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ABSTRACT

This paper proposes an accurate three-dimensional framework for elastic and viscoelastic free vibration

investigation of in-plane functionally graded (IPFG) orthotropic rectangular plates integrated with piezo-

electric sensory layers. The developed analytical framework is capable of considering layer-wise unidirec-

tional linear functional gradation in both stiffness and density of the orthotropic composite layers. 3D

piezoelasticity-based governing equations of motion are formulated in mixed form by employing Hamilton’s

principle, and further solved analytically for Levy-type support conditions using the power-series-based

extended Kantorovich method (EKM) jointly with Fourier series. The displacements, stresses, and elec-

trical variables (electric field and electric potential) are solved as the primary variables that ensure the

point-wise interlayer continuity and electro-mechanical support conditions. The viscoelastic property of the

orthotropic interlayer is defined by employing Biot model, which is similar to the standard linear viscoelas-

tic model. The correctness and efficacy of the present mathematical model are established by comparing

the present numerical results with published literature and 3D finite element results, obtained by utilizing

user material subroutine in the commercial FE software ABAQUS. An extensive numerical study is per-

formed for various configurations and thickness ratios to investigate the influences of in-plane gradation,

viscoelasticity and their coupled effects on the free-vibration response of hybrid laminated plates. It is

found that in-plane gradation of stiffness and density remarkably alters the flexural frequencies and corre-

sponding mode shapes of the hybrid intelligent rectangular plates. The flexural frequencies and stresses in

the plate can be modified by selecting suitable grading indexes. Another interesting observation is that the

in-plane gradation shows a considerably less effect on the electrical response of piezoelectric layers, which

can play a vital role in the design of sensors and actuators for dynamic applications. Further, the numeri-

cal study demonstrates a potential time-dependent structural behaviour based on the present viscoelastic

modelling. The consideration of viscoelasticity could be crucial for analysing the mechanical behaviour of

a wide range of polymer composites more realistically and for prospective temporal programming in smart

structural systems by exploiting the viscoelastic effect. Although the present analytical solution has been

proposed for the free-vibration investigation of smart in-plane functionally graded (IPFG) viscoelastic

plates, it can also be utilized directly to analyze the symmetric and asymmetric laminated piezoelectric

smart plates with constant properties.

Keywords: Extended Kantorovich method for dynamic analysis; Time-domain viscoelastic analysis;

Smart functionally graded materials; Three-dimensional solution for piezo-embedded plates
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1 Introduction

In the past decade, functionally graded materials have been widely explored for several engineering ap-

plications in the aerospace, civil, mechanical, and biomedical fields due to their superior mechanical and

thermal properties [1, 2]. Such materials give freedom to the designers for tailoring the mechanical prop-

erties of structures like stiffness, density, and thermal resistance along particular directions according to

the operational requirements. This is achieved by introducing gradation in the material properties along

that particular direction. However, it makes the computational analysis of such structures more com-

plicated because their governing equations involve some variable coefficients, which are the functions of

coordinate along which the gradation is considered (unlike conventional isotropic and composite plates).

Hence, the structural problem of functionally graded structure can not be solved by using the traditional

methods proposed for the conventional structural problems [3]. Hence, more efficient and dedicated solu-

tion approaches are required for the accurate determination of structural behaviour of functionally graded

structures under dynamic and static conditions, which is a prime focus of the present work.

A significant number of mathematical models have been developed for bending, fracture and natural

frequency investigation of functionally graded beams, rectangular plates, and shell structures. An extensive

review of the work related to functionally graded structures, presented by Byrd [4], Wu et al. [5] and

Swaminathan et al. [6], suggests that in most of the studies through-thickness gradation of properties is

considered following deterministic and stochastic frameworks [7–14]. However, over the last few years, the

focus is getting diverted toward the in-plane and multidirectional functionally graded structures because

it gives more freedom to control the material properties of thin structures for meeting application-specific

demands, such as specific stiffness, strength, impact and thermal resistance, high fatigue strength, corrosion

resistance, and acoustic properties [5]. In this context, Leissa and Martin [15] probed the buckling and

natural frequency response of thin rectangular composite plates having in-plane graded properties and

proved that desired buckling load and fundamental frequencies can be obtained effectively by controlling

the gradation parameters of material along an in-plane direction.

Most of the analytical solutions for in-plane graded or multidirectional functionally graded plates pub-

lished in the literature are based on two-dimensional (2D) theories of plates. For example, Tomar et

al. [16] developed classical plate theory based 2D analytical solution for natural frequency investigation

of isotropic functionally graded panels (length of the plate along is considered infinite along y-direction)

employing Frobenius series. In this work, elastic modulus and density of the flat panel are taken ex-

ponentially graded along the axial (x) direction. Fares and Zenkour [17] have employed higher-order

plate theory (HPT), first-order plate theory (FPT), and classical plate theory (CPT) to develop 2D an-

alytical solutions for natural frequency and buckling investigation of multidirectional functionally graded

orthotropic rectangular plates. They found that the index of gradation significantly affects the buckling

and free vibration response of plate. Fourier series approach along with particular integration method

has been utilized by Liu et al. [18] to solve the variable coefficient ordinary differential equation and they

obtained classical plate theory (CPT) based solution for natural frequency analysis of in-plane function-

ally graded rectangular plates under Levy-type support condition. In their paper, they concluded that

the desired natural frequencies can be attained by adjusting grading indexes. Yu et al. [19] have used

the Whittaker technique for solving the fourth-order variable coefficients governing equation to obtain an

analytical solution for flexural analysis of the thin in-plane graded isotropic plates of rectangular shape

subjected to Levy-type end conditions. Recently, Amirpour et al. [20] provided HSDT-based analytical

solutions for flexural investigation of in-plane functionally graded isotropic rectangular plates. In the liter-

ature, mostly 2D analytical solutions have been presented so far that belong to specific type of mechanical

end conditions, like simply-supported or Levy-type support conditions. The governing equations involved

in analysis are higher-order ODEs that have variable coefficients and to solve them in analytically for

arbitrary boundary conditions is computationally difficult. Thus, some researchers employed numerical

approaches to obtain reliable approximate two-dimensional solutions for in-plane multidirectional grada-
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tion in rectangular plates. Numerical solutions for non-classical boundary conditions are developed using

the higher-order shear deformation theory [21–23] and the classical plate theories (CPT) [24–29]. Recently,

Xue et al. [30] reported an isogeometric numerical solution for natural frequency investigation of IPFG

plates by utilizing a refined plate theory and also extended this solution to obtain a FSDT-based numerical

solution for modal investigation of circular, square, and rectangular porous FGM plates having porosity

gradation along the in-plane and thickness directions. Utilizing Rayleigh-Ritz and Bolotin’s method, Loja

and Barbosa [31] proposed a 2D numerical solution based on classical plate theory for natural frequency

and dynamic instability investigation of in-plane functionally graded thin plates.

Although it is found that the higher-order theory-based 2D solutions are adequate and reliable in obtaining

the global response of thinner orthotropic plates, the accuracy of 2D solutions significantly reduces as the

plate becomes thicker [32] and 2D theory-based results are not reliable for higher modes [32]. In 3D

elasticity solutions, no pre-assumptions are adopted in the distribution of deformations and stresses. Both

stresses and strains are solved as primary variables. Hence, the 3D solution of plates achieves high

accuracy and is always preferred for bench-marking purposes, including accurate prediction of stresses

near edges (the variation of stresses in the vicinity of edges is highly non-linear). In this direction, Lü

et al. [33] reported a 3D semi-analytical solution for multidirectional graded Levy-type plate by using

differential quadrature method based state-space approach (SSDQM). The stiffness of the rectangular

plate was assumed exponentially graded along the axial (x) and thickness (z) directions. This analysis

shows that the behaviour of rectangular plates is affected more by axial stiffness variation than through-

thickness stiffness variation. Singh and Kumari developed a power series-based extended Kantorovich

elasticity analytical approach for flexural analysis of in-plane functionally graded composite beams [34–

37], panels [38, 39], and rectangular plates [40]. Using a similar approach, Ravindran and Bhaskar [41]

developed a 3D analytical approach for flexural analysis of IPFG simply-supported plates subjected to

sinusoidal loading. They extended this approach further [42] for flexural analysis of simply-supported

isotropic sandwich plates integrated with in-plane graded composite face sheets. Zhang et al. [43] have

employed the scaled boundary finite element method (SBFEM) to obtain a 3D semi-analytical solution for

the flexural investigation of in-plane functionally graded (IPFG) isotropic rectangular plates. Singh and

Kumari [44] recently presented a 3D analytical model for natural frequency modal analysis of orthotropic

IPFG rectangular plates.

Some researchers have also explored pure numerical approaches to analyze the IPFG plates under static and

dynamic conditions. The graded finite element-based numerical technique has been developed by Asemi

et al. [45] for flexural investigation of bidirectional functionally graded plates. Xiang et al. [46] utilized

this recently developed scaled boundary finite element method to obtain a 3D solution for buckling and

natural frequency of the IPFG isotropic rectangular plates subjected to Navier and all-around clamped

supports. The Chebyshev spectral approach has been utilized by Huang et al. [47] to obtain a numerical

solution for static flexural and natural frequency analysis of orthotropic IPFG rectangular plates subjected

to general support conditions.

Piezoelectric materials are getting increasingly employed in active response control and sensing applications

as actuators and sensors due to their inherent property of producing a voltage in response to deformation

and vice-versa [48, 49]. When composite and FGM structures are integrated with piezoelectric sensors

and actuators, their behaviours become very complex due to electro-mechanical coupling [50]. Due to

weak coupling between elastic and electric parameters, the electrical response of active smart layers is

very sensitive to internal or external factors such as internal imperfection or defects, external loading,

etc. Moreover, when smart materials are used with FGM structure, the gradation of properties makes

its response even more complex. Hence, efficient and reliable solutions are required to analyze the smart

functionally graded structures accurately. A thorough review of the literature on functionally graded

smart plates reveals that the through-thickness gradation of properties is commonly considered [51–55].

Only a few papers have been reported for in-plane functionally graded (IFGP) smart structures. Zhang
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et al. [56] utilized the precise integration method (PIM) in conjunction with the scaled boundary finite

element method (SBFEM) to develop a semi-analytical model for static flexural investigation of magneto-

electro-elastic IPFG plates. Later they extended this model to develop a semi-analytical framework for

bending analysis of the in-plane and multidirectional graded piezoelectric plates [57] and also to natural

frequency analysis of magneto-electro-elastic IPFG rectangular plates [58]. In all these solutions, only

elastic displacements along the x ,y and z-coordinates, magnetic potential and electric voltage are solved as

the primary independent variables. To the best knowledge of the authors, no 3D analytical study has been

presented to date for natural frequency investigation of in-plane functionally graded (IPFG) rectangular

plates integrated with piezoelectric smart layers. Based on the extensive literature review, it is observed

that benchmark 3D piezo-elasticity based analytical solutions are essential for in-plane functionally graded

(IPFG) smart plates, which can serve as an accurate reference for future developments. Thus, this research

work is carried out to fill this gap by providing a benchmark 3D mathematical model for IPFG plates.

Nowadays viscoelastic materials are widely used in vibration attenuation. Moreover, many of the poly-

mers used in composites actually show a visco-elastic behaviour in their operational temperature regime.

Besides accurate analysis of such structural systems, time-dependent viscoelastic behaviour can further be

exploited for programming mechanical responses in smart structural systems. However, only a few works

are reported for viscoelastic analysis with the coexistence of gradation and piezoelasticity. Zhang and

Zheng [59] explored application of the Biot approach in analyzing the dynamic behavior of viscoelastic

composite structures. Hu and Wang [60] studied the effect of viscoelasticity on free vibration behavior and

transverse stresses with the help of Reddy’s layerwise theory and showed that transverse stresses in the

viscoelastic layer are the main factor that leads to delamination in lower modes. Mao et al. [61] studied the

creep buckling and post-buckling behavior of layered viscoelastic piezoelectric plates graded along thickness

direction. Zenkour [62] studied the bending behavior of elastic/ viscoelastic exponentially graded compos-

ite (EGC) rectangular sandwich plates using Illyushin’s approximation methods. Wang et al. [63] used

Kelvin-Voigt model for viscoelastic stability investigation of composite rectangular plates integrated with

a smart piezoelectric layer and under a follower force. Alibeigloo [64] developed a 3D state-space model to

study the effect of viscoelastic inter-layers on flexural and vibration response of simply-supported layered

composite plates. Wu et al. [65] proposed a 3D elasticity-based analytical method for flexural investigation

of simply supported layered plates having viscoelastic interlayers. Recently, Wang et al. [66] presented a

3D analytical model to investigate the time-dependent flexural response of exponential functionally graded

laminated rectangular plates bonded by viscoelastic adhesive inter-layers. Apart from that, the application

of viscoelastic layers in vibration damping is significantly explored in many recent studies [67–71]. Sun et

al. [72] developed an inverse approach for calculating the frequency-dependent mechanical properties of

viscoelastic medium using measured frequency response functions (FRFs). Grosso et al. [73] developed an

experimental identification technique for calculating equivalent viscoelastic parameters of the model for

layered thin-walled structures from the vibration data.

x
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Fig. 1: Geometry of smart in-plane functionally graded (IPFG) plates.
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Based on the discussions presented in the preceding paragraphs, it becomes evident that development of

an accurate 3D analytical solution approach for graded piezoelectric composites including the effect of

viscoelasticity would have a wide range of impacts for analyzing and designing smart structural systems.

In this article, we aim to propose an accurate 3D analytical framework for viscoelastic natural frequency

investigation of in-plane functionally graded (IPFG) orthotropic rectangular plates integrated with piezo-

electric layers [Advantages of the proposed mathematical model compared to others are listed in Remark

1, Appendix G (refer to the Supplementary material)]. Although the present analytical model is developed

for the analysis of smart IPFG viscoelastic plates, it is also directly applicable for the investigation of lam-

inated piezoelectric rectangular elastic and viscoelastic plates without any gradation. The present paper

is organized chronologically in six sections as follows; the mathematical formulation of the 3D governing

equations using the piezo-elasticity-based Hamilton’s principle is explained in Sec. 2. In Sec. 3, the vis-

coelastic mathematical model is developed for obtaining effective viscoelastic properties of the viscoelastic

layer in time domain. In Sec. 4, the extended Kantorovoch method together with the power series and

Fourier series method is used to attain a solution in the approximated analytical form. Sec. 5 is dedicated

to validation and numerical investigation. In section Sec. 5.1, numerical results are presented for elastic

case and Sec. 5.2 is dedicated to viscoelastic analysis. Finally, the conclusions and interesting findings of

the present study are summarized in the Sec. 6.

2 3D piezo-elasticity based formulation for modal analysis of hybrid

FGM plates

A laminated in-plane functionally graded (IPFG) hybrid rectangular plate (x ∈ (0, a), z = −h/2, h/2,

y ∈ (0, b)) integrated with piezoelectric layers, as demonstrated in Fig. 1, is taken into consideration for

the present numerical study. In such type of plates, the in-plane gradation of material properties in the

elastic layers is helpful to control flexural frequency response of plate and at the same time piezoelectric

layers act as sensor to sense the behaviour of plate under different gradation cases. The considered

rectangular functionally graded plate consists of total L number of orthotropic IPFG layers and ξ1 (= x/a),

ζ(k) = (z − zk−1)/t
(k) and ξ2 (= y/b) are non-dimensionalized layer parameter defined for x, z (thickness)

and y-direction, respectively. Here the non-dimensional parameters ξ1 and ξ2 are defined as global

parameters which are valid for all layers. But ζ(k) is local thickness parameter of layer defined for each kth

layer and t(k) denotes the thickness of that kth layer, and zk represents thickness coordinate parameter

for the upper layer surface of that kth layer. These superscripts of layers may be excluded in the further

mathematical expressions unless absolutely needed for better clarity.

The strain-displacement and the electrical field-potential relations for the 3D rectangular hybrid plate can

be written as, εx
εy

εz

 =

 u,x

v,y

w,z

 ;

 γyz

γzx
γxy

 =

 v,z + w,y

w,x + u,z

u,y + v,x

 ;

Ex

Ey

Ez

 =

ϕ,x

ϕ,y

ϕ,z

 (1)

In these expressions εi represents normal strains and γij represents shear strains of the plate, wherein w,

v and u denote the displacement along z, y and x directions, respectively. Similarly, electric fields along

x, y and z directions are designated by Ex, Ey and Ez, respectively. ϕ̄ denotes electric potential in the

piezo-electric layer.

The 3D piezo-elasticity based linear constitutive equations for an orthotropic smart layer can be expressed

as

εx = s11σx + s12σy + s13σz + d31Ez

εy = s12σx + s22σy + s23σz + d32Ez

εz = s13σx + s23σy + s33σz + d33Ez (2)

γyz = s44τyz + d24Ey

γzx = s55τzx + d15Ex
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γxy = s66τxy

Dx = d15τzx + ϵ11Ex

Dy = d24τyz + ϵ22Ey (3)

Dz = d31σx + d32σy + d33σz + ϵ33Ez

In above expressions, Di, σi and τij are the electric displacement, normal stress and shear stress compo-

nents, respectively. The piezoelectric strain constants dij , dielectric permittivities ϵij (at constant stress

field) and elastic compliances sij are given in Appendix A of the supplementary material.

The expression of Ex, Ey and Ez in terms of Dx, Dy and Dz can be obtained from Eq. (3). After putting

these expressions of Ex, Ey and Ez into Eq. (2), we obtain

εx = s̄11σx + s̄12σy + s̄13σz + d̄31Dz, εy = s̄12σx + s̄22σy + s̄23σz + d̄32Dz

εz = s̄13σx + s̄23σy + s̄33σz + d̄33Dz, Ez = −d̄31σx − d̄32σy − d̄33σz + ϵ̄33Dz (4)

γyz = s̄44τyz + d̄24Dy, γzx = s̄55τzx + d̄15Dx, Ex = ϵ̄11Dx − d̄15τzx Ey = ϵ̄22Dy − d̄24τyz
where

ϵ̄33 = 1/ϵ33, s̄ij = sij − d3id̄3j , d̄3i = d3i/ϵ33, for (i, j) = 1, 2, 3

s̄44 = s44 − d24d̄24, s̄55 = s55 − d15d̄15, s̄66 = s66

ϵ̄11 = 1/ϵ11, ϵ̄22 = 1/ϵ22, d̄24 = d24/ϵ22, d̄15 = d15/ϵ11.

These constitutive equations are valid for piezoelectric elastic layers having constant material properties.

For in-plane functionally graded layers, the elastic compliances and density of particular layer are consid-

ered to vary continuously and linearly along the (x) coordinate of the plate as [44, 74]

ρm(ξ1) = ρ(1 + δp ξ1)=ρ+ ρ̂

s̄m1j(ξ1) = s̄1j(1 + δ1ξ1)=s̄1j + ŝ1j for j = 1, 2, 3; (5)

s̄m55(ξ1) = s̄55(1 + δ2ξ1)=s̄55 + ŝ55; s̄m66 = s̄66(1 + δ2ξ1)=s̄66 + ŝ66
Here δp denotes gradation index for density, δ1 and δ2 denote gradation indexes correspond to Young’s and

shear modulus, respectively. These gradation parameters (δp, δ1 and δ2) can have any positive and negative

numerical value. This type of gradation is considered to provide flexibility to present mathematical model

in considering different kind of variation in material properties. Therefore, the present mathematical

model can be used for graded cases in which variation of material properties is introduced intentionally to

achieve specific structural behaviour. Additionally, this formulation can also be used for degradation cases

in which elastic properties of some specific layers may deteriorate due to dispersion of moisture or some

chemicals such as hydrogen or due to periodic exposure to heat etc. Therefore, for in-plane functionally

graded layers, Eq. (4) are modified and can be expressed as,

εx = (s̄11 + ŝ11)σx + (s̄12 + ŝ12)σy + (s̄13 + ŝ13)σz + d̄31Dz

εy = (s̄12 + ŝ12)σx + s̄22σy + s̄23σz + d̄32Dz

εz = (s̄13 + ŝ13)σx + s̄23σy + s̄33σz + d̄33Dz

Ez = −d̄31σx − d̄32σy − d̄33σz + ϵ̄33Dz (6)

γyz = (s̄44 + ŝ44)τyz + d̄24Dy, γzx = (s̄55 + ŝ55)τzx + d̄15Dx

Ex = ϵ̄11Dx − d̄15τzx Ey = ϵ̄22Dy − d̄24τyz

A 3D piezo-elasticity based extended Hamilton’s principle in a mixed form, without any type of charge

source and body force, can be expressed as,∫
t

∫
V
[(σij,j − ρüi)δui + (εij − 0.5(ui,j + uj,i))δσij +Di,iδϕ− (Ei + ϕ,i)δDi]dV dt = 0, (7)

where V is the volume (a × b × h) of the three-dimensional plate under consideration and i = 1, 2, 3

represent the x, y, z coordinate, respectively. Hence, u1 = u, u2 = v, u3 = w, ε1 = εx, ε2 = εy, ε3 =

εz, ε12 = γxy, ε23 = γyz, ε31 = γzx, σ1 = σx, σ2 = σy, σ3 = σz, σ12 = τxy, σ23 = τyz, σ31 = τzx, E1 =
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Ex, E2 = Ey, E3 = Ez, D1 = Dx, D2 = Dy and D3 = Dz. Substituting the expressions of the electric

components and strains from Eqs. (6) and (1) into Eq. (7) yields∫
t

∫
a

∫
b

∫
h
[δu{τxz,z + σx,x + τxy,y − (ρ+ ρ̂)ü}+ δv{τyz,z + τxy,x + σy,y − (ρ+ ρ̂)v̈}+ δw{σz,z + τzx,x

+τyz,y − (ρ+ ρ̂)ẅ}+ δϕ(Dx,x +Dy,y +Dz,z) + δσx{(s̄11 + ŝ11)σx + (s̄12 + ŝ12)σy + (s̄13 + ŝ13)σz

+d̄31Dz − u,x}+ δσy{(s̄12 + ŝ12)σx + s̄22σy + s̄23σz + d̄32Dz − v,y} − δσz{w,z − (s̄13 + ŝ13)σx (8)

−s̄23σy − s̄33σz − d̄33Dz} − δτyz(v,z + w,y − s̄44τyz − d̄24Dy)− δτzx{u,z + w,x − (s̄55 + ŝ55)τzx

−d̄15Dx}+ δτxy{(s̄66 + ŝ66)τxy − v,x − u,y} − δDx(ϕ,x + ϵ̄11Dx − d̄15τzx)− δDy(ϕ,y + ϵ̄22Dy

−d̄24τyz)− δDz(ϕ,z − d̄31σx − d̄32σy − d̄33σz + ϵ̄33Dz)] dz dy dx dt = 0, ∀ δui, δϕ, δσi, δτij , δDi

The exterior surfaces of the plate (bottom-most and top-most surface) are shear traction free. Therefore,

the boundary conditions of exterior surface at z = ±h/2 can be expressed as,

at z = ±h/2 : τyz = 0, τzx = 0, σz = 0 (9)

If top or bottom surface is subjected to close-circuit (CC) condition then ϕ is prescribed. For open circuit

condition Dz is prescribed. Therefore, for close-circuit surface ϕ(x, y)=0 and for open-circuit surface

Dz(x, y)= 0. For multilayered FGM plates, perfect bonding is assumed between different functionally

graded layers. Therefore, following continuity condition is satisfied at each internal surface between kth

and (k + 1)th layers

[(u, v, w, ϕ, Dz, σz, τyz, τzx)|ζ=1]
(k) = [(u, v, w, ϕ, Dz, σz, τyz, τzx)|ζ=0]

(k+1) for k = 1, ...L− 1 (10)

In the present mathematical model, interfaces of smart piezoelectric layers with IPFG elastic substrate are

considered as grounded (ϕ = 0) for better sensing. Note that when the interfaces between the piezoelectric

layers and the elastic substrate are made grounded, the maximum potential difference will appear on top

of the piezoelectric layer on the application of force. This is easier to evaluate accurately and effectively,

which makes sensing better by easing the potential evaluation. Therefore, Dz becomes discontinuous at

these interfaces. Subsequently, the continuity condition given in Eq. (10) is changed to [ϕ|ζ=1]
(nq)=0 i.e.

q = 1, . . . , La, where La expresses the piezo-elastic layer interface where actuation electric voltage/potential

is prescribed.

The present investigation is for Levy-type boundary conditions, hence the two opposite ends of the IPFG

laminate smart plate along y-direction (at y = 0 and y = b) are always considered under simply-supported

and close-circuit conditions. Thus, σy = w = u = 0 at y = 0 and b for all x, z of that plane. The other two

opposite edges of hybrid FGM plate can have any type of mechanical and electrical support conditions.

The mechanical support conditions at the edges ξ1 = 0 and 1 can be clamped (w = u = v = 0), free

(σx = τxz = τxy = 0) or simply-supported (σx = w = v = 0) at each point of corresponding y − z

plane. The ends of piezo-electric layers can have closed circuit (CC) condition (ϕ=0) or open circuit (OC)

condition (Dx=0).

3 Formulation for viscoelastic analysis

First classical elasticity analysis is performed in which instantaneous stresses within a material are con-

sidered only function of instantaneous strains, as presented in the preceding section. Now to implement

viscoelasticity of material in the analysis, instantaneous stresses are assumed as a function of strains

history by employing linear viscoelastic model. In a simplified linear viscoelastic mathematical model,

the stress σ(t) at any point within the structure is a function of time and can be written in the form of

convolution integral on the kernel function [75] as

σt(t) = gt(t)⊛ ε(t) (11)

In above equation, t ∈ R+ is the dimensionless time parameter, σ(t) and ε(t) are representing time-

dependent stress and strain, respectively. Here, it is assumed that the strain is zero for negative times.

Hence, the initial strain is εt = 0 for t < 0 and gt is the kernel or memory function. Causality requirements

enforce gt to be a causal function i.e., it vanishes for t < 0; gt(t) = 0, ∀t < 0. This approach of deriving

time-dependent stress equations in the context of linear viscoelasticity is known as the hereditary approach,
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which gives greater freedom in constructing viscoelastic models as compared to the differential approach

that only relies on the concepts of certain springs and dashpots combinations. Hence, time-dependent

stress-strain relationship of Eq. (11) can directly be used for dynamic investigation of a solid viscoelastic

body. Such as, in case of its implementation to uniform bar, Eq. (11) must be multiplied by its cross-section

area which give the displacement and force rate (or velocity). In Eq. (11), gt(t) is also known as ‘relaxation

function’, ‘after-effect function’ or ‘hereditary function’ in the context of different fields. Generally for the

simplicity, the kernel function (gt(t) ) is usually described in the frequency domain which is also known as

Laplace domain form. Hence, Laplace transformation of Eq. (11) converts it into frequency domain which

can be expressed as

σ̄s(sL) = sLḠs(sL)ε̄s(sL) (12)

Here sL ∈ C represents complex Laplace domain parameter. The parameters σ̄s(sL), Ḡs(sL) and ε̄s(sL) are

representing the corresponding Laplace transformation of σt(t), gt(t) and εt(t). The kernel function gt(t)

can be constructed by two generally used methods one is approximation based mathematical approach

and the other is general mathematical approach.

3.1 Construction of the kernel function using approximation based mathematical

approach
In the approximation based mathematical approach, different combinations of springs and dashpots are

used to obtain kernel function for viscoelastic constitutive relationship. Though a variety of springs and

dashpots based models can be constructed by considering different arrangements, but for viscoelastic

analysis of solid body generally four models [76, 77] are used which are known as Maxwell viscoelastic

model, Voigt viscoelastic model, Standard linear viscoelastic model and Generalised Maxwell viscoelastic

model, as shown in Fig. 2. Here, Dirac delta function δ(t) and unit step function U(t) are defined as below

U(t) = 1 if t ≥ 0, and 0 if t < 0. (13)

δ(t)⊛ ft(t) = ft(t) (14)

Here, δ(t) represents the Dirac delta function and ft(t) continuous generalized function. Dirac’s delta δ(t)

distribution represents the unit impulse function which is a generalized function or distribution over the

real numbers [78, 79]. Based on these assumptions, the viscoelastic kernel function (gt(t)) for the four

models can be expressed [75–77] as

� Maxwell viscoelastic model:

gt(t) = µe−(µ/η)tU(t) (15)

� Voigt viscoelastic model:

gt(t) = ηδ(t) + µU(t) (16)

� Standard linear model:

gt(t) = ER

[
1− (1− τσ

τε̄s
)e−t/τε̄s

]
U(t) (17)

� Generalised Maxwell viscoelastic model:

gt(t) =

 n∑
j=1

µje
−(µj/ηj)t

U(t) (18)

This models is also called as the Prony series viscoelastic model.

These functions are obtained by assuming the equilibrium of different forces coming from stretching of the

dashpots and springs as given in Fig. 2. In these functions, t is time, σ(t) is stress, ε(t) is strain of system, η

is viscosity parameter of material represented by a purely viscous damper in the dashpots-springs system,

µ is elastic stiffness parameter of material represented by a purely elastic spring in the dashpots-springs

system, τ denotes relaxation time constant and ER represents relaxation modulus.

3.2 Mathematical depiction of the kernel function in the frequency domain
The kernel function gt(t) in Eq. (12) can also be represented in the frequency (ωs) state. It is a complex

function which can be denoted as,

Ḡs(ωs) = Ḡs(ιωs) = Gs(ωs) (19)
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(a) Maxwell model (b) Voigt model

(c) Standard linear model (d) Generalised Maxwell model

Fig. 2: Representation of viscoelastic materials models using springs and dashpots arrangement.

Here ωs ∈ R+ represents the frequency of Laplace domain signal. The complex function Gs(ωs) can be

split into real and imaginary part and can be also represented in term of amplitude and phase angle as,

Gs(ωs) = G′
s(ωs) + ιG′′

s(ωs) = |Gs(ωs)|eιϕs(ωs) (20)

Real part G′
s(ωs) is known as storage moduli and imaginary part G′′

s(ωs) is known as loss moduli. The

kernel function has one main restriction, which comes from the relationship between cause and effect that

the reaction of the structure depends upon its loading history.The output of a function at any time depends

on past and present values of input which is known as causality condition and causal system. A causal

system (also known as a physical or non-anticipative system) is a system where the output depends on past

and current inputs but not future inputs—i.e., the output y(t0) depends only on the input x(t) for values of

t ≤ t0 [79]. Therefore, according to the causality condition, the structure’s reaction should depend upon its

loading history. Further, the Kramers-Kronig relation [79] defines the mathematical correlation between

the imaginary and real parts of the complex elasticity modulus (complex modulus)[71, 79]. Kramers-

Kronig interrelations show that the imaginary and real parts of complex elasticity modulus must be linked

by a Hilbert transform duo and it could be written mathematically as

G′
s(ωs) = Gs∞ +

2

π

∫ ∞

0

uG′′
s(us)

ω2
s − u2s

dus (21)

G′′
s(ωs) =

2ωs

π

∫ ∞

0

G′
s(us)

u2s − ω2
s

dus (22)

where Gs∞ = Gs(ωs → ∞) ∈ R represents unrelaxed modulus. The integral in the Eqs. (21) and (22)

is evaluated in Cauchy’s principal value sense near the singularity [79–81]. The behavior of visco-elastic
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material in the present case is considered to correspond to various spring dashpot combinations. There-

fore, the reference signal has come from the corresponding spring-dashpot oscillator, where the real and

imaginary parts bear the meaning according to the conventional signal processing literature [71, 79]. The

equivalent relationships which is linking the modulus |G′
s(ωs)| and the phase ϕs(ωs) of Gs(ωs) can be

expressed as [Remark 4 and 5, Appendix G (refer to the Supplementary material)],

ln |G′
s(ωs)| = ln |Gs∞|+ 2

π

∫∞
0

usϕs(us)
ω2
s−u2

s
dus (23)

ϕs(ωs) = 2ωs
π

∫∞
0

ln |Gs(us)|
u2
s−ω2

s
dus (24)

It is worth mentioning that the approximation based principle described above to drive complex elasticity

modulus automatically satisfy these conditions. However, other functions are also there which can also

satisfy these conditions. The determination ofGs(ωs), which satisfy these conditions, through experimental

measurements is also possible [79, 82]. The most commonly used functions in literature are listed in Table 1.

Table 1: Representation of complex elasticity modulus for different viscoelastic material models in the
Laplace or frequency domain.

Viscoelastic model Complex elasticity modules

Biot model [83] Gs(ωs) = Gs0 +
∑n

k=1
akιωs

ιωs+bk

Fractional derivative [84] Gs(ωs) =
Gs0+Gs∞(ιωsτ)β

1+(ιωsτ)β

ADF [85] Gs(ωs) = Gs0

[
1 +

∑n
k=1∆k

ω2
s+ιωsΩsk

ω2
s+Ωs

2
k

]
GHM [86] Gs(ωs) = Gs0

[
1 +

∑
k αk

−ω2
s+2ιξkωskωs

−ω2
s+2ιξkωskωs+ωs

2
k

]
Step-function [87] Gs(ωs) = Gs0

[
1 + η 1−e−ωst0

ωst0

]
Half cosine model [87] Gs(ωs) = Gs0

[
1 + η 1+2(ωst0/π)2−e−ωst0

1+2(ωst0/π)2

]
Gaussian model [88] Gs(ωs) = Gs0

[
1 + η eω

2
s/4µ

{
1− erf

(
ιωs
2
√
µ

)}]

3.3 Effective material properties of viscoelastic layers in the laminated plate
In this paper, it is considered that each Young’s moduli Ei (E1, E2, E3) and each shear moduli Gij

(G12, G13, G23) of viscoelastic layer is modelled using viscoelastic properties. The Biot model (mentioned

in Table 1) with only one term has been used for computational simplicity. Hence, complex elastic and

shear modulus in frequency domain [75] can be expressed as

Ei(ωs) = (Es)i

(
1 + ε̄s

ιωs

µ+ ιωs

)
(25)

Gij(ωs) = (Gs)ij

(
1 + ε̄s

ιωs

µ+ ιωs

)
(26)

where Ei represents the elastic modulus of the orthotropic layers considering viscoelasticity and (Es)i
represents the elastic modulus in absence of viscoelasticity. Similarly, Gij represents the shear modulus

of the orthotropic layers when viscoelasticity is considered and (Gs)ij represents the shear modulus in

absence of viscoelasticity. In these expressions, µ is the relaxation parameter and ε̄s represents a constant

defining the ‘strength’ of viscosity. The amplitude of complex elastic moduli and shear moduli [75] is given

by

|Ei(ωs)| = Esi

√
µ2 + ω2

s (1 + ε̄s)
2

µ2 + ω2
s

(27)

|Gij(ωs)| = Gsij

√
µ2 + ω2

s (1 + ε̄s)
2

µ2 + ω2
s

(28)

The phase (ϕs) [75] of these complex elastic moduli and shear moduli are given by

ϕs (Ei(ωs)) = ϕs (Gij(ωs)) = tan−1

(
µε̄sωs

µ2 + ω2
s(1 + ε̄s)

)
(29)

The complex elastic and shear moduli have the various limiting properties which are providing critical

insights for various special cases. These limiting properties are listed in Appendix B (refer to the Supple-
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mentary material).

3.3.1 Numerical transformation of frequency domain into the time domain

The objective of the present paper is to present the time-dependent viscoelastic behavior. Therefore, once

the Frequency (Laplace) domain solutions are obtained using the viscoelastic correspondence principle,

as described in the preceding subsection, they are inverted back into the time domain. The Inversion

of frequency domain data into the time-domain is performed by employing the computationally efficient

inverse Fourier transform (IFFT) [89, 90]. The physical interpretation of time signal into the Fourier

transform can be expressed as

Ei(t) =
1

2π

∫ ∞

−∞
Ei(ωs)e

ιωstdω =

∫ ∞

−∞
Ei(2πfs)e

2πιfstdfs (30)

Gij(t) =
1

2π

∫ ∞

−∞
Gij(ωs)e

ιωstdω =

∫ ∞

−∞
Gij(2πfs)e

2πιfstdfs (31)

Here, Ei(t) and Gij(t) represent relaxation elastic and shear moduli for composite orthotropic layers. The

physical interpretation of an equation indicates the act of establishing the relation between the physical

quantities in the equation by expecting how the system will behave at extreme or normal conditions. It can

involve some approximations of the equation. The main characteristics of materials with viscoelasticity are

used to describe the stress relaxation of materials with time (t). The efficient determination of Ei(t) and

Gij(t) must accurately simulate the viscoelastic deformation and stress relaxation in the material. Since

in the inversion, discrete numerical data of frequency domain is used rather than a continuous expression

for computation convenience, the continuous inverse Fourier transform can be expressed by its discrete

counterpart as,

Ei(t) =
∞∑

n=−∞
CE
n eι2πnt and Gij(t) =

∞∑
n=−∞

CG
n eι2πnt (32)

where coefficients CE
n and CG

n are given by,

CE
n = |Ei(ωsn)| eιϕ(E(ωsn )) (33)

CG
n = |Gij(ωsn)| eιϕ(G(ωsn )) (34)

It shows that whether the signal is periodic or not, its time waveform can be represented in the form

of amplitude |E(ωsn)| and phase ϕ (E(ωsn)). For more information on the relationships between the

continuous and discrete Fourier transform, one can refer to [91]. While inverting the frequency domain

data into the time domain, all values (higher to lowest) of the parameter ωs are considered. So the

time domain signal shows oscillation at each time step and to smoothen this time signal Savitzky-Golay

smoothing algorithm is used here.

4 EKM-Fourier series based analytical solution approach

In the present mathematical model both mechanical and electrical variables are considered as primary

variables. Thus, the mechanical displacements variables (u, v, w), electrical variables (ϕ, Dx, Dy and

Dz) and the stresses variables ( σx, σy, σz, τxy, τyz, τzx) are functions of ξ1, ξ2, and ζ, and solved as

primary variables using combination of extended Kantorovich method and Fourier series approach, as

further explained in this section.

To obtain the solution for y-direction, Fourier series approach is utilized and solution is assumed in form

of Fourier series in such a manner that it satisfies simply-supported end conditions (σy = w = u = 0 at

edges ξ2 = 0, 1) of y direction [Remark 3: Appendix G (supplementary material)],

[u, w, σx, σy, σz, τzx, ϕ, Dx, Dz] =

My∑
m=1

[(u, w, σx, σy, σz, τzx, ϕ, Dx, Dz)m cosωt] sinmπξ2

[v, τyz, τxy, Dy] =

My∑
m=1

[(v, τyz, τxy, Dy)m cosωt] cosmπξ2 (35)

where My represents the number of term in Fourier series and ( )m denotes the mth term of Fourier series,

and it is the function of ξ1 and ζ. The truncated Fourier series is used where truncation of series (no. of
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terms in Fourier series ) is corresponding to the flexural vibration mode of y-directions. A rectangular

plate can have infinite flexural vibration modes along any direction. Hence, for general case My → ∞.

However, as in engineering application, the interest is over finite number of fundamental modes, the series

has usually finite number of terms depending on the vibration modes of interest. Further, we substitute

these Fourier series assumption, given in Eq. (35), into the extended Hamilton’s principle expressed in

Eq. (8). It transforms Eq. (8) into the following form, due to the orthogonality of cosine and sine functions,∫
t

∫
a

∫
h
[δum{τxzm,z + σxm,x − m̄τxym − (ρ+ ρ̂)ω2um}+ δvm(τyzm,z + τxym,x + m̄σym − (ρ+ ρ̂)ω2vm)

+δwm{σzm,z + τzxm,x − m̄τyzm − (ρ+ ρ̂)ω2wm}+ δϕm(Dxm,x − m̄Dym +Dzm,z) + δσxm((s̄11 + ŝ11)σxm

+(s̄12 + ŝ12)σym + (s̄13 + ŝ13)σzm + d̄31Dzm − um,x) + δσym((̄s̄12 + ŝ12)σxm + s̄22σym + s̄23σzm + d̄32Dzm

+m̄vm)− δσzm(wm,z − (s̄13 + ŝ13)σxm − s̄23σym − s̄33σzm − d̄33Dzm)− δτyzm(vm,z + m̄wm − s̄44τyzm

−d̄24Dym)− δτzxm(um,z + wm,x − (s̄55 + ŝ55)τzxm − d̄15Dxm) + δτxym((s66 + ŝ66)τxym − vm,x − m̄um)

−δDxm(ϕm,x + ϵ̄11Dxm − d̄15τzxm)− δDym(m̄ϕm + ϵ̄22Dym − d̄24τyzm)− δDzm(ϕm,z − d̄31σxm − d̄32σym

−d̄33σzm + ϵ̄33Dzm)]dzdxdt = 0, ∀ δuim , δϕm, δσim , δτijm , δDim where m̄ = mπ/b (36)

The above expression appears for every Fourier term. Now dependency of each variable is reduced and all

primary field variables,X = [um vm wm σxm σym σzm τxym τyzm τzxm ϕm Dxm Dym Dzm ]T

are function of ξ1 (x-coordinate) and ζ (thickness coordinate) only. The solution along these two-directions

(for x and z- direction) is obtained further by employing recently developed the multi-term extended Kan-

torovich method [34, 38, 40, 44, 74, 92]. The solution of Xl, lth variable X, is assumed as the summation

of n terms series containing products of two separable unknown functions gil(ζ) and f i
l (ξ1). Thus, the

solution of each Xl variable can be expressed for the kth layer as,

Xlm(ξ1, ζ) =

n∑
i=1

f i
lm(ξ1)g

i
lm(ζ) for l = 1, 2, . . . 13 (37)

Here, f i
l (ξ1) acts as global variable and is valid for all layers, while gil(ζ) acts as local variable which is valid

separately for every local kth layer. In the next sections, subscript ‘m’ is dropped from the mathematical

expressions of f i
lm

and gilm for convenience. Now, the solutions for unknown functions gil(ζ) and f i
l (ξ1) are

obtained in two iterative steps.

4.1 First iterative step - solving functions gil(ζ)
In this iteration step, thickness function gil(ζ) is solved. To start the first iteration step, f i

l (ξ1) is assumed

in sine and cosine form. In present EKM approach, the assumed initial functions need not satisfy any

natural and essential boundary condition and it can be chosen arbitrarily. But for better convergence

and to reduce the number of iteration for accurate solution, the f i
l (ξ1) function is assumed corresponding

to simply-supported boundary conditions of edges ξ1 = 0 and 1. Hence, the initial functions f i
l (ξ1) to

the start the first step of iteration 1 can be assumed as f i
1(ξ1) = f i

7(ξ1) = f i
9(ξ1) = f i

11(ξ1) = cos iπξ1;

f i
2(ξ1) = f i

3(ξ1) = f i
4(ξ1) = f i

5(ξ1) = f i
6(ξ1) = f i

8(ξ1) = f i
12(ξ1) = f i

13(ξ1) = sin iπξ1. Here, f1(ξ1), f2(ξ1),

f3(ξ1), f4(ξ1), f5(ξ1), f6(ξ1), f7(ξ1), f8(ξ1), f9(ξ1), f10(ξ1), f11(ξ1), f12(ξ1) and f13(ξ1) denote in-plane

function for u, v, w, σx, σy, σz, τxy, τyz, τzx, ϕ, Dx, Dy and Dz, respectively. Now functions gil(ζ) have to

be solved in this iteration step, for which variation δXl can be expressed as,

δXl(ξ1, ζ) =
n∑

i=1

f i
l (ξ1)δg

i
l , l = 1, 2, . . . 13 (38)

The functions gil(ζ) can be divided into two parts Ḡ and Ĝ. Here Ḡ column vector is of dimension 8n

and has the specfic independent variables that comes in the interface condition, and mechanical/electrical

boundary conditions at exterior surfaces (top and bottom) of hybrid FGM plate. The other Ĝ column

vector is of size 5n and has the other left over dependent variables,

Ḡ = [ g11 . . . g
n
1 g12 . . . g

n
2 g13 . . . g

n
3 g16 . . . g

n
6 g18 . . . g

n
8 g19 . . . g

n
9 g110 . . . g

n
10 g113 . . . g

n
13 ]

T

Ĝ = [ g14 . . . g
n
4 g15 . . . g

n
5 g17 . . . g

n
7 gn11 . . . g

n
11 gn12 . . . g

n
12 ]

T (39)

Now assumed solution Eq. (37), and its variational part Eq. (38) are substituted into Eq. (36). However,

variations in δgil functions are arbitrary, hence the coefficients of δgil should be equal to zero individually

12



according to fundamental lemma of variational principles. It leads to the following set of 8n first-order

coupled ODEs and 5n coupled linear-algebraic equations for every layer,

MḠ,ζ = Ām(ω)Ḡ+ ÂmĜ (40)

KmĜ = ÃmḠ (41)

Here, M8n×8n, Ā8n×8n, Â8n×5n, K5n×5n, and Ã5n×8n are coefficient matrices, wherein Ām = Ā+ Āv;

Âm = Â+ Âv; Km = K+Kv; Ãm = Ã+ Ãv. The non-zero elements of coefficient matrices of Eqs. (40)

and (41) (M, Ā, Āv, Â, Âv, Km, Ã , Ãv) are listed in Appendix C (refer to the supplementary material).

Since the functions f i
l are presumed for first starting iteration, the coefficient elements of Eqs. (40) and (41)

could be solved in closed-form by performing integration along x-direction. Hence, coefficients of Eq. (40)

and Eq. (41) are now known. The substitution of Ĝ from Eq. (41) into Eq. (40), transforms equation (40)

to the following form,

Ḡ,ζ = A(ω)Ḡ, Here, A = M−1[Ām + ÂmKm−1Ãm] (42)

Above Eq. (42) is a set of 8n first-order coupled ODEs with constant coefficients and this system of ODEs

can be solved analytically by following solution approach suggested by Kumari and Behera [93] which is

further explained in Appendix D (refer to the supplementary material).

4.2 Second iterative step - solving functions f i
l (ξ1)

In the first iterative step, gil(ζ) functions are obtained in closed-form. Now, in the second iteration these

obtained gil(ζ) functions are used to obtain f i
l functions, which are assumed as unknown in this iteration.

Therefore, variation is assumed in gil functions and hence δXl can be expressed as,

δXl(ξ1, ζ) =
n∑

i=1

gil(ζ)δf
i
l for l = 1, 2, . . . , 13 (43)

Similar to first iteration, the in-plane functions f i
l (ξ1) can also be split-up into two column vectors F̂

and F̄. Here, F̄ contains the specific independent variables that appear in the mechanical and electrical

boundary conditions along x-directions at ξ1=0 and 1. The F̂ column vector contains the remaining

dependent variables. Hence,

F̄ = [ f1
1 . . . f

n
1 f1

2 . . . f
n
2 f1

3 . . . f
n
3 f1

4 . . . f
n
4 f1

7 . . . f
n
7 f1

9 . . . f
n
9 f1

10 . . . f
n
10 f1

11 . . . f
n
11 ]

T

F̂ = [ f1
5 . . . f

n
5 f1

6 . . . f
n
6 f1

8 . . . f
n
8 f1

12 . . . f
n
12 f1

13 . . . f
n
13 ]

T (44)

Substituting Eq. (43) and Eq. (37) in Eq. (36), and equating the coefficient of δf i
l to zero individually, lead

to a set of differential-algebraic equations as,

NF̄,ξ1 = {B̄(ω) + ξ1B̄
v(ω)}F̄+ (B̂+ ξ1B̂

v)F̂ (45)

LF̂ = (B̃+ ξ1B̃
v)F̄ (46)

where N8n×8n, B̄8n×8n, B̄
v
8n×8n, B̂8n×5n, B̂

v
8n×5n, L5n×5n, B̃5n×8n and B̃v

5n×8n are coefficient matrices and

all non-zero elements of these matrices are listed in Appendix E (refer to the supplementary material).

However, gil(ζ) are already known in closed-form from previous iteration, hence all elements of the coeffi-

cient matrices can also be solved exactly in closed form by executing integration over ζ direction on the

known gil functions. Then, substitution of algebraic equation (46) into Eq. (45) leads to,

F̄,ξ1 = {B0(ω) + ξ1B1(ω) + ξ21B2}F̄ (47)

Here B0 = N−1(B̄+ B̂L−1B̃), B2 = N−1(B̂vL−1B̃v), B1 = N−1(B̄v + B̂L−1B̃v + B̂vL−1B̃). The

above Eq. (47) represents coupled system of first-order differential equations (8n) having variable coef-

ficients which are function of ξ1. This couple system ODEs cannot be solved exactly using traditional

approaches. Therefore, solution of Eq. (47) has been obtained by utilizing a modified power series approach

recently developed by Singh and Kumari et al. [44, 74], which is explained in Appendix F (Supplementary

material). After obtaining F̄ functions in closed-form, further they have been used to obtain the F̂ func-

tions using Eq. (46). In this way second iterative step is completed which gives solution along in-plane (x)

direction. These two iteration steps, first for thickness functions gil which is explained in (Sec. 4.1), and

second for f i
l functions which is explained in (Sec. 4.2), complete one iteration. After one iteration these

gil and f i
l are known and then, it has been used for obtaining final solution based on equation Eq. (35) and

Eq. (37). These two iterative steps can be continued to get the final converged solution depending on the

required level of accuracy.
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5 Numerical Results and discussion

This section presents numerical results concerning validation of the proposed analytical framework first,

followed by in-depth elastic and viscoelastic analyses.

5.1 Elastic analysis

5.1.1 Hybrid piezoelectric rectangular plates of constant stiffness and density

The developed mathematical model is validated first by comparing the present results with previously

published results in the literature to establish and demonstrate the accuracy of the proposed analytical

solution approach. In the following subsections, the effect of in-plane graded elastic properties on natural

frequencies and mode shapes of intelligent FGM plates is investigated extensively. New benchmark results

are presented for various gradation cases by considering different configurations and thickness ratios (S =

a/h) under different electrical and mechanical boundary conditions. The material properties [94] used in

this study are tabulated in Table 2.
Table 2: Material constants [83]

Material Y1 Y2 Y3 G23 G13 G12 ν12 ν13 ν23 ρ

Mat. 1 6.9 6.9 6.9 1.38 1.38 1.38 0.25 0.25 0.25 1578

Mat. 2 224.25 6.9 6.9 1.38 56.58 56.58 0.25 0.25 0.25 1578

Mat. 3 172.5 6.9 6.9 1.38 3.45 3.45 0.25 0.25 0.25 1578

Mat. 4 (Gr/Ep) 181.0 10.3 10.3 2.87 7.17 7.17 0.28 0.28 0.33 1578

Mat. 5 (Face) 131.1 6.9 6.9 2.3322 3.588 3.588 0.32 0.32 0.49 1000

Mat. 6 (Core) 0.0002208 0.0002208 2.76 0.4554 0.5451 0.01656 0.99 3×10−5 3×10−5 70

PZT-5A 61.0 61.0 53.2 21.1 21.1 22.6 0.35 0.38 0.38 7600

Material d31 d32 d33 d24 d15 η11 η22 η33
PZT-5A -171 -171 374 584 584 15.3 15.3 15.0

Units: density (ρ) in Kg/m3; Young’s moduli Yi in GPa and shear moduli Gij in GPa; electric permit-
tivities ηij in nF/m; piezoelectric strain coefficients dij in pm/V; where d0 = d33 pm/V

Various configurations of smart plates, as shown in Fig. 3, are taken into consideration for the current

numerical study. The obtained results for natural frequencies are expressed in non-dimensionalized form

using ω∗ = ωaS
√
ρ0/Y0. Where Y0=6.9 GPa for hybrid smart plate (b) and (c), and Y0=10.3 GPa for all

other hybrid smart plates and in-plane functionally graded (IPFG) plates. Similarly, ρ0= 1000 Kg/m3 for

hybrid smart plate (c), and ρ0= 1578 Kg/m3 for all other hybrid smart plates and inplane IPFG plates.

Similarly, non-dimensionalized values of modal displacements, electrical state variables and stresses are

plotted in graphical figures, and the following expression is used for the non-dimensionalization of results.

(w̄, v̄, ū) = (w, v, u)/max (w, v, u); (σ̄i, τ̄ij) = (σi, τij)hS/(Y0max (w, u))

ϕ̄ = ϕd0/max(w, u) D̄i = Di hS/(d0 Y0max(w, u))

w̄, v̄, ū denotes the non-dimensionalized displacement in z, y, and x directions. Normalized normal stresses

and shear stresses are denoted by σ̄i and τ̄ij , respectively. Similarly, ϕ̄ expresses non-dimensionalized

electric potential, and normalized electric displacements are expressed by D̄i. Here S(= a/h) expresses

the span-to-thickness ratio of FGM plate and max(w, v, u) denotes the largest value of displacement w,

v and u along the thickness of FGM plate for that flexural mode. The length of all FGM and composite

plates are taken equal to unity (a = 1) for all cases and thickness of rectangular plate is assumed according

to span to thickness ratio (S = a/h) of the plates. For S = 5, 10, 20 the values of h are 0.2, 0.1, 0.05,

respectively. Similarly, s(= h/a) expresses the thickness-to-span ratio. The rectangular plates are named

corresponding to their mechanical support conditions at the ends. For example, CFSS designation of plate

indicates that plate is clamped (C) at ξ1 = 0 and free (F ) at ξ1 = 1, and simply-supported at ξ2 = 0 and

ξ2 = 1.

Here the present EKM-Fourier series technique of solution is validated by comparing the results with

previously reported numerical results for constant property cases without any type of gradation. First, the

present results are validated for an orthotropic single-layered piezoelectric rectangular plate subjected to a
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Hybrid Smart Plate (a)

Hybrid Smart Plate (d)

IPFG Smart Plate (a) IPFG Smart Plate (b)

PZT-5A

PZT-5A

PZT-5A
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PZT-5A

PZT-5A

IPFG Layer (Mat.4 - Gr/Ep)

IPFG Layer (Mat.4 - Gr/Ep)

                   00   (Mat.4 - Gr/Ep)

Hybrid Smart Plate (c)

PZT-5A

PZT-5A

PZT-5A

PZT-5A

Hybrid Smart Plate (b)

PZT-5A

PZT-5A

                   00   (Mat.4 - Gr/Ep)

                   900   (Mat.4 - Gr/Ep)

                   900   (Mat.4 - Gr/Ep)

                   00   (Mat.4 - Gr/Ep)

                   900   (Mat.4 - Gr/Ep)

                   900   (Mat.4 - Gr/Ep)

                   00   (Mat.4 - Gr/Ep)

Hybrid Smart Plate (e)

                   00   (Mat.2)

                   900   (Mat.2)

                   00   (Mat.3)

                   00   (Mat.3)

                   00   (Mat.1)

                   00   (Mat.1)

                   Face          00   (Mat.5)

                   Face          900   (Mat.5)

                   Face          00   (Mat.5)

                   Core          00   (Mat.6)

h

0.08h

0.1h

0.12h

0.2h

0.2h

0.12h

0.08h

0.1h

0.04h

0.1h

0.04h

0.04h

0.04h

0.1h

0.64h

                   Face          900   (Mat.5)

0.1h

0.2h

0.2h

0.2h

0.1h

0.2h

0.1h

0.2h

0.2h

0.2h

0.1h

0.2h

0.1h

0.9h

0.1h

0.8h

0.1h

Fig. 3: Configurations of smart IPFG rectangular plates considered for the present numerical study.

simply-supported boundary condition and it has poling [Remark 2: Appendix G (supplementary material)]

along the z-direction. Results are compared with the 3D exact result of Heyliger and Saravanos [95],

which was obtained by employing the Fourier series approach through which the solution of the ordinary

differential equations can be obtained in the exact closed form (therefore, referred as the exact solution

approach in literature), and 3D elasticity-based analytical results of Susanata and Kumari [93]. In Table 3,

the results are compared for two-type of electrical arrangements, (i) Single-layered PZT-5A plate subjected

to closed-circuit (CC) condition at top and bottom surface (ϕ(x, y,±h/2)=0), (ii) Single-layered PZT-5A

plate subjected to Open-circuit (OC) condition at top and bottom surface (Dz(x, y,±h/2)=0). Results

are compared for thick plates having thickness ratio S=4 and S=1 (Cubical-plate). It is noted that the

current power series-based EKM solution is accurate in predicting natural frequencies of single-layered

smart piezoelectric plate, and all results are in good agreement.

After establishing the accuracy of the present mathematical model for single-layered piezoelectric smart

plate (a), the results are obtained for laminated piezoelectric plates (b), (c), (d), and (e) of different

configurations, as shown in Fig. 3. All the laminated hybrid plates are integrated with two PZT-5A plies

at the bottom and top to their elastic substrate. The thickness of both top and bottom piezoelectric

layers is 0.1h and it has poling along with the thickness (z-direction). The surfaces of piezoelectric layers

with the elastic substrate are considered grounded (ϕ=0). The elastic substrate of plate (b) has six

laminae with orientation θk as [00/00/900/00/00/00] with thickness 0.08h/0.12h/0.2h/ 0.2h/0.12h/0.08h

of material 1/3/2/2/3/1, as shown in Fig. 3. The elastic substrate of the plate (c) is a five-layer sandwich

substrate with two faces [00/900] of Material 5 and a soft-core [00] of Material 6. Overall orientation

of substrate is [00/900/00/900/00] of thicknesses 0.04h/0.04h/0.64h/0.04h/0.04h and material 5/5/6/5/5,

as shown in Fig. 3. The elastic substrate of the plate (d) and (e) has a 4-ply composite laminate of

15



Table 3: Comparison of first six lowest flexural frequencies for all-around simply supported (SSSS) single-
layered square smart piezoelectric plates under closed circuit (CC) condition (ϕ(x, y,±h/2)=0 and open
circuit (OC) condition (Dz(x, y,±h/2)=0).

Closed circuit Open circuit
Present 3D Analytical [93] 3D Exact [95] Present 3D Analytical [93] 3D Exact [95]
96929.9 96929.9 96929.9 98233.0 98231.7 98231.7
194254.8 194254.8 194255.0 194254.8 194254.8 194255.0

S=4 327662.5 327662.5 327663.0 355170.5 355110.0 355110.0
538884.4 538884.4 538885.0 538884.4 538884.4 538885.0
609187.1 609185.3 609186.0 690984.2 690766.8 690767.0
958929.5 958922.4 958922.0 960118.1 960103.9 960103.0

713025.6 713062.7 713061.0 724559.2 724602.0 724602.0
777020.5 777020.5 777021.0 777020.5 777020.5 777021.0

S=1 889887.0 889901.3 889902.0 912882.9 912911.4 912912.0
925431.5 925431.5 925431.0 925431.5 925431.5 925431.0
1243806.5 1243817.9 1243819.0 1270594.7 1270594.7 1270594.0
1270594.7 1270594.7 1270594.0 1293476.5 1293505.0 1293504.0

Table 4: Comparison of natural frequencies (ω∗ = ωaS
√
ρ0/Y0) of hybrid smart plate (b), intelligent

sandwich plate (c), composite smart plate (d) and (e) with different S values and electrical condition as
ϕ(x, y,−h/2)=0 and Dz(x, y, h/2)=0.

Smart Plate (b) Smart Plate (c) Smart Plate (d) Smart Plate (e)
S Present 3D Exact[94] Present 3D Exact[94] Present 3D Exact[94] Present 3D Exact[94]
5 7.4148 7.4148 4.5233 4.5277 7.1810 7.1810 7.1809 7.1809

ω∗
11 10 10.0342 10.0342 7.3390 7.3390 9.3686 9.3686 9.2795 9.2795

20 11.4178 11.4178 9.7440 9.7440 10.4327 10.4327 10.2231 10.2231

5 14.7140 14.7140 7.8958 7.8958 13.5944 13.5944 13.6391 13.6391
ω∗
21 10 22.3965 22.3965 13.8801 13.8801 21.2357 21.2357 20.4789 20.4779

20 29.0240 29.0240 21.3567 21.3567 27.8333 27.8333 25.2664 25.2664

5 23.6208 23.6208 11.9501 11.9501 20.9313 20.9313 21.0482 21.0482
ω∗
31 10 37.7411 37.7411 21.2309 21.2357 35.0186 35.0186 34.5431 34.5431

20 53.5800 53.5800 35.6934 35.6934 51.6591 51.6591 47.5942 47.5942

5 18.6431 18.6431 10.2915 10.2915 18.3672 18.3672 18.2319 18.2319
ω∗
22 10 29.6593 29.6593 18.0932 18.0103 28.7240 28.7240 28.7234 28.7234

20 40.1367 40.1367 29.3559 29.3559 37.4744 37.4744 37.1180 37.1180

5 30.7853 30.7853 16.9820 16.9820 29.7901 29.7901 29.4727 29.4727
ω∗
33 10 51.5468 51.5468 29.2571 29.2571 50.7313 50.7313 50.5764 50.5764

20 77.4823 77.4823 50.7073 50.7073 73.8647 73.8647 73.6951 73.6951

graphite-epoxy Mat.4, and each ply is of equal thickness 0.2h. Plate (d) has symmetric substrate with

lay-up [00/900/900/00] and the of plate (e) has antisymmetric substrate with lay-up [900/00/900/00], as

shown in Fig. 3. The all above mentioned stacking sequences are from the base layer to top layer for all

plates, as shown in Fig. 3. The dimensionless flexural frequencies are tabulated in Table 4 for plates (b),

(c), (d) and (e) with the upper surface grounded (ϕ(x, y, h/2)=0) and the bottommost surface subjected

to open-circuit conditions (Dz(x, y,± − h/2)=0. The flexural frequencies are listed for different span to

thickness ratio, S=5,10, 20, and for different mode, (m, n) = (1, 1), (2, 1), (2, 2), (3, 1), (3, 3). The

present numerical results for hybrid smart plates (b), (c), (d) and (e) are compared with the 3D exact

results presented by Kapuria and Achary [94], which is also based on the Fourier series approach, known

as an exact solution. It is noted that the current power-series EKM model is very much accurate in

predicting flexural frequencies for symmetric and antisymmetric laminated/sandwich piezoelectric smart

plates. All numerical results are in excellent agreement with the 3D exact results of [94]. The current
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model is highly efficient and accurate, and moreover, accuracy is not affected much by thickness to span

ratio S and inhomogeneity in configurations.

After demonstrating the validation for simply-supported smart piezoelectric plates, the validation is carried

out for piezo-laminated smart rectangular plates subjected to arbitrary support conditions. The numerical

results obtained from the present power series-based EKM model are compared with the result presented

by Susanta and Kumari [93] which are obtained using 3D exact EKM. Table S1 (in the supplementary

material) shows the comparison of the first ten lowest natural bending frequencies for thick (S=5) and

moderately thick (S=10) hybrid smart plates (d) under different mechanical support conditions such as

SSSS, CSSS, CCSS, CFSS, and FFSS. Excellent agreement is observed for all the cases. It demonstrates

that the present power-series approach is efficient, yet accurate in solving coupled system of ODEs for

dynamic cases. It is worth noting that one term (n = 1) based EKM solution is enough to predict the

natural frequencies of the piezoelectric plate accurately. It is also worth mentioning that the present power

series-based EKM solution is equally accurate for predicting the natural frequencies of the thick and thin

hybrid piezoelectric plates subjected to open or closed-circuit conditions. The effects of electrical circuit

conditions are very less on flexural frequencies of the plate due to weak electro-mechanical coupling, but

these tiny effects play a vital role in precise control and sensory applications. It is observed that the

present mathematical model is very accurate and precise in predicting these small effects, as illustrated in

table 3, 4 and S1 (Supplementary material).

5.1.2 Hybrid piezoelectric rectangular plates with variable stiffness and density

After demonstrating the accuracy and efficacy of the current 3D mathematical model for constant stiffness

piezoelectric plates, the numerical study is extended to the analysis of functionally graded smart piezo-

plates in this section. Two types of smart FGM plates are taken into consideration for the numerical

study, (i) IPFG Plate (a): In-plane functionally graded rectangular substrate integrated with a single

piezoelectric layer at the top; and (ii) IPFG Plate (b): In-plane functionally graded rectangular substrate

integrated with the piezoelectric layer at bottom and top, as shown in Fig. 3. The thickness of PZT-

5A layers is 0.1h for both type of IPFG plates. To study the effect of in-plane stiffness variation on

dynamic behaviour of smart plates, three types of stiffness and density gradation cases are considered for

the elastic layers, Case (1): δ1 = δ2 = δp = 0.5; Case (2): δ1 = δ2 = δp = 1.0; and Case (3): δ1 = 2.0,

δ2 = 1.0, δp = 1.5 along with homogenous plate (constant properties) case (Constant: δ1 = δ2 = δp = 0.0).

The numerical results for homogenous (constant) property case are also presented along with graded

density and stiffness cases to access the influence of in-plane variation of stiffness and density on the

flexural frequencies and electro-mechanical behavior of IPFG plates. Only converged results are tabulated

here, which are obtained by taking n = 1, iter.1 for SSSS smart plate and n = 1, iter.2 for all other

types of support conditions. The convergence study of the present EKM approach is presented in Table

S2 (supplementary material). In subsequent sections, three-dimensional finite element (3D FE) results,

obtained using commercial finite element analysis (FEA) software ABAQUS, are also listed along with

present EKM results for validation purposes because no other analytical and semi-analytical solution exists

in literature for free-vibration of variable-stiffness piezoelectric plates. For 3D FE analysis, user material

subroutine (UMAT) is developed to implement the in-plane gradation of stiffness and density in the finite

element model and then converged FE results are obtained by using a discretization of 50 (length) ×50

(width) ×18 (thickness). For comparison and bench-marking purposes, the numerical results are tabulated

for various type of electrical and mechanical supports under different thickness ratios.

5.1.2.1 IPFG Plate (a): In-plane functionally graded rectangular elastic substrate inte-

grated with piezoelectric layer at top. An in-plane functionally graded plate (a) integrated with

a smart piezoelectric (PZT-5A) layer of thickness 0.1h at the top, as shown in Fig. 3, is taken into con-

sideration for numerical study in this section. The stiffness and density of the elastic composite layer are

assumed to vary linearly along the axial (x) direction where the elastic and electrical properties of the

piezoelectric layer are assumed constant. The side edges and top/bottom surface of the active piezoelectric
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Table 5: Influence of in-plane gradation of density and stiffness on natural flexural frequencies (ω∗ =
ωaS

√
ρ0/E0) of moderately thick (S = 10) IPFG smart piezoelectric plate (a) subjected to CCSS boundary

conditions.

Constant Case (1) Case (2) Case (3)
ω∗
nm Present 3D FE Present 3D FE Present 3D FE Present 3D FE

ω∗
11 15.390 15.489 12.978 13.099 10.422 11.403 10.095 10.350

ω∗
21 32.424 32.719 27.264 27.542 23.591 23.878 21.609 21.893

ω∗
31 52.017 52.585 43.763 44.260 37.874 38.348 34.936 35.382

ω∗
41 72.422 73.239 61.041 61.726 52.846 53.473 49.052 49.639

ω∗
51 93.019 94.057 78.703 79.483 68.166 68.903 63.588 64.264

ω∗
12 20.029 20.023 17.665 17.506 15.970 15.662 14.164 14.509

ω∗
22 35.752 36.000 30.489 30.724 26.716 26.962 24.711 24.960

ω∗
32 54.645 55.158 46.296 46.747 39.490 40.746 37.382 37.790

ω∗
42 74.610 75.381 63.149 63.795 54.871 55.465 51.079 51.638

ω∗
52 95.377 95.847 80.406 81.241 69.845 70.600 65.259 65.964

ω∗
13 29.065 29.224 26.133 26.275 23.841 23.977 22.276 22.407

ω∗
23 42.431 42.632 37.002 37.192 33.040 33.245 30.848 31.059

ω∗
33 59.759 60.187 51.322 51.697 45.232 45.596 42.201 42.549

ω∗
43 78.119 79.416 67.225 67.796 58.623 59.397 55.013 55.509

ω∗
53 98.246 99.174 83.813 84.573 73.198 73.890 68.556 69.203

Table 6: Effect of in-plane gradation (density and stiffness) on natural flexural frequencies (ω∗ =
ωaS

√
ρ0/E0) of moderately thick (S = 10) IPFG piezoelectric plate (a) for CFSS boundary condition.

Constant Case (1) Case (2) Case (3)
ω∗
nm Present 3D FE Present 3D FE Present 3D FE Present 3D FE

ω∗
11 5.199 5.226 4.489 4.507 3.984 3.996 3.628 3.636

ω∗
21 17.306 17.377 14.866 14.923 13.066 13.123 11.704 11.771

ω∗
31 36.543 36.966 31.267 31.051 27.376 27.375 24.764 24.805

ω∗
41 57.271 57.494 48.841 48.985 42.615 42.763 39.103 39.256

ω∗
51 78.411 79.372 66.622 67.341 58.109 58.554 53.830 54.201

ω∗
12 12.914 13.029 11.399 11.515 10.301 10.403 9.511 9.597

ω∗
22 22.869 22.936 20.014 20.070 17.911 17.963 16.487 16.547

ω∗
32 40.273 40.530 34.747 34.910 30.670 30.801 28.111 28.243

ω∗
42 60.118 60.462 51.512 51.754 45.147 45.352 41.665 41.872

ω∗
52 80.222 80.476 68.800 69.392 60.139 60.617 55.880 56.282

ω∗
13 24.382 24.537 21.685 21.830 19.712 19.790 18.148 18.263

ω∗
23 32.236 32.333 28.777 28.860 26.182 26.256 24.423 24.500

ω∗
33 47.100 47.317 41.240 41.383 36.893 37.008 34.248 34.362

ω∗
43 65.348 65.809 56.543 56.813 50.004 50.202 46.476 46.658

ω∗
53 84.524 85.722 72.866 73.438 64.089 64.454 59.784 60.086
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layer are considered under close-circuit conditions. First five lowest dimensionless fundamental flexural

frequencies (ω∗ = ωaS
√
ρ0/E0, here E0=10.3 GPa, ρ=1578 kg/m3 ) are tabulated for m = 1, 2 and 3

considering moderately thick (S = 10) hybrid plate (a) under different mechanical support conditions.

Results are listed for three gradation cases, i.e. Case(1), Case(2), and Case(3), along with homogeneous

plate (constant properties case) to investigate the influence of in-plane variation of stiffness and density

gradation on flexural frequencies. Tables 5 and 6 contain benchmark results for CCSS and CFSS support

conditions, respectively. Subsequently, the results are for SSSS, CSSS, SFSS, and FFSS support condi-

tions are tabulated in Table S3, S4, S5 and S6 (refer to the supplementary material), respectively. The

fundamental flexural frequencies for the in-plane graded hybrid plate are presented for the first time in this

paper. As the gradation index for elastic properties and density increases, the natural frequencies decrease

remarkably under all the support conditions. The quantitative effect of in-plane variation of density and

stiffness on flexural frequencies of hybrid rectangular plate primarily depends on the mechanical support

conditions of the IPFG plate. Percentage decrement in flexural frequencies due to the in-plane varition

of properties are plotted in Fig. S1, Fig. S2 and Fig. S3 of the supplementary material. An interesting

observation is that the extent of the effect of gradation on lower natural frequencies for m=1, 2, and 3

significantly depends upon the type of support conditions. On the other hand, the influence of gradation

on higher mode natural flexural frequencies (for m=1, 2, and 3) shows independence from mechanical

support conditions. The percentage change in higher mode natural flexural frequencies is nearly the same

for all support conditions. This observation is physically relevant considering the fact that higher flexural

vibration modes are more local in nature. For all hybrid plated, except FFSS plate, nearly 10 to 15%

decrement is noted in the lowest five flexural frequencies (m=1,2, and 3) for Case (1) compared to the

constant property case. For Case (2) and Case (3), the percentage decrease in flexural frequencies are 16

to 27% and 22 to 34% for Case (3), respectively. For the FFSS hybrid plate, these decrements are 7-14

% for Case (1), 12-26 % for Case (2), and 15-33 % for Case (2). All results reported in this section have

been computed by taking n = 1, iteration 1 for SSSS support conditions and n = 1, iteration 2 for other

support conditions.

After studying the influence of in-plane gradation of stiffness and density on the natural flexural frequen-

cies of the hybrid smart plate, the numerical investigation is extended to access the impact of in-plane

gradation on mode shapes of the hybrid plate. The flexural 3D mode shapes associated with the lowest

five natural frequencies are plotted for different types of support conditions under constant properties case

and gradation Case 1. The 3D mode shapes for the SSSS hybrid IPFG plate are displayed for constant

property case and gradation Case 1 in Fig. S4 and S5, respectively. Similarly, the 3D mode shapes for the

CSSS hybrid IPFG plate are displayed for homogenous case (constant property case) and gradation Case

1 in Fig. S6 and Fig. S7. Fig. S8 and Fig. S9 contain 3D mode shapes for the CCSS hybrid IPFG plate

for constant property case and gradation case 1, respectively. Similarly, the 3D mode shapes for other

boundary conditions are also plotted to investigate the influence of gradation in detail. In figure Fig. S10

and Fig. S11 results are plotted for CFSS plates. Mode shapes of SFSS and FFSS hybrid plates are given

in Fig. S12, Fig. S13, Fig. S14 and Fig. S15 for constant property case and gradation Case (1). The figures

S6-S15 are given in supplementary material. It is worth mentioning that all flexural mode shapes are

impacted significantly by the in-plane gradation of stiffness and density. Another interesting observation

is that the mode shape of the FFSS plate is affected more as compared to other support conditions.

Further, the influence of axial gradation of stiffness and density is also investigated on the longitudinal

variation of flexural deflection (w̄, v̄, ū) and stresses (σ̄x, σ̄y, τ̄xy, τ̄yz, τ̄xz) in the hybrid FGM plate. In

Fig. 4 and 5 longitudinal variation of stresses and displacements are plotted for the first flexural vibration

mode of moderately thick (S = 10) smart hybrid plate (a) subjected to SSSS and CFSS support conditions,

respectively. Subsequently, the longitudinal variation of stresses and displacements are also plotted for

CSSS, CCSS, and SFSS hybrid FGM plate in Fig. S16, S17, and S18 (supplementary material), respectively.

In these figures, the results are plotted for all gradation cases along with the constant property case. It

is found that the longitudinal variation of stresses in smart FGM plates is impacted significantly due
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Fig. 4: Influence of in-plane variation of density and stiffness on axial variations of displacements and
stresses for first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a)
subjected to SSSS boundary condition.

to in-plane gradation, whereas displacement of the IPFG plates is least affected. The effect on stresses

σ̄x, τ̄xy, and τ̄xz are more as compared to other stresses. It is worth mentioning that the extent of the

effect of gradation on displacement and stresses majorally depends on mechanical support conditions of

the hybrid plate. An interesting observation is that the intelligent IPFG plate is more sensitive to the

in-plane variation of density and elastic properties when subject to free edge boundary conditions such as

CFSS and SFSS plates. The relative influence of gradation is most when the IPFG plates are subjected

to the free-free boundary conditions. The effect is least when the hybrid piezoelectric plate is subjected

to clamped boundary conditions. It reveals that the natural flexural vibration behavior of the plate under

in-plane gradation mainly depends upon the mechanical end conditions of the plate.

Further, to access the effect of in-plane gradation of stiffness and density on sensory behavior of piezo-

electric layers, the longitudinal variation of the electric variable (D̄x, D̄y, D̄z and ϕ) are plotted for SSSS

and CFSS hybrid smart plate in Fig. 6 and 7, respectively. Similarly results are also plotted for CSSS

and SFSS hybrid smart plate in Fig. S19 and S20, respectively (supplementary material). It is found that

the variation of electrical variables in the piezoelectric sensor layer is not affected much by longitudinal

gradation of material properties in the elastic composite layers. A small effect of in-plane variation of den-

sity and stiffness is observed on electric field D̄z and electric potential (ϕ) under SSSS and CSSS support

conditions. It is worth noting that the natural flexural frequencies and their corresponding mode shapes

are affected remarkably by the axial gradation of properties in the elastic layer, whereas the response of the
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Fig. 5: Influence of in-plane variation of density and stiffness on axial variations of displacements and
stresses for first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate
(a) subjected to CFSS boundary condition.

Fig. 6: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a) subjected
to SSSS boundary condition.
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Fig. 7: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a) with CFSS
boundary condition.
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Fig. 8: Geometry of the smart in-plane functionally graded (IPFG) viscoelastic plates.

sensory layer remains almost identical or affected by a very small amount. This interesting observation

of the present study can play a significant role in the design of piezoelectric sensors and actuators for

vibration control applications.

5.1.2.2 IPFG Plate (b): In-plane functionally graded rectangular elastic substrate inte-

grated with two piezoelectric layers at top and bottom. In this section, the longitudinal graded

rectangular plate (b) which is integrated with the piezoelectric layers (PZT-5A) at the bottom and top,

as shown in Fig. 3, is investigated. The stiffness and density of the composite elastic layer are considered

to vary continuously and linearly along the x-direction, whereas the material properties of the PZT layers

are assumed constant. The side edges of the smart PZT-5A layers are grounded (ϕ(y, z)=0 at x = 0, a).

In Table 7 lowest ten natural flexural frequencies (ω∗ = ωh
√
ρ0/E0, where ρ=1578 kg/m3 , E0=10.3 GPa)

are presented for moderately thick (S = 10) hybrid IPFG plate (b) subjected to various mechanical edge

conditions such as SSSS, CSSS, CCSS, CFSS, SFSS and FFSS. Subsequently, the results for thick (S =

5) hybrid IPFG plate (b) are tabulated in Table S7 (refer to the supplementary material), respectively.

The benchmark numerical results are tabulated for three gradation cases (Case 1, Case 2, Case 3) along

with the homogeneous (constant property) case. Significant effect of in-plane variation of density and

stiffness is noted on the natural flexural frequencies of IPFG plates. The natural flexural frequencies show

significant decrement as the gradation index increases. The extent of the gradation influence mainly relies

on mechanical edge conditions of the hybrid IPFG plate.

Further, to assess the effect of in-plane gradation of stiffness and density on sensory behavior of piezoelectric

layers, the longitudinal variation of the electric variable (D̄x, D̄y, D̄z and ϕ) are plotted for SSSS, CSSS and

SFSS hybrid smart IPFG plate (b) in Fig. S21, S22 and S23, respectively (supplementary material). It is
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Table 7: Influence of in-plane gradation of density and stiffness on lowest ten natural flexural frequencies
(ω∗ = ωaS

√
ρ0/E0) of moderately thick (S=10, tp = 0.1h) IPFG smart plate (b) subjected to open–circuit

conditions at top and closed-circuit bottom surface.

1 2 3 4 5 6 7 8 9 10

ω∗
11 ω∗

12 ω∗
21 ω∗

13 ω∗
22 ω∗

23 ω∗
14 ω∗

31 ω∗
32 ω∗

24

Constant 9.673 18.145 24.673 29.816 30.493 39.573 42.621 42.815 47.909 50.502
SSSS Case 1 8.715 16.869 21.633 27.971 27.381 36.243 40.093 37.233 41.514 46.816

Case 2 7.951 15.791 19.322 26.353 24.968 33.602 37.797 33.030 37.283 43.834
Case 3 7.288 14.935 17.706 25.051 23.410 31.896 35.909 30.727 35.045 41.824

ω∗
11 ω∗

12 ω∗
21 ω∗

13 ω∗
22 ω∗

23 ω∗
14 ω∗

31 ω∗
32 ω∗

24

Constant 11.613 19.029 26.603 30.229 31.850 40.448 42.845 44.059 48.109 51.073
CSSS Case 1 10.392 17.564 23.430 28.250 28.593 36.983 40.214 38.526 42.550 47.266

Case 2 9.419 16.345 20.983 26.542 26.041 34.213 37.861 34.321 38.292 44.171
Case 3 8.649 15.423 19.358 25.201 24.441 32.456 35.952 32.054 36.055 42.108

ω∗
11 ω∗

12 ω∗
21 ω∗

13 ω∗
22 ω∗

23 ω∗
14 ω∗

31 ω∗
32 ω∗

24

Constant 13.747 20.063 28.338 30.229 33.152 40.448 43.094 45.232 49.083 51.655
CCSS Case 1 12.083 18.350 24.608 28.250 29.419 36.983 40.417 39.218 43.092 47.584

Case 2 10.809 16.958 21.840 26.542 26.599 34.213 38.019 34.777 38.626 44.347
Case 3 9.999 16.040 20.341 25.201 25.068 32.456 36.128 32.613 36.464 42.301

ω∗
11 ω∗

12 ω∗
21 ω∗

22 ω∗
13 ω∗

31 ω∗
23 ω∗

32 ω∗
13 ω∗

33

Constant 5.369 14.536 15.533 22.666 26.832 31.731 33.179 36.870 40.118 45.047
CFSS Case 1 4.873 13.340 13.948 20.792 24.677 28.186 30.840 33.213 36.904 41.151

Case 2 4.480 12.380 12.682 19.265 22.922 25.408 28.904 30.310 34.257 38.014
Case 3 4.194 11.631 11.665 18.149 21.514 23.499 27.461 28.456 32.122 36.050

ω∗
11 ω∗

21 ω∗
12 ω∗

22 ω∗
13 ω∗

31 ω∗
23 ω∗

32 ω∗
14 ω∗

33

Constant 4.684 13.549 14.353 21.532 26.762 29.949 32.558 35.615 40.083 44.207
SFSS Case 1 4.294 12.181 13.212 19.841 24.642 26.467 30.361 32.033 36.894 40.386

Case 2 3.982 11.098 12.287 18.463 22.904 23.779 28.542 29.223 34.253 37.341
Case 3 3.749 10.168 11.552 17.417 21.502 21.882 27.152 27.405 32.120 35.420

ω∗
11 ω∗

21 ω∗
12 ω∗

22 ω∗
31 ω∗

32 ω∗
13 ω∗

23 ω∗
41 ω∗

33

Constant 3.866 6.377 13.568 16.031 18.075 25.773 26.102 28.103 35.343 36.248
FFSS Case 1 3.657 5.991 12.795 15.180 16.182 23.643 24.464 26.820 31.090 33.683

Case 2 3.471 5.680 12.049 14.553 14.739 21.956 22.841 25.931 27.863 31.630
Case 3 3.310 5.480 11.389 14.111 13.541 20.763 21.468 25.187 25.850 30.253

found that the variation of electrical fields (D̄x, D̄y, D̄z) and potential (ϕ) in the piezoelectric sensor layer

is not affected much by longitudinal gradation of material properties in the elastic composite layers. It is

worth noting that the natural flexural frequencies are affected remarkably by such axial gradation, whereas

the electrical response of the piezoelectric layers remains almost unaffected irrespective of configuration.

This would have favorable design implications concerning sensor placements for vibration control and

health monitoring applications.

To study the effect of electrical edge conditions on the behaviour of the hybrid plate with in-plane

gradation, thick (S = 5) hybrid plate (b) is investigated in Table S7 (supplementary material) for

closed-closed circuit condition (ϕ(x, y,±h/2)=0), and closed-open circuit condition ((ϕ(x, y,−h/2)=0 and

Dz(x, y, h/2)=0). The lowest six dimensionless natural flexural frequencies are listed in Table S5 for smart

IPFG plate (b) under open-circuit condition at the topmost surface and closed-circuit condition at the bot-

tommost surface. The benchmarks numerical results are listed for different types of hybrid plate boundary

conditions such as SSSS, CSSS, CCSS, CFSS, SFSS, and FFSS. It is noticed that the influence of gradation

on natural flexural frequencies is unchanged by the type of electric circuit conditions at the bottom and

top surface of the plate. Under both types of electrical arrangements, the hybrid plate shows a similar
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decrement in flexural frequencies due to the in-plane variation. However, the natural frequencies of hybrid

FGM plate under open-circuit conditions are slightly higher than plate subjected to closed-closed circuit

conditions. It shows that the effect of electrical circuit condition is very week for the FGM hybrid plates.

It is observed that the present power series-based EKM methodology can accurately determine these small

effects for smart hybrid IPFG plates, which is important for precise control applications. Moreover, It

is worth mentioning that these numerical results can act as benchmark to develop accurate numerical

solutions for natural frequency based applications of hybrid IPFG plates. Note that the results for mode

shapes, displacements, stress and strain components for various vibration modes can be readily obtained

using the proposed framework, as presented in the preceding sub-section.

5.2 Viscoelastic analysis of smart hybrid IPFG plates
After performing the extensive elastic analysis, the present EKM based mathematical model has been

extended for viscoelactic analysis of in-plane functionally graded (IPFG) smart viscoelastic plates. The

effect of viscoelasticity on the dynamic behaviours of rectangular IPFG plate is studied in detail. For that

two types of configurations are considered as shown in Fig. 8.

In the viscoelastic analysis, the modulus amplitudes indicate the strength of the frequency (ωs) domain

signal, whereas the phase angle (ϕs) of the signal shows the alignment of frequency components in time.

The variation of viscoelastic moduli amplitude and phase angle (ϕs) with respect to frequency are plotted

in Fig. S24 (supplementary material). The variation is plotted by considering viscoelastic parameters as

µ = (ωs)max/1.4 and ϵ=0.2 for obtaining the numerical results. The amplitude of elastic and shear moduli

increases as the frequency (ωs) increases until its limiting values as defined in Appendix B (supplementary

material). The value of all three elastic and shear moduli at very low frequency (i.e., ωs → 0) are equal to

the classical elastic and shear moduli of elastic case. A similar trend of viscoelastic material properties is

also observed for irregular honeycombs in frequency domain by Mukhopadhyay et al. [75] and for strand-

based composite materials in the time domain by Malekmohammadi et al. [96]. The variation of phase

angle (ϕs) corresponding to all three elastic and shear moduli in frequency (ωs) domain is also plotted

in Fig. S18 (Supplementary material). The phase angle achieves the peak value for a certain critical

frequency, which can be calculated easily using Eq. (29). This variation of phase angle (ϕs) is explained by

the Biot model which is similar to the linear standard viscoelastic model given in Fig. 2. In the Biot model,

material behavior is pure elastic at very low and very high frequencies, and the viscous effect is maximum

at certain critical frequencies (ωs). The phase angles (ϕs) variation corresponding to Young’s moduli and

shear moduli are same for all cases, unlike the amplitude of elastic and shear moduli. It is worth noting

that the phase angles are not dependent on the material’s elastic properties and their values corresponding

to different Young’s moduli and shear modulus remain unchanged, unlike amplitude of elastic and shear

moduli.

After obtaining the variation of amplitude and phase angle of elastic and shear moduli in frequency (ωs)

domain, it has been transformed to the time domain (t) using discrete inverse Fourier series transformation

(IFFT) technique, as explained in Sec. 3.3.1. Figure S25 (supplementary material) shows the variation

of elastic and shear moduli in the time domain. All three elastic and shear moduli values at t → 0 are

almost equal to classical elastic and shear moduli without viscoelasticity effect. As time increases, the

value of elastic and shear moduli relaxes and becomes constant after a certain time. A similar trend of

elastic and shear moduli in the time-domain has also been reported by Endo and Pereira [97] for an or-

thotropic viscoelastic material. Furthermore, they also validated their Prony series computational model

with experimental data obtained by the creep Test of material. A similar trend of time-dependent Young’s

modulus for isotropic material has also been observed by Jalocha [98] using a generalized Maxwell model.

In the next stage, the time-dependent variation of Young’s moduli and shear moduli is utilized to obtain

the time-dependent natural flexural frequency response of viscoelastic smart plates (a) and (b), as shown

in Fig. 8. It is considered that the bottom surface of the IPFG viscoelastic smart plate is subjected
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Fig. 9: Effect of viscoelasticity on the first five lowest natural frequencies of three-layered moderately thick
(S=10) viscoelastic smart plate (a) without graded properties. The time-dependent variation of first five
lowest natural frequencies is plotted in non-dimensionalized form for different boundary conditions such as
SSSS, CSSS, CCSS, CFSS. The non-dimensionalization is performed by dividing the natural frequencies
of viscoelastic plate by the corresponding natural frequency of elastic plate given in Table 7.

to closed-circuit condition i.e. ϕ(x, y,−h/2)=0, and the top surface is under open circuit condition i.e.

Dz(x, y, h/2)=0. First, the effect of viscoelasticity on natural frequencies is studied for smart viscous plate

(a) (plate without in-plane gradation) subjected to different mechanical boundary conditions. Figure 9

shows the influence of viscoelasticity on the first five lowest natural frequencies of three-layered moderately

thick (S = 10) viscoelastic smart plate (a) without graded properties.

The time-dependent variation of the first five lowest natural frequencies is plotted in non-dimensionalized

form for different boundary conditions such as SSSS, CSSS, CCSS, CFSS. The non-dimensionalization

is performed by dividing the flexural frequencies of the viscoelastic plate by the corresponding flexural

frequency of elastic plate given in Table 7. It is observed that the viscoelastic layer acts as a damper.

Due to viscoelastic behavior of the composite layer, the natural frequencies of the smart hybrid plate are

decreased with increasing time. It is worth noting that the natural frequencies decrease gradually with

time, unlike viscoelastic properties, which decrease fast with the increase in time. The viscoelastic effect

on lower vibration modes is more influenced by mechanical boundary conditions of the plates. The effect

of viscoelasticity on higher mode natural frequencies is almost similar under all support conditions.

Figure S26 (supplementary material) shows the effect of viscoelasticity on the first natural flexural fre-

quencies of three-layered moderately thick (S = 10) inhomogeneous viscoelastic smart plate (b) having

graded properties. The time-dependent variation of natural frequencies is plotted in non-dimensionalized

form for different gradation cases under different edge conditions such as SSSS, CSSS, CCSS, CFSS. The

non-dimensionalization is done by dividing the flexural frequencies of the viscoelastic plate by the flex-

ural frequencies of the elastic plate without any gradation given in Table 7. It is found that the trend

of viscoelatic effect on natural frequency is not affected much by inhomogeneity in composite layers, al-

beit the numerical values become different. For different gradation cases, the natural frequencies of the
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Fig. 10: Effect of viscoelasticity on the in-plane stress σ̄x, transverse stress σ̄zx, electric field D̄z and electric
potential ϕ̄ of three-layered moderately thick (S = 10) viscoelastic smart plate (a) with non-graded and
graded properties. The time-dependent variation of in-plane stress σ̄x, transverse stress σ̄zx, electric field
D̄z and electric potential ϕ̄ is plotted in non-dimensionalized form for first vibration mode under SSSS
boundary condition. The non-dimensionalized initial values of in-plane stress (σ̄x)0 = -5.8047, transverse
stress (σ̄zx)0 = 0.53780, electric field (D̄z)0 = 3.1374 and electric potential (ϕ̄)0 = -2.3274 ×10−3 for
non-viscous non-graded case are used for further normalization of the viscoelastic case.

plate decrease with time in a similar pattern under all mechanical support conditions. Figure 10 shows

the influence of viscoelasticity on the in-plane stress σ̄x, transverse stress σ̄zx, electric field D̄z and elec-

tric potential ϕ̄ of three-layered moderately thick (S = 10) viscoelastic smart plate (a) with non-graded

and graded properties. The time-dependent variation of in-plane stress σ̄x, transverse stress σ̄zx, electric

field D̄z and electric potential ϕ̄ is plotted in non-dimensionalized form for first vibration mode under

SSSS boundary condition. The non-dimensionalized initial values of in-plane stress (σ̄x)0=-5.8047, trans-

verse stress (σ̄zx)0=0.53780, electric field (D̄z)0=3.1374 and electric potential (ϕ̄)0=-2.3274 ×10−3 for

non-viscous non-graded case are used for further scaling of the viscoelastic case. It is observed that the

stresses in the plate decrease fast with the increase in time and become constant after a certain value of

time. Similar trend in time-dependent behavior of stresses are observed under the gradation of properties

and for the non-graded case, albeit with a difference in numerical values. The time-dependent behavior of

stresses is similar to time-dependent behaviors of viscoelastic properties like in Young’s and shear moduli.

However, electrical potential (ϕ̄) and electric field decrease (D̄z) gradually as time increases under both

graded and non-graded case. It is also noted that the effect of gradation in elastic properties on elec-

trical potential (ϕ̄) and electric field (D̄z) initially is very less but increases significantly as time grows.

This shows that the gradation of material properties in the presence of viscoelasticity alters the electric

response of piezoelectric layers to a significant extent. In general, the numerical study considering vis-

coelastic behaviour demonstrates a potential time-dependent structural behaviour, which could be crucial

for analysing the mechanical behaviour of a wide range of polymer composites accurately and prospective

time-dependent programming in smart structural systems.
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6 Conclusions and perspective

The influence of in-plane gradation of stiffness and density on the free-vibration response of hybrid piezo-

electric Levy-type plate is investigated by developing an accurate analytical solution. Further, the coupled

effect of viscoelasticity and gradation on the natural frequency response of the IPFG smart viscoelastic

plates is studied. The displacement, stresses, and electrical variables are solved as the primary variable by

developing Hamilton’s principle-based mixed formulation. A power series approach is used in conjunction

with the extended Kantorovich method and Fourier series to obtain the closed-form analytical solution for

Levy-type support condition. Biot model, which corresponds to a standard linear viscoelastic model, is

coupled with the analytical framework to implement the viscoelasticity of composite layers in the analysis.

Although the present analytical solution is developed for the elastic and viscoelastic analysis of smart

in-plane functionally graded rectangular plates, it is also directly applicable for the natural frequency

analysis of the symmetric and asymmetric laminated piezoelectric viscoelastic/elastic plates of constant

properties.

An extensive numerical study is performed to assess the effect of in-plane gradation and viscoelasticity

of material properties on natural frequencies and mode shapes of hybrid FGM plates. The benchmark

numerical results are tabulated for various gradation cases and configurations under different electrical

and mechanical support conditions. Numerical results for homogenous piezoelectric elastic/viscoelastic

plates are also reported as a special case of the present study. The current results are validated with the

results available in the open literature and 3D FE results by performing separate numerical simulations.

It is found that the present EKM-power series analytical model is very efficient and accurate in depicting

the flexural frequencies and mode shapes of the hybrid FGM viscoelastic and elastic plates. Some of the

most significant outcomes of this study are listed below.

� The in-plane gradation of stiffness and density in the elastic layers significantly alters the flexural

frequencies of the hybrid intelligent plate. As material properties variation indexes increase, the

flexural frequencies of the smart plate decrease remarkably. When the gradation indexes become

doubled (from 0.5 to 1), the percentage decrement in natural frequencies is almost raised by 1.5

times. The effect of gradation on free vibration response significantly depends upon the type of

mechanical support conditions.

� The influence of gradation in lower mode natural frequencies specifically depends on mechanical

support conditions of the hybrid plate. Further, percentage decrement in first and lower mode

natural frequencies is different for different support conditions, while the effect of gradation in

higher mode frequencies shows less sensitivity to support conditions. The decrement in higher mode

natural frequencies almost remains the same for all boundary conditions. Another interesting finding

is that the influence of in-plane gradation on flexural frequencies is not affected much by the electrical

circuit conditions of piezoelectric layers.

� The mode shapes of the IPFG smart plate are affected significantly due to in-plane variation of stiff-

ness and density. The symmetric mode shapes of the plate can be made asymmetrical by introducing

appropriate gradation.

� The stresses in the smart FGM plates are influenced remarkably by in-plane variation of material

properties. It is found that as the gradation index increases, the stresses in the IPFG smart plate

decrease. But displacements, electric field, and electrical potential are not significantly affected by

the gradation of stiffness and density.

� Though the in-plane gradation of stiffness and density significantly affects the flexural frequencies of

the smart hybrid plate, their effect on the electric voltage of the piezoelectric layer is considerably

less. This observation can play a significant role in the design of sensors or actuators for vibration

control applications.

� The current investigation shows that the desired electromechanical responses of hybrid IPFG plate

can be obtained by controlling the in-plane variation of material properties in the elastic layers. Based

on the proposed efficient and accurate numerical framework, further studies can be undertaken to
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simultaneously optimize multiple electrical and mechanical response parameters of interest in an

expanded design space of layer-wise gradation parameters, material and geometric properties.

� For viscoelastic smart plates, the natural frequencies decrease gradually with time, whereas stresses

in plate decrease fast and become constant after a critical time period. The decrement in electric

response (in electric field and electric voltage) of the smart plate is also gradual. It is observed that

the gradation of material properties in the presence of viscoelasticity significantly alters the electric

response of piezoelectric layers. The presented numerical results demonstrate a great potential of

the proposed viscoelastic analysis in the time domain for programming electromechanical responses

of composite structures.

� Due to the consideration of viscoelastic effect, the natural frequencies decrease with time. The

physical meaning of this variation is that the damping properties of viscoelastic layers diminish

vibrational properties, while the damping behavior mainly depends upon the type of boundary

conditions. It is worth noting that the natural frequencies decrease gradually with time, unlike

viscoelastic properties, which decrease fast with the increase in time. The viscoelastic effect on lower

vibration modes is more influenced by mechanical boundary conditions of the plates. The effect of

viscoelasticity on higher mode natural frequencies is almost similar under all support conditions.

The numerical study demonstrates a potential time-dependent electromechanical behaviour based on the

present viscoelastic modelling coupled with in-plane gradation, which could be crucial for analysing the

structural behaviour of a wide range of ‘intelligent’ polymer composites accurately and prospective tem-

poral programming in smart structural systems. The analytical results provided in this paper will serve

as benchmarks to validate numerical algorithms in applications of natural frequency analysis for elas-

tic/viscoelastic piezoelectric plates with or without gradation. Furthermore, the present analytical solu-

tion approach can also be extended to obtain analytical solutions for bending and free vibration analysis

of multi-directional functionally graded smart plates.
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[69] J. S. Moita, A. L. Araújo, V. F. Correia, C. M. M. Soares, J. Herskovits, Active-passive damping in
functionally graded sandwich plate/shell structures, Composite Structures 202 (2018) 324–332.

[70] F. Mastroddi, F. Martarelli, M. Eugeni, C. Riso, Time-and frequency-domain linear viscoelastic
modeling of highly damped aerospace structures, Mechanical Systems and Signal Processing 122
(2019) 42–55.

[71] A. Batou, S. Adhikari, Optimal parameters of viscoelastic tuned-mass dampers, Journal of Sound
and Vibration 445 (2019) 17–28.

[72] W. Sun, Z. Wang, X. Yan, M. Zhu, Inverse identification of the frequency-dependent mechanical
parameters of viscoelastic materials based on the measured frfs, Mechanical Systems and Signal Pro-
cessing 98 (2018) 816–833.

[73] P. Grosso, A. De Felice, S. Sorrentino, A method for the experimental identification of equivalent
viscoelastic models from vibration of thin plates, Mechanical Systems and Signal Processing 153
(2021) 107527.

[74] A. Singh, P. Kumari, Two-dimensional free vibration analysis of axially functionally graded beams
integrated with piezoelectric layers: An piezoelasticity approach, International Journal of Applied
Mechanics 12 (04) (2020) 2050037.

[75] T. Mukhopadhyay, S. Adhikari, A. Batou, Frequency domain homogenization for the viscoelastic
properties of spatially correlated quasi-periodic lattices, International Journal of Mechanical Sciences
150 (2019) 784–806.

[76] D. I. Jones, Handbook of viscoelastic vibration damping, John Wiley & Sons, 2001.
[77] R. Christensen, Theory of viscoelasticity: an introduction, Elsevier, 2012.
[78] P. A. M. Dirac, et al., The principles of quantum mechanics, no. 27, Oxford university press, 1981.
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Supplementary Material

Appendix A.

s11 = 1/Y1, s44 = 1/G23, s12 = −ν21/Y2 = −ν12/Y1
s22 = 1/Y2, s55 = 1/G13, s13 = −ν31/Y3 = −ν13/Y1 (A.1)

s33 = 1/Y3, s66 = 1/G12, s23 = −ν32/Y3 = −ν23/Y2
ϵ11 = η11 + e15d15, ϵ22 = η22 + e24d24, ϵ33 = η33 + e31d31 + e32d32 + e33d33

with

[ e31 e32 e33 ] = [ d31 d32 d33 ]

 s11 s12 s13
s12 s22 s23
s13 s23 s33

−1

(A.2)

e24 = d24/s44, e15 = d15/s55

Here Yi, Gij and νij designate Young’s moduli, shear moduli and Poisson’s ratios, respectively.

Appendix B.

|Ei(ωs)| → (Es)i for µ → ∞ and |Ei(ωs)| → (Es)i(1 + ε̄s) for µ → 0 ∀ωs > 0

|Gij(ωs)| → (Gs)ij for µ → ∞ and |Gij(ωs)| → (Gs)ij(1 + ε̄s) for µ → 0 ∀ωs > 0

|Ei(ωs)| → Esi for ωs → 0 and |Ei(ωs)| → Esi(1 + ε̄s) for ωs → ∞ ∀µ > 0 (B.1)

|Gi(ωs)| → (Gs)ij for ωs → 0 and |Gi(ωs)| → (Gs)ij(1 + ε̄s) for ωs → ∞ ∀µ > 0

ϕs (Ei(ωs)) = ϕs (Gij(ωs)) → 0 for µ → 0 and ϕs (Ei(ωs)) = ϕs (Gij(ωs)) → 0 for µ → ∞ ∀ωs > 0

ϕs (Ei(ωs)) = ϕs (Gij(ωs)) → 0 for ωs → 0 and ϕs (Ei(ωs)) = ϕs (Gij(ωs)) → 0 for ωs → ∞ ∀µ > 0

1



Appendix C.

Using the notation ⟨. . .⟩a = a
∫ 1
0 (. . .)dξ1 for integration over the span length (a), the non-zero elements

of coefficient matrices M, Ā, Āv, Â, Âv, Km, Ã , Ãv are,

Mi1j1
= Mj6i6

= ⟨f i
9f

j
1 ⟩a, Mi2j2

= Mj5i5
= ⟨f i

8f
j
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= Mj4i4
= ⟨f i

6f
j
3 ⟩a
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13f

j
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= −t
a ⟨f i
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j
3,ξ1
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= ts̄55⟨f i
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j
9 ⟩a,
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9f
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= −t
a ⟨f i

3f
j
9,ξ1

⟩a,
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= m̄⟨f i
7f

j
1 ⟩a Ãi3j2

= 1
a⟨f

i
7f

j
2,ξ1

⟩a

Ãi4j6
= d̄15⟨f i

11f
j
9 ⟩a, Ãi4j7

= − 1
a⟨f

i
11f

j
10,ξ1

⟩a, Ãi5j5
= d̄24⟨f i

12f
j
8 ⟩a

Ãi5j7
= −m̄⟨f i

12f
j
10⟩a, Āi4j3

= −ρω2t⟨f i
3f

j
3 ⟩a, Āv

i4j3
= −δpω

2t⟨ρ ξ1f i
3f

j
3 ⟩a

Āi5j2
= −ρω2t⟨f i

2f
j
2 ⟩a, Āv

i5j2
= −δpω

2t⟨ρ ξ1f i
2f

j
2 ⟩a, Āi6j1

= −ρω2t⟨f i
1f

j
1 ⟩a

Āv
i6j1

= −δpω
2t⟨ρ ξ1f i

1f
j
1 ⟩a

(C.1)

Since the functions f i
l are presumed for first starting iteration, the coefficient element, given in Eq. (C.1),

could be solved in closed-form by performing integration along x-direction.
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Appendix D.

The solution of

Ḡ,ζ = A(ω)Ḡ (D.1)

is assumed in this form Ḡc(ζ) = eλζY. This assumed solution is substituted in Eq. (D.1) and it leads to an
eigenvalue problem AY = λY. In this equation, λ represents 8n eigenvalues which can be complex or real.
Y represents corresponding 8n eigenvector pairs of matrix A which are functions of flexural frequency ω.
Then, the final solution of Eq. (D.1) can be expressed as

Ḡ(ζ) =

8n∑
i=1

Gi(ζ, ω)Ci (D.2)

Here Gi(ζ, ω) represents a column vector which is the function of corresponding eigenvalue (λi) and
eigenvector (Yi) pairs. Ci is unknown coefficients which depend upon shear traction free condition of top
and bottom surface. After applying 8n(L − 1) interface continuity conditions and 8n shear traction free
constraints conditions of exterior (top and bottom) surface, equation (D.2) is transformed to the following
form,

8n∑
i=1

Kdi(ζ, ω)Ci = 0 (D.3)

Here, the matrix Kd is the function of flexural frequencies (ωn). The determinant of coefficient matrix Kd

is zero (|det(Kd)|=0) for a nontrivial solution and flexural frequencies (ωn) can be obtained by solving the
equation |det(Kd)|=0. In the present paper bisection method is employed to find roots of the equation
|det(Kd)|=0. In this way, natural frequencies ω01 (ω01 = ωn) have been obtained for first iteration.
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Appendix E.

The nonzero elements of N8n×8n, B̄8n×8n, B̄
v
8n×8n, B̂8n×5n, B̂

v
8n×5n, L5n×5n, B̃5n×8n and B̃v

5n×8n ma-
trices are given below

Ni1j1
= Nj4i4

= ⟨gi4g
j
1⟩h, Ni2j2

= Nj5i5
= ⟨gi7g

j
2⟩h, Ni3j3

= Nj6i6
= ⟨gi9g

j
3⟩h

Ni7j7
= Nj8i8

= ⟨gi10g
j
11⟩h, B̄i1j4

= a⟨s̄11gi4g
j
4⟩h, B̂i1j1

= a⟨s̄12gi4g
j
5⟩h

B̄v
i1j4

= aδ1ξ1⟨s̄11gi4g
j
4⟩h, B̂i1j2

= a⟨s̄13gi4g
j
6⟩h, B̂v

i1j1
= δ1ξ1a⟨s̄12gi4g

j
5⟩h

B̂v
i1j2

= δ1ξ1a⟨s̄13gi4g
j
6⟩h, B̂i1j5

= ⟨d̄31gi4g
j
13⟩h, B̄i2j1

= −m̄ a⟨gi7g
j
1⟩h

B̄i2j5
= a⟨s̄66gi7g

j
7⟩h, B̄v

i2j5
= δ2ξ1 a⟨s̄66gi7g

j
7, B̄i3j1

= −a⟨gi9
gj1,ζ
t ⟩h⟩h

B̄i3j6
= a⟨s̄55gi9g

j
9⟩h, B̄v

i3j6
= δ2ξ1a⟨s̄55gi9g

j
9⟩h, B̄i3j8

= a⟨d̄15gi9g
j
11⟩h

B̄i4j5
= m̄ a⟨gi1g

j
7⟩h, B̄i4j6

= a⟨g
i
1,ζ

t gj9⟩h, B̂i5j1
= −m̄ a⟨gi2g

j
5⟩h

B̂i5j3
= a⟨g

i
2,ζ

t gj8⟩h, B̂i6j2
= −a⟨gi3

gj6,ζ
t ⟩h, B̂i6j3

= a m̄⟨gi3g
j
8⟩h

B̄i7j8
= −a⟨ϵ̄11gi11g

j
11⟩h, B̄i7j6

= a⟨d̄15gi11g
j
9⟩h, B̂i8j4

= am̄⟨gi10g
j
12⟩h

B̂i8j5
= −a⟨gi10

gj13,ζ
t ⟩h, Li1j1

= ⟨s̄22gi5g
j
5⟩h, Li1j2

= ⟨s̄23gi5g
j
6⟩h

Li1j5
= ⟨d̄32gi5g

j
13⟩h, Li2j2

= ⟨s̄33gi6g
j
6⟩h, Li2j1

= Li1j2

Li2j5
= ⟨d̄33gi6g

j
13⟩h, Li3j3

= ⟨s̄44gi8g
j
8⟩h, Li3j4

= ⟨d̄24gi8g
j
12⟩h

Li4j3
= Li3j4

, Li4j4
= −⟨ϵ̄22gi12g

j
12⟩h, Li5j1

= ⟨d̄32gi13g
j
5⟩h

Li5j2
= ⟨d̄33gi13g

j
6⟩h, Li5j5

= −⟨ϵ̄33gi13g
j
13⟩h, B̃i1j2

= −m̄⟨gi5g
j
2⟩h

B̃i1j4
= −⟨s̄12gi5g

j
4⟩h, B̃v

i1j4
= δ1ξ1⟨s̄12gi5g

j
4⟩h, B̃i2j3

= ⟨gi6
gj3,ζ
t ⟩h

B̃i2j4
= −⟨s̄13gi6g

j
4⟩h, B̃v

i2j4
= −δ1ξ1⟨s̄13gi6g

j
4⟩h, B̃i3j3

= m̄⟨gi8g
j
3⟩h

B̃i3j2
= ⟨gi8

gj2,ζ
t ⟩h, B̃i4j7

= m̄⟨gi12g
j
10⟩h, B̃i5j4

= −⟨d̄31gi13g
j
4⟩h

B̃i5j7
= ⟨gi13

gj10,ζ
t ⟩h, B̄i4j1

= −aρω2⟨gi1g
j
1⟩h, B̄v

i4j1
= −δp aρω

2ξ1⟨gi1g
j
1⟩h

B̄i5j2
= −aρω2⟨gi2g

j
2⟩h, B̄v

i5j2
= −δp aρω

2ξ1⟨gi2g
j
2⟩h, B̄i6j3

= −aρω2⟨gi3g
j
3⟩h

B̄v
i6j3

= −δp aρω
2ξ1⟨gi3g

j
3⟩h

(E.1)

Here notation ⟨. . .⟩h =
∑L

k=1 t
(k)
∫ 1
0 (. . .)

(k) dζ indicates integration across the thickness. However, gil(ζ)
are already known in closed-form from previous iteration, hence all above elements (E.1) can also be solved
exactly in closed form by executing integration over ζ direction on the known gil functions.
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Appendix F.

The final solution for the current system of variable coefficient ODEs

F̄,ξ1 = {B0(ω) + ξ1B1(ω) + ξ21B2}F̄ (F.1)

can be expressed in the following power series form,

F̄j(ξ1) =

( np∑
i=0

Hj
i ξ

i
1

)
C0 (F.2)

By substituting assumed solution, Eq.(F.2), into Eq.(F.1) following recursive relations are obtained for
Hi,

Ĥ0 = I; Ĥ1 = B0; Ĥ2 = B0Ĥ1 +B1

Ĥi+1 = B0Ĥ1 + iB1Ĥi−1 + i(i− 1)B2Ĥi−2 for i ≥ 2 (F.3)

Here, np is total number of terms in power series which has been taken large enough that makes sure
that the contribution of next succeeding terms will be nominal and should be less than η (= 10−10). C0
is unknown coefficient vector which can be obtained after applying mechanical and electrical boundary
conditions in ξ1-direction. When the boundary conditions of end ξ1 = 0 and ξ1 = 1 are applied, Eq. (F.2)
leads to,

8n∑
i=1

Kdi(ξ1, ω)Ci = 0 (F.4)

where the coefficient matrix Kd for this iteration is function of ω = ωm. Similarly for nontrivial solution
its determinant must be zero. So, ωm has been obtained by solving equation |det(Kd)|=0 employing the
root finding techniques called as bisection method.

Appendix G.

Remark 1. Advantages of the proposed mathematical model compared to others approaches.
In recent studies, it has been shown that the displacement-based 3D FE solutions fail to predict the sharp
variation of transverse stresses in the composite/FGM structures as it fails to satisfy the traction-free
conditions at the top and bottom surfaces, particularly where there are sharp stress gradients, such as near
clamped edges [Ref. 4,30,32,66,81,82]. On the other hand, the proposed multi-term mixed-field extended
Kantorovich method (MMEKM) is very robust and accurate in solving such 3D piezo-elasticity problems
and able to satisfy all boundary and inter-facial continuity conditions exactly in a strong sense as the
formulation is developed in mixed form. Here, mixed form means that the displacements, stresses, and
electrical variables (electric field and electric potential) are solved as the primary variables. It is also
worth mentioning that the accuracy of the current model is not affected by the span to thickness ratio (S)
and configurations of laminates. It is equally efficient and accurate for thick to thin plates and also for
symmetric to highly in-homogeneous asymmetric laminates, where the use of classical 2D laminate theories
is limited to thin and symmetric laminates [Ref. 3-5].

Remark 2. Poling in piezoelectric material. Piezoelectric materials in the natural case are composed
of microscopic electric dipoles with random orientation, rendering the overall polarization of the material
zero. When stress is applied to this piezoelectric material through a mechanical force, it will result in a
very small polarization. Hence, natural piezoelectric materials show a weak piezoelectric effect. In order
to make the piezoelectric material much more piezoelectric sensitive and effective, initial directions of such
dipoles need to be oriented in the direction of the applied forces. This process of forcing the dipoles to
orient themselves in a prescribed direction is called poling. It is usually performed by applying a strong
electric field in the prescribed direction for a sufficiently long time. After removing the electric field, most
of the dipoles would remain in their initial orientation. The process of poling piezoelectric material is
very similar to the magnetization of magnetic material, where one applies a sufficiently strong magnetic
field to align the internal microscopic magnetic dipole moments of the material. After the removal of the
magnetizing magnetic field, the dipoles hold their orientation gained by the magnetization.

Remark 3. Fourier series approach for y-direction solution. To obtain the solution for y-direction
of plate, Fourier series approach is utilized and solution is assumed in form of Fourier series in such a
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manner that it satisfies simply-supported end conditions (σy = w = u = 0 at edges ξ2 = 0, 1) of y direction.

[u, w, σx, σy, σz, τzx, ϕ, Dx, Dz] =
∞∑

m=1

[(u, w, σx, σy, σz, τzx, ϕ, Dx, Dz)m cosωt] sinmπξ2

[v, τyz, τxy, Dy] =

∞∑
m=1

[(v, τyz, τxy, Dy)m cosωt] cosmπξ2 (F.5)

where ( )m denotes the mth term of Fourier series, and it is the function of ξ1 and ζ. Here, ξ2 is the
y-direction coordinate parameter which is given by ξ2 = y/b. Hence, ξ2 always has a value from 0 to 1 for
any value of b (length of the plate along y direction). Hence, ξ2 = 0 at y = 0 and ξ2 = 1 at y = b. Thus
assumed Fourier series satisfies given simply supported condition at the end y=0 and y=b [sin(0) = 0
and sin(pi) = 0]. In the present study, no material and geometrical discontinuity is considered along
the y-direction. Thus, the present domain will always be continuous, so the assumed form of the Fourier
series is enough to satisfy the boundary conditions in L2(0, 1). Moreover, for simply-supported condition
at y=0, b (which is roller type support and closed circuit) the variable ‘v’ and its corresponding variables
(τyz, τxy and Dy) should not be zero to depict the exact closed-circuit simply-supported conditions. Hence,
cos(mπξ2) is used with the Fourier series for these variables.

Remark 4. Derivation Kramers–Kronig relations. The bidirectional mathematical relations of
Kramers–Kronig connects the real and imaginary parts of any complex function or signal that is analytic
in the upper half-plane. These relations are usually employed during signal processing to calculate the real
part of signal from the imaginary part of signal (or vice versa) in physical systems.

Let χ(ωs) = χ1(ωs) + iχ2(ωs) be a complex function (signal) of the complex variable ωs, where χ1(ωs)
and χ2(ωs) are real. Similarly, if χ(ωs) is analytic function in the closed upper half-plane of ωs, then
function ω′

s → χ(ω′
s)/(ω

′
s − ωs) will also be analytic in the upper half of the plane. Further, contour is

chosen as a hump over the pole at ω′
s = ωs, and a large semicircle in the upper half plane to trace the real

axis. Hence, according to the residue theorem for any closed contour within this region.∮
χ(ω′

s)

ω′
s − ωs

dω′
s = 0 (F.6)

Then the integral is passed to limits after decomposing into its contributions along each of these three con-
tour segments. The length of segment corresponds to semicircular increaseas respectively to |ω′

s|. However,
the integral over it become zero on the limits because χ(ω′

s) approaching zero faster than 1/|ω′
s|

0 =

∮
χ(ω′

s)

ω′
s − ωs

dω′
s = Ps

∞∫
−∞

χ(ω′
s)

ω′
s − ωs

dω′
s − iπχ(ωs). (F.7)

Hence,

χ(ωs) =
1

iπ
Ps

∞∫
−∞

χ(ω′
s)

ω′
s − ωs

dω′
s (F.8)

The relation between the real and imaginary components of signal is proved by single i in the denominator.
Finally, χ(ωs) can be obtained into their real and imaginary parts from the equation χ(ωs) = χ1(ωs) +
iχ2(ωs). The imaginary part of a signal (response function) indicates the way of system in which it losses
(dissipates) energy. The Kramers–Kronig relations suggest that the dissipated response of a signal or
system is enough to determine its out of phase response, and vice versa. The integration from −∞ to ∞
indicates the inclusion of negative and positive frequencies. Generally, the negative-frequency response of
a signal or a system can be determined by its positive frequency-response because in most physical systems,
χ(ωs) is the Fourier transform of response χ(t) corresponds to real-valued where it is assumed that the
χ(−ωs) = χ∗(ωs). It indicates that χ1(ωs) represents the even function in frequency domain and χ2(ωs)
represents odd function in frequency domain. By employing these properties, the integration ranges can be
reduced to [0,∞). The multiplication of the numerator and denominator of the integral part by (ω′

s + ωs)
and separation gives the real part χ1(ωs) as

χ1(ωs) =
1

π
Ps

∞∫
−∞

ω′
sχ2(ω

′
s)

(ω′
s)

2 − (ωs)2
dω′

s +
ωs

π
Ps

∞∫
−∞

χ2(ω
′
s)

(ω′
s)

2 − (ωs)2
dω′

s. (F.9)
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Here, χ2(ωs) is odd, Hence, the second integral becomes zero and it gives

χ1(ωs) =
2

π
Ps

∞∫
0

ω′
sχ2(ω

′
s)

(ω′
s)

2 − (ωs)2
dω′

s. (F.10)

The same procedure for the imaginary part produces

χ2(ωs) = − 2

π
Ps

∞∫
0

ωsχ1(ω
′
s)

(ω′
s)

2 − (ωs)2
dω′

s = −2ωs

π
Ps

∞∫
0

χ1(ω
′
s)

(ω′
s)

2 − (ωs)2
dω′

s (F.11)

This form of Kramers–Kronig relations is beneficial for the physical interpretation of the response of the
signals or functions.

Remark 5. Kramers–Kronig causality relations: Derivation of Equations 21, 22, 23 and 24.
The frequency dependence of the viscoelastic material’s properties can be described by a complex modulus
Gs(ωs):

G∗
s(ωs) = G′

s(ωs) + ιG′′
s(ωs) = |Gs(ωs)|eιϕs(ωs) (F.12)

where G′
s(ωs) and G′′

s(ωs) are storage moduli and loss moduli, |Gs(ωs)| is the amplitude and ϕs(ωs) is the
phase angle. In the context of linear viscoelasticity, the constitutive law which links the stress σt(t) to the
strain ε(t) can be written in its convolution form [69]

σt(t) = Gs(t)⊛ ε(t) (F.13)

If the initial strain is ε(t) = 0 for t ≤ 0, and the modulus is written as

Gs(t) = Gs(t −→ 0)− gt(t) (F.14)

the stress-strain relationship becomes,

σt(t) = Gs(t −→ 0)ε(t)− gt(t)⊛ ε(t) (F.15)

The causality conditions requires the memory function gt(t) to be causal, i.e., gt(t) = 0, ∀t < 0. The
Fourier transform of a real linear causal function gt(t) that does not possess any singularity at t = 0
respects certain relations between its real and imaginary parts [75-77],

ℜ(g∗t (ωs)) = 2
π

∫∞
0

uℑ(g∗t (us))
ω2
s−u2

s
dus (F.16)

ℑ(g∗t (ωs)) =
2ωs
π

∫∞
0

ℜ(g∗t (us))
u2
s−ω2

s
dus (F.17)

Using Eq. (F.12) and the Fourier transform of Eq. (F.14) (G∗(ωs) = Gs∞ − g∗t (ωs)) in Eqs. (F.16) and
(F.17) lead to the so-called Kramers-Kronig relations (Remark 4) linking the real and the imaginary parts
of the complex modulus [73,75-79],

G′
s(ωs) = Gs∞ +

2

π

∫ ∞

0

uG′′
s(us)

ω2
s − u2s

dus (F.18)

G′′
s(ωs) =

2ωs

π

∫ ∞

0

G′
s(us)

u2s − ω2
s

dus (F.19)

where Gs∞ = G∗
s(ωs → ∞) = Gt(t → 0) is the unrelaxed modulus. Similar equations link the logarithm

of the modulus amplitude to the phase angle, the complex elastic modulus G∗
s(ωs) can be expressed, as

Eq. (F.12), G∗
s(ωs) = G′

s(ωs) + ιG′′
s(ωs) = |Gs(ωs)|eιϕs(ωs). By converting it to logarithmic form [77],

lnG∗
s(ωs) = lnG′

s(ωs) + ι lnG′′
s(ωs) = ln |Gs(ωs)|+ ιϕs(ωs), and using the same method as above, |G′

s(ωs)|
and ϕs can thus be formulated as,

ln |G′
s(ωs)| = ln |Gs∞|+ 2

π

∫ ∞

0

usϕs(us)

ω2
s − u2s

dus (F.20)

ϕs(ωs) =
2ωs

π

∫ ∞

0

ln |Gs(us)|
u2s − ω2

s

dus (F.21)
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Additional numerical results

Table S1: Comparison of first ten lowest natural frequencies (ω∗ = ωaS
√

ρ0/Y0) for composite piezoelec-
tric smart plates (d) subjected to closed circuit (CC) condition at top (ϕ(x, y, h/2)=0) and open circuit
condition at bottom (Dz(x, y,−h/2)=0).

1 2 3 4 5 6 7 8 9 10

SSSS Present 7.181 13.595 13.830 18.371 20.932 21.690 24.525 24.896 28.818 29.442

3D [82] 7.181 13.594 13.821 18.367 20.931 21.632 24.523 24.884 28.817 29.448

CSSS Present 7.449 13.802 13.898 18.494 21.133 21.707 24.687 24.972 29.131 29.457

3D [82] 7.476 13.838 13.901 18.514 21.160 21.656 24.708 25.057 28.890 29.513

S=5 CCSS Present 7.751 13.967 13.977 18.612 21.338 21.726 24.847 25.048 29.203 29.472

3D [82] 7.887 14.018 14.150 18.713 21.460 21.680 24.981 25.162 29.488 29.925

CFSS Present 4.691 9.407 12.239 15.356 16.121 20.487 20.548 22.757 23.501 26.644

3D [82] 4.715 9.449 12.284 15.409 16.202 20.570 20.582 22.746 23.434 26.774

Present 3.907 5.521 10.891 11.840 12.958 16.655 17.637 20.297 21.022 21.982

FFSS 3D [82] 4.028 5.514 11.314 11.851 13.081 17.234 17.745 20.330 21.135 22.581

SSSS Present 9.369 19.622 21.236 28.727 34.090 35.019 40.808 40.878 49.492 50.098

3D [82] 9.369 19.614 21.236 28.724 34.047 35.019 40.796 40.876 49.491 50.098

CSSS Present 10.568 20.004 22.214 29.270 34.214 35.671 41.072 41.345 50.004 50.279

3D [82] 10.551 20.000 22.251 29.292 34.187 35.716 41.375 41.375 50.047 50.156

S=10 CCSS Present 11.844 20.424 23.084 29.797 34.346 36.300 41.337 41.801 50.326 50.491

3D [82] 11.589 20.427 23.266 29.903 34.352 36.461 41.076 41.375 50.047 50.156

CFSS Present 5.623 13.905 16.671 22.852 26.487 31.725 33.318 36.311 40.219 44.492

3D [82] 5.651 13.601 16.956 22.849 26.523 31.843 33.382 36.450 40.121 44.519

FFSS Present 4.391 6.720 15.925 16.418 17.961 25.628 29.354 31.402 32.684 36.571

3D [82] 4.532 6.706 16.120 16.659 17.666 25.695 30.240 31.422 32.679 37.183

Table S2: Convergence study on the natural frequencies (ω∗ = ωaS
√

ρ0/E0) of moderately thick (S =
10) IPFG smart piezoelectric plate (a) subjected to SSSS and CCSS boundary conditions.

SSSS CCSS

Iter.1 Iter.2 Iter.1 Iter.2

m Step 1 Step 2 Step 1 Step 2 3D FE Step 1 Step 2 Step 1 Step 2 3D FE

(0-1) (1-1) (2-1) (2-2) (0-1) (1-1) (2-1) (2-2)

ω∗
11 9.240 8.682 8.682 8.682 8.691 9.240 12.978 12.979 12.978 13.099

ω∗
21 24.926 23.791 23.791 23.791 23.836 24.926 27.151 27.261 27.264 27.542

ω∗
31 42.782 41.515 41.515 41.515 41.580 42.782 43.648 43.759 43.763 44.260

ω∗
41 60.864 59.642 59.642 59.642 59.734 60.864 60.946 61.039 61.041 61.726

ω∗
51 78.830 77.696 77.696 77.696 77.823 78.830 78.555 78.700 78.703 79.483

ω∗
12 15.384 14.958 14.958 14.958 14.986 15.384 17.390 17.665 17.665 17.506

ω∗
22 28.813 27.779 27.778 27.779 27.832 28.813 30.393 30.488 30.489 30.724

ω∗
32 45.628 44.380 44.380 44.380 44.450 45.628 46.188 46.294 46.296 46.747

ω∗
42 63.158 61.897 61.897 61.897 61.987 63.158 63.061 63.147 63.149 63.795

ω∗
52 80.774 79.563 79.563 79.563 79.687 80.774 80.344 80.408 80.406 81.241

ω∗
13 25.291 24.938 24.938 24.938 24.972 25.291 26.131 26.132 26.133 26.275

ω∗
23 35.978 35.142 35.143 35.142 35.195 35.978 36.927 37.011 37.002 37.192

ω∗
33 50.920 49.791 49.792 49.791 49.865 50.920 51.219 51.321 51.322 51.697

ω∗
43 67.350 66.132 66.132 66.132 66.229 67.350 67.133 67.224 67.225 67.796

ω∗
53 84.261 83.038 83.038 83.038 83.164 84.261 83.739 83.812 83.813 84.573
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Table S3: Influence of in-plane gradation of density and stiffness on natural flexural frequencies (ω∗ =
ωaS

√
ρ0/E0) of moderately thick (S = 10) IPFG smart piezoelectric plate (a) subjected to SSSS boundary

conditions.

Constant Case (1) Case (2) Case (3)

ω∗
nm Present 3D FE Present 3D FE Present 3D FE Present 3D FE

ω∗
11 10.152 10.152 8.682 8.691 7.602 7.668 6.708 6.847

ω∗
21 28.262 28.262 23.791 23.836 20.568 20.688 18.297 18.594

ω∗
31 49.430 49.430 41.515 41.580 35.799 35.965 32.474 32.876

ω∗
41 70.945 70.946 59.642 59.734 51.420 51.651 47.249 47.745

ω∗
51 92.163 92.165 77.696 77.823 67.055 67.363 62.121 62.708

ω∗
12 16.779 16.779 14.958 14.986 13.558 13.633 12.528 12.658

ω∗
22 32.417 32.416 27.779 27.832 24.405 24.544 22.225 22.510

ω∗
32 52.408 52.408 44.380 44.450 38.559 38.737 35.319 35.704

ω∗
42 73.276 73.278 61.897 61.987 53.601 53.827 49.484 49.954

ω∗
52 94.071 94.074 79.563 79.687 68.873 69.166 63.972 64.525

ω∗
13 27.461 27.461 24.938 24.972 22.919 22.980 21.397 21.499

ω∗
23 40.044 40.045 35.142 35.195 31.516 31.651 29.244 29.487

ω∗
33 57.934 57.934 49.791 49.865 43.840 44.029 40.597 40.950

ω∗
43 77.559 77.560 66.132 66.229 57.757 57.998 53.640 54.085

ω∗
53 97.543 97.544 83.038 83.164 72.305 72.609 67.393 67.926

Table S4: Influence of in-plane gradation of density and stiffness on natural flexural frequencies (ω∗ =
ωaS

√
ρ0/E0) of moderately thick (S = 10) IPFG smart piezoelectric plate (a) subjected to CSSS boundary

conditions.

Constant Case (1) Case (2) Case (3)

ω∗
nm Present 3D FE Present 3D FE Present 3D FE Present 3D FE

ω∗
11 12.764 12.741 10.922 10.911 9.558 9.584 8.645 8.608

ω∗
21 30.456 30.614 25.903 26.000 22.586 22.672 20.458 20.575

ω∗
31 50.739 51.038 42.977 43.154 37.340 37.480 34.275 34.438

ω∗
41 71.694 72.117 60.635 60.900 52.585 52.804 48.359 48.938

ω∗
51 93.626 93.115 78.395 78.752 67.979 68.283 63.337 63.650

ω∗
12 18.240 18.295 16.115 16.174 14.522 14.588 13.408 13.488

ω∗
22 34.137 34.273 29.408 29.495 25.945 26.027 23.846 23.953

ω∗
32 53.534 53.807 45.634 45.793 39.881 40.008 36.847 36.998

ω∗
42 73.947 74.335 63.278 63.032 54.647 54.848 50.784 50.999

ω∗
52 94.447 94.969 80.208 80.553 69.715 70.017 65.085 65.388

ω∗
13 28.206 28.280 25.466 25.538 23.311 23.379 21.748 21.818

ω∗
23 41.251 41.361 36.251 36.327 32.539 32.613 30.295 30.387

ω∗
33 58.847 59.075 50.804 50.932 44.908 45.013 41.810 41.934

ω∗
43 78.145 78.497 66.918 67.127 58.687 58.859 54.776 54.958

ω∗
53 97.895 98.365 83.635 83.941 73.091 73.357 68.414 68.679
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Table S5: Influence of in-plane gradation of density and stiffness on natural flexural frequencies (ω∗ =
ωaS

√
ρ0/E0) of moderately thick (S = 10) IPFG smart piezoelectric plate (a) subjected to SFSS boundary

conditions.

Constant Case (1) Case (2) Case (3)

ω∗
nm Present 3D FE Present 3D FE Present 3D FE Present 3D FE

ω∗
11 4.023 4.055 3.527 3.562 3.166 3.205 2.938 2.970

ω∗
21 14.828 14.836 12.621 12.677 11.007 11.116 9.688 9.870

ω∗
31 34.555 34.487 29.260 29.308 25.388 25.542 22.600 22.936

ω∗
41 56.174 56.486 47.502 47.814 41.124 41.526 37.298 37.945

ω∗
51 77.544 78.157 65.674 66.202 56.860 57.457 52.232 53.087

ω∗
12 12.485 12.584 11.105 11.208 10.069 10.175 9.323 9.417

ω∗
22 21.216 21.221 18.530 18.614 16.550 16.719 15.198 15.415

ω∗
32 38.705 38.766 33.135 33.287 29.052 29.315 26.382 26.780

ω∗
42 59.148 59.397 50.316 50.596 43.808 44.194 40.070 40.662

ω∗
52 79.810 80.582 67.882 68.539 58.997 59.616 54.421 55.467

ω∗
13 24.172 24.321 21.551 21.718 19.545 19.722 18.058 18.216

ω∗
23 31.244 31.265 27.921 28.017 25.416 25.599 23.718 23.938

ω∗
33 45.971 46.026 40.050 40.220 35.679 35.977 32.985 33.373

ω∗
43 64.518 64.722 55.494 55.809 48.814 49.260 45.104 45.699

ω∗
53 83.982 84.669 71.977 72.550 62.994 63.627 58.431 59.257

Table S6: Influence of in-plane gradation of density and stiffness on natural flexural frequencies (ω∗ =
ωaS

√
ρ0/E0) of moderately thick (S = 10) IPFG smart piezoelectric plate (a) subjected to FFSS boundary

conditions.

Constant Case (1) Case (2) Case (3)

ω∗
nm Present 3D FE Present 3D FE Present 3D FE Present 3D FE

ω∗
11 3.148 3.206 2.919 2.965 2.726 2.764 2.566 2.595

ω∗
21 5.664 5.758 4.952 5.135 4.528 4.696 4.323 4.481

ω∗
31 20.412 20.353 17.239 17.317 14.985 15.173 13.182 13.478

ω∗
41 41.068 40.943 34.508 34.748 29.794 30.232 26.655 27.269

ω∗
51 62.866 63.669 52.881 53.739 45.614 46.602 41.496 42.317

ω∗
12 11.624 11.760 10.701 10.822 9.867 9.980 9.186 9.284

ω∗
22 14.528 14.579 13.230 13.328 12.347 12.486 11.850 11.984

ω∗
32 26.484 26.462 22.922 23.073 20.376 20.662 18.700 19.032

ω∗
42 45.164 45.549 38.375 38.862 33.492 34.069 30.492 31.152

ω∗
52 65.720 65.479 55.651 56.409 48.302 49.209 44.283 45.318

ω∗
13 23.402 23.595 21.372 21.550 19.455 19.673 18.063 18.191

ω∗
23 26.083 26.172 24.187 24.305 22.944 23.055 21.934 22.121

ω∗
33 35.986 35.931 31.905 32.042 29.004 29.261 27.224 27.527

ω∗
43 52.144 52.356 45.068 45.505 39.945 40.537 36.994 37.637

ω∗
53 70.875 71.773 60.682 61.635 53.210 54.248 49.245 50.372
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Table S7: Influence of in-plane gradation of density and stiffness on lowest six natural flexural frequencies
(ω∗ = ωaS

√
ρ0/E0) of thick (S = 5, tp = 0.1h) IPFG smart plate (b) subjected to different circuit

conditions at top and bottom surface.

Close-Close Circuit Open-Close Circuit

Mode no. Constant Case 1 Case 2 Case 3 Constant Case 1 Case 2 Case 3

1 ω∗
11 7.511 6.731 6.122 5.717 7.623 6.839 6.226 5.820

2 ω∗
12 12.476 11.545 10.772 10.235 12.526 11.688 10.907 10.366

SSSS 3 ω∗
21 16.130 14.093 12.553 11.843 16.249 14.208 12.662 11.959

4 ω∗
13 18.501 17.312 16.271 15.484 18.637 17.442 16.395 15.603

5 ω∗
22 19.266 17.248 15.697 14.939 19.401 17.379 15.821 15.065

6 ω∗
23 23.752 21.704 20.009 19.201 23.877 21.826 20.206 19.317

1 ω∗
11 8.194 7.336 6.655 6.242 8.288 7.427 6.742 6.328

2 ω∗
12 12.776 11.777 10.950 10.396 12.914 11.910 11.077 10.519

CSSS 3 ω∗
21 16.466 14.487 12.971 12.270 16.578 14.595 13.072 12.377

4 ω∗
13 18.644 17.405 16.330 15.532 18.775 17.532 16.452 15.649

5 ω∗
22 19.519 17.527 15.971 15.207 19.648 17.651 16.090 15.326

6 ω∗
23 23.937 21.890 20.256 19.354 24.058 22.009 20.370 19.467

1 ω∗
11 8.925 7.826 7.003 6.612 9.001 7.898 7.072 6.685

2 ω∗
12 13.099 11.968 11.067 10.524 13.224 12.088 11.183 10.635

CCSS 3 ω∗
21 16.742 14.614 13.039 12.367 16.850 14.716 13.135 12.469

4 ω∗
13 18.796 17.492 16.381 15.588 18.923 17.615 16.498 15.700

5 ω∗
22 19.754 17.634 16.026 15.276 19.877 17.752 16.140 15.388

6 ω∗
23 24.118 21.970 20.294 19.397 24.235 22.084 20.405 19.506

1 ω∗
11 4.425 4.027 3.709 3.483 4.437 4.039 3.721 3.495

2 ω∗
12 10.311 9.495 8.831 8.308 10.379 9.556 8.888 8.360

CFSS 3 ω∗
21 10.614 9.607 8.783 8.269 10.700 9.688 8.863 8.351

4 ω∗
22 14.973 13.772 12.776 12.156 15.060 13.862 12.866 12.246

5 ω∗
13 16.905 15.608 14.530 13.657 16.990 15.682 14.599 13.720

6 ω∗
31 19.235 17.198 15.558 14.770 19.322 17.310 15.667 14.890

1 ω∗
11 3.978 3.663 3.409 3.212 4.008 3.690 3.433 3.235

2 ω∗
21 10.156 9.141 8.331 7.811 10.243 9.227 8.417 7.901

SFSS 3 ω∗
12 10.212 9.429 8.787 8.271 10.289 9.497 8.849 8.327

4 ω∗
22 14.705 13.518 12.551 11.944 14.798 136.614 12.647 12.040

5 ω∗
13 16.869 15.591 14.522 13.651 16.958 15.667 14.591 13.714

6 ω∗
31 18.859 16.740 15.063 14.283 18.973 16.862 15.180 14.411

1 ω∗
11 3.308 3.132 2.976 2.838 3.341 3.163 3.006 2.866

2 ω∗
21 5.456 5.090 4.816 4.641 5.462 5.101 4.816 4.642

FFSS 3 ω∗
12 9.688 9.145 8.623 8.158 9.768 9.220 8.691 8.219

4 ω∗
22 11.550 10.885 10.383 10.061 11.582 10.921 10.426 10.109

5 ω∗
31 12.996 11.549 10.459 9.892 13.059 11.614 10.521 9.964

6 ω∗
13 16.456 15.466 14.478 13.627 16.548 15.548 14.549 13.692
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Fig. S1: Percentage decrement in first five lowest natural flexural frequencies of IPFG smart plate (a) due
to in-plane gradation of density and stiffness under SSSS, CSSS, CCSS, CFSS, SFSS and FFSS boundary
conditions (S = 10, m = 1).
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Fig. S4: First five flexural mode shapes for moderately thick (S = 10) IPFG smart plate (a) under constant
properties case, and subjected to all around supported–simply supported (SSSS) boundary conditions.
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Fig. S10: First five flexural mode shapes for moderately thick (S = 10) IPFG smart plate (a) under
constant properties case, and subjected to clamped–free supported (CFSS) boundary conditions.
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Fig. S12: First five flexural mode shapes for moderately thick (S = 10) IPFG smart plate (a) under
constant properties case, and subjected to simply supported–free supported (SFSS) boundary conditions.
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Fig. S14: First five flexural mode shapes for moderately thick (S = 10) IPFG smart plate (a) under
constant properties case, and subjected to free–free supported (FFSS) boundary conditions.
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Fig. S15: First five flexural mode shapes for moderately thick (S = 10) IPFG smart plate (a) under
gradation case 1, and subjected to free–free supported (FFSS) boundary conditions.
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Fig. S16: Influence of in-plane variation of density and stiffness on axial variations of displacements and
stresses for first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a)
subjected to CSSS boundary condition.
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Fig. S17: Influence of in-plane variation of density and stiffness on axial variations of displacements and
stresses for first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a)
subjected to CCSS boundary condition.
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Fig. S18: Influence of in-plane variation of density and stiffness on axial variations of displacements and
stresses for first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a)
subjected to SFSS boundary condition.

23



Fig. S19: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a) subjected
to CSSS boundary condition.

Fig. S20: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (a) with SFSS
boundary condition.
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Fig. S21: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (b) with SSSS
boundary condition.

Fig. S22: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (b) with CSSS
boundary condition.
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Fig. S23: Influence of in-plane variation of density and stiffness on axial variations of electric variables for
first flexural vibration mode (Mode-1) of the moderately thick (S = 10) IPFG smart plate (b) with SFSS
boundary condition.
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Fig. S24: Effect of viscoelasticity on Young’s moduli (E1 , E2 and E3) and shear moduli (G12 , G12 and
G23) in frequency domain. Frequency-dependent amplitudes and phase angles are presented for orthotropic
viscoelastic layer of Mat. 4 (Gr/Ep) having elastic properties E1=181.0 GPa, E2=10.3, E3=10.3 GPa,
G12=7.17 GPa, G13=7.17 GPa and G23=2.87 GPa.
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Fig. S25: Effect of viscoelasticity on Young’s moduli (E1 , E2 and E3) and shear moduli (G12 , G12 and
G23) in time domain. Variation of Young’s moduli and shear moduli of Mat. 4 (Gr/Ep) with time is
obtained using inverse Fourier transformation (IFFT) technique.
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Fig. S26: Effect of viscoelasticity on the first natural frequencies of three-layered moderately thick (S=10)
viscoelastic smart plate (b) with graded properties. The time-dependent variation of first natural fre-
quencies is plotted in non-dimensionalized form for different gradation cases under different boundary
conditions such as SSSS, CSSS, CCSS, CFSS. The non-dimensionalization is done by dividing the natural
frequencies of viscoelastic plate by the natural frequencies of elastic plate without any gradation given in
Table 6.
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