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Summary 

In engineering analysis, a variety of analytical and numerical methods have been 

developed for analysing the hydrodynamic response of marine vehicles or offshore 

structures under different sea state, including the multipole expansion & integral 

equation methods for rigid body analysis and hydroelastic analysis involving elastic 

deformation. Most of these existing procedures require the specification of the 

boundary conditions over the wetted surface in advance so that functions of the flow 

are solvable. For rigid body analysis, each degree of motion is explicit while in 

hydroelastic analysis, the boundary condition is assignable through modal expansions. 

When additional free fluids exist the problem is a little more complex, but solvable, 

since the principle modes for analysis is unchanged with sloshing. However, new 

challenge arise when an incompressible liquid fills the inside of a structure as the modes 

are significantly changed due to the restriction of internal volume. The boundary 

conditions are, therefore, unassignable through normal dry hull analysis. In this 

dissertation, a different approach is developed with associated software developed by 

the author. 

The only conditions left that controls the motions in these problems will be continuity 

of normal velocity at the structural surface and the fundamental strain-stress 

relationship of the materials. These two conditions cannot provide the results directly. 

However, they enable us to formulate proper force-movement equations that contain 

the boundary conditions implicitly. In other words, the hydrodynamic forces and the 

structural response are directly coupled without separating the model into different 

orders of components. 

Direct coupling method itself is not a novel concept. It has been developed for 

solving simple acoustic and hydroelastic cases. This dissertation focuses on alternative 

forms, which allow one to solve problems that are more general. The matrix operation 

technique utilised enables solution of fully closed boundary problems in a boundary 

element analysis. 

The study was initially proposed for analysing the Anaconda wave energy convertor 



(WEC) device, which is a highly flexible rubber tube filled with seawater. The device 

is submerged under the free surface and generates internal propagating bulges waves 

through the excitation of external ocean waves. Only 1-dimentional equations were 

initially proposed to solve the behaviour of the structure. The direct coupling method 

developed in this dissertation is the first study that treats it as a three-dimensional model.  

  Existing engineering packages and software are not capable to deal with the 

mathematical problem raised by the closed incompressible fluid domain. Hence, the 

hydrodynamic codes together with the coupled structural analysis are written and 

implemented independently. Only few packages related to matrix operation and special 

mathematical functions are borrowed. The configuration of the model is achieved by 

command flows under carefully geometric design and the results are exported in raw 

data to be analysed. 

  Chapter 1 discusses the engineering significance of the proposed novel method and 

presents a literature review for both existing fluid mechanic methods and Anaconda 

WEC. The difficulties for solving fully closed problems and the deductions of important 

formulations are introduced in Chapter 2. Modelling of different problems are presented 

in Chapter 3. Chapters 4 & 5 provide verifications of developed method and the 

solutions of general offshore structure and a fully filled closed structure. Chapter 6 

provides analysis of Anaconda solved applying the new method. Some unfinished 

works and discussions are addressed in Chapter 7. 
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1. Engineering Background 

This chapter discusses the engineering significance of the proposed novel analysis 

method by reviewing the history of fluid-structure interaction (FSI) modelling. The 

need for analysing hydrodynamic behaviour and its coupled structural behaviour 

increases as more novel and excessively large structures emerge in Ship Science, 

Offshore Engineering and other practical activities related to hydrodynamic loads. 

  Existing studies of FSI problems are abundant and highly developed for common 

engineering application. However, the particular kind of devices studied in this work 

arise due to its rare demand and existing technological limitations. The amount of 

experience we can directly refer to are few. It is shown in later chapters that the 

correlation between the proposed novel method and widely applied hydroelastic 

analysis is too weak. So the fundamental equations have to be established anew from 

first principles. 

  The main consideration of this chapter is not only to appreciate the tremendous works 

undertaken by previous researchers, but also to try and ‘figure out’ the special merit of 

the suggested method studied. This is a primary study of a novel marine structure. Many 

more in-depth investigations are yet to be undertaken and cannot be included in this 

thesis. The novel technique is not developed enough to cope with all future-

sophisticated engineering scenario. As with existing techniques, maturity of a procedure 

requires time and effort. A review is needed to direct the further research. 

  To avoid digression, however, the focus will be on studies highly related to the 

numerical analysis of linear elastic models. Being the most applied method, the 

hydroelastic method is addressed together with the few existing published studies of 

direct coupling methods. Research of the Anaconda wave energy convertor is 

appropriate to the engineering application of this study. The development of Green 

function introduces the mathematical background of free-surface hydrodynamic 

analysis. 
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1.1 Review of Fluid-Structure Interaction Problems 

Early water wave-structure interaction studies treat the structures as rigid bodies and 

primarily investigate their kinematic response and dynamic loads. The problems are 

categorised as the manoeuvring and seakeeping of free-floating bodies. Manoeuvring 

refers to analysing the induced hydrodynamic response of a structure moving in calm 

water. Seakeeping determines the response to a ship encountering incident waves. As 

ships and offshore platforms becomes increasing larger, the need for analysing internal 

structural strain and stress arises to facilitate better design. Studies considering the 

structure deformation is usually called strength analysis. 

1.1.1 Rigid Body Analysis 

For stationary structures, viscous effects and associated boundary layer development is 

the primary interest in resistance studies, whereas in FSI, hydrodynamic force induced 

by the acceleration of flow potential is equivalently important. Assuming an 

incompressible and irrotational fluid flow means interactions with a rigid body can be 

determined by solving the Laplace equation with proper boundary conditions. So-called 

harmonic functions satisfy the Laplace equation and the fluid flow solution is usually a 

summation or transformation of certain fundamental solutions. Continuity of normal 

velocity is applied on the wetted surface for stationary or moving bodies. 

  In special cases with idealised body shape, the flow potential and its resulting 

hydrodynamic distribution can be determined analytically. McCamy & Fuchs [1] solve 

the diffraction field of a vertical cylinder in regular propagating wave with an infinite 

series of cylindrical harmonics. The origin of each cylindrical harmonic term is located 

at the centroid of the cylinder and is singular through the associated second kind Bessel 

functions. However, the result converges everywhere in the flow domain since the 

singularity occurs inside the rigid boundary. 

  Dean [2] provided a two-dimensional model for the diffraction over a submerged 

horizontal cylinder through a semi-analytical method. The result suggests zero 

reflection over a fully submerged cylinder under a beam-sea condition, confirmed by 

Ursell & Dean [3] applying another analytical approach. 
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  Sources of varies orders (such as a sink or a dipole) are classic tool for the simulation 

of potential flow, as they are harmonic and bounded everywhere in space except at the 

origins. The mathematical essence of the fluid singularities are the spherical harmonics 

solved, appealing to the Laplace equation, through the method of separation of variables. 

One can add additional harmonic terms to satisfy boundary conditions for more general 

use. 

  For models under sinusoidal excitation and oscillating periodically about an initial 

equilibrium state, the sources pulsate at the constant frequency of an incident wave. 

Again, one can determine the proper hydrodynamic solution from a series of pulsating 

sources of different magnitude, phase shifts and origin subject to satisfaction of 

continuity of normal velocity on the wetted surface. According to the summary of 

Ogilvie [4] this method can be further divided into two distinctive approaches, that is, 

the multipole expansion method and the integral equation method. 

  Multipole expansions consider the fluid solution to be a uniformly converged through 

superposition of wave potentials that satisfy the Laplace equation and other boundary 

conditions in the external fluid. This method, proposed by Ursell [5] in 1949, solved a 

2-dimensional heaving oscillation of a circular cylinder. It was stream function based 

rather than expressed in terms of potential functions. For a defined motion like heaving, 

the streamline on the boundary can be determined explicitly and the stream function of 

external fluid is assumed to be a superposition of infinite orders of multipole sources 

of magnitudes determined to satisfy normal velocity at a selected number of points on 

the cylinder boundary. The final result is derived as a collocation problem. 

  Further research by Ursell [6] extended this method to a rolling ellipse. Tasai [7] 

extended the method to bodies of arbitrary shape, such as the analysis of ship model 2D 

sections. The technique was studied by Havelock [8] for 3-dimensional problems. The 

hydrodynamic force on a sphere was obtained by Hulme [9] & Wang [10] for the 

floating and submerged conditions. 

  Rather than place sources inside the body, Frank [11] proposed the procedure of 

distributing sources on the body wetted-surface and solving the simultaneous sets of 

integral equations formulated according to the locations of sources. The controlling 
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equation for this method is usually the second identity of Green, as the external fluid 

potential satisfies the Laplace equation. The numerical solution is obtain by partitioning 

the wetted surface into panels. The results by Chen [12] coincide well with those 

derived through the multipole expansion method. The detailed mathematical 

formulation of this method will be introduced in Chapter 2. 

  The coupled response of an inertia-dominated rigid body starts from an equilibrium 

state, and requires one to determine the hydrodynamic forces for different degrees of 

freedom, specified a priori, from using the aforementioned procedure. In the linearized 

dynamic motion equation, inertial reactive forces induced by unit acceleration and 

velocity for different degrees of motion are assembled and represented as added mass 

and fluid damping matrices. A structural mass matrix and stiffness matrix arising from 

buoyancy considerations are combined with the fluid reactive matrices to form the 

coupled dynamic equations and these are directly solved in the frequency domain. The 

detailed process for archiving such dynamic relationship are presented in many 

fundamental works [13, 14]. Results given by Newman [13] suggest heaving resonance 

occurs for a floating structure when the incident wave frequency is close to the natural 

oscillating frequency. Such example is introduced and compared in Chapter 4 for 

verification of the novel method. 

1.1.2 Flexible Structure Analysis 

Precise solutions for general fluid-structure interaction problems require the analysis of 

Navier-Stokes equation (or Euler equation for inviscid flow), which is usually a time 

domain analysis difficult to manipulate. However, for engineering application, one can 

usually simplify the dynamic model into linearized frequency domain analysis when 

the system is under sinusoidal excitation. This is especially true for wave-body 

interaction problems studied here. 

  According to the coupling steps between fluid and structure, the analysis procedure 

can be distinguished as a monolithic approach and a partitioned approach [15]. The 

former approach treats the fluid and structure dynamic as a holistic and single system. 

The solutions are solved simultaneously under a unified mathematical framework. The 

interfacial conditions are included implicitly in the solution procedure, so data transfer 
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is not required across the interface. Contrarily, the partitioned approach computes fluid 

and structure dynamics in separate fields. Thus requiring interfacial communication 

with proper boundary conditions to obtain physical solutions under different algorithm 

frameworks. 

  Generally, monolithic approaches may achieve better accuracy due to closely 

coupled formulation. However, the corresponding code may be more specialised, 

requiring more resources to develop and maintain. In contrast, modelling problems with 

a partitioned approach may take less expertise coding, but requires careful modification 

on the interface for consistency of the physics. The directly coupled method developed 

here, together with widely applied hydroelastic analysis, are typical monolithic 

approaches. The dynamics are formulated under a single force-displacement equation. 

Codes developed for this study are independent of any other existing engineering 

software or package, including hydroelastic analysis tools. 

  Most nonlinear analysis for fluid-structure interaction problems apply the 

generalised Gauss-Seidel approach [16], where the dynamic response of fluid and 

structure are calculated sequentially in the time domain. Computational fluid dynamics 

(CFD) is introduced for such generalised nonlinear problems. Extensional problems 

involving sloshing and structural acoustics were presented by Morand & Ohayon [17] 

with linear simplifications. Dowell & Hall [18] presented in-depth discussions for 

modelling nonlinear fluid-structure interaction problems under multidisciplinary 

conditions. Reduced-order models, based on computational fluid dynamical methods, 

are specifically addressed in this study. Numerical works focused on ocean engineering 

are given by Chakrabarti [19], covering a wide range of linear & nonlinear offshore 

structures. 

The well-known hydroelastic theory was proposed in 1950s [20]. It recognised the fact 

that marine structures, including ships, barges and platforms were becoming ‘flexible’ 

in engineering practice with the growth of their scale. The particular terminology was 

proposed by Heller & Abramson [21], indicating hydroelasticity is a naval counterpart 

to aeroelasticity and recognises that a significant difference exist between 

hydrodynamic, inertia and elastic stress for a floating marine structure interacting with 
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external loads at ‘hydro’ level [22]. 

For most linear hydroelastic theories, the structural responses to wave excitation are 

expressed as a summation of distortions in the principal modes of the structural 

vibration in vacuum. Each mode of distortion, together with its corresponding natural 

frequency, can be determined through dry hull analysis, in the absence of any external 

actions. The fluid is inviscid and incompressible in the hydrodynamic analysis. The 

amplitude of excitation is assumed small. 

 Upon selecting the necessary order of modes (normally n ≤ 6), the dynamic equation 

of a floating or travelling beam like structure can be written as, 

 [ ] [ [ ]+ + + + =
g g g g g g

M m ζ C +c ]ζ K k ζ Ξ  (1.1.1) 

  In Equation 1.1.1, mg, cg and kg denote the n × n generalised mass, structural damping 

and stiffness matrices. Normally, mg and kg are obtained through dry hull analysis, with 

the structure considered to vibrate in vacuum as a free-free beam. The structure is 

usually treated as a non-uniform Timoshenko beam in 2-dimensional analysis or 

modelled with finite element analysis in 3-dimensional cases. Mg, Cg and Kg are the n 

× n generalised added mass, fluid damping, and fluid restoring matrices respectively. Ξ 

denotes the n × 1 generalised wave excitation vector, containing both incident and 

diffraction wave contributions. The determination of these terms requires the procedure 

of wet hull analysis, where the simplified beam in 2-dimensional analysis is divided 

into a number of strips to subsequently obtain their hydrodynamic coefficients and 

hydrodynamic loads. For 3-dimensional model, the hydrodynamic coefficients are 

determined through the pulsating source method introduced in the previous section with 

the defined principal modes already obtained. Principal coordinate vector ζ is solved to 

provide the modes amplitude, which has the form, 

 ( ) exp( )et i t  = −  (1.1.2) 

where ωe is the encounter wave frequency. The solution of structural response and stress 

can be determined linearly by summing all principal solution together multiplied by the 

derived modal amplitude. 

This system of motion equations is unified in the sense that it allows the analysis for 
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both rigid-body motions (heave & pitch) and distortions that are coupled through the 

effects of the fluid actions. However, it should be noted that symmetric (in vertical plane) 

and anti-symmetric motions should be calculated separately within a two-dimensional 

analysis. 

Early 2-dimensional hydroelastic was recognised in 1970s through the work of 

Bishop & Price [23]. The physical accuracy of fluid-structure interaction modelling was 

significantly improved. Analysis of antisymmetric and asymmetric distortion were 

enabled within the assumption of 2-dimensional potential analysis through later works 

[24, 25]. Further researches by Belik & Price [26] and Belik et al. [27] provided the 

means of evaluating global wave-induced load caused by transient bottom impact 

(slamming) through a convolution integral technique under regular or irregular wave 

conditions. Comparisons of available full-scale engineering examples, like tankers, 

bulk carriers and container ship were carried out by Bishop et al. [28] and Aksu et al. 

[29] with the application of 2-dimensional hydroelastic theory. 

To meet the application requirement of non-beamlike marine structures and multi-

hulled vessels, a 3-dimensional form of unified hydroelastic theory was developed in 

1980s by Bishop [30]. Detailed evaluation on response of local configurations is 

enabled through 3-dimentional finite element modelling. This improvement provided 

the numerical access to manifold type of engineering applications, such as the 

transportation of dry dock and jack-up rigs [31, 32]. Further advancement by Du et al 

[33] introduced translating pulsating source distributions over the mean wetted surface 

of a ship hull for better wet hull analysis. Ergin & Temarel [34] investigated a partially 

filled cylindrical container with a boundary integral method and the method of images 

to include internal free surface boundary conditions within the analysis of 3-

dimensional modal analysis. Large amounts of recent hydroelastic research has focused 

on very large floating structures (VLFS) [35] with engineering application to floating 

airports with extensive progress emerged. Wu et al [36] proposed a double composite 

singularity distribution method, taking advantage of symmetry conditions. Bai et al [37] 

applied a subdomain approach in the fluid analysis for investigating a floating runway 

located in a half-confined harbour. 
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Nonlinearity of the hydroelastic problems are also of special consideration when 

structures experience large motion at sea. Jensen [38] developed a nonlinear quadratic 

strip theory in the frequency domain for predicting wave loads and ship responses in 

moderate seas. Wu et al. [39] formulated the generalized second order hydrodynamic 

forces for 3-dimensional modelling. Chen et al [40] investigated a moored plate with 

both large structural deflection and nonlinear time-dependent exciting wave load. 

Detailed review for hydroelastic analysis in ship science and offshore engineer can 

be referred from the work of Chen et al [41]. 

Software and packages developed from either CFD or hydroelastic analysis are 

abundant, including widely used ANSYS FLUENT & CFX, Flow 3D, Star CCM+ and 

Open FOAM. G-Hydroflex, which is the prototype of a web-enabled software 

developed by Harding et al [42], is also available for one to utilise the grid-based 

computational resources for modelling interaction between fluid and flexible structures. 

Among all currently available tools, only a CFD based procedure is potentially able 

to solve the hydrodynamic behaviour of an incompressible flow within a fully closed 

domain. The mathematical problem, which occurs in frequency domain analysis, is not 

noticed in existing research. To solve such problem, and avoid the expensiveness of 

CFD modelling, an independent code with a novel algorithm is necessary. 

1.1.3 Existing Direct Coupling Methods 

Direct coupling methods was first proposed in the acoustic field [43 – 45] in 1970s and 

developed independently by Kim et al [46, 47] for 3-dimensional offshore engineering 

study. 

  Early acoustic analysis considers the structure to be fully closed and vibrating at high 

frequency. Finite shell elements and the interpolation of acoustic load are of high order 

in the modelling. In contrast, the first direct coupling work by Kim [46] investigated an 

opened floating ship free from any internal load. The next study [47] applies liquid 

cargo inside the ship, however, still opened with free surface. The models are subjected 

to normal wave frequency and the element interpolation is of unit order. Finite Element 

Analysis (FEA) is applied here for internal fluid analysis, which is relatively 

cumbersome for a directly coupled method. 
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  The major difference for acoustic analysis is that the fluid is compressible. The Green 

function, or pulsating source, introduced here satisfies the linear acoustic function. 

Compressibility would actually facilitate the formulation of direct coupling 

mathematically; however, we cannot apply such procedure for studying an 

incompressible fluid due to the non-uniqueness issue discussed later. 

Generally, the method treats the overall structural response as an unknown and 

constructs its relationship with external periodical loading through FEA. Unknown 

components of loading induced by structural motion are in turn presented as a linear 

function of the overall response through Boundary Element Analysis (BEA). One can, 

thereafter, solve the only unknown with only one equation. Unlike hydroelastic analysis, 

with only a few modal amplitude to be solved, the response on each elemental node are 

the unknowns in the WEC problem. The realisation of this method, therefore, requires 

massive computational power to deal with matrices of thousands by thousands. This 

has become is feasible in the last decade with the progress of hardware and algorithms. 

1.2 Anaconda Wave Energy Device 

 

 

Figure 1.1 An imaginary impression of Anaconda wave energy convertor (provided by Checkmate 

SeaEnergy Ltd [48]) 

 

The Anaconda wave energy converter concept was first put forward by Professor R.C.T. 

Rainey and Professor F.J.C. Farley in 2005. It is a device completely dependent upon 

the distensibility of a tube made of a highly elastic and flexible material such as rubber. 
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Figure 1.1 provides an artist’s impression of an Anaconda working under sea conditions. 

  The numerical method to be adopted for solving the highly flexible Anaconda-like 

structure is a rather innovative concept, therefore, few directly pertinent references on 

its numerical analysis can be cited from previous published research. However, several 

experiments have been recently conducted on pressurised rubber tube models, therefore, 

we will focus on the experimental analysis in this section. 

1.2.1 Principles of Operation 

 

Figure 1.2 Principle of bulge wave generation when the wave is travelling from left to right. 

Arrows indicate the direction of the oscillatory internal flow [48] 

 

Briefly speaking, Anaconda is a long rubber tube located perpendicularly to the 

propagating incident wave and floats just beneath the sea free surface. The body of the 

tube is pressurised with internal sea water, sealed at either end and anchored to the 

seabed. The variation of pressure along the length of the structure will squeeze or 

enlarge the size of the tube, resulting in a running bulge wave inside the distensible 

body. The bulges carry high pressure fluid and will continuously do work to the 

generator in the power take off (PTO) system if we rectify the flow by adding a pair of 

one-way valves. The sketch in Figure 1.2 illustrates the four phases of bulge wave along 

with the shape of water profile. 

Normally, the bulge wave travels at a speed determined by the dimension of the tube 
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and the properties of the material. According to the linear theory proposed by Green 

and quoted in Lighthill’s book [49], when the tube is considered to be uniform with 

negligible losses from hysteresis, the bulge wave velocity cb is a function of fluid 

density ρ and tube distensibility D, namely, 

 
1

bc
D

=  (1.2.1) 

  The distensibility represents the increase rate of tube cross-sectional area As per unit 

excess pressure p, that is, 

 
1 s

s

A
D

A p


=


 (1.2.2) 

  If the thickness of tube wall tw is small, distensibility can be approximately 

determined from Young’s modulus E, tube diameter d and tw from, 

 
w

d
D

Et
=  (1.2.3) 

  More generally, when hysteresis β (stress analogous to structural damping) is 

considered, one can determine the of 1-dimentional bulge wave equation, 

 
2 3 2

2 3 2

1
( )I I

I E

p p
p p

t t D x




  
− = +

  
 (1.2.4) 

Where subscript I & E refer to the internal bulge pressure and external excitation 

pressure. Most of the existing numerical analysis of Anaconda are based on this 

equation. 

  The determination of free bulge wave speed is essential for the design of Anaconda 

since the power generation reaches its maximum when the bulge wave speed is close 

to the external incident wave speed. Theoretically, under resonance conditions, the 

amplitude of the bulge wave grows linearly along the tube while the energy transported 

by the bulge grows as the square of the distance [50]. Off resonance, the bulge behaves 

analogous to a forced oscillation. It travels at the speed of external wave, however, it 

does not grow continuously along the tube, which may, therefore, lead to an undesirable 

power output [51]. 

  According to the study of Chaplin et al. [52], the fluid motion inside the tube can be 
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separated into three distinct bulge wave components. One following with the same 

speed and direction of the external water wave with a + 90° phase shift relative to the 

maximum pressure, the other two travelling towards either ends of the tube at its free 

bulge wave speed. The backward-travelling bulge wave is a result of structural property 

and, sometimes, reflection of the rigid stern. However, it is much smaller in comparison 

to the other wave. 

1.2.2 Experimental Testing 

Several tests have been conducted on the scaled-down rubber tube in order to verify the 

theory of bulge wave in still water or under the excitation of an external wave. All of 

them suggest good agreements when the tube is straight and horizontal. 

  The very first experiment undertaken by Farley & Rainey [51] verified the 

progressive growth of the bulge wave along the structure. A rubber tube of 12 cm in 

diameter and 2.2 m in length was tested with manometers implemented at each end. 

Under waves of 1 cm amplitude and 2.0 s period, the stern experienced pressure 

amplification 5 times larger than measured pressure at the bow. Further testing showed 

that the pressure was even doubled by reflection when the stern end was closed. The 

results were extrapolated to suggest 1 MW power extraction for a single Anaconda of 

7 m diameter and of length 150 m subject to North Sea wave conditions. 

The following research by Heller et al. [53], in 2010, at the Danish Hydraulic Institute 

(DHI), assigned an ad hoc PTO system to the 1:25 scaled model with each end of the 

tube being attached to fixed box-like containers (see Figure 1.3). This experiment aimed 

to provide well defined initial and boundary conditions for numerical simulations and 

to compare the measured data with theoretical predictions. The results verified the 

Lighthill’s theory [49] that the measured bulge wave speed agreed well with the 

prediction of Equation 1.2.1, both in still water and under external wave excitation. The 

DHI experiment also captured the radiated wave field of the model and suggested a 

feature of distribution that enhanced the energy capture efficiency. 
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Figure 1.3 Test set-up of DHI testing. The bulge waves were generated artificially by piston in still 

water or by external wave excitation. The level of still water in the wooden boxes was filled 

higher than the external wave profile in order to pressurise the tube [53]. 

 

  A more comprehensive research was conducted by Chaplin et al [52] (2011), trying 

to study the influence of PTO system. The set-up of this experiment was similar with 

DHI, however, the tube bow was no longer linked to still water. As is shown in Figure 

1.4, bulge waves are totally induced by external waves and will lead to a pneumatic 

oscillation in the vertical rigid tube attached at the stern. The power generated is 

interpreted as a change of the air column pressure whilst PTO impedance is controlled 

by a series of parallel capillary tubes. 

This result, again, verified the theoretical prediction both for the behaviour of 

material and bulge wave, including the decay of progressive bulge waves when external 

wave frequency was not at system resonant frequency. It is concluded that a higher 

impedance of the PTO will lead to high pressure flux into the PTO and low amplitude 

bulge motion. A resulting change in the measured energy extraction is also estimated in 

this study. 

  All experiments previously discussed suggest a high power take off efficiency, from 

a capture width of 3 tube diameters to 6 tube diameters when working under resonance. 

However, no research has ever focused on the full scaled model or relevant electric 

generator. Like most of wave energy convertors, the preliminary designs [54] suggests 

that Anaconda will smooth the oscillating flow through a pair of high and low pressure 
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accumulators to deliver steady high pressure flux to the turbine. 

 

 

Figure 1.4 The experimental arrangement of Chaplin’s research. The bulge wave from left to right 

will result in an oscillation of air column in the rigid tube. While the impedance of PTO system is 

controlled by the number of opening capillary pipes [52]. 

 

 An outstanding problem is that none of the reported research really seek to simulate 

the motion of Anaconda under a free or anchored condition, since the tube is forced to 

be straight and horizontal in the wave tank. Bending of the tube is not simulated and 

the influence of longitudinal tension is not included. 

1.2.3 Numerical Analysis 

Few researchers have tried to analyse Anaconda in a numerical way, however, their 

models cannot solve the problem completely or deal only with the structural problem. 

  Linear analysis of the rubber tube is summarised in the work of Farley [55], where 

the analytical deduction of the bulge wave behaviour is presented. The PTO system is 

modelled with impedance Z defined by, 

 
b

s

c
Z

A


=  (1.2.5) 

which represents the total resistance of the bulge fluid per unit flux. 
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  A nonlinear numerical model was investigated by Mei [56] with friction force 

considered. The results verify the evolution of harmonic amplitude bulge waves and 

predict the maximum available energy flux as a function of the tube length and other 

structural parameters. However, the controlling functions in his model are one-

dimensional partial derivative equations that describe the unforced propagating waves 

along a straight tube, which means bending and heaving motion of the structure is 

neglected and the asymmetry around the circular cross-section is not considered. The 

diffraction effect is also not taken into consideration in the study and the excitation 

force in the model is highly simplified. 

  Another numerical analysis by Bucchi & Hearn [57] is focused on aneurysm, which 

is a phenomenon for flexible tubes swelling asymmetrically out of its centreline, leading 

to the reduction of energy transmission or even structural failure. By applying FEA 

method, they concluded that aneurysm can be effectively prevented if inextensible 

reinforcement material is combined with the rubber tube in the form of external 

longitudinal strips. More studies on structural response of Anaconda are also given in 

their papers [58, 59]. 

  Except the stationary studies (ref. [57 – 59]), all the dynamic analysis of the rubber 

tube models are 1-dimensional. Longitudinal effects of the tube is neglected and the 

pressure acting over the circumference is assumed to be same. This is obviously 

nonphysical since the wave pressure is distributed exponentially along the depth. The 

method developed here is able to generate a more comprehensive result. 

1.3 Green Function Formulation 

Green functions are the key mathematical tool to be used in our method, therefore, 

many related papers are reviewed for understanding the essence of this function. 

Alternative expressions of the free surface dependent Green function are also studied 

for the implementation of our computational programme. 

  The concept of a Green function is not very recondite and we can find its detail in 

almost every textbook introducing elliptic partial differential equations [60]. The 

function provides an analytic solution of the Laplace equation or Poison equation 
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through the theorems of Green. For 3-dimensional problems, the function always 

consist of a principal solution term, 1/r, added to a harmonic function determined from 

the boundary conditions of the problem. In a free surface wave study, such as expression 

happens to be the same as a free surface multipole source of the lowest order. 

  As we are in fact solving a problem with a Neumann boundary condition for the 

wave-body interaction study, the application of a Green function in this numerical 

method is slightly different from its original definition. A full explanation of the adopted 

approach is explained in Chapter 2. 

  The original expressions of free surface Green functions can be found in the summary 

of Wehausen & Laitone [61]. However, their mathematical expressions are not quite 

applicable for engineering use as they involve infinite range integration over wave 

number with a singular integrand. To make the calculation regular enough for computer 

operations, Hearn [62] derived a mathematically equivalent expression involving only 

a finite integration range and Newman [63, 64] modifies the function into a series of 

expansions. Another numerical evaluation by Noblesse [65] suggests a separation of 

the Green function and only the near-field component contains the singularity that needs 

modification. 

  Beside constant oscillation, the Green function has been developed in the time 

domain for analysing transient motions [64]. Alternative mathematical expressions are 

given by Newman [66] for channel problems. 
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2 Methodology 

2.1 Fluid Theories 

2.1.1 Basic Assumptions & Definitions 

The amplitudes of the water wave and body boundary oscillation are assumed to be 

relatively small compare to the wavelength (Aw/λ < 1/7), hence, Stokes effect under this 

model is negligibly small and the overall solution will be a linear superposition of 

incident, diffraction and radiation wave potentials. The fluid is considered to be inviscid, 

incompressible and subjected to irrotational flow so simple potential theory is to be 

addressed. Meanwhile, the whole model is assumed to be in a steady state, which means 

the motion has already converged to a harmonic oscillation with constant amplitude and 

period, hence, we can analyse the problem in the frequency domain. 

Consequently, the fluid can be characterised by a summation of incident, diffraction 

and radiation flow potential, each the form, 

 ( , , , ) ( , , )exp( )x y z t x y z i t  = −  (2.1.1) 

Lower-case ϕ denotes the time independent velocity potential, ω the incident wave 

frequency and the negative sign in the exponential term indicates the direction of 

propagating wave. For example, if the wave is travelling along the positive direction of 

x, the phase function inside the exponential term should be in a form of, 

 exp[ ( )]i x t −  (2.1.2) 

Here ν is the wave number. We take the sign of the frequency term as negative in this 

study to keep the position term positive. 

  The fluid is only bounded by the free surface at z = 0 (SF) and an impermeable 

uniform horizontal seabed located at z = -h (SB). The fluid domain expands horizontally 

to infinity in the three-dimensional space. Normally, we may treat the water depth as 

infinite when the ratio between h and wavelength λ is larger than 1/2 (Reference [13], 

page 246). The difference between infinite depth and finite depth calculations would be 

negligible. 
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Two particular cases are going to be studied here, the definitions of the structural 

boundaries are presented in Figures 2.1 & 2.2. 

 

 

Figure 2.1 The definitions of the objects and the spatial variables for the problem with internal 

free surface 

 

 

 

Figure 2.2 The definitions of the objects and the spatial variables in the fully-filled problem 
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  An auxiliary Cartesian coordinate system is located on the calm water free surface 

within the container in Figure 2.1. This is convenient for modelling. Free surface based 

origins will be different when the internal and external free surfaces are not at the same 

level. In this case let ͠z = z – h0 be the vertical variable for the internal problem. 

When the ‘container’ wall is very thin, we degenerate the internal and external so 

that, 

 W EW IWS S S=  . (2.1.3) 

Continuity requires the internal and external fluid normal velocities over SW to be the 

same. 

2.1.2 Controlling Functions 

Since the fluid is incompressible and irrotational, its velocity potential, whether time 

dependent or not, satisfies the Laplace equation that is, 

 2 0  =  (2.1.4) 

and 

 
2 0 =  (2.1.5) 

On the free surface z = 0, we denote the elevation of wave profile as Η = ηe-iωt and 

determine the linearized kinematic and dynamic free surface conditions in the forms, 

 g
t


= − 


 (2.1.6) 

 
t z

 
=

 
 (2.1.7) 

  Substituting for Η of the first equation into the second equation yields the composite 

free surface condition, 
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2
0g

z t

  
+ =

 
 (2.1.8) 

Thus the time independent velocity potential satisfies, 
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 (2.1.9) 

By solving the Laplace equation through the application of separable variable method, 

one may establish that the ω2/g must satisfy the dispersion relationship, 

 

2

tanh( )h
g


 =  (2.1.10) 

As h tends to +∞, tanh(υh) tends to 1 and, therefore, the infinite water depth free 

surface condition reduce to, 

 0
z





− =


 (2.1.11) 

The impermeable seabed implies, 

 0
z hz



=−


=


 (2.1.12) 

If the water depth is infinite, this condition is often expressed as, 

 lim 0
z z



→−


=


 (2.1.13) 

For a radiation or diffraction wave problem, the solution must satisfy the real physic 

that the waves travels outwards and in reality their energy must be dissipated at large 

distances from the fluid structure interaction. 

Sommerfeld [67] gave the first mathematically rigorous expression that controls the 

wave field at an infinite distance in the form, 

 
( 1)/2lim ( ) 0n

R
R i

R


−

→


− =


 (2.1.14) 

The superscript n is the dimension of the wave field and R is the horizontal distance 

from the source of oscillation. This condition will not ensure waves damp out at far 

distance, but will regulate the direction of travelling waves. It can be proved that the 3-

dimensional potential wave problem is mathematically controlled by a 2-dimensional 

wave equation (Helmholtz equation) and the value of n this study should be 2. 

2.1.3 Wave Properties 

Suppose the Cartesian spatial variables are denoted as Q(x, y, z) (see Figure 2.1 & 2.2) 



21 

 

and the free surface plane is located at z = 0. For incident waves, there should be no 

objects inside the fluid domain and, hence, no singularities exists in the expression. The 

behaviour of incoming water waves are usually 1-dimensional and will not dissipate 

compare to the scale of the body. Next, assume the incident wave is dominated by 

excitation of unique direction and the positive x-direction is the direction of propagation. 

  Through solving Equation 2.1.5, 2.1.7 and 2.1.10, one may determine the potential 

of incident wave in the following expression, 

 
cosh[ ( )]

cosh( )
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 (2.1.15) 

where Aw is the wave amplitude and α is the phase shift of the wave shape, which is 

usually taken as 0. If the depth of h is very large, this expression will reduce to infinite 

water depth form. 

 1( + )i xzwgA
e e

 


=   (2.1.16) 

  The general solution of the 3-dimensional problem according to the above governing 

equations and the Sommerfeld condition is of the general form, 
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+
= +    (2.1.17) 

where φ is the angular variable under polar coordinate system, α is a constant shift of 

angle, 𝐻𝑛
(1)

 (x) is the Hankel of the first kind and nth integer order, which can be 

expressed in terms of first and second kind Bessel functions (Jn(x) & Yn(x)) as, 

 
(1) ( ) ( ) ( )n n nH x J x iY x= +    (2.1.18) 

  The second kind Bessel function is singular at the origin, hence, the solution is 

physical only when the singularities are excluded from fluid domain. This suggests that 

propagating waves will not exist independently and constantly if the fluid domain is 

unbounded or without an oscillating body. The overall result would be a superposition 

of principles solutions once the boundary condition on the wetted surface is given and 

this mathematical technique is applied by McCamy and Fuchs [1] to determine the 

analytical solution of diffraction problem over a vertical cylinder. 
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  However, the Hankel function is insufficient to describe all situations as it requires 

the domain to be excluded throughout the depth of the singularities. The principle 

solutions applied for arbitrary shapes and locations are free surface multipoles, where 

the function is singular only at the source point. Suppose the source of the multipole is 

located at a fixed point P(a, b, c), then one can determine a series of functions that 

satisfy all boundary conditions except at the origin through transformation of spherical 

harmonics and asymptotic analysis. The solution under a finite depth condition is, 
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 (2.1.19) 

where 𝑃𝑙
𝑛(x), for integers l & n and l ≥ n, is called the associated Legendre polynomials 

of lth degree and nth order, r is the distance between source point P and the generic fluid 

point Q defined as, 

 2 2 2( ) ( ) ( )r x a y b z c= − + − + −    (2.1.20) 

Its horizontal projection on the x-o-y plane is, 

 2 2( ) ( )R x a y b= − + −    (2.1.21) 

r2 is the distance between Q and the image source point of P’(a, b, -2h-c) above the 

seabed, 

 2 2 2

2 ( ) ( ) ( 2 )r x a y b z h c= − + + + + +    (2.1.22) 

φ is the azimuth angle while θ and θ’ are the zenith angle from point P and P’ it follows 

that, 
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For infinite water depth Equation 2.1.19 reduces to, 
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  (2.1.26) 

Under multipole expansion method, the overall diffraction or radiation potential is 

considered to be a linear superposition of infinite orders of multipole sources. The 

magnitudes of primary orders of multipole are determined through solving a truncated 

set of linear equations subject to the known boundary conditions at selected 

representative points on the wetted surface. 

From Equation 2.1.19 & 2.1.26, one can derive that the multipole sources dissipate 

at the following rate for 3-dimensional problem at far field, 
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for finite water depth and for infinite water depth the corresponding behaviour is, 
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where A(φ) is a regular function of φ. 

This asymptotic expression is important for the formulation of the integral equation 

method. All diffraction and radiation waves should satisfy this relationship since the 

potential in the fluid domain should be a bounded superposition of multipole sources. 

  Free surface multipole under more conditions can be found in Thorne’s work [68], 

including a 2-dimensional case and the corresponding fluid singularity ln(r). 

2.2 Boundary Analysis 

In this study, we deal with fluid potential force only as the influence of viscosity is 

considered to be negligible. The method applied is basically a boundary element 
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analysis controlled by an integral equation related to harmonic functions. The so-called 

Green function is important to this method and an explanation of its role in determining 

hydrodynamic loads is explained. The principle of the direct coupling method is 

introduced in detail from the logic of the integral equation method and the deduction of 

important steps and objectives are explained. 

2.2.1 Green Theorem 

A function can be called a Green function G if it satisfies the following condition 

throughout the whole space, namely, 

 
2 ( , ) ( )G Q P P =  (2.2.1) 

where Q & P satisfy the space coordinate definition of the previous section and δ(P) is 

the delta function. However, Q & P do not necessarily correspond to 3-dimensional 

space. By definition δ(P) = +∞ at the point P and δ(x) = 0 over the rest of the definition 

domain. 

  From the definition of Green function, it follows that, 

 
2 ( , ) ( ) ( ) ( ) ( )

R R

G Q P Q dV P Q dV P    = =   (2.2.2) 

G has different solutions in spaces of different dimensions. In 2-dimensional space, the 

strict solution of Equation 2.2.1 is. 

 
1

2
G C

R
= +  (2.2.3) 

In 3-dimensional space, 

 
1

4
G C

r
= − +  (2.2.4) 

in which C can be a constant or any other regular harmonic functions that will facilitate 

the properly formulated solution process. 

In practice, we generally omit the 1/2π & -1/4π coefficient and use the Green function 

in the form of, 
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1
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= +  (2.2.5) 

  For free surface problems, we know the expression of the simplest multipole source 
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with l, n = 0 will include the principal term of 1/r. So we take that function as our free 

surface Green function. For infinite water depth, 
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  In the case of 3-dimensional finite water depth, 
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  Suppose the singularity of the free surface Green function is covered within the body 

boundary, then both G and fluid potential ϕ should satisfy the Laplace equation in the 

fluid domain and from Green second identity it follows that, 
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    (2.2.8) 

where VF is the domain of external fluid and S is the boundary surface that encloses VF, 

n⃑  is the normal vector point outward of the integration space. The boundary can be 

viewed as the union of distinct identifiable surfaces, that is, 

 FS W S RS S S S S=  (2.2.9) 

in which SFS is the free surface of the fluid and SW is the wetted surface of the body. 

For finite depth problem, SS is the seabed. A vertical cylindrical boundary SR of infinite 

radius Rc provides closure of the fluid domain between free surface and seabed. 

  On SFS, we can have the following relationship from Condition 2.1.9, 
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  Thus it follows that, 
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  While from the Sommerfeld radiation condition (Equation 2.1.14) we have as Rc → 

∞, 
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  Then integration over SR reduce to, 
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  For finite depth problem, we know both ϕ & G satisfy Condition 2.1.27, therefore 

the integration on SR takes the form, 
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  Since the integrations over z and φ are bounded, we have, 
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  Similarly, we take Condition 2.1.28 into SR integration for the infinite depth problem, 
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 (2.2.16) 

  This equation tends to 0 as Rc → ∞. 

  On finite depth SS, we know ϕ & G satisfy the impermeability condition and thus, 

 0
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 (2.2.17) 

  Hence Equation 2.2.6 reduces to, 
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  While for the boundary SS in the finite water depth problem, 
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 (2.2.19) 

  As the exponential term converges to 0 much faster than the power function, the 

integration of SS also tends to 0 as Rc → ∞ according to the external boundary we 

defined. 

  Now only SW is left in the surface integration. Having demonstrate what happens on 

the other constituent surfaces, it is clear from Equation 2.2.8 that, 

 ( ) 0
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G
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n n



 

− =
   (2.2.20) 

 

 

Figure 2.3 External problem integration of ∂G/∂n over the mth element when the fluid source is 

located at the nth element centroid 

 

Next, we consider what happens if the fluid singularity is located on the surface of 
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SW. To keep the singularity out of the fluid domain, we imagine it is covered with an 

infinite small hemisphere as indicated in Figure 2.3. 

  We denote the covering hemispherical surface by Sh and the resulting wetted surface 

is still SW. The normal vector is pointing outward of the fluid and thus inward on SW, 

so we may write Equation 2.2.20 in the new equivalent form, 
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  If we denote the regular part of G by Gr then the integration over Sh becomes, 
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Here dΩ is the solid angle of the covering hemisphere. When P is located on the smooth 

surface, we have dΩ = 2π. 

  Since all other terms are bounded to o(1/r), only the 1/r2 term will remain as r → 0, 

that is, 
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− =
   (2.2.23) 

By partitioning the surface SW into a number of boundary elements, for which the 

values of ϕ and its derivative are assumed to vary negligibly over any particular 

individual elementary surface, and taking the corresponding value at the element 

centroid to be its representative value over the whole boundary element, the integral 

equation can be approximated into the summation form, 
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where N is the number of boundary elements covering SW and subscript Wn refers to 

the nth wetted surface boundary element. The integration of regular Gr is undertaken for 

the ith element that hosts the singularity. 

Equation 2.2.24 for one element has N unknowns. By formulating equations for 

different host ith elements using Equation 2.2.24, a set of N equations with N unknowns 



29 

 

is generated. The equivalent matrix formulation can be solved by undertaking matrix 

inversion. The matrix form of the N equations is essentially, 

 v =A B  (2.2.25) 

with matrix elements defined by, 
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W j
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= ijB  
(2.2.25b) 

  The subscript i denotes the location of the fluid source whereas j indicates the 

integration of the influence of the ith fluid source upon the jth element. 

The velocity potential and normal velocity column vectors are respectively, 

 1 2 3[ , , ,..., ]T

N    =  (2.2.25c) 

 1 2 3[( ) , ( ) , ( ) ,..., ( ) ]T

Nv
n n n n

      
=

   
 (2.2.25d) 

  Hydrodynamic pressure can be determined from the fluid velocity potential through 

the linearized Bernoulli’s equation, namely, 
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 (2.2.26) 

Whilst Equation 2.2.25c contains each boundary element velocity-potential value, 

Equation 2.2.25d contains the normal boundary motion velocity for each boundary 

element. Combining Equation 2.2.25c with Equation 2.2.26 yields a simple algebraic 

expression for the external hydrodynamic pressure as a function of ∂ϕ/∂n on SWE, 

namely, 

 p i i v = = -1
A B   . (2.2.27) 

  For analysing external hydrodynamic problems this relationship is expressible as, 

 Ep  =  
EvEf  (2.2.28) 

with =i -1

Ef A B . 
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2.2.2 Formulations of Internal Domain 

The relationship between flow potential and its normal derivatives on the selected 

boundary can be analysed similarly for VI in Figures 2.1 & 2.2. A key difference with 

the normal external fluid formulation is that the covering of the fluid singularities on 

the structure boundary requires a change in sign of integration over Sh, (See Figure 2.4). 

   

 

 

Figure 2.4 Internal problem integration of ∂�̃�/∂n over the mth element when the fluid source is 

located at the nth element centroid  

 

or an internal problem with a free surface, the Laplace equation (Equation 2.1.5) and 

the free surface condition (Equation 2.1.9) govern the flow provided the assumption of 

small amplitude holds. (To distinguish the internal fluid from the external fluid, 

variables related to vertical direction change from z to ͠z in all functions and their 

associated derivatives). 

The boundary of volume VI now comprises, 

 IFS IWS S S = . (2.2.29) 

With the definitions of r and R unchanged, the second identity of Green becomes: 
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Satisfaction of Equation 2.1.9 by ϕI and �̃� implies 
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This suggests that ΦI on the internal free surface does not need consideration. The 

Green’s function �̃� can correspond to either finite or infinite water depth, provided no 

singularity is included within VI. 

 Applying a boundary element discretisation to the remaining internal wetted surface 

integrals yields, 
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As already noted, the integration of ∂(1/r)/∂(n) over the host element yields -2π, since 

the internal fluid domain VI excludes P. 

The resulting matrix equation for the internal hydrodynamic problem, consistent with 

Equation 2.2.25, is: 

 I Iv =A B  (2.2.33) 

with, 
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 I  =  1 2 3[ , , ,..., ]N T

I I I I     (2.2.33c) 

 Iv  =  1 2 3[ ( ), ( ), ( ),..., ( )]N TI I I I      

   n n n n
         (2.2.33d) 

Arguments analogous to those justifying Equation 2.2.28 lead to the relationships  
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 Ip  =  
IvIf  

(2.2.34) 

 I
f  =  

Ii -1
A B          

for the internal hydrodynamic pressure function of normal velocity on the internal 

wetted surface. Furthermore, when the internal wetted surface boundary motion is �̅�𝐼 =

0,  solutions still exist for the internal dynamic behaviour if fI is singular. The 

corresponding ω is the small amplitude natural resonant frequency of the fluid 

containing structure determined from 𝑑𝑒𝑡(f
I
) = 0. However, higher order methods are 

required to solve the internal fluid response near resonance since the linear assumption 

is no longer valid; the physics being akin to container sloshing. 

For a fully closed fluid domain, 1/r is enough to formulate the relationships we need. 

Theoretically, it does not matter if we add to it an arbitrary harmonic function as long 

as no singularity is included. One may directly minus a -4π on the trace of matrix A in 

Equation 2.2.25 to obtain the operator needed. However, non-uniqueness occurs with 

this characteristic for closed boundary problem. 

2.2.3 Hydrodynamic Force 

The above deduction gives the basic concept of the source method commonly used to 

solve the wave-body interactions of rigid structures. Consider the radiation problem. If 

a rigid body is oscillating at a constant frequency in still water in the rth direction rn , we 

can specify the associated boundary condition as, 

 
1 2 3[( ) , ( ) , ( ) ,..., ( ) ]Tr r r r

r Nv
n n n n

      
=

   
 

1 2[ , ,..., ,..., ]j N T

r r r rn n n n n n n n=      

(2.2.35) 

where n j  is the normal vector on the jth boundary element. Then the value of fluid 

potential and, hence, hydrodynamic pressure acting on each element (induced by 

radiation) are determined through the matrix operations, 

 r rv = -1
A B  (2.2.36) 

 r r rp i v= = Ef  (2.2.37) 

  For the diffraction problem, where the rigid body is fixed, we know the normal 
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velocity at the wetted surface should be 0. Therefore, since the incident wave velocity 

vector at the jth element is known then, 

 ( , , ) ( , , )[ , , ]
j j j

j TA A A
A x y z x y zn i i i

x y z

  
   =

  
= − − −

  
 (2.2.38) 

Continuity of the boundary motion and fluid motion over the wetted surface of the 

structure requires (given a subscript ‘A’ for incident wave is consistent with Equation 

2.1.15,  

 
1 21 2[ , ,..., ,..., ]

j Nj N T
D A A A A Av v n n n n n n n n= − = −  −  −  −   (2.2.39) 

The resulting diffraction potential and pressure at the boundary is, 

 D Dv = -1
A B  (2.2.40) 

 D D Ap i v= = − Ef  (2.2.41) 

  The total solution will be its linear summation with the incident potential wave. 

  For an oscillating body under excitation, at the wave frequency, the boundary 

condition must satisfy, 

 

C A rv v v+ =  

C r A r Dv v v v v= − = +  

(2.2.42) 

This means the resulting hydrodynamic response of a moving body under an incoming 

wave can be taken as a linear superposition of the radiation solution in still water and 

the diffraction solution generated supposing the structure is fixed. 

For any wave-body interaction problem, if we want to determine the motion of single 

or multibody structures, due to excitation waves, we need to couple the resulting 

hydrodynamic force with the structural response. Proper mathematical formulations for 

the structural behaviour is necessary and addressed next. 

2.3 Structural Analysis 

Equation 2.2.27 & 2.2.33 have revealed the relationship between normal boundary 

velocity and the inducing hydrodynamic pressure acting on the structural surface. 

Complete physical formulation is required to capture the proper dynamic of the whole 
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system. For a direct coupling method under linear assumption, it usually means deriving 

a structural matrix U such that, 

 v p=U  (2.3.1) 

where the nth row, mth column element of U is the resulting normal velocity of the nth 

element when unit pressure is acting on the mth boundary element. (Hearn, who 

described the concept in terms of ‘Poke Functions’, suggested this approach.) 

2.3.1 Finite Element Analysis 

For linear elastic structures, the relationship U of Equation 2.3.1 can be determined 

through finite element analysis, which is a numerical method based on Lagrangian 

dynamic theory. Normally, the matrix equation for a dynamic problem in the frequency 

domain analysis written as: 

 
2( )i u u f − − + = =M C K D . (2.3.2) 

Here �⃑�  is a list vector containing the general displacement of element nodes to each 

degree of freedom, 𝑓  is the general forces acting on the corresponding finite element 

nodes, M is the mass matrix, C is the damping matrix, K is the stiffness matrix and D 

derived from M, C & K is the dynamic stiffness matrix. Figure 2.5 illustrates the 

quantities addressed at each node of a typical finite element. 

Proper interpolation function is required to distribute the uniform load onto the 

element nodes. In this study, the order of interpolation is the lowest (See Figure 2.5). 

The nodes of the finite elements coincide with the centroids of simple constant value 

based boundary elements of the hydrodynamic analysis with �⃑�  corresponding to the 

normal displacement of the boundary motion. Therefore, noting �̅� = −𝑖𝜔�̅�  for the 

external problem it follows that 
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Figure 2.5 A sketch of force interpolation on an individual finite element. The pressure pn acting 

on the nth element is assumed uniform in the BEA formulation and the force acting on the nth 

centroid, which is the corresponding finite element node, is pressure multiplied by its area sn 

 

  Proper interpolation function is required to distribute the uniform load onto the 

element nodes. In this study, the order of interpolation is the lowest (See Figure 2.5). 

The nodes of the finite elements coincide with the centroids of simple constant value 

based boundary elements of the hydrodynamic analysis with �⃑�  corresponding to the 

normal displacement of the boundary motion. Therefore, noting �̅� = −𝑖𝜔�̅�  for the 

external problem it follows that 

 
i

v f


=D . (2.3.3) 

  On the right hand side of the Equation 2.3.3 we modify the force vector to reflect the 

pressure we are studying, that is, 

 net

i
v p


=D S . (2.3.4) 

Matrix S is diagonal and expressible as, 

 1 2 3( , , , , )Ndiag s s s s=S . (2.3.5) 

  It is better to utilise the inverse of matrix S in real practice. It is a trivial operation, 

but also matrix D would become singular when natural vibration frequencies are 

reached for the structure in vacuum. 
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  General finite element monographs [69, 70] provide specification of M, C & K for 

plate, shell or solid finite elements. Usually, the nodal variables determined directly are 

not exactly the normal displacements and, hence, local coordinate transformations are 

required to correct the directions. Static condensation is required to collapse the 

unnecessary rows and columns of the matrices. 

2.3.2 Rigid Body Dynamic 

For regular structures, linear superimposition provides required dynamic responses. 

This is equivalent to determining U through dynamic procedures. This observation is 

particularly important when a finite element analysis fails for a rigid structure. It 

enables the development of a direct coupling method for more general models. 

  For a free rigid body or container, unit pressure acting on the nth element in the 

internal direction will result in a translational and rotational response over the mass 

centroid O. Figure 2.6 indicates the spatial variables involved. 

 

 

Figure 2.6 Definitions of variables for rigid boundary analysis 

 

Considering unit pressure, the translation force fn is simply equal to the facet area αn 

and since local acceleration satisfies an = -iωγn = fn/M, the induced centroid velocity γn 

satisfies 
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 n ni
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=

n

n
γ  (2.3.6) 

For a total body mass M. Similarly, with Jn being the body moment of inertia around 

the rotation axis vector ωn , the angular velocity of the rigid body satisfies, 

 
( )n on n

n

i

J







=

n

r n
 (2.3.7) 

The normal velocity response of the mth boundary, which corresponds to the nth row, 

mth column element of matrix U is 

 ( )nm =  + 
m n n om

U n γ ω r . (2.3.8) 

It is not necessary to determine another response matrix for internal action on a thin 

walled container as net pressure is the acting force. 

U is similarly derivable for rigid models with more complex structure, provided a 

proper rigid body reaction can be determined. Examples include a hinged Cockerell raft 

or an anchored buoy. 

2.3.3 Mixed 1-Dimensional Analysis 

The structural analysis logic developed above can equally address a 3-dimensional 

hydrodynamic analysis when the elastic structure is of lower dimensions. A special 

structure is to be analysed with this mixture of formulation. 

In Figure 2.7, we present a 1-dimensional elastic cylindrical beam. The 

hydrodynamic force acting on the beam is 3-dimensional over its wetted surface. The 

beam side surface boundary element mesh centroid coincide with the same cross-

sectional areas of the corresponding beam nodes. 

 

 

Figure 2.7 A 1-dimensional elastic cylindrical beam model coupled with a 3-dimensiontial 

hydrodynamic analysis. The dots are the node points of the beam. 
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  When a unit pressure is acting on the nth point of the boundary element, it is 

equivalent to a force of magnitude αn acting on the kth node of the beam. If the dynamic 

stiffness of the beam is DB, the resulting velocity response of the jth node is: 

 [ ]k j ni  = − -1

j B
u D n  (2.3.9) 

j’ and k’ indicate the selected element of inverse matrix 𝑫𝑩
−1  with respect to the 

transverse displacement of the nodes; other nodal degrees of freedom (rotations) have 

no contribution to the boundary normal displacement. The elements in matrix U are 

thus 

 ( )nm k ji  =  = − -1

j m B n m
U u n D n n . (2.3.10) 

  For other beams, or, when the boundary elements at the ends need inclusion, a unit 

force acting on the boundary element could result in torsion, axial tension and bending 

moment over certain nodes. For problems that are more general the rule for the 

determination of U is unaltered, since only normal velocity responses are required 

2.4 Direct Coupling Procedures 

Combining Equation 2.2.28, 2.2.34 & 2.3.1 will immediately give, 

 0( )v p v v= + −E IU f f  (2.4.1) 

This assumes velocity continuity on SW and 0p   is the wave excitation force 

determined from incident and diffraction wave pressure. The boundary normal velocity 

is thus, 

 
-1

0[ + ]v p= − E II Uf Uf U  (2.4.2) 

  For solid bodies or structures without internal fluid, the internal term fI is zero. 

Flexibility is provided by the direct coupling method when considering velocity as a 

function of loading, since the determination of dynamic matrices in Section 3.1.1 is not 

always feasible. 

  Some verification and examples of this primary procedure will be demonstrated. 

However, it is challenging to introduce a fully filled model into the formulation. 

Alternative forms are to be discussed for more special and general cases. 
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2.4.1 Non-uniqueness Problem 

The standard form of the linearized Bernoulli equation in the frequency domain is, 

 p i− +  =  c . (2.4.3) 

Here, c is a spatially independent constant. It can be understand as a universal pressure 

acting throughout the space, but has no influence on the flow variation and, hence, zero 

is a default for most hydrodynamic problems. For regular wave-body interaction 

problems, it must be treated as zero for continuity of pressure at the fluid-atmosphere 

interface. 

For the fully filled model discussed here, c is a separated harmonic variable in the 

form similar to Equation 2.1.1, since external excitation and the resulting internal 

response are both harmonic. More strictly, one may consider another constant pressure 

term C0 in the Bernoulli’s equation, 

 ( ) i tp i e  −− +  =  
0

i tC ce −+  (2.4.4) 

where C0 represents a pre-pressurised term acting on SWI. However, within linear 

analysis, C0 only contributes to the equilibrium state of the structure at rest. 

  For regular wave analysis, the solution of the Laplace Equation 2.1.5 is solved with 

a Robin boundary condition, that is, the free surface boundary condition in Equation 

3.1.9. This condition ensures that the solution of ϕ is unique when ∂ϕ/∂n is known on 

the oscillating structural boundary. Parameter c is zero when applying Bernoulli 

equation for hydrodynamic loading here as zero pressure of the atmosphere is included 

in the free surface boundary implicitly. Therefore, a unique hydrodynamic solution is 

always obtainable for an open free surface fluid. 

  However, for a fully filled container described previously, the free surface and free 

surface condition of Equation 2.1.9 is removed. The boundary condition is now a 

Neumann condition with ∂ϕ/∂n on SWI. The internal solution of ϕI is now non-unique, 

since an arbitrary constant is a solution to ∂ϕ/∂n = 0 and can be added to an appropriate 

solution. Meanwhile, the Bernoulli pressure constant c can no longer be treated as zero 

for an isolated fluid volume. Furthermore, its resultant loading is not negligible in terms 

of the deformation of the flexible shell. 
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  If ∂ϕ/∂n is the input variable, as introduced in the existing direct coupling method, 

these two facts mean it is not possible to provide a proper motion-dynamic relationship. 

What we would observe is that the inverse of matrix A in Equation 2.2.23 with G = 1/r 

is impossible. The non-unique nature of the Neumann problem suggests matrix A must 

be singular (ill conditioned in numerical practice) as 0 must be its eigenvalue, with a 

corresponding constant eigenvector. 

By invoking the reverse problem of Neumann problem, that is, a Dirichlet problem 

a unique solution is possible. Thus the internal hydrodynamic pressure pI is a good 

replacement of ∂ϕ/∂n to establish the dynamic-response relationship. 

Since matrix �̃�  is always non-singular we replace the step implied by Equation 

2.2.34 with, 

 I Iv = -1
B A  (2.4.5) 

Establishing that the constant c in Equation 2.4.3 is ignorable requires substitution of  

 
I

I

I

ipic


 
= −  (2.4.6) 

into Equation 2.4.5, after expressing Equation 2.4.6 in list vector form, to give 

 
I

I

I

i pic
v

 
= −-1 -1

B A B A   (2.4.7) 

The solution of ∂ϕ/∂n for a constant c on the boundary is 0, hence, the first right hand 

term of Equation 2.4.7 is redundant. Therefore, c is an unnecessary unknown when 

analysing the internal fluid velocity. The numerical tests suggest that one would obtain 

a solution of o(10-3) error when taking unit constant c into the calculation. 

Next, instead of having a matrix formulation solving hydrodynamic pressure from 

normal boundary velocity, an inverse function is required when the internal domain is 

fully closed. That is, reducing Equation 3.4.7 to the form  

 Iv  =  
IpIT   (2.4.8a) 

requires 

 IT  =  
I

i


−

-1
B A

  (2.4.8b) 
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The unknown directly solved is pI. 

2.4.2 Alternative Formulation 

With the fundamental relationship in Equation 2.4.1 unchanged, we have, 

 0E Iv p p p= + −D . (2.4.9) 

where �̃� = i𝑫𝑺−𝟏/𝜔 is the corrected dynamic matrix  

  Combining Equations 2.2.28, 2.2.34 & 2.4.9 yields, 

 0( ) Ip p− + =I E IDT f T I  (2.4.10) 

  Let 

 = − +I E IL DT f T I  (2.4.11) 

  We can solve the induced internal pressure with, 

 0Ip p= -1
L . (2.4.12) 

and determine the dynamic response of the structure with Equation 2.4.8. 

2.4.3 Half-Closed Boundary 

The technique developed for solving a closed internal boundary can be for a domain 

that is not actually closed. 

  Figure 2.8 presents a hollow shell model, with an open elastic SW submerged under 

the free surface. An imaginary opened boundary S0 provides closure to the internal fluid 

domain VI. 

 

 

Figure 2.8 An opened container for analysis, the internal fluid domain is wrapped by elastic 

boundary SW and imaginary surface S0. 
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  We assume that the elements on SW are numbered from 0 to N – M while elements 

on the imaginary boundary is numbered form N – M to N. the matrix Equation 2.4.9 

can be partitioned as, 

 
0

0 00 0 0

W W W IW

I

v p v p

v p v p

          
= + −          

           

EWW EW0WW

E0W E00

f fD 0

f f0 0
 (2.4.13) 

Elements in the dynamic matrix out of SW are assigned with a 0 since physically there 

is no stiffness. 

  The lower row of the equation suggests, 

 0 00 0I Wp p v v= + +
E0s E00

f f  (2.4.14) 

The term on the left hand side is the internal hydrodynamic pressure. The first term on 

the right hand side is the excitation force, while the second and third terms are the 

radiation pressure acting on S0 due to the motion and flux over SW & S0. The equation 

indicates a continuity of pressure over the imaginary surface. Hence, a procedure 

developed for solving a closed structure is directly applicable to an open structure. More 

extremely, we can let SW to be a plane while S0 is an arbitrary boundary to model 

behaviour. 

2.4.4 Multi-Domain Analysis 

In order to demonstrate the developed method is capable of addressing complex cases, 

rather than just a monocular container, the example has a double internal fluid domain. 

 

 

Figure 2.9 The Sketch of a container with two adjacent closed domains. Subscripts with odd 

numbers indicates the surfaces covering the left domain while surfaces of even number bound 

right domain. S3 ~ 6 are the internal surfaces. 
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  Continuity of normal velocity is not only satisfied over each internal and external 

boundary, but also applies across S5 & S6. We cannot make further simplification here 

as there is pressure action on S5 & S6 and these are essentially independent unknowns. 

One must study the internal pressure as discussed in Sections 2.4.1 & 2.4.2 to formulate 

the proper hydrodynamic relationship. 

  The equation for the external problem is, 

 
1 1

2 2

E

E

p v

p v

    
=     

    

EWW EW0

E0W E00

f f

f f
 (2.4.14) 

whereas for the two internal domains we have, 

 
1 1

5 5

I

I

v p

v p

     
=     

     

I11 I15

I51 I55

f f

f f
 (2.4.15) 

 
2 2

6 6

I

I

v p

v p

     
=     

     

I22 I26

I62 I66

f f

f f
 (2.4.16) 

  The overall dynamic equation is, 

 

1 11

2 22

0

5 5 6

6 6 5

0

0

IE

IE

I I

I I

v pp

v pp
p

v p p

v p p

    
    
    = + −
     −
    

−    

D  (2.4.17) 

  It should be noted that elements in matrix D corresponding to the nodes on S5 & S6 

are anti-symmetric due to continuity and, hence, the continuity of normal velocity is 

implicitly satisfied with such a formulation. 

  Velocities and external pressure can be expressed with internal pressures by 

combining Equations 2.4.15 ~ 2.4.17, that is. 

 

1 5

2 6

1 5

2 6

I I

I I

I I

I I

p p

p p

p p

p p

+ 
 

+
  =
 +
 

+ 

I11 I15

I22 I26

I51 I55

I62 I66

f f

f f
D

f f

f f

 (2.4.18) 
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11 5 2 6

21 5 2 6

0

5 6

6 5

( ) ( )

( ) ( )

0

0

II I I I

II I I I

I I

I I

pp p p p

pp p p p
p

p p

p p

+ + +   
  

+ + +
  + −
   −
  

−   

EWW I11 I15 EW0 I22 I26

E0W I11 I15 E00 I22 I26

f f f f f f

f f f f f f
 

  The solution for the internal pressures is, 

 

1

2 1

0

5

6

[ ]

I

I

I

I

p

p
p

p

p

−

 
 
  = − +
 
 
 

1 2 3
DM M M  (2.4.19) 

with, 

 1

0 0

0 0

0 0

0 0

M

 
 
 =
 
 
 

I11 I15

I22 I26

I51 I55

I62 I66

f f

f f

f f

f f

 (2.4.19a) 

 2
0 0 0 0

0 0 0 0

M

 
 
 =
 
 
 

EWW I11 EW0 I22 EWW I15 EW0 I26

E0W I11 E00 I22 E0W I15 E00 I26

f f f f f f f f

f f f f f f f f
 (2.4.19b) 

 3

0 0 0

0 0 0

0 0

0 0

M

 
 
 =
 −
 

− 

I

I

I I

I I

 (2.4.19c) 

  A multi-domain solution raises new challenges of topology when discretising and 

numbering the elements of the structure. 

2.4.5 Coupling of Hydrostatic Loads 

Hydrostatic pressure is ignorable for analysing a fully submerged structure since the 

buoyancy does not contribute to the structural dynamic when the total displacement is 

fixed. However, it is still significant for floating structures and it is necessary to develop 

a direct coupling procedure including the variation of hydrostatic pressure. 

  For direct coupling of the hydrostatic restoration force into the body motion, it is 

necessary to introduce a vertical displacement shift variable. For a steady state, 

oscillating body the hydrostatic pressure PS acting on the wetted surface satisfies, 



45 

 

 0( )i t

SP g Z ze  −= − +  (2.4.20) 

where the z-coordinate is Z0 in the equilibrium state and Δz is the vertical oscillation 

amplitude. Since the term ρgZ0 already contributes to the equilibrium of the structure, 

only ρgΔze-iωt is responsible for the oscillation. Clearly, we can cancel the harmonic 

component in the frequency domain analysis. 

Assuming an invariant hydrostatic force over the mth element is mPSE, the (external) 

hydrostatic pressure function for the displacement 𝑧𝐸⃑⃑⃑⃑ , which is independent of 𝑣𝐸⃑⃑⃑⃑ , is  

 SEP  =  
EzSEf  (2.4.21) 

 SEP  =  1 2 3[ , , ,..., ]N T

SE SE SE SEp p p p  (2.4.21a) 

 SEf  =  ( , , , , )E E E Ediag g g g g     of size N (2.4.21b) 

 Ez  =  1 2 3[ , , ,..., ]N T

E E E Ez z z z    . (2.4.21c) 

The above equations are analogous in form to Equation 2.2.27. The internal 

hydrostatic analysis follows the same procedure; however, one does not have to change 

the z-direction variable, as Δz is a relative value. The hydrostatic analysis is necessary 

for a floating container model. However, we ignore hydrostatic pressure influences 

when the structure is balanced. For example, a submerged rigid body with coincident 

centres of gravity and buoyance or a floating container with ρE = ρI and h0 = 0. 

  When the hydrostatic force is not negligible Equations 2.4.2 for Ev  become: 

 Ev  =  
0( )E Ev z p+ +E SEU f f  (2.4.22a) 

or, 

 Ev  =  
0[( ) ( ) ]E Ev z p− + − +E I SE SIU f f f f . (2.4.22b) 

It is clear, on appealing to Equation 2.4.20, that we require the additional relationships: 

 Ez  =  
0( )E Ev z p+ +z E SEU f f  (2.4.23a) 

 Ez  =  
0[( ) ( ) ]E Ev z p− + − +z E I SE SIU f f f f  (2.4.23b) 

where Uz is the matrix of boundary element displacements in the z-direction. We can 

determine this matrix simultaneously with U, by replacing nm with a unit z-direction 
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vector as described in Chapter 3. An i/ω multiplier of the solution converts velocities 

into displacements. 

  Combining Equations 2.4.22 & 2.4.23 yields: 

 Ev  =  
0( ) p − -1

EI U f U  (2.4.24a) 

 U  =  [ ( ) ]+ − -1

SE z SE zU I f I U f U  (2.4.24a’) 

and 

 Ev  =  
0[ ( )] p − − -1

E II U f f U  (2.4.25b) 

 U  =  { ( )[ ( )] }+ − − − -1

SE SI z SE SI zU I f f I U f f U . (2.4.25b’) 

It should be noted that elements in Ef  should be assigned zero, similar to the situation 

in Equation 2.4.13, when one side of the surface is dry and free from hydrodynamic or 

hydrostatic force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

3 Modelling 

This chapter identifies boundary element and or finite element discretisation for a 

selected set of geometries and indicates the solution approach to be adopted. Chapter 4 

presents the generated analysis results. 

3.1 Models 

3.1.1 Spherical Shell 

We select a spherical shell for testing since it is the simplest geometry with many 

existing analytical or numerical studies. It is also a highly symmetric body, where modal 

analysis should fail. 

 

 

Figure 3.1 The boundary element mesh of a spherical geometry consists of Nφ = 32 rings of 

uniform latitude from pole to pole. Division of each ring ensures a boundary element geometric 

aspect ratio is evenly close to one. Gaps between the elements have negligible influence upon the 

overall calculation. 

 

  The boundary elements and finite elements are meshed differently according to the 

interpolation we introduced. Generally, the sphere is evenly meshed in latitude first, 
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and then each ring is divided uniformly. The vertices of the same element are on the 

same plane under this discretisation. Aspect ratio of the elements are close to 1 when 

discretised to avoid irregular geometry. The meshed models of Figures 3.1 & 3.2 consist 

of 1314 of boundary elements and 1372 finite elements. Each model comprises a 

mixture of triangular and quadrilateral elements. 

 

 

Figure 3.2 The finite element mesh of a spherical shell. The nodes of each element are the 

centroids of the corresponding boundary elements. No gap exists under this mesh. 

 

We introduce MITC3 [71] and MITC4+ [72] elements for structural analysis, where 

shear locking and membrane locking is avoided. 

3.1.2 Container & Natural Oscillation Analysis 

In Section 2.2.2, the linear function set up for a resonant internal fluid oscillation 

problem indicated that natural resonant frequencies for a container required solution of 

det(f
I
) = 0, or equivalently det(�̃�) = 0. For a vertical cylindrical container of radius R0, 

there exists analytical solutions, which are the roots of (see Appendix A), 

 
( )

0nJ R

R


=


 on 0R R= , (3.1.1) 

and ν is the variable of interest. In the equation, R0 is the radius of the cylinder. The 
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solution of resonant wavelength is independent of container depth. The natural 

frequencies, though, are different according to dispersion relationship in Equation 

2.1.10. 

 

Table 3.1 The first five resonant frequencies of a vertical fluid filled cylindrical container of radius 

R0 = 5m and the corresponding wavenumbers. 

Order n 1 2 3 4 5 

Resonant 

Wavenumbers 
νnR0 1.841 3.054 3.832 4.201 5.331 

Wavelength λ (m) 17.06 10.27 8.199 7.477 5.893 

 

  The singular value decomposition method identities the singularity of a matrix M. 

Here M ≡ �̃�  for �̃�  defined by Equation 2.2.33. The matrix M is decomposed into 

three matrices W, Σ & V* multiplied to yield M = WΣV*. W & V* are unitary matrices 

with determinants equal to one and multiplication of the trace of the diagonal matrix Σ 

provides det(M). Elements on the diagonal of Σ are designated singular values of M. If 

any of their value is zero then M is singular and the resonant frequencies are identified. 

Usually, the minimum singular value is close to rather than exactly zero, since M is 

determined numerically. 

The two selected depths of the numerical container model are h = 7.5 m & 15 m. The 

analysis for two container depths should establish that νn for a vertical cylindrical 

container is not a function of cylinder depth. The container wall is meshed with N = 

544 & 800 elements respectively. Figure 3.3 illustrates the discretization for the 7.5m 

depth container.  

  To address the resonance of a fully filled cylindrical container the appropriate 

solution method is the alternative formulation of described in Section 2.4.2. That is, 

applying the singular value decomposition method for matrix L. Natural vibration 

modes of the structure with incompressible fluid can be determined through eigenvalue 

decomposition. However, it still requires the manipulation of matrix TI of Equation 
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2.4.8. 

 

 

Figure 3.3 Discretization mesh for a vertical cylindrical container. Each parameter NS denotes the 

number of elements along container height, radius and circumference. 

 

3.1.3 Forced Oscillation Model 

The direct coupling method is very flexible. The fluid-structure interaction of a forced 

vibration problem can be appropriately formulated. Here an ‘earthquake’ model 

investigates the base of a cylindrical tower undergoing fixed amplitude vibration whilst 

surrounded by water with a free surface. 

When part of the structure is under fixed oscillation, the normal velocity is known 

over the corresponding wetted surface. Let 𝑣𝑘⃑⃑⃑⃑   and 𝑣𝑢⃑⃑⃑⃑   denote the known and 

unknown motions in Equation 2.3.2 Next partition matrix D and 𝑝   into portions 

associated with known and unknown motions, that is, Equation 2.3.2 becomes: 

 
k k

u u

v p

v p

     
=     

     

k D

T

D u

D X

X D
. (3.1.2) 

Hence, 𝑝𝑘⃑⃑⃑⃑  and 𝑝𝑢⃑⃑⃑⃑  respectively represent the forces acting on the forced oscillating 

part and the reacting forces acting on the free nodes. The second row of this equation 

implies 

 k u uv v p+ =T

D uX D . (3.1.3) 
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Hence 𝑣𝑢⃑⃑⃑⃑  satisfies 

 u u kv p v= −-1 -1 T

u u DD D X . (3.1.4) 

When there is no known forced motions, only the first term on the right hand side of 

Equation 3.1.4 remains, which is the structural dynamic response when certain degrees 

of freedom are fixed. Similarly, the second term represents the boundary normal 

velocity due to forced vibration of the structure in vacuum, that is 

 0 kv v= − -1 T

u DD X . (3.1.5) 

The excitation pressure 𝑝0⃑⃑⃑⃑  has been neglected since incident wave and other excitation 

forces are neglected in this problem (one may readily include them if necessary).  

For rigid body motion, 𝑣0⃑⃑⃑⃑   can be determined through the kinematic analysis 

procedure of Section 2.2.2. The determination of matrix U is unchanged provided the 

forced part of the structure is fixed. 

  Matrix fE is distinct for specified forced normal velocities on certain boundary 

elements. Let 𝑣𝑘⃑⃑⃑⃑   be the known boundary motions then partitioning matrices in 

Equation 2.3.28, as in Equation 3.1.2 implies:  

 
Ek

Eu

p

p

 
 
 

 =  Ek

Eu

v

v

  
  

   

Ek FE

T

FE Eu

f X

X f
 (3.1.6) 

Thus, the functions relating unknown pressure and normal velocities becomes: 

 Eup  =  
Eu Ekv v+ T

Eu FEf X  (3.1.7) 

So the dynamic equation eventually become: 

 Ev  =  
0( )Eu Ekv v v+ +T

u Eu FEU f X  (3.1.8) 

The solutions are respectively, 

 Ev  =  
0( ) ( )Ekv v− +-1 T

u Eu u FEI U f U X  (3.1.9) 

  To verify this procedure, model a vertical cylindrical beam the same as used in the 

study of Liaw [73]. The determination of Matrix U uses the logic introduced in Section 

2.3.3.  

In the Liaw’s study, the beam is of height 30.48 m, the fluid depth assumed. The ratio 

of tower radius to tower height is Rs/Hs = 0.05 and the wall thickness to radius ratio is 
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ts/Rs = 0.2. The tower material is concrete of density ρs = 2483 kg/m3 and Young’s 

Modulus E = 34.47 GPa. The surrounding fresh water is of density ρw = 1000 kg/m3. 

Vibration modes of the first two orders were analysed. The two structural modal 

damping ratio are the same and equal to 0.05 for both modes. The Rayleigh definition 

of structural damping ratio is based, that is, 

 1 2C a M a K= +  (3.1.10) 

in which the coefficients a1 and a2 are introduced to determine the damping coefficient 

of nth vibration modes according to, 

 
21

2 2

n
n

n

aa 



= +  (3.1.11) 

Here ςn is the damping coefficient for nth order vibration and ωn is the nth order natural 

frequency. 

 The structural response of interest is the acceleration at the top of the cylindrical 

tower, designated aY. 

 

 

Figure 3.4 The mesh and earthquake model for a vertical cylindrical beam surrounded by water 

and shaken transversely at constant amplitude at its base. The number of radial and transverse 

boundary elements are 16 & 57 respectively.  

 

Figure 3.4 indicates the number of cylindrical and vertical boundary elements the 
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wetted wall and defines various quoted dimensional parameters. Since the tower base 

and top are not in contact with the water, no boundary elements are necessary at these 

locations. 

3.1.4 Anaconda model 

The tube modelled here is a combination of circular cylinder and hemispherical caps. 

In real practice, the ends of the Anaconda are supposed to be stiff compared to the 

rubber to hold the power take-off system. Since it is not feasible to model such a 

complex system and the rigid ends may result in zero flux at the terminal cross section, 

the material is uniform throughout the boundary. 

  A measuring plane is selected at the end section of the cylinder to calculate the 

pressure and the flux striking the power take off system, (See Figure 3.5). 

 

 

Figure 3.5 The boundary elements at the ends of the Anaconda model (yellow). Red plane is the 

cross section for calculation pressure and flux at the end of the tube. There are 4748 boundary 

elements in a single model of diameter d = 7 m and length L0 = 94.2 m when Nφ = 32. 

 

  Upon determine the normal velocity and the pressure across a surface, the average 

energy flux Π through the surface is, 
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( ) ( )
( )

T

S

p t v t
dt dS

T


 =    (3.1.12) 

For a system under harmonic oscillation, the average power take off is, 

 
1

Re( )
2

S

p v dS =   (3.1.13) 

The energy flux of a propagating wave of infinite water depth per meter is, 

 
2 2

16

W
w

g A


 =  (3.1.14) 

The capture width is defined by, 

 W

W

PTO
C =


 (3.1.15) 

Figure 3.6 provides the finite element mesh for Anaconda. 

 

 

Figure 3.6 The finite elements at the ends of the Anaconda model. There are 4836 boundary 

elements in a single model of diameter d = 7 m and length L0 = 94.2 m when Nφ = 32. 

 

  Since the flexible end impede the flow passing through the last cross section, we 

delete the end cap when analysing the energy flux passing through the measuring plane. 
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Instead, a fictional impedance is uniformly attributed over the last cross section to 

simulate the turbine resistance. From previous studies, the impedance in a bulge wave 

is, 

 
w

s

c
Z

A


=  (3.1.16) 

This corresponds to when unit flux is passing through the cross section. The value of 

the artificial impedance Z’ to be introduced should be of this order. 

  When impedance is zero, the problem reduces to a half-closed problem introduced 

in Section 2.4.3. The zero trace in the dynamic matrix of Equation 2.4.13 needs to be 

replaced by Z’As to address the pressure generated by unit normal velocity through the 

boundary. 

3.1.5 Induced Profile 

To have a clear sense of resulting diffraction and radiation waves, water surface profiles 

induce by the influenced of the body are calculated and visualised in this study. There 

are two ways for determining the wave profile. 

  From Equation 2.1.6, the time-independent profile can be determined from the wave 

potential ϕ according to, 

 
i

g


 =  (3.1.17) 

Hence, whether considering diffraction or radiation, one needs to derive ϕ at the free 

surface according to the results we have solved on the boundary of a rigid body. For an 

arbitrary point P lying in the fluid domain, the value of ϕ at that point according to the 

second identity of Green is. 

 
1 ( )

( ) ( ( ) )
4

WS

G P
P G P dS

n n


 



 
= −

   (3.1.18) 

where G(P) denotes evaluation of the Green function sourced at P. Since we have 

discretised the wetted surface SW into N boundary elements, we can calculate ϕ(P) 

approximately according to, 
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j jS S

G P
P dS G P dS
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 = =

 
= −

 
    (3.1.19) 

Here j refers to the corresponding number of the element. If we let P be infinitesimally 

close to the free surface, the calculated value of water profile will be sufficiently 

accurate. 

This procedure is straightforward as ϕ and its normal derivative on each element are 

already determined in the previous steps. Alternatively if we discretise a region of free 

surface of interest into M elements, the workload to draw the profile will be of the order 

of O(N∙M). 

The other method assumes that the resulting diffraction or radiation potential field is 

a result of 1st order free surface multipole (free surface Green function) spreading over 

the wetted surface. The source strength is expressed by a density function σ and the 

value of ϕ(P) is calculated according to 

 
( ) ( )

WS

P G P dS =   (3.1.20) 

By assuming σ is uniform over a single element, ϕ(P) can be derived by, 

 
1

( ) ( )

W

N

j

j S

P G P dS 
=

=   (3.1.21) 

The unknown in this procedure is the value of σj and this is determinable from known 

values of ϕ(P) obtained on the wetted surface of the selected structure. By setting such 

relationship over each element, one will be able to set up N linear equations with N 

unknowns and to solve this set of equations through matrix inversion. The matrix set 

up for solving ϕ(P) will be exactly the same as the matrix B we obtained in Equation 

2.2.25. However, this matrix must be inverted and be multiplied by the list vector of ϕ. 

The workload of these steps would be in o(N3) order plus an o(N∙M) workload to draw 

the profile. 

The results generated from these two methods are very close. The first method is 

applied because it is effective and appears to be more accurate at the far field. 
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3.2 Programming 

3.2.1 Special Functions 

Principal value integration in Equation 2.2.6 is not trivial because it involves calculation 

near singularities and the upper limit of integration is infinite. An alternative expression 

for this integration, denoted as Ig in the following section, is required to avoid overflow 

and low efficiency evaluation. 

  According to Hearn [52], Ig is mathematically transformable to the following 

expression, 
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 (3.2.1) 

in which H0(x) is the Struve function of 0th order. Hearn also provides the x, y and z 

partial derivatives. The Struve function derivatives involve the 1st order Struve 

functions designated H1(x). 

To simulate the Struve function, Newman [74] suggested Chebyshev polynomial 

expansions. The accuracy of this approximation is to an order of 10-8 decimal. It takes 

less computing time compared with other approximation methods. 

  Two special cases also considered when calculating the numerical results of Ig, that 

is, when ν = 0 & R = 0. 

  For ν = 0, note that Ig reduces to, 

 
( )

0
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I = ( )k z c

g PV e J kR dk


+

  (3.2.2) 

  As (z + c) is negative throughout the fluid domain, this expression is equivalent to a 

Laplace transform of J0(kR) dependent on the variable (z + c), that is, 

 2 2
1

1 1
I =

( )
g

rz c R
=

+ +
 (3.2.3) 

This corresponds to a contribution from an image source. It is also clear that the 

imaginary part of free surface Green function is zero when ν = 0. Hence, this result 

shows that the free surface should reduce to a rigid wall when the frequency of the 
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oscillation goes to zero in infinite depth water. It is physically realistic as the velocity 

under such condition should be very slow. 

  For R = 0, the original integral formulation becomes, 

 
( )

0
I = k z c

g

k
PV e dk

k






++

−  (3.2.4) 

  By introducing exponential integral, 

 Ei(x)=
t

x

e
dt

t

−


−  (3.2.5) 

Ig assumes the form, 

 
( )1

I 2 [ ( )]z c

g e Ei z c
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 (3.2.6) 

  Its partial derivative in the z direction can be readily deduced whereas the R-direction 

derivative requires differentiation of the Bessel function J0(νR) with respect to R first. 

This will result in J1(x) in the integration and this is zero when x = 0. Hence, we have 

∂Ig/∂R = 0 when R = 0. 

  The function of Ei(x) is not generally implemented in many compilers. Therefore the 

Boost Package of the C++ language is used to evaluate this function. 

  In the real implementation of codes, a regular value of Ig is numerically difficult 

when νR < 0.005. To solve this challenge, linear interpolation between νR = 0 point 

(solved by Equation 3.2.6) and νR = 0.005 point (solved by Equation 3.2.1) is 

undertaken. 

  For the imaginary parts of the free surface Green function, Bessel functions are 

readily evaluated via the Visual Basic compiler. 

  By applying the appropriate evaluations described, we can assign the integration of 

regular parts of G on each boundary element by first calculating the corresponding 

values at the centroid of the facet and then multiply it with the area of the associated 

boundary element. The value of Ig is directly calculable whilst ∂Ig/∂n is determined in 

accordance with, 
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n x y z

   
= 

   
 (3.2.7) 

where n⃑  is the normal vector on the surface pointing into the body. 

  The surface integration of singular parts 1/r & ∂(1/r)/∂n can be determined from the 

analytical proposals of Hess & Smith [75] and Garrison & Chow [76] respectively. 

3.2.2 Computation 

Besides application of the Boost Package for special functions, the Armadillo library 

by Sanderson & Curtin [77] provides efficient operation of complex matrices. The 

operation of regular complex numbers are also under this package. 

  For a non-sparse matrix of 1,000 by 1,000 size, it takes about 20 s to derive its inverse, 

which is efficient enough for the direct coupling method. It is even more efficient when 

Visual Studio 2017 compiler’s OpenMP parallel computing is applied. 

  The most challenging computational problem is the heavy occupation of memory 

when large matrices require large storage and calculation. The available 24 G memory 

is usually insufficient or running 8 thread simultaneously. 
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4 Result for General Problems 

Having indicated different fluid-structure interaction scenarios and their modelling in 

the previous chapter, results are presented of the analysis of each. 

4.1 Internal Free Surface Flow 

I t is necessary to properly demonstrate its validation through simulation of internal free 

surface flows through application of the boundary element analysis proposed in Section 

3.2.2, before presenting results demonstrating the full t coupling. In particular, 

verification of the prediction of free surface flow in a cylindrical container. 

4.1.1 Analysis on Cylindrical Container 

 

 

Figure 4.1 Minimum singular values of matrix Ã as a function of wavelength λ for two 

cylindrical fluid filled containers. The dots on the λ axis are the analytical determined resonant 

wavelengths.  

 

The minimum singular value of Ã  of Section 3.1.2 is investigated for wavelengths 

between 5 m and 20m in wavelength increments of 0.02 m, Totalling 750 wavelength 
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values they address the full range of analytical resonant natural frequencies of Equation 

3.1.1 identified in Table 3.1. Figure 4.1 presents the numerically identified minimum 

singular values of Ã for both container heights. 

As Figure 4.1 indicates, the minimum singular value of Ã  drops significantly 

around the analytical frequencies predicted in Table 3.1 for both container depths. This 

means that Ã set up for an internal fluid analysis is capable of identifying the resonant 

wavelengths determined analytically and it is feasibility to model the internal fluid 

physically when the system is subjected to regular wave frequency. Near resonance, the 

linearized free surface condition breaches and high order analysis of the fluid motion is 

required. 

4.1.2 Analysis on Hemispherical Container 

 

 

Figure 4.2 The hemispherical container’s singular values of matrix fI as a function of λ. Dots 

indicates the solution by Evans & Linton [78], in which only the first 3 resonant wave length are 

able to be included in the plot. Additional natural oscillation frequencies are predicted. 

 

A half-filled hemispherical container of radius 5 m replaces the fluid filled cylinder of 

Section 2.3.2. The predictions of Evans & Linton [78], who analysed the same 
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hemispherical model through an expansion method for the first three azimuthal modes, 

provide verification of the minimum singular value based predictions. Meshing of the 

hemisphere leads to 828 boundary elements, 36 elements circumferentially model the 

internal free surface circumference. 

Again, the singular values of f
I
 are sought for a range of wavelengths. The singular 

values identified from Figure 4.2 correspond to wavelengths (λ) of 8.38, 11.12 and 

20.10 m. These in turn provide non-dimensional wavenumbers 𝜈𝑛𝑅𝑠 equal to 3.749, 

2.825 and 1.563.  

 

Table 4.1 The first three non-dimensional resonant wavenumbers of half-full spherical container 

predicted by Evans and Linton and the authors’ boundary element analysis. 

Order n 1 2 3 

Non-

dimensional 

natural 

wavenumbers 

νnRs 

Expansion 

Method 
1.560 2.820 3.745 

Boundary 

Analysis 
1.563 2.825 3.749 

 

Comparing Figures 4.1 and 4.2, the singular nature of f
I
 for cylinder and hemisphere 

is quite distinct. The longer wavelength associated singular points for the hemisphere 

are obvious and in general, there is greater sensitivity to wavelength variation.  

4.2 Coupling of Rigid Shell 

This application provides verification of the direct coupling equation in the simplest 

form of Equation 2.4.1.  A rigid floating container with internal free surface flow 

excited by external waves is analysed to demonstrate the proper coupling of hydrostatic 

force and hydrodynamic force. 

4.2.1 Particle Motion 

The simplest direct coupling model is a solid rigid sphere subjected to incident wave 

motion. Furthermore, for an extremely small sphere radius the sphere motion should 
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mimic that of a water particle.   

Analytical expressions for the horizontal (x) and vertical (z) velocities of a fluid 

particle in an incident wave with infinite water depth satisfy: 

                    |𝑢𝑥| =  |𝑢𝑧| =  𝜔𝐴𝑤exp (𝜐𝑧) .                  (4.2.1) 

 

Table 4.2 The velocity of particles (very small spherical shells) solved through different method in 

certain depths and directions. Truncated error in the results are only shown as an order of 

magnitude 

Depth z 

(m) 
Direction Value 

Direct 

Solution 

(m/s) 

Solid Body 

Analysis 

(m/s) 

Analytical 

Solution 

(m/s) 

0.5 

x 
Real o(10-12) o(10-13) 0 

Imaginary 0.645000 0.642212 0.645438 

z 
Real 0.643251 0.645438 0.645438 

Imaginary o(10-12) o(10-11) 0 

1.0 

x 
Real o(10-11) o(10-13) 0 

Imaginary 0.580872 0.578361 0.581267 

z 
Real 0.579297 0.581266 0.581267 

Imaginary o(10-11) o(10-12) 0 

2.0 

x 
Real o(10-10) o(10-13) 0 

Imaginary 0.471110 0.469073 0.471430 

z 
Real 0.469832 0.471429 0.471430 

Imaginary o(10-12) o(10-12) 0 

 

In the numerical analysis the sphere radius Rs = 0.005 m. Its behaviour is investigated 

at the submerged depths of z = 0.5, 1.0 & 2.0 m. The density of the sphere is equal to 

the water density so the sphere is at equilibrium suspension in still water. 

The incident wave amplitude is Aw = 0.5 m and the selected wavelength is λ = 30 m. 

The direct numerical solutions of ux and uz are compared with the analytical results of 
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Equation 4.2.1 in Table 4.2. 

  Theoretically, fluid particles free of Stokes’ higher order effect move in exact circular 

loci of depth dependent radii in a large depth water wave. Table 4.2 indicates that the 

direct coupling method presents accurate velocity magnitudes when compared to the 

analytical results generated from Equation 4.2.1. Figure 4.3 confirms the phase shift is 

physically correct when particle motion is visualised with the variation of the free 

surface waves. 

 

 

Figure 4.3 Locations of particle models (red points) at different phases. Circles are the tracks of 

the particle and arrows indicate the direction of velocities. (φ = 0, π/4, π/2, 3π/4 from left to right) 

 

4.2.2 Rigid Container 

Here we present comparison of three distinct sets of heave and surge response 

predictions of a sphere with internal and external free surfaces. 

Initially an externally progressing incident wave of amplitude 0.5 m and varying 

frequency excites a half-full spherical container. Infinite external water depth applies. 

In a comparative situation a rigid spherical shell of thickness ts = 0.01 m has the same 

density as the internal and external water (ρw = 1000 kg/m3). The sphere is half- filled 

with fluid and its equatorial circumference is essentially coincident with the undisturbed 

free surface. The fluid-structure interaction formulation utilizes Equations 2.3.8. 

The third scenario has a half-floating solid sphere with same radius and structural 

density ρs = 500 kg/m3. Application of Equation 2.4.22a models this scenario. Newman 
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[13] uses 3-dimensional classical radiation-diffraction analysis for infinite water depth 

and wave numbers less than 3. 

Figure 4.4 provides predicted heave motion amplitude made non-dimensional with 

respect to incident wave amplitude. Figure 4.4 indicates resonance occurrence for the 

wavenumber νnRs approaching unity in all three analyses. All three transfer-functions 

are in close agreement, indicating that the internal fluid generally has relatively no 

influence upon the heave response. 

 

 

Figure 4.4 Heave responses of half-floating hemispherical models. 

 

For low frequency (low wavenumber) excitation, the internal fluid seems responsible 

for the solution not satisfying the physically expected |𝜉𝑧|/𝐴𝑊 → 1 illustrated in the 

standard Newman analysis. At low frequencies (wavenumber), the internal fluid model 

will be highly sensitive to the evaluation resolution of the regular part of the Green 

function 𝐺𝑟. Thus, influencing the sensitivity / accuracy of matrix 𝐟𝐄. The slight blip in 

heave response at 𝜈𝑅𝑠 = 2.59 is not a result of analysis failure but an occurrence of an 

irregular frequency. Irregular frequencies are a frequent occurrence in the boundary 

element analysis for floating structures [79, 80]. Newman’s result has avoided its 
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influence by applying corrected added mass and damping coefficients in the analysis. 

The peak heave amplitude of 1.89 times wave height is acceptable for a half-floating 

sphere model. Heave, like pitch, has a resonant response controlled by structural mass 

and the hydrostatic restoration influenced. The latter influenced here by the large 

horizontal circular water plane at the undisturbed free surface.  

Figure 4.5 indicates that the surge response of the half-floating spherical container is 

significantly different from the solid sphere. 

 

 

Figure 4.5 Surge responses of half-floating hemispherical models. 

 

When the sphere heaved, the internal fluid could oscillate vertically too. However, 

here the sphere moves back and forth in the horizontal plane and Figure 4.5 shows the 

significant influence of the behaviour of the internal fluid. The internal fluid, rather than 

the spherical shell, changes the centre of mass when external forces act on the structure. 

When the internal fluid reaches resonance at νRs = 1.56 (a value identified in Table 4.1), 

the internal reaction force becomes arbitrarily large since matrix FE is now singular and 

the motion of the structure is stopped. The reaction is physical provided the linear 

assumption holds.  
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Like heave, the surge model is irregular when wave frequency (wavenumber) 

approaches zero. Furthermore, an irregular frequency appears at about νRs = 3.92 in the 

surge motion. Its impact on the solid model is less significant than the impact on the 

container model.  

Unlike multipole approaches, based on meeting specified boundary conditions via a 

collocation process, the Fredholm integral equation formulation, underpinning the 

standard rigid body radiation-diffraction boundary element analysis at zero and forward 

speed, often exhibit irregular frequencies. Irregular frequencies in radiation analysis 

often affect the added mass / inertia and fluid damping coefficients and hence motion 

responses. A pragmatic engineering analysis usually removes their negative impact by 

judicious smoothing each coefficient curve to remove the unnatural spikes in the 

predicted values. 

4.2.3 Visualised Phenomenon 

Newman’s analysis treats the internal mass as part of the total mass-inertia 

characteristics of the spherical structure. The coupled analysis allows the investigators 

to examine the relative motion of both internal and external free surface motions 

relative to the structural motion. 

This application was completed for wavelengths of 60m, 30m and 15m, 

corresponding to νRs = 0.52, 1.05 & 2.09 for phase ωt equal to 0, π/2, π and 3π/2 

designated cases (a) to (d) respectively for each wave length. For the lower non-

dimensional wavenumber, the internal & external free surfaces are completely in phase 

throughout a wave cycle, see Figure 4.6. For resonant heave at a non-dimensional 

wavenumber of 1.05, Figure 4.7 indicates there is a clear vertical shift between internal 

and external free surfaces. For non-dimensional wavenumber of 2.09, Figure 4.8 

suggests the external wave is significantly diffracted and the internal free surface 

experiences higher order modes. Figure 4.9 provides 3D illustrations of the natural 

oscillation modes of the internal fluid excited by wavelengths of 60 m and 15 m. The 

first and second order modes dominate. 
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Figure 4.6 The side view (looking from - y axis) of a half-floating container model when the 

excitation wave frequency is low (λ = 60 m). The internal and external free surface are almost 

coincident throughout. 

 

 

Figure 4.7 The side view of a half-floating container model when the excitation wave frequency is 

close to the natural oscillation frequency of heave motion (λ = 30 m). The internal free surface is 

distinct from external free surface due to heave resonance. 
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Figure 4.8 The side view of a half-floating container model when the excitation wave frequency is 

high (λ = 15 m). High order modes appear for the internal fluid while the external wave is 

diffracted significantly. 

 

 

Figure 4.9 The internal free surface at time ωt = 0 when the half-floating spherical container 

experience in (a) an incoming wave length of λ = 60 m and (b) in λ = 15 m. 
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4.3 Coupling of Elastic Beam 

We established our model through steps set out in Sections 2.3.3 & 3.1.3. The response 

of the structure in vacuum is first determined. (ω1 is the first order natural frequency of 

the beam.) The analysis considers in vacuum and in fluid acceleration amplitude at the 

top of the cylindrical beam. 

 

 

Figure 4.10 The amplitude of aY when in vacuum. 

 

 

Figure 4.11 The amplitude of aY when surrounded by water. 
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As we can see from the plots, the resonance frequencies are shifted to lower values 

due to the existence of fluid. This is because the hydrodynamic force has the effect of 

added mass on the vibrating structure. Our results match well at the first order frequency 

in terms of amplitude of and shifting, the difference around second order frequency is 

due to the phase shift between the two modes. If we take the values of phase shift given 

by Liaw [73] in to consideration, we will obtain the total result in Figure 4.12. 

It is clear that the two curves match well with only a small differences around the 

2nd order resonant frequency. This suggests our logic for solving fluid-structure 

interaction problems with boundary conditions unknown a’ priori is correct for simple 

elastic structures and gives strong credence to our intended future analysis of Anaconda. 

Indeed, this model is insufficient for the Anaconda study as the material does not have 

the flexibility of rubber. Significant elastic vibration appears only when the excitation 

frequency is relatively high, which prevent us from analysing the behaviour of flexible 

structures under the effect of free surface. However, on the other hand, shows our 

methods is not limited for solving low frequency problems. 

 

 

Figure 4.12 The comparison of total result of structural response. 
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5 Result for Closed boundary Problems 

Having established some verification of the proposed method through comparison of 

results with public domain results, applications of the method that are more novel are 

presented. 

5.1 Verification 

An obvious verification of this method corresponds to making the body shell rigid. 

5.1.1 Stiff Shell Verification 

When the boundary is under rigid motion, the solution of the internal fluid will be 

uniform flow and hence, the whole structure will reduce to a solid body. There will be 

little discrepancies between the solutions of the solid model and the direct coupling 

model proposed when the shell stiffness is high under the otherwise same conditions. 

The spheres simulated here have diameter D = 10 m and the distance of their centroid 

from the undisturbed free surface is d = 6 m. Wavenumber ν = 0.2 m-1 & Nφ = 48 for 

both cases. The stiffness of the shell is measured by ε = 4Ets/[d(1-μ)]∙(1/ρgAw), where 

E is the Young’s Modulus of the material, ts is the shell thickness, μ is the Poison ratio, 

AW is the excitation wave amplitude. The term 4Ets/[d(1-μ)] describes the stiffness of 

the shell relative to its scale. ρgAw is the maximum hydrodynamic pressure generated 

by a propagating incident wave of infinite water depth. For an indication of magnitude, 

log(ε) = 5.38 when E = 205 GPa, ts = 0.01 m, μ = 0.3, ρ = 1000 kg/m3, g = 9.81 m /s2 

and AW = 0.5 m. 

  An indication of the discrepancy between the two models is the maximum radial 

deformation of the shell boundary compared to the original shell radius. |δmax| denotes 

division of the maximum absolute difference between the two solutions of normal 

displacement by sphere radius. 

  Degeneration tendency is proved by plotting |δmax| against log(ε) in Figure 5.1. The 

model clearly converges to a solid model when log(ε) > 2.20. Elastic behaviour requires 

the material to be less stiff. Verification of the dynamic correctness of the system is 

achievable by means other than stiff model analysis 
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Figure 5.1 Variation of the maximum radial deformation of the spherical shell when the material is 

reduced to being rigid. Little discrepancy is observed when ε is high. 

 

5.1.2 Extremely Flexible Shell Verification 

Besides stiff model analysis that verifies the dynamic correctness of the system, we can 

apply another extreme analysis to show the hydrodynamic force solved is correct. 

  A more demanding analysis is necessary to demonstrate the hydrodynamic force is 

correctly solved. The body should exhibit a negligible scattering of the incident wave 

as the matrix D̃ of Equation 2.4.9 tends to 0. Furthermore, the internal hydrodynamic 

pressure will be continuous with the external excitation wave pressure. It can be directly 

proved mathematically that the solution of 𝑝𝐼⃑⃑  ⃑  equal to 𝑝0⃑⃑⃑⃑   in Equation 2.4.9 if we 

address that 𝑝𝐴⃑⃑⃑⃑  satisfies relationship 2.4.8 with -𝑣𝐷⃑⃑ ⃑⃑  and 𝑝0⃑⃑⃑⃑ =  𝑝𝐴⃑⃑⃑⃑ + 𝑝𝐸⃑⃑⃑⃑ . 

  For a model of log(ε) = -1, the discrepancy between internal and external 

hydrodynamic pressures is of (o-3), continuity of pressure is also verified when E = 0 

GPa. 

5.2 Analysis 

Four types of deformation exist for a loaded shell model: bending, stretching, transverse 
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shearing and torsion. 

  The last case is seldom investigated. Furthermore, it will not considered here since 

only normal the hydrodynamic forces are normal to the boundary. Transverse shearing 

is merged into bending, since the boundary is thin. Bending and stretching are 

significant, but the latter is less dominant since the volume of the container should not 

change due to the incompressibility of the internal fluid. 

  Existing analysis [81-83] for a torsion less empty spherical shell suggests two 

branches of vibration modes, representing bending & dominant dynamic stretching. 

Stretching frequencies are significantly larger than that those of bending. Such modes 

are not to be excited and, therefore, not presented in our hydrodynamic problems. 

5.2.1 Natural Vibrations 

When the shell thickness is assumed 0, the nondimensionalised vibration frequency 

ωR(ρ/E)1/2 converge to unity on the bending branch solution for high order modes [81]. 

This result (not the low order frequencies) is theoretically independent of Poison ratio. 

We take the same non-dimensional variable in our analysis. 

  The solution of high order frequencies will gradually diverge when shell thickness is 

considered. Validation requires analysis of the empty dry shell for ts = 0.01 m. A fully 

filled model in vacuum and in infinite water depth are designated Case I & II. Natural 

vibration frequencies are derived applying the method of Section 3.1.2. They are in 

Figure 5.2. 

  The dry model solutions are densely concentrated near ωR(ρ/E)1/2 = 1 as predicted. 

The first order frequency is ω1R(ρ/E)1/2 = 0.722 & 0.737 according to Reference [82] 

and our simulation respectively. The existence of shell thickness will result in higher 

natural frequencies for the dry model. Variation around a single solution exists since 

the element model is not perfectly spherical. 

  The first order natural frequencies for Case I & II are ω1R(ρ/E)1/2 = 0.0422 & 0.0253. 

Recognising that natural frequency is inversely proportional to the square root of 

oscillating mass, and the total mass of the shell calculated is 1/1500 of the solid 10 m 

diameter sphere, the solution is of correct order (√1500 ≈ 38.7). The internal fluid takes 
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effect like added mass to the shell structure and it would degenerate to ‘mass’ when the 

shell is rigid. 

 

 

Figure 5.2 Minimum singular value of matrix L for different cases. Minimums of the curve 

indicate singular matrix at the corresponding frequencies, which is the natural vibration frequency 

solved. Horizontal axis is logarithmic and ends at ωR(ρ/E)1/2 = 1.2. 

 

  Solutions in Case II are even lower than in Case I since external fluid inertia is added 

to the vibration. For the first order solution, the mass added is 2.78 times compare to 

the whole internal volume. It is significant larger than 0.5, which is the added ratio of 

an accelerating solid sphere, since the whole boundary is acting with fluid the in radial 

direction. 

  The intervals between the low order frequencies is larger when an incompressible 

fluid exists in the shell. Higher order frequencies distinctly distributed compared to the 

dry model solutions. 

  When E is low, the higher order modes are excited at lower frequencies and the 

solution may be singular under ocean wave conditions. However, the result in Section 

3.3 suggests that the solution is smooth and physical. The procedure is stable under 
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extreme soft cases. 

  According to Nirodson [83], the bending-dominating modes of an zero-thickness dry 

spherical shell is 𝑃𝑛
𝑚(cos 𝜃) cos𝑚𝜑 , where 𝑃𝑛

𝑚(𝑥)  is the associated Legendre 

polynomial. The modes are exactly spherical harmonics and the total internal volume 

is unchanged with such a boundary motion. One must have n ≥ 2 here since n = 0 refers 

to the ‘breathing’ mode, which has no physical solution on the bending branch, and n = 

1 refers to rigid body oscillation. Considering m can be zero and m ≤ n, there exist n + 

1 modes for the nth order vibration, degenerated under the same frequency. Modes of 

the same order can represent each other through a combination of simple rotation and 

linear summation, therefore, they are not different modes. 

  Due to the harmonic nature of an incompressible and irrotational fluid, the vibration 

mode of Case I has little difference with the empty one, despite numerical error and 

imperfection of mesh symmetry. There exist n + 1 zero eigenvalues and their 

corresponding mode shapes for matrix L when analysing nth order vibration. 

 Figure 5.3 illustrates the visualised axisymmetric modes shapes (m = 0) of order n = 

2 ~ 5. The results are similar those of a dry sphere for both m = 0 and m ≠ 0 cases (see 

Figures 3 & 4 of reference [83]). 
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Figure 5.3 The axisymmetric natural vibration modes of an elastic shell filled fully with 

incompressible fluid. 
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5.2.2 Wave Body interaction 

 

Figure 5.4 The structural response when order n = 5 mode is excited. Wave frequency here is ν = 

0.209. Subfigures (a) ~ (h) are captured with π/4 phase shift intervals. 
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Having studied both rigid and extremely soft body behaviour studied previously, the 

elastic response of the spherical shell of intermediate stiffness is investigated. Since we 

are essentially investigating different orders of modes under excitation, it is equivalent 

to either changing the external excitation frequencies or the shell stiffness. The 

geometry studied here is consistent with those introduced in the previous section. 

Young’s modulus of the spherical shell is now fixed at E = 10-2 GPa (log(ε) = 1.07) 

whilst the external wave frequency is changing for different modal responses. 

 

 

Figure 5.5 Modes of order n = 2, 3, 4 excited by incident waves are presented in (a) ~ (c). The 

excitation frequencies are ν = 0.097, 0.140 & 0.170. Phase is when wave crest passes over the 

sphere. 

 

Solutions close to resonance are nonphysical as the infinitesimally small response 

assumption is breached. Such solutions are only of mathematical interests as boundary 

material will be damaged under large loads. The results presented here are the ones 

present indicate clear modal responses but of regular amplitudes. Matrix L will not be 
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ill-conditioned due to the existence of the external free surface (complex elements in 

matrix TE). The resonant frequencies are different with those of Case I & II. 

  Figure 5.4 illustrates order n = 5 modal response of a sphere. Modal effect is 

significant on the deeper part of the body, whereas the body boundary close to the free 

surface experiences the higher wave induced hydrodynamic loads. The top of the 

structure moves along with the crest and the trough of the progressing wave, as shown 

in subfigures (c) & (g). This result is reasonable as hydrodynamic pressure decreases 

exponentially with water depth so that the upper part of the sphere is under forced 

oscillation whilst the lower part is relatively free. Figure 5.5 illustrates other modes for 

the case of wave crest coincident with the top of the sphere. 

  Between the two modal responses, there exist a transition region where no mode is 

dominant while the behaviour is still elastic. The response is similar with that of an 

extremely soft model and externally excited wave shell motion. Such intervals can be 

observed in Figure 5.1 as well for log(ε) between 1 ~ 1.5. Figure 5.6 provides 

visualisations of the responses. 

 

 

Figure 5.6 Transition state when wave frequency ν = 0.185. Subfigures (a) ~ (d) are captured with 

π/2 phase shift intervals. 
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6 The Study of Anaconda 

The Anaconda analysis undertaken looks at natural frequencies, the effect of impedance, 

variation of tube length and depth, and tube slenderness. 

6.1 Closed model 

As per Chapman et al. [52] the Anaconda model has a length L0 = 30π m (caps not 

included) and a radius Rs = 3.5 m. The incident wave amplitude AW = 0.5 m with a 

wavenumber ν = 0.2 corresponding to a wavelength λ = 10π m and a wave velocity cw 

=7.0 m/s. The effective length of the rubber tube is 3 times that of the wavelength and 

the top of the tube is located 1.0 m below the undisturbed free surface. 

6.1.1 Resonant Frequency 

Tube resonance changes with tube wall elasticity. A key parameter of resonance is the 

ratio of external wave velocity cw and bulge wave velocity cb determined according to 

Equation 1.2.1.Additionally, comparison is made of the maximum pressure within the 

tube with the maximum external wave hydrodynamic pressure ρgAW. 

 

 

Figure 6.1 The average pressure measured at the end cross section 
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  Figure 6.1 shows that the resonance of the internal hydrodynamic pressure appears 

at 0.78 cw rather than exactly 1 cw. This is a reasonable result, considering the 3-

dimensional nature of the model and the end effects of the tube. Chapman et al. [52] in 

their experimental study noted that a maximum pressure appears when cw was slightly 

larger than cb. 

Another important observation is the sensitivity of the internal pressure to variation 

in tube distensibility, as it may drop dramatically near the resonance frequency. This 

situation may arise due to the induced wave hydrodynamic pressure decreasing 

exponentially water depth. According to Equation 2.1.15, the hydrodynamic pressure 

at the tube top is 4.06 times larger than that induced at the tube bottom. Therefore, 

uniform stretching of the tube does not occur implying the 1-dimensional predictions 

of the device is misleading. 

6.1.2 Visualised Phenomenon 

The model under resonant state is visualised as follow 

 

 

Figure 6.2 Internal pressure on closed Anaconda tube under resonant condition. Subfigure (a) is 

the system at phase φ = 2π/3. Subfigure (b) is at φ = 7π/6 when the bulge strikes the tube end, the 

phase is π/2 ahead of that in subfigure (a). Internal pressure acting on the tube wall is visualised 

with cold and warm colour. 
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  Clear bulge behaviour is observable in Figure 6.2 without any significant bending 

along the tube. The distribution of pressure is clearly not uniform over a cross section; 

as assumed in 1-dimensional wave theory. However, the pressure over the tube end does 

show uniform behaviour. 

6.2 Power Take off 

6.2.1 Effect of Impedance 

Following the derived resonant condition the next task is to predict the capture width 

of the device for the same structural property and wave conditions but different levels 

of impedance. The only difference in tube modelling is the removal of the flexible end 

cap. 

 

 

Figure 6.3 The capture width relative to the diameter of the tube with the change of impedance at 

the end cross section. 

 

  The natural impedance of the tube under this condition is Z0 = 258.3 kg∙s-2∙m-4. 

Figure 6.3 suggest the maximum power occurs at around Z/Z0 equals 0.5, with a 
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imposed the energy flux is close to the power of the incident wave passing through the 

circular cross section. 

When impedance tends to infinity, the power take-off slowly approaches zero as the 

end flow tends to zero. Such an effect is not significant as the induced end tube resistant 

force is only 2.1 times the excitation force as Figure 6.4 shows. 

 

 

Figure 6.4 Predicted tube-end average pressure measured at the end cross section for impedance 

model 

The growth of the pressure at the tube end is physically correct, since it will converge 

to a fixed value as the end plate becomes ‘rigid’. The average pressure at the initial 

point is lower than the hydrodynamic pressure induced at the free surface because of 

the decreasing nature of wave pressure with depth 

6.2.2 Response along the Length 

According to Farley & Rainey [51] and Mei [56] predictions, the amplitude and 

pressure of bulge waves should increase in the propagating direction when at resonance. 

When off resonance, such growth will be repressed and fluctuate along the length. The 

next investigation tries to verify this prediction. The only available numerical 

predictions of Anaconda with both capture width and radial extension are those of Mei 
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[56]. 

The geometry is unchanged with model impedance of 0.5 for maximum power take-

off. Comparison is made of the new predictions with the 1-dimensional calculations of 

Mei [56]. Since the model studied here is 3-dimensional, use of average radial 

deflection removes the influence of shifting tube centre. 

 

 

Figure 6.5 Local capture width along the length of the tube for 3-dimensional direct coupling 

model and 1-dimensional analysis by Mei [56]. 
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prediction, which suggests the result generated here is regular. 

  The relative radial extension in the propagating wave direction in Figure 6.6 exhibits 

similar characteristic with the local capture width curve. However, the magnitude is 

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

L
o
ca

l 
C

ap
tu

re
 W

id
th

 C
W

/R
s

Logitudinal Direction x/2Rs

Mei's Result

3-Dimensional Model



86 

 

significantly smaller than the 1-dimensional predictions and is not strictly in accordance 

with the variation of capture width. 

 

 

Figure 6.6 Comparison of new 3-dimensional direct coupling model and 1-dimensional analysis of 

average longitudinal radial expansion of tube. 

 

According to Mei [56], the radial expansion of the tube is zero within the 

hydrodynamic field and is only effective when analysing bulge wave propagation. 

Meanwhile, the excitation pressure equals the wave dynamic pressure at the free surface. 
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raises significant model defects since both non-uniform distribution of the 

hydrodynamic pressure and the 3-dimensioinal effect of the shell is crucial to the 

behaviour of the system. Fluctuated distribution may be a consequence of different 

responses in different phases across the top and bottom of the tube. This also gives rise 

to the sensitivity of the tube stiffness of Figure 6.1. 

6.2.3 Effect of Tube Length and Depth 

Tube models of different length and depth location are investigated. The longer tube 
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Figure 6.7 Local capture width along the length of the tube for 3-dimensional direct coupling 

model of tube length L0 = 30π m and 40π m. 

 

 

Figure 6.8 Local average radial expansion along the length of the tube for 3-dimensional direct 

coupling model of tube length L0 = 30π m and 40π m. 
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Figure 6.9 Local capture width along the length of the tube for 3-dimensional direct coupling 

model when the tube is located at 1 m, 2m and 4 m from its top to the free surface. 

 

 

Figure 6.10 Local average radial expansion along the length of the tube for 3-dimensional direct 

coupling model when the tube is located at 1 m, 2m and 4 m from its top to the free surface. 
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  Figure 6.7 provides local capture width results for both tube lengths with the 

predictions of Mei. The 3-dimensional predictions of maxima and minima occur at 

similar locations with similar magnitude for both tube lengths. However, the relative 

shifting of the curves implies there are significant differences at each longitudinal tube 

location. That is, the device is numerically sensitive to its length. Furthermore, for the 

longer tube the maximum value of capture width no longer increases further along the 

tube, indicating there is a length limit for a resonating 3-dimensional tube. Figure 6.8 

provides comparison of radial expansion variation. This figure too reinforces the 

conclusion of limited length benefit. 

  For the depth sensitivity analysis, the top of the tube is located at depths of 2 m and 

4 m from the free surface. The original depth was 1m. The tube length is the original 

length of 30π m with the rest of the geometry and parameters unchanged. Comparisons 

are provided of capture width and radial extension for all three location depths. 

  Figures 6.9 & 6.10 show that the device is as very sensitive to located depth. For the 

shallower cases the distribution of responses are similar, but with non-negligible phase 

shifts. The magnitude of the 1m and 2m depth models are close. The slightly deeper 

tube model (h’ = 2 m) even exhibits a larger response at the incident wave end of the 

tube. The 4m deep model behaves entirely different. Response magnitudes are 

essentially halved for the very deep tube. According to Equation 2.1.15 the 

hydrodynamic wave pressure for the 1 m, 2 m and 4 m depth tubes are 0.81, 0.67, 0.45 

times of the free surface pressure. 

  The results of Figures 6.7 to 6.10 reveal significant challenges for designing an 

Anaconda WEC. The response is too sensitive to external wave excitation and geometry 

to obtain steady power take-off, even though the numerical inputs are regular. In 

addition, tubes do not have to be very long to obtain an ‘efficient’ working condition, 

as responses can reach a large enough magnitude in a relatively short distance. 

6.2.4 Effect of slenderness 

Here we attempt to remove the sensitivity of the Anaconda device by making the tube 

slenderer. This is so the pressure distribution over the circular cross-section will be 

relatively uniform and less longitudinal stress within the structure may take effect. 
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Figure 6.11 Local longitudinal relative capture width of tube from 3-dimensional direct coupling 

model. Radius Rs = 3.5 m, 2.5 m and 1.5 m. 

 

 

Figure 6.12 Local longitudinal relative radial extension of tube for 3-dimensional direct coupling 

model. Radius Rs = 3.5 m, 2.5 m and 1.5 m. 
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depths of their centres unchanged at 4.5 m. Young’s modulus altered whilst tube 

distensibility remains unaltered as tube diameter is amended appropriately (see 

Equation 1.2.3) 

Figures 6.11 & 6.12 provide the slenderer tube responses. The radial divider in the 

non-dimensional capture width parameter corresponds to the model radius. The 

fluctuated behaviour of power take-off and radial expansion remains. However, the 

fluctuated ‘period’ is becoming more regular for the slenderer tubes and the growth 

along the propagation direction is more significant. Thus, the device is also sensitive to 

tube slenderness. 

  The larger relative capture width on the slenderer model implies that to almost the 

same amount of energy take-off occurs given the device radius is relatively smaller. 

This means the work done by the hydrodynamic forces at the bottom of the device are 

small and it is advantageous to construct a slenderer device for optimal efficiency. 
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7 Conclusion & Further Works 

Careful reviews were provided of earlier Multipole and Boundary Element analyses for 

wave-body interaction subject to excitation by an external fluid together with deduction 

of the associated mathematical details 

The necessity .for developing the concept of direct coupling method within the 

context of marine hydrodynamics arose from the complexities of the Anaconda wave 

energy device. The necessity also arises for any fully closed boundary problem. Various 

alternative forms of the direct coupling method were discussed to illustrate the high 

flexibility of the method. 

The idea of using of a Rankine source within the internal fluid problem highlighted 

a non-uniqueness problem within the closed boundary of an incompressible fluid was 

discussed. The non-uniqueness of the Neumann boundary condition problem was 

overcome by a reversal of the normal process and changing the unknown boundary 

variable. 

A boundary element analysis for internal flow with free surface was proposed. 

Correct natural frequencies were predicted by identifying the singularities of the 

associated matrix formulation. The numerical predictions agreed well with analytical 

predictions for a cylindrical geometry. 

Verification of the proposed direct coupling was achieved for regular open domains. 

The solutions matched well with the published results and were physically meaningful. 

Implemented cases of fully closed boundary problems were successfully solved. The 

natural vibration frequencies and mode shapes of a closed spherical shell containing an 

incompressible fluid is first determined in this study. Wave-body interaction studies 

also generated reasonable results. As well, the method proposed for analysing such 

models is valid. 

The proposed direct method successfully analysed the Anaconda wave energy 

convertor by considering the tube material to be of linear elastic. Resonant frequencies 

of the device agreed with the trends of published theoretical values. The bulge wave 
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phenomenon is observable from the graphical visualisations of the predicted solution. 

The predicted pressure is reasonable compared to the hydrodynamic pressure of 

excitation wave. 

Power take off is roughly calculated through an imaginary impedance plane. The 

growing and decreasing tendency of the Anaconda capture width and pressure are 

generally physical. The predicted responses fluctuate along the propagating direction. 

This results in high sensitivity of the device to structural stiffness and geometrical 

changes. This phenomenon is not removed by making the tube slenderer. Establishing 

sensible length, diameter and depth location of the device is vital for the design and 

feasible operation of Anaconda under real sea conditions. 

Only direct head waves to the device have been analysed. Given the structure in 

practice would be constrained by appropriate mooring and tensioning devices at each 

end weathervaning of the device would be limited. Hence, wave headings up to ± 150 

would be required in a fuller analysis of the eventual design. The mooring system is 

likely to make the device behave as an inverted complex pendulum. Hence, the design 

of the mooring system would require taking into account low frequency damping 

influences. In published offshore analyses of offshore structures low frequency 

accounting led to significant reduction in the costs of the associated mooring system. 

Survivability of the .Anaconda device, rather power take performance, would require 

beam seas to be analysed since this could lead to excessive stretching of the tube. 

Avoidance of aneurysm has suggested the use of a partial longitudinal stiffening. A 

phenomenon associated with pressurisation of the tube. .  

Further work should focus on advanced finite element analysis. This is necessary 

since the structural behaviour is much different from the linear assumption when the 

tube is pressurised. For example, an inflated tube is free from buckling compared to a 

hollow one. Furthermore, a proper method is required to determine the initial state of 

tube equilibrium. 

It would be sensible to consider hyperplastic material based finite elements. However, 

frequency domain analysis would be inappropriate due to system nonlinearity. 

A new necessity would be to solve the problem of non-uniqueness for incompressible 



94 

 

in the time domain. 

The structures studied are not translating. Analogous direct coupling procedures for 

a slowly advancing structure with internal fluids is required. This might also resurrect 

interest in large-scale water and fuel transport in flexible Dracone barges. 
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Appendix A 

The Laplace equation in cylindrical coordinate form is, 

 

2 2 2

2 2 2 2

1 1
0

R R R R z

   



   
+ + + =

   
. (A.1) 

where φ is the azimuth angle and R is the projected distance in the x-y plane. In a 

variable separation solution ϕ is partitioned as 

 ( , , ) ( ) ( ) ( )R z R Z z F  =  . (A.2) 

  Substitution into Equation A.1 yields 

 2

1 1
0

F Z

R R F Z

         
+ + + =           

. (A.3) 

  Satisfaction of this equation requires each bracketed term to be a constant. Let the z 

term be equal to a real constant p2 then, 

 
2Z

p
Z


=  (A.4) 

has the general solution, 

 1 2

pz pzZ C e C e−= + . (A.5) 

Our appreciation of the derivation of incident wave velocity potential suggest 

 p =  (A.5) 

  It follows that for infinite and finite water depth respectively Z satisfies. 

 zZ Ce=  (A.6) 

 cosh[ ( )]Z C h z= + . (A.7) 

C is an arbitrary constant, 

  Physically, the azimuth function F should be periodic and hence the functional 

relationship for F is constant in Equation A.3 and must satisfy, 

 
2F

n
F


= −  (A.8) 

for n an integer. Equation A.8 implies F is proportional to cos[n(φ + α)], given the 
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symmetry of a cylindrical geometry. 

  Finally the first term of Equation A.3 becomes 

 
2 2 2 2( ) 0R R R n  +  + −  = . (A.9) 

This is a Bessel partial differential equation and has a general solution of the form, 

 1 2( ) ( )n nC J R C Y R  = +  (A.10) 

Jn(νR) and Yn(νR) are Bessel functions of the first and second kind respectively. If R 

assumes the value 0 then Yn(νR) is an unacceptable solution since it is singular at R = 

0. 

  Hence, the characteristic solution of a 3-dimensional fluid under cylindrical 

coordinate system without any singularity is, 

 ( ) cos[ ( )]z

nJ R e n   −= +  (A.11) 

for infinite water depth, whereas for finite water depth it follows that, 

 ( )cosh[ ( )]cos[ ( )]nJ R h z n    = + +  (A.12) 

  Since e-νz, cosh[ν(h + z)] and cos[n(φ + α)] are not constantly zero on R = R0, it is 

required that ∂ϕ/∂R = 0 is required for the resonant state of a fluid within a cylindrical 

container. 

 


