̄m̄

)︁
. (3.74)

Note, only δ2Gm̄m̄, δ2Gnm̄ and δ2Gnn appear in the source. Also, the time derivatives in
Þ′ ∼ ∂u contribute to the leading-order behaviour, while all other terms contribute a
factor of at-least r−1. That is, the source behaves as,

S4[δ
2Gab] ∼ δ2Gm̄m̄ +

δ2Gnm̄

r
+

δ2Gnn

r2 . (3.75)
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I now want to find what gauge conditions produce a maximally regular S4
[︁
δ2Gab

]︁
. In

an asymptotically flat gauge δ2Gab behaves as O(r−2). Hence, from Eq. (3.75), one can
expect S4

[︁
δ2Gab

]︁
∼ r−4 at best, in a well behaved gauge. To achieve S4

[︁
δ2Gab

]︁
∼ r−4

requires

δ2Gnn ∼ r−2, δ2Gnm̄ ∼ r−3,

δ2Gm̄m̄ ∼ r−4. (3.76)

This fall off can be understood by analysing the order at which one expects
gravitational radiation to arise in δ2G

[︂
h(1)ab , h(1)ab

]︂
. This is achieved by comparing

δ2G
[︂

h(1)ab , h(1)ab

]︂
to a stress-energy tensor containing gravitational waves. Energy

dissipated by gravitational waves appears at O(r−2) and is transmitted along the
outgoing null direction la near I+; hence, energy dissipated will appear at leading
order in the δ2Gnn

[︂
h(1)ab , h(1)ab

]︂
component. The angular momentum carried by

gravitational waves will appear at O(r−3), and will appear (at leading order) in
Gnm̄

[︂
h(1)ab , h(1)ab

]︂
but not Gm̄m̄

[︂
h(1)ab , h(1)ab

]︂
. Hence, in a well-behaved gauge, I expect

Gm̄m̄

[︂
h(1)ab , h(1)ab

]︂
behaves at O(r−4).

By analysing the form of δ2Gab

[︂
h(1)cd , h(1)e f

]︂
, one can derive the necessary gauge

conditions on hab to obtain the appropriate falloffs in Eq. (3.76). The results of the
analysis is that the first-order metric perturbation being asymptotically flat (h(1)ab

satisfies Eq. (1.26)) is insufficient to ensure Eq. (3.76) holds. Additional constraints are
required: hln ∼ hlm ∼ hmm̄ ∼ O(r−2) and hll ∼ O(r−3). To derive these constraints, I
analysed the form of δ2Gab as a large r expansion in Mathematica; here, I will sketch
the argument.

First, note as the trace piece of δ2G does not appear in S4δ2Gab, and the first-order
perturbation is vacuum away from the worldline; hence, S4[δ

2Gab] = S4[δ
2Rab] (see

Eq. (1.19)). Therefore, analysing the fall off of δ2Rab

[︂
h(1)cd , h(1)e f

]︂
is sufficient. I express

the quadratic Ricci tensor, Eq. (1.21), as [153]

δ2Rab

[︂
h(1)ab , h(1)ab

]︂
= −1

2
h̄cd

;d(2hc(a;b) − hab;c) +
1
4

hcd
;ahcd;b +

1
2

hc ;d
b (hca;d − hda;c)

− 1
2

hcd(2hc(a;b)d − hab;cd − hcd;ab), (3.77)

where a bar denotes the trace reverse (h̄ab := hab − 1
2 g(0)ab g(0)cd) and on the right hand

side I have dropped the (1) superscript on the metric perturbation for legibility.

To determine the leading-order behaviour of δ2Rab, I analyse the fall off of hµν, hµν;γ

and hµν;γδ in the Bondi–Sachs gauge. The first is simply hµν ∼ zαβ[u,θ,ϕ]
r . Next,
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expressing the covariant derivative in NP form,

hµν;γ = −nγDhµν − lγ∆hµν + m̄γδhµν + mγδ̄hµν

∼ aµν[u, θ, ϕ]

r
lγ +O(r−2), (3.78)

This follows from noting D ∼ ∂r +O(r−1), ∆ ∼ ∂u + ∂rO(r−1), and δ ∼ ∂u + ∂rO(r−1)

and all the spin coefficients behave as O(r−1) [154]. Hence, the ∆ derivative is leading
order in r.

Similarly, a double covariant derivative can be written as

hµν;γδ = −nδDhµν;γ − lδ∆hµν;γ + m̄δδhµν;γ + mδδ̄hµν;γ = O(r−2). (3.79)

Using Eqs. (3.78) & (3.79) it is straightforward (but tedious) to show that δ2Gnn ∼ r−2,
δ2Gnm̄ ∼ r−3 and δ2Gm̄m̄ ∼ r−3 if hln ∼ hlm ∼ hmm̄ ∼ O(r−2) and hll ∼ O(r−3).

By taking this analysis to a further order in r, it is possible to show δ2Gm̄m̄ ∼ r−4 if
hln ∼ hlm ∼ hmm̄ ∼ O(r−2) and hll ∼ O(r−3). That is, in the Bondi–Sachs gauge
S4[δ

2Gab[hab, hab]] ∼ r−4, sourcing (−∂2
u + ∂2

r )ψ
(2)
4L at O(r−4) (that is, only the

gravitational waves appear in ψ
(2)
4L at ∼ r−1). Crucially, the resulting source is not

plagued by the infrared divergence problem that appears in generic second-order
self-force calculations.

3.7 Highly regular gauge fixing

In this final section on gauge fixing, I present a method for deriving a local gauge
transform to a highly regular gauge. Such a gauge transform reduces the singular
nature of the source near the worldline in second-order self-force calculations, making
the source of Eq. (2.20) well defined as a distribution (see Sec. 2.3.2). Here, I limit
myself to a method for calculating the gauge vector (ξa(x), at position x, with
coordinates xµ) which takes one from the Lorenz gauge (a commonly used gauge in
self-force calculations) to the highly regular gauge, near the worldline. The highly
regular gauge condition is

hHR
ab ka = 0, (3.80)

where hHR
ab is the metric perturbation in the highly regular gauge, and ka is the set of

null vectors corresponding to the set of future-directed null geodesics β emanating
from the worldline (i.e., the object’s future light cone). For each point (xµ) near γ there
is a unique geodesic (βxµ , which is a member of β) connecting the point to γ. I show in
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Appendix C that I can approximate ka near γ as

ka = ka
∥ + ka

⊥ = ua +
Pa

b∆xb√︁
Pcd∆xc∆xd

+O(λ). (3.81)

where ∆xν = xν − x′ν, x′ν is the coordinate of the point where βxµ intercepts γ, ua is
again the four-velocity of γ (at x′ν, Pab = gab + uaub (the projection operator that
projects onto the plane orthogonal to ua) and λ is spatial distance from the worldline.

From Eq. (3.80), a gauge transformation from the Lorenz gauge to a highly regular
gauge satisfies

(hL
ab + Lξa gab)ka = 0, (3.82)

which I solve to find ξa given the initial metric perturbation is in the Lorenz gauge
(hL

ab). To do so requires a form for the metric perturbation in the Lorenz gauge (at
point xµ). An expansion near the worldline (λ) for hL

ab is given in Ref. [143],

hL
ab[x

µ] =
2µ

ρ
(gab + 2uaub) +O(λ0), (3.83)

where ρ :=
√︁

Pµν∆xµ∆xν = O(λ).

The full derivation for ξa(x) is given in Appendix C. Here, I state the result for solving
Eq. (3.82) for ξa(xµ) as an expansion in distance from the worldline,

ξa(xµ) = −2µûa log[ρ̂] + Ya + AP̂ab
∆x̂b

ρ̂
+O(λ), (3.84)

where x̂ is the point on γ with the same BL time coordinate as x, ûa is the four velocity
of the worldline at x̂, ∆x̂ν = xν − x̂ν, ρ̂ :=

√︁
Pµν∆x̂µ∆x̂ν, P̂ab = ĝab − ûaûb, Ya is an

arbitrary set of four constants, and A is an arbitrary constant. For simplicity, one can
freely set Ya = 0a and A = 0, which gives

ξa = −2µûa log[ρ̂] +O(λ). (3.85)

This method transforms into a useful gauge for second-order self-force calculations
(making the source of Eq. (2.20) well defined as a distribution on γ). This formalism is
the first step towards a highly regular gauge fixing scheme. To achieve such a scheme,
constraining the remaining degrees of freedom, similarly to how I constrained the
BMS freedoms in Sec. 3.6.7 in the Bondi–Sachs gauge will be necessary. I leave this
extension to future work.
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Chapter 4

Solving the Reduced Second-Order
Teukolsky Equation in
Schwarzschild

After finding the reduced second-order Teukolsky equation, Eq. (2.20), a natural
progression is solving the equation. A collaboration has been formed to solve
Eq. (2.20) for quasi-circular orbits in Schwarzschild. This project is a simplification of
the ultimate generic orbit in Kerr goal. Nevertheless, as this will be the first time the
reduced second-order Teukolsky equation will be solved, it will produce novel results
and help develop the best methods for implementing further calculations. The
collaboration contains Leanne Durkan, Ben Leather, Adam Pound, Sam Upton, Niels
Warburton, and Barry Wardell.

We solve Eq. (2.20) for ψ
(2)
4L for a point-mass on a quasi-circular orbit in Schwarzschild.

Note, this is the reduced second-order Teukolsky equation with no gauge fixing, so
the resulting ψ

(2)
4L is not gauge independent. Nevertheless, energy and angular

momentum fluxes radiated by a given orbit can be extracted from ψ
(2)
4L . We can use the

two-timescale expansion (see Sec. 1.6.3.7) to evolve an inspiral through successively
smaller orbits. This evolution will produce waveforms for quasi-circular inspirals in
Schwarzschild to first-post adiabatic accuracy.

The project promises exciting results as we will compare the waveforms against the
recent results of Ref. [195]. A successful comparison will be an important consistency
check, as waveforms from Ref. [195] could be used for LIGO data analysis shortly.
Additionally, solving the reduced second-order Teukolsky equation has three
advantages to the methods used in Ref. [195]: only one complex scalar is solved for
(rather than ten metric perturbation components), it is easier to extend to eccentric
orbits, and most importantly, it naturally extends to Kerr.
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In the next section, I summarise the calculation. The following sections present my
contribution, including the form of the complete source (up to two pieces which will
be added shortly). I also derive source coupling formulas which can be used for any
second-order calculations in Schwarzschild (in the Carter tetrad). The formulas’
applicability is not limited to self-force calculations and will be published in Ref. [175]
shortly. The formulas express each mode of the second-order source as a sum of
products of first-order modes. To finish the chapter I outline the final steps that are
required to solve the reduced second-order Teukolsky equation, obtain fluxes, and
waveforms.

4.1 Summarising the calculation

4.1.1 Tailoring the calculation to the Lorenz gauge

Solving the reduced second-order Teukolsky equation requires a well behaved
first-order metric perturbation (h(1)ab ) as an input. h(1)ab in the Lorentz gauge is regular
(except on the worldline, which can be handled with a puncture scheme, see
Sec. 4.1.3). Calculating the Lorentz gauge first-order metric perturbation is
straightforward in Schwarzschild [192] as the Einstein field equations are separable in
the Lorenz gauge. Niels Warburton supplies retarded Lorenz gauge h(1)ab data to the
collaboration (as used in Refs [195, 194, 156]).

Throughout the implementation of the reduced second-order Teukolsky equation
calculation we have, in places, used existing data and architecture from
Refs. [195, 194, 156]. This is because second-order self-force calculations are incredibly
time consuming. Refs [195, 194, 156] worked for the majority of a decade on their
project before publishing results. With LISA fast approaching, we do not have the
luxury of time, so leveraging previous work is necessary to obtain timely results.
Nevertheless, the implementation described here does make many significant
divergences to the methods in Refs [195, 194, 156], and the new methods show
significant progress, as I shall highlight in this chapter.

To tailor our calculation to the Lorenz gauge, I will re-express the linearised EFE
(Eq. (1.15)). The Lorenz gauge condition is

Za[h
(1)
cd ] := ∇bh̄(1)ab = 0. (4.1)

where, over-bars denote a trace reverse (e.g., h̄(1)ab := h(1)ab − 1
2 gabgcdh(1)cd ). In this

calculation instead of applying Eq. (4.1), we apply
Za[h

(1)
cd + h(2)cd + ...] := ∇b(h̄(1)ab + h̄(2)ab + ...) = 0; that is, the total perturbation satisfies

the Lorenz gauge condition (I will clarify this distinction in Eqs. (4.26) and (4.27)).
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One can rewrite the linearised Einstein field equation (Eq. (1.15)) in a convenient form

δGab[h
(1)
cd ] = −1

2
Eab[h

(1)
cd ] +∇(aZb)[h

(1)
cd ], (4.2)

where

Eab[h
(1)
ab ] := □h̄(1)ab + 2Ra

c
b

dh̄(1)cd , (4.3)

and □ := gab∇a∇b (the d’Alembertian operator).

In Lorenz-gauge calculations, solving a gauge-damped linearised operator is more
practical numerically because it partially decouples the field equations [22]. The gauge
damped Ĕab reads

Ĕab := Eab −
4M
r2 t(aZ̆b), (4.4)

where ta := ∂at and

Z̆a = (Zr, 2Zr, Zθ , Zϕ), (4.5)

in BL coordinates (t, r, θ, ϕ). The linearised Einstein field equation is therefore written
as

δGab = −1
2

Ĕab −
2M
r2 t(aZ̆b) +∇(aZb). (4.6)

4.1.2 Implementing a two-timescale approximation

In order to evolve an inspiral to first-post-adiabatic accuracy, a two timescale
approximation is implemented [69, 119, 154] (see Sec. 1.6.3.7). The field equations are
re-expressed in a two-timescale expansion. First, the metric perturbation needs to be
expressed as dependent on the two timescales. Note, I have previously been
expressing h(1)ab as implicitly dependent on the coordinates xµ = {t, r, θ, ϕ}. I select a
time-foliation function

s = s[t, r] := t − k[r∗]. (4.7)

where k[r∗] is an arbitrary function of r∗ = r + 2M ln | r
2M − 1|. In the hyperboloidal

method, s is chosen such that it asymptotes to advanced time, v, at the horizon and
retarded time, u, at infinity. This greatly improves the behaviour of the
slow-time-derivative terms in the field equations. An additional advantage is that the
boundary conditions become trivial in a sufficiently regular gauge (like the
Bondi–Sachs gauge, see Sec. 4.2.5.1) because the resulting source is sufficiently smooth
at the boundaries; the field equations themselves automatically impose boundary
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conditions [106]. We specifically adopt the height function k from Ref. [106], referred
to as the "minimal gauge", and transform to a compact radial coordinate σ = 2M

r .
However, in this chapter I use BL coordinates (k(r∗) = 0, s = t, and I use r rather than
σ) as the first-order data used as input is provided in these coordinates. The resulting
reduced second-order Teukolsky source is then transformed to compactified
hyperboloidal coordinates prior to solving the equation. s is also referred to as the
so-called fast-time (on which the orbital phases evolve) and s̃ = εs will be the slow-time
(on which the frequencies of the inspiral evolve).

Rather than expressing h(n)ab explicitly in terms of s and s̃, h(n)ab is expressed in terms of
the orbital phase ϕp = ϕp(εs, ε) and orbital frequency Ω = Ω(εs, ε) := dϕp

ds . There is
further expressed dependence of h(n)ab on
εδMA = εδMA(εs, ε) := {εδM(εs, ε), εδJ(εs, ε)}, corrections to the central black hole’s
mass and spin (with an overall factor of ε pulled out to make δMA order unity). That
is [154],

h(1)ab = h(1)ab [x
i, ϕp, Ω, δMA], (4.8)

h(2)ab = h(2)ab [x
i, ϕp, Ω, δMA], (4.9)

where xi := {r, θ, ϕ}. In contrast to Sec. 1.6.3.7 and Eq. (1.46), where I write the
amplitudes as functions of the slow time t̃ explicitly, in Eq. (4.8) I have written the
amplitudes as functions of Ω and δMA, which are themselves functions of the slow
time s̃. Explicitly, the slow and fast time dependence appears as

ϕp(s̃, ε) = ε−1ϕ
{0}
p (s̃) + ϕ

{1}
p (s̃) +O(ε), (4.10)

Ω(s̃, ε) = Ω{0}(s̃) + ε Ω{1}(s̃) +O(ε2), (4.11)

δMA(s̃, ε) = M{1}
A (s̃) +O(ε), (4.12)

where Ω{n} = dϕ
{n}
p /ds̃ and number labels in curly brackets again denote the

post-adiabatic order at which the quantity enters [154, 119].

The expansions in Eqs. (4.10), (4.11), and (4.12) in powers of ε at fixed slow time are
only used at the waveform-generation stage [154]. Whilst modeling the inspiral
evolution ϕp, Ω, and δMA are treated as independent coordinates of the orbital
phase-space. The rates of change of these quantities (expanded in powers of ε) at fixed
phase-space coordinate values are

ϕ̇p = Ω, (4.13)

Ω̇ = εF{0}
Ω (Ω) + ε2F{1}

Ω (Ω, δMA) +O(ε3), (4.14)

δMȦ = εF{1}
A (Ω) +O(ε2), (4.15)
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where a dot denotes d/ds and F{n}
i (Ω) are nth-post adiabatic-order self-force

coefficients.

The two-timescale coordinates result in a two-timescale partial derivative using the
chain rule,

∂

∂xα
= ei

α

∂

∂xi + sα

(︃
dϕp

ds
∂

∂ϕp
+

dJi

ds
∂

∂Ji

)︃
, (4.16)

where ei
α := ∂xi

∂xα , sα := ∂αs, and Ji := (Ω, δMA). This implies the covariant derivative
expressed in the two-timescale formalism is

∇α = ei
α

∂

∂xi + sα

(︃
dϕp

ds
∂

∂ϕp
+

dJi

ds
∂

∂Ji

)︃
+ Christoffel terms. (4.17)

As the coordinates depend on ε, the covariant derivative is no longer a purely O(ε0)

quantity. It can be expressed as a series expansion in ε,

∇α = ∇(0)
α +∇(1)

α +O(ε2). (4.18)

The zeroth-order covariant derivative is

∇(0)
α = ei

α

∂

∂xi + sαΩ
∂

∂ϕp
+ Christoffel terms. (4.19)

The first-order covariant derivative is

∇(1)
α = εsα∂⃗V , (4.20)

where ∂⃗V is a directional derivative in the parameter space,

∂⃗V := Vi
∂

∂Ji
= F(0)

Ω
∂

∂Ω
+ F(1)

A
∂

∂δMA
(4.21)

and Vi = (F{0}
Ω , F{1}

A ) is the leading-order “velocity through parameter space.” I will
refer to ∂⃗V as a slow-time derivative as it only contributes over the long timescale of
the inspiral. It is useful to count and collect slow-time derivatives. Hence, I re-write
the covariant derivative to count powers of ε that come from the slow-time
derivatives, labeling with numbers in angular brackets,

∇α = ∇⟨0⟩
α +∇⟨1⟩

α +O(ε2); (4.22)

note, ∇⟨n⟩ ≡ ∇(n). Substituting the two-timescale metric perturbation expansion
(Eq. (4.8)) into the first- and second-order linearised EFE (Eq. (1.15) and (1.16)), plus
expressing the covariant derivative as the expansion in Eq. (4.22) (using the chain
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rule), results in

δG⟨0⟩
ab [h(1)cd ] = 8πT(1)

ab , (4.23)

δG⟨0⟩
ab [h(2)cd ] = 8πT(2)

ab − δ2G⟨0⟩
ab [h(1)cd , h(1)cd ]− δG⟨1⟩

ab [h(1)cd ]. (4.24)

Note, Eq. (4.23) is unchanged by the two timescale approximation except derivatives
with respect to time have been replaced with ϕp derivatives. However, Eq. (4.24)
contains an additional term involving slow-time derivatives of the first-order metric
perturbation (∂⃗Vh(1)ab ).

In a Teukolsky formalism, one does not solve the linearised EFE directly. Instead,
implementing a two-timescale formalism in the reduced second-order Teukolsky
equation, Eq. (2.20) becomes

O(0)
4 [ψ

(2)
4L ] = S (0)

4

[︂
8πT(2)

ab − δ2G⟨0⟩
ab [h(1)cd , h(1)cd ]− δG⟨1⟩

ab [h(1)cd ]
]︂

:= S. (4.25)

Here, I have defined S, the source of the reduced second-order Teukolsky equation in
a two-timescale formalism. To see how ∂⃗Vh(1)ab appears in Eq (4.25) explicitly, see
Sec. 4.2.6.

Using the expansion in Eq. (4.22), the Lorenz gauge condition,
Za[h

(1)
cd + h(2)cd + ...] := ∇bh̄ab = 0, becomes

Z⟨0⟩
a [h(1)cd ] = ∇b

⟨0⟩h̄
(1)
ab = 0, (4.26)

and

Z⟨1⟩
a [h(1)cd ] + Z⟨0⟩

a [h(2)cd ] = ∇b
⟨1⟩h̄

(1)
ab +∇b

⟨0⟩h̄
(2)
ab = 0. (4.27)

The radial position of the particle in the two-timescale approximation for
quasi-circular inspirals is given by

rp = r0[Ω] + εr1[Ω, δMA] + O(ε2), (4.28)

where r0[Ω] = M(MΩ)−2/3.

4.1.3 Effective source and puncture scheme

Ref. [185] showed T(2)
ab and δ2G[h(1)ab , h(1)ab ] are well defined in a highly regular gauge.

Implementation of a gauge transform to the highly regular gauge (using Eq. (3.85)) is
currently being worked on by Sam Upton. The resulting source to the reduced
second-order Teukolsky equation will be well defined. Until the gauge transformation
is ready, our current approach is using a puncture scheme to produce a well-defined
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and regular reduced second-order Teukolsky equation source in the Lorenz gauge. A
(sufficiently high order) puncture scheme removes the singular behaviour in T(2)

ab and
δ2G[h(1)ab , h(1)ab ], producing a well-defined equation solving for a residual field which
approximates the regular field.

Additionally, there is the issue of obtaining δ2G[h(1)ab , h(1)ab ] from modes of h(1)ab near the
particle. As a sum of input ℓ modes δ2G[h(1)ab , h(1)ab ] does not converge on the worldline,
and converges slowly near the worldline (when the retarded solution h(1)ab modes are
used as input). To overcome this issue Ref. [120] formalised an effective source
approach which calculates the modes of δ2G[h(1)ab , h(1)ab ] using the split of h(1)ab into a 4D
puncture, the corresponding modes of the 4D puncture, and the residual field. In
Refs. [195, 194, 156] the effective source approach has been utilised and we build on
their effective source for our reduced second-order Teukolsky equation calculation.

We require a puncture for the second-order metric perturbation of a point particle
stress-energy tensor, h(2)Pab . We then construct the puncture for the linearised
second-order fourth Weyl scalar using

ψ
(2)P
4L := T ⟨0⟩

4 [h(2)P ]. (4.29)

The puncture for the reduced second-order Teukolsky equation is, therefore,
O⟨0⟩[ψ(2)P

4L ]. That is, the effective source for the residual field (ψ(2)R) is

O⟨0⟩
4 [ψ

(2)R
4L ] = S −O⟨0⟩

4 [ψ
(2)P
4L ]. (4.30)

Equivalently, one can introduce the puncture into the right-hand side of Eq. (4.25),
giving

O⟨0⟩
4 [ψ

(2)R
4L ] = S ⟨0⟩

4

[︂
8πT(2)eff

ab

]︂
:= Seff, (4.31)

where Seff is the effective source and

8πT(2)eff
ab := 8πT(2)

ab − δ2G⟨0⟩
ab [h(1)cd , h(1)cd ]− δG⟨1⟩

ab [h(1)cd ]− δG⟨0⟩
ab [h(2)Pcd ]. (4.32)

Note, T(2)
ab is only supported on the worldline and its singular distributional behaviour

cancels with the puncture. Additionally, the effective stress-energy, T(2)eff
ab , contains the

modes of δ2G⟨0⟩
ab [h(1)cd , h(1)cd ] which have been calculated for Refs. [195, 194, 156] using

the method described in Ref. [120].

Sufficiently far away from the worldline, the puncture scheme is unnecessary, and the
reduced second-order Teukolsky equation reduces to

O⟨0⟩
4 [ψ

(2)
4L ] = S ⟨0⟩

4

[︂
−δ2G⟨0⟩

ab [h(1)cd , h(1)cd ]− δG⟨1⟩
ab [h(1)cd ]

]︂
:= Svac. (4.33)
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In practice, we solve Eq. (4.32) in a finite world-tube around the particle. The
world-tube is the region r0 − d ≤ r ≤ r0 + d where d is some finite length smaller than
r0. Outside of the world-tube Eq. (4.33) is solved. Across the boundaries of the
world-tube we impose the matching conditions ψ

(2)
4L = ψ

(2)R
4L + ψ

(2)P
4L and

∂rψ
(2)
4L = ∂rψ

(2)R
4L + ∂rψ

(2)P
4L .

4.1.3.1 Converting the known effective source

Calculating δ2G⟨0⟩
ab [h(1)cd , h(1)cd ] in the effective source is a numerically strenuous task and

the current bottleneck for second-order calculations. Our collaboration chose to
leverage an existing effective source to help solve the reduced second-order Teukolsky
equation. Refs. [195, 194, 156] have provided the effective source they use to solve the
linearised EFE in the Lorenz gauge. However, T(2)eff

ab (Eq. (4.32)) differs from the
effective source used in Refs. [195, 194, 156], so our collaboration also adds a
correction piece.

Refs. [195, 194, 156] have obtained an effective source of the form

−16πT̆(2)eff
ab := −16πT(2)

ab + 2δ2Ğ
⟨0⟩
ab [h

(1), h(1)]− Ĕ⟨1⟩
ab [h

(1)]− Ĕ⟨0⟩
ab [h

(2)P ]. (4.34)

Hence,

Seff = S ⟨0⟩
[︂
8πT̆(2)eff

ab

]︂
+ S ⟨0⟩

[︂
8π∆T(2)eff

ab

]︂
, (4.35)

where ∆T(2)eff
ab := T(2)eff

ab − T̆(2)eff
ab . If h(1)ab is in the Lorenz gauge, then

∆T(2)eff
ab = −∇⟨0⟩

(a Z⟨1⟩
b) [h

(1)
cd ]−∇⟨0⟩

(a Z⟨0⟩
b) [h

(2)P
cd ] +

2M
r2 t(a

(︂
Z̆⟨1⟩

b) [h
(1)
cd ] + Z̆⟨0⟩

b) [h
(2)P
cd ]

)︂
. (4.36)

Eq. (4.36) would identically vanish if the puncture identically satisfied the
second-order Lorenz gauge condition Eq. (4.27). However, since the puncture does not
satisfy that equation (except to some order in a local expansion around the particle),
there is no obvious reason for S (0)

[︂
∆T(2)eff

ab

]︂
to vanish. Hence, ∆T(2)eff

ab is calculated and

added to T(2)eff
ab in Eq. (4.35) to obtain Seff (the effective source inside the world-tube).

4.1.4 Solving the reduced second-order Teukolsky equation with the
hyperboloidal method

The reduced second-order Teukolsky equation is solved using a hyperboloidal
method [106, 105] by Ben Leather. This method transforms to conformal coordinates
on hyperboloidal slices that foliate the spacetime. One advantage of this approach is
the boundary conditions can be made trivial in sufficiently regular gauges (as the only
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Solve Oψ
(2)
4 = S

(Leather)

Transform Slm onto hyperbolic slicing
(Leather)

Calculate Slm
S[∂t̃ h(1)]lm
(Durkan)

S[δ2G[h(1)ab , h(1)ab ]]lm
(Spiers)

Transform to
near-Bondi–Sachs Gauge

(Spiers)

S[Te f f
(2)]lm

(Refs. [195, 194, 156],
Leather)

∆Te f f
(2)

(Spiers, Leather, Durkan,
Refs. [195, 194, 156])

FIGURE 4.1: The stages of solving the reduced second-order Teukolsky equation. In
brackets the names of who is responsible for most of that piece of the calculation is

shown.

boundary conditions is radiation emanating from future null infinity and out of the
horizon, both of which can be set to zero). The coordinates also put the event horizon
and I+at finite coordinate values, making integrating over the whole domain possible
and efficient. Finally, a multi-domain spectral method is used with analytic mesh
refinement to find a solution in the hyperboloidal coordinates. From the solution Ben
Leather obtains ψ

(2)
4L and will calculate the energy flux for each orbit of radius rp.

Using energy fluxes on a grid of rp values we will be able to evolve inspirals and
generate waveforms.

4.1.5 My role: calculating the source

From the preceding sections, it is clear that solving the reduced second-order
Teukolsky equation for quasi-circular orbits in Schwarzschild is a calculation of many
parts. In Fig. 4.1, I summarise the various pieces of the calculation and how they fit
together in a flow-chart. In the remainder of this section, I summarise my role in the
collaboration. In the following section, I present the details of the calculations I made.

My role in this project is calculating various parts of Seff and Svac. Specifically, I derive
a (spin-weighted spherical harmonic) mode decomposition for S ⟨0⟩

[︂
δ2G⟨0⟩

ab [h(1)cd , h(1)cd ]
]︂
,

S ⟨0⟩
[︂
δG⟨1⟩

ab [h(1)cd ]
]︂

and ∆T(2)eff
ab in BL coordinates. For S ⟨0⟩

[︂
δ2G⟨0⟩

ab [h(1)cd , h(1)cd ]
]︂

I also
numerically compute data using retarded Lorenz gauge first-order metric
perturbation data provided by Niels Warburton as input.
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Additionally, I implemented a gauge transformation to near the Bondi–Sachs gauge
near I+(but do not fully fix the gauge). This gauge transformation improves the
convergence of the source by two orders in r near I+. Implementing the near
Bondi–Sachs transform requires calculating the gauge vector ξa using the analysis in
Sec. 3.6. Additionally, I produce formulas for the gauge transformation of the slow
time derivative of the metric perturbation. Also, as the gauge transformation is
implemented at a single r value (at the outer world-tube boundary), a gauge jump in
ψ
(2)
4L occurs. I provide mode decomposition formulas for the jump in ψ

(2)
4L due to the

gauge transformation.

4.2 Calculating the source to the reduced second-order
Teukolsky equation

In this section I calculate various parts of the source to the second-order Teukolsky
equation. Note, Secs. 4.2.1 and 4.2.3 are applicable for general perturbation in
Schwarzschild (in the Carter tetrad). Additionally to working in Schwarzschild in the
Carter tetrad, Secs. 4.2.2, 4.2.5 and 4.2.7 specialise to the Lorenz gauge and Secs. 4.2.6
and 4.2.7 specialise to quasi-circular orbits. From this point I will often drop the
superscript (1) on h(1)ab for succinctness.

4.2.1 Mode decomposing the source in coordinate form

Obtaining an expression for a mode decomposition of the reduced second-order
Teukolsky source (in a coordinate form) involves delicately converting from the GHP
formalism into coordinates. It is crucial to maintain the spin-weight property of the
GHP quantities, as they are naturally expressed in terms of spin-weighted spherical
harmonics (the homogeneous solutions of the angular Teukolsky equation in
Schwarzschild). Here, I outline the main steps in calculating a mode decomposed
source in coordinate form and discuss how I have improved the compactness of the
final expression. I begin by decomposing S ⟨0⟩

[︂
−δ2G⟨0⟩

ab [h(1)cd , h(1)cd ]
]︂

as it is the largest
part of the source (note, for here on out I drop ⟨0⟩ labels).

The most prominent obstacle in decomposing the source of the reduced second-order
Teukolsky equation is the sheer size of the expression. In GHP form S4 can be written
in two lines, Eq. (3.74) [154]. Similarly, I need to express δ2Gab, Eq. (1.19), in GHP form.
Each component of δ2Gab in GHP form takes up a page in Latex, so I have not
produced them here. Instead, I have included them in the supporting materials
accompanying this thesis and will publicly release the expressions as a Mathematica
package in the Black Hole Perturbation Toolkit [1] (which will accompany my paper in
preparation [175].
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Combining the GHP expressions for δ2Gab and S4 results in an expression for
S4[δ

2Gab] which is monstrous in length. It contains up to four GHP derivatives and is
quadratic in h(1)ab (containing ten independent components). Even when simplifying to
a Schwarzschild background (i.e., all the spin-coefficients and Ψ2 are real and
τ = τ′ = 0) S4[δ

2Gab] has ∼ 1700 terms in GHP form. Mode decomposing S4[δ
2Gab]

and converting it to coordinates form is only possible by creating a computer
algorithm to automate the procedure.

To describe my algorithm to convert each term in S4[δ
2Gab] to a mode decomposed

coordinate form, I select a single term in S4[δ
2Gab],

S4[δ
2Gab[h

(1)
ab , h(1)ab ]] =

3
2

hnm̄ρð′Þ′Þ′hmm̄ + ..., (4.37)

to be used as an example. In the following paragraphs, I apply each step of the
algorithm to the term in Eq. (4.37), to finally express it in a mode decomposed form:

S4[δ
2Gab[h

(1)
ab , h(1)ab ]] =

∞

∑
l=2,m

Rℓ,m[r, t]−2Yℓ,m[θ, ϕ], (4.38)

in BL coordinates. Additionally, I will express the time dependence as
Rℓ,m[r, t] = Rℓ,m[r]e−iωt. The resulting expression can be converted to the two-timescale
framework by converting e−iωt → e−i(kφr+mφϕ) followed by ω → kΩr + mΩϕ

(φr = Ωr = 0 for quasi-circular orbits). The resulting expression consists of a
separation of variables which is consistent with the separable master Teukolsky
equation (Eq. 1.82) in Schwarzschild. By using a spin-weighted spherical harmonic
mode decomposition in Eq. (4.38) the angular Teukolsky equation will be solved.

To begin the conversion from GHP to coordinate form, I need to choose a tetrad basis.
I choose the Carter tetrad basis to maintain as much symmetry as possible in the
tetrad. In BL coordinates, in Schwarzschild, the spin-coefficients in the Carter tetrad
take the form [154]

ρ =− ρ′ = −1
r

√︃
f
2

, τ = τ′ = 0

β =β′ =
cot(θ)
2
√

2r
, ϵ = −ϵ′ =

M
2r2
√︁

2 f
(4.39)

where f = 1 − 2M
r . I will also use Ψ2 = −M

r3 in Schwarzschild (which is invariant
between principle null direction aligned tetrads).

Starting with S4[δ
2Gab] in GHP notation provides the benefit that in Schwarzschild the

GHP derivative ð and ð′ behave (for any principle-null direction aligned tetrad) as
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re-scaled spin-raising/lowering operators [154],

ð =
1√
2r

(︁
∂θ + i csc(θ)∂ϕ − s cot(θ)

)︁
=

1√
2r

ð̂,

ð′ =
1√
2r

(︁
∂θ − i csc(θ)∂ϕ − s cot(θ)

)︁
=

1√
2r

ð′ˆ . (4.40)

Here ð′ˆ and ð′ˆ are the spin-raising/lowering operators of the spin-weighted spherical
harmonics (sYℓ,m[θ, ϕ]) [83] and s is the spin-weight of the object ð̂ or ð′ˆ is acting on.
Equivalently,

ð̂ = (sin(θ))−s(∂θ + i csc(θ)∂ϕ)(sin(θ))s. (4.41)

From Eq. (4.41) one sees that whilst ð̂ contains purely angular derivatives, for an η

which is angular independent, ð̂η = 0 only if η has s = 0. Nevertheless, an object with
no angular dependence is naturally expressed as an ℓ = 0, s = 0 spin-weighted
spherical harmonic (rather that any other s-weighted spherical harmonic). Note, all
my definitions for ð differ by a factor of −1 from the conventional definitions in
Ref. [83].

As ð̂ and ð̂′
are spin raising and lowering operators respectively, when they act on

spin-weighted spherical harmonics they raise and lower the spin as follows [83],

ð̂ sYℓ,m =−
√︂
(l − s)(l + s + 1) s+1Yℓ,m, (4.42)

ð̂′
sYℓ,m =

√︂
(l + s)(l − s + 1) s−1Yℓ,m, (4.43)

ð̂′ð̂ sYℓ,m =− (l − s)(l + s + 1) sYℓ,m. (4.44)

Spin-weighted spherical harmonics also have a useful relation with their complex
conjugate,

sYℓ,m = (−1)s+m −sYl,−m. (4.45)

Þ and Þ′ contain no angular derivatives in Schwarzschild. Hence, by expressing any
angular dependent quantities in S4[δ

2Gab] (including the tetrad components of h(1)ab ) in
terms of spin-weighted spherical harmonics, one can avoid explicitly evaluating any θ

and ϕ derivatives, instead using the relations in Eqs. (4.42), (4.43) and (4.44) between
spin-weighted spherical harmonics.

While Þ and Þ′ are boost raising and lowering operators, there is no known
orthogonal basis for boost-weighted functions. Hence, the t and r derivatives appear
explicitly in my final coordinate expression. To express these derivatives it is simplest
to initially convert the GHP derivatives, Þ and Þ′, to the NP derivatives, D and ∆
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(using Eq. (1.76)). This intermediary step effectively implements a half-GHP-half-NP
formalism, with the derivatives D, ∆, ð, and ð′ present.

One must take care when implementing half-GHP-half-NP because the NP formalism
part introduces quantities (ϵ, ϵ′, D, and δ) which do not have a well-defined spin- and
boost-weights. This can be problematic as the GHP derivatives, Eq. (1.76) (and the
spin raising/lowering operators ð̂ and ð̂′

) must act on quantities with well-defined
spin/boost weights (to be well defined). This problem can be avoided as it is possible
to convert to half-GHP-half-NP whilst maintaining that the GHP operators only act on
well-defined spin- and boost-weight quantities. This is achieved in two steps. Firstly,
one applies the GHP commutation relations [77] such that no ð or ð′ acts on a Þ and
Þ′. For example, applying the appropriate commutation rule [77] twice on Eq. (4.37)
results in

3
2

hnm̄ρð′Þ′Þ′hmm̄ =
3
2

hnm̄ρ
(︁
Þ′Þ′ + ρ2 − 2ρ′Þ′ − (Þ′ρ′)

)︁
ð′hmm̄. (4.46)

I can now convert each Þ and Þ′ into NP form (without ð acting on quantities with an
ill-defined spin/boost-weight) using Eq. (1.76). The second critical step is to convert
the outermost derivative first to prevent any Þ or Þ′ acting on a quantity that does not
have well-defined spin/boost weights. For example,

hnm̄Þ′Þ′ð′hmm̄ =hnm̄ρ(∆Þ′ − 2ϵ′Þ′)ð′hmm̄ (4.47)

=hnm̄ρ(∆∆ − 2ϵ′∆)ð′hmm̄, (4.48)

where I have used ϵ̄′ = ϵ′.

Before converting D and ∆ to coordinate form, I implement a mode decomposition for
the inputs (h(1)ab , h(1)ab ). Note, it is valid to input two different first-order metric
perturbations, such as one puncture and one regular field, so there must be a
distinction between the two inputs. I chose the distinction to be present in the choice
of ℓ and m labels. As each term in S [δ2G[h(1)ab , h(1)ab ]] is quadratic in h(1)ab (and its
derivatives) I replace one h[a][b] with hℓ1,m1

[a][b]s1Yℓ1,m1 and the other h[a][b] with hℓ2,m2
[a][b]s2Yℓ2,m2 .

That is,

hnm̄∆∆ð′hmm̄ =
∞

∑
ℓ1=1,m1

∞

∑
ℓ2=1,m2

h−ℓ1,m1
nm̄ −1Yℓ1,m1 ∆∆ð′hℓ2,m2

mm̄ 0Yℓ2,m2 . (4.49)

Each hs,ℓ,m
[a][b] is a function of r and t. As Eq. (4.49) contains GHP derivatives, the spin and

boost weights of the quantities hℓ,m
[a][b] and sYℓ,m must be defined. As h[a][b] (of

spin-weight x and boost weight y) is decomposed into xYℓ,m and hℓ,m
[a][b], xYℓ,m has

spin-weight x and boost weight 0 and hℓ,m
[a][b] has boost weight y and spin-weight 0. The

spin and boost weights of h[a][b] are calculated from the tetrad vectors corresponding
to [a][b] (e.g., h[1][3] has b = 1, s = 1, see Sec. 1.7.2).
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As ð contains purely angular derivatives, and hs,ℓ,m
[a][b] only depends on r and t (and has

s = 0)

ðhℓ,m
[a][b] = 0. (4.50)

Hence, each ð only acts on spin-weighted spherical harmonics. Using
Eqs. (4.40), (4.42), (4.43), and (4.44) one can replace each ð acting on spin-weighted
spherical harmonics with a factor of 1√

2r
(multiplied a coefficient dependent of l) and a

different spin-weighted spherical harmonic1. E.g.,

h−ℓ1,m1
nm̄ −1Yℓ1,m1 ∆∆ð′hℓ2,m2

mm̄ 0Yℓ2,m2 = h−ℓ1,m1
nm̄ −1Yℓ1,m1 ∆∆hℓ2,m2

mm̄

√︁
ℓ2(ℓ2 + 1)√

2r
−1Yℓ2,m2 , (4.51)

The next step is to express the NP derivatives in terms of coordinates. D and ∆
convert to coordinate form in the Carter basis (in BL coordinates) straightforwardly,

D =
1√︁
2 f

∂t +

√︃
f
2

∂r, ∆ =
1√︁
2 f

∂t −
√︃

f
2

∂r. (4.52)

As h(1)ab is assumed to be decomposed into Fourier time-frequency modes, the time
dependence of each mode is expressed as

hs,ℓ,m
ab ∝ e−iωt; (4.53)

this makes the time derivatives trivial. Converting D and ∆ to coordinate form results
in

h−ℓ1,m1
nm̄ −1Yℓ1,m1 ∆∆hℓ2,m2

mm̄

√︁
ℓ2(ℓ2 + 1)√

2r
−1Yℓ2,m2 =

− h−ℓ1,m1
nm̄ −1Yℓ1,m1

√︁
ℓ2(ℓ2 + 1)

2
√

2 f r3

(︂
ω2(iM + r2ω2)h34

−2ℓ2,m2

− f
(︁
(M + 2ir2ω2)h34

−2ℓ2,m2 ,r + f r2h34
−2ℓ2,m2 ,r ,r

)︁)︂
−1Yℓ2,m2 . (4.54)

where the , r subscripts denote a partial derivative with respect to r. The resulting
expression for the source are functions of s1Yℓ1,m1 s2Yℓ2,m2 . However, to separate the
Teukolsky equation, the angular dependence of the source must be expressed as single
modes of −2Yℓ,m. To achieve this, I re-express two spin-weight spherical harmonics as a

1Note, the factor of 1√
2r

which comes with the conversion of ð to ð̂ has zero spin- and boost-weight.
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single spin-(−2)-weight spherical harmonics2 using

s1Yℓ1,m1 s2Yℓ2,m2 =
∞

∑
ℓ1=s1,m1

∞

∑
ℓ2=s2,m2

Cℓ,m,−2
ℓ1,m1,s1,ℓ2,m2,s2−2Yℓ,m. (4.55)

where Cℓ,m,s
ℓ1,m1,s1,ℓ2,m2,s2

is the integral

Cℓ,m,s
ℓ1,m1,s1,ℓ2,m2,s2

=
∮︂

sȲℓ,ms1Yℓ1,m1 s2Yℓ2,m2 . (4.56)

These integrals can be evaluated algebraically using 3j symbols [89, 172] (as spin
weighted spherical harmonics are related to Wigner-D matrices) through

Cℓms
ℓ′m′s′ℓ′′m′′s′′ = (−1)m+s

√︃
(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

⎛⎜⎜⎜⎜⎝
ℓ ℓ′ ℓ′′

s −s′ −s′′

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ℓ ℓ′ ℓ′′

−m m′ m′′

⎞⎟⎟⎟⎟⎠.

(4.57)

Hence, Cℓ,m,s
ℓ1,m1,s1,ℓ2,m2,s2

admits the following symmetry,

Cℓ,m,s
ℓ1,m1,s1,ℓ2,m2,s2

= Cℓ,m,s
ℓ2,m2,s2,ℓ1,m1,s1

, (4.58)

which can be used to simplify the S4[δ
2Gab] expression. To achieve maximal

cancellations, I chose to apply Eq. (4.58) to each term in S4[δ
2Gab] such that s1 > s2,

followed by a relabeling of everything in that term with
ℓ1 → ℓ2, ℓ2 → ℓ1, m1 → m2, m2 → m1. For example,√︁

ℓ1(ℓ1 + 1)√︁
(ℓ2 − 1)(ℓ2 + 2)

Cℓ,m,−2
ℓ1,m1,−2,ℓ2,m2,t →

√︁
ℓ2(ℓ2 + 1)√︁

(ℓ1 − 1)(ℓ1 + 2)
Cℓ,m,−2
ℓ1,m1,t,ℓ2,m2,−2. (4.59)

As I have labelled the two inputs distinctly, I must also compute the symmetrisation of
the entire expression; that is,

S [δ2G[hs1,ℓ1,m1
ab , hs2,ℓ2,m2

ab ]] =
1
2
(S [δ2G[hs1,ℓ1,m1

ab , hs2,ℓ2,m2
ab ]] + S [δ2G[hs2,ℓ2,m2

ab , hs1,ℓ1,m1
ab ]]). (4.60)

The result is a maximally simplified mode decomposition of the source S4[δ
2Gab] in BL

coordinates (for the Carter tetrad). This decomposition technique produces formulas
that are consistent for any type of perturbation in Schwarzschild. I will be releasing
the decomposition formulas for δ2Gab[h

(1)
ab , h(1)ab ] on the Black Hole Perturbation Theory

toolkit [1] shortly and include them in the supporting materials of this thesis.

2The two spin-weight spherical harmonics can always be expressed as a spin-(−2)-weight spherical
harmonics because s1 + s2 = −2 as the source is spin-(−2)-weight (this can be used as a consistency
check).
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4.2.2 Calculating radial derivatives of the metric perturbation analytically
in the Lorenz gauge

The expression for S4[δ
2Gab] requires up to four radial derivatives of hab. One could

calculate the radial derivative numerically; however, numerical derivatives introduce
a numerical error and are inefficient. Therefore, it is preferable to calculate the radial
derivatives analytically. One can leverage the metric perturbation being a solution to
the linearised EFE (Eq. (1.18)) to calculate the second- and higher-order radial
derivatives in terms of the first-order derivatives.

To relate the second-order r derivatives to first-order r derivatives requires a
coordinate form mode decomposition of the linearised EFE. This can be achieved
using the algorithm in Sec. 4.2.1 starting with the linearised EFE in GHP form (which
is also given in the supplementary materials [175]).

There are ten components of the second-order radial derivatives of the metric
perturbation, and the linearised EFE contains only six linearly independent equations.
To achieve linearly independent equations for each h[a][b],r,r component, one must
apply additional restrictions. These restrictions account for the gauge freedom in the
linearised EFE. The hab inputs I use are in the Lorenz gauge (i.e., h̄ c

ab;c = 0). Applying
this condition to the linearised EFE results in ten linearly independent equations for
the second-order radial derivative of the first-order metric perturbation. Solving these
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equations for h[a][b],r,r gives

hℓ,m
ll,r,r =

1
f 2r4

(︂
hll

ℓ1,m1
(︁
2 f 2r2 + (2M + ir2ω1)

2 + f r(4M + r(µℓ1 1)
2)
)︁

− 2 f r2(︁ f 1/2(−hlm
ℓ1,m1 + hlm̄

ℓ1,m1)µℓ1 1 + r2Tll
ℓ1,m1 + Mhll

ℓ1,m1 ,1 + f (hln
ℓ1,m1

+ hmm̄
ℓ1,m1 + rhll

ℓ1,m1 ,1)
)︁)︂

, (4.61)

hℓ,m
ln,r,r = − 1

f 2r3

(︂
r3ω2

1hln
ℓ1,m1 + f 3/2r(hlm

ℓ1,m1 − hlm̄
ℓ1,m1 − hnm

ℓ1,m1 + hnm̄
ℓ1,m1)µℓ1 1

+ f 2r(hll
ℓ1,m1 − 2hln

ℓ1,m1 + hnn
ℓ1,m1 − 2hmm̄

ℓ1,m1 + 2rhln
ℓ1,m1 ,1) + f

(︁
hln

ℓ1,m1(4M

− r(µℓ1 1)
2) + 2(2Mhmm̄

ℓ1,m1 + r3Tmm̄
ℓ1,m1 + Mrhln

ℓ1,m1 ,1)
)︁)︂

, (4.62)

hℓ,m
lm,r,r =

1
f 2r4

(︂
hlm

ℓ1,m1
(︁
2 f 2r2 + (M + ir2ω1)

2 + f r(−4M + r(µℓ1 1)
2)
)︁

− f r2(︁ f 1/2(−hll
ℓ1,m1 µℓ1

1 + hln
ℓ1,m1 µℓ1

1 + hmm̄
ℓ1,m1 µℓ1

1 − hmm
ℓ1,m1 µℓ1 2)

+ 2(r2Tlm
ℓ1,m1 + Mhlm

ℓ1,m1 ,1) + 2 f (hnm
ℓ1,m1 + rhlm

ℓ1,m1 ,1)
)︁)︂

, (4.63)

hℓ,m
nn,r,r =

1
f 2r4

(︂
hnn

ℓ1,m1
(︁
2 f 2r2 + (2M − ir2ω1)

2 + f r(4M + r(µℓ1 1)
2)
)︁

− 2 f r2(︁ f 1/2(hnm
ℓ1,m1 − hnm̄

ℓ1,m1)µℓ1
1 + r2Tnn

ℓ1,m1 + Mhnn
ℓ1,m1

,1 + f (hln
ℓ1,m1

+ hmm̄
ℓ1,m1 + rhnn

ℓ1,m1
,1)
)︁)︂

, (4.64)

hℓ,m
nm,r,r =

1
f 2r4

(︂
hnm

ℓ1,m1
(︁
2 f 2r2 + (M − ir2ω1)

2 + f r(−4M + r(µℓ1
1)

2)
)︁

− f r2(︁ f 1/2(−hln
ℓ1,m1 µℓ1 1 + hnn

ℓ1,m1 µℓ1 1 − hmm̄
ℓ1,m1 µℓ1 1 + hmm

ℓ1,m1 µℓ1 2)

+ 2(r2Tnm
ℓ1,m1 + Mhnm

ℓ1,m1
,1) + 2 f (hlm

ℓ1,m1 + rhnm
ℓ1,m1

,1)
)︁)︂

, (4.65)

hℓ,m
mm,r,r = − 1

f 2r2

(︂
r2ω2

1hmm
ℓ1,m1 − 2 f 3/2(hlm

ℓ1,m1 − hnm
ℓ1,m1)µℓ1 2 + 2 f 2rhmm

ℓ1,m1
,1

− f
(︁
hmm

ℓ1,m1(µℓ1 2)
2 − 2(r2Tmm

ℓ1,m1 + Mhmm
ℓ1,m1 ,1)

)︁)︂
, (4.66)

hℓ,m
m,m̄,r,r = − 1

f 2r3

(︂
r3ω2

1hmm̄
ℓ1,m1 + f 3/2r(hlm

ℓ1,m1 − hlm̄
ℓ1,m1 − hnm

ℓ1,m1 + hnm̄
ℓ1,m1)µℓ1 1

+ f 2r(hll
ℓ1,m1 − 2hln

ℓ1,m1 + hnn
ℓ1,m1 − 2hmm̄

ℓ1,m1 + 2rhmm̄
ℓ1,m1 ,1) + f

(︁
4Mhln

ℓ1,m1

+ hmm̄
ℓ1,m1(4M − r(µℓ1 1)

2) + 2r(r2Tln
ℓ1,m1 + Mhmm̄

ℓ1,m1 ,1)
)︁)︂

, (4.67)

where µℓ
n =

√︁
(l − n)(l + n + 1). By taking a further r derivative and using these

relations iteratively, one can calculate an arbitrarily high number of radial derivatives
on hab in terms of only h[a][b] and h[a][b],r.

4.2.3 Converting from the Barack–Lousto–Sago basis to the Carter basis

An additional layer of complexity to this calculation is the hab I use as input is in the
Barack–Lousto–Sago basis [24, 25]. This is due to hab being calculated by directly
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solving the linearised EFE in the Lorenz gauge. To simplify this calculation [24, 25], a
Barack–Lousto–Sago basis of modes was chosen, hi,ℓ,m

ab (where the i label denotes the
Barack–Lousto–Sago mode and runs from one to ten). However, such a basis is not
designed for calculations using the Teukolsky formalism. As a preliminary step, I
convert the input data, hi,ℓ,m

ab , into the Carter tetrad modes using [154]3

hℓ,m
ll =

1
2r f

(︂
h1ℓ,m + h2ℓ,m

)︂
(4.68)

hℓ,m
ln =

1
2r

(︂
h3ℓ,m

)︂
(4.69)

hℓ,m
lm =

−1
4r
√︁

f µℓ
1

(︂
h4ℓ,m + h5ℓ,m − i(h8ℓ,m + h9ℓ,m)

)︂
(4.70)

hℓ,m
lm̄ =

1
4r
√︁

f µℓ
1

(︂
h4ℓ,m + h5ℓ,m + i(h8ℓ,m + h9ℓ,m)

)︂
(4.71)

hℓ,m
nn =

1
2r f

(︂
h1ℓ,m − h2ℓ,m

)︂ 1
2r f

(︂
h1ℓ,m − h2ℓ,m

)︂
(4.72)

hℓ,m
nm =

−1
4r
√︁

f µℓ
1

(︂
h4ℓ,m − h5ℓ,m − i(h8ℓ,m − h9ℓ,m)

)︂
(4.73)

hℓ,m
nm̄ =

1
4r
√︁

f µℓ
1

(︂
h4ℓ,m − h5ℓ,m + i(h8ℓ,m − h9ℓ,m)

)︂
(4.74)

hℓ,m
mm =

1
rµℓ2

(︂
h7ℓ,m − ih10ℓ,m

)︂
(4.75)

hℓ,m
mm̄ =

1
2r

(︂
h6ℓ,m

)︂
(4.76)

hℓ,m
m̄m̄ =

1
rµℓ2

(︂
h7ℓ,m − ih10ℓ,m

)︂
. (4.77)

(4.78)

4.2.4 Results: the source for quasi-circular orbits in the Lorenz gauge

To improve efficiency, I convert the formulas for calculating the mode decomposed
S4δ2G[hab, hab] in coordinate form into a C++ code. Efficiency is important for this
calculation because to evolve inspirals requires data on ψ

(2)
4L for a set of r0 (from the

initial geodesic to r0 = 2M at merger). Also, the input data is large, containing up to
ℓ = 50 modes for ten components of hab (i.e., there are up to O(104) input modes), and
handling this much data in mathematica can cause it to crash. The C++ code allows
me to quickly calculate S4δ2G[hab, hab] for a given r0.

To calculate the source, I inputted retarded Lorentz gauge hab data provided by Niels
Warburton. To display the behaviour of the source, I present the dominant
ℓ = 2, m = 2 mode of S4[hab, hab], with r0 = 9M, in Fig. 4.2. This mode was calculated
with input modes up to ℓmax = 10 input modes.

3Here, I reproduce Eq. (118) in Ref. [154], which I independently checked before Ref. [154] was pub-
lished.
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FIGURE 4.2: The ℓ = 2, m = 2 mode of S4[δ
2G[hab, hab]] (part of the source to the

reduced second-order Teukolsky equation) for r0 = 9M in the Carter tetrad and BL
coordinates. This source has been calculated using up to ℓmax = 10 input modes of the
retarded Lorenz gauge first-order metric perturbation data (provided by Niels War-

burton).

In Sec. 3.6.10, I predicted that the behaviour of the reduced second-order Teukolsky
source would be ∼ r−2 near I+in a generic gauge. As can be seen on the right-hand
side of Fig. 4.2, S4[δ

2G[hab, hab]] ∼ r−2 in agreement with my prediction. All the other
Lorenz gauge reduced second-order Teukolsky source modes also behave as O(r−2).

Near the horizon, the source modes behave as ∼ f 1 (this can be seen on the left-hand
side of Fig. 4.2). There is some divergent behaviour for r − 2M < 10−4M; this is due to
a numerical error not cancelling equivalent terms, a problem that was encountered
and well understood in the Lorenz gauge second-order calculation in
Refs. [195, 194, 156]. The Carter tetrad being singular at the horizon may be
exacerbating this problem. Using a horizon regular tetrad, such as the
Hartle–Hawking null tetrad [179], near the horizon may help ameliorate the problem.
Close to the horizon we use a near-horizon expansion of δ2G[h(1)ab , h(1)ab ] (inherited from
the Lorenz-gauge second-order calculations in Refs. [195, 194, 156]), which analytically
cancels the spurious divergence near the horizon.

Fig. 4.3 shows how the source converges for an increased number of ℓmax input modes.
Note that the convergence is good everywhere except near the worldline (r = 10M),
where there is no convergence. Fig. 4.4 shows the convergence near the worldline for
increasing ℓmax (the number of input modes). One can see that the source diverges on
the worldline, and it appears there is no convergence very close to the worldline. The
convergence off the worldline is actually exponential. However, for small ℓmax, near
the worldline, the behaviour is dominated by a power law divergence (as shown in
Fig. 4.3). For sufficiently large ℓmax the exponential convergence will dominate.
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FIGURE 4.3: Convergence test of the ℓ = 2, m = 2 mode of S4[δ
2G[hab, hab]] for r0 = 10.

The h(1)ab input modes are retarder Lorenz gauge solutions. The multiple curves show
how the source converges for higher ℓmax (the maximum number of input modes).
The source converges rapidly near the horizon (at r = 2M), quickly reaching machine
precision except for |S10 − S5|. Similarly, the source converges quickly near I+(right-
hand side of the plot). However, near the point-mass (at r = 10M) the source con-

verges slowly, and at r = 10M the source diverges.

FIGURE 4.4: Convergence test of the ℓ = 2, m = 2 mode of S4[δ
2G[hab, hab]] near the

point-mass (at r0 = 10). The h(1)ab input modes are retarder Lorenz gauge solutions.
The multiple plots show how the source converges for higher ℓmax (the maximum
number of input modes) near the point-mass. The lines of best fit have been applied
by inspection. The source diverges on the particle and does not converge quickly until

at least 2M from the particle (for small lmax).

The poor convergence is expected [120]; hence, near the worldline, we use an effective
source imported from Refs. [156, 195, 194], which overcame the slow convergence
using the strategy mentioned in Sec. 4.1.3. Away from the worldline at r = 12M, the
source converges quickly for an increased number of input modes.

The source I have calculated is consistent with the source calculated by my
collaborator Barry Wardell (see Fig. 4.5). He calculates the source using δ2Rab data
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FIGURE 4.5: Fractional disagreement in the ℓ = 2, m = 2 mode of S4[δ
2G[hab, hab]]

(for r0 = 10 in the Carter tetrad in BL coordinates). One calculation of the source
(consistent with Fig. 4.2) has been calculated using up to ℓ = 50 input modes of the
retarded Lorenz gauge first-order metric perturbation (provided by Niels Warburton).
The other source has been calculated from the δ2Rab data used in Ref. [194] (with
derivatives taken numerically). The blue curve uses a ten-point numerical deriva-
tive, whereas the orange plot uses a twenty-point numerical derivative; hence, the
plot shows the calculations converge. The reason for disagreement near the horizon
is that the radial grid is sparse; hence, the numerical derivatives are inaccurate. Simi-
larly, there is disagreement on the particle (at r = 7.4) as there is a jump discontinuity

there.

used in Refs. [156, 195, 194]. Wardell acts with S (Eq. 1.80) on δ2Rab and calculates the
radial derivatives numerically. As can be seen in Fig. 4.5, the agreement between our
results improves as the number of points Wardell uses in his numerical derivative
increases. The disagreement near the horizon is due to Wardell’s source behaving
poorly near the horizon as the radial grid becomes sparse there, making the numerical
derivatives inaccurate.

4.2.5 Transformation to the Bondi–Sachs gauge

To increase the convergence of the source near I+, I implement a gauge
transformation to the Bondi–Sachs gauge. To calculate the gauge transformation I use
the procedure described in Sec. 3.6. However, to improve the behaviour of the source
by two orders in r near I+(the maximum possible), it is not necessary to fully
transform to the Bondi–Sachs gauge. Instead, it is sufficient to transform to a gauge
where the leading (and next-to-leading for hll) order fall-off of the metric perturbation
components is equivalent to the fall-off in the Bondi–Sachs gauge. This also means I
do not fully fix the gauge and the resulting ψ

(2)
4L is not gauge independent.



110 The Source in Schwarzschild

This can be seen by computing a series expansion of the source S4[δ
2Gab[hab, hab]] in

orders of r for a generic asymptotically flat gauge metric perturbation (hab = O(r−1)).
The source behaves as

S4[δ
2Gab[hab, hab]] ∝(hllhm̄m̄ + h2

lm̄)

+
(︁
(hll + hln + hmm̄ + hlm + hlm̄)hm̄m̄ + (hll + hlm̄)hnm̄ + (hln + hmm̄

+ hlm̄)hlm̄
)︁
+O(r−4). (4.79)

As hab = O(r−1), the leading-order behaviour in a generic gauge is
S4[δ

2Gab] = O(r−2), consistent with Sec. 3.6.10. From Eq. (4.79), one can deduce that
achieving S4[δ

2Gab] = O(r−4) requires hll = O(r−3) and
hln = hlm = hlm̄ = hmm̄ = O(r−2) (assuming the other components are O(r−1)). I.e., it
is not necessary to transform the whole metric perturbation to the Bondi–Sachs gauge
to achieve S4[δ

2Gab] = O(r−4), only the leading order (and next to leading order for
hll) in r pieces need to be transformed to Bondi–Sachs form. I call any gauge satisfying
hll = O(r−3) and hln = hlm = hlm̄ = hmm̄ = O(r−2) (and the remaining components
are O(r−1)) near-Bondi–Sachs.

The Lorenz gauge is not near-Bondi–Sachs. To see this, I will split the Lorenz gauge
metric perturbation into m = 0 and m ̸= 0 pieces, the stationary and non-stationary
modes, respectively. This split is useful for quasi-circular orbits because the fast-time
dependence is purely e−imϕp . That is, fast-time derivatives annihilate the metric
perturbation in the stationary sector, whereas they do not in the non-stationary sector.

For m = 0, the Lorenz gauge applies restrictions on the form of the metric
perturbation, hab = O(rℓ−1) [8]. Hence, for ℓ > 1 (m = 0) the Lorenz gauge satisfies the
near-Bondi–Sachs gauge conditions. Similarly, for ℓ = 1, hab = O(r−2), and by
inspection (of Niels Warburton’s hab data) hll = O(r−3), so the ℓ = 1 (m = 0) sector is
also near-Bondi–Sachs. The only non-near-Bondi–Sachs stationary behaviour is in the
ℓ = 0 mode, as hll = O(r−1).

The ℓ = 0 mode is the simplest to transform (as ξm = 0). I calculate the ℓ = 0, m = 0
gauge vector next using the analysis in Sec. 3.6 expanded to the required order in r.

To solve for the gauge vector I express Eq. (3.30) in coordinate form, expanded as a
series in r (in Schwarzschild),

√
2
(︁
(1 − M

r
)∂rξl −

M
r2 ξl +O(r−3) = − eiωr∗h1/r

ll
r

− eiωr∗h1/r2

ll
r2 . (4.80)
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Here I have also expanded the metric perturbation in orders of r in u-slicing (and
converted to t-slicing; that is,

hll = e−iωu(︁h1/r
ll
r

+
h1/r2

ll
r2

)︁
+O(r−3) (4.81)

= e−iωt(︁ eiωr∗h1/r
ll

r
+

eiωr∗h1/r2

ll
r2

)︁
+O(r−3) (4.82)

(logarithmic terms could also appear in hab, but to the order in r required they do not
appear in the Lorenz gauge hab). I use an ansatz for ξl ,

ξl = ξ
ln(r)
l ln(r) +

ξ1/r
l
r

+
ξ

ln(r)/r
l ln(r)

r
+O(r−2). (4.83)

Inputting Eq. (4.83) into Eq. (4.80), and solving for each power of r (and ln(r)) gives

ξ
ln(r)
l = − eiωr∗h1/r

ll√
2

, (4.84)

ξ
ln(r)/r
l =

Meiωr∗h1/r
ll√

2
, (4.85)

ξ1/r
l =

eiωr∗h1/r2

ll√
2

+
2Meiωr∗h1/r

ll√
2

. (4.86)

The next equation to solve is Eq. (3.33a) for ξn. Eq. (3.33a) expanded in a series of r (in
Schwarzschild) takes the form

√
2∂uξl −

∂r(ξl − ξn)√
2

+

√
2M∂uξl

r
= − eiωr∗h1/r

ln
r

+O(r−2). (4.87)

As m = 0, and time derivatives are ∝ m (in the two-timescale framework) the time
derivatives annihilate the gauge vector and metric perturbation. Hence, solving
Eq. (4.87) for ξn (noting h1/r

ln = 0 for ℓ = 0 in the Lorenz gauge) gives

ξn = ξl + c +O(r−2), (4.88)

where c is a constant.

The final equation to solve in this sector is Eq. (3.32). Simplifying to ℓ = 0, in
Schwarzschild, in coordinate form, in a large r expansion, Eq. (3.32) is

√
2(

ξl − ξn

r
) = − eiωr∗h1/r

mm̄
r

+O(r−2). (4.89)

Solving for ξn gives

ξn = ξl + eiωr∗h1/r
mm̄ +O(r−2), (4.90)
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which is consistent with Eq. (4.88) with c = eiωr∗h1/r
mm̄. This determines the gauge

vector in the ℓ = 0, m = 0 sector. The gauge vector to take one from the Lorenz gauge
to the near-Bondi–Sachs gauge (for ℓ = 0, m = 0) is

ξl = eiωr∗
(︃
− h1/r

ll√
2

ln(r) +
h1/r2

ll + 2Mh1/r
ll√

2r
+

Mh1/r
ll ln(r)√

2r

)︃
, (4.91)

ξn = eiωr∗
(︃

h1/r
mm̄√

2
− h1/r

ll√
2

ln(r) +
h1/r2

ll + 2Mh1/r
ll√

2r
+

Mh1/r
ll ln(r)√

2r

)︃
. (4.92)

Next, I calculate the gauge vector for the m ̸= 0 sector. In the Lorenz gauge, for
quasi-circular orbits, for m ̸= 0, the metric perturbation behaves as hll = O(r−2),
hln = O(r−1), hlm = O(r−2) and hmm̄ = O(r−2) (the remaining components are
O(r−1)). Hence, to transform to the near-Bondi–Sachs gauge I only need to eliminate
the hll ∼ r−2 and hln ∼ r−1 behaviour with a gauge transformation.

In the m ̸= 0 sector, Eq. 4.80 is unchanged except h1/r
ll = 0. Hence, the constraints on

the ansatz for ξl in Eq. (4.84) become

ξ
ln(r)
l = 0, (4.93)

ξ
ln(r)/r
l = 0, (4.94)

ξ1/r
l =

eiωr∗h1/r2

ll√
2

. (4.95)

Eq. (4.87) is also equivalent in the m ̸= 0 sector; however, the u derivatives now
contribute. Hence, inputting Eq. (4.93) for ξl , Eq. (4.87) becomes

∂rξn =
eiωr∗h1/r

ln
r

− 2iω
ξ1/r

l
r

+O(r−2). (4.96)

By analysing the retarded Lorenz gauge leading-order-in-r data provided by Niels

Warburton, I noted h1/r
ln = +2iω h1/r2

ll√
2

. Hence, using Eq. (4.93), Eq. (4.88) becomes

∂rξn = O(r−2). (4.97)

Therefore,

ξn = ξ◦n +O(r−2), (4.98)

where ξ◦n is a constant.

The next equation I solve is for the h′lm = O(r−2) component. I simplify Eq. (3.31) to
Schwarzschild and compute an expansion in r, giving

(r − M)∂rξm√
2r

− ξm√
2r

+
ð̂ξl√

2r
= O(r−2), (4.99)
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where I have used hlm = O(r−2) and ð̂ is given in Eq. (4.40). Expanding ξl and ξm in
spin-weighted spherical harmonics, and applying the identity Eq. (4.42), results in

µℓ
1ξ1/r lm

l
r

= (r − M)∂rξ lm
m − ξ lm

m +O(r−1), (4.100)

where I have also multiplied by
√

2r. Integrating Eq. (4.100), the solution to this
equation is

ξm =
−µℓ

1ξ1/r
l

2r
+ rξr

m +O(r−2). (4.101)

ξr
m is a constant that I set to zero (as this term would produce non-asymptotically flat

behaviour in the other metric perturbation components).

The final equation I need to satisfy to eliminate the non-near-Bondi–Sachs behaviour
is the h′mm̄ ∼ r−2 component. Expressing Eq. (3.32) as an expansion in r in
Schwarzschild gives

− ξm̄ð̂ξm̄ + ð̂′
ξm√

2r
+

√
2(ξl + ξn)

r
= O(r−2), (4.102)

where I have used hmm̄ = O(r−2) (in the Lorenz gauge for m ̸= 0). Inputting
Eqs. (4.93), (4.98), and (4.101) for ξl , ξn, and ξm respectively gives

ξ◦n = 0. (4.103)

In summary, the m ̸= 0 gauge vector takes the form

ξl =
∞

∑
ℓ=0,m

eiωr∗h1/r2ℓ,m
ll√
2r

0Yℓ,m

ξn = 0

ξm =
∞

∑
ℓ=1,m

−µℓ
1eiωr∗h1/r2 ℓ,m

ll

2
√

2r
1Yℓ,m. (4.104)

To calculate the gauge vector in Eqs. (4.91) and (4.104), I use data on the coefficients of
the r expansion of the components of h[a][b]. These coefficients are provided by Niels
Warburton. With the gauge vector and hab in hand, it is straightforward to compute
the near-Bondi–Sachs metric perturbation using h′ab = hab + Lξc gab.
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FIGURE 4.6: The ℓ = 2, m = 2 mode of S4[δ
2G[hab, hab]] (the source to the reduced

second-order Teukolsky equation) for r0 = 9M in the Carter tetrad and BL coordi-
nates. This source has been calculated using up to ℓmax = 10 input modes of hab. The
blue line is calculated from retarded Lorenz gauge first-order metric perturbation data
(provided by Niels Warburton). The green line is Lorenz gauge until r = 100M, where

it transforms to the near-Bondi–Sachs gauge.

4.2.5.1 Results: The source for quasi-circular orbits including the
near-Bondi–Sachs gauge transform

I implement the near-Bondi–Sachs gauge transformation in my C++ code calculating
S4[δ

2Gab[hab, hab]]. This allows me to quickly produce source data in the
near-Bondi–Sachs gauge near I+. Fig. 4.6 shows the source where the plot is in the
Lorenz gauge on the left side of r = 100M. On the right side of r = 100M the line in
blue remains in the Lorenz gauge, and the green line is transformed to the
near-Bondi–Sachs gauge. The near-Bondi–Sachs gauge source converges two orders in
r faster than the Lorenz gauge source (as expected).

In practice, I calculate the near-Bondi–Sachs gauge transformation from the
world-tube boundary (r0 + 2M). I then pass this source data to Ben Leather to solve
the radial reduced second-order Teukolsky equation. The gauge transform makes the
source regular at I+, allowing Ben Leather to solve for ψ

(2)
4L using spectral methods

without explicitly finding and imposing boundary conditions.

4.2.6 Slow time derivative source decomposition

As a two-timescale approximation is being implemented, there are slow-time
derivative contributions to the reduced second-order Teukolsky source, S4[δG⟨1⟩

ab [h(1)cd ]]

in Eq. (4.33). In this section I decompose S4[δG⟨1⟩
ab [h(1)cd ]] into modes in BL coordinates

(for the Carter tetrad).
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In practice, S4[δG⟨1⟩
ab [h(1)cd ]] can be written as two operators, one acting on the slow-time

derivative of hab (see Eq. (4.20)) and the other on the product of the rate of F{0}
Ω (see

Eq. (4.14)) and h(1)cd . That is,

S4[δG⟨1⟩
ab [h(1)cd ]] = X[∂⃗Vh(1)cd ] + Y[F{0}

Ω h(1)cd ]. (4.105)

Using Eq. (4.2), δG⟨1⟩
ab [h(1)cd ] can be written as

δG⟨1⟩
ab [h(1)cd ] =

−1
2

E⟨1⟩
ab [h̄cd] +∇⟨0⟩

(a Z⟨1⟩
b) [h̄cd] +∇⟨1⟩

(a Z⟨0⟩
b) [h̄cd]. (4.106)

Using Eqs.(4.3), (4.19), (4.20), and (4.14), E⟨1⟩
ab [h̄cd] can be written as

E⟨1⟩
ab [h(1)cd ] =

imF{0}
Ω h(1)cd

f
+ 2tc∇⟨0⟩

c ∂⃗Vhab, (4.107)

where m corresponds to the mode of hab. Similarly, using Eq. (4.1), (4.19), and (4.20),

∇⟨1⟩
a Z⟨0⟩

b [h(1)cd ] = ta∂⃗VZ⟨0⟩
b [h(1)cd ], (4.108)

and

Z⟨1⟩
a [h(1)cd ] = tc∂⃗Vhac. (4.109)

Hence, inserting Eqs.(4.107), (4.108), and (4.109) into Eq. (4.106) gives

δG⟨1⟩
ab [h(1)cd ] =

−1
2

(︄
imF{0}

Ω h(1)cd
f

+ 2tc∇⟨0⟩
c ∂⃗Vhab

)︄
++∇⟨0⟩

(a tc∂⃗V h̄b)c + t(a∂⃗V∇c
⟨0⟩h̄b)c.

(4.110)
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I then act S ⟨0⟩ on δG⟨1⟩
ab [h(1)cd ] and decompose into modes. For the Carter tetrad in BL

coordinates this gives

S ⟨0⟩[︁δG⟨1⟩
ab [hℓ,m

cd ]
]︁ℓ,m

=
imF{0}

Ω
8r4 f (r)2

(︃(︂
8M2 − 6iMr2ω − r4ω2 + (−8Mr + 6ir3ω) f (r)

+ 4r2 f (r)2
)︂

h̄44
ℓ,m + 2r f (r)1/2(︁−3M + ir2ω + 3r f (r)

)︁
h̄24

ℓ,mµℓ
2 + r2 f (r)

(︂
h̄22

ℓ,mµℓ
1µℓ

2

+ 2r f (r)1/2µℓ
2h̄24

ℓ,m
,r + 2(−2M + ir2ω)h̄44

ℓ,m
,r + r f (r)(6h̄44

ℓ,m
,r + rh̄44

ℓ,m
,r ,r)
)︂)︃

+
1

8r5 f (r)2

(︄
(3M − ir2ω) f (r)1/2µℓ

2
(︁
(M + ir2ω)∂⃗V h̄14

ℓ,m + 3(M − ir2ω)∂⃗V h̄24
ℓ,m)︁

+ 2rω(8iM2 + 6Mr2ω − ir4ω2)∂⃗V h̄44
ℓ,m + r f (r)3/2µℓ

2(−4ir2ω∂⃗V h̄14
ℓ,m

− r(µℓ
1)

2∂⃗V h̄23
ℓ,m + 4M∂⃗V h̄24

ℓ,m + 14ir2ω∂⃗V h̄24
ℓ,m + r(µℓ

3)
2∂⃗V h̄24

ℓ,m − 2ir3ω∂⃗V h̄14
ℓ,m

,r

− 4Mr∂⃗V h̄24
ℓ,m

,r + 4ir3ω∂⃗V h̄24
ℓ,m

,r) + 4r2 f (r)3(2∂⃗V h̄44
ℓ,m + r∂⃗V h̄44

ℓ,m
,r)

− f (r)
(︂

rµℓ
1µℓ

2
(︁
ir2ω∂⃗V h̄12

ℓ,m + (2M − ir2ω)(∂⃗V h̄22
ℓ,m − ∂⃗V h̄34

ℓ,m)
)︁
+
(︁
4(4M2

+ 2iMr2ω + 3r4ω2) + (2Mr − ir3ω)(µℓ
3)

2)︁∂⃗V h̄44
ℓ,m + 4r3ω(2iM + r2ω)∂⃗V h̄44

ℓ,m
,r

)︂
+ r2 f (r)5/2µℓ

2
(︁
−4∂⃗V h̄14

ℓ,m + 14∂⃗V h̄24
ℓ,m + r(−4∂⃗V h̄14

ℓ,m
,r + 8∂⃗V h̄24

ℓ,m
,r − r∂⃗V h̄14

ℓ,m
,r ,r

+ r∂⃗V h̄24
ℓ,m

,r ,r)
)︁
+ r f (r)2

(︂
2(4M + 6ir2ω + r(µℓ

3)
2)∂⃗V h̄44

ℓ,m − rµℓ
1µℓ

2
(︁
−4∂⃗V h̄22

ℓ,m

+ 4∂⃗V h̄34
ℓ,m + r(∂⃗V h̄12

ℓ,m
,r − ∂⃗V h̄22

ℓ,m
,r + ∂⃗V h̄34

ℓ,m
,r)
)︁
+ r(8M + 12ir2ω

+ r(µℓ
3)

2)∂⃗V h̄44
ℓ,m

,r + 2ir4ω∂⃗V h̄44
ℓ,m

,r ,r

)︂)︄
. (4.111)

Note, the natural split into a ∂⃗V h̄[a][b]ℓ,m piece and a F{0}
Ω h̄[a][b] piece.

The dissipative piece of the self force only depends on the fluxes in h(2)µν ; that is, only
the m ̸= 0 modes are required. Hence, F{1}

A can be omitted from Vi because δMA only
contributes to the m = 0 mode of h(1)µν . Therefore,

∂⃗V → F{0}
Ω

∂

∂Ω
. (4.112)

Instead of calculating ∂
∂Ω directly, one can calculate r0 derivatives and use the relation

∂

∂Ω
=

∂r0

∂Ω
∂

∂r0
(4.113)

where ∂r0
∂Ω = − 2M

1
3

3Ω
5
3

.

The data for ∂r0 h̄[a][b]ℓ,m is calculated by Leanne Durkan [65] and F{0}
Ω is calculated

using Ref. [1]. I give Eq. (4.111) to Ben Leather who will add this contribution for the
source before solving for ψ

(2)ℓ,m
4L .
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Currently, the slow-time derivative contribution to the source is exhibiting singular
behaviour near the horizon. This is due to S4[δG⟨1⟩

ab [h(1)cd ]] being computed on t-slicing.
I will re-derive these formulas on s-slicing where the singular will not appear.

4.2.7 Slow time derivative contribution of the Bondi–Sachs gauge
transformation

S4[δG⟨1⟩
ab [h(1)cd ]] is also affected by the near-Bondi–Sachs gauge transform. To account

for this contribution, I provide mode decomposed formulas for the correction due to
the near-Bondi–Sachs gauge transformation, derived as follows.

In the region where the near-Bondi–Sachs transform is applied, the slow
time-derivative of the metric perturbation is transformed as

∂⃗Vh′ab = ∂⃗Vhab + ∂⃗VLξc gab. (4.114)

Hence, the contribution to the slow time derivative due to the near-Bondi–Sachs
gauge transform is ∂⃗VLξc gab. Again, one can use the argument that only the m ̸= 0
modes are required to calculate the dissipative piece of the second-order self-force.
Hence, the only part of the near-Bondi–Sachs gauge transformation that I need to
consider is Eq. (4.104).

Using Eq. (4.112), I am interested in the Ω partial derivative of
(︁
Lξc gab

)︁ℓ,m
ll . Note, the

only pieces of ξc (for m ̸= 0) which are functions of Ω are ω and h1/r2ℓ,m
ll . Hence,
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calculating the Ω derivative of the gauge transformation is trivial,

(︁
∂ΩLξc gab

)︁ℓ,m
ll =

eiωr∗(M − r)
(︁
∂Ωh1/r2ℓ,m

ll + ih1/r2ℓ,m
ll r∗∂Ωω

)︁
f 1/2r3(︁

∂ΩLξc gab
)︁ℓ,m

ln =

eiωr∗
(︃(︁

−3M + r − 2ir2ω
)︁
∂Ωh1/r2ℓ,m

ll + h1/r2ℓ,m
ll

(︂
−2ir2 +

(︁
−3iM + ir + 2r2ω

)︁
r∗
)︂

∂Ωω

)︃
2 f 1/2r3

(︁
∂ΩLξc gab

)︁ℓ,m
lm =

eiωr∗(−1 + f 1/2)µℓ
1
(︁
∂Ωh1/r2ℓ,m

ll + ih1/r2ℓ,m
ll r∗∂Ωω

)︁
2r2(︁

∂ΩLξc gab
)︁ℓ,m

nn = 0(︁
∂ΩLξc gab

)︁ℓ,m
nm =

eiωr∗µℓ
1

(︃(︁
2M − r + ir2ω

)︁
∂Ωh1/r2ℓ,m

ll + ih1/r2ℓ,m
ll

(︂
r2 +

(︁
2M − r + ir2ω

)︁
r∗
)︂

∂Ωω

)︃
2 f 1/2r3

(︁
∂ΩLξc gab

)︁ℓ,m
mm =

eiωr∗(µℓ
1)

2(︁∂Ωh1/r2ℓ,m
ll + ih1/r2ℓ,m

ll r∗∂Ωω
)︁

2r2(︁
∂ΩLξc gab

)︁ℓ,m
mm̄ =

eiωr∗(2 f 1/2 − (µℓ
1)

2)
(︁
∂Ωh1/r2ℓ,m

ll + ih1/r2ℓ,m
ll r∗∂Ωω

)︁
2r2 . (4.115)

These formulas are given to Ben Leather, who accounts for this contribution (using
Eqs. (4.114), (4.112) and (4.113)) using the ∂r0 hab data provided by Leanne Durkan
(noting, ∂Ωω is trivial).

4.2.8 The Bondi–Sachs gauge jump

In Fig. 4.6, the green line shows a jump discontinuity at r = 100M. The discontinuity
is due to the data on the left-hand side being in the Lorenz gauge, and on the
right-hand side being in the near-Bondi–Sachs gauge. One must account for this jump
before integrating over the source. In this section I derive a formula for the jump in
ψ
(2)
4L , which can then be used as a junction condition when solving the field equation.

In the new gauge, ψ
(2)
4L depends on the metric perturbation through

ψ
(2)′
4L := T4

[︂
h(2)′ab

]︂
= T ⟨0⟩

4

[︂
h(2)ab + L⟨0⟩

ξc hab +
1
2
L⟨0⟩

ξc L⟨0⟩
ξd gab + L⟨1⟩

ξd gab

]︂
. (4.116)

That is, the gauge jump (∆ψ
(2)′
4L ) is given by

∆ψ
(2)
4L = T ⟨0⟩

4

[︂
L⟨0⟩

ξc hab +
1
2
L⟨0⟩

ξc L⟨0⟩
ξd gab + L⟨1⟩

ξd gab

]︂
. (4.117)

I express each piece of the jump as a mode-decomposition in BL coordinates (in the
Carter tetrad) for the gauge vector in Eq. (4.104). The expression for
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T ⟨0⟩
4

[︂
L⟨0⟩

ξc hab +
1
2L

⟨0⟩
ξc L⟨0⟩

ξd gab

]︂
is too long to be presented here, but is given in a

Mathematica booklet in the supporting material of this thesis. The m ̸= 0 piece of the
slow-time derivative contribution is given by

T ⟨0⟩
4

[︂
L⟨1⟩

ξd gab

]︂
m ̸=0

=
eiωr∗µℓ

1µℓ
2

8 f r4

(︂
2(M − iωr2)∂r0 h1/r2ℓ,m

ll

+ h1/r2ℓ,m
ll (−ir2 + 2(iM + ωr2)r∗)∂r0 ω

)︂
, (4.118)

where h1/r2ℓ,m
ll has been evaluated in u-slicing (the full expression is still in t-slicing

because of the factor of eiωr∗).

I calculate ∆ψ
(2)
4L at the outer world-tube boundary using the gauge vector that takes

one from the Lorenz gauge to the near-Bondi-Sachs gauge. I have implemented this
calculation in my C++ code and pass the results to Ben Leather, who uses them to
account for the jump discontinuity in ψ

(2)
4L .

4.2.9 Decomposing the correction to the effective source

So far, all the contributions to the source I have presented have been for outside the
world-tube (or on the world-tube boundary). My final contribution to calculating the
source to the reduced second-order Teukolsky equation is inside the world-tube.

Inside the world-tube, the source of the reduced second-order Teukolsky equation is
given by Eq. (4.35). The majority of the source is given by S ⟨0⟩ acting on T̆(2)eff

ab . T̆(2)eff
ab

is provided by the effective source scheme used in Refs. [195, 194, 156]. The effect of
S ⟨0⟩ acting on T̆(2)eff

ab is calculated numerically by Barry Wardell (using the same code
which has been compared to my results in Fig. 4.5).

The additional piece of the source in the world-tube is S ⟨0⟩
[︂
8π∆T(2)eff

ab

]︂
(where ∆T(2)eff

ab

is given in Eq. (4.36)). To calculate this contribution we use Barry Wardell’s code to act
with S ⟨0⟩ on ∆T(2)eff

ab . To do so requires a formula for ∆T(2)eff
ab . As Barry Wardell’s code

requires the input to be in the Barack–Lousto–Sago mode basis (see Sec. 4.2.3), I
provide a mode decomposition formula for ∆T(2)eff

ab in this basis.

I calculate the mode decomposition of ∆T(2)eff
ab from Eq. (4.36) using

Eqs. (4.5) and (4.109). I present ∆T(2)eff
ab in two parts, the first (∆T1ℓ,m

(2)effA) acts on
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slow-time derivatives of the first-order metric perturbation (∂⃗Vh(1)cd ),

∆T1ℓ,m
(2)effA[∂⃗Vhiℓ,m] = − 1

4 f 2r2

(︃
(8M + 8 f M + 2 f 2r)∂⃗V h̄2ℓ,m

+ 2i f r2(︁ω∂⃗V h̄1ℓ,m

+ f (ω∂⃗V h̄3ℓ,m
+ i∂⃗V h̄2ℓ,m

,r)
)︁)︃

, (4.119)

∆T2ℓ,m
(2)effA[∂⃗Vhiℓ,m] = − 1

4 f r2

(︃
(8M + 2 f r)∂⃗V h̄1ℓ,m

+ (8M + 2ir2ω)∂⃗V h̄2ℓ,m
+ f

(︁
(4M

+ 2 f r)∂⃗V h̄3ℓ,m − 2r2(∂⃗V h̄1ℓ,m
,r + f ∂⃗V h̄3ℓ,m

,r)
)︁)︃

, (4.120)

∆T3ℓ,m
(2)effA[∂⃗Vhiℓ,m] =

2∂⃗V h̄2ℓ,m − ∂⃗V h̄4ℓ,m

2 f r
, (4.121)

∆T4ℓ,m
(2)effA[∂⃗Vhiℓ,m] =

r(µl2
1)

)2(∂⃗V h̄1ℓ,m
+ f ∂⃗V h̄3ℓ,m

)− (2M + ir2ω)∂⃗V h̄4ℓ,m

2 f r2 , (4.122)

∆T5ℓ,m
(2)effA[∂⃗Vhiℓ,m] = − (4M + 4 f r)∂⃗V h̄4ℓ,m − 2r((µl2

1)
)2∂⃗V h̄2ℓ,m

+ f r∂⃗V h̄4ℓ,m
,r)

4 f r2 , (4.123)

∆T6ℓ,m
(2)effA[∂⃗Vhiℓ,m] =

1
4 f 3r2

(︃
(−8M + 4 f M + 2 f 2r)∂⃗V h̄2ℓ,m − 2i f r2(︁ω∂⃗V h̄1ℓ,m

+ f (ω∂⃗V h̄3ℓ,m − i∂⃗V h̄2ℓ,m
,r)
)︁)︃

, (4.124)

∆T7ℓ,m
(2)effA[∂⃗Vhiℓ,m] =

(µl2
2)

)2∂⃗V h̄4ℓ,m

2 f r
, (4.125)

∆T8ℓ,m
(2)effA[∂⃗Vhiℓ,m] = − (2M + ir2ω)∂⃗V h̄8ℓ,m

2 f r2 , (4.126)

∆T9ℓ,m
(2)effA[∂⃗Vhiℓ,m] = − (4M + 4 f r)∂⃗V h̄8ℓ,m − 2 f r2∂⃗V h̄8ℓ,m

,r

4 f r2 , (4.127)

∆T10ℓ,m
(2)effA[∂⃗Vhiℓ,m] =

(µl2
2)

)2∂⃗V h̄8ℓ,m

2 f r
. (4.128)
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The second part (∆Tiℓ,m
(2)effB) acts on the second-order puncture (hiℓ,m

(2)P ),

∆T1ℓ,m
(2)effB[h

iℓ,m
(2)P ] =

1
2 f 2r3

(︃
4iMrωh̄2ℓ,m

(2)P + f
(︁
(4M − r3ω2)h̄1ℓ,m

(2)P − 4Mh̄5ℓ,m
(2)P

+ 4Mr(iωh̄2ℓ,m
(2)P + h̄1ℓ,m

(2)P ,r)
)︁
+ f 2(︁2Mh̄1ℓ,m

(2)P + 2ir2ωh̄2ℓ,m
(2)P − (4M + r3ω2)h̄3ℓ,m

(2)P

− ir2ωh̄4ℓ,m
(2)P − 2Mh̄5ℓ,m

(2)P − 8Mh̄6ℓ,m
(2)P + 2Mrh̄1ℓ,m

(2)P ,r − 4Mrh̄3ℓ,m
(2)P ,r

)︁
+ f 3r

(︁
2h̄1ℓ,m

(2)P − 2h̄5ℓ,m
(2)P

+ r(h̄5ℓ,m
(2)P ,r − rh̄1ℓ,m

(2)P ,r ,r)
)︁
+ f 4r

(︁
−2h̄3ℓ,m

(2)P − 4h̄6ℓ,m
(2)P + r(2h̄6ℓ,m

(2)P ,r + rh̄3ℓ,m
(2)P ,r ,r)

)︁)︃
∆T2ℓ,m

(2)effB[h
iℓ,m
(2)P ] =

1
2 f r3

(︃
rω
(︁
4iMh̄1ℓ,m

(2)P + (4iM − r2ω)h̄2ℓ,m
(2)P

)︁
+ f

(︁
(4M + 2ir2ω)h̄1ℓ,m

(2)P

+ 2Mh̄2ℓ,m
(2)P + 2iMrωh̄3ℓ,m

(2)P − 2Mh̄4ℓ,m
(2)P − 4Mh̄5ℓ,m

(2)P − ir2ωh̄5ℓ,m
(2)P + 4Mrh̄1ℓ,m

(2)P ,r

+ 2Mrh̄2ℓ,m
(2)P ,r

)︁
− f 2(︁4Mh̄3ℓ,m

(2)P + (8M + 2ir2ω)h̄6ℓ,m
(2)P + r(−2h̄2ℓ,m

(2)P + 2h̄4ℓ,m
(2)P + 4Mh̄3ℓ,m

(2)P ,r

+ 2ir2ωh̄3ℓ,m
(2)P ,r − rh̄4ℓ,m

(2)P ,r + r2h̄2ℓ,m
(2)P ,r ,r)

)︁)︃
∆T3ℓ,m

(2)effB[h
iℓ,m
(2)P ] =

1
2 f r2

(︃
− irω(2h̄2ℓ,m

(2)P − h̄4ℓ,m
(2)P ) + 2 f 2(h̄3ℓ,m

(2)P + 2h̄6ℓ,m
(2)P + rh̄3ℓ,m

(2)P ,r)

+ f (−2h̄1ℓ,m
(2)P + 4h̄5ℓ,m

(2)P − h̄7ℓ,m
(2)P + h̄6ℓ,m

(2)P (µ
ℓ

1)
2 − 2rh̄1ℓ,m

(2)P ,r + rh̄5ℓ,m
(2)P ,r)

)︃
∆T4ℓ,m

(2)effB[h
iℓ,m
(2)P ] =

1
8 f r3

(︃
2 f 2r(h̄4ℓ,m

(2)P + ih̄8ℓ,m
(2)P )− 4rω

(︁
(−2iM + r2ω)h̄4ℓ,m

(2)P

+ irh̄1ℓ,m
(2)P (µ

ℓ
1)

2)︁+ f
(︁
8(2M + ir2ω)h̄5ℓ,m

(2)P − 8Mh̄7ℓ,m
(2)P − 4ir2ωh̄7ℓ,m

(2)P + 4iMh̄8ℓ,m
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− 4rh̄2ℓ,m
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ℓ
1)

2 − 4ir2ωh̄3ℓ,m
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ℓ
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2 + 8Mh̄6ℓ,m
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1)

2 + 4ir2ωh̄6ℓ,m
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2

− irh̄8ℓ,m
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ℓ
1)

2 + irh̄8ℓ,m
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ℓ
2)

2 + h̄4ℓ,m
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2 + r(µℓ
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2)− 4r2(µℓ

1)
2h̄2ℓ,m

(2)P ,r

+ 8Mrh̄5ℓ,m
(2)P ,r + 4ir3ωh̄5ℓ,m

(2)P ,r
)︁)︃

∆T5ℓ,m
(2)effB[h

iℓ,m
(2)P ] =

1
8 f r3

(︃
− 4irω(−2Mh̄4ℓ,m

(2)P + rh̄2ℓ,m
(2)P (µ

ℓ
1)

2) + f
(︃

h̄5ℓ,m
(2)P (4M + 3r(µℓ

1)
2

+ r(µℓ
2)

2) + i
(︂

h̄9ℓ,m
(2)P (4M − r(µℓ

1)
2 + r(µℓ

2)
2) + 4r

(︁
ih̄1ℓ,m

(2)P (µ
ℓ

1)
2 + r(2ωh̄4ℓ,m

(2)P

+ i(µℓ
1)

2h̄1ℓ,m
(2)P ,r − rωh̄4ℓ,m

(2)P ,r)
)︁)︂)︃

+ 2 f 2r(13h̄5ℓ,m
(2)P − 6h̄7ℓ,m

(2)P + ih̄9ℓ,m
(2)P + 2h̄3ℓ,m

(2)P (µ
ℓ

1)
2

+ 10h̄6ℓ,m
(2)P (µ

ℓ
1)

2 + 2r(µℓ
1)

2h̄3ℓ,m
(2)P ,r − 2r(µℓ

1)
2h̄6ℓ,m

(2)P ,r + 2rh̄7ℓ,m
(2)P ,r − 2r2h̄5ℓ,m

(2)P ,r ,r)

)︃
∆T6ℓ,m

(2)effB[h
iℓ,m
(2)P ] =

1
2 f 3r3

(︃
4iMrωh̄2ℓ,m

(2)P + f
(︁
(4M − r3ω2)h̄1ℓ,m

(2)P − 2M(irωh̄2ℓ,m
(2)P + 2h̄5ℓ,m

(2)P

− 2rh̄1ℓ,m
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(2)P + 8Mh̄6ℓ,m
(2)P + r(irωh̄4ℓ,m

(2)P − 2ir2ωh̄2ℓ,m
(2)P ,r

+ 4Mh̄3ℓ,m
(2)P ,r)

)︁
− f 3(︁2Mh̄3ℓ,m

(2)P + 4Mh̄6ℓ,m
(2)P + r(2h̄1ℓ,m

(2)P − 2h̄5ℓ,m
(2)P + 2Mh̄3ℓ,m

(2)P ,r + rh̄5ℓ,m
(2)P ,r
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)︁
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)︁)︃
(4.129)
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and

∆T7ℓ,m
(2)effB[h

iℓ,m
(2)P ] =

1
4 f r3
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4 f 2r(h̄7ℓ,m

(2)P + ih̄10ℓ,m
(2)P )− 2ir2ωh̄4ℓ,m

(2)P (µ
ℓ

2)
2 + f

(︁
ih̄10ℓ,m

(2)P (8M

− r(µℓ
2)

2 + r(µℓ
3)

2) + h̄7ℓ,m
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2)
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3)
2)− 2r(µℓ

2)
2(2h̄5ℓ,m
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ℓ
1)

2

+ rh̄5ℓ,m
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)︁)︃
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8 f r3
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− 4rω(−2iM + r2ω)h̄8ℓ,m

(2)P + 2 f 2r(−ih̄4ℓ,m
(2)P + h̄8ℓ,m

(2)P )

+ f
(︁
−ih̄4ℓ,m

(2)P (4M − r(µℓ
1)

2 + r(µℓ
2)

2) + h̄8ℓ,m
(2)P (4M − r(µℓ

1)
2 + r(µℓ

2)
2)

+ 4(2M + ir2ω)(2h̄9ℓ,m
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)︁)︃
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(︃
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)︁
− 2 f 2r(ih̄5ℓ,m

(2)P
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(2)P ,r ,r)

)︃
∆T10ℓ,m

(2)effB[h
iℓ,m
(2)P ] =

1
4 f r3

(︃
4 f 2r(−ih̄7ℓ,m

(2)P + h̄10ℓ,m
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ℓ
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2

+ f
(︁
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)︁)︃

. (4.130)

The total ∆T1ℓ,m
(2)eff is

∆T1ℓ,m
(2)eff = ∆T1ℓ,m

(2)effA + ∆T1ℓ,m
(2)effB. (4.131)

I give these expressions to Ben Leather, who uses Barry Wardell’s code to calculate
S [∆T(2)eff

ab ]. The input ∂⃗Vhiℓ,m is provided by Leanne Durkan. hiℓ,m
(2)P is provided by the

data used in the calculation in Refs. [195, 194, 156].

This completes the source calculation in the world-tube. Except, there are some delta
functions on the particle which we have missed. These arise due to the derivatives in
S4 acting on C0 content in δ2G[hPab, hRab]. We are currently calculating this contribution
and will add it to the source shortly.
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4.3 Current status of the source to the reduced second-order
Teukolsky equation

I have described and derived many parts of the source to the reduced second-order
Teukolsky equation. These pieces need to be put together and transformed to
hyperboloidal coordinates in order for Ben Leather to solve for ψ

(2)ℓ,m
4L using spectral

methods [105, 106].

Fig. 4.7 shows the parts of the source currently working in hyperboloidal coordinates.
Outside of the world-tube (σ− < σ < σ+) the source is calculated using the mode
decomposition formula derived in Sec. 4.2.1. Also, a transformation to the
near-Bondi– Sachs gauge has been implemented on the left-hand side of Fig. 4.7. Note
that the source converges due to this gauge transformation. Inside the world-tube, the
effective source [120] from Refs. [195, 194, 156] has been used, plus the correction to
the effective source given in Sec. 4.2.9.

There is, however, a distributional piece that we have not yet accounted for in the
effective source. Formulas have been derived for this piece and will be added shortly.
Finally, the slow-time derivative contribution needs to be added. The slow-time
derivative contribution currently contains divergent behaviour near the horizon. This
is due to my formulas being derived on t-slicing. I will re-derive the formulas for the
slow-time derivative contribution on s-slicing and this will remove the divergent
behaviour.

With the complete source to the reduced second-order Teukolsky equation, Ben
Leather will account for the jumps on the world-tube boundaries caused by switching
to the effective source and the gauge transformation to the Bondi–Sachs gauge (given
in Sec. 4.2.8). He will then solve for ψ

(2)ℓ,m
4L using spectral methods. We will then

extract the energy flux from ψ
(2)ℓ,m
4L and compare the results to Ref. [195]. Once we

have completed this procedure on a grid of r0 values we can generate
first-post-adiabatic waveforms. In the near future, waveforms like these will be used
to help inform models used to detect IMRIs in LIGO/Virgo/KAGRA data analysis.
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FIGURE 4.7: A plot of the ℓ = 2, m = 2 mode of the source in hyperboloidal slicing. The
Bondi–Sachs gauge has been implemented near future null infinity (the left-hand side
of the plot), causing the source to converge. Inside the world-tube, σ− < σ < σ+, the
effective source (from Refs. [120, 195, 194, 156]) has been used. Note how the source
is regular on the worldline. Two pieces are missing from this source, a distributional
piece on the worldline and a slow-time derivative contribution. Plot courtesy of Ben

Leather.
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Chapter 5

GHZ Metric Reconstruction and
Self-Force Calculations

Recently, Green, Hollands, and Zimmerman (GHZ) [86] presented a method for
calculating non-vacuum metric perturbations in Kerr; here, I shall call this procedure
GHZ metric reconstruction. This publication was a momentous step forward in black
hole perturbation theory as it provided a method for calculating non-linear metric
perturbations in Kerr.

Here, I summarise how GHZ extended CCK metric reconstruction to non-vacuum
perturbations and discuss this method’s potential for extending self-force calculations
to second order. Following, in Sec. 5.2, I implement GHZ metric reconstruction for a
perturbation produced by a stationary point mass in a flat background spacetime. The
toy model provided crucial insights used to formulate a metric reconstruction scheme
for self-force calculations. This scheme can calculate a sufficiently regular first-order
metric perturbation to source second-order self-force calculations [183]. This work
was completed in collaboration with V. Toomani, P. Zimmerman, S. Hollands, A.
Pound, and S. Green, and forms part of our paper Ref. [183].

5.1 A summary of GHZ metric reconstruction

GHZ showed that any metric perturbation to a Kerr background spacetime can be
written as

h(n)ab = xab + ġab + Re[S†
0 Φ]ab, (5.1)

where xab is known as a corrector tensor, ġab := d
ds gM(s),a(s)

ab |s=0 (a perturbation to
another metric in the Kerr family), and Φ is, again, a Hertz potential. Eq. (5.1) is in an
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outgoing radiation gauge (h(n)ab la = 0), a key property in the derivation of this method.
Note, as discussed in Sec. 1.8.1, any metric perturbation can be put into the outgoing
radiation gauge [158].

The GHZ method built on CCK metric reconstruction (see Sec. 1.8). The Re[S†
0 Φ]ab

piece of Eq. (5.1) is equivalent to CCK metric reconstruction. CCK showed that their
method was consistent in vacuum. GHZ showed that CCK metric reconstruction can
be made consistent for non-vacuum perturbations with the inclusion of a corrector
tensor (xab).

As a preliminary step, before describing how GHZ extended CCK metric
reconstruction to non-vacuum, first I note, CCK metric reconstruction produces a
metric perturbation in the trace-free radiation gauge (hla = hmm̄ = 0, see Sec. 1.8.1).
Price, Shankar, and Whiting [158] showed that any metric perturbation of a Petrov
type II (and type D) background spacetime, where T(1)

ll = 0, can be expressed in a
trace-free radiation gauge. However, this is not sufficient to show CCK metric
reconstruction holds for any perturbation with T(1)

ll = 0.

To describe how GHZ showed (in Kerr) that the validity of CCK metric reconstruction
extends beyond vacuum perturbations, I will outline their proof in reverse order of
how they present it in their paper. Firstly, GHZ showed CCK metric reconstruction
alone extends beyond vacuum perturbations. For a perturbation with a smooth source
of compact support, if the condition on the stress-energy tensor T(1)

la = 0 is satisfied,
the metric perturbation can be written as hab = Re[S†

0 Φ]ab (up to perturbations to
another Kerr solution).

I will now outline how GHZ showed hab = Re[S†
0 Φ]ab when T(1)

la = 0. First note,
T(1)

ll = 0; therefore, according to Ref. [158], a trace-free radiation metric perturbation
exists. The CCK metric perturbation (hab = Re[S†

0 Φ]ab) trivially satisfies the trace-free
radiation gauge condition as S†

0 l[a] = S†
0 mm̄ = 0 (see. Eq. (1.93)). The remaining

components of the trace-free radiation gauge metric perturbation are the nn, nm and
mm components (and their complex conjugates). GHZ showed that any trace-free
radiation gauge metric perturbation satisfying E [hab]lm̄ = 0 and E [hab]ln = 0 can be
written as hab = Re[S†

0 Φ]ab
1 up to gauge2. By analysing each non-trivial component,

hnn, hnm, and hmm (and their complex conjugates) GHZ showed there exists a Φ such
that hab = Re[S†

0 Φ]ab (up to gauge).

A keen reader will have noticed E [S†
0 Φ]mm̄ = 0.

1This proof uses (ES†
0 Φ)lm̄ = (ES†

0 Φ)ln = 0 for any Φ, which is trivial when considering T †
0 O†

0 = ES†
0

and T †
lm̄ = T †

ln = 0 by definition.
2The proof also uses the residual freedom in the trace free radiation gauge. The resulting gauge also

appears to be not unique, there exists a residual gauge vector ζa = −ζ◦nla (using Held’s notation [90]
where the superscript circle denotes that such a quantity is annihilated by Þ). This can concluded from ζ◦n
not appearing in Eq (77) of Ref. [86].
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This can be seen by considering T †
0 O†

0 = ES†
0 and T †

0 mm̄ = 0 by definition [154].
Hence, T(1)

mm̄ = 0. This may seem problematic for GHZ metric reconstruction because it
does not explicitly state the assumption T(1)

mm̄ = 0 for CCK metric reconstruction to be
consistent. However, this condition holds due to the other assumptions for which
CCK metric reconstruction is consistent; that is, T(1)

mm̄ = 0 for any T(1)
ab which satisfies

∇aT(1)
ab = 0 and T(1)

la = 0 [183].

GHZ also showed that Φ relates to ψ4 through the conventional CCK metric
reconstruction equation (Eq. (1.91)). A crucial difference to the CCK metric
reconstruction is Φ satisfies OΦ = η (rather than OΦ = 0 in the vacuum case). η is a
complex scalar that can be calculated from the stress energy tensor Tab, as I will
describe shortly. Hence, it is possible to construct a metric without calculating ψ4

directly.

The second leap forward made by GHZ [86] was extending metric reconstruction to
include perturbations which do not satisfy T(1)

la = 0. They achieved this by
introducing a so-called corrector tensor (xab) to handle the Tla ̸= 0 part of the source.
By using the ansatz,

xab = 2m(am̄b)xmm̄ − 2l(am̄b)xnm − 2l(amb)xnm̄ + lalaxnn, (5.2)

they showed xab could be calculated by solving three hierarchical ODEs aligned with
outgoing null rays. The three hierarchical ODEs are obtained by contracting la, ma and
na, respectively, with

E [xcd]la = Tla. (5.3)

The ODEs are given in Eqs. (56), (57) and (58) of Ref. [86]; for example,

(Þ(Þ− ρ − ρ̄) + 2ρρ̄) xmm̄ = Tll , (5.4)

where the thorns simplify to radial derivatives in the Kinnersley tetrad in
Kerr–Newman coordinates (see Appendix B of Ref. [86]).

Having calculated xab, one can find an effective metric perturbation, h̃ab := hab − xab,
which satisfies

E [h̃cd]la = T̃ab := Tab − Exab. (5.5)

As T̃la = 0 (by the definition of xab), h̃ab can be found using CCK metric reconstruction
using the appropriate Hertz potential. The Hertz potential can be calculated from the
CCK inversion relation,

−1
4
Þ4Φ̄ = ψ0. (5.6)
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The CCK metric reconstruction inversion relation is consistent in T̃la = 0 because
T0[xab] = 0 (by the ansatz used for xab).

Alternatively, one can calculate the Hertz potential from η. Having calculated xab, one
can calculate η using

Re[T ′†η]ab = Tab − E [xcd]ab. (5.7)

For example, taking the m̄m̄ component of Eq. (5.7) gives

1
4
(Þ− ρ)(Þ− ρ)η = Tm̄m̄ − E [xcd]m̄m̄, (5.8)

which can be solved for η. From η one can calculate the Hertz potential using

OΦ = η. (5.9)

h̃ab is then given by

h̃ab = Re[S†
0 Φ]ab. (5.10)

The full metric perturbation is hab = h̃ab + xab and satisfies the non-vacuum linearised
Einstein field equation in Kerr (for a smooth source of compact support). The final
piece to add to the metric perturbation is ġab, a vacuum perturbation to another Kerr
solution (known as the completion piece, see Sec. 1.8.2), which can be calculated using
techniques developed in Ref. [117]. ġab is actually redundant in GHZ metric
reconstruction as xab contains this piece of the perturbation, as I show in Sec. 5.2.

5.1.1 Discussion: prospect for using GHZ metric reconstruction for
self-force calculations

When Ref. [86] was first published, an open question was how it could be utilized to
help self-force calculations. One problem facing self-force is obtaining a sufficiently
regular first-order metric perturbation to source second-order calculations. Can GHZ
metric reconstruction be utilized to find a sufficiently regular metric perturbation?

As discussed in Sec. 1.8.1, CCK metric reconstruction in the self-force problem
produces string singularities emanating from the particle (to either the horizon, out to
asymptotic infinity, or both), or singularities on a sphere containing the particle, see
Fig. 3.1. Second-order calculations are sourced by quadratic operators acting on the
first-order metric perturbation. When inputting the CCK metric perturbation, the
resulting second-order source contains products of delta functions, which are not well
defined.
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GHZ is similar to CCK metric reconstruction, but can the additional information it
offers help to regularise the metric perturbation? Off the particle, CCK metric
reconstruction can recover the whole metric perturbation as the perturbation is
vacuum. However, on the sphere containing the particle CCK metric reconstruction
breaks down (as the perturbation is non-vacuum). Hence, CCK metric reconstruction
cannot recover the entire metric perturbation on this sphere. In practice, in the CCK
no-string solution there is missing the radial delta function coefficient on the
sphere [155]. Our collaboration conjectured, by using GHZ metric reconstruction,
these coefficients could be calculated. In Sec. 5.2 I show how GHZ recovers the whole
metric perturbation for the flat spacetime example.

Our collaboration also conjectured that it would be easier to regularise the metric
perturbation with the whole metric perturbation. In Sec. 5.3, I summarise the
punctured shadowless gauge formalism. This formalism uses GHZ metric
reconstruction, gauge transformations, and a puncture scheme to ameliorate
singularities in the radiation gauge. When implemented, the resulting metric
perturbation will be sufficiently regular to source second-order calculations. The
formalism would not be possible without obtaining the whole metric perturbation
with GHZ metric reconstruction. Implementation of this formalism in Kerr is in the
planning stages.

There is another possible utility in GHZ metric reconstruction for self-force
calculations: calculating h(2)ab . Eq. (5.1) can be used to calculate a metric perturbation to
any perturbative order (given the source is constructed from the lower order metric
perturbations). Ref. [86] does discuss how the current proof is limited to a source of
compact support whereas perturbations beyond the linear order are sourced by all
preceding perturbations, so are non-compact. However, this seems to be an overly
conservative constraint. Ref. [86] states that they expect this issue can be overcome
and will be addressed in a forthcoming paper.

GHZ metric reconstruction is not the only hope for second-order calculations. Ref. [10]
provides identities for linearised gravity in Kerr which can be used for non-vacuum
metric reconstruction. This method has been used in combination with a gauge
transformation to the Lorenz gauge to produce a Lorenz gauge metric reconstruction
technique [64].

5.1.2 The reduced second-order Teukolsky equation and GHZ metric
reconstruction

The reduced second-order Teukolsky equation appears implicitly in GHZ metric
reconstruction [86]. There are multiple routes to implementing second-order GHZ
metric reconstruction, and one involves solving the reduced second-order Teukolsky
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equation, Eq. (2.20). As discussed in section 5 of Ref. [86], Tab = T(2)
ab − δ2G[h(1)ab ] at

second order (though they omit T(2)
ab , which must be included for self-force

calculations). Hence, Eq. (98) in Ref. [86] becomes the spin +2 reduced second-order
Teukolsky equation. That is, the second-order form of Eq. (98) in Ref. [86] solves for
ψ
(2)
0L . This distinction, that only the linear piece of the Weyl scalar is solved for (and the

existence of the reduced-nth-order Teukolsky equation), is not stated explicitly in
Ref. [86], but is an implicit result of their method.

Returning to the goal of calculating first-post-adiabatic EMRI models, full
second-order GHZ metric reconstruction may be unnecessary. Calculating ψ

(2)
4L (or

ψ
(2)
0L ) may be sufficient, as only the dissipative second-order self-force is required. As

ψ
(2)
4L contains the information of the gravitational waves being dissipated away from

the system, it is reasonable to expect the dissipative second-order self-force could be
extracted from ψ

(2)
4L . However, (as discussed in Sec. 1.7.4) this will require balance laws

(in a usable form) relating the orbital energy, angular momentum, and Carter constant
to the emitted gravitational wave fluxes. Hence, for EMRI models calculating h(2)ab (and
therefore second-order GHZ metric reconstruction) may be unnecessary.

An advantage of only solving the reduced second-order Teukolsky equation (Eq.
(2.20)) is that it involves solving fewer differential equations numerically (and hence is
faster) than full GHZ metric reconstruction. Looking away from the motivation of
modelling EMRIs, calculating the second-order metric perturbation will have other
benefits in self-force. Information about the conservative second-order self-force will
allow comparison with high-order post-Newtonian and post-Minkowski terms and
help calibrate effective one-body theory [57]. In these cases implementing GHZ metric
reconstruction at second order would be advantageous, as it can be used to calculate
both the dissipative and conservative second-order self-force. Also, for third- and
higher-order calculations obtaining the full h(2)ab will be required.

5.2 GHZ metric reconstruction for a toy model

Here I implement first-order GHZ metric reconstruction for a perturbation produced
by a stationary point mass in a flat background spacetime. Throughout, I compare the
results to Ref. [155] (which solved the same problem with CCK metric reconstruction)
and discuss the new information provided by GHZ metric reconstruction.

5.2.1 GHP quantities in flat spacetime for a stationary point mass
perturbation

Before I begin constructing a metric perturbation in flat spacetime, I first give an
overview of the GHP formalism (see Sec. 5.1) in flat spacetime. I also summarise the
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stress-energy tensor produced by a stationary point-mass perturbation. Note, for this
chapter only, I work in the (+−−−) signature and absorb a factor of 8π into the
stress-energy tensor and mass of the compact object,

8πTab → Tab, 8πµ → µ, (5.11)

as to be consistent with Refs. [86, 183].

Here, I work in retarded time coordinates, {u, r, θ, ϕ} (u := t − r in flat space), and in
the Kinnersley tetrad. In flat spacetime, the Kinnersley tetrad expressed in retarded
time coordinates is

lµ = (0, 1, 0, 0), nµ = (1,−1
2

, 0, 0), mµ =
1√
2r
(0, 0, 1, i sin[θ]). (5.12)

In this tetrad and coordinate scheme, the zeroth-order GHP spin coefficients take the
form

κ = κ′ = σ = σ′ = ϵ = ϵ′ = τ = τ′ = 0 (5.13)

ρ = −1
r

, ρ′ =
1
2r

, β = β′ =
cot[θ]
2
√

2r
. (5.14)

As no curvature is present in flat spacetime, the zeroth-order Weyl scalars are zero,

ψ0 = ψ1 = ψ2 = ψ3 = ψ4 = 0. (5.15)

The GHP derivative operators, assuming a stationary perturbation (i.e., all t
derivatives are zero), are given as

Þ = lµ∂µ = ∂r, Þ′ = nµ∂µ = −1
2

∂r,

ð = mµ∂µ − sβ =
1√
2r

ð̂, ð′ = mµ∂µ + sβ =
1√
2r

ð̂′
, (5.16)

where ð̂ and ð̂′
are spin raising and spin lowering operators acting on a spin-weight s

object defined in Eq. (4.41). The spin raising/lowering operators obey the relations of
Eqs. (4.42), (4.43), and (4.44) when acting on spin-weighted spherical harmonics. I will
also use the complex conjugate relation for spin-weighted spherical harmonics given
by Eq. (4.45).

I will use the stress-energy of point mass perturbation (of mass µ), given by,

Tαβ

(1) := Tαβ =µuαuβδ3[x⃗ − x⃗p]

=µδα
uδ

β
u δ3[x⃗ − x⃗p], (5.17)
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where the four-velocity uα = δα
u (δα

β is the Kronecker delta function) as the particle is
stationary.

I will use the boundary conditions that xab = 0 and η = 0 for r < rp, as to generate a
half-string solution (one could alternatively set xab = 0 and η = 0 for r > rp to
generate another half-string solution).

5.2.2 Calculating the corrector tensor xab

The first step in GHZ metric reconstruction is calculating the corrector tensor xab using
the ansatz

xab = 2m(am̄b)xmm̄ − 2l(am̄b)xnm − 2l(amb)xnm̄ + lalbxnn. (5.18)

Following GHZ’s prescribed method, I calculating each component of xab in an
iterative manner.

5.2.2.1 Calculating xmm̄

I begin by solving Eq. (56) in Ref. [86] for xmm̄. In flat spacetime this can be written as

(︁
Þ(Þ− ρ − ρ̄) + 2ρρ̄

)︁
xmm̄ = Tll

⇒
(︁
∂2

r +
2
r

∂r
)︁

xmm̄ =
µ

r2
p

δ2[θA − θA
p ]δ[r − rp], (5.19)

where I have inputted Eq. (5.17) for the stress-energy tensor. This equation can be
solved for xmm̄, giving

xmm̄ = µ
r − rp

rrp
Θ[r − rp]δ

2[θA − θA
p ] +

a
r
+ b, (5.20)

where Θ[r − rp] is a Heaviside function and a and b are functions independent of r.
Imposing the boundary condition that xab = 0 for r < rp results in a = b = 0. This
gives

xmm̄ = µ
r − rp

rrp
Θ[r − rp]δ

2[θA − θA
p ]. (5.21)
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5.2.2.2 Calculating xnm

Next, I turn my attention to calculating xnm. I need to solve Eq. (57) in Ref. [86],

1
2
(︁
Þ(Þ− 2ρ) + 2ρ̄(ρ − ρ̄)

)︁
xnm = Tlm − 1

2
(︁
(Þ+ ρ − ρ̄)(ð+ τ̄′ − τ)) + 2τ̄′(Þ− 2ρ)

− (ð− τ − τ̄′)ρ̄ + 2ρτ
)︁
xmm̄ (5.22)

In a stationary flat spacetime, inputting Tlm = 0 and Eq. (5.21) for xmm̄, this simplifies
to (︃

∂2
r +

2
r

∂r −
2
r

)︃
xnm = − µ√

2rrp
ð̂δ2[θA − θA

p ] ∂r

(︃
r − rp

r
Θ[r − rp]

)︃
. (5.23)

Solving for xnm gives

xnm = − µ√
2

(r − rp)2(r + 2rp)

6r2r2
p

Θ[r − rp] ð̂δ2[θA − θA
p ] + ar +

b
r2 , (5.24)

where a and b are independent of r. Again, imposing the boundary condition xab = 0
for r < rp gives a = b = 0. Additionally, I calculate a mode decomposition. A mode
decomposition of the angular Dirac delta function is

δ2[θA − θA
p ] =

∞

∑
ℓ=0,m

Yℓ,m[θ
A
p ] Yℓ,m[θ

A]. (5.25)

Inputting this into Eq. (5.24) results in (with a = b = 0)

xnm =
∞

∑
ℓ=1,m

µ√
2

(r − rp)2(r + 2rp)

6r2r2
p

Θ[r − rp]
√︂
ℓ(ℓ+ 1)Yℓ,m[θ

A
p ] 1Yℓ,m[θ

A], (5.26)

where the sum runs from ℓ = 1 because spin weighted spherical harmonics exist for
ℓ ≥ |s| (the m sum always runs from −ℓ to ℓ, but I omit this label for brevity).

5.2.2.3 Calculating xnn

Finally, I turn my attention to calculating xnn. Eq. (58) in Ref. [86] is

1
2
(︁
ρ(Þ− ρ) + ρ̄(Þ− ρ̄)

)︁
xnn = Tln −

1
2
(︁
(ð′ + τ′ − τ̄)(ð− τ + τ̄′)

+ (ð′ð− ττ′ − τ̄τ̄′ + ττ̄)− (ψ2 + ψ2¯ ) + (Þ′ − 2ρ′)ρ̄ + (Þ− 2ρ̄)ρ′ + ρ(3Þ′ − 2ρ̄′)

+ ρ̄′(3Þ− 2ρ)− 2Þ′Þ+ 2ρρ̄′ + 2ð′(τ)− ττ̄
)︁
xmm̄ − 1

2
(︁
(Þ− 2ρ)(ð′ − τ̄)

+ (τ′ + τ̄)(Þ+ ρ̄)− 2(ð′ − τ′)ρ − 2τ̄Þ
)︁
xnm − 1

2
(︁
(Þ− 2ρ̄)(ð− τ) + (τ̄′ + τ)(Þ+ ρ)

− 2(ð− τ̄′)ρ̄ − 2τÞ
)︁

xnm̄. (5.27)
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For a stationary perturbation in flat spacetime, this simplifies to

2
r

[︃
∂r +

1
r

]︃
xnn = − µ

r2
p

δ[r − rp]δ
2[θA − θA

p ] +

[︃
1
r2 ð̂

′ð̂+ ∂2
r +

4
r

∂r +
2
r2

]︃
xmm̄

+
1√
2

[︃
1
r
+

3
r2

]︃ (︂
ð̂′

xnm + ð̂xnm̄

)︂
. (5.28)

Inputting Eqs. (5.24) and (5.21) for xnm and xmm̄ respectively, one can solve for xnn,
giving

xnn =− µ(r − rp)3

6r2r2
p

Θ[r − rp]ð̂
′ð̂δ2[θA − θA

p ] +
µ(r − rp)

rrp
Θ[r − rp]δ

2[θA − θA
p ] +

a
r

,

(5.29)

where a is independent of r. Again, I apply the boundary condition xab = 0 for r < rp;
hence, a = 0. Decomposing Eq. (5.29) gives

xnn =
∞

∑
ℓ=0,m

µ

[︄
(r − rp)3

6r2r2
p

ℓ(ℓ+ 1) +
(r − rp)

rrp

]︄
Θ[r − rp]Yℓ,m[θ

A
p ]Yℓ,m[θ

A]. (5.30)

5.2.3 The metric reconstruction source

I have calculated the corrector tensor xab, which accounts for the Tla piece of the
source. Therefore, I can now calculate the CCK metric reconstruction piece using a
Hertz potential. Instead of calculating a Weyl scalar to source the Hertz potential, I
will instead use η (see Sec. 5.1), which, as described by Ref. [86], can be calculated in a
multitude of ways (of which I will use two to provide a consistency check).

5.2.3.1 Calculating η

The most direct method of calculating η is by solving Eq. (99a) of Ref. [86],

−1
4
(︁
Þ2 − 4(ρ + ρ̄)Þ+ 12ρρ̄

)︁
Þ2η̄ = T0, (5.31)

where T0 is the source to the spin 2 Teukolsky equation, O†(ψ0) = T0. That is,

T0 := S0[Tab] =(ð− τ̄′ − 4τ)
(︁
(Þ− 2ρ̄)Tlm − (ð− τ̄′)Tll

)︁
+ (Þ− ρ̄ − 4ρ)

(︁
(ð− 2τ̄′)Tlm − (Þ− ρ̄)Tmm

)︁
. (5.32)

Note, T0 can be calculated from Tab or T̃ab := Tab − Exab as S0[Exab] = 0 (this can be
seen more clearly from T0[xab] = 0 and using O0T0 = S0E ). This is an important
conclusion because it means that the GHZ Hertz potential is identical to the CCK
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Hertz potential (if you assume CCK is consistent in non-vacuum) as used by Ori in
Ref. [135]. Hence, one can use the results of Ref. [135] for the Hertz potential in Kerr.

Using the stationary point particle stress-energy, Eq. (5.17), T0 simplifies to

T0 = −µδ[r − rp]

2r4
p

ð̂2
[δ2[θA − θA

p ]]. (5.33)

Simplifying Eq. (5.31) to flat spacetime and inputting the flat space T0, gives

−1
4
(︁
∂4

r +
8
r

∂3
r +

12
3

∂2
r
)︁
η̄ = −µδ[r − rp]

2r4
p

ð̂2
[δ2[θA − θA

p ]]. (5.34)

This can be solved for η̄, giving

η̄ = A + Br +
C
r
+

D
r2 +

µ(r − rp)3

3r2
pr2 Θ[r − rp]

(︂
ð̂2

δ2[θA − θA
p ]
)︂

. (5.35)

I use a familiar boundary condition that η = 0 for r < rp; this sets
A = B = C = D = 0. Applying the complex conjugate operation gives

η =
µ(r − rp)3

3r2
pr2 Θ[r − rp]

(︂
ð̂′2

δ2[θA − θA
p ]
)︂

. (5.36)

As a consistency check, I calculate η from Eq. (5.8) [86]. This gives

1
4
(Þ− ρ)(Þ− ρ)η = Tm̄m̄ −

(︁
(Þ− ρ)(ð′ − τ̄)− (ð′ − τ̄ − τ′)ρ − τ̄(Þ+ ρ̄)

+ τ′(Þ− ρ̄ + ρ)
)︁
xnm̄ −

(︁
(Þ− 2ρ)σ′ + (τ̄ + τ′)ð′ + (τ̄ − τ′)2)︁xmm̄.

(5.37)

In stationary flat space (with Tm̄m̄ = 0) this simplifies to

1
4
(︁
∂2

r +
2
r

∂r
)︁
η = −

(︁1
r

∂r +
1
r2

)︁
xnm̄. (5.38)

Inputting the complex-conjugate of Eq. (5.24) for xnm̄, and solving for η, gives

η = a +
b
r
+

µ(r − rp)3

3r2
pr2 Θ[r − rp]

(︂
ð̂′2

δ2[θA − θA
p ]
)︂

. (5.39)

Where again, I have use the boundary condition η = 0 for r < rp which sets a = b = 0.
This η is identical to Eq. (5.36).
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To calculate the Hertz potential from η, I require a mode decomposition. Using
Eq. (4.43) gives

η =
∞

∑
ℓ=2,m

µ(r − rp)3

3r2
pr2 Θ[r − rp]λ2 Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A], (5.40)

where λp :=
√︂

(ℓ+p)!
(ℓ−p)! .

5.2.3.2 Calculating the Hertz potential

The next step is calculating the Hertz potential using Eq (86) in Ref. [86]. That is, I
need to solve a sourced Teukolsky equation for the Hertz potential (Φ),

O4(Φ) = η, (5.41)

where O4 takes the form

O4(Φ) =2
(︁
(Þ′ − ρ′)(Þ+ 3ρ)− (ð′ − τ′)(ð+ 3τ)− 3ψ2

)︁
Φ

=2
(︁
− 1

2
∂2

r +
1
r

∂r − ð′ð
)︁
Φ, (5.42)

where, on the second line I have simplified to flat spacetime.

Initially, this does not appear to be a radial ODE, due to the presence of the ð and ð′

derivatives. However, in flat spacetime it simplifies greatly by expanding Φ in spin
−2 (as the Hertz potential is a solution to the spin −2 Teukolsky equation)
spin-weighted spherical harmonics, Φ = ∑∞

ℓ,m Φℓ,m −2Yℓ,m[θ
A]. Hence,

−ð′ðΦ = − 1
2r2 ð̂

′ð̂Φ

=
∞

∑
ℓ=2,m

−Φℓ,m
1

2r2 ð̂
′ð̂ 2Yℓ,m[θ

A]

=
∞

∑
ℓ=2,m

Φℓ,m
(ℓ+ 2)(ℓ− 1)

2r2 2Yℓ,m[θ
A], (5.43)

where Φℓ,m is a function of r. Here, I have used the fact that ð̂′ð̂ is the Laplace operator
on the unit 2-sphere [83], see Eq. (4.44).
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I can input the new form for −ð′ðΦ (Eq. (5.43)) into Eq. (5.41), along with the mode
decomposition of η (Eq. (5.40)). This gives

∞

∑
ℓ=2,m

(︃
2
(︃
− 1

2
∂2

r +
1
r

∂r +
(ℓ+ 2)(ℓ− 1)

2r2

)︃
Φℓ,m

)︃
−2Yℓ,m[θ

A]

=
∞

∑
ℓ=2,m

µ(r − rp)3

6r2
pr2 Θ[r − rp]λ2 Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A]. (5.44)

This is a radial ODE which can be solved for each mode of Φ. The general solution is

Φr<rp =
∞

∑
ℓ=2,m

(︁
Aℓ,mrℓ+2 + Bℓ,mr1−l)︁ −2Yℓ,m[θ

A], (5.45)

Φr≥rp =
∞

∑
ℓ=2,m

Aℓ,mrℓ+2 + Bℓ,mr1−l + µ
(︂
− 2

(2ℓ+ 1)λ2

rℓ+2

rℓ+1
p

+
2

(2ℓ+ 1)λ2

rℓp
rℓ−1

+ λ2
(︁ r3

3(ℓ− 1)(ℓ+ 2)r2
p
− r2

ℓ(ℓ+ 1)rp
+

r
ℓ(ℓ+ 1)

− rp

3(ℓ− 1)(ℓ+ 2)
)︁)︂

Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A], (5.46)

where Φr<rp and Φr≥rp are defined as Φ for r < rp and r ≥ rp respectively. Assuming
regularity at the origin for Eq. (5.45) sets Bℓ,m = 0. To eliminate the most divergent
term in Eq. (5.46) as r → ∞, I choose Aℓ,m =

2µ
(2ℓ+1)λ2

1
rℓ+1

p
Yℓ,m[θ

A
p ]. I can justify these

boundary conditions as they produce the same results as solving for Φ by integration
of its source against the retarded Green’s function. Hence, Eqs. (5.45) and (5.46)
simplify to

Φr<rp =
∞

∑
ℓ=2,m

2µ

(2ℓ+ 1)λ2

rℓ+2

rℓ+1
p

Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A], (5.47)

Φr≥rp =
∞

∑
ℓ=2,m

µ
(︂ 2
(2ℓ+ 1)λ2

rℓp
rℓ−1 + λ2

(︁ r3

3(ℓ− 1)(ℓ+ 2)r2
p

− r2

ℓ(ℓ+ 1)rp
+

r
ℓ(ℓ+ 1)

− rp

3(ℓ− 1)(ℓ+ 2)
)︁)︂

Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A]. (5.48)

Here, one sees the structure of the Hertz potential splits into Coulombic terms (which
are ∝ rℓ or ∝ r−l) and polynomial in r terms. Eqs. (5.47) and (5.48) are consistent with
the Hertz potential derived in Ref. [155].
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5.2.4 The CCK metric reconstruction piece

Now I use the standard CCK metric reconstruction formula hrec
ab = Re[S†

0 Φ] to
calculate part of the metric perturbation. S†

0 is defined as [86]

S†
0 [Φ]ab =

(︂
− lalb(ð− τ)(ð+ 3τ)− mamb(Þ− ρ)(Þ+ 3ρ)

+ l(amb)
{︁
(Þ− ρ + ρ̄)(ð+ 3τ) + (ð− τ + τ̄′)(Þ+ 3ρ)

}︁)︂
Φ. (5.49)

Simplifying to flat space gives

Re[S†
0 Φ]ab =

1
2

(︃
− lalb

2r
ð̂ð̂− mamb(∂r +

1
r
)(∂r −

3
r
) + l(amb)

√
2
(︂1

r
∂r −

2
r2

)︂
ð̂
)︃

Φ + c.c,

(5.50)

where c.c. denotes the complex conjugate. From Eq. (5.50), one can write

hrec
nn = − 1

4r2

(︂
ð̂ð̂Φ + ð̂′ð̂′

Φ̄
)︂

, (5.51)

hrec
m̄m̄ = −1

2

(︂
∂2

r −
2
r

∂r

)︂
Φ, (5.52)

hrec
nm̄ = −

√
2

4

(︂1
r

∂r −
2
r2

)︂
ð̂Φ. (5.53)

To calculate the full metric perturbation (up to gauge) one simply has to add the
corrector tensor,

hab = hrec
ab + xab. (5.54)

Using the r < rp and r > rp split for Φ, I shall calculate the r < rp and r > rp parts of
hrec

ab separately (labelled hrec<
ab and hrec>

ab respectively). The r = rp part of hrec
ab will be

calculated in Sec. 5.2.4.5 (which is non-trivial due to the Heaviside function in Φ at
r = rp).

5.2.4.1 Calculating hrec
nn and hnn

First, I calculate hrec<
nn from Eq. (5.51) by inputting Eq. (5.47) for Φ. This gives

hrec<
nn =

∞

∑
ℓ=2,m

− µ

2(2ℓ+ 1)λ2

rℓ

rℓ+1
p

(︂
ð̂ð̂Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A] + ð̂′ð̂′
Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A]
)︂

.

(5.55)
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Using the definition Eq. (4.45), I can write

Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A] = (−1)mYl,−m[θ
A
p ](−1)m−2

2Yl,−m[θ
A]

= Yl,−m[θ
A
p ] 2Yl,−m[θ

A]. (5.56)

Hence,

ð̂ð̂Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A] = ð̂′ð̂′
Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A]

= λ2Yℓ,m[θ
A
p ] Yℓ,m[θ

A]. (5.57)

After using a change of labels −m → m (only where the −m labels occur), Eq. (5.55)
simplifies to

hrec<
nn =

∞

∑
ℓ=2,m

− µ

2ℓ+ 1
rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] Yℓ,m[θ

A]. (5.58)

Note, for r < rp xab = 0; therefore,

h<nn = hrec<
nn

=
∞

∑
ℓ=2,m

− µ

2ℓ+ 1
rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] Yℓ,m[θ

A]. (5.59)

Using that the complex and angular part of Φr>rp and Φr<rp take the same form,
taking Eq. (5.51) and input Eq. (5.48) for Φ, I can use the same arguments to calculate
hrec>

nn , finding

hrec>
nn =

∞

∑
ℓ=2,m

− µ

(︃
1

2ℓ+ 1
rℓp

rℓ+1 + ℓ(ℓ+ 1)
r3 − r3

p

6rpr2

− (ℓ− 1)(ℓ+ 2)
r − rp

2rrp

)︃
Yℓ,m[θ

A
p ] Yℓ,m[θ

A]. (5.60)

Adding the corrector tensor to calculate the full metric perturbation gives

h>nn = hrec>
nn + xnn

=
∞

∑
ℓ=0,m

µ
(︂ r − rp

rrp
+ ℓ(ℓ+ 1)

(r − rp)3

6r2r2
p

)︂
Yℓ,m[θ

A
p ] Yℓ,m[θ

A]

+
∞

∑
ℓ=2,m

{︄
− µ

(︃
1

2ℓ+ 1
rℓp

rℓ+1 + ℓ(ℓ+ 1)
r3 − r3

p

6rpr2

− (ℓ− 1)(ℓ+ 2)
r − rp

2rrp

)︃}︄
Yℓ,m[θ

A
p ] Yℓ,m[θ

A]. (5.61)
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The polynomial in r terms cancel (apart from the ℓ = {0, 1} terms), giving

h>nn =
1

∑
ℓ=0,m

µ
(︂ r − rp

rrp
+ ℓ(ℓ+ 1)

(r − rp)3

6r2r2
p

)︂
Yℓ,m[θ

A
p ] Yℓ,m[θ

A]

+
∞

∑
ℓ=2,m

−µ

2ℓ+ 1
rℓp

rℓ+1 Yℓ,m[θ
A
p ] Yℓ,m[θ

A]. (5.62)

5.2.4.2 Calculating hrec
m̄m̄ and hm̄m̄

Now I calculate hrec<
m̄m̄ using Eq. (5.52), inputting Eq. (5.47) for Φ, which gives

hrec<
m̄m̄ =

∞

∑
ℓ=2,m

−µ(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A]. (5.63)

Again, as xab = 0 for r < rp,

h<m̄m̄ = hrec<
m̄m̄

=
∞

∑
ℓ=2,m

−µ(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A]. (5.64)

Putting Eq. (5.48) into Eq. (5.52) gives

hrec>
m̄m̄ =

∞

∑
ℓ=2,m

−µ

(︃
(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓp
rℓ+1 +

√︄
(ℓ+ 2)(ℓ− 1)

ℓ(ℓ+ 1)
r − rp

rrp

)︃
Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A].

(5.65)

As xm̄m̄ = 0,

h>m̄m̄ =hrec>
m̄m̄

=
∞

∑
ℓ=2,m

−µ

(︃
(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓp
rℓ+1 +

√︄
(ℓ+ 2)(ℓ− 1)

ℓ(ℓ+ 1)
r − rp

rrp

)︃
Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A].

(5.66)

5.2.4.3 Calculating hrec
nm̄ and hnm̄

Using Eq. (5.53) and inputting Eq. (5.47) for Φ gives

hrec<
nm̄ =

∞

∑
ℓ=2,m

− µ
√

2
2(2ℓ+ 1)λ2

rℓ

rℓ+1
p

ð̂ Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A]

=
∞

∑
ℓ=2,m

µ
√

2l
2(2ℓ+ 1)

√︁
ℓ(ℓ+ 1)

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] −1Yℓ,m[θ

A], (5.67)
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where I have used Eq. (4.42). Again, as xab = 0 for r < rp,

h<nm̄ =hrec<
nm̄

=
∞

∑
ℓ=2,m

µ
√

2l
2(2ℓ+ 1)

√︁
ℓ(ℓ+ 1)

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] −1Yℓ,m[θ

A]. (5.68)

Inputting Eq. (5.48) into Eq. (5.52), and again using Eq. (4.42), gives

hrec>
nm̄ =

∞

∑
ℓ=2,m

√
2µ

4

(︃ −2(ℓ+ 1)
(2ℓ+ 1)(λ2)2

rℓp
rℓ+1 +

r3 + 2r3
p

3(ℓ− 1)(ℓ+ 2)r2r2
p
− 1√︁

(ℓ+ 1)r

)︃
√︂
(ℓ+ 2)(ℓ− 1)λ2 Yℓ,m[θ

A
p ] −1Yℓ,m[θ

A]. (5.69)

Calculating the full metric perturbation by adding the corrector tensor gives

h>nm̄ =hrec>
nm̄ + xnm̄

=hrec>
nm̄ −

√
2
(r − rp)2(r + 2rp)

12r2r2
p

√︂
ℓ(ℓ+ 1) Yℓ,m[θ

A
p ] −1Yℓ,m[θ

A]

=
1

∑
m=−1

µ
(r − rp)2(r + 2rp)

6r2rp
Y1,m[θ

A
p ] −1Y1,m[θ

A]

+
∞

∑
ℓ=2,m

−
√

2µ

2

(︃
(ℓ+ 1)

(2ℓ+ 1)
√︁
ℓ(ℓ+ 1)

rℓp
rℓ+1 − 1√︁

(ℓ+ 1)
1
r

)︃
Yℓ,m[θ

A
p ] −1Yℓ,m[θ

A],

(5.70)

where I have used Eq. (5.26) to input xnm̄ (and most of the polynomial terms have
cancelled, apart from the ℓ = {0, 1} terms).

5.2.4.4 Calculating hmm̄

The CCK metric reconstruction does not contribute to hmm̄. That is,

hmm̄ = xmm̄. (5.71)

Hence, using Eq. (5.21),

h<mm̄ = 0,

h>mm̄ = µ
r − rp

rrp
δ2[θA − θA

p ]. (5.72)

5.2.4.5 Calculating hrec
ab on the sphere r = rp

In the analysis above I have ignored hrec
ab at r = rp (which I label hrec,r=rp

ab ) as to make
the equations more easy to handle. Now I will calculate hrec

ab at r = rp. CCK metric
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reconstruction involves taking radial derivatives of Φ. As the expression for Φ is
currently split up into Φ< for r < rp and Φ> for r > rp, I cannot directly calculate the
radial derivative of Φ at r = rp until I re-express Φ in a manner which is consistent at
r = rp. By combining Eqs. (5.47) and (5.48) using Heaviside functions, I can write

Φ =
∞

∑
ℓ=2,m

µ

(︄
2

(2ℓ+ 1)λ2

rℓ+2

rℓ+1
p

+ Θ[r − rp]

(︃ −2
(2ℓ+ 1)λ2

rℓ+2

rℓ+1
p

+
2

(2ℓ+ 1)λ2

rℓp
rℓ−1

+ λ2

(︃
r3

3(ℓ− 1)(ℓ+ 2)r2
p
− r2

ℓ(ℓ+ 1)rp
+

r
ℓ(ℓ+ 1)

− rp

3(ℓ− 1)(ℓ+ 2)

)︃)︃)︄
Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A]. (5.73)

I shall label the radial function inside the large circular brackets in Eq. (5.73) as F(r)
(the radial coefficient of the Heaviside function). F(r) can provide an extra
contribution to Φ at r = rp when the radial derivative acts on the Heaviside function.
Note, in Eq. (5.51) there are no radial derivatives, so there are no additional terms in
hrec

nn at r = rp. That is, hrec,r=rp
nn = hrec>

nn (r = rp).

For hrec
nm̄, in Eq. (5.53) there is one radial derivative acting on Φ. Acting with a radial

derivative on the Heaviside function in Eq. (5.73) contributes δ[r − rp]F(r)|r=rp .
However, as F(rp) = 0, δ[r − rp]F(r)|r=rp = 0. Hence, there are no additional terms in
hrec

nm̄ at r = rp. That is, hrec,r=rp
nm̄ = hrec>

nm̄ (r = rp). Note, hrec
nm̄ is discontinuous at r = rp.

Finally, for hrec
m̄m̄, Eq. (5.52) contains a two radial derivatives acting on Φ. The single

derivatives do not contribute using the same argument as for hrec,r=rp
m̄m̄ . When the

double radial derivative acts on the Heaviside function twice, the F(rp) = 0 coefficient,
again, results in no contribution. I next investigate the final possible contribution,
when one radial derivative acts on the Heaviside function and one acts on F(r). As

∂rF(r)|r=rp =− 2(ℓ+ 2)
(2ℓ+ 1)λ2

rℓ+1

rℓ+1
p

+
2(1 − l)

(2ℓ+ 1)λ2

rℓp
rℓ

+ λ2

(︃
r2

(ℓ− 1)(ℓ+ 2)r2
p
− 2r

ℓ(ℓ+ 1)rp
+

1
ℓ(ℓ+ 1)

)︃
|r=rp

=0, (5.74)

this term also does not contribute. That is, hrec,r=rp
m̄m̄ = hrec>

m̄m̄ (r = rp). Therefore, it is
consistent to write the hrec>

ab and h>ab I calculated in the previous subsection as hrec≥
ab and

h≥ab respectively (as they are both consistent at r = rp).
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5.2.5 A summary of the half-string metric perturbation

I have calculated the half-string metric perturbation using the GHZ metric
reconstruction formula,

hab = hrec
ab + xab, (5.75)

in flat spacetime for a stationary point mass perturbation. Here is a summary of the
results:

First I note, as xab = 0 for r < rp, h<ab = hrec<
ab ; that is,

h<nn =
∞

∑
ℓ=2,m

− µ

2ℓ+ 1
rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] Yℓ,m[θ

A], (5.76)

h<m̄m̄ =
∞

∑
ℓ=2,m

−µ(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] −2Yℓ,m[θ

A], (5.77)

h<mm =
∞

∑
ℓ=2,m

−µ(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] 2Yℓ,m[θ

A], (5.78)

h<nm̄ =
∞

∑
ℓ=2,m

− µ
√

2l
2(2ℓ+ 1)

√︁
ℓ(ℓ+ 1)

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] −1Yℓ,m[θ

A], (5.79)

h<nm =
∞

∑
ℓ=2,m

µ
√

2l
2(2ℓ+ 1)

√︁
ℓ(ℓ+ 1)

rℓ

rℓ+1
p

Yℓ,m[θ
A
p ] 1Yℓ,m[θ

A]. (5.80)

All other components of hab equal zero for r < rp. The solution for hab in Eq. (5.80) is
manifestly smooth for r < rp because the factors of (r/rp)ℓ ensures the sum converges
exponentially with ℓ.
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For r ≥ rp the metric perturbation takes the form

h≥nn =
1

∑
ℓ=0,m

µ
(︂ r − rp

rrp
+ ℓ(ℓ+ 1)

(r − rp)3

6r2r2
p

)︂
Yℓ,m[θ

A
p ] Yℓ,m[θ

A]

+
∞

∑
ℓ=2,m

−µ

2ℓ+ 1
rℓp

rℓ+1 Yℓ,m[θ
A
p ] Yℓ,m[θ

A], (5.81)

h≥m̄m̄ =
∞

∑
ℓ=2,m

−µ

(︃
(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓp
rℓ+1 +

√︄
(ℓ+ 2)(ℓ− 1)

ℓ(ℓ+ 1)
r − rp

rrp

)︃
Yℓ,m[θ

A
p ] −2Yℓ,m[θ

A],

(5.82)

h≥mm =
∞

∑
ℓ=2,m

−µ

(︃
(ℓ+ 2)(ℓ− 1)
(2ℓ+ 1)λ2

rℓp
rℓ+1 +

√︄
(ℓ+ 2)(ℓ− 1)

ℓ(ℓ+ 1)
r − rp

rrp

)︃
Yℓ,m[θ

A
p ] 2Yℓ,m[θ

A],

(5.83)

h≥nm̄ =
1

∑
m=−1

µ
(r − rp)2(r + 2rp)

6r2rp
Y1,m[θ

A
p ] −1Y1,m[θ

A]

+
∞

∑
ℓ=2,m

−
√

2µ

2

(︃
(ℓ+ 1)

(2ℓ+ 1)
√︁
ℓ(ℓ+ 1)

rℓp
rℓ+1 − 1√︁

(ℓ+ 1)
1
r

)︃
Yℓ,m[θ

A
p ] −1Yℓ,m[θ

A],

(5.84)

h≥nm =
1

∑
m=−1

−µ
(r − rp)2(r + 2rp)

6r2rp
Y1,m[θ

A
p ] −1Y1,m[θ

A]

+
∞

∑
ℓ=2,m

√
2µ

2

(︃
(ℓ+ 1)

(2ℓ+ 1)
√︁
ℓ(ℓ+ 1)

rℓp
rℓ+1 − 1√︁

(ℓ+ 1)
1
r

)︃
Yℓ,m[θ

A
p ] −1Yℓ,m[θ

A],

(5.85)

h≥mm̄ =µ
r − rp

rrp
δ2[θA − θA

p ]. (5.86)

All other components of hab equal zero for r ≥ rp.

The form of the metric perturbation for r ≥ rp splits into three pieces: Coulombic
terms which fall off as (rp/r)ℓ at large r (and as such, converge exponentially quickly
as r < rp); mass and dipole moment terms which contribute the ℓ < 2 terms; and
polynomial in r terms (e.g., h≥mm̄ = µ

r−rp
rrp

δ2[θA − θA
p ]). The polynomial in r terms give

the solution its string like nature. As the polynomial in r do not converge as a series
for large ℓ, except as distributions (see Appendix D of Ref. [183]), these terms are
problematic. Similarly, the metric perturbation is singular in the h≥mm̄ component as it
contains an angular delta function for r ≥ rp. Hence, such a metric perturbation is said
to be in a half-string radiation gauge.

The ℓ < 2 terms are equivalent to ġab, which appears in Eq. (5.1). However, the ℓ < 2
terms have been contributed directly from the corrector tensor (xab). That is, ġab in
Eq. (5.1) is redundant (and this property extends to Kerr [183]).
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5.2.6 The no-string gauge solution

To isolate the singular nature of the metric perturbation to a finite surface, one can
transform to a no-string radiation gauge. This involves using a gauge transform to
eliminate the string singularities emanating from rp out to future null infinity. One
finds that it is possible to gauge away the singular terms proportional to polynomials
in r (i.e., the Coulombic ∼ rℓ cannot be gauged away) for ℓ ≥ 2. However, the
resulting transformation introduces a sphere of singularities with radius rp. I compute
this gauge transform and compare the results with Ref. [155]. Ref. [155] derived the
no-string solution using two alternative methods. Firstly, by constructing the solution
out of the two regular halves of two half-string solutions (plus adding a completion
ℓ < 2 piece). Secondly, by transforming directly to the no-string gauge from the
Lorenz gauge solution (locally near the particle).

To gauge away the half-string singularities I use the gauge transformation equation,

h′ab = hab + Lξ⃗ gab = hab + 2ξc
;(agb)c. (5.87)

By solving for ξc, such that the string singularities are gauged away, one finds that all
the (ℓ ≥ 2) polynomial string terms can be eliminated using the gauge vector

ξ l =
∞

∑
ℓ=2,m

−µ

ℓ(ℓ+ 1)
Θ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A], (5.88)

ξn =
∞

∑
ℓ=2,m

−µ

2ℓ(ℓ+ 1)
Θ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A], (5.89)

ξm =
∞

∑
ℓ=2,m

−µ√︁
2ℓ(ℓ+ 1)

r − rp

rp
Θ[r − rp]Yℓ,m[θ

A
p ] 1Yℓ,m[θ

A]. (5.90)
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Acting with this gauge transformation on the metric perturbation in Sec. 5.2.4.5 results
in a no-string gauge solution, h′ab, of the form

h′ll =
∞

∑
ℓ=2,m

−µ

ℓ(ℓ+ 1)
δ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A], (5.91)

h′ln =0, (5.92)

h′lm =0, (5.93)

h′nn =
1

∑
ℓ=0,m

µ
(︂ r − rp

rrp
+ ℓ(ℓ+ 1)

(r − rp)3

6r2r2
p

)︂
Θ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A]+

∞

∑
ℓ=2,m

−µ

(︃
1

2ℓ+ 1

(︂ rℓ

rℓ+1
p

Θ[rp − r] +
rℓp

rℓ+1 Θ[r − rp]
)︂

+
1

2ℓ(ℓ+ 1)
δ[r − rp]

)︃
Yℓ,m[θ

A
p ] Yℓ,m[θ

A], (5.94)

h′nm =
1

∑
m=−1

−µ
(r − rp)2(r + 2rp)

6r2r2
p

Θ[r − rp]Y1,m[θ
A
p ] −1Y1,m[θ

A]+

∞

∑
ℓ=2,m

µ
√

2
2(2ℓ+ 1)

√︁
ℓ(ℓ+ 1)

(︃
lrℓ

rℓ+1
p

Θ[rp − r] +
(ℓ+ 1)rℓp

rℓ+1 Θ[r − rp]

)︃
Yℓ,m[θ

A
p ] 1Yℓ,m[θ

A],

(5.95)

h′mm̄ =
1

∑
ℓ=0,m

µ
r − rp

rrp
Θ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A] (5.96)

h′mm =
∞

∑
ℓ=2,m

−µ

2(2ℓ+ 1)

√︄
(ℓ+ 2)(ℓ− 1)

ℓ(ℓ+ 1)

(︃
rℓ

rℓ+1
p

Θ[rp − r]

+
rℓp

rℓ+1 Θ[r − rp]

)︃
Yℓ,m[θ

A
p ] 2Yℓ,m[θ

A]. (5.97)

The no-string metric perturbation can also be written as the sum of three pieces.
Firstly, a Coulombic piece, h′Cab (which is invariant between the half-string and no
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string solution; i.e., hC
ab = h′Cab),

hC
ll = h′Cll =0, (5.98)

hC
ln = h′Cln =0, (5.99)

hC
lm = h′Clm =0, (5.100)

hC
nn = h′Cnn =

∞

∑
ℓ=2,m

−µ

(︃
1

2ℓ+ 1

(︂ rℓ

rℓ+1
p

Θ[rp − r] +
rℓp

rℓ+1 Θ[r − rp]
)︂)︃

Yℓ,m[θ
A
p ] Yℓ,m[θ

A],

(5.101)

hC
nm = h′Cnm =

∞

∑
ℓ=2,m

µ
√

2
2(2ℓ+ 1)

√︁
ℓ(ℓ+ 1)

(︃
lrℓ

rℓ+1
p

Θ[rp − r]

+
(ℓ+ 1)rℓp

rℓ+1 Θ[r − rp]

)︃
Yℓ,m[θ

A
p ] 1Yℓ,m[θ

A], (5.102)

hC
mm̄ = h′Cmm̄ =0 (5.103)

hC
mm = h′Cmm =

∞

∑
ℓ=2,m

−µ

2(2ℓ+ 1)

√︄
(ℓ+ 2)(ℓ− 1)

ℓ(ℓ+ 1)

(︃
rℓ

rℓ+1
p

Θ[rp − r]

+
rℓp

rℓ+1 Θ[r − rp]

)︃
Yℓ,m[θ

A
p ] 2Yℓ,m[θ

A]. (5.104)

Secondly, a ℓ ≥ 2 “polynomial” piece h′P,ℓ≥2
ab ,

h′P,ℓ≥2
ll =

∞

∑
ℓ=2,m

−µ

ℓ(ℓ+ 1)
δ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A], (5.105)

h′P,ℓ≥2
ln =0, (5.106)

h′P,ℓ≥2
lm =0, (5.107)

h′P,ℓ≥2
nn =

∞

∑
ℓ=2,m

−µ

2ℓ(ℓ+ 1)
δ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A], (5.108)

h′P,ℓ≥2
nm =0, (5.109)

h′P,ℓ≥2
mm̄ =0, (5.110)

h′P,ℓ≥2
mm =0. (5.111)

This piece is confined to delta functions on the surface of a sphere radius r = rp, and
as such, is not a polynomial in r; however, it arose from the polynomial piece in the
half-string gauge, so I call it the ℓ ≥ 2 “polynomial” piece. Note, the surface of the
sphere is not in the radiation gauge as h′P,ℓ≥2

ll ̸= 0. Finally, there is a ℓ = {0, 1}
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polynomial piece, h′P,ℓ<2
ab , that takes the form

h′P,ℓ<2
ll =0, (5.112)

h′P,ℓ<2
ln =0, (5.113)

h′P,ℓ<2
lm =0, (5.114)

h′P,ℓ<2
nn =

1

∑
ℓ=0,m

µ
(︂ r − rp

rrp
+ ℓ(ℓ+ 1)

(r − rp)3

6r2r2
p

)︂
Θ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A], (5.115)

h′P,ℓ<2
nm =

1

∑
m=−1

µ
(r − rp)2(r + 2rp)

6r2r2
p

Θ[r − rp]Y1,m[θ
A
p ] −1Y1,m[θ

A], (5.116)

h′P,ℓ<2
mm̄ =

1

∑
ℓ=0,m

µ
r − rp

rrp
Θ[r − rp]Yℓ,m[θ

A
p ] Yℓ,m[θ

A] (5.117)

h′P,ℓ<2
mm =0. (5.118)

The full no-string metric perturbation, Eq. (5.91), is given by
h′ab = h′Cab + h′P,ℓ≥2

ab + h′P,ℓ<2
ab . This solution is equivalent to the solution given in

Ref. [155].

5.2.6.1 The no-string ℓ < 2 piece

Whilst I have successful gauged away the singular string extending out to I+, there
remains non-asymptotically flat behaviour in the ℓ < 2 piece of the metric
perturbation (Eqs. (5.112) to (5.118)). The ∼ r0 behaviour in the nn, nm and mm̄
components and the ∼ r1 behaviour in the nn and nm components are
non-asymptotically flat. In this section, I eliminate this poor behaviour with a gauge
transform.

Whilst the non-asymptotically flat behaviour must be pure gauge, not all the ℓ < 2
sector is pure gauge. There is physical information in the ℓ < 2 modes of the metric
perturbation: a mass perturbation and a dipole moment caused by the centre of mass
not being at the origin. These contributions are asymptotically flat, so I will not
attempt to gauge away the entire ℓ < 2 metric perturbation. I restrict the gauge
transform to remaining in the radiation gauge (except on the sphere of radius rp

centred on the origin). It will also become apparent that the asymptotically flat ℓ < 2
piece of the metric perturbation is the so-called “completion piece” [155] and the
gauge transformation to eliminate the non-asymptotically flat ℓ < 2 piece is the
so-called “gauge completion piece” [187].

Next, I eliminate the remaining non-asymptotically flat terms with a gauge transform.
As I show, this requires an additional degree of care compared to the gauge transforms
used in the ℓ ≥ 2 sector. The gauge vector required has linear and quadratic
dependencies on time. I shall derive the gauge vector for ℓ = 0 and ℓ = 1 separately.
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In the ℓ = 0 sector, attempting to eliminate the ∼ r0 and ∼ r1 behaviour in Eq. (5.115)
with a gauge transform results in a hierarchical list of equations for the gauge vector,

Þ′ξn = − 1
2 xℓ=0

nn , (5.119a)

ξl = − 1
2ρ′

(xmm̄ + 2ρξn) , (5.119b)

where I have used that hab = xab in the ℓ < 2 sector. Solving these equations gives

(ξl)00 = −
µY0,0[θA

p ]

2rp
u, (5.120a)

(ξn)00 =

(︃
u
rp

− r
2rp

− Θ[r − rp]

)︃
µY0,0[θA

p ]

2
. (5.120b)

Similarly, for the ℓ = 1 sector, one solves the hierarchical equations

Þ′ξn = − 1
2 xnn, (5.121a)

(ð′ + ρ̄′)ξm̄ = −
(︁
xnm + ð′ξn

)︁
, (5.121b)

ξl = − 1
2ρ′

(xmm̄ + 2 Re[ðξm̄] + 2ρξn) , (5.121c)

giving

(ξl)1m =
µu2Y1,m[θ

A
p ]

12rp2 , (5.122a)

(ξn)1m = −
(︃

u2

12rp2 +
ur

3rp2 + Θ[r − rp]

)︃
µY1,m[θ

A
p ]

2
, (5.122b)

(ξm̄)1m =

(︃
r
rp

+
ur

3rp2 +
u2

6rp2

)︃
µY1,m[θ

A
p ]

2
. (5.122c)

the u dependence of the gauge vector is required to eliminate the non-asymptotically
flat behaviour in the metric perturbation. As I do not want to include a u dependence
in the resulting metric perturbation, these parts of the gauge vector do not have a
Heaviside function coefficient. That is, I extend the contribution to the metric
perturbation from the u dependent gauge vector down to the origin. The resulting
terms in the metric perturbation are regular at the origin, so this extension is
permissible. The resulting no-string metric perturbation is

h̃ab = hC
ab + h̃δ

ab δ[r − rp] + h̃ℓ=0,1
ab , (5.123)
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with

h̃δ
ll =

∞

∑
ℓ=2,m

−µ

ℓ(ℓ+ 1)
Yℓ,m[θ

A
p ]Yℓ,m[θ

A], (5.124a)

h̃δ
ln =− µ

2

(︄
1

4π
+

1

∑
m=−1

Y1,m[θ
A
p ]Y1,m[θ

A]

)︄
, (5.124b)

h̃δ
nn =

µ

2

(︄
1

4π
−

1

∑
m=−1

Y1,m[θ
A
p ]Y1,m[θ

A]−
∞

∑
ℓ=2,m

1
ℓ(ℓ+ 1)

Yℓ,m[θ
A
p ]Yℓ,m[θ

A]

)︄
, (5.124c)

and

h̃ℓ=0,1
nn = −µ

(︄
1

4π

(︃
Θ[r − rp]

r
+

Θ[rp − r]
rp

)︃
+

1

∑
m=−1

Θ[r − rp]rp

3r2 Y1,m[θ
A
p ]Y1,m[θ

A]

)︄
,

(5.125a)

h̃ℓ=0,1
mm̄ = −µΘ[rp − r]

(︄
1

4πrp
+

1

∑
m=−1

1
rp

Y1,m[θ
A
p ]Y1,m[θ

A]

)︄
, (5.125b)

h̃ℓ=0,1
nm̄ =

1

∑
m=−1

µ

(︃
Θ[rp − r]r

6rp2 − Θ[r − rp]rp

3r2

)︃
Y1,m[θ

A
p ]−1Y1,m[θ

A]. (5.125c)

The requirements that the metric perturbation is regular at the origin, asymptotically
flat at I+, and contains no linear or quadratic u dependencies produces a gauge
transformation that is the so-called “gauge completion piece”. This method for
including the gauge completion piece is simpler than previously used methods and is
derived from more physical motivations. Previously, the gauge completion piece has
been determined by imposing the continuity of certain metric components at
r = rp [104, 169, 31, 183].

The gauge-invariant completion piece has also been included by the inclusion of the
corrector tensor. The µ

4πr behaviour (for r > rp) in hℓ=0,1
nn in Eq. (5.125) is a perturbation

towards a Schwarzschild solution, the completion piece one expects from a stationary
point mass perturbation. The O(r−2) behaviour (for r > rp) in hℓ=0,1

ab is the result of a
change in the centre of mass of the system away from the origin. In Kerr or
Schwarzschild, the change in the centre of mass is pure gauge due to the non-zero
mass of the background spacetime.

5.3 Extension to Kerr and regularisation: the punctured
shadowless gauge

The motivation for the flat space toy model was to check if the GHZ procedure is
consistent with previous self-force results, understand how it differs from CCK metric
reconstruction, and recognize how to best attempt GHZ metric reconstruction in Kerr.
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In Ref. [183], I (with collaborators) presented the flat-spacetime implementation of
GHZ metric reconstruction. We then used the experience gained in flat spacetime to
streamline the application of GHZ metric reconstruction in Kerr. Finally, we produced
a formalism for calculating a regular first-order metric perturbation for the self-force
problem in Kerr by combining GHZ metric reconstruction, gauge transformations,
and a puncture scheme. Here, I summarise the construction of this formalism,
pointing out how the flat space toy model informed its formation.

As noted in Sec. 5.2.3.1, part of the GHZ metric reconstruction calculation in Kerr is
already in the literature. Ref. [135] calculates a Hertz potential which is consistent with
the CCK piece of GHZ metric reconstruction. The original motivation for Ref. [135]
was to achieve metric reconstruction in non-vacuum, but the metric perturbation it
produces does not satisfy the linearised EFE. GHZ metric reconstruction provides the
missing piece (the corrector tensor) to satisfy the linearised EFE.

Ref. [183] streamlines the GHZ approach by using the Held formalism [90]. The Held
formalism allows the equations in GHZ metric reconstruction to be expressed in a
series expansion of ρ (to positive and negative powers). The expansion allows many
equations to be solved for each power in ρ separately. This reduces GHZ metric
reconstruction to finding a finite set of ρ-independent quantities (Ai).

The direct application of GHZ metric reconstruction in Ref. [86] for a point-particle
source puts one in the half-string radiation gauge. Ref. [183] reformulates GHZ metric
reconstruction such that it results in a no-string radiation gauge. Our reformulation of
GHZ metric reconstruction to include the gauge transformation automatically is
straightforward as the gauge vector that takes one from the half-string radiation
gauge to the no-string radiation gauge can be written in terms of Ai. As the flat space
example illustrates, GHZ metric reconstruction recovers the full metric perturbation in
the half- and no-string gauge. This includes coefficients of delta functions on the
sphere containing the particle which are not recovered with CCK metric
reconstruction.

The completion piece and gauge completion piece arise naturally (in xab) in the Kerr
calculation as they did in flat space. By transforming the GHZ metric reconstruction to
the no-string gauge while requiring that the solution is regular at the horizon,
asymptotically flat at I+, and contains no linear or quadratic u dependencies, the
completion piece and gauge completion piece are spontaneously included in the
solution.

Ref. [183] then generalizes the point particle no-string gauge solution to an extended
source shadowless gauge solution. When applying GHZ metric reconstruction to an
extended source, a shadow emanates out to I+, similarly to the string singularity in
the half-string gauge. The half-shadow gauge solution is similarly problematic for a
singular source as it requires many ℓ-modes to resolve and is not asymptotically flat.
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One can treat the half-shadow gauge similarly to the half-string gauge; that is, one can
transform to a shadowless gauge (akin to a no-string gauge). The shadowless gauge
contains a spherical shell region (containing the extended source), which can be a
non-vacuum solution, akin to the spherical singular region in the no-string gauge.
Our metric construction formalism in the shadowless gauge can be applied to any
spatially compact source.

Due to the singular nature of the point particle, applying the shadowless gauge
directly to the self-force problem recovers the no-string solution used previously in
the literature (and calculated in the flat spacetime toy model in Sec. 5.2.6). To produce
a formalism for calculating a sufficiently regular first-order metric perturbation for
second-order self-force calculations, Ref. [183] formulates a puncture scheme within
the shadowless gauge. In essence, this formalism puts the puncture into a sufficiently
regular gauge that one can solve for the residual field using our shadowless metric
reconstruction formalism. Putting the most singular part of the field (the puncture) in
a more regular gauge prevents the strong singularities that extend off the particle.
This is achieved by taking the puncture to sufficiently high orders in r, such that the
singular nature of the point particle is removed from the calculation (see Sec. 1.6.3.5).
Hence, applying the shadowless gauge to the punctured self-force problem produces a
regular (residual) metric perturbation. There are plans to implement the punctured
shadowless gauge as part of the plan to produce the first second-order self-force
calculations in Kerr.

The primary motivation for developing this metric reconstruction scheme was to
calculate a sufficiently regular metric perturbation to source second-order calculations.
This work has other advantages and applications. As the formalism can handle
extended sources, it could be used for eccentric orbits without relying on the method
of extended homogeneous solutions [114]. The formalism also obtains the regular
metric perturbation directly, so there is no requirement for further regularisation [114].
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Chapter 6

Conclusions

Second-order black hole perturbation theory is an emerging field of research with
recent successes. Self-force waveform models to first-post-adiabatic accuracy have
recently produced exciting results in Schwarzschild [156, 195, 194]. The resulting
waveforms show remarkable agreement with Numerical Relativity waveforms even
in the ϵ ∼ 1

10 regime. The dissipative piece of the second-order self-force is a crucial
contribution to these results.

A significant motivation for first-post-adiabatic modelling [69] is the observation of
EMRIs (and IMRIs). For these systems, the spin of the massive black hole is expected
to be significant [38, 160]. Hence, calculations in a Kerr background are required.
Generic (eccentric and inclined orbit) EMRI waveform templates to first-post-adiabatic
accuracy will enable precise parameter extraction from LISA measurements. For data
analysis, it is not only necessary to be able to compute first-post-adiabatic waveforms
but to do so efficiently. That is, for LISA science, efficient dissipative second-order
self-force calculations (for generic orbits in Kerr) are necessary1.

The current method of calculating the second-order self-force (used in
Refs. [156, 195, 194]) relies on the separability of the EFE in Schwarzschild (in the
Lorenz gauge). In Kerr, the EFE are non-separable. Hence, a new, efficient method of
calculating the second-order self-force is required that applies to Kerr. This thesis has
extended some black hole perturbation theory methods to second order in Kerr and
implemented a selection of these methods in Schwarzschild.

At first order in Kerr, the non-separability of the EFE has been avoided by solving the
Teukolsky equation [177, 178]. The Teukolsky equation is a separable PDE for a
curvature scalar (ψ(1)

4 ). An extension of the Teukolsky equation to second order exists
in the literature [45], which I call the Campanelli–Lousto–Teukolsky equation. The

1Additional first-post adiabatic contributions, such as the secondary spin and resonances are also nec-
essary, but these effects are beyond the scope of this thesis.



154 Conclusions

Campanelli–Lousto–Teukolsky equation is a PDE for a second-order vacuum
curvature scalar ψ

(2)
4 . In Sec. 2.2.2 I show that, in general, the source to this equation is

not well defined in the second-order self-force problem (unless a puncture scheme is
used). In summary, products of the first-order metric perturbation and first-order
stress-energy tensor appear in the source. In the self-force problem, the first-order
metric perturbation is singular, and the first-order stress-energy contains a Dirac delta
function on the worldline. Hence, their product (and the source) is not well defined as
a distribution. This problem could be avoided using a puncture scheme. But, using
the Campanelli–Lousto–Teukolsky equation for second-order metric reconstruction
will be less straightforward as the equation does not appear naturally in the GHZ
metric reconstruction scheme [86].

I found an alternative extension of the Teukolsky equation to second order (see,
Sec. 2.3), which I call the reduced second-order Teukolsky equation. This equation is
distinct from the Campanelli–Lousto–Teukolsky equation, solving for ψ

(2)
4L , a quantity

purely dependent on h(2)ab . The reduced second-order Teukolsky equation is derived by
applying the Wald identity [190] on h(2)ab . The equation also appears implicitly in GHZ
metric reconstruction [86]’s extension to non-linear orders. Importantly, in Sec. 2.3.2 I
show that the source of the reduced second-order Teukolsky equation is well defined
for self-force calculations in a highly regular gauge [151, 185]. I also show that ψ

(2)
4L is

infinitesimal tetrad rotation invariant, unlike ψ
(2)
4 .

The existence of a well-defined separable second-order equation in the self-force
problem in Kerr is a significant advancement in the prospect of calculating generic
EMRI waveform templates for LISA. Similarly, the reduced second-order Teukolsky
equation could be employed to help produce first-post-adiabatic IMRI (and ϵ ∼ 1

10

binary) models for black holes with spin. These systems are beginning to be
observable with ground-based gravitational-wave detectors [11, 4]. They are also
significant sources for future ground and space-based detectors.

The reduced second-order Teukolsky equation also has utility for investigating
second-order quasi-normal mode calculations in Kerr [102]. Numerical Relativity
ringdown calculations have been shown to be well modelled using linear black hole
perturbation theory [78, 93]. This interesting phenomenon may be due to most of the
non-linear behaviour being hidden behind the event-horizon of the merged black
hole [133]. As gravitational wave detectors improve [20], second-order quasi-normal
mode contributions will likely become detectable [168]. Non-linear quasi-normal
modes of black holes is already an area of active research [102, 163, 168].

In Chapter 3, I amended the adverse property that ψ
(2)
4L (like ψ

(2)
4 ) is not gauge

invariant. I achieve this by constructing a gauge-invariant version (ψ′(2)
4L ) using

first-order gauge fixing. Re-expressing the reduced second-order Teukolsky equation



in a gauge fixed form, Eq. (3.4), solves for ψ
′(2)
4L directly. I presented two practical

methods for first-order gauge fixing to calculate the required inputs for Eq. (3.4).

The first gauge-fixing scheme fixes to the “fully constrained Chandrasekhar-like”
algebraically. Sec. 3.5 gives a method for calculating the gauge vector to the “fully
constrained Chandrasekhar-like” class of gauges from any gauge. The gauge vector is
solved for algebraically. I also found that the “fully constrained Chandrasekhar-like” class
of gauges are generally not asymptotically flat.

The second gauge-fixing method fixes to an asymptotically flat gauge but requires
solving ODEs. Sec. 3.6 gives a method for calculating the gauge vector to the
Bondi–Sachs gauge (from a generic gauge). To constrain the residual gauge freedom
of the Bondi–Sachs gauge (the BMS freedoms), I gave a method for constraining the
BMS freedoms for perturbations to Kerr (in Sec. 3.6.6). These methods can be used in
Eq. (3.4) to solve for an asymptotically flat second-order gauge-invariant ψ

′(2)
4L . The

asymptotically flat nature of the Bondi–Sachs gauge is useful for avoiding infrared
divergences near I+, which arise from the slow falloff of second-order sources in
generic gauges [156].

Both gauge fixing schemes fully fix the gauge up to residual gauge freedom along the
Killing vectors of Kerr spacetime. Hence, ψ

′(2)
4L is gauge invariant up to these Killing

symmetries. I plan to constrain the remaining degrees of freedom using the gauge
transformation of the first-order stress-energy tensor, Eq. (3.3).

I also gave a method for calculating a local gauge transform to a highly regular gauge
(from the Lorenz gauge) near the worldline (Sec. 3.7) in Fermi–Walker coordinates.
This gauge transformation is necessary to make the source of the reduced
second-order Teukolsky equation well defined. The method needs to be converted to
practical coordinates for implementation (work currently being carried out by Sam
Upton).

A collaboration is being set up to implement the techniques in Chaps. 2 and 3 in Kerr.
However, new insights and progress can be made by implementing these techniques
in Schwarzschild in preparation for Kerr. My current collaboration with Ben Leather,
Leanne Durkan, Sam Upton, Barry Wardell, Niels Warburton, and Adam Pound is
solving the reduced second-order Teukolsky equation for quasi-circular orbits in
Schwarzschild.

My role in this calculation is producing various formulas for the reduced second-order
Teukolsky source and the source data that can be integrated numerically. My leading
contribution is calculating a mode decomposition of S [δ2G[h(1)ab , h(1)ab ]]. The
decomposition is valid for any perturbation to Schwarzschild (in the Carter tetrad),
even outside of the self-force context. I first express S [δ2G[h(1)ab , h(1)ab ]] in GHP form. I
then used the Carter tetrad [46] to convert S [δ2G[h(1)ab , h(1)ab ]] to BL coordinates. I
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express all the angular dependence in S [δ2G[h(1)ab , h(1)ab ]] using spin-weighted spherical
harmonics, the eigenbasis of the master Teukolsky equation in Schwarzschild. Using
this formula, I calculate the source data (see Fig. 4.2) using retarded Lorenz gauge h(1)ab

data from Niels Warburton, which allows one to solve the radial Teukolsky equation
for ψ

(2)
4L . That is, I give the source data to Ben Leather, who numerically solves the

radial Teukolsky equation for each ℓ, m mode ψ
(2)ℓ,m
4L .

The retarded Lorenz gauge source contains a slow fall-off near I+, which results in an
infrared divergence in the retarded solution. To ameliorate this divergence, I applied
the methods in Sec. 3.6.4 to transform to the Bondi–Sachs gauge. Upon analysis of the
source, it is clear that a complete transformation to the Bondi–Sachs gauge is
unnecessary to reduce the divergence by two orders in r. Instead, it is only necessary
to transform the leading-order in r (and next-to-leading-order for h(1)ll ) behaviour of
h(1)ab , such that, it is equivalent to the leading order behaviour in the Bondi–Sachs
gauge. I calculated the gauge transformation and found the source does converge two
orders in r faster, eliminating the infrared divergence (see Fig. 4.6). This convergence
allows Ben Leather to solve the radial Teukolsky equation with simple boundary
conditions (outgoing radiation at I+and ingoing radiation at the horizon).

There are additional parts to the source of the reduced second-order Teukolsky
equation. To achieve first-post adiabatic accuracy, a two-timescale approximation is
implemented. Hence, there is a slow-time derivative contribution to the source at
second-order (δG⟨1⟩

ab [h(1)cd ]). I calculated a formula for S [δG⟨1⟩[∂Vh(1)ab ]]. The slow-time
derivative data (∂Vh(1)ab ) is provided by Leanne Durkan. Additionally, as I have
implemented a transformation to the near Bondi–Sachs gauge, this needs to be
accounted for in ∂Vh(1)ab . I provide Leanne with formulas for the correction to ∂Vh(1)ab

due to the near Bondi–Sachs transformation.

The sum for each (ℓ, m) mode of S [δ2G[h(1)ab , h(1)ab ]] does not converge near the worldline
for increased number of ℓmax input modes (of h(1)ab ). Additionally, there is singular
behaviour in S [δ2G[h(1)ab , h(1)ab ]] and T(2)

ab that makes the source of the reduced
second-order Teukolsky equation singular. An effective source (with a puncture
scheme) is used to avoid these divergences. That is, in a world-tube containing the
worldline we solve Eq. (4.32), rather than Eq. (4.33). This requires an effective source
(Seff). It is possible to construct Seff from the effective source used in
Refs. [156, 195, 194]. However, a correction term, Eq. (4.36), is required. I provide
formulas for a mode decomposition of Eq. (4.36). The correction requires inputs for
h(2)Pcd (provided by the calculation in Refs. [156, 195, 194]) and ∂Vh(1)cd .

My final contribution to this collaborative effort is the jump in ψ
(2)
4L due to the

near-Bondi–Sachs gauge transformation. I implement the near-Bondi–Sachs
transformation on the I+side of the world-tube. Hence, the source (and ψ

(2)
4L ) is

discontinuous at this side of the world-tube boundary. To account for this



discontinuity, I calculate data on the jump in ψ
(2)
4L due to the gauge transform

(including contributions from the gauge transformation of the slow-time derivatives).
Ben Leather then includes this jump as a junction condition when solving the radial
Teukolsky equation for ψ

(2)
4L .

In Sec. 4.3, I presented the working parts of the source to the reduced second-order
Teukolsky equation. There remains a missing distributional piece on the worldline,
which will be added shortly. Also, the slow-time derivative contribution needs to be
added, which is currently exhibiting unexpected singular behaviour at the horizon.
The singular behaviour is due to the slow-time derivatives contribution being
calculated on t-slicing. I will re-derive the formulas in Sec. 4.2.6 on s-slicing and this
will avoid the singular behaviour at the horizon.

After obtaining the full source, Ben Leather will solve the radial Teukolsky equation
for ψ

(2)
4L . To do so, Leather transforms to hyperboloidal slicing with a compactified

radial coordinate. Leather will then use spectral methods with analytic mesh
refinement to solve for ψ

(2)
4L [106, 105]. From ψ

(2)
4L , our collaboration will extract energy

fluxes for quasi-circular orbits in Schwarzschild. Accurate flux data on a dense grid of
r0 values will allow us to generate waveforms to first-post-adiabatic accuracy. These
waveforms will be compared with Refs. [156, 195, 194] (which will soon be used to
help inform models used for LIGO data analysis).

There are many advantages to our reduced second-order Teukolsky calculation
compared to the methods used in Refs. [156, 195, 194]. Firstly, the equation solved is
simpler. The Teukolsky equation solves for one complex scalar. Whereas the linearised
EFE solved in Refs. [156, 195, 194] are ten real equations, six of which are evolution,
four of which are constraints. Hence, solving the reduced second-order Teukolsky is
more efficient. Additionally, solving a single equation will simplify the extension to
eccentric orbits. The most important advantage is that the reduced second-order
Teukolsky calculation is extendable to Kerr.

Our calculation in Schwarzschild shows encouraging progress, but for realistic EMRI
models calculations must be in Kerr. Plans to implement a reduced second-order
Teukolsky calculation in Kerr have begun. An initial hurdle to this implementation is
obtaining a sufficiently regular first-order metric perturbation to construct a
well-defined second-order source. The metric perturbation used to calculate
first-order self-force effects in Kerr contains gauge singularities on a sphere containing
the compact object. Inputting these singularities into the quadratic source operator
produces an ill-defined source. In Ref. [183] I (with collaborators) produced a
formalism for calculating a regular first-order metric perturbation. This formalism
combines GHZ metric reconstruction [86], a shadowless gauge (similar to the
no-string gauge but with an extended source), and a puncture scheme. I give a
summary of GHZ metric reconstruction and the regularisation formalism in Sec 5.1.
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My contribution to Ref. [183] was computing the first implementation of GHZ metric
reconstruction. To have maximum analytical control, the implementation was made
for a stationary point-mass perturbation in flat spacetime. This implementation gave
valuable insights into how GHZ compares to CCK metric reconstruction. During the
implementation, we realised that the Hertz potential in GHZ already exists in the
literature. That is, one can use the results of Ref. [135] for the Hertz potential (in Kerr).
Implementing a transformation to the no-string gauge in the flat spacetime model also
revealed that the perturbation to another Kerr solution is contained in the corrector
tensor. Similarly, the gauge completion piece can be included by gauge transforming
the no-string solution such that the final solution is asymptotically flat, regular at the
origin (or horizon), and ensuring the metric perturbation contains no linear or
quadratic growth in time. This method includes the completion piece in a more direct
manner and provides a simpler, more physically motivated method for including the
gauge completion piece than previous calculations [187, 104, 169, 31, 183]. Finally, I
compared the flat spacetime string and no-string radiation gauge metric perturbations
obtained using GHZ and found them to be consistent with Ref. [155] (which used
CCK metric reconstruction). The flat spacetime model helped us understand how to
efficiently implement GHZ metric reconstruction and formulate ideas for the
regularisation scheme in Kerr.

6.1 Comments on future work

There are many projects and routes for progress in second-order self-force. An
obvious improvement to the quasi-circular orbit waveform in Schwarzschild is the
extension to eccentric orbits. Ref. [100] contains an effective-source approach which is
designed to handle eccentric orbits for second-order equations like the reduced
second-order Teukolsky equation. Implementing this method would produce the
primary first-post adiabatic waveforms for eccentric orbits. It is expected that adding
eccentricity will produce waveforms carrying more information [122], allowing tighter
constraints on EMRI parameter measurements.

Adding the secondary spin is another method for making the waveforms more
astrophysically realistic. Waveforms for quasi-circular orbits in Schwarzschild with
the spinning secondary contribution have recently been published [112]. It would be
straightforward to add this analysis to the reduced second-order Teukolsky scheme.

The next frontier of second-order self-force and first-post-adiabatic waveforms is Kerr.
The methods developed in this thesis will provide a roadmap to the first second-order
calculation in Kerr. Unforeseen problems may appear, but the consensus of our
collaboration is that a quasi-circular evolution is feasible in the next few years. One
foreseen problem is separating the source of the Teukolsky equation in Kerr; to solve
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the reduced second-order Teukolsky equation in a separable manner its source must
be decomposed into spin-weighted spheroidal harmonics [177]. This problem is
highly non-trivial as spin-weighted spheroidal harmonics are not known in a closed
form and background quantities in Kerr mix the angular and radial coordinate.

Another challenge to second-order calculations in Kerr is obtaining the effective
source near the worldline efficiently. There are currently methods for calculating the
second-order effective source which are extendable to Kerr [153, 120]. These methods
have been implemented in Schwarzschild [156, 195, 194] and used in the second-order
calculation in Chap. 4 in Schwarzschild. However, this method is very inefficient and
a bottleneck to calculations in Schwarzschild. In Kerr, the problem will be worse.
Using current methods, calculating the effective source for generic orbits in Kerr is
unfeasible with current technology on the time frame of LISA’s planned launch. New
methods, significant efficiency savings and exponential growth in computing
resources might be required. Nevertheless, the current methods will be capable of
calculating the effective source and completing a second-order calculation for
quasi-circular orbits in Kerr in the next couple of years.

One method of ameliorating the singularity on the worldline is transforming to a
highly regular gauge. My colleague Sam Upton has begun implementing the
transformation from the Lorenz gauge to the highly regular gauge. He is converting
the Fermi–Walker expression in Eq. (3.85) in Schwarzschild for quasi-circular orbits to
BL coordinates and decomposing into modes (spin-weighted spherical harmonics). It
has turned out to be a challenging calculation; however, we expect to be able to
implement it in the reduced second-order Teukolsky equation scheme soon. This will
reduce the singular nature of the source and make it well defined as a distribution
without using a puncture scheme. However, using a puncture scheme in conjunction
with the highly regular gauge will still be advantageous because it will make the
source (and solution) converge faster for higher ℓmax.

Additionally, one may want to calculate gauge invariants associated to the highly
regular gauge. The highly regular gauge transform given in Eq. (3.85) is not fully fixed
and requires that one starts in the Lorenz gauge. One could attempt to fully fix the
highly regular gauge similarly to how I fixed the BMS freedoms in the Bondi–Sachs
gauge (in Sec. 3.6.7). One would also need to extend the method for calculating the
gauge vector to the highly regular gauge such that one can start in any initial gauge.
The resulting gauge fixing scheme could be used with Eq. (3.1) to calculate a gauge
invariant ψ

′(2)
4L associated with the highly regular gauge. An additional problem with

the highly regular gauge vector in Eq. (3.85) is that it only calculates the gauge
transform from the Lorenz gauge to the highly regular gauge. To implement a gauge
transform to the highly regular gauge from the metric perturbation obtained by the
formalism described in Sec. 5.3 [183] will require a gauge vector from the shadowless
gauge to a highly regular gauge.
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A further region where gauge fixing to a good gauge is desirable is near the horizon.
Such gauges are called horizon regular. To produce a formalism for finding such a
gauge vector, one could repeat the analysis used to find a gauge transformation to the
Bondi–Sachs like gauge but near the horizon (similarly to Sec. 3.6). Additionally, one
would likely want to fix additional freedoms relating to isometries of the horizon (like
the BMS freedoms near I+).

Balance laws have been used to evolve the quasi-circular inspiral from the fluxes
extracted at I+and H+ in Schwarzschild [156, 195, 194]. However, in Kerr,
second-order balance laws are not readily available for generic orbits. There has been
progress in deriving second-order balance laws for the energy and
angular-momentum fluxes, but they are not yet in a practical form [123]. The
evolution of the Carter constant at second order is an open problem. The Carter
constant evolution is more challenging as there is not strictly a balance law at first
order (the averaged rate of change of the Carter constant is expressed in terms of the
amplitudes of ψ

(1)
4 at the horizon and I+, but unlike Ė and L̇, it also involves

quantities at the particle [134, 68]). Nevertheless, deriving practical balance laws at
second-order will lead to faster calculations.

Rather than using balance laws, it is possible to calculate the second-order self-force
using the metric perturbation at the particle. However, this will require second-order
metric reconstruction. GHZ metric reconstruction [86] is applicable at second order.
Nevertheless, implementing second-order GHZ metric reconstruction will be a
significant project and less efficient than directly calculating fluxes from ψ

(2)
4L .

However, calculating the conservative self-force will benefit synergies with
post-Newtonian theory, post-Minkowskian theory, and the effective one-body
formalism.

Another effect that becomes significant for generic inspirals in Kerr is
resonances [70, 29, 186]. Modelling resonances is an open problem, but there has been
progress on methods which could be used in the gravitational case in Kerr [130]. One
issue with modelling resonances is that the two-timescale approximation breaks
down. Another area where the two-timescale approximation breaks down is the
transition to plunge, plunge, and quasi-normal mode ringdown. These parts of the
waveform need to be modelled and then attached (using a matching scheme) to the
end of the two-timescale waveform to achieve a complete binary merger waveform.

One of the primary goals of LISA is to test General Relativity and the Standard Model
of particle physics. To do so, waveform templates in General Relativity alone are not
sufficient. Waveform templates for alternative theories of gravity and beyond the
Standard Model will be required. One can then use data analysis with LISA
measurements to assess which theory best matches observations. Maximising the
precision of potential measurements will require the waveforms in alternative theories
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to achieve first-post-adiabatic in accuracy. Calculating such waveforms will be a
massive task. The formulation of first-post-adiabatic methods and implementation of
self-force methods in alternate theories [199] will be required. Nevertheless, the
two-timescale framework in black hole perturbation theory is built to add small
perturbations to our models. Hence, it should be possible to introduce small
deviations from General Relativity (the regime of alternative theories that has not yet
been constrained) into the two-timescale framework. However, the scope and breadth
of alternative theories of gravity, plus the challenging nature of self-force calculations
in general, will make producing accurate waveforms in alternative theories of gravity
and beyond the Standard Model a mighty task.
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Appendix A

Perturbing NP Quantities

In this appendix, I define the perturbed NP quantities (spin coefficients and Weyl
scalars) using the method prescribed by Chrzanowski [51]. This method begins by
finding a perturbed tetrad. I then use this tetrad to calculate the perturbed NP
quantities. I compare the perturbed NP quantities to Campanelli and Lousto’s
results [45], finding discrepancies. The results in this appendix were calculated in
collaboration with Jordan Moxon [72] and independently checked with Beatrice Bonga
and Nicholas P. Loutrel [102].

A.1 Calculating the perturbed tetrad and their parallel
derivatives

Before discussing Chrzanowski’s method [51], I first note that his results stem from a
metric with a negative signature. Here I adapt his results to be consistent with a
positive metric signature. Also, in this appendix, I write the perturbation operator (δ
in Eq. (1.15)) as D as to not confuse it with the NP derivative δ.

Ref. [51] begins by defining a perturbed tetrad in total generality [51],

D[lµ] = l(1)µ = qlµ + unµ + Rmµ + R̄m̄µ

D[nµ] = n(1)
µ = slµ + tnµ + Umµ + Ūm̄µ

D[mµ] = m(1)
µ = Vlµ + Wnµ + Xmµ + Ym̄µ, (A.1)

where the lower-case Latin letters (without indices) are real functions and the
upper-case Latin letters are complex functions. The goal of this calculation is to
determine these functions in terms of the metric perturbation h(1)ab .
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Following Ref. [51], by using the infinitesimal tetrad rotations and relabelling, I can
simplify Eq. (A.1), giving

l(1)µ = anµ

n(1)
µ = blµ + cnµ

m(1)
µ = Dlµ + Enµ + f mµ + Gm̄µ. (A.2)

The metric perturbation can be defined as

D(gµν) = D(−2l(µnν) + 2m(µm̄ν)) (A.3)

⇒ hµν = −2l(1)
(µ

nν) − 2l(µn(1)
ν)

+ 2m(1)
(µ

m̄ν) + 2m(µm̄(1)
ν)

. (A.4)

By contracting Eq. (A.3) with every combination of tetrad vectors one finds the
functions (a, b, c, D, E, f , G) in Eq. (A.2) in terms of h(1)ab . The resulting perturbed tetrad
is

l(1)µ = −h(1)ll nµ

n(1)
µ = −1

2
h(1)nn lµ − h(1)nl nµ

m(1)
µ = −h(1)nmlµ − h(1)lm nµ +

1
2

h(1)mm̄mµ +
1
2

h(1)mmm̄µ. (A.5)

So far, the only difference from the perturbed tetrad in Ref. [51] is due to the signature
of the metric. Next, Chrzanowski uses gauge transformations to simplify Eq. (A.5);
here, I choose to preserve the gauge degrees of freedom.

Chrzanowski’s next paragraph alludes to the ability to repeat the above analysis with
raised indices using a simple rule. He states

“Since the contravariant components of the perturbed metric satisfy
gµν = g(0)µν − hµν

(1), the contravariant components of the perturbed tetrad
vectors are opposite in sign to the covariant components, e.g.,
n(1)µ = −gµνn(1)

ν so that ∆(1) = − 1
2 h(1)nn D.”

That is, to raise the indices, all that is required is a sign change. The reasoning for this
statement may not be obvious. Conventionally, raising the index of a perturbation
could be construed as having two possible meanings:

l(1)µ = g(0)µνl(1)ν (A.6)

or

D(lµ) = gµνlν = (g(0)µν − hµν

(1))(l
(0)
ν + l(1)ν ) +O(ε2) (A.7)

= l(1)µ − hµl +O(ε2). (A.8)
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Eq. (A.6) is simply the index of the one-form l(1)ν being raised by the background
metric. Eq. (A.7) is the first-order perturbation of the tetrad basis vector lµ. Note that
these two definitions are distinct, but also neither satisfy l(1)µ = −gµνl(1)ν in
Chrzanowski’s statement.

However, the statement l(1)µ = −gµνl(1)ν is consistent if one repeats the analysis of
Eqs. (A.1) to (A.5) with all the indices up. This is shown by first noting that as
gµν = g(0)µν − hµν

(1), Eq. (A.10) becomes

D(gµν) = D(−2l(µnν) + 2m(µm̄ν)) (A.9)

⇒ −hµν

(1) = −2l(µ
(1)n

ν) − 2l(µnν)
(1) + 2m(µ

(1)m̄
ν) + 2m(µm̄ν)

(1). (A.10)

The method is nearly identical and hence the analysis produces contravariant
components of the perturbed tetrad vectors which are opposite in sign to the covariant
components of my initial analysis (Eq. (A.5)). There is, however, one subtlety: the
infinitesimal tetrad transformations in Eq. (A.2) are different when simplifying the
perturbed contravariant basis vectors to when one is simplifying the perturbed
covariant basis vectors. This can be seen by noting that if l(1)µ = −h(1)ll nµ, then the
corresponding perturbed contravariant basis vector takes the form

D(lµ) = D(gµνlν) (A.11)

= g(0)µνl1
ν − hµν

(1)lν (A.12)

= −h(1)ll nµ − hµl
(1) (A.13)

̸= hllnµ (A.14)

Here one finds that lµ

(1) ̸= −g(0)µνl(1)ν . However, by using infinitesimal tetrad

transformations, one finds D(lµ) = −h(1)ll nµ − hµl
(1) can be transformed into

D(lµ) = h(1)ll nµ. Hence, in Ref. [51] the perturbed tetrad with indices up is a different
tetrad to the perturbed tetrad with indices down. Nevertheless, either tetrad is valid.

The next step in the Chrzanowski method [51] is to use the expressions for the
perturbed tetrad contravariant vectors to express the perturbed parallel derivatives
(Eq. (1.58)),

D(1) =
1
2

h(1)ll ∆ (A.15)

∆(1) =
1
2

h(1)nn D + h(1)nl ∆ (A.16)

δ(1) = h(1)nmD + h(1)lm ∆ − 1
2

h(1)mm̄δ − 1
2

h(1)mmδ̄µ. (A.17)

Note that these equations are only consistent when acting on scalars. This is because
when a tetrad parallel derivative (Eq. (1.58)) acts on a tensor of a higher rank, the
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perturbation of the connection (spin coefficients) contributes, and Eqs. (A.15), (A.16),
and (A.17) no longer hold.

A.1.1 Calculating the perturbed NP quantities

Now that I have equations for the perturbations of the contravariant tetrad legs and
their parallel derivatives, I can attempt to derive the perturbations of the NP scalars.
To calculate the perturbed NP spin coefficients, I perturb the NP commutation
relations [48]

∆D − D∆ = (γ + γ̄)D + (ϵ + ϵ̄)∆ − (π + τ̄)δ − (π̄ + τ)δ̄, (A.18)

δD − Dδ = (ᾱ + β − π̄)D + κ∆ − (ρ̄ + ϵ − ϵ̄)δ − σδ̄, (A.19)

δ∆ − ∆δ = −ν̄D + (τ − ᾱ − β)∆ + (µ − γ + γ̄)δ + λ̄δ̄, (A.20)

δ̄δ − δδ̄ = (−µ + µ̄)D + (−ρ + ρ̄)∆ + (α − β̄)δ + (−ᾱ + β)δ̄. (A.21)

After perturbing these equations, I can input the definitions for the perturbed parallel
derivatives, Eq. (A.17). By using the zeroth-order commutation relations, one can
obtain equations for the twelve NP spin coefficients (in Petrov type-D spacetimes) by
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reading off the coefficients for each zeroth-order tetrad parallel derivatives. This gives

κ(1) = −κh(1)ln − 1
2 κh(1)mm̄ − 1

2 κ̄h(1)mm − (D − 2ε − ρ̄)h(1)lm + σh(1)lm̄

− (ᾱ + β − 1
2 π̄ − 1

2 τ − 1
2 δ)h(1)ll , (A.22)

σ(1) = − 1
2 λ̄h(1)ll − ( 1

2 D − ε + ε̄ + 1
2 ρ − 1

2 ρ̄)h(1)mm − (−π̄ − τ)h(1)lm , (A.23)

ν(1) = λh(1)nm − (−∆ − 2γ − µ̄)h(1)nm̄ + νh(1)ln − 1
2 νh(1)mm̄ − 1

2 ν̄h(1)m̄m̄

− (α + β̄ − 1
2 π − 1

2 τ̄ + 1
2 δ̄)h(1)nn , (A.24)

λ(1) = λh(1)ln − (− 1
2 ∆ − γ + γ̄ + 1

2 µ − 1
2 µ̄)h(1)m̄m̄ − 1

2 σ̄h(1)nn − (−π − τ̄)h(1)nm̄, (A.25)

µ(1) = −(− 1
2 µ − 1

2 µ̄)h(1)ln − (− 1
2 ∆ + 1

2 µ − 1
2 µ̄)h(1)mm̄ − (− 1

2 δ − β − 1
2 τ)h(1)nm̄

− ( 1
2 δ̄ + β̄ − π − 1

2 τ̄)h(1)nm + 1
2 νh(1)lm − 1

2 ν̄h(1)lm̄ − 1
2 ρh(1)nn , (A.26)

ρ(1) = 1
2 κh(1)nm̄ − 1

2 κ̄h(1)nm − 1
2 µh(1)ll − ( 1

2 δ̄ − α − 1
2 π)h(1)lm − ( 1

2 ρ − 1
2 ρ̄)h(1)ln

− ( 1
2 D + 1

2 ρ − 1
2 ρ̄)h(1)mm̄ − (− 1

2 δ + ᾱ − 1
2 π̄ − τ)h(1)lm̄ , (A.27)

ε(1) = 1
4 κh(1)nm̄ − 1

4 κ̄h(1)nm − (− 1
4 ∆ + 1

2 γ̄ + 1
4 µ − 1

4 µ̄)h(1)ll − ( 1
2 D + 1

4 ρ − 1
4 ρ̄)h(1)ln

− ( 1
4 ρ − 1

4 ρ̄)h(1)mm̄ + 1
4 σh(1)m̄m̄ − 1

4 σ̄h(1)mm − (− 1
4 δ + 1

2 ᾱ − 1
4 π̄ − 1

2 τ)h(1)lm̄

− ( 1
4 δ̄ − 1

2 α − 3
4 π − 1

2 τ̄)h(1)lm , (A.28)

π(1) = 1
2 λh(1)lm − (− 1

2 ∆ + γ̄ − 1
2 µ̄)h(1)lm̄ − (− 1

2 D − ε + 1
2 ρ)h(1)nm̄ − 1

2 σ̄h(1)nm

+ 1
2 τh(1)m̄m̄ − ( 1

2 δ̄ + 1
2 π + 1

2 τ̄)h(1)ln + 1
2 τ̄h(1)mm̄, (A.29)

τ(1) = − 1
2 λ̄h(1)lm̄ − ( 1

2 ∆ − γ + 1
2 µ)h(1)lm + 1

2 πh(1)mm + 1
2 π̄h(1)mm̄

− ( 1
2 D + ε̄ − 1

2 ρ̄)h(1)nm + 1
2 σh(1)nm̄ − (− 1

2 δ − 1
2 π̄ − 1

2 τ)h(1)ln , (A.30)

α(1) = − 1
4 κ̄h(1)nn + 3

4 λh(1)lm − (− 1
4 ∆ − γ + 1

2 γ̄ + 1
2 µ − 1

4 µ̄)h(1)lm̄ − 1
4 νh(1)ll

− ( 1
4 D − 1

2 ε − 1
4 ρ − 1

2 ρ̄)h(1)nm̄ − 1
4 σ̄h(1)nm − (− 1

4 δ + 1
2 ᾱ − 1

4 π̄ − 1
4 τ)h(1)m̄m̄

− ( 1
4 δ̄ − 1

4 π − 1
4 τ̄)h(1)ln − ( 1

4 δ̄ + 1
2 α − 1

4 π − 1
4 τ̄)h(1)mm̄, (A.31)

β(1) = − 1
4 κh(1)nn − 1

4 λ̄h(1)lm̄ − (− 1
4 ∆ − 1

2 γ − 1
4 µ − 1

2 µ̄)h(1)lm − 1
4 ν̄h(1)ll

− ( 1
4 D − ε + 1

2 ε̄ + 1
2 ρ − 1

4 ρ̄)h(1)nm + 3
4 σh(1)nm̄ − ( 1

4 δ − 1
4 π̄ − 1

4 τ)h(1)ln

− (− 1
4 δ + 1

2 β − 1
4 π̄ − 1

4 τ)h(1)mm̄ − ( 1
4 δ̄ + 1

2 β̄ − 1
4 π − 1

4 τ̄)h(1)mm, (A.32)

γ(1) = 1
4 λh(1)mm − 1

4 λ̄h(1)m̄m̄ − ( 1
4 µ − 1

4 µ̄)h(1)mm̄ − (−γ + 1
4 µ − 1

4 µ̄)h(1)ln + 1
4 νh(1)lm − 1

4 ν̄h(1)lm̄

− ( 1
4 D + 1

2 ε̄ + 1
4 ρ − 1

4 ρ̄)h(1)nn − (− 1
4 δ − 1

2 β − 1
2 π̄ − 3

4 τ)h(1)nm̄

− ( 1
4 δ̄ + 1

2 β̄ − 1
2 π − 1

4 τ̄)h(1)nm. (A.33)
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The perturbed Weyl scalars can be calculated by perturbing the Ricci identities (e.g.,
for ψ0 I use Eq. (1.71)). This gives

Ψ(1)
0 = (−3ϵ(1) + ϵ̄(1) − ρ(1) − ρ̄(1))σ + (−3ϵ + ϵ̄ − ρ − ρ̄)σ(1)

+ κ(1)(ᾱ + 3β − π̄ + τ) + κ(ᾱ(1) + 3β(1) − π̄(1) + τ(1))−
h(1)nmDκ + Dσ(1) − h(1)lm ∆κ + 1

2 h1
ll∆σ + 1

2 h(1)nm̄δκ − δκ(1) + 1
2 h(1)mmδ̄κ, (A.34)

Ψ(1)
1 = κ(1)(γ + µ) + κ(γ(1) + µ(1)) + ϵ(1)(ᾱ − π̄) + ϵ(ᾱ(1) − π̄(1)) + β(1)(ϵ̄ − ρ̄)

+ β(ϵ̄(1) − ρ̄(1)) + (−α(1) − π(1))σ + (−α − π)σ(1)

+ Dβ(1) − h(1)nmDϵ + 1
2 h(1)ll ∆β − h(1)lm ∆ϵ + 1

2 h(1)nm̄δϵ − δϵ(1) + 1
2 h(1)mmδ̄ϵ, (A.35)

Ψ(1)
2 = 1

3

(︁
ϵ̄(1)µ + ϵ̄µ(1) + ϵ(1)(γ̄ + 2µ − µ̄) + ϵ(2γ(1) + γ̄(1) + 2µ(1) − µ̄(1))

+ 2κ(1)ν + 2κν(1) + ᾱ(1)π + ᾱπ(1) + α(1)(ᾱ − π̄)− π(1)π̄ − ππ̄(1)

+ (γ(1) + µ(1))ρ + µρ(1) + γ(1)(ϵ̄ − ρ̄)− µ(1)ρ̄ + γ(2ϵ(1) + ϵ̄(1) + ρ(1) − ρ̄(1))

− µρ̄(1) − 2λ(1)σ − 2λσ(1) + (−α(1) − π(1))τ + α(ᾱ(1) − 2β(1) − π̄(1) − τ(1))

− πτ(1) + β(1)(β̄ − 2π − τ̄) + β(−2α(1) + β̄
(1) − 2π(1) − τ̄(1))

− h(1)nmDα + h(1)nm̄Dβ − 1
2 h(1)nn Dϵ + Dγ(1) + Dµ(1) − h(1)nmDπ − h(1)lm ∆α

+ h(1)lm̄ ∆β − h(1)ln ∆ϵ − ∆ϵ(1) + 1
2 h(1)ll ∆γ + 1

2 h(1)ll ∆µ − h(1)lm ∆π

+ 1
2 h(1)nm̄δα − δα(1) − 1

2 h(1)m̄m̄δβ + 1
2 h(1)nm̄δπ − δπ(1) + 1

2 h(1)mmδ̄α

− 1
2 h(1)nm̄δ̄β + δ̄β(1) + 1

2 h(1)mmδ̄π
)︁
, (A.36)

Ψ(1)
3 = α(1)(γ̄ − µ̄) + α(γ̄(1) − µ̄(1)) + ν(1)(ϵ + ρ) + ν(ϵ(1) + ρ(1)) + λ(1)(−β − τ)

+ λ(−β(1) − τ(1)) + γ(1)(β̄ − τ̄) + γ(β̄
(1) − τ̄(1))− 1

2 h(1)nn Dα + h(1)nm̄Dγ

− h(1)ln ∆α − ∆α(1) + h(1)lm̄ ∆γ − 1
2 h(1)m̄m̄δγ − 1

2 h(1)43 δ̄γ + δ̄γ(1), (A.37)

Ψ(1)
4 = −λ(1)(3γ − γ̄ + µ + µ̄)− λ(3γ(1) − γ̄(1) + µ(1) + µ̄)(1)

− ν(1)(−3α − β̄ − π + τ̄)− ν(−3α(1) − β̄
(1) − π(1) + τ̄)(1)

− 1
2 h(1)nn Dλ + h(1)nm̄Dν − h(1)ln ∆λ − ∆λ(1) + h(1)lm̄ ∆ν − 1

2 h(1)m̄m̄δν

− 1
2 h(1)mm̄δ̄ν + δ̄ν(1). (A.38)

The equations for the perturbed NP spin coefficients and Weyl scalars (Eqs. (A.22)
to (A.38)) are consistent with Refs. [72] and [102] (and have also been checked against
the unpublished results of Béatrice Bonga). The perturbed NP spin coefficients
(Eq. (A.33)) include some minor corrections to Ref. [45].
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Appendix B

Transformation to a Bondi-Sachs
Gauge in Coordinate Form

Here I give a method for calculating the gauge vector ξa which takes one from any
gauge to the Bondi–Sachs gauge. The calculation for ξa reduces to solving a
hierarchical set of ODEs along outgoing radial null rays. The resulting metric
perturbation, ĥab = hab + 2∇(aξb), is fully gauge fixed up to the BMS freedoms (which
I fix in Sec. 3.6.7). The results in this appendix were obtained by Jordan Moxon (and
will be published in Ref. [174]) and reproduced here to provide context for the
Bond–Sachs gauge fixing method in NP form in Sec. 3.6.

I assume that g(0)ab is expressed in a Bondi-Sachs gauge, which I review in Sec. 3.6.6 for
Kerr spacetimes.

To derive equations for ξa from the Bondi-Sachs gauge conditions, I work with the
index-up version of the metric. The perturbative expansion of the index-up metric
takes the form

gab = gab
(0) − hab

(1) +O(ε2), (B.1)

and the index-up Bondi-Sachs metric (the inverse of Eq. (3.23)) has components

gαβ

(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −e−2β 0A

−e−2β e−2βV
r̂ −e−2βUA

0b −e−2βUB r̂−2 f AB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.2)
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I write the decomposition of the gauge vector into ξu, ξr and ξ A pieces as

ξa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

cA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.3)

The gauge conditions ĥ
uu

= 0 and ĥ
uA

= 0 simplify to a hierarchical pair of radial
ordinary differential equations,

∂r̂a = −e2βhuu, (B.4a)

∂r̂cA = −e2βUAhuu +
1
r̂2 e2βhAB∂Ba + huA. (B.4b)

The equations (B.4) determine the gauge components a and c up to an integration
constant which corresponds to choosing a and cA on a single r = constant surface. I
choose this surface to be I+.

The u dependence of a and cA (at I+) is constrained by the asymptotic falloff
conditions limr→∞ ĥ

r̂u
= 0 and limr→∞ ĥ

r̂A
= 0. These produce the evolution equations

∂ua|I+ = −hru|I+ , (B.5a)

∂ucA|I+ = −hrA|I+ . (B.5b)

The RHS of these equations is zero if the original gauge is asymptotically flat. This
fixes the remaining freedom of a and cA at I+, up to choosing an initial a and cA on a
single sphere at constant u (at I+). When working in the frequency domain, the above
equations constrain the oscillatory part of the gauge vector, and the zero frequency
contribution remains unfixed (corresponding to the initial data).

I must also apply the condition ĥ
AB → 0 at I+. This constraint will be used to

constrain the traceless part of ĥ
AB

(the trace piece is constrained by Eq. (B.7)). This
condition can be expressed as

(DAcB − 1
2

qABDCcC)|I+ = (hAB − qABhA
A)|I+ . (B.6)

Eq. (B.6) fixes the initial data of cA up to a ℓ = 1 vector harmonic contribution. Eq.
(B.6) must hold over the entirety of I+. This may appear problematic when
simultaneously imposing the evolution condition (B.5). However, Ref. [124]
demonstrated that ĥ

AB → 0 at I+ is ensured by consistency with the EFE (provided it
is successfully imposed for a single initial hypersurface). In the frequency domain,



this is equivalent to the nonzero frequency conditions being imposed by the EFE
(provided the zero frequency part is in the Bondi-Sachs gauge). The remaining
freedom is choosing a on a sphere of constant u at I+, and the vector harmonic ℓ = 1
piece of cA. These freedoms both correspond to the perturbative BMS freedoms.

Finally, imposing the gauge condition condition qABĥ
AB

= 0 (equivalent to ensuring r
is the areal coordinate of the perturbed metric) constrains the remaining gauge vector
component (b). This results in

b =
r̂
4

DAcA − e2βr̂3

4
UAhAB∂r̂cB. (B.7)

As this equation is algebraic (given cA is known), it determines b entirely. Note, the
condition that ĥ

r̂r̂ → 0 at I+is satisfied by consistency with the EFE when the above
conditions are also satisfied.

Hence, by solving this hierarchical differential equation, one can calculate the gauge
vector ξ to the Bondi–Sachs gauge. In summary, and in a practical order for
calculating a, b, and c:

1. Choose initial data for a on a single cut of I+, then determine initial data for c on
that same cut using Eq. (B.6).

2. Use Eq. (B.5) to calculate a and c on the whole of I+.

3. Use Eq. (B.4) to extend a, then cA into the spacetime, on each hypersurface,
given their values at I+.

4. Use Eq. (B.7) to calculate b given a and cA on each hypersurface.

To fully constrain the gauge, one can derive the initial data using the BMS frame fixing
method in Sec. 3.6.7.
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Appendix C

Deriving the Local Gauge Transform
to a Highly Regular Gauge

Here, I present the full derivation of the gauge vector (ξa) which takes one from the
Lorenz gauge to a highly regular gauge near the worldline (as summarised in Sec.
3.7). I shall write ξa[xµ] (at point x with coordinates xµ) as a function of the difference
in coordinates from a point on the worldline (x′ with coordinates xµ′

) to x,
∆xµ[xµ] = xµ − xµ′

. xµ′
and xµ are connected by a future-directed null geodesic βxµ (on

the background spacetime). For each xµ there is a unique βxµ that connects to the
worldline. Hence, for each xµ there is a unique xµ′

and ∆xµ.

As I am interested in calculating ξa[xµ] near γ, I will express ξa[xµ] as an expansion in
the distance from the worldline. First, I must define the distance from the worldline.
As ∆xµ is the difference between two points on a null geodesic, to zeroth-order, it is a
null vector; hence, ∆xµ is null in length. However, one can isolate the spatial part of
∆xµ, which I denote as λ. λ will be an appropriate measure for distance from the
worldline. Later I shall derive a precise way of extracting the spatial piece of ∆xµ,
defining λ. But for now, I use λ only to denote the order of expansion. I intend to
define ξa[xµ] to O(λ0) as this should be sufficient for eliminating the most singular
term in h(1)ab on the worldline.

To calculate the gauge vector to a highly regular gauge, I first must analyse what
makes a gauge highly regular. The highly regular gauge condition is

hHR
ab ka = 0. (C.1)

Where hHR
ab is the metric perturbation in the highly regular gauge and ka is the set of

null vectors corresponding to the set of future-directed null geodesics, β, emanating
from the worldline (i.e., the compact object’s future directed light cone, see Fig. C.1).
Note that βxµ is a member of the set β. Therefore, a gauge transform from a generic
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FIGURE C.1: A light-cone extending from the retarded position of the compact ob-
ject, xµ′

(on the geodesic γ), with a retarded time tret. The null vectors tangent to the
generators of the light cone are labeled ka. The green rectangular plane represents the
spacelike hyperspace (Σ) orthogonal to the objects four-velocity (ua′ ) containing x′, on
which each point xa can be projected (see the green dashed line which is tangent to the
green spacelike hyperspace, the red dashed line is tangent to ua). Similarly, the null

vector ka can be projected onto the spacelike hyperspace.

gauge into a highly regular gauge is given by

(hab + Lξa gab)ka = 0. (C.2)

I wish to find the gauge vector ξa, specializing to the case that the initial metric
perturbation is in the Lorenz gauge. To achieve this, first, I must express the set of null
vectors ka as an expansion in the distance from the worldline λ.

C.1 Expanding ka in orders of distance from the worldline

Here I set out a method for defining an expansion for ka in order of distance from γ,
up to O(λ0). Expressly, given a point x in the neighbourhood of γ, I will derive an
equation for ka written as a function of xµ and ua[x′] (the four-velocity of γ). I shall
achieve this by splitting ka into a timelike piece, tangent to ua, and a spacelike piece,
orthogonal to ua. Note that all quantities with primed indices are evaluated at x′, and
those with indices without a prime are evaluated at x.

ka is defined as the null vector (see Fig. C.1) associated with the unique null geodesic β

connecting point x to x′. However, during this derivation, I relax this definition as I
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only require calculating ka up to O(λ0). Many of these simplifications would have to
be reconsidered if one were to attempt a higher-order expansion.

First, I split ka locally into a timelike piece and a spacelike piece using Fermi-Walker
coordinates (which, at leading order, are indistinguishable from Fermi normal
coordinates). This method is consistent with any global coordinate scheme as I shall
construct a local basis defined with respect to the global coordinate system. Fermi
normal coordinates are constructed from an orthonormal basis that is parallel
propagated along γ [140]. For the timelike basis vector, I use ua (appropriate as γ is a
timelike geodesic). The spacelike basis vectors are labelled e(1)i , e(2)i and e(3)i and are
tangent to the hypersurface Σ (which is orthogonal to ua, see Fig. C.1). To obtain the
basis vectors for all proper times on γ, the basis vectors are parallel transported along
γ. Note, as I have not specified the coordinate basis of ua, it is independent of the
global coordinate system. This method allows us to work within Σ covariantly.

In this basis I can write ua′ = (1, 0i), where i ∈ {1, 2, 3}. I can also write ka as
ka = (kτ, ki), where τ is a time coordinate (on x′ τ is the proper time of γ), and kτ and
ki denote the timelike and spacelike part of ka respectively. As ka is a null vector, the
scaling of its components is arbitrary (as long as it remains future directed). Hence, I
can fix kτ = 1 for simplicity (rescaling ki), making ka = (1, ki).

Next, I want to express ki near the point x′ as an expansion in orders of distance from
the worldline. As ka is a null vector, the expansion must satisfy gabkakb = 0. In Fermi
coordinates, the metric components on γ reduce to the Minkowski metric [140].
Hence, on γ, the null vector condition takes the simple form

ηabkakb = 0,

⇒ −1 + δijkikj = 0, (C.3)

where ηab is the Minkowski metric. Therefore, locally δijkikj = 1. That is, ki is a
spacelike unit three-vector.

The choice of Fermi normal coordinates has naturally partitioned ka into a timelike
piece (kτ) and a spacelike piece (ki); however, I wish to represent the split of ka in
terms of four-vectors. On the worldline, the timelike piece is tangent to ua′ , and the
spacelike piece is orthogonal to ua′ . At this point I need to define ua off of the
worldline. This can be achieved by parallel transporting ua′ . I use the bi-tensor of
parallel transport [143], ga

b′ , to define ua := ga
a′u

a′ . Therefore, with the inclusion of the
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transport tensor, the tangent piece (ka
∥) to ua is given by

ka
∥ = −ga

c′g
b
d′u

c′ud′gcbkc,

= −(δa
c′ +O(λ))(δb

d′ +O(λ))uc′ud′(ηcb +O(λ))kc,

= −uaubηcbkc +O(λ),

= uakτ +O(λ),

= ua +O(λ), (C.4)

= (1, 0i) +O(λ), (C.5)

where I have used gc
c′ = δc

c′ +O(λ) [143] and gab = ηab +O(λ). From here on out I
use ua = δa

c′u
c′ +O(λ). This results in a simple equation for the tangent piece of ka to

ua (Eq. (C.5)).

The orthogonal piece of ka to ua (ka
⊥) can be obtained by using the projection operator

Pab = gab + uaub. Hence,

ka
⊥ = Pa

bkb

= ka − ua +O(λ)

= (0, ki) +O(λ). (C.6)

From this point, I can drop the specialisation to Fermi-Walker coordinates and
produce equations defined in arbitrary coordinate schemes. I need to express ki as a
function of xα and ua. In Fermi normal coordinates, spacetime is locally flat. Therefore,
to calculate ki, I can simplify the definition of ka by noting that in flat spacetime,
geodesics are straight lines. That is, the direction of ka must be equivalent to the
direction of the vector connecting points x and x′, ka ∝ ∆xa := xa − xα. In the
flat-spacetime approximation, one can consider ∆xa as a tensorial object; however, in
curved spacetime, conducting covariant calculations requires replacing the role of ∆xa

with Synge’s world-function σ(x, x′) [143]. Note, in flat spacetime one can consider
∆xa as a bivector as it is evaluated at two points simultaneously (x and x′).

To isolate the piece of ∆xa orthogonal ua, I again use the projection operator,

ka
⊥ ∝ Pa

b∆xb +O(λ). (C.7)

As ki is required to be a unit vector (see Eq. (C.3)), I must re-normalise for the
magnitude of Pa

b∆xb. As Pa
bPac = Pcb, this gives

ka
⊥ =

Pa
b∆xb√︁

Pcd∆xc∆xd
+O(λ), (C.8)
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a function for ka
⊥ in terms of ∆xa and Pab. Summing ka

∥ and ka
⊥ gives ka,

ka = ka
∥ + ka

⊥ = ua +
Pa

b∆xb√︁
Pcd∆xc∆xd

+O(λ). (C.9)

C.2 Approximating x′

I have found an expression for ka (Eq. (C.9)), but I am not finished because ∆xa and
ua = ga

c′u
c′ are both functions of x′. As x′ is defined as the point on γ which connects

to x with a unique null geodesic β, calculating x′ exactly is challenging. Instead, I will
find a sufficiently accurate approximation by expanding xa′ in orders of λ.

Finding x′ for a given x is a non-trivial problem. To begin, I approximate x′ using x̂,
the point on γ with the same coordinate time as point x. I can then expand around x̂ in
orders of λ to approximate x′. Tensors evaluated at x̂ have indices with a hat.

First I evaluate if the projection operator (arising in Eq. (C.9)) can be approximated by
setting x̂ = x′. As I am working in approximately flat spacetime, γ is a straight line.
Hence, ua′ = uâ +O(λ). Using the transport tensor (ga

â) [143], I define
ûa := ga

âuâ = δa
âuâ +O(λ). Also, in the flat space approximation ga′b′ = gâb̂ +O(λ).

Therefore, the projection operator at x̂ is equivalent to the projection operator at x′ up
to O(λ). That is, Pab = Pâb̂ +O(λ).

Next, I must show that ∆xα̂ := xα − xα̂ (where xα̂ is the coordinates of x̂) sufficiently
approximates ∆xa. xα′ and xα̂ both sit on γ; given ∆τ (xτ′ − xτ̂ := ∆τ), the difference
between xα′ and xα̂ is ∆τua′ +O(λ2) which is O(λ). Hence,

xα̂ = xα′ +O(λ). (C.10)

Therefore,

∆xα̂ = ∆xα′ +O(λ). (C.11)

Hence, using Eq. (C.8), all corrections to k⊥ and k∥ are O(λ) when one uses x̂ in place
of x′. Therefore, I can write ka as

ka = uâ +
Pâ

b̂
∆xâ√︂

P̂ĉd̂∆xĉ∆xd̂
+O(λ). (C.12)
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C.3 Obtaining an expansion for ξa

Returning to Eq. (C.2), by writing the Lie derivative in terms of covariant derivatives,
one obtains

(hab + ξc
;agcb + ξc

;bgac)ka = 0,

⇒(hab + ξb;a + ξa;b)ka = 0, (C.13)

where I have used the fact gab;c = 0. With my expansion for ka (Eq. (C.12)) to hand,
and assuming that hab is known (in the Lorenz gauge), I am now prepared to solve Eq.
(C.13) for ξa.

I shall begin with an ansatz for the form of ξa as an expansion up to O(λ),

ξa = gâ
a

[︂
Xâ log[ρ] + Yâ + Zâb̂

∆xb̂

ρ

]︂
+O(λ), (C.14)

⇒ ξa = gâ
aξ â +O(λ), (C.15)

with

ξ â : = Xâ log[ρ] + Yâ + Zâb̂
∆xb̂

ρ
, (C.16)

where Xâ, Yâ and Zâb̂ are coefficients independent of λ (which are all evaluated at x̂)

and ρ :=
√︂

Pĉd̂∆xĉ∆xd̂ ∼ λ.

Eq. (C.13) contains the covariant derivative of ξa only. To find ξa;b I act with the
covariant derivative on (C.16), giving

ξa;b =gâ
a;bξ â + gâ

aξ â;b, (C.17)

⇒ ξa;b =gâ
aξ â;b +O(λ), (C.18)

where I have used gâ
a;b = O(λ) [143]. Let Eq. (C.18) define ξ â;b. Taking the covariant

derivative of Eq. (C.16), one can show ξ â;b is given by

ξ â;b =Xâ
Pĉd̂∆xĉ

;b∆xd̂

ρ2 + Zâb̂

[︄
∆xb̂

;b

ρ
−

∆xb̂Pê f̂ ∆xê
;b∆x f̂

ρ
3
2

]︄
+O(λ0), (C.19)

as the coefficients (such as Xâ) are evaluated at x̂, their covariant derivative at x are
suppressed by an O(λ1) (i.e., Xâ;b = O(λ1)).
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I now find an expression for ∆xâ
;b,

∆xâ
;b = ∆xâ

,b − Γâ
bĉ∆xĉ (C.20)

= ∆xâ
,b +O(λ), (C.21)

= xa
,b − xâ

,b +O(λ), (C.22)

=
∂xa

∂xb − ∂xâ

∂xb +O(λ), (C.23)

= δa
b +O(λ), (C.24)

where I have used ∂xĉ

∂xb = 0, ∆xâ = O(λ) and Γâ
bĉ = O(λ0). I can now write Eq. (C.19)

as

ξ â;b =Xâ
Pcd̂δc

b∆xd̂

ρ2 + Zâb̂

[︄
δb̂

b
ρ

−
∆xb̂Pe f̂ δe

b∆x f̂

ρ3

]︄
+O(λ0), (C.25)

Before inputting the form for ξ â;b into Eq. (C.13), I rewrite it as

gb̂
d(δ

â
b̂δb

a + δâ
aδb

b̂)ξ â;bka = hadka, (C.26)

⇒ (δâ
dδb

a + δâ
aδb

d)ξ â;bka +O(λ) = hadka, (C.27)

Inputting Eq. (C.19) gives

(δâ
dδb

a + δâ
aδb

d)

(︃
Xâ

Pcd̂δc
b∆xd̂

ρ2 + Zâb̂

[︄
δb̂

b
ρ

−
∆xb̂Pe f̂ δe

b∆x f̂

ρ3

]︄)︃
ka +O(λ0) = hadka, (C.28)

Contracting the Kronecker delta (which are zeroth-order transportation tensors) and
using Eq. (C.9) for ka gives

(︃
XdPad̂∆xd̂ + XaPdd̂∆xd̂

ρ2 +
Zda + Zad

ρ

−
Zdb̂∆xb̂Pa f̂ ∆x f̂ + Zab̂∆xb̂Pd f̂ ∆x f̂

ρ3

)︃(︃
ua +

Pa
â∆xâ

ρ

)︃
+O(λ0) = hadka. (C.29)

My analysis produced some ambiguity on where Pad̂ is evaluated; but note, that as I
am working in approximately flat spacetime Pad̂ ≈ Pab ≈ Pâd̂ (any difference is O(λ)).
As I am expanding functions at x around their values at x̂ I evaluate Pad̂ at x̂.

I now need to obtain a form of the RHS of Eq. (C.29) which allows the coefficients (Xa,
Ya and Zab) to be derived. To do this, I assume hab is in the Lorentz gauge. Therefore,
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the metric perturbation near the worldline takes the form [143]

hab =
2µ

ρ
gâ

agb̂
b(gâb̂ + 2uâub̂) +O(λ0), (C.30)

=
2µ

ρ
(gab + 2uaub) +O(λ0). (C.31)

Hence,

hadka =
2µ

ρ
(gab + 2uaub)

(︃
ua +

Pa
â∆x̂â

ρ

)︃
+O(λ0), (C.32)

hadka =
2µ

ρ

(︃
− ud +

Pda∆xa

ρ

)︃
+O(λ0). (C.33)

Putting the LHS and RHS of Eq. (C.29) together gives

(︃
XdPad̂∆xd̂ + XaPdd̂∆xd̂

ρ2 +
Zda + Zad

ρ

−
Zdb̂∆xb̂Pa f̂ ∆x f̂ + Zab̂∆xb̂Pd f̂ ∆x f̂

ρ3

)︃(︃
ua +

Pa
â∆x̂â

ρ

)︃
+O(λ0) =

2µ

ρ

(︃
− ud +

Pda∆xa

ρ

)︃
.

(C.34)

A short investigation reveals that the choice Xa = −2µua and Zab = APab (where A is
an arbitrary function independent of λ) satisfies the above equation. Therefore, ξa

takes the form

ξa =gâ
a

[︂
− 2µuâ log[ρ] + Yâ + APab

]︂
+O(λ), (C.35)

ξa =− 2µûa log[ρ̂] + Ya + APab
∆x̂b

ρ̂
+O(λ), (C.36)

where Ya is an arbitrary set of four functions independent of λ. For simplicity, one can
freely set Ya = 0a and A = 0, which gives

ξa[xĉ] =− 2µûa log[ρ̂] +O(λ). (C.37)

This gauge vector takes one locally from the Lorenz gauge to a highly regular gauge,
which is useful for second-order SF calculations, such as solving Eq. (2.20). The main
advantage is the source in the highly regular gauge is well defined as a distribution on
the worldline. The source is also more regular than in generic gauges, making
integration easier. However, this gauge vector does not fully fix the gauge, requires
that one starts in the Lorenz gauge, and is only calculated up to leading order in the
distance from the worldline.
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