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orthotropic plates integrated with piezoelectric sensors:
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ABSTRACT

This paper proposes an accurate three-dimensional framework for elastic and viscoelastic free vibration
investigation of in-plane functionally graded (IPFG) orthotropic rectangular plates integrated with piezo-
electric sensory layers. The developed analytical framework is capable of considering layer-wise unidirec-
tional linear functional gradation in both stiffness and density of the orthotropic composite layers. 3D
piezoelasticity-based governing equations of motion are formulated in mixed form by employing Hamilton’s
principle, and further solved analytically for Levy-type support conditions using the power-series-based
extended Kantorovich method (EKM) jointly with Fourier series. The displacements, stresses, and elec-
trical variables (electric field and electric potential) are solved as the primary variables that ensure the
point-wise interlayer continuity and electro-mechanical support conditions. The viscoelastic property of the
orthotropic interlayer is defined by employing Biot model, which is similar to the standard linear viscoelas-
tic model. The correctness and efficacy of the present mathematical model are established by comparing
the present numerical results with published literature and 3D finite element results, obtained by utilizing
user material subroutine in the commercial FE software ABAQUS. An extensive numerical study is per-
formed for various configurations and thickness ratios to investigate the influences of in-plane gradation,
viscoelasticity and their coupled effects on the free-vibration response of hybrid laminated plates. It is
found that in-plane gradation of stiffness and density remarkably alters the flexural frequencies and corre-
sponding mode shapes of the hybrid intelligent rectangular plates. The flexural frequencies and stresses in
the plate can be modified by selecting suitable grading indexes. Another interesting observation is that the
in-plane gradation shows a considerably less effect on the electrical response of piezoelectric layers, which
can play a vital role in the design of sensors and actuators for dynamic applications. Further, the numeri-
cal study demonstrates a potential time-dependent structural behaviour based on the present viscoelastic
modelling. The consideration of viscoelasticity could be crucial for analysing the mechanical behaviour of
a wide range of polymer composites more realistically and for prospective temporal programming in smart
structural systems by exploiting the viscoelastic effect. Although the present analytical solution has been
proposed for the free-vibration investigation of smart in-plane functionally graded (IPFG) viscoelastic
plates, it can also be utilized directly to analyze the symmetric and asymmetric laminated piezoelectric

smart plates with constant properties.
Keywords: Extended Kantorovich method for dynamic analysis; Time-domain viscoelastic analysis;
Smart functionally graded materials; Three-dimensional solution for piezo-embedded plates
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1 Introduction

In the past decade, functionally graded materials have been widely explored for several engineering ap-
plications in the aerospace, civil, mechanical, and biomedical fields due to their superior mechanical and
thermal properties [1, 2]. Such materials give freedom to the designers for tailoring the mechanical prop-
erties of structures like stiffness, density, and thermal resistance along particular directions according to
the operational requirements. This is achieved by introducing gradation in the material properties along
that particular direction. However, it makes the computational analysis of such structures more com-
plicated because their governing equations involve some variable coefficients, which are the functions of
coordinate along which the gradation is considered (unlike conventional isotropic and composite plates).
Hence, the structural problem of functionally graded structure can not be solved by using the traditional
methods proposed for the conventional structural problems [3]. Hence, more efficient and dedicated solu-
tion approaches are required for the accurate determination of structural behaviour of functionally graded
structures under dynamic and static conditions, which is a prime focus of the present work.

A significant number of mathematical models have been developed for bending, fracture and natural
frequency investigation of functionally graded beams, rectangular plates, and shell structures. An extensive
review of the work related to functionally graded structures, presented by Byrd [4], Wu et al. [5] and
Swaminathan et al. [6], suggests that in most of the studies through-thickness gradation of properties is
considered following deterministic and stochastic frameworks [7-14]. However, over the last few years, the
focus is getting diverted toward the in-plane and multidirectional functionally graded structures because
it gives more freedom to control the material properties of thin structures for meeting application-specific
demands, such as specific stiffness, strength, impact and thermal resistance, high fatigue strength, corrosion
resistance, and acoustic properties [5]. In this context, Leissa and Martin [15] probed the buckling and
natural frequency response of thin rectangular composite plates having in-plane graded properties and
proved that desired buckling load and fundamental frequencies can be obtained effectively by controlling
the gradation parameters of material along an in-plane direction.

Most of the analytical solutions for in-plane graded or multidirectional functionally graded plates pub-
lished in the literature are based on two-dimensional (2D) theories of plates. For example, Tomar et
al. [16] developed classical plate theory based 2D analytical solution for natural frequency investigation
of isotropic functionally graded panels (length of the plate along is considered infinite along y-direction)
employing Frobenius series. In this work, elastic modulus and density of the flat panel are taken ex-
ponentially graded along the axial (x) direction. Fares and Zenkour [17] have employed higher-order
plate theory (HPT), first-order plate theory (FPT), and classical plate theory (CPT) to develop 2D an-
alytical solutions for natural frequency and buckling investigation of multidirectional functionally graded
orthotropic rectangular plates. They found that the index of gradation significantly affects the buckling
and free vibration response of plate. Fourier series approach along with particular integration method
has been utilized by Liu et al. [18] to solve the variable coefficient ordinary differential equation and they
obtained classical plate theory (CPT) based solution for natural frequency analysis of in-plane function-
ally graded rectangular plates under Levy-type support condition. In their paper, they concluded that
the desired natural frequencies can be attained by adjusting grading indexes. Yu et al. [19] have used
the Whittaker technique for solving the fourth-order variable coefficients governing equation to obtain an
analytical solution for flexural analysis of the thin in-plane graded isotropic plates of rectangular shape
subjected to Levy-type end conditions. Recently, Amirpour et al. [20] provided HSDT-based analytical
solutions for flexural investigation of in-plane functionally graded isotropic rectangular plates. In the liter-
ature, mostly 2D analytical solutions have been presented so far that belong to specific type of mechanical
end conditions, like simply-supported or Levy-type support conditions. The governing equations involved
in analysis are higher-order ODEs that have variable coefficients and to solve them in analytically for
arbitrary boundary conditions is computationally difficult. Thus, some researchers employed numerical
approaches to obtain reliable approximate two-dimensional solutions for in-plane multidirectional grada-



tion in rectangular plates. Numerical solutions for non-classical boundary conditions are developed using
the higher-order shear deformation theory [21-23] and the classical plate theories (CPT) [24-29]. Recently,
Xue et al. [30] reported an isogeometric numerical solution for natural frequency investigation of IPFG
plates by utilizing a refined plate theory and also extended this solution to obtain a FSDT-based numerical
solution for modal investigation of circular, square, and rectangular porous FGM plates having porosity
gradation along the in-plane and thickness directions. Utilizing Rayleigh-Ritz and Bolotin’s method, Loja
and Barbosa [31] proposed a 2D numerical solution based on classical plate theory for natural frequency
and dynamic instability investigation of in-plane functionally graded thin plates.

Although it is found that the higher-order theory-based 2D solutions are adequate and reliable in obtaining
the global response of thinner orthotropic plates, the accuracy of 2D solutions significantly reduces as the
plate becomes thicker [32] and 2D theory-based results are not reliable for higher modes [32]. In 3D
elasticity solutions, no pre-assumptions are adopted in the distribution of deformations and stresses. Both
stresses and strains are solved as primary variables. Hence, the 3D solution of plates achieves high
accuracy and is always preferred for bench-marking purposes, including accurate prediction of stresses
near edges (the variation of stresses in the vicinity of edges is highly non-linear). In this direction, Lii
et al. [33] reported a 3D semi-analytical solution for multidirectional graded Levy-type plate by using
differential quadrature method based state-space approach (SSDQM). The stiffness of the rectangular
plate was assumed exponentially graded along the axial (z) and thickness (z) directions. This analysis
shows that the behaviour of rectangular plates is affected more by axial stiffness variation than through-
thickness stiffness variation. Singh and Kumari developed a power series-based extended Kantorovich
elasticity analytical approach for flexural analysis of in-plane functionally graded composite beams [34—
37], panels [38, 39], and rectangular plates [40]. Using a similar approach, Ravindran and Bhaskar [41]
developed a 3D analytical approach for flexural analysis of IPFG simply-supported plates subjected to
sinusoidal loading. They extended this approach further [42] for flexural analysis of simply-supported
isotropic sandwich plates integrated with in-plane graded composite face sheets. Zhang et al. [43] have
employed the scaled boundary finite element method (SBFEM) to obtain a 3D semi-analytical solution for
the flexural investigation of in-plane functionally graded (IPFG) isotropic rectangular plates. Singh and
Kumari [44] recently presented a 3D analytical model for natural frequency modal analysis of orthotropic
IPFG rectangular plates.

Some researchers have also explored pure numerical approaches to analyze the IPFG plates under static and
dynamic conditions. The graded finite element-based numerical technique has been developed by Asemi
et al. [45] for flexural investigation of bidirectional functionally graded plates. Xiang et al. [46] utilized
this recently developed scaled boundary finite element method to obtain a 3D solution for buckling and
natural frequency of the IPFG isotropic rectangular plates subjected to Navier and all-around clamped
supports. The Chebyshev spectral approach has been utilized by Huang et al. [47] to obtain a numerical
solution for static flexural and natural frequency analysis of orthotropic IPFG rectangular plates subjected
to general support conditions.

Piezoelectric materials are getting increasingly employed in active response control and sensing applications
as actuators and sensors due to their inherent property of producing a voltage in response to deformation
and vice-versa [48, 49]. When composite and FGM structures are integrated with piezoelectric sensors
and actuators, their behaviours become very complex due to electro-mechanical coupling [50]. Due to
weak coupling between elastic and electric parameters, the electrical response of active smart layers is
very sensitive to internal or external factors such as internal imperfection or defects, external loading,
etc. Moreover, when smart materials are used with FGM structure, the gradation of properties makes
its response even more complex. Hence, efficient and reliable solutions are required to analyze the smart
functionally graded structures accurately. A thorough review of the literature on functionally graded
smart plates reveals that the through-thickness gradation of properties is commonly considered [51-55].
Only a few papers have been reported for in-plane functionally graded (IFGP) smart structures. Zhang



et al. [56] utilized the precise integration method (PIM) in conjunction with the scaled boundary finite
element method (SBFEM) to develop a semi-analytical model for static flexural investigation of magneto-
electro-elastic IPFG plates. Later they extended this model to develop a semi-analytical framework for
bending analysis of the in-plane and multidirectional graded piezoelectric plates [57] and also to natural
frequency analysis of magneto-electro-elastic IPFG rectangular plates [58]. In all these solutions, only
elastic displacements along the = ,y and z-coordinates, magnetic potential and electric voltage are solved as
the primary independent variables. To the best knowledge of the authors, no 3D analytical study has been
presented to date for natural frequency investigation of in-plane functionally graded (IPFG) rectangular
plates integrated with piezoelectric smart layers. Based on the extensive literature review, it is observed
that benchmark 3D piezo-elasticity based analytical solutions are essential for in-plane functionally graded
(IPFG) smart plates, which can serve as an accurate reference for future developments. Thus, this research
work is carried out to fill this gap by providing a benchmark 3D mathematical model for IPFG plates.

Nowadays viscoelastic materials are widely used in vibration attenuation. Moreover, many of the poly-
mers used in composites actually show a visco-elastic behaviour in their operational temperature regime.
Besides accurate analysis of such structural systems, time-dependent viscoelastic behaviour can further be
exploited for programming mechanical responses in smart structural systems. However, only a few works
are reported for viscoelastic analysis with the coexistence of gradation and piezoelasticity. Zhang and
Zheng [59] explored application of the Biot approach in analyzing the dynamic behavior of viscoelastic
composite structures. Hu and Wang [60] studied the effect of viscoelasticity on free vibration behavior and
transverse stresses with the help of Reddy’s layerwise theory and showed that transverse stresses in the
viscoelastic layer are the main factor that leads to delamination in lower modes. Mao et al. [61] studied the
creep buckling and post-buckling behavior of layered viscoelastic piezoelectric plates graded along thickness
direction. Zenkour [62] studied the bending behavior of elastic/ viscoelastic exponentially graded compos-
ite (EGC) rectangular sandwich plates using Illyushin’s approximation methods. Wang et al. [63] used
Kelvin-Voigt model for viscoelastic stability investigation of composite rectangular plates integrated with
a smart piezoelectric layer and under a follower force. Alibeigloo [64] developed a 3D state-space model to
study the effect of viscoelastic inter-layers on flexural and vibration response of simply-supported layered
composite plates. Wu et al. [65] proposed a 3D elasticity-based analytical method for flexural investigation
of simply supported layered plates having viscoelastic interlayers. Recently, Wang et al. [66] presented a
3D analytical model to investigate the time-dependent flexural response of exponential functionally graded
laminated rectangular plates bonded by viscoelastic adhesive inter-layers. Apart from that, the application
of viscoelastic layers in vibration damping is significantly explored in many recent studies [67-71]. Sun et
al. [72] developed an inverse approach for calculating the frequency-dependent mechanical properties of
viscoelastic medium using measured frequency response functions (FRFs). Grosso et al. [73] developed an
experimental identification technique for calculating equivalent viscoelastic parameters of the model for
layered thin-walled structures from the vibration data.
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Fig. 1: Geometry of smart in-plane functionally graded (IPFG) plates.



Based on the discussions presented in the preceding paragraphs, it becomes evident that development of
an accurate 3D analytical solution approach for graded piezoelectric composites including the effect of
viscoelasticity would have a wide range of impacts for analyzing and designing smart structural systems.
In this article, we aim to propose an accurate 3D analytical framework for viscoelastic natural frequency
investigation of in-plane functionally graded (IPFG) orthotropic rectangular plates integrated with piezo-
electric layers [Advantages of the proposed mathematical model compared to others are listed in Remark
1, Appendix G (refer to the Supplementary material)]. Although the present analytical model is developed
for the analysis of smart IPFG viscoelastic plates, it is also directly applicable for the investigation of lam-
inated piezoelectric rectangular elastic and viscoelastic plates without any gradation. The present paper
is organized chronologically in six sections as follows; the mathematical formulation of the 3D governing
equations using the piezo-elasticity-based Hamilton’s principle is explained in Sec.2. In Sec. 3, the vis-
coelastic mathematical model is developed for obtaining effective viscoelastic properties of the viscoelastic
layer in time domain. In Sec.4, the extended Kantorovoch method together with the power series and
Fourier series method is used to attain a solution in the approximated analytical form. Sec.5 is dedicated
to validation and numerical investigation. In section Sec.5.1, numerical results are presented for elastic
case and Sec. 5.2 is dedicated to viscoelastic analysis. Finally, the conclusions and interesting findings of
the present study are summarized in the Sec. 6.

2 3D piezo-elasticity based formulation for modal analysis of hybrid
FGM plates

A laminated in-plane functionally graded (IPFG) hybrid rectangular plate (z € (0,a), z = —h/2, h/2,
y € (0,b)) integrated with piezoelectric layers, as demonstrated in Fig. 1, is taken into consideration for
the present numerical study. In such type of plates, the in-plane gradation of material properties in the
elastic layers is helpful to control flexural frequency response of plate and at the same time piezoelectric
layers act as sensor to sense the behaviour of plate under different gradation cases. The considered
rectangular functionally graded plate consists of total L number of orthotropic IPFG layers and & (= z/a),
(W) = (2 — z,_1)/t™) and & (= y/b) are non-dimensionalized layer parameter defined for x, z (thickness)
and y-direction, respectively. Here the non-dimensional parameters & and & are defined as global
parameters which are valid for all layers. But (%) is local thickness parameter of layer defined for each kth
layer and t(8) denotes the thickness of that kth layer, and z; represents thickness coordinate parameter
for the upper layer surface of that kth layer. These superscripts of layers may be excluded in the further
mathematical expressions unless absolutely needed for better clarity.

The strain-displacement and the electrical field-potential relations for the 3D rectangular hybrid plate can

be written as,

€z U Vyz Vet Wy E, ¢,I
Ey | = | Vy ; Yoz | = | W tuz | Ey = ¢7y (1)
Ex U),z 'Yzy ’U,7y =+ ’U7z EZ ¢,Z

In these expressions ¢; represents normal strains and «y;; represents shear strains of the plate, wherein w,
v and u denote the displacement along z, y and z directions, respectively. Similarly, electric fields along
z, y and z directions are designated by E,, E, and E., respectively. ¢ denotes electric potential in the

piezo-electric layer.

The 3D piezo-elasticity based linear constitutive equations for an orthotropic smart layer can be expressed
as
€z = 8110 + 8120y + 5130, + d31 E,
Ey = 81204 + 5220y + 8230, + d32 B,
€, = 81304 + 8230y + 8330, + d33F, (2)
Vyz = 544Tyz + dog By

Yex = S55Tzx + disEy



Yxy = S66Tzy

Dy = di5Top +€11E;
Dy = d247'yz + EQQEy (3)
D, = d310, + d320y + d330, + €33,

In above expressions, D;, 0; and 7;; are the electric displacement, normal stress and shear stress compo-

nents, respectively. The piezoelectric strain constants d;;, dielectric permittivities €;; (at constant stress
field) and elastic compliances s;; are given in Appendix A of the supplementary material.

The expression of E,, E, and E, in terms of D,, D, and D, can be obtained from Eq. (3). After putting
these expressions of E,, E, and E, into Eq. (2), we obtain

Ex = S110x + 8120y + 8130, + (ingz, €y = 81204 + 5220y + S230, + J;J,QDZ
€ = 851304 + 5230y + 8330, + ds3 D, E, = —ds10, — d320y — d330, + €33D, (4)
Vyz = S44Tyz + J24Dya Vez = S55Tzz + JISDx, E,=enD; — CilSTza: Ey = E22Dy - C{24Tyz
where
€33 = 1/633, Sij = Sij — dgicigj, Jgi = d3¢/€33, for (2,]) =1,2,3
Saa = 544 — doaday, 855 = 55 — disdis, 566 = S66
é11 = /e, €22 = 1/e22, da4 = daa /€22, di5 = dys/en1.

These constitutive equations are valid for piezoelectric elastic layers having constant material properties.

For in-plane functionally graded layers, the elastic compliances and density of particular layer are consid-
ered to vary continuously and linearly along the (z) coordinate of the plate as [44, 74]

p"(&1) = p(L+0p61)=p+p

575(&1) = 81;(1 + 6161)=51; + 515 for j=1,2,3; (5)

555(€1) = 855(1 4 02£1)=555 + 355; 566 = 566(1 + 02£1)=566 + 566
Here 9, denotes gradation index for density, 6; and d2 denote gradation indexes correspond to Young’s and
shear modulus, respectively. These gradation parameters (d,, 01 and d2) can have any positive and negative
numerical value. This type of gradation is considered to provide flexibility to present mathematical model
in considering different kind of variation in material properties. Therefore, the present mathematical
model can be used for graded cases in which variation of material properties is introduced intentionally to
achieve specific structural behaviour. Additionally, this formulation can also be used for degradation cases
in which elastic properties of some specific layers may deteriorate due to dispersion of moisture or some
chemicals such as hydrogen or due to periodic exposure to heat etc. Therefore, for in-plane functionally
graded layers, Eq. (4) are modified and can be expressed as,

gx = (811 + $11)0z + (812 + 812)0y + (813 + 313)0- + d31 D,

ey = (812 + 812) 04 + 5220y + 5230, + ds2 D,

£ = (513 + $13)04 + 5230y + S330- + d33 D

E, = —ds10, — d320y — d330, + €330, (6)
Yyz = (844 + 844)7y> + d2a Dy, Voo = (855 + 855) T2z + d15 Dy
Ez = E11-l)z - CZ15TzJ: Ey = EQQDy - Ci247-yz

A 3D piezo-elasticity based extended Hamilton’s principle in a mixed form, without any type of charge
source and body force, can be expressed as,

/ [(O’ijJ‘ - ,Oul)(suZ + (Ei]’ — 0.5(114'7]‘ + Uj,i))(sgij + DM(S(;S - (EZ + QS,Z)&DZ]dth =0, (7)
\%

where V is the volume (a x b x h) of the three-dimensional plate under consideration and i = 1, 2, 3
represent the x, y, z coordinate, respectively. Hence, u; = u, ug = v, uz3 = w, €1 = €z, €2 = &y, €3 =

€z, €12 = VYay, €23 = Vyz, €31 = Vzx, 01 = Og, 02 = Oy, 03 = Oz, 012 = Tgy, 023 = Tyz, 031 = Tzz, E =



E,, By = E,, B3 = E,, Dy = D, Dy = D, and D3 = D,. Substituting the expressions of the electric
components and strains from Egs. (6) and (1) into Eq. (7) yields

// //[(51&{7'%,2 + 0pp + Tayy — (P + p)U} + 00{Tys 2 + Taya + 0yy — (p+ )0} + ow{o. > + Tor g
tJaJbJh

+Tyey — (P + P)W0} +00(Dye + Dyy + D ) + 60,{(511 + 511)0x + (512 + 812)0y + (513 + 513)0>
+(231Dz — u@} + 50'y{(§12 + §12)U$ + S220y + 5230, + gggDz — U7y} — (50'3{w7z — (513 + §13)0’z (8)
—8230y — 5330, — CZ33Dz} - 57—yz (U,z + Wy — S44Tyz — J24Dy) - 5sz{u,z + Wy — (555 + §55)7—zz
_J15Dx} + (5Txy{(§66 + '§66)7—:cy —Vax — u,y} - 6D:L‘(¢,x +éenDy — J15TZ:L’) - 5Dy(¢,y + g22-Dy

)

—CZ24TyZ) — (5Dz(¢)7z — ggldx — ngdy — CZ330’Z + 533DZ)] dzdydxdt =0, V du;, 6¢, do;, (57’1']', 0D;

The exterior surfaces of the plate (bottom-most and top-most surface) are shear traction free. Therefore,
the boundary conditions of exterior surface at z = +h/2 can be expressed as,
at z==%h/2: T,,=0, T, =0, o, =0 (9)

If top or bottom surface is subjected to close-circuit (CC) condition then ¢ is prescribed. For open circuit
condition D, is prescribed. Therefore, for close-circuit surface ¢(z,y)=0 and for open-circuit surface
D,(xz,y)= 0. For multilayered FGM plates, perfect bonding is assumed between different functionally
graded layers. Therefore, following continuity condition is satisfied at each internal surface between kth
and (k + 1)th layers

[(u, v, w, ¢, Dz, 02, Tyzy Toz)le=1]®) = [(u, v, w, ¢, Dy, 02, Tyzy Toz)lc=o] Y for E=1,..L —1 (10)
In the present mathematical model, interfaces of smart piezoelectric layers with IPFG elastic substrate are
considered as grounded (¢ = 0) for better sensing. Note that when the interfaces between the piezoelectric
layers and the elastic substrate are made grounded, the maximum potential difference will appear on top
of the piezoelectric layer on the application of force. This is easier to evaluate accurately and effectively,
which makes sensing better by easing the potential evaluation. Therefore, D, becomes discontinuous at
these interfaces. Subsequently, the continuity condition given in Eq. (10) is changed to [¢|<:1](”q):() i.e.
qg=1,...,L,, where L, expresses the piezo-elastic layer interface where actuation electric voltage /potential
is prescribed.

The present investigation is for Levy-type boundary conditions, hence the two opposite ends of the IPFG
laminate smart plate along y-direction (at y = 0 and y = b) are always considered under simply-supported
and close-circuit conditions. Thus, 0y, = w = u = 0 at y = 0 and b for all z, z of that plane. The other two
opposite edges of hybrid FGM plate can have any type of mechanical and electrical support conditions.
The mechanical support conditions at the edges £ = 0 and 1 can be clamped (w = u = v = 0), free
(02 = Taz = Tuy = 0) or simply-supported (0, = w = v = 0) at each point of corresponding y — z
plane. The ends of piezo-electric layers can have closed circuit (CC) condition (¢=0) or open circuit (OC)
condition (D;=0).

3 Formulation for viscoelastic analysis

First classical elasticity analysis is performed in which instantaneous stresses within a material are con-
sidered only function of instantaneous strains, as presented in the preceding section. Now to implement
viscoelasticity of material in the analysis, instantaneous stresses are assumed as a function of strains
history by employing linear viscoelastic model. In a simplified linear viscoelastic mathematical model,
the stress o(t) at any point within the structure is a function of time and can be written in the form of
convolution integral on the kernel function [75] as

out) = g(t) @ e(t) (11)
In above equation, ¢ € RT is the dimensionless time parameter, o(t) and e(t) are representing time-
dependent stress and strain, respectively. Here, it is assumed that the strain is zero for negative times.
Hence, the initial strain is ¢, = 0 for ¢ < 0 and ¢, is the kernel or memory function. Causality requirements
enforce g; to be a causal function i.e., it vanishes for t < 0; g;(¢) = 0,Vt < 0. This approach of deriving
time-dependent stress equations in the context of linear viscoelasticity is known as the hereditary approach,



which gives greater freedom in constructing viscoelastic models as compared to the differential approach
that only relies on the concepts of certain springs and dashpots combinations. Hence, time-dependent
stress-strain relationship of Eq. (11) can directly be used for dynamic investigation of a solid viscoelastic
body. Such as, in case of its implementation to uniform bar, Eq. (11) must be multiplied by its cross-section
area which give the displacement and force rate (or velocity). In Eq. (11), g¢(¢) is also known as ‘relaxation
function’, ‘after-effect function’ or ‘hereditary function’ in the context of different fields. Generally for the
simplicity, the kernel function (g:(t) ) is usually described in the frequency domain which is also known as
Laplace domain form. Hence, Laplace transformation of Eq. (11) converts it into frequency domain which
can be expressed as

OTS(SL) :SLés(SL)gs(SL) (12)

Here s, € C represents complex Laplace domain parameter. The parameters ¢(s.), Gs(sr) and £,(sy) are
representing the corresponding Laplace transformation of o4(t), ¢g:(t) and e4(t). The kernel function g(t)
can be constructed by two generally used methods one is approximation based mathematical approach

and the other is general mathematical approach.

3.1 Construction of the kernel function using approximation based mathematical
approach
In the approximation based mathematical approach, different combinations of springs and dashpots are
used to obtain kernel function for viscoelastic constitutive relationship. Though a variety of springs and
dashpots based models can be constructed by considering different arrangements, but for viscoelastic
analysis of solid body generally four models [76, 77| are used which are known as Maxwell viscoelastic
model, Voigt viscoelastic model, Standard linear viscoelastic model and Generalised Maxwell viscoelastic
model, as shown in Fig. 2. Here, Dirac delta function 6(¢) and unit step function U(t) are defined as below
U)=1 if ¢t>0, and 0 if t<0. (13)
6(t) ® fi(t) = filt) (14)
Here, 0(t) represents the Dirac delta function and f;(¢) continuous generalized function. Dirac’s delta 6(t)
distribution represents the unit impulse function which is a generalized function or distribution over the
real numbers [78, 79]. Based on these assumptions, the viscoelastic kernel function (g:(¢)) for the four
models can be expressed [75-77] as
o Mazwell viscoelastic model:

g¢(t) = pe” WM (t) (15)
o Voigt viscoelastic model:
g:(t) = né(t) + pU(?) (16)
e Standard linear model:
gi(t)=Er |1 —(1— :U)et/TfS] U(t) (17)

o Generalised Mazwell viscoelastic model:
gt(t) - Zluje—(ﬂj/nj)t U(t) (18)
j=1

This models is also called as the Prony series viscoelastic model.
These functions are obtained by assuming the equilibrium of different forces coming from stretching of the
dashpots and springs as given in Fig. 2. In these functions, ¢ is time, o(¢) is stress, £(¢) is strain of system, n
is viscosity parameter of material represented by a purely viscous damper in the dashpots-springs system,
u is elastic stiffness parameter of material represented by a purely elastic spring in the dashpots-springs
system, 7 denotes relaxation time constant and Er represents relaxation modulus.

3.2 Mathematical depiction of the kernel function in the frequency domain
The kernel function ¢.(t) in Eq. (12) can also be represented in the frequency (ws) state. It is a complex
function which can be denoted as,

Gs(ws) = Gs(ws) = Gs(ws) (19)
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Fig. 2: Representation of viscoelastic materials models using springs and dashpots arrangement.

Here ws; € RT represents the frequency of Laplace domain signal. The complex function G(ws) can be
split into real and imaginary part and can be also represented in term of amplitude and phase angle as,

Gilws) = Gllws) + (G (ws) = Gi(w,) @) (20)
Real part G/ (ws) is known as storage moduli and imaginary part G (ws) is known as loss moduli. The
kernel function has one main restriction, which comes from the relationship between cause and effect that
the reaction of the structure depends upon its loading history.The output of a function at any time depends
on past and present values of input which is known as causality condition and causal system. A causal
system (also known as a physical or non-anticipative system) is a system where the output depends on past
and current inputs but not future inputs—i.e., the output y(tp) depends only on the input z(t) for values of
t <ty [79]. Therefore, according to the causality condition, the structure’s reaction should depend upon its
loading history. Further, the Kramers-Kronig relation [79] defines the mathematical correlation between
the imaginary and real parts of the complex elasticity modulus (complex modulus)[71, 79]. Kramers-
Kronig interrelations show that the imaginary and real parts of complex elasticity modulus must be linked
by a Hilbert transform duo and it could be written mathematically as

' _ 2 /OO uGY{(us)
G (ws) = Gsoo + P ey dus (21)
2ws [ Gl(us)
G (ws) = — / P dug (22)

where Gso, = Gs(ws — 00) € R represents unrelaxed modulus. The integral in the Egs. (21) and (22)
is evaluated in Cauchy’s principal value sense near the singularity [79-81]. The behavior of visco-elastic



material in the present case is considered to correspond to various spring dashpot combinations. There-
fore, the reference signal has come from the corresponding spring-dashpot oscillator, where the real and
imaginary parts bear the meaning according to the conventional signal processing literature [71, 79]. The
equivalent relationships which is linking the modulus |G’ (ws)| and the phase ¢s(ws) of Gs(ws) can be
expressed as [Remark 4 and 5, Appendix G (refer to the Supplementary material)],

I |GL(ws)] = In[Gooo| + 2 [5° 202 du (23)
ds(ws) = 2= [0 2l du, (24)

It is worth mentioning that the approximation based prlnmple described above to drive complex elasticity
modulus automatically satisfy these conditions. However, other functions are also there which can also
satisfy these conditions. The determination of G4(ws), which satisfy these conditions, through experimental
measurements is also possible [79, 82]. The most commonly used functions in literature are listed in Table 1.

Table 1: Representation of complex elasticity modulus for different viscoelastic material models in the
Laplace or frequency domain.

Viscoelastic model Complex elasticity modules
Biot model [83] Gs(ws) = Gso + Xoj—y L;?:szfk
Fractional derivative [84] Gy(ws) = GSO;;G(‘Z%
ADF [85] Gs(ws) = Gso |1+ 25 Ay, %“QS”]
I 20 Ws kWs

GHM [86] Gis(ws) = Gso |1+ 205 an= QiQZkff:w;ciwsJ
Step-function [87] Gs(ws) = Gy 1 +npl=e =2 ::to

. T 2_ —wgt
Half cosine model [87] Gs(ws) = G 1 + 771+2(1Lj:;0¢/0520/: 0}
Gaussian model [88] Gs(ws) = Gy 1 + et/ in {1 — erf ( \L;ﬁ) H

3.3 Effective material properties of viscoelastic layers in the laminated plate
In this paper, it is considered that each Young’s moduli E; (Ei, E2, E3) and each shear moduli Gj;
(G12, G13, Ga3) of viscoelastic layer is modelled using viscoelastic properties. The Biot model (mentioned
in Table 1) with only one term has been used for computational simplicity. Hence, complex elastic and
shear modulus in frequency domain [75] can be expressed as

&mgzwmo+% WS) (25)

W Lws

ot tws
where E; represents the elastic modulus of the orthotropic layers considering viscoelasticity and (Es);

Gij(ws) = (Gs)ij (1 it ) (26)

represents the elastic modulus in absence of viscoelasticity. Similarly, G;; represents the shear modulus
of the orthotropic layers when viscoelasticity is considered and (Gy);; represents the shear modulus in
absence of viscoelasticity. In these expressions, u is the relaxation parameter and &, represents a constant
defining the ‘strength’ of viscosity. The amplitude of complex elastic moduli and shear moduli [75] is given
by

2 2 = )2
w? + w2 (1+ &)
|Ei(ws)| = E\/ (27)
(2 s S1 /,[/2 g

2+ w? (1+&)°

|Gij(ws)| = Gy e (28)
The phase (¢s) [75] of these complex elastic moduli and shear moduli are given by
s (Bi(ws)) = &s ij\Ws)) = ! HEs2s 2
6 (Bi(0) = 60 Giyfen)) = tan? (o (29

The complex elastic and shear moduli have the various limiting properties which are providing critical
insights for various special cases. These limiting properties are listed in Appendix B (refer to the Supple-
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mentary material).

3.3.1 Numerical transformation of frequency domain into the time domain

The objective of the present paper is to present the time-dependent viscoelastic behavior. Therefore, once
the Frequency (Laplace) domain solutions are obtained using the viscoelastic correspondence principle,
as described in the preceding subsection, they are inverted back into the time domain. The Inversion
of frequency domain data into the time-domain is performed by employing the computationally efficient
inverse Fourier transform (IFFT) [89, 90]. The physical interpretation of time signal into the Fourier
transform can be expressed as

1 x o
Ei(t):ﬂ / Ei(ws)e®stdw = / E;(2n f)e?™std f, (30)

o0 [e.e]

Gij(t) = 217r/ G,-j(ws)eMStdw = / Gij(27rf5)62mfstdf5 (31)
Here, E;(t) and G;;(t) represent relax;%ion elastic and shear Or?loduli for composite orthotropic layers. The
physical interpretation of an equation indicates the act of establishing the relation between the physical
quantities in the equation by expecting how the system will behave at extreme or normal conditions. It can
involve some approximations of the equation. The main characteristics of materials with viscoelasticity are
used to describe the stress relaxation of materials with time (¢). The efficient determination of E;(t) and
G'i;(t) must accurately simulate the viscoelastic deformation and stress relaxation in the material. Since
in the inversion, discrete numerical data of frequency domain is used rather than a continuous expression
for computation convenience, the continuous inverse Fourier transform can be expressed by its discrete
counterpart as,

Ei(t)= Y CPe®™ and Gy(t)= Y CFe?™ (32)

where coefficients CF and C¢ are_given by, B
Oy = |Ei(ws,)| e?F ) (33)
O = Gij(ws,)| ?Een)) (34)

It shows that whether the signal is periodic or not, its time waveform can be represented in the form
of amplitude |E(ws,)| and phase ¢ (E(ws,)). For more information on the relationships between the
continuous and discrete Fourier transform, one can refer to [91]. While inverting the frequency domain
data into the time domain, all values (higher to lowest) of the parameter ws are considered. So the
time domain signal shows oscillation at each time step and to smoothen this time signal Savitzky-Golay
smoothing algorithm is used here.

4 EKM-Fourier series based analytical solution approach

In the present mathematical model both mechanical and electrical variables are considered as primary
variables. Thus, the mechanical displacements variables (u, v, w), electrical variables (¢, D,, D, and
D.) and the stresses variables ( 0, 0y, 02, Tay, Tyz, Tz) are functions of &1, &, and ¢, and solved as
primary variables using combination of extended Kantorovich method and Fourier series approach, as
further explained in this section.

To obtain the solution for y-direction, Fourier series approach is utilized and solution is assumed in form
of Fourier series in such a manner that it satisfies simply-supported end conditions (o, = w = u = 0 at

edges & = 0, 1) of y direction [Remark 3: Appendix G (supplementary material)],
My

[u7 W, Oz, Oy, Oz, Tzx, o, Dy, Dz] = Z [(u7 W, Og,y Oy, Oz, Trx, ¢, Dy, Dz)m COSWt] sinmm&o

m=1
M,

[V, Tyzy Tay, Dyl = Z (v, Tyz, Ty, Dy)m coswt] cosmméy (35)
m=1
where M, represents the number of term in Fourier series and ( ), denotes the mth term of Fourier series,

and it is the function of £; and (. The truncated Fourier series is used where truncation of series (no. of
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terms in Fourier series ) is corresponding to the flexural vibration mode of y-directions. A rectangular
plate can have infinite flexural vibration modes along any direction. Hence, for general case M, — oc.
However, as in engineering application, the interest is over finite number of fundamental modes, the series
has usually finite number of terms depending on the vibration modes of interest. Further, we substitute
these Fourier series assumption, given in Eq.(35), into the extended Hamilton’s principle expressed in
Eq. (8). It transforms Eq. (8) into the following form, due to the orthogonality of cosine and sine functions,

// /[5um{7xzm,z T Oemae = MTayy, — (p+ ﬁ)“ﬂum} + 5”m(TyZm,Z + Teym,a T MOy, — (p+ ﬁ)WZUm)
tJaJh

+5wm{‘72m,z + Teamae — MTyzm — (p+ ﬁ)WQ’wm} + 0¢m( Dy — mDy,, + DZm,z) + 002, ((511 + 811) 02y,

+(512 + $12) 0y, + (513 + 813) 02, + d31 D2y — Upy ) + 60y, (512 + §12)0 0y, + 5220y, + 52302, + d32 Dy,
+ﬁwm) — 5O'Zm (meZ — (513 + ‘§13)Uﬂcm — S5230y;, — S330 2, — J33D2m) — 5Ty2m(vm7z + MWy — S44Tyzm
_J24Dym) - (STZ:Bm (um,z + Wy 2 — (555 + §55)7—zmm - J15Dxm) + 5Txym((566 + §66)7—xym — Uy — mum)
—0D 3 (¢mz + €11 Dy, — di5Tzap, ) — 6Dy (M + €22 Dy, — doaTyzy,) — 0D 2, (G > — 3104y, — d320y,,
—nggazm + 533D2m)]dzd$dt =0, V (5’U,Z'm, ODm, 5Uz’m, 57—ijma 5Dz’m where m = m7r/b (36)
The above expression appears for every Fourier term. Now dependency of each variable is reduced and all
primary field variables, X = [ty Um Wm Oz Oy Tam Toym  Tyzm Tzzm Pm Dem Dym Dap ]T
are function of ; (z-coordinate) and ¢ (thickness coordinate) only. The solution along these two-directions
(for  and z- direction) is obtained further by employing recently developed the multi-term extended Kan-
torovich method [34, 38, 40, 44, 74, 92]. The solution of X, Ith variable X, is assumed as the summation
of n terms series containing products of two separable unknown functions g¢(¢) and f/(&1). Thus, the
solution of each X; variable can be expressed for the kth layer as,

X1, (6,0 =>_fl (&g Q) for 1=1,2,...13 (37)
=1

Here, fli (&1) acts as global variable and is valid for all layers, while gf(( ) acts as local variable which is valid
separately for every local k” layer. In the next sections, subscript ‘m’ is dropped from the mathematical
expressions of flim and glim for convenience. Now, the solutions for unknown functions gli (¢) and fli(ﬁl) are
obtained in two iterative steps.

4.1 First iterative step - solving functions ¢! ()

In this iteration step, thickness function g;(¢) is solved. To start the first iteration step, f/(£1) is assumed
in sine and cosine form. In present EKM approach, the assumed initial functions need not satisfy any
natural and essential boundary condition and it can be chosen arbitrarily. But for better convergence
and to reduce the number of iteration for accurate solution, the ff(fl) function is assumed corresponding
to simply-supported boundary conditions of edges &1 = 0 and 1. Hence, the initial functions fli(fl) to
the start the first step of iteration 1 can be assumed as fi(&) = fi(&) = fi(&1) = fi(&) = cosiméy;
f3(&) = fi(&) = fi(&) = fi(&) = fi&) = fi&) = fia(€) = fi3(&1) = sininéy. Here, fi(&1), f2(61),
f3(&1), fa(&1), f5(&1), fo(&1), fr(&1), Ss(&1), fo(&1)s fro(€1), fi(€r), fiz(€1) and fi3(§1) denote in-plane
function for u, v, w, o4, 0y, 02, Tay, Tyzs Tew, ¢, Dz, Dy and D, respectively. Now functions g;(¢) have to
be solved in this iteration step, for which variation 6 X; can be expressed as,

6X1(&1,¢) = fo(fl)fsgf, [=1,2,...13 (38)
=1

The functions g}(¢) can be divided into two parts G and G. Here G column vector is of dimension 8n
and has the specfic independent variables that comes in the interface condition, and mechanical/electrical
boundary conditions at exterior surfaces (top and bottom) of hybrid FGM plate. The other G column

vector is of size 5n and has the other left over dependent variables,

~ T
G=1lg1-..97 95---95 95---95 96---96 98---98 95---95 Glo---9% 913 91s]

A T

G=[gi---9% 95---95 97---9% gf---gh g g%] (39)
Now assumed solution Eq. (37), and its variational part Eq. (38) are substituted into Eq. (36). However,
variations in 6gf functions are arbitrary, hence the coeflicients of 5gli should be equal to zero individually

12



according to fundamental lemma of variational principles. It leads to the following set of 8n first-order
coupled ODEs and 5n coupled linear-algebraic equations for every layer,

MG ¢ = A™(w)G + A™G (40)

K™G = A™G (41)
Here, Mgy x8n, Asnxsn, Agnx5n, K5, %51, and A, wsn are coefficient matrices, wherein A™ = A + AY;
Am — A+ AV: K™ =K + KY; A™ = A + AV. The non-zero elements of coefficient matrices of Eqs. (40)
and (41) (M, A, AV, A, AV, K™ A, A") are listed in Appendix C (refer to the supplementary material).
Since the functions f{ are presumed for first starting iteration, the coefficient elements of Egs. (40) and (41)
could be solved in closed-form by performing integration along z-direction. Hence, coefficients of Eq. (40)
and Eq. (41) are now known. The substitution of G from Eq. (41) into Eq. (40), transforms equation (40)
to the following form,

G =Aw)G, Here, A =M"1A™{A™K™ 'A™]| (42)

Above Eq. (42) is a set of 8n first-order coupled ODEs with constant coefficients and this system of ODEs
can be solved analytically by following solution approach suggested by Kumari and Behera [93] which is
further explained in Appendix D (refer to the supplementary material).

4.2 Second iterative step - solving functions f/ (&)

In the first iterative step, gf(C ) functions are obtained in closed-form. Now, in the second iteration these
obtained gli (¢) functions are used to obtain fli functions, which are assumed as unknown in this iteration.
Therefore, variation is assumed in gli functions and hence X can be expressed as,

0Xi(&1,0) = _gi(Q)f} for 1=1,2,...,13 (43)
=1

Similar to first iteration, the in-plane functions fli(fl) can also be split-up into two column vectors 1
and F. Here, F contains the specific independent variables that appear in the mechanical and electrical
boundary conditions along z-directions at £&=0 and 1. The I column vector contains the remaining
dependent variables. Hence,

F=[fl. ../ f 08 f 03 o e I fo Sl fhe ot
B=(ffp o8 RSy e S T 1" | (44)
Substituting Eq. (43) and Eq. (37) in Eq. (36), and equating the coefficient of § f/ to zero individually, lead
to a set of differential-algebraic equations as,
NF ¢, = {B(w) + 6BY(@)}F + (B + & BY)F (45)
LF = (B +&BY)F (46)
where Ngnxsn, Bsnxsn, Bg’nxgn, Bgnx5n, Eg’nx5n, L5, x5n, Bgmxgn and BgnxSn are coefficient matrices and
all non-zero elements of these matrices are listed in Appendix E (refer to the supplementary material).
However, gf(C ) are already known in closed-form from previous iteration, hence all elements of the coeffi-
cient matrices can also be solved exactly in closed form by executing integration over ¢ direction on the
known g/ functions. Then, substitution of algebraic equation (46) into Eq. (45) leads to,
F¢ = {Bo(w) + &1B1(w) + (/B2 }F (47)
Here Bg = N"(B+BL'B), B, = N"Y(B'L"'BY), B; = N (BY + BL'BY + BYL'B). The
above Eq. (47) represents coupled system of first-order differential equations (8n) having variable coef-
ficients which are function of &;. This couple system ODEs cannot be solved exactly using traditional
approaches. Therefore, solution of Eq. (47) has been obtained by utilizing a modified power series approach
recently developed by Singh and Kumari et al. [44, 74], which is explained in Appendix F (Supplementary
material). After obtaining F functions in closed-form, further they have been used to obtain the F func-
tions using Eq. (46). In this way second iterative step is completed which gives solution along in-plane ()
direction. These two iteration steps, first for thickness functions gli which is explained in (Sec.4.1), and
second for fli functions which is explained in (Sec.4.2), complete one iteration. After one iteration these
g and f} are known and then, it has been used for obtaining final solution based on equation Eq. (35) and
Eq. (37). These two iterative steps can be continued to get the final converged solution depending on the
required level of accuracy.
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5 Numerical Results and discussion

This section presents numerical results concerning validation of the proposed analytical framework first,
followed by in-depth elastic and viscoelastic analyses.

5.1 Elastic analysis

5.1.1 Hybrid piezoelectric rectangular plates of constant stiffness and density

The developed mathematical model is validated first by comparing the present results with previously
published results in the literature to establish and demonstrate the accuracy of the proposed analytical
solution approach. In the following subsections, the effect of in-plane graded elastic properties on natural
frequencies and mode shapes of intelligent FGM plates is investigated extensively. New benchmark results
are presented for various gradation cases by considering different configurations and thickness ratios (S =
a/h) under different electrical and mechanical boundary conditions. The material properties [94] used in

this study are tabulated in Table 2.
Table 2: Material constants [83]

Material Y, Ys Y3 Gas Gi3 G2 V12 V13 Va3 P
Mat. 1 6.9 6.9 6.9 1.38 1.38 1.38 0.25 0.25 0.25 1578
Mat. 2 224.25 6.9 6.9 1.38 56.58 56.58 0.25 0.25 0.25 1578
Mat. 3 172.5 6.9 6.9 1.38 3.45 3.45 0.25 0.25 0.25 1578
Mat. 4 (Gr/Ep) 181.0 10.3 10.3 2.87 717 7.17 0.28 0.28 0.33 1578
Mat. 5 (Face) 131.1 6.9 6.9 23322 3.588 3.588 0.32 0.32 0.49 1000
Mat. 6 (Core) 0.0002208 0.0002208 2.76 0.4554 0.5451 0.01656 0.99 3x10~5 3x107° 70
PZT-5A 61.0 61.0 53.2 21.1 21.1 22.6 0.35 0.38 0.38 7600
Material d31 d3o d33 doy dis 711 722 733
PZT-5A -171 -171 374 584 584 15.3 15.3 15.0

Units: density (p) in Kg/m?; Young’s moduli ¥; in GPa and shear moduli G;; in GPa; electric permit-
tivities 7;; in nF'/m;  piezoelectric strain coefficients d;; in pm/V; where dy = ds3 pm/V

Various configurations of smart plates, as shown in Fig. 3, are taken into consideration for the current
numerical study. The obtained results for natural frequencies are expressed in non-dimensionalized form
using w* = waS+/po/Yo. Where Yp=6.9 GPa for hybrid smart plate (b) and (c), and Yp=10.3 GPa for all
other hybrid smart plates and in-plane functionally graded (IPFG) plates. Similarly, po= 1000 Kg/m? for
hybrid smart plate (c), and pp= 1578 Kg/m? for all other hybrid smart plates and inplane IPFG plates.
Similarly, non-dimensionalized values of modal displacements, electrical state variables and stresses are
plotted in graphical figures, and the following expression is used for the non-dimensionalization of results.
(w, v, u) = (w,v,u)/max (w, v, u); (63, Tij) = (04, Tij) h S/ (Yo max (w, u))
¢ = ¢ dy/max(w, u) D; = D;hS/(dy Yo max(w,u))
w, ¥, 4 denotes the non-dimensionalized displacement in z, y, and = directions. Normalized normal stresses
and shear stresses are denoted by &; and 7;;, respectively. Similarly, ¢ expresses non-dimensionalized
electric potential, and normalized electric displacements are expressed by D;. Here S(= a/h) expresses
the span-to-thickness ratio of FGM plate and max(w,v,u) denotes the largest value of displacement w,
v and u along the thickness of FGM plate for that flexural mode. The length of all FGM and composite
plates are taken equal to unity (a = 1) for all cases and thickness of rectangular plate is assumed according
to span to thickness ratio (S = a/h) of the plates. For S = 5,10,20 the values of h are 0.2, 0.1, 0.05,
respectively. Similarly, s(= h/a) expresses the thickness-to-span ratio. The rectangular plates are named
corresponding to their mechanical support conditions at the ends. For example, CFSS designation of plate
indicates that plate is clamped (C) at & = 0 and free (F) at £ = 1, and simply-supported at & = 0 and
S =1

Here the present EKM-Fourier series technique of solution is validated by comparing the results with
previously reported numerical results for constant property cases without any type of gradation. First, the
present results are validated for an orthotropic single-layered piezoelectric rectangular plate subjected to a
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PZT-5A

Hybrid Smart Plate (a)

17177 7PEes8 77777777 T o.1n /1771 ]][pzsK /77 /7] ] 0.1h
0° (Mat.1) L 0.08h Face 0% (Mat.5) 0.04h
0° (Mat3) L 0.12h Face 90° (Mat.5) 0.04h
0° (Mat.2 _| 02h Core  0° (Mat6) 0.64h

| 0.2h
0° (Mat.3) _L.0.12h Face 90° (Mat.5) 0.04h
0% (Mat.1) _| 0.08h Face 09 (Mat.5) 0.04h
PZT-5A _L01h PZT-5A 0.1h
Hybrid Smart Plate (b) Hybrid Smart Plate (c)
/111777 /PrsK/ [/ /777 J.0.1h /117777 7Pzes8/ 77777777 To.1n
0° (Mat.4 - Gr/Ep) 0.2h 0° (Mat.4 - Gr/Ep) 0.2h
90° (Mat.4 - Gr/Ep) 0.2h 90° (Mat.4 - Gr/Ep) 0.2h
90° (Mat.4 - Gr/Ep) 0.2h 0° (Mat.4 - Gr/Ep) 0.2h
0° (Mat.4 - Gr/Ep) 0.2h 90° (Mat.4 - Gr/Ep) 0.2h
PZT-5A 0.1h PZT-5A Ton
Hybrid Smart Plate (d) Hybrid Smart Plate (e)
PZT-5A/, 0.1h
0.9h
PZT-5
IPFG Smart Plate (a) IPFG Smart Plate (b)

Fig. 3: Configurations of smart IPFG rectangular plates considered for the present numerical study.

simply-supported boundary condition and it has poling [Remark 2: Appendix G (supplementary material)]
along the z-direction. Results are compared with the 3D exact result of Heyliger and Saravanos [95],
which was obtained by employing the Fourier series approach through which the solution of the ordinary
differential equations can be obtained in the exact closed form (therefore, referred as the exact solution
approach in literature), and 3D elasticity-based analytical results of Susanata and Kumari [93]. In Table 3,
the results are compared for two-type of electrical arrangements, (i) Single-layered PZT-5A plate subjected
to closed-circuit (CC) condition at top and bottom surface (¢(x,y,+h/2)=0), (ii) Single-layered PZT-5A
plate subjected to Open-circuit (OC) condition at top and bottom surface (D,(z,y,+h/2)=0). Results
are compared for thick plates having thickness ratio S=4 and S=1 (Cubical-plate). It is noted that the
current power series-based EKM solution is accurate in predicting natural frequencies of single-layered
smart piezoelectric plate, and all results are in good agreement.

After establishing the accuracy of the present mathematical model for single-layered piezoelectric smart
plate (a), the results are obtained for laminated piezoelectric plates (b), (c), (d), and (e) of different
configurations, as shown in Fig.3. All the laminated hybrid plates are integrated with two PZT-5A plies
at the bottom and top to their elastic substrate. The thickness of both top and bottom piezoelectric
layers is 0.1h and it has poling along with the thickness (z-direction). The surfaces of piezoelectric layers
with the elastic substrate are considered grounded (¢=0). The elastic substrate of plate (b) has six
laminae with orientation ) as [0°/0°/90°/0°/0°/0°] with thickness 0.08h/0.12h/0.2h/ 0.2h/0.12h/0.08h
of material 1/3/2/2/3/1, as shown in Fig. 3. The elastic substrate of the plate (c) is a five-layer sandwich
substrate with two faces [0°/90°] of Material 5 and a soft-core [0°] of Material 6. Overall orientation
of substrate is [0°/90°/0°/90°/0°] of thicknesses 0.04h/0.04h/0.64h/0.04h/0.04h and material 5/5/6/5/5,
as shown in Fig.3. The elastic substrate of the plate (d) and (e) has a 4-ply composite laminate of
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Table 3: Comparison of first six lowest flexural frequencies for all-around simply supported (SSSS) single-
layered square smart piezoelectric plates under closed circuit (CC) condition (¢(z,y, £h/2)=0 and open
circuit (OC) condition (D,(z,y,+h/2)=0).

Closed circuit Open circuit
Present 3D Analytical [93] 3D Exact [95] | Present 3D Analytical [93] 3D Exact [95]
96929.9 96929.9 96929.9 98233.0 98231.7 98231.7
194254.8 194254.8 194255.0 194254.8 194254.8 194255.0
S=4 | 327662.5 327662.5 327663.0 355170.5 355110.0 355110.0
538884.4 538884.4 538885.0 538884.4 538884.4 538885.0
609187.1 609185.3 609186.0 690984.2 690766.8 690767.0
958929.5 958922.4 958922.0 960118.1 960103.9 960103.0
713025.6 713062.7 713061.0 724559.2 724602.0 724602.0
777020.5 777020.5 777021.0 777020.5 777020.5 777021.0
S=1 | 889887.0 889901.3 889902.0 912882.9 912911.4 912912.0
925431.5 925431.5 925431.0 925431.5 925431.5 925431.0
1243806.5 1243817.9 1243819.0 1270594.7 1270594.7 1270594.0
1270594.7 1270594.7 1270594.0 1293476.5 1293505.0 1293504.0

Table 4: Comparison of natural frequencies (w* = waSy/po/Yp) of hybrid smart plate (b), intelligent
sandwich plate (c), composite smart plate (d) and (e) with different S values and electrical condition as

¢(z,y,—h/2)=0 and D,(x,y,h/2)=0.

Smart Plate (b) Smart Plate (c) Smart Plate (d) Smart Plate (e)
S | Present 3D Exact[94] | Present 3D Exact[94] | Present 3D Exact[94] | Present 3D Exact[94]
5 7.4148 7.4148 4.5233 4.5277 7.1810 7.1810 7.1809 7.1809
wiq | 10 | 10.0342 10.0342 7.3390 7.3390 9.3686 9.3686 9.2795 9.2795
20 | 11.4178 11.4178 9.7440 9.7440 10.4327 10.4327 10.2231 10.2231
5 | 14.7140 14.7140 7.8958 7.8958 13.5944 13.5944 13.6391 13.6391
w3y | 10 | 22.3965 22.3965 13.8801 13.8801 21.2357 21.2357 20.4789 20.4779
20 | 29.0240 29.0240 21.3567 21.3567 27.8333 27.8333 25.2664 25.2664
5 | 23.6208 23.6208 11.9501 11.9501 20.9313 20.9313 21.0482 21.0482
w3 | 10 | 37.7411 37.7411 21.2309 21.2357 35.0186 35.0186 34.5431 34.5431
20 | 53.5800 53.5800 35.6934 35.6934 51.6591 51.6591 47.5942 47.5942
5 | 18.6431 18.6431 10.2915 10.2915 18.3672 18.3672 18.2319 18.2319
w3y | 10 | 29.6593 29.6593 18.0932 18.0103 28.7240 28.7240 28.7234 28.7234
20 | 40.1367 40.1367 29.3559 29.3559 37.4744 37.4744 37.1180 37.1180
5 | 30.7853 30.7853 16.9820 16.9820 29.7901 29.7901 29.4727 29.4727
w3g | 10 | 51.5468 51.5468 29.2571 29.2571 50.7313 50.7313 50.5764 50.5764
20 | 77.4823 77.4823 50.7073 50.7073 73.8647 73.8647 73.6951 73.6951

graphite-epoxy Mat.4, and each ply is of equal thickness 0.2h. Plate (d) has symmetric substrate with
lay-up [0°/90°/90°/0°] and the of plate (e) has antisymmetric substrate with lay-up [90°/0°/90°/0°], as
shown in Fig.3. The all above mentioned stacking sequences are from the base layer to top layer for all
plates, as shown in Fig.3. The dimensionless flexural frequencies are tabulated in Table 4 for plates (b),
(c), (d) and (e) with the upper surface grounded (¢(z,y,h/2)=0) and the bottommost surface subjected
to open-circuit conditions (D,(x,y,+ — h/2)=0. The flexural frequencies are listed for different span to
thickness ratio, $=5,10, 20, and for different mode, (m, n) = (1, 1), (2, 1), (2, 2), (3, 1), (3, 3). The
present numerical results for hybrid smart plates (b), (c), (d) and (e) are compared with the 3D exact
results presented by Kapuria and Achary [94], which is also based on the Fourier series approach, known
as an exact solution. It is noted that the current power-series EKM model is very much accurate in
predicting flexural frequencies for symmetric and antisymmetric laminated /sandwich piezoelectric smart
plates. All numerical results are in excellent agreement with the 3D exact results of [94]. The current
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model is highly efficient and accurate, and moreover, accuracy is not affected much by thickness to span
ratio S and inhomogeneity in configurations.

After demonstrating the validation for simply-supported smart piezoelectric plates, the validation is carried
out for piezo-laminated smart rectangular plates subjected to arbitrary support conditions. The numerical
results obtained from the present power series-based EKM model are compared with the result presented
by Susanta and Kumari [93] which are obtained using 3D exact EKM. Table S1 (in the supplementary
material) shows the comparison of the first ten lowest natural bending frequencies for thick (S=5) and
moderately thick (S=10) hybrid smart plates (d) under different mechanical support conditions such as
SSSS, CSSS, CCSS, CFSS, and FFSS. Excellent agreement is observed for all the cases. It demonstrates
that the present power-series approach is efficient, yet accurate in solving coupled system of ODEs for
dynamic cases. It is worth noting that one term (n = 1) based EKM solution is enough to predict the
natural frequencies of the piezoelectric plate accurately. It is also worth mentioning that the present power
series-based EKM solution is equally accurate for predicting the natural frequencies of the thick and thin
hybrid piezoelectric plates subjected to open or closed-circuit conditions. The effects of electrical circuit
conditions are very less on flexural frequencies of the plate due to weak electro-mechanical coupling, but
these tiny effects play a vital role in precise control and sensory applications. It is observed that the
present mathematical model is very accurate and precise in predicting these small effects, as illustrated in
table 3, 4 and S1 (Supplementary material).

5.1.2 Hybrid piezoelectric rectangular plates with variable stiffness and density

After demonstrating the accuracy and efficacy of the current 3D mathematical model for constant stiffness
piezoelectric plates, the numerical study is extended to the analysis of functionally graded smart piezo-
plates in this section. Two types of smart FGM plates are taken into consideration for the numerical
study, (i) IPFG Plate (a): In-plane functionally graded rectangular substrate integrated with a single
piezoelectric layer at the top; and (ii) IPFG Plate (b): In-plane functionally graded rectangular substrate
integrated with the piezoelectric layer at bottom and top, as shown in Fig. 3. The thickness of PZT-
5A layers is 0.1h for both type of IPFG plates. To study the effect of in-plane stiffness variation on
dynamic behaviour of smart plates, three types of stiffness and density gradation cases are considered for
the elastic layers, Case (1): §; = 02 = 0, = 0.5; Case (2): 01 = 62 = J, = 1.0; and Case (3): 01 = 2.0,
d2 = 1.0, 6, = 1.5 along with homogenous plate (constant properties) case (Constant: §; = d2 = J, = 0.0).
The numerical results for homogenous (constant) property case are also presented along with graded
density and stiffness cases to access the influence of in-plane variation of stiffness and density on the
flexural frequencies and electro-mechanical behavior of IPFG plates. Only converged results are tabulated
here, which are obtained by taking n = 1, iter.1 for SSSS smart plate and n = 1, iter.2 for all other
types of support conditions. The convergence study of the present EKM approach is presented in Table
S2 (supplementary material). In subsequent sections, three-dimensional finite element (3D FE) results,
obtained using commercial finite element analysis (FEA) software ABAQUS, are also listed along with
present EKM results for validation purposes because no other analytical and semi-analytical solution exists
in literature for free-vibration of variable-stiffness piezoelectric plates. For 3D FE analysis, user material
subroutine (UMAT) is developed to implement the in-plane gradation of stiffness and density in the finite
element model and then converged FE results are obtained by using a discretization of 50 (length) x50
(width) x18 (thickness). For comparison and bench-marking purposes, the numerical results are tabulated
for various type of electrical and mechanical supports under different thickness ratios.

5.1.2.1 IPFG Plate (a): In-plane functionally graded rectangular elastic substrate inte-
grated with piezoelectric layer at top. An in-plane functionally graded plate (a) integrated with
a smart piezoelectric (PZT-5A) layer of thickness 0.1h at the top, as shown in Fig. 3, is taken into con-
sideration for numerical study in this section. The stiffness and density of the elastic composite layer are
assumed to vary linearly along the axial (z) direction where the elastic and electrical properties of the
piezoelectric layer are assumed constant. The side edges and top/bottom surface of the active piezoelectric
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Table 5: Influence of in-plane gradation of density and stiffness on natural flexural frequencies (w

*

waS+/po/FEo) of moderately thick (S = 10) IPFG smart piezoelectric plate (a) subjected to CCSS boundary

conditions.

Table 6: Effect of in-plane gradation (density and stiffness) on natural flexural frequencies (w
waS+/po/Eo) of moderately thick (S = 10) IPFG piezoelectric plate (a) for CFSS boundary condition.

Constant Case (1) Case (2) Case (3)
wy | Present 3D FE | Present 3D FE | Present 3D FE | Present 3D FE
wi; | 15390 15489 | 12978  13.099 | 10.422 11.403 | 10.095 10.350
wa | 32424 32.719 | 27.264 27.542 | 23.591 23.878 | 21.609  21.893
wi | 52.017  52.585 | 43.763  44.260 | 37.874  38.348 | 34.936  35.382
wip | 72422 73.239 | 61.041 61.726 | 52.846 53.473 | 49.052  49.639
wi; | 93.019  94.057 | 78.703 79.483 | 68.166 68.903 | 63.588  64.264
wiy | 20.029 20.023 | 17.665 17.506 | 15.970 15.662 | 14.164  14.509
wye | 35.752  36.000 | 30.489  30.724 | 26.716 26.962 | 24.711  24.960
w3y | 54.645  55.158 | 46.296  46.747 | 39.490  40.746 | 37.382  37.790
wie | 74610 75381 | 63.149  63.795 | 54.871  55.465 | 51.079  51.638
wiy | 95377  95.847 | 80.406 81.241 | 69.845 70.600 | 65.259  65.964
wis | 29.065 29.224 | 26.133  26.275 | 23.841 23.977 | 22.276  22.407
wys | 42431 42,632 | 37.002 37.192 | 33.040 33.245 | 30.848  31.059
wis | 99.759  60.187 | 51.322  51.697 | 45.232  45.596 | 42.201  42.549
wis | 78119  79.416 | 67.225 67.796 | 58.623  59.397 | 55.013  55.509
wiz | 98.246  99.174 | 83.813 84.573 | 73.198 73.890 | 68.556  69.203

Constant Case (1) Case (2) Case (3)
wy | Present 3D FE | Present 3D FE | Present 3D FE | Present 3D FE
wi; | 5.199 5.226 4.489 4.507 3.984 3.996 3.628 3.636
wi; | 17306 17.377 | 14.866 14.923 | 13.066 13.123 | 11.704 11.771
wi | 36.543  36.966 | 31.267  31.051 | 27.376  27.375 | 24.764  24.805
wi | 57271  57.494 | 48.841  48.985 | 42.615 42.763 | 39.103  39.256
wi | 78411  79.372 | 66.622  67.341 | 58.109  58.554 | 53.830  54.201
wiy | 12914  13.029 | 11.399 11.515 | 10.301  10.403 9.511 9.597
wye | 22.869 22936 | 20.014 20.070 | 17.911 17.963 | 16.487  16.547
wie | 40.273  40.530 | 34.747 34910 | 30.670 30.801 | 28.111  28.243
wiy | 60.118  60.462 | 51.512  51.754 | 45.147  45.352 | 41.665 41.872
wiy | 80.222  80.476 | 68.800 69.392 | 60.139  60.617 | 55.880  56.282
wisz | 24.382 24537 | 21.685 21.830 | 19.712 19.790 | 18.148  18.263
wis | 32236 32.333 | 28.777  28.860 | 26.182  26.256 | 24.423  24.500
wis | 47100  47.317 | 41.240 41.383 | 36.893  37.008 | 34.248  34.362
wis | 65.348  65.809 | 56.543  56.813 | 50.004 50.202 | 46.476  46.658
wiz | 84.524  85.722 | 72.866 73.438 | 64.089 64.454 | 59.784  60.086
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layer are considered under close-circuit conditions. First five lowest dimensionless fundamental flexural
frequencies (w* = waS+/po/Eo, here Ey=10.3 GPa, p=1578 kg/m? ) are tabulated for m = 1, 2 and 3
considering moderately thick (S = 10) hybrid plate (a) under different mechanical support conditions.
Results are listed for three gradation cases, i.e. Case(1), Case(2), and Case(3), along with homogeneous
plate (constant properties case) to investigate the influence of in-plane variation of stiffness and density
gradation on flexural frequencies. Tables 5 and 6 contain benchmark results for CCSS and CFSS support
conditions, respectively. Subsequently, the results are for SSSS, CSSS, SFSS, and FFSS support condi-
tions are tabulated in Table S3, S4, S5 and S6 (refer to the supplementary material), respectively. The
fundamental flexural frequencies for the in-plane graded hybrid plate are presented for the first time in this
paper. As the gradation index for elastic properties and density increases, the natural frequencies decrease
remarkably under all the support conditions. The quantitative effect of in-plane variation of density and
stiffness on flexural frequencies of hybrid rectangular plate primarily depends on the mechanical support
conditions of the IPFG plate. Percentage decrement in flexural frequencies due to the in-plane varition
of properties are plotted in Fig.S1, Fig.S2 and Fig.S3 of the supplementary material. An interesting
observation is that the extent of the effect of gradation on lower natural frequencies for m=1, 2, and 3
significantly depends upon the type of support conditions. On the other hand, the influence of gradation
on higher mode natural flexural frequencies (for m=1, 2, and 3) shows independence from mechanical
support conditions. The percentage change in higher mode natural flexural frequencies is nearly the same
for all support conditions. This observation is physically relevant considering the fact that higher flexural
vibration modes are more local in nature. For all hybrid plated, except FFSS plate, nearly 10 to 15%
decrement is noted in the lowest five flexural frequencies (m=1,2, and 3) for Case (1) compared to the
constant property case. For Case (2) and Case (3), the percentage decrease in flexural frequencies are 16
to 27% and 22 to 34% for Case (3), respectively. For the FFSS hybrid plate, these decrements are 7-14
% for Case (1), 12-26 % for Case (2), and 15-33 % for Case (2). All results reported in this section have
been computed by taking n = 1, iteration 1 for SSSS support conditions and n = 1, iteration 2 for other
support conditions.

After studying the influence of in-plane gradation of stiffness and density on the natural flexural frequen-
cies of the hybrid smart plate, the numerical investigation is extended to access the impact of in-plane
gradation on mode shapes of the hybrid plate. The flexural 3D mode shapes associated with the lowest
five natural frequencies are plotted for different types of support conditions under constant properties case
and gradation Case 1. The 3D mode shapes for the SSSS hybrid IPFG plate are displayed for constant
property case and gradation Case 1 in Fig. S4 and S5, respectively. Similarly, the 3D mode shapes for the
CSSS hybrid IPFG plate are displayed for homogenous case (constant property case) and gradation Case
1 in Fig.S6 and Fig.S7. Fig.S8 and Fig.S9 contain 3D mode shapes for the CCSS hybrid IPFG plate
for constant property case and gradation case 1, respectively. Similarly, the 3D mode shapes for other
boundary conditions are also plotted to investigate the influence of gradation in detail. In figure Fig. S10
and Fig. S11 results are plotted for CFSS plates. Mode shapes of SFSS and FFSS hybrid plates are given
in Fig.S12, Fig. S13, Fig. S14 and Fig. S15 for constant property case and gradation Case (1). The figures
S6-S15 are given in supplementary material. It is worth mentioning that all flexural mode shapes are
impacted significantly by the in-plane gradation of stiffness and density. Another interesting observation
is that the mode shape of the FFSS plate is affected more as compared to other support conditions.

Further, the influence of axial gradation of stiffness and density is also investigated on the longitudinal
variation of flexural deflection (w, v, @) and stresses (G4, Gy, Tay, Ty, T2z) in the hybrid FGM plate. In
Fig.4 and 5 longitudinal variation of stresses and displacements are plotted for the first flexural vibration
mode of moderately thick (S = 10) smart hybrid plate (a) subjected to SSSS and CFSS support conditions,
respectively. Subsequently, the longitudinal variation of stresses and displacements are also plotted for
CSSS, CCSS, and SFSS hybrid FGM plate in Fig. S16, S17, and S18 (supplementary material), respectively.
In these figures, the results are plotted for all gradation cases along with the constant property case. It
is found that the longitudinal variation of stresses in smart FGM plates is impacted significantly due
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Fig. 4: Influence of in-plane variation of density and stiffness on axial variations of displacements and
stresses for first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a)
subjected to SSSS boundary condition.

to in-plane gradation, whereas displacement of the IPFG plates is least affected. The effect on stresses
Oz, Tay, and T, are more as compared to other stresses. It is worth mentioning that the extent of the
effect of gradation on displacement and stresses majorally depends on mechanical support conditions of
the hybrid plate. An interesting observation is that the intelligent IPFG plate is more sensitive to the
in-plane variation of density and elastic properties when subject to free edge boundary conditions such as
CFSS and SFSS plates. The relative influence of gradation is most when the IPFG plates are subjected
to the free-free boundary conditions. The effect is least when the hybrid piezoelectric plate is subjected
to clamped boundary conditions. It reveals that the natural flexural vibration behavior of the plate under
in-plane gradation mainly depends upon the mechanical end conditions of the plate.

Further, to access the effect of in-plane gradation of stiffness and density on sensory behavior of piezo-
electric layers, the longitudinal variation of the electric variable (D,, Dy, D, and ¢) are plotted for SSSS
and CFSS hybrid smart plate in Fig.6 and 7, respectively. Similarly results are also plotted for CSSS
and SFSS hybrid smart plate in Fig. S19 and S20, respectively (supplementary material). It is found that
the variation of electrical variables in the piezoelectric sensor layer is not affected much by longitudinal
gradation of material properties in the elastic composite layers. A small effect of in-plane variation of den-
sity and stiffness is observed on electric field D, and electric potential (¢) under SSSS and CSSS support
conditions. It is worth noting that the natural flexural frequencies and their corresponding mode shapes
are affected remarkably by the axial gradation of properties in the elastic layer, whereas the response of the
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Fig. 5: Influence of in-plane variation of density and stiffness on axial variations of displacements and
stresses for first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate
(a) subjected to CFSS boundary condition.
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Fig. 6: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a) subjected
to SSSS boundary condition.
