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University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
Institute of Sound and Vibration Research

Doctor of Philosophy

Modelling the Effect of Implants and Intracochlear Excitation on Cochlear
Mechanics

by David H. Slater

To help with the design of remedies for the preservation of acoustic hearing for
cochlear implant patients, a two chamber finite element model has been developed.
The model has been used to quantify the hearing loss that would result from the
mechanical stiffening of the round window that is expected to occur as a result of
inserting an implant into the scala tympani. Each element or collection of elements of
the model can contain an additional compliance to replace that lost from the round
window. Each element can also contain an excitation source to emulate an
intracochlear actuator for use as part of an electro-acoustic stimulation system. The
results of the new model compare closely with those of two established models: one
single chamber and one two chamber model, and it enables simulation of the effects of
inserting an implant on the mechanics of the cochlea. It has been shown that an
achievable bubble could compensate for virtually all of the hearing loss caused by the
stiffening of the round window by implantation. It has also been shown that if an
actuator could be manufactured that would fit in an implant, it would restore acoustic
hearing for frequencies between 100 Hz and 1 kHz. Various actuator technologies
have been explored to assess their fundamental capability to meet the required
acoustic output when scaled down to an acceptable size to fit in an implant.
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√
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ST Scala Tympani - the lower chamber of the cochlear
SV Scala Vestibuli (The upper chamber is the SV and the scala media.)
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NB Except where otherwise stated, the SI system of units is used for
all values used in this thesis.
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Chapter 1

Introduction and Contributions

1.1 Project Background

This project aims to contribute to improving the experience of patients with cochlear
implants by addressing the mechanics of the loss of acoustic hearing that can follow
cochlear implantation, and by modelling proposed potential remedies for both
post-implantation hearing loss and previous hearing impairment.

A cochlear implant is now an established remedy that is approved by health
regulators in most countries, including NICE in the UK, for patients with profound or
severe hearing loss. The system normally consists of two parts: one is an external
device; the other is implanted under the scalp and in the inner ear. The external part is
similar to a conventional hearing aid that sits behind the ear, and contains the power
source in the form of a replaceable battery. It is wired to an assembly of a coil of wire
and a magnet that engages with an encapsulated coil of wire that is implanted under
the scalp near the ear. When coupled together magnetically, the two coils send power
and signals along a small implanted cable to a long thin silicone rubber device, which
has 20 or so platinum electrodes spaced along its length. This electrode array is
inserted into the lower chamber of the cochlea through or near the round window. The
external device contains a microphone that picks up sound waves and passes them
through an amplifier to a signal processor, which translates them into signals that are
passed through the external and implanted coils to the electrode array. The platinum
electrodes inject short pulses of tiny voltages and currents into the cochlear fluid in the
lower chamber, and these trigger excitations of the auditory nerve, similar to those
triggered by vibration of the cochlear partition in a normal ear. The internal part of a
cochlear implant is shown in Figure 2.6, and Figure 2.1 is a diagram of the ear.



2 Chapter 1. Introduction and Contributions

1.2 Project Purpose

The purpose of the project is to extend established elemental mathematical
descriptions of cochlear mechanics, such as Elliott and Ni (2018), to model the possible
adverse effects of cochlear implants on residual hearing, as reported by Verschuur
et al. (2016) for example, and to provide a model that will evaluate feasible remedies.

The cochlea contains two chambers, separated by a flexible partition. Movement of
the stapes causes a sound wave to pass along the upper chamber, through the
partition and into the lower chamber. The passage of sound through the partition
causes it to vibrate, and movement of the partition gives rise to the sensation of
hearing. Most established models simplify the structure of the cochlea by considering
it as a single chamber, in which the acoustic pressure is equal to the difference
between the pressures in the upper and lower chambers, which are the mirror image
of the other. The movement of the flexible partition between the two chambers is
dependent on the pressure difference, and so this simplification is valid, for a normal
cochlea with two very similar chambers. However, when a cochlear implant is
introduced through the round window to the lower chamber, it changes the acoustic
properties of the round window. This reduces the round window’s ability to act as a
pressure release for low frequency sound waves, and so the amplitude of the wave
generated by stapes excitation is diminished. Similarly, any remedy within the
implant will occupy only the lower chamber, and so it will no longer be valid to
consider the two chambers to be similar. It is therefore necessary to enhance
conventional modelling methodology to consider the two chambers independently.
Other assumptions that have been made to simplify existing models are reviewed and
revised appropriately, according to their validity when an implant is introduced.

The bulk of a cochlear implant is silicone rubber, which has a similar density to the
liquids that fill the chambers. The speed of sound in these liquids is also similar to that
in silicone rubber, and so the occupation of space by the implant within the lower
chamber is not considered to have any significant effect on wave propagation.

Hearing loss occurring after implantation can result from a variety of causes, as
described in Chapter 2. The principal effect considered in this thesis (of implantation
on low frequency hearing loss) is the stiffening of the round window. Other potential
causes of hearing loss resulting from implantation are not considered here, for
example, see Causon et al. (2013).
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1.3 Overall Approach and Thesis Structure

1.3.1 Approach and Method

The approach taken has been that of deriving the model from well-established first
principles, including the laws of conservation of mass and momentum. This is done as
an assurance that the model can be enhanced to cover different circumstances,
without need to produce a new basic derivation to suit the circumstances of each
enhancement. Where it is necessary to make assumptions or approximations that are
dependent on the purpose of the model, they are noted and associated with the
circumstances concerned; an example of this is the assumption that the action of the
basilar membrane is linear, which is valid only at high amplitudes for people with
normal hearing, when the cochlear amplifier is not operating. Patients fitted with
cochlear implants, however, generally have at least severe if not profound hearing loss
and so the non-linearity due to the cochlear amplifier is absent, and the cochlear
behaves linearly over the whole dynamic range. At each stage of extending the model,
the aim has been to revise only those parts of the formulation that are dependent on
the assumption(s) that it is necessary to change.

Using this approach, a single chamber MatLab model was built from first principles
independently, and its results compared with the results of previous models. The
model was then enhanced to accommodate two different chambers, bounded at the
basal end with windows of different impedances. The formulation of this model was
verified and validated as follows:

• The model was loaded with data for two identical chambers and windows, and
the results were compared with those of established single chamber models.

• Comparisons with established lumped component models have been used to
verify the model.

• It was also loaded with the input data used in an early two-chamber model
(Peterson and Bogert, 1950), and the results compared.

• The model was verified by comparing its results with those of two distributed
models and two lumped component models.

The verification and validation of the model are described in Chapter 4.

As well as the model being used to replicate the acoustic effects of implantation
caused by stiffening of the round window, it has also been used to simulate remedies
for the resultant hearing loss. The model’s results are compared with measured results
of acoustical hearing loss that followed implantation. The results of using the model
are shown in Chapter 5.
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1.3.2 Thesis Structure

Existing models and related research are reviewed in Chapter 2 to assess their
applicability to the project purpose and the extent to which they are validated by
measurement.

The new model and its derivation are described in Chapter 3, and the model’s results
are compared with available measured data in Chapter 5. Details of its verification
and validation are given in Chapter 4.

Results are given in Chapter 5 of using the model to predict the effect of stiffening the
round window.

The inclusion of a bubble within the implant is considered as a potential remedy in
Chapter 6.

The alternative remedy of incorporating an intracochlea actuator within the implant is
considered in Chapter 7.

Various actuator technologies for intracochlear excitation are explored in Chapter 8
and their feasibility is assessed.

The methodology and the results are discussed and summarized in Chapter 9.

1.4 Contributions

The work reported here extends the widely used single-chamber model of fluid
coupling in the cochlea, so that the effect of elements in two dissimilar chambers can
be modelled. The resultant computer model is used to simulate the effects on residual
acoustic hearing of both implants and proposed modifications to cochlear implants to
remedy adverse effects of implantation. In particular the novel contributions of the
thesis are:

• A new two-chamber model that has been derived from first principles that takes
into account middle ear, round window and aqueduct impedances, together
with cochlear fluid compressibility.

• Some minor improvements have been made to methods of calculation of the
properties of cochlear components. These are detailed in Appendix A.

• The model has been used to explore the effect on post implantation residual
acoustic hearing of introducing a compliant element within the cochlear implant.

• The model has been used to simulate the effects of acoustic excitation sources at
various positions within the implant. The characteristics have then been derived
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of an intracochlear acoustic actuator for the direct stimulation of residual
acoustic hearing in cochlear implant patients, in particular the required volume
velocity.

• Various technologies have been reviewed for the implementation of such an
intracochlear acoustic actuator, and it is shown that at least one appears feasible
if sufficient miniaturization is possible.

• A method has been developed to relate ear canal acoustic pressure in a deaf ear
to that in a normal ear, so that the same hearing sensation occurs in each case.

1.5 Publications

• A presentation was given at an internal conference of the Signal Processing and
Control Group of ISVR in June 2018.

• A poster was presented at the British Cochlear Implant Group AGM and Annual
Conference in April 2019.

• A poster was presented at the Basic Acoustic Science Annual Conference in July
2019.

• A poster was presented at the virtual Annual Conference of the British Society of
Audiologists in October 2020.

• An abstract for a paper was submitted to be presented at the 2020 Mechanics of
Hearing conference, and it has been accepted. Unfortunately, the conference has
been postponed, because of the COVID 19 pandemic, and so the paper has yet to
be presented or published. The conference has been rescheduled for July 2022,
and the paper has been accepted for oral presentation.
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Chapter 2

Historical Review of Cochlear
Modelling and Cochlear Implants

This literature review is divided into four sections: literature on the cochlea, literature
on related measurements, literature on cochlear implants and literature on models of
cochlear mechanics.

2.1 The Cochlea

This section sets down information from the literature that has been used to
understand the operation of the cochlea, to determine the mechanical properties of its
physiological components and to show how the values of these properties have been
validated by measurement.

2.1.1 Biology and Physiology

The cochlea is part of the inner ear, and its main function is to convert into nerve
impulses the acoustic waves generated in its liquid filled chambers by the movement
of the ossicles of the middle ear.

Figures 2.1 and 2.2 show the shapes and relative locations of the components of the
ear: the first figure is an overall diagram of the ear, from the inner end of the ear canal
to the cochlea; the second shows a cross-section of a single turn of the cochlea,
showing the fluid chambers and the Basilar Membrane. Although the cochlea has
three fluid chambers, since Reisner’s membrane divides the upper chamber; this is
thought to be sufficiently flexible not to play an important rôle in the acoustics of the
upper chamber. Endolymph and perilymph are the chemically different aqueous
liquids on either side of Reisner’s membrane that have similar acoustic properties, and
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FIGURE 2.1: Diagram of the Ear, after Helmholz (1863). Republished with permission
of McGraw Hill LLC, from Experiments in Hearing, Békésy and Wever,1960; permis-

sion conveyed through Copyright Clearance Center,Inc.

so effectively there are two fluid chambers, one either side of the basilar membrane.
The organ of Corti sits on top of the BM, and together they form the cochlear partition.
The organ of Corti contains both inner hair cells, which convert motion into signals in
sensory nerves and outer hair cells, which drive the cochlear partition mechanically in
response to impulses from efferent nerves. The result is an increase in the motion of
the basilar membrane for quiet sounds, and so the effect is referred to as the cochlear
amplifier. Because this thesis focuses on the very limited residual acoustic hearing in
patients fitted with cochlear implants, it will assume that the cochlear amplifier is not
significant and the organ of Corti just acts as a passive sensory system via the inner
hair cells. When the cochlear amplifier is not active, the cochlea and its models are
said to be passive, and this thesis describes a passive cochlear model and how it can
be used to emulate a cochlea with little residual acoustic hearing.

The cochlea is a coiled structure, similar to that of a snail’s shell, but the coiling is not
thought to play an important part in its mechanics. Luo et al. (2011) and Pietsch et al.
(2017) both conclude that the coiled form of the mammalian cochlea evolved to save
space within the skull, and that it conferred no direct advantage to hearing.

Citing Ross (1906), van de Water (2012) states that Aristotle postulated the theory that
the inner ear was filled with purified air. Aristotle’s theory was probably the first
recorded mention of the existence and function of the cochlea. The next significant
theory was that of Helmholtz [Helmholtz and Helmholtz (1877) and Helmholtz
(1885)] in which they postulated that the basilar membrane gave a maximum response
to a continuous tone at a point where it was resonant at the frequency of excitation.
This was followed by the standing wave theory of Ewald (1899). These two theories
prevailed until Zwislocki published his travelling wave theory [Zwislocki-Mościcki



2.1. The Cochlea 9

FIGURE 2.2: Diagrams of the Cochlea : (A) In a transverse section of the whole cochlea,
the cochlear duct is cut across several times as it coils round and round. Abbreviations:
sv, scala vestibuli; sm, scala media; st, scala tympani. (B) The three scalae and associ-
ated structures are shown in a magnified view of a cross section of the cochlear duct.
Reproduced from Fawcett (1986), Fig. 35.11. (C) The path of vibrations in the cochlea is
shown in a schematic diagram in which the cochlear duct is depicted as unrolled. Re-
published with permission of Brill, from Pickles (2012); permission conveyed through

Copyright Clearance Center, Inc.

(1948) and Zwislocki (1950)]. This postulated that the excitation of the cochlea by the
stapes caused a travelling wave to pass along the upper chamber1 and the flexible
basilar membrane, so that its amplitude increased to just before the resonant point, by
which time most of its energy had passed through the BM and into the lower
chamber2. Beyond that point, the wave became evanescent and diminished rapidly.
According to Békésy (1928 and 1929) this theory was originally proposed by Kuile
(1900), but there was at that time neither opportunity to validate it against

1The upper chamber consists of two acoustically similar spaces: the scala vestibuli, which is filled
with perilymph and the scala media which is filled with endolymph. These are separated by Reisner’s
membrane, and together, they are referred to as the upper chamber. The scala timpani is referred to as the
lower chamber.
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measurements, nor to develop it into a mathematical model. This theory was
validated for higher frequencies by the Békésy and Wever (1960) series of experiments,
reported in English in 1960, from which he concluded that the explanation of cochlear
action was that the excitation of the cochlea by the stapes caused a travelling wave,
and which Zwislocki expressed in mathematical formulae in 1948. This explanation
has remained as the basis of our understanding of the action of the cochlea, with some
reservation concerning behaviour near the apex at low frequencies. (The travelling
wave theory is similar to, but significantly different from the standing wave theory
previously postulated by Ewald (1899), in which a wave is generated from the base to
the apex, with a peak amplitude at a place that is dependent on the frequency; the
1899 explanation did not provide as good a match to the performance of the ear that
was measured later.)

Von Békésy’s 1960 text includes a another, simpler explanation, which he calls the
telephone theory, which assumes that the BM vibrates as a rigid beam with
suspension whose compliance, and hence amplitude of vibration, increases from base
to apex. Clearly, this theory provides no explanation of discrimination of frequencies,
which would need to be provided by other mechanisms. It remains possible that this
is a valid cochlear mechanism for determining the pitch of low frequency tones, in
which excitations of nerve cells that are triggered once or more per cycle of the wave
are counted in the brain as pulses to compute frequency. Wever (1949) published a
book entitled Theory of Hearing, that put forward his alternative explanation, called
the (neural) volley or volley-resonance theory. As well as supporting the resonance
theory of Helmholtz, this went some of the way to explaining the discrepancy
between the measured range of elasticity of the cochlea partition and that required by
Zwislocki’s travelling wave theory to explain the range of discernible frequencies.
Effectively, this suggested that a "place" (travelling wave, standing wave or resonance)
mechanism applied to higher frequencies, while a "telephone" mechanism applied to
lower frequencies. Békésy and Wever (1960) measured the stiffness of the basilar
membrane directly, by two methods: one using hydrostatic pressure in the upper
chamber, with the helicotrema blocked (1948 in English); the other using a hair to
provide local pressure (1947). The hair-pressure method is useful for showing local
variation of elasticity, but the absolute value is too dependent on the shape of the tip
of the hair. Von Békésy (1960) notes that the stiffness of the BM varies about one
hundred fold from base to apex, and a minor extrapolation of his graph of his
measurements shows a ratio of 171. Clearly, this is insufficient to explain a 1000 ratio
of the highest and lowest discernible frequencies, when the frequency ratio is
proportional to the square root of the stiffness ratio. Steele and Zais (1983) have
studied the stiffness of the BM in more detail, taking into account variations of its
thickness, width and reinforcement; however, their model does not explain fully the
range of frequencies that humans can hear and distinguish. This issue is still under
investigation, but it is beyond the scope of this thesis.
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Von Békésy’s experiments have remained one of the principal sources of
measurements of the action of the passive human cochlea.

Having established the broad functional behaviour of the cochlea, it has been
necessary to determine the values of the parameters of the model used here. These
include the dimensions, mass, damping and stiffness of the basilar membrane,
together with the reverse impedance of the middle ear and that of the round window.

Elliott and Ni (2018) summarize the dimensions of the human cochlea; the data
provided are the results of measurements made by others on specimens or models.
Unless stated otherwise, these values for the human cochlea have been used in the
model described here, and are shown in Table 2.1.

Variable Symbol Value
Length L 35 mm
BM width at the base BB 0.2 mm
BM width at the apex BA 0.50 mm
Average BM width B 0.32 mm
Natural frequency at the base fB 20 kHz
BM Q factor Q 2.5
Cochlear fluid density ρ 1000 kg m−3

BM mass per area 1D fluid coupling m0 0.28 kg m−2

Average scala area A0 0.84 mm2

TABLE 2.1: Assumed parameters of the elemental passive model for the human
cochlea, after Elliott and Ni (2018).

Puria (2003) has measured the reverse impedance of the human middle ear as a
function of frequency, and he has derived the parameters of a mass-spring-damper
model. His paper shows good correlation between his model and his measured
results, as further discussed by Xue et al. (2020). The results of Puria’s model have
been used for the middle ear in the new model described in this thesis. Nakajima et al.
(2009) have similarly measured and modelled the impedance of the round window
that is presented to waves in the cochlear fluid, as a function of frequency. They have
developed and compared with their measured results a modified spring mass damper
model, using six mass damper pairs in a Foster network. In this thesis, it was found
more effective to model the round window by making its damping resistance
proportional to the square root of frequency and its mass inversely proportional to the
square root of frequency, as described in Appendix A.

2.2 Modelling the Action and Physiology of the Basilar
Membrane

In 1961, Greenwood proposed an alternative to the exponential taper of BM elasticity
from the apex of the cochlea to the base. He validated his equation by comparison



12 Chapter 2. Historical Review of Cochlear Modelling and Cochlear Implants

FIGURE 2.3: Reverse Middle Ear Impedance, reprinted with permission from Puria
(2003), (Fig. 4), copyright 2003, Acoustic Society of America, showing magnitude and
phase for his series Stiffness, Resistance, Mass (KRM) best fit model (_ . _) to his
mean measured values. (Also shown are the impedances of the dummy loads used to

simulate the ear canal (MTA) and the cochlea (MTB)).

FIGURE 2.4: Round window impedance, ZRW=PST/UStap is plotted with a black
line for the mean and dotted lines for the standard deviation. Below 300 Hz, ZRW be-
haves as a compliance. Above 300 Hz, ZRW becomes dominated by inertia and resis-
tance. This behavior is consistent with distributed loss and inertia, wherein impedance
increases as approximately the square root of frequency much as in a system with
“skin effect.” Behavior of a lumped parameter model for this system is plotted with
gold-colored lines. Reprinted by permission from Springer Nature, JARO - Journal of
the Association for Research in Otolaryngology, from Differential intracochlear sound

pressure measurements in normal human temporal bones,Nakajima et al., © 2009

with his own and the published measurements of others. The current model uses
Greenwood’s (1961 and 1990) equation to model the variation of best frequency and
hence basilar membrane stiffness along the passive cochlea. This gives much better
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correlation with von Békésy’s measurements, as well as those of Shower and Biddulph
(1931) than a pure exponential taper. In 1990, Greenwood published a further paper
on the same subject, in which he made comparisons with more recent measurements
by others, including some on in vivo non-human mammals. A further 30 years on,
there has been no widespread dispute or proposed revision of his equation, although
some authors have used the simple exponential taper, presumably for simplicity.
Figure 2.5, below, compares Greenwood’s equation and its implementation in the
present model with both (Békésy, 1949)’s measurements and those of Stevens et al.,
showing that Greenwood’s equation gives a predicted result between the two sets of
measurements. Greenwood’s equation takes the form:

f = A(10b(L−x)/L − k), or (2.1)

f = A(e2.303b(L−x)/L − k), (2.2)

where: the constants A=165.4, b=60, and k=0.88, or (2.3)

f = A(ea(L−x) − k), (2.4)

where: the constant a=138 and (L-x) is expressed in mm. (2.5)

to give maximum and minimum frequencies of 20 kHz and 20 Hz.

FIGURE 2.5: Greenwood (1990) equation and measurements of Békésy (1949) and of
Stevens et al. (1935), together with the results of the current model for the position of

maximum response along the cochlea at different excitation frequencies.
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2.3 Measurements of Vibration Pattern and Best Place in the
Human Cochlea

This section considers the sources of measurements, made by others, that validate
Greenwood’s equation and the values of the physiological components of the cochlea
that it uses. There are a number of established alternatives to the Greenwood’s
equation, such as a simple exponential taper, and so an appraisal of its validation as a
suitable choice for the present model is considered to be worthwhile. As shown in
Figure 2.5, Greenwood’s equation and hence the present model’s implementation of it
produces a graph that lies between the direct measurements reported in Békésy (1947)
and those reported in Stevens et al. (1935). Neither method of measurement is ideal:
the former is prone to influence by the drilling of the cochlear wall, and the latter is
prone to influence by temporal coding.

There are three basic techniques that have been used to measure the relationship
between frequency and the position of maximum vibration of the cochlea:

• Direct optical microscopic observation of vibrations

• Tonotopic measurement followed by summation of the frequency difference
limen (the minimum discernible frequency change) as a function of frequency

• Determination of the relationship between the greatest audible frequency and
the position of transition from healthy to dead or missing inner hair-cells

These three methods are discussed in the following subsections.

2.3.1 Measurements of Vibrations

Békésy (1947) made measurements of the location of maximum vibration on both a
human preparation and non-biological models, one single chamber and the other
two-chamber. Measurements on his non-biological models show reasonable
agreement with his measurements on a human cochlea. The greatest frequency at
which he could make measurements was 2 kHz; Kringlebotn et al. (1978) reported
compatible measurements made by Skarstein over the range 2 - 6 kHz.

He also measured the relationship between the maximum velocity of the BM and the
velocity of the stapes. These measurements continue to be useful for validation of the
new model described here.

The challenge in making measurements is in doing so without disturbing significantly
the action of the cochlea that is being measured. Békésy (1949) claimed to have
achieved this by opening the cochlea under water, and eliminating any air bubbles.
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Rhode and Cooper (1996) used glass slides to seal the openings that they made, and
Dong and Cooper (2006) showed that this was effective until the seal became
disrupted after several minutes, which was sufficient time for the measurements to be
completed.

There have been many more recent papers reporting basilar membrane action,
measured using laser doppler methods, for example. Ren and Nuttall (2001) have
published the results of measurements of BM velocity at one position, across a wide
range of frequencies for the Gerbil. Olson (2001) has published similar data for
intracochlear pressure. These two sets of measurements have been used to validate
sophisticated models developed by Yoon et al. (2007) of active and passive cochleas.
Rhode and Cooper (1996) have published the results of measured vibrations of the BM
using laser methods at discrete locations along the apical turns of chinchillas and
guinea-pigs, for click, rather than tone, stimulation of the stapes. There has also
recently been considerable work on measuring the motion of the intact organ of Corti
using optical coherence tomography, as published, for example, by Cooper et al.
(2018) and Ren et al. (2016).

2.3.2 Tonotopic Measurements in Live Humans

Shower and Biddulph (1931) measured the minimum change in frequency detectable,
or frequency difference limen, by the ears of five men aged between 20 and 30 years.
Stevens et al. (1935) integrated these measured limens to obtain the relationship
between frequency and location along the cochlear, assuming that each limen
represented a fixed distance from the apex of the cochlea2. The graph in Stevens et al.
(1935) was used in Békésy (1949) to validate his direct measurements of BM vibration.
Direct measurement of BM vibration is very challenging: currently available methods
involve mechanical disturbance of the cochlea by drilling holes in the temporal bone,
and it is not performed on live humans. The mechanical disturbance can be
minimized by sealing the holes with glass plates or by keeping the cochlear
submerged in water, but the effectiveness of these techniques is limited. Furthermore,
the characteristics of the cochlea change rapidly on death, particularly regarding the
cochlear amplifier. New X-ray tomographic imaging techniques are being developed
that can be used on living humans, but their resolution is closer to that required to
ascertain the position of an implant than to that required to measure BM vibrations.
Measurements of the frequency limen can be used to determine the location of

2Wright et al. (1987) have used electron microscopy on several ex vivo human subjects, with "normal
hearing". The results were gathered from three sources, between them using two slightly different defini-
tions of "normal hearing". (The audiograms were measured before death, whereas the electron microscopy
was performed after death.) Their results show that the distribution of inner hair-cells is not quite uniform
along the cochlea: the density is reduced near the base. The degree of reduction is dependent on both the
age-group and proximity to the base. It is assumed that the reduction of density near the base in older
subjects is due to age-related hearing loss, because the degree of reduction increases with age. In foetal
subjects and those up to ten years old, there is an approximately linear reduction in density of 25% along
the cochlea. This reduction also applies to the 11 - 49 age-group.
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maximum BM vibration in living humans, but this technique has potential
confounding factors involving neural phase-locking and variations of hair-cell density
with both location within the cochlea and with the age of the patient. Although the
measurements of frequency limen are now very old, they have continued to be cited
comparatively recently, for example in Dooling and Hulse (2014), and they can be
used to validate direct measurements and modelled relationships between frequency
and BM location, such as Greenwood’s equation.

2.3.3 Determination of the relationship between the greatest audible
frequency and the position of transition from healthy to dead or
missing inner hair-cells

Stevens et al. (1935) damaged the organ of Corti in 20 guinea pigs at some point along
its length, and that point correlated with a subsequent change in the audiogram. 3

Although the work done by Wright et al. (1987) on human subjects was more recent,
Wright et al. made no comparison between the variation of hair-cell density and the
audiogram (which was not published) for each patient. Figure 139 in Stevens and
Davis (1938) graphs together the measurements of Shower and Biddulph (1931) and
those of Stevens et al. (1935), showing good correlation between the two sets of
measurements.

2.4 Electric Excitation of the Cochlea

There are many causes of severe and profound deafness; commonly, such deafness
results from death of outer hair cells. When the cochlea does not satisfactorily convert
sound into impulses in the auditory nerve, it is now possible to send electrical
impulses to the auditory nerve through the cochlear fluid, without using hair-cells or
any of the other mechanical components of the cochlea. This technique is known as
electric stimulation, and it requires a cochlear implant. An implant provides
satisfactory recognition of the verbal content of speech, but it has limitations with
speech components at frequencies below about 500 Hz. In many cases, hearing loss is
much less at lower frequencies where certain important non-verbal information in
speech and music are more readily resolved by natural hearing than by a cochlear
implant. Low frequency deafness can often be managed by deploying a conventional
hearing aid that sends amplified sound into the ear-canal by air conduction. The
technique of combining a cochlear implant with a conventional hearing aid is known
as electric acoustic stimulation or EAS.

3The procedure for each animal was to record the thresholds for 26 tones between 60 and 12,000 Hz,
next to damage the cochlea locally by drilling through the bony wall, and then to repeat the determination
of thresholds.
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2.4.1 The History of Cochlear Implant Development

According to Mudry and Mills (2013), the first successful cochlear implant was
invented by Dr William House in 1969. There had been earlier inventions, but these all
stimulated the auditory nerve by direct metallic connection, rather than through the
cochlear fluid. According to his obituary in the New York Times, implants of the type
invented by House were approved by the Federal Drug Administration in the USA in
1984. An image of a modern Cochlear Implant is shown in figure 2.6, showing both
the implanted components, including the electrode array and the internal coupling
device that provides a magnetic fixing for the external device and the external part
that sits behind the ear. The external part comprises a device containing a microphone,
a battery, and the signal processing circuitry, which is wired to the external coupling
device that carries power and signals to the implanted part.

FIGURE 2.6: Example of a cochlear implant manufactured by Cochlear, url: https://
lmhofmeyr.co.za/wp-content/uploads/2015/08/Cochlear-implant-website.jpg.
(permission to reproduce requested via Cochlear web-site (https://www.cochlear.
com/uk/en/connect/contact-us) on 23/10/21 and 22/5/22, as well as from

lmhofmeyr@surgeon.co.za, but no response received from any.

Svirsky (2017) records, "only bilaterally, profoundly deaf individuals, with unaided
hearing thresholds higher than 90 dB, were considered candidates." Such patients had
little residual hearing to lose, but subsequently, hearing thresholds have been
progressively relaxed for implant candidates. As a result, those with poor, but useful,
acoustic hearing have received implants, and it has been established recently that
implantation often impairs acoustic hearing, typically by 20 dB, as measured by

https://lmhofmeyr.co.za/wp-content/uploads/2015/08/Cochlear-implant-website.jpg
https://lmhofmeyr.co.za/wp-content/uploads/2015/08/Cochlear-implant-website.jpg
https://www.cochlear.com/uk/en/connect/contact-us
https://www.cochlear.com/uk/en/connect/contact-us
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Verschuur et al. (2016). This impairs the ability to recognize speech and the enjoyment
of some music.

2.4.2 The Electrode Array and Its Implantation

Details of the surgery involved in implanting an electrode array are beyond the scope
of this thesis, but the following outline of the process may be helpful to understanding
the implications for the patient’s residual acoustic hearing. The array is implanted by
drilling a hole from the middle ear in either the centre of the round window, which is
about 2 mm in diameter, or through the cochlear wall nearby. The array is 0.5 - 1 mm
in diameter, and, when in place, it needs to be a good fit in the drilled hole. If the hole
is too small, the array or the round window may be damaged during the insertion, or
it may not be fully inserted; if it is too big there could be long term leakage of cochlear
fluid, if the array is not adequately sealed into the hole, and it could migrate out of the
cochlea. The array is composed mainly of silicone rubber, it is 15 - 32 mm long, and it
is often tapered, to facilitate insertion. There are 12 - 24 platinum alloy electrodes
spaced along the length that is inserted within the cochlea, and each is individually
wired through the silicone rubber to the receiver / stimulator that is just beneath the
scalp. Some electrodes cover the entire circumference of the array, others cover only
half of the circumference, and some arrays have pairs of electrically connected
electrodes at each location. The length of each electrode is typically about a quarter of
the spacing between electrodes. Some arrays have one electrode that is designed to be
outside the cochlea that is used as a reference electrode to return the current injected
into those inside the cochlea. Because the cochlea has a curved shape, many electrode
arrays rely on the sides of the lower chamber to guide the array around the spiral
curve. The chamber is bounded by delicate tissue, which can be damaged by this
process. Some arrays are held curved by a metallic stylet that is withdrawn part way
through the insertion process; this is designed to avoid tissue damage, but rarely it can
result in the array entering the upper chamber; such arrays are normally relatively
short and designed to enter only the first turn of the cochlea. The drilling of the round
window or the bone can result in fragments of tissue, bone or drill entering the lower
chamber, where they can cause foreign body response and growth of fibrotic tissue,
see Foggia et al. (2019). The drilling and insertion processes will inevitably cause some
trauma, which will initially cause some stiffening of the round window. The round
window acts as a pressure release, allowing the stapes to push and pull fluid in and
out of the cochlea and hence moving the basilar membrane. Inserting an array
through the round window will stiffen it and hence reduce the movement of cochlear
fluid and the basilar membrane. Despite these challenges, the vast majority of
implantations are beneficial to the patient; however, it is common for implant patients
to experience some residual acoustic hearing loss, see Causon et al. (2013), Causon
et al. (2015) and Verschuur et al. (2016). When successfully implanted, the electrode
array lies in the lower chamber, occupying between one third and two thirds of the
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35 mm length of the cochlea from the round window. Its position in the transverse
cross-section of the chamber is difficult to predict, and it is likely to vary from one
patient to another and along the length of the array in each patient. Acoustically, the
position of the array within the chamber will make little difference, because both the
speed of sound in the silicone rubber and its density are very similar to those of the
cochlear fluid. However, the precise position of the array will have an impact on
delivery of the electrical signal to the auditory neurons (spiral ganglion cells) because
physical proximity will be important in determining the required current output,
current path and spread. The potential benefits of avoiding tissue damage by using
shorter arrays are discussed in the following Section. Minimizing the impact of short
arrays on electric stimulation is made possible by using electro-acoustic stimulation.

2.5 Combined Electric and Acoustic Stimulation (EAS)

Many cochlear implant candidates have useful acoustic hearing at frequencies below
those at which electric stimulation is effective (typically 500 Hz). This hearing is
valuable for listening to music, for speech recognition, for hearing traffic noise and for
detecting non-verbal clues in speech. The more this acoustic hearing can be enhanced
by amplification to improve hearing, the more useful it becomes for speech
recognition, as shown in figures 7 and 8 in Imsiecke et al. (2020). For this reason, the
benefits have been investigated of combining electric stimulation from a cochlear
implant with amplified acoustic excitation via a conventional hearing aid. A further
advantage of EAS is that it can allow implantation of a shorter electrode array, which
reduces the risk of tissue damage during insertion.

Gstoettner et al. (2008) concludes that outcomes reveal that all subjects performed
significantly better with EAS than they did with a hearing aid only; and thus the
benefits of EAS and receiving a CI seem to outweigh the risk of losing hearing as a
result of the surgery or due to some other cause at a later time. Imsiecke et al. (2020)
confirms that, "Speech reception in the enrolled subjects had a negative mean SRT for
all tested fitting strategies in the EAS listening mode with background stationary
noise, meaning the speech was softer than the noise for the 50% correctly repeated
words estimate of most subjects. The performance was significantly better than the
performance with electric listening mode and also better in comparison than the
acoustic listening mode across fitting strategies. The analysis of the relation between
residual hearing, as expressed by low frequency PTA, and SRT confirmed the
advantageous effect of ipsilateral residual hearing on speech reception performance
reported by several previous studies (Turner et al. 2004; Gantz et al. 2005; Kiefer et al.
2005; Gstoettner et al. 2008). The data show a steep increase in SRT with
low-frequency hearing which reaches a plateau with expanded residual hearing
comparable to the results reported by Büchner et al. (2009) and Zhang et al. (2010b). In
the ICRA listening mode, however, an increase in residual hearing continuously
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improves the SRT, indicating the additional benefit of residual hearing in the medium
frequency range for fluctuating noise."

Imsiecke et al. (2020) have shown that speech can be recognized when the signal to
noise ratio is significantly lower (more onerous) in individually fitted patients with
ipsilateral electro-acoustic stimulation than those with electric stimulation only, for
both stationary and fluctuating noise. This means that patients with an implant and a
conventional hearing aid in the same ear can recognize speech in noisy backgrounds
more effectively than those that rely entirely on either source of stimulation alone. 4

The authors conclude (presumably from the graphs in their Figure 8) that for
stationary noise, "The data show a sharp increase in SRT with low-frequency hearing
which reaches a plateau with expanded residual hearing ..." It is noted that there are
no data points plotted on either the EAS in stationary noise or the ICRA EAS
fluctuating noise graph for PTAs greater than about 100 dB. Imsiecke et al. (2020) does
not state the hearing aid gain used, but it is common practice to use a gain equal to
half the hearing loss (see, for example, Kiefer et al. (2005)), so that the combined effects
of recruitment, cochlear amplification and hearing aid amplification approximately
compensate for the hearing loss. The maximum gain available from a hearing aid used
for EAS is about 48 dB (see, for example, Medel’s brochure as viewed on 15/06/22:
https://s3.medel.com/pdf/24666CE_r3_1-synchronyEasFS-WEB.pdf), which
suggests that hearing loss greater than about 100 dB cannot be compensated by
existing EAS techniques. This is stated on page 970 of Gstoettner et al. (2008) as,"Three
subjects (16.6%) had some hearing preservation, but not enough for acoustic
amplification, as determined by the provided gain for the hearing aid." From this it
can be concluded that greater amplification would extend the benefits of EAS to
patients with greater hearing loss than those who can benefit from existing techniques.
It is also possible that greater amplification, combined with more advanced
compression to avoid discomfort from louder sounds, would have the effect of
improving SRT performance by effectively reducing the PTA. This is in line with the
personal experience of the author, who has an approximate 50 dB hearing loss (left ear
PTA all frequencies), and who finds subjectively that speech recognition improves
when hearing aid gain is increased up to the point where feedback and distortion
counteract the benefit.

Imsiecke et al. (2020) have also shown that speech recognition thresholds correlate
well with pure tone average hearing level values for low frequencies; the slope is
0.04 dB SNR / dB PTA HL for stationary noise and 0.12 dB SNR / dB PTA HL for
fluctuating noise 5. (In this context, PTA is the average of Hearing Level above normal
threshold, measured at 125, 250 and 500 Hz. SRT is speech recognition threshold,
measured in this context as the signal to noise ratio (SNR) that resulted in 50% correct

4Imsiecke et al.’s measurements are explained in their text relating to their figure 7, which appears to
be shown above the caption for their figure 8.

5Imsiecke et al.’s conclusions are explained in their text relating to their figure 8, which appears to be
shown above the caption for their figure 7.

https://s3.medel.com/pdf/24666CE_r3_1-synchronyEasFS-WEB.pdf
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FIGURE 2.7: Figure 7 from Imsiecke et al. (2020) (shown above their caption for their
figure 8): Speech reception thresholds for 15 subjects, tested at least 10 months af-
ter implantation for conditions EAS, ES, AS, and temporally modulated noise with
EAS (ICRA EAS) for grouped subjects with different fitting strategies meet (white),
overlap (gray), and UNMASKfit (red). Subjects are grouped according to their fitting,
that is, individualized (left) or mean UNMASKfit map (right). Box plots show the
group statistics and the circles denote mean values. The text inset N x for acoustic
listening mode indicates the number of subjects that could not be tested. AS indicates
acoustic only; EAS, electric-acoustic stimulation; ES, electric only stimulation; ICRA
EAS, ICRA-5 fluctuating noise with male speaker temporal modulations; UNMASKfit,
masking adjusted fitting. This figure is copied from an Open Access article published
by Wolters Kluwer Health, Inc., which may be used and reproduced without special

permission., see https://www.ncbi.nlm.nih.gov/pmc/about/copyright/

FIGURE 2.8: Figure 8 from Imsiecke et al. (2020) (shown above their caption for their
figure 7): Speech Recognition Threshold (SRT) for different fitting strategies: meet,
overlap, and UNMASKfit fitting, for the EAS (electric-acoustic stimulation) listening
mode in stationary noise (left) and the ICRA (International Collegium of Rehabilita-
tive Audiology) fluctuating noise (right) as a function of the low frequency pure-tone
average (125–500 Hz). This figure is copied from an Open Access article published
by Wolters Kluwer Health, Inc., which may be used and reproduced without special

permission., see https://www.ncbi.nlm.nih.gov/pmc/about/copyright/

recognition of words.) This implies that further improvement in speech recognition
could be achieved by greater amplification; this may be due solely to the raising of
quieter sounds to a hearing level above the threshold, or due to a combination of this
and other causes. Imsiecke et al. conclude that the relation between residual hearing,
as expressed by low frequency PTA, and SRT confirmed the advantageous effect of

https://www.ncbi.nlm.nih.gov/pmc/about/copyright/
https://www.ncbi.nlm.nih.gov/pmc/about/copyright/
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ipsilateral residual hearing on speech reception performance reported by several
previous studies. The maximum amplification that can be achieved with a
conventional hearing aid is limited by considerations of acoustic feedback that can be
caused by the proximity of the microphone and the actuator. With an intracochlear
actuator, as described in Chapter 7, the separation of the microphone and the actuator
is much greater, and so greater amplification can be achieved without the risk of
feedback.

The reason for deploying contralateral EAS is, presumably, that the deafer ear is
normally selected for implantation, and the less deaf ear is a better candidate for air
conduction acoustic stimulation, because of the limited amplification achievable with
a conventional hearing aid, and the loss of acoustic hearing that often occurs with
implantation. Roland Jr et al. (2018) have measured mean pure tone averages for 32
EAS subjects (23 contralateral and 9 ipsilateral), as show in Figure 2.9.

FIGURE 2.9: Fig. 3. from Roland Jr et al. (2018): mean ipsilateral and contralateral
three-frequency low-frequency pure-tone average (125, 250, and 500 Hz) over time
(N532). Error bars ±1 standard deviation of the mean. Data points dithered for clarifi-
cation. Reproduced with permission of the publisher. © 2018 The American Laryngo-

logical, Rhinological and Otological Society, Inc.

2.6 The Effect of Cochlear Implants on Residual Hearing

2.6.1 Measuring the Impact of Cochlear Implants on Residual Hearing

Implantation has the potential to cause hearing loss by many means, including:

• Reduction of acoustic velocity in the cochlear fluids, caused by stiffening of the
round window, obstruction of the scala tympani and callous formation around
the implant: Elliott et al. (2016) and Kopelovich et al. (2015)

• Damage caused by inflammation due to the implantation, by infection
introduced with the implant, by antibiotics used to prevent infection, or not
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prevented by immuno-suppressants used to avoid rejection of the implant:
Causon et al. (2013)

• Damage to spiral ganglion neurons caused by excessive electrical stimulation:
Kopelovich et al. (2015)

• Mechanical damage to the organ of Corti or the basilar membrane: Dhanasingh
and Jolly (2017)

Only the first of these is within the scope of this project. Unfortunately, audiometry
provides little evidence to indicate the cause of hearing loss in each case. Some
distinction between sudden and gradually operating causes may be made by
measuring hearing loss at intervals after implantation, as demonstrated by Quesnel
et al. (2016). Some information on causation of hearing loss can be obtained from a
time series of audiograms, because some causes are immediate and constant or
decrease with time, whilst others increase with time. It is also highly unlikely that an
electrode array could cause tissue damage more apically than the location of its distal
end, and hence below a certain frequency, but this is useful only when the lengths and
insertion depths of the implants are reported.

Kopelovich et al. (2015) provide an overview of the impact of implantation on cochlear
action, suggesting acoustic stimulation to augment residual acoustic hearing as a
remedy to restore lost hearing. The paper states, "Immediate minor increase in
acoustic hearing thresholds after hearing preservation cochlear implantation averaged
12.2 dB and is likely related to insertional trauma or change in fluid dynamics related
to placement of the implant in the scala tympani." The conclusion in that paper
suggests that hearing loss after implantation is also caused by nerve damage, caused,
in turn, by excessive electrical stimulation. A possible further cause mentioned is the
growth of callous tissue around the implant, impeding the flow of electric current
from the device to the nerve.

Causon et al. (2013 and 2015) provide more detailed overviews of adverse cochlear
implant events, although they do not consider round window stiffening specifically.

After implantation through the round window, its impedance will be different once it
has healed round the implant; Elliott et al. (2016) have calculated that the stiffness is
likely to increase by a factor of about 100 from the pre-implantation value modelled by
Nakajima, as a result of inserting a 1 mm diameter implant through a 2 mm diameter
round window. For testing the new model, the post-implantation stiffness of the
round window has been taken as 170 times that calculated by the author’s modified
Nakajima model, and as detailed in the Appendix on page 139. This value gave a
good match of hearing loss predicted by the present model to acoustic hearing loss
published by both Verschuur et al. (2016), measured 3 - 6 months after implantation,
and Causon et al. (2015), measured 4 weeks after implantation. The earliest
measurements after implantation are used to minimize the effects of time dependent
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causes of hearing loss, such as callous growth. (The hearing loss data were kindly
provided digitally by Carl Verschuur in private emails sent on 28/5/2019 and
7/6/2019.)

2.6.2 Modelling the Physical Impact of Cochlear Implants

The paper by Elliott et al. (2016) has provided a useful contribution of the effect of an
implanted electrode array on the acoustic impedance of the round window. Their
method used an equivalent acoustic circuit of lumped components located at the base
to predict hearing loss, as shown in Figure 2.10. Equivalent electrical circuits have also
been used for lumped component models by, for example, Marquardt and Hensel
(2013) and Xue et al. (2020); they are useful for computing the combined effect of
components that affect the boundary conditions of the cochlea. As a way of reducing
the effect of a stiffened round window, Elliott et al. (2016) proposed implanting a
bubble at the base, and they used the equivalent circuit to predict its effect on basilar
membrane velocity, and hence acoustic hearing. Since the equivalent circuit can only
model the bubble at the base, the bubble was assumed to be in the same position as
the round window. In order to investigate the effect on acoustic hearing of positioning
the bubble at other locations in the cochlea, a distributed model of cochlear mechanics
is needed that accounts for location of components, as described below.

FIGURE 2.10: The impedance model used to study the effect of round window stiff-
ness, included in ZRW, on the pressure across the basilar membrane, pBM, which is the
difference between the pressure in the scala vestibuli, pSV and that in the scala tym-
pani pST, where pME and ZME are the Thevenin equivalent source and impedance of
the middle ear, ZBM is the impedance across the basilar membrane and ZVA and ZCA
are the impedances of the vestibular and cochlear aqueducts. Reproduced licensed by
the Creative Commons CC-BY license, which permits unrestricted reproduction, from
Elliott et al. (2016). It is stated in the paper that ZME is the impedance looking out of
the cochlea into the middle ear. Elliott et al. used ZME or M3 from Puria (2003), who
based his modelled value on measurements that were made with an ear canal stimu-

lated by a sound source incorporated into an inserted foam plug.
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2.7 Previous Cochlear Models

Distributed Cochlear models can be classified into types as follows:

1. One or two chambers

2. Macro- or micro- mechanical

3. Zero or non-zero longitudinal coupling

4. One, two or three dimensions

5. Viscid or inviscid fluids

6. Active or passive

7. Linear or non-linear

8. Single- or multi-mode

Traditionally, most cochlear models have been simplified by assuming that the
mechanical characteristics of the upper and lower chambers are equal, so that the
excitation gives rise to symmetrical acoustic waves either side of the basilar
membrane. This allows a simplified, single chamber model, with an acoustic pressure
equal to the difference between the pressures in the two chambers. The cochlear
partition reacts to that pressure difference. At the basal end of the cochlea, the upper
chamber is bounded by the oval window, formed from the footplate of the stapes,
which is constrained by the reverse impedance of the middle ear, and the lower
chamber is bounded by the round window, which acts conventionally as a pressure
release. At low frequencies, the impedance of the normal round window is an order of
magnitude less than that of the middle ear, when viewed from the cochlear. If the
round window is stiffened due to implantation by two orders of magnitude, its low
frequency impedance becomes an order of magnitude greater than that of the middle
ear. When considering the acoustic effects of introducing an implant through the
round window, these differences are significant, and it is necessary to use a
two-chamber model.

Although the cochlea has two acoustically distinct chambers, many finite element
models have been simplified to model the acoustics of just one chamber by
considering the two chambers of the real cochlea to be similar in every respect. This
enables the cochlear model to consider a single sound wave in a single chamber
exerting a pressure on the basilar membrane equal to the difference of the pressures in
the upper and lower chambers of the real cochlea. The physical representation of this
type of model is shown in Allen (1977) as figure 3, which shows just one chamber. The
same mathematical approach is used by Neely and Kim (1986) and Elliott and Ni
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(2018), for examples. These three models and those like them can be described as
symmetric or single chamber models.

Hubbard and Mountain (1996) confirm on their page 80 that to understand the
operation of a normal cochlea, a single-chamber model is satisfactory, if one wishes to
compute only the BM velocity. This explains why few, if any, two-chamber models
have been developed in the last 60+ years. When the two chambers and their
boundaries are markedly different, as is the case with an implant, the model needs to
consider the two chambers independently, so that the fluid coupling in each chamber
is independent of that in the other, and hence, determined solely by the pressure
distribution in its own fluid, and not necessarily equal to that of the other chamber.

Whilst each of the symmetric, single chamber models have greatly enhanced the
understanding of cochlea mechanics, their assumption of symmetry prevents their use
for modelling the effects of stiffening the round window, introducing compressible
elements or introducing an actuator into the lower chamber, which are the purpose of
this research. As a result, a model has been developed that has two independently
configurable chambers, coupled by the basilar membrane. In the present model, the
BM reacts to the pressure difference across it, but that difference is not assumed to be
twice the pressure in the upper chamber.

Viergever and Kalker (1975) confirm that at low frequencies (30 Hz), the viscous
boundary layer thickness in the cochlear fluid is less than one tenth of the scala
diameter; at higher frequencies (10 kHz), this diminishes to about one percent of the
scala diameter. It is therefore considered that treating the cochlear fluid as inviscid
will not introduce any error to the model that is significant for the intended purposes
of this research.

For the purpose of this project, it has not been considered necessary to study
non-linear or active models, because cochlear implants are provided to those that have
very little or no acoustical hearing, as a result of impaired (or absent) cochlear
response to pressure waves in the cochlear fluid. In such circumstances, there will be
very little amplifying action due to the outer hair cells, and so the nonlinearaties
associated with the outer hair-cells are absent and the cochlea will behave almost
linearly. Longitudinal coupling along the BM and TM have been shown to be
important in active models of the cochlea, but to play a much smaller rôle when the
cochlea is passive (Meaud and Grosh (2010). It is thus considered sufficient to use a
simple, one-dimensional, single mode, linear model, with no longitudinal mechanical
coupling along the basilar membrane.

The model does include provision to model compressibility in the fluid, although this
makes little or no difference below about 7 kHz, as confirmed by Geisler and Hubbard
(1972).
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2.7.1 Two Chamber Models

Hubbard and Mountain (1996) review and interpret the models that constitute the
current state of the art at that time. They refer to only two two-chamber models:
Peterson and Bogert (1950) and Hubbard and Geisler (1972)). 6 The former is a
manually-calculated numerical model, and the latter depended on analogue
computing, using a digital computer to set the potentiometers on an analogue
computer. A third model is described by (Bogert, 1951); in this, the cochlea is
modelled by a large number of discrete electronic components. A paper by Viergever
and Kalker (1974) discusses the adequacy of the Peterson and Bogert (1950)
one-dimensional model, by comparison with a simplified three-dimensional model.
Hubbard and Geisler (1972)) simplify Peterson and Bogert’s model by assuming
uniform, and similar, cross-sections for the two chambers. Viergever and Kalker (1974)
conclude that the Peterson and Bogert model gives good correspondence with their
own simplified three dimensional single chamber model for mid and low frequencies
away from the location of maximum vibration of the cochlear partition, but not for
high frequencies at any position. They show that their simplifications are independent
of cochlear geometry. For low and mid frequencies, there is therefore good existing
evidence for the validation of the Peterson and Bogert (1950) model, which has been
compared with results measured and reported by Békésy (1949 and 1960), provided
that appropriate physiological data are used. The paper by Peterson and Bogert has
the potential to be useful in providing a comparison with the results of the
two-chamber model reported here, when the same physiological data is used.
However, the conclusion of Viergever and Kalker (1974) suggests caution in making
comparisons at high frequencies.

2.8 Summary

Most recent cochlear models have been either of the lumped component type, or they
are distributed single-chamber models. Many, if not all of these publications refer,
directly or indirectly, to earlier work, for example, by de Boer (1980, 1984 and 1991),
Neely and Kim (1986), Nobili et al. (1998), Steele and Taber (1979a and 1979b), and
Zweig et al. (1976). With some significant necessary modifications, the paper by Elliott
and Ni (2018) has been used as the basis of the methodology used in developing the
model described here. It has also been used to verify the new two-chamber model by
making it equivalent to the single chamber model and comparing results.

6NB This is not the same paper as Geisler and Hubbard (1972), despite the same two authors publishing
it in the same year.
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Chapter 3

The Two Chamber Finite Element
Model

3.1 Introduction

The established single chamber model has been reformulated on a two chamber basis,
in order to investigate the effects of a cochlear implant, a compliant element or an
actuator in only one chamber. The equations used by Elliott and Ni (2018) have been
re-formulated, removing the assumptions that reduce the two chamber model to one
having only a single chamber, and also by adding new terms to distinguish between
the two chambers, to allow for compressibility of the fluid and to model compressible
elements, which also may contain excitation sources. The excitation sources within the
organ of Corti have been retained to facilitate potential future use for modelling an
active cochlea, but for the purposes of this project they have all been set to zero.

The cochlea is assumed to consist of two straightened chambers of constant
rectangular cross section, separated by the basilar membrane, as shown in figure 3.1,
below.

As with most previous models, an elemental approach has been adopted, dividing the
length of the cochlea into a large number of small elements. The physical basis of each
element within the model is shown in the cross-sectional diagram of an element in
figure 3.2, below. Each chamber is now assumed to contain compressible elements that
react to the pressure in their own chamber, and that are independent of those in the
other chamber, with dynamics modelled by a spring-mass-damper system. The
corresponding elements of the two chambers are separated by an incompressible
element representing the organ of Corti, with similarly modelled spring-mass-damper
dynamics, which moves in response to the difference between the pressures in the two
chambers. The normal source of excitation is the stapes / oval window, but sources of
excitation are now also modelled within the organ of Corti and within each
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FIGURE 3.1: Model Diagram for Two Independent Chambers - Perspective View.

compressible element. Excitation within the cochlear partition facilitates comparison
with single chamber models, and excitation within each compressible element
facilitates modelling possible excitation within implants. The width of the basilar
membrane is assumed to be constant, and it is given the value B, whereas the width of
the compressible elements is given the value C. For simplicity, B and C are considered
to be equal in the remainder of this thesis.

A further challenge is to consider the placing of the compressible element in the cross
section of the lower chamber, because it is almost impossible to control in practice.
Clearly, if the diaphragm of the compressible element is in contact with another
structure, its coupling to the cochlear fluid will be adversely affected. As with
histological damage, this risk has to be accepted. There are imaging techniques that
may enable surgeons to see the position of the implant while it is being inserted; these
may be helpful in avoiding this problem.

It is not possible to use the present one-dimensional model to predict the performance
of the compressible element as a function of its position within an elemental volume.
It is assumed that its position within the cross section of the chamber will make only a
small difference to its performance as a pressure release mechanism or an excitation
source. Because the real cochlea is three dimensional, a correction factor for the
chamber height is included, based on the diaphragm width and velocity profile, as
described in subsection 3.2.2. To model precisely the effects of different lateral and
radial bubble positions would require a three dimensional model, which is beyond the
scope of this thesis. Such an enhancement of the model to enable it to predict the
effects of changing the position of a bubble, and actuator or the aqueducts within the
elemental volume is included in the list of further work in Chapter 9.

To facilitate modelling of different impedances for the middle ear and the round
window for the discrete formulation, the stapes driving element is considered to be a
separate Norton velocity source, shunted by a mass-spring-damper impedance within
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FIGURE 3.2: Cross-section Diagram of Two Independent Chambers of the Cochlea

the first element of the upper chamber, rather than the first element of the basilar
membrane, as in the Elliott and Ni single chamber model. The first element of the
lower chamber contains a similar velocity source (normally set to zero velocity),
shunted by a mass-spring-damper impedance to simulate the dynamics of the round
window and a possible excitation source, such as a middle-ear implant attached to a
cochlear implant. The second compressible elements in the upper and lower chambers
are used to simulate the vestibular and cochlear aqueducts, respectively, whose effect
becomes more important when the round window is assumed to be stiffened. A
distributed bubble in an implant can be simulated by a succession of compressible
elements in the remainder of the cochlea, to make up the length of the bubble.

The model can consider the cochlear fluid to be compressible and hence capable of
transmitting normal sound waves, but for simplicity, that feature has not been enabled
for producing the graphs in this thesis. The compressibility of the fluid is determined
by the speed of sound, c0, and the fluid can be easily modelled as incompressible by
setting c0 to ’inf’ in the input variables of the Matlab script.

The differential vector equations that describe such a coupled system are outlined in
Section 3.2, and the finite difference approximations for these are in Section 3.3,
leading to a matrix equation that can be solved to give the coupled response.
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3.2 Physical Relationships1

At this stage, it is assumed that the wave propagation along the cochlea is governed
by one dimensional fluid coupling. That is to say that:

• Other than at the stapes or the round window, the net fluid flow into the
chamber is that due to the organ of Corti / basilar membrane and the
corresponding compressible element, and so the effects of any flow in the lateral,
y direction can be modelled completely by defining an effective chamber height
(measured in the z direction). By doing so, all acoustic velocities in the y
direction can be considered to be zero.

• The acoustic velocity normal to the BM, in the z direction, reduces linearly to
zero from the organ of Corti to the chamber wall.

• There is no longitudinal mechanical coupling in the BM, ie it is locally reacting.

• The effects of viscosity in the fluids occupying the main chambers are considered
negligible. Although the present model could be modified to calculate the effect
of viscosity on the axial fluid velocity in the two chambers of the cochlea, this has
not been included, because the boundary layer thickness is about one twentieth
of a chamber diameter or less in the frequency range of interest (100 Hz to
1 kHz), and so the effect on impedance to axial flow will be small; the impedance
to axial flow itself has only a small influence on the results of the model. The
effects of viscosity in the two chambers will therefore have a negligible effect on
the mechanics of the cochlea in the frequency range of interest. However,
viscosity has a more significant effect on the impedance of the aqueducts, and
this is included in the present model, as explained in Appendix A.

The laws of conservation of mass and momentum apply.

3.2.1 Conservation of Mass

For mass to be conserved, the rate of change of density must be equal and opposite to
the rate of change of volume. The linearized equations of mass conservation for a
three dimensional acoustic wave in a continuous, homogenous region can be

1In this section: scalar quantities (single numbers) are shown in lower case italics, spatial vector quan-
tities (those that have both magnitude and direction) are shown in lower case bold italics.
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expressed as (Kinsler et al. (2000), equation 5.3.4):

ρ0
∂s
∂t

+∇.(ρ0u) = 0, where (3.1)

s =
ρtotal − ρ0

ρ0
(3.2)

ρ0 = the density at ambient pressure, p0.

u = the linear fluid velocity,

with 3 orthogonal components: ux, uy, uz,

∇.u =
dux

dx
+

duy

dy
+

duz

dz
∂ρ

∂t
+ ρ0∇.u = 0, where (3.3)

ρ = the acoustic density,
∂ρ

∂t
=

∂ρ

∂p
∂p
∂t

(3.4)

When p = p0 and ρ = ρ0, p = c2
0ρ, (3.5)

where c0 = the velocity of sound, and p = the acoustic pressure.

ρ =
p
c2

0
(3.6)

∂ρ

∂p
=

1
c2

0
(3.7)

When p = p̂eiωt,
∂p
∂t

= iωp (3.8)

Fluid compressibility,
∂ρ

∂t
=

iωp
c2

0
, and so : (3.9)

ρ0∇ · u +
iω
c2

0
p = 0, for all x, z, t and for both chambers. (3.10)

This is the general acoustic wave equation that applies to all waves that comply with
the conditions specified in the first paragraph of this section. Equation (3.10) will be
combined with the equation for conservation of momentum.

3.2.2 Conservation of Momentum

The linearized equation of momentum conservation for an inviscid but compressible
fluid with no mean (time averaged) flow is given by equation 5.4.10 in Kinsler et al.
(2000) as:

ρ0
du
dt

= −∇p, for all x, z, t and for both chambers. (3.11)

Since it is assumed that u = ûeiωt,
du
dt

= iωu (3.12)

u = − ∇p
iωρ0

(3.13)
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Equation (3.13) can now be substituted into equation (3.10) to relate the linear velocity
of the basilar membrane, vB(x) to the pressure, p(x)|z=0 in each chamber located x m
from the stapes, adjacent to the basilar membrane. Before doing so, it is convenient to
replace ∇ · u in equation (3.10) with its orthogonal components, which are a function
of only x because ∂uy

∂y = 0, and it will be shown below that ∂uz
∂z is constant with z,

proportional to vB(x):

∂ux

∂x
(x) +

∂uy

∂y
(x) +

∂uz

∂z
(x) +

iω
c2

0ρ
p(x)|z=0 = 0 , for all x, t. (3.14)

It is assumed that the wave in the z direction between the BM and the parallel (top
and bottom) walls of the cochlea will propagate at approximately the velocity of
sound in the cochlear fluid, which is about 1500 m/s. At 20 kHz, the wavelength is
75 mm. The height of each chamber is only a few millimetres, and so the wavelength
is much greater than the height. If the wavelength λ of the cochlear wave is large
compared with the chamber height, H, then ∂uz

∂z is approximately constant with z, so
that |uz| diminishes linearly from the basilar membrane and the compressible element
to the opposite wall of the chamber, which are separated by a physical distance of
H m. Because the width of the basilar membrane, B and that of the compressible
element are less than the full width of the chamber, W, it is necessary to use an
effective height, h in place of the actual height, H when calculating ∂uz

∂z , so that:

∂uz

∂z
=

vB

h
(3.15)

The relationship between h and H is given by Elliott et al. (2011):

h =
π2WH

8B
(3.16)

This formula assumes that the BM width is much less than a wavelength and that the
BM is hinged to rigid structures at the limits of its width, so that its transverse
vibration profile is that of a half sine-wave. It also assumes that there is no
longitudinal mechanical coupling within the cochlear partition. These assumptions
are appropriate for the purposes of the present model.

To facilitate comparison with models that do not have compressible elements, a single
value of h is used here, calculated for the width of the basilar membrane, B, and the
velocity of the compressible element is then scaled to become vCU for the compressible
element.

∂uz

∂z
=

vCU

h
for compressible element excitation. (3.17)

In the upper chamber, ∂uz
∂z is therefore equal to − (vCU + vB) /h, where vCU is the

velocity of the compressible element piston and vB is the velocity of the basilar
membrane. Similarly, in the lower chamber, ∂uz

∂z is therefore equal to − (vCL + vB) /h.
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Further simplification is achieved by setting ∂uy
∂y (x) = 0, in accordance with the

assumption that the flow in the lateral, y direction can be ignored. Substituting
− (vCU + vB) /h for ∂uz

∂z into equation (3.10), it can now be written for the fluid in
contact with the basilar membrane in each chamber:

∂ux(x)
∂x

|z=0 −
vCU(x) + vB(x)

h
+

iω
c2

0ρ
p(x)|z=0 = 0, (upper chamber) (3.18)

∂ux(x)
∂x

|z=0 −
vCL(x)− vB(x)

h
+

iω
c2

0ρ
p(x)|z=0 = 0, (lower chamber) (3.19)

Similarly, the x-axis component of equation (3.13) can be written:

u = − ∇p
iωρ0

ux(x)|z=0 (3.20)

−∇x p(x)|z=0

iωρ
=

i
ωρ

∂p(x)
∂x

|z=0 (3.21)

Equations (3.18), (3.19) and (3.21) are true for all values of x and t, and equation (3.21)
applies to both chambers. For both the upper and lower chambers, z = 0 is the height
of the layer adjacent to the basilar membrane. In each chamber, the layer of fluid
adjacent to the basilar membrane (where z = 0) is the focus of these calculations,
because it is the pressure in this layer that acts on the impedance of the BM to control
its velocity and hence the sensation of acoustic hearing.

By substituting equation (3.21) into equations (3.18) and (3.19), it is will be possible to
eliminate all components of the fluid velocity, u and to express the velocity of the BM,
vB(x) in terms of the pressure in the adjacent fluid, p(x)|z=0; this is done after
rewriting equations (3.18) and (3.19), in section 3.3, below, to take boundary
conditions into account.

3.3 Finite Difference Approximations

To solve the preceding differential equations numerically, the length, L of the cochlea
is divided into N equal elements, each of length ∆, as shown in figure 3.3, so that:

L = N∆ (3.22)

Assuming that the wavelength of the resulting longitudinal wave, λ, is large
compared with the length of an element, ∆, the spatial derivations can be
approximated by finite differences. In practice, a rule of thumb is ∆ < λ/6 is often
used. de Boer (1980) provides a formula (his equation 6-ii) for the real part of λ at the
point of resonance of the basilar membrane, which is normally considered to be the
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FIGURE 3.3: The Elemental Variables

point of minimum wavelength:

λ = πh

√
2M0

ρh
(3.23)

Where: M0 is the superficial mass of the BM, ρ is the fluid density, and h is the
chamber height. For an exponential longitudinal elasticity taper in the BM, this value
is independent of position of resonance and frequency of resonance. For the
physiological values adopted for this thesis, the value of the minimum wavelength
calculated using the de Boer formula is 3.2 mm. Using the λ/6 rule, then ∆ should be
less than 0.5 mm, and so each chamber of the model should contain more than 70
elemental volumes along its 35 mm length. As a good compromise between execution
time and accuracy, the model is normally run with 175 or 350 elements. The present
model uses Greenwood’s equation, and it also calculates minimum wavelengths over
the frequency range of interest varying from 90 mm at the base to 1.7 mm near the
apex. λ is calculated from the rate of change of phase with distance along the BM,
λ = ( dΦ

dx )
−1, where Φ is measured in cycles. This is demonstrated by the spatial

domain graphs of frequency response phase (lower left panes) of Figures 5.6 to 5.8,
which show the variation of phase with distance along the cochlea for three
frequencies covering the range of interest. In each graph, the slope is small and hence
λ is large near the base; the slope approaches a maximum, and λ a minimum, at the
best place. The same is true for the corresponding graphs in Chapters 6 and 7.

Rather than relating quantities to their longitudinal location by its distance from the
stapes, equation (3.21) can now be re-written so that the pressure gradient in the x
direction is expressed in terms of the element number, n, and the length of the
elements, ∆:

∂ux(n)
∂x

|z=0 =
(ux(n + 1)− ux(n))|z=0

∆
(3.24)

ux(n)|z=0 = −∇x p(n)|z=0

iωρ
(3.25)

ux(n)|z=0 =
(p(n)− p(n + 1))|z=0

iωρ∆
(3.26)
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Where p(n)is assumed to be at position x = n∆ and also z = 0, ie next to the basilar
membrane in element n.

Because equation (3.26) depends on only the properties of the fluid, it applies to both
chambers. For the upper chamber, equation (3.18) can be re-written and re-arranged to
give ∂ux(n)

∂x |z=0 in terms of the pressure, pU(n)|z=0 in the element. The expression for
∂ux(n)

∂x |z=0 in equation (3.24) can then be substituted into the re-arranged equation
(3.26), to equate the net flow into the region of an element (LHS of equation 3.27 to the
change of volume due to copressibility (RHS). This is done for the fluid layer next to
the BM, where z = 0. vB(n) is then computed in terms of the local pressure, pU(n):

∂ux(n)|z=0

∂x
− (vCU(n) + vB(n))

h
= − iω

c2
0ρ

pU(n) (3.27)

(ux(n + 1)− ux(n))|z=0

∆
− (vCU(n) + vB(n))

h
= − iω

c2
0ρ

pU(n) (3.28)

(pU(n + 1)− 2pU(n) + pU(n − 1))
iωρ∆2 +

(vCU(n) + vB(n))
h

=
iω
c2

0ρ
pU(n) (3.29)

h (pU(n + 1)− 2pU(n) + pU(n − 1))
iωρ∆2 +

(pEU(n)− pU(n))
zCU(n)

+ vB(n) =
iωh
c2

0ρ
pU(n) (3.30)

Where pEU = any excitation pressure within a compressible element

in the upper chamber (normally zero)

zCU(n) =
pEU(n)− pU(n)

vCU(n)

This equation can be solved to give an expression for vB(n).

vB(n) =
iωh
c2

0ρ
pU(n)−

pEU(n)− pU(n)
zCU(n)

− h (pU(n + 1)− 2pU(n) + pU(n − 1))
iωρ∆2 (3.31)

vB(n) =
iωh
c2

0ρ
pU(n) +

pU(n)
zCU(n)

− pEU(n)
zCU(n)

− h (pU(n + 1)− 2pU(n) + pU(n − 1))
iωρ∆2 (3.32)

vB(n) =
iωh
c2

0ρ
pU(n) +

pU(n)
zCU(n)

− h (pU(n + 1)− 2pU(n) + pU(n − 1))
iωρ∆2 − pEU(n)

zCU(n)
(3.33)
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For the most basal element (where n = 1), the excitation comes from the stapes, as
well as the BM or the compressible elements or both, that is ux(n − 1) = uST.

(uST − ux(1))|z=0

∆
+

(vCU(1) + vB(1))
h

=
iω
c2

0ρ
pU(1) (3.34)

(pU(2)− pU(1)) |z=0

iωρ∆2 +
uST

∆
+

vCU(1) + vB(1)
h

=
iω
c2

0ρ
pU(1) (3.35)

h (pU(2)− pU(1)) |z=0

iωρ∆2 +
(pM − pU(1)) |z=0

zM
+ vCU(1) + vB(1) =

iωh
c2

0ρ
pU(1) (3.36)

Where the reverse middle ear impedance, zM =
∆ (pM − pU(1))

huST

vB(1) =
pM

zM
− pU(1)

zM
− h (pU(1)− pU(2))

iωρ∆2 − iωh
c2

0ρ
pU(1) +

pEU(1)
zCU(1)

− pU(1)
zCU(1)

(3.37)

and for the most apical element:

vB(N) =
pM

zM
− pU(N)

zM
− h (pU(N − 1)− pU(N))

iωρ∆2 − iωh
c2

0ρ
pU(N) +

pEU(N)

zCU(N)

− pU(N)

zCU(N)
(3.38)

In section 3.4 below, equations 3.33 and 3.37 to 3.38 are combined into one matrix
equation.

Equation (3.33) can be re-written and re-arranged similarly for the lower chamber:

vB(n) =
pEL(n)
zCL(n)

− pL(n)
zCL(n)

+
h (pL(n + 1)− 2pL(n) + pL(n − 1))

iωρ∆2 − iωh
c2

0ρ
pL(n) (3.39)

Similarly, for the most basal element (n = 1), excitation of the round window is also
possible, and so ux(n − 1) = ux(0) = uRW.

vB(1) =
pR

zR
− pL(1)

zR
− h (pL(1)− pL(2))

iωρ∆2 − iωh
c2

0ρ
pL(1) +

pEL(1)
zCL(1)

− pL(1)
zCL(1)

(3.40)

and for the most apical element: (3.41)

vB(N) =
pR

zR
− pL(N)

zR
− h (pL(N − 1)− pL(N))

iωρ∆2 − iωh
c2

0ρ
pL(N) +

pEL(N)

zCL(N)
− pL(N)

zCL(N)

(3.42)

In section 3.4 below, equations (3.39) to (3.42) are combined into one matrix equation.
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3.4 Matrix Equations2

Equations 3.37 for the most basal element and 3.33 for the remainder are then
combined to be written as a matrix equation (3.43) for the total linear flow into the
region of the upper chamber where z = 0. This is then re-written, to give equation
(3.44) for vB, changing − h

iωρ∆2 to + ih
ωρ∆2 :

0 = vB + vCU +
huST

∆
+

h
iωρ∆2



−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0

0 0
. . . . . . . . . 0

0 0 0 1 −2 1
0 0 0 0 1 −1


pU − iωh

c2
0ρ

pU

(3.43)

The terms on the RHS of this equation are: BM velocity, velocity of the compressible
element diaphragm, ME velocity, fluid coupling velocity and velocity due to
compressibility of the fluid. So that:

vB = YCU(pU − pEU) + YM(pU − pM)

+
ih

ωρ∆2



−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0

0 0
. . . . . . . . . 0

0 0 0 1 −2 1
0 0 0 0 1 −1


pU +

iωh
c2

0ρ
pU

(3.44)

2In this section the following notation is used: two dimensional matrices of are shown in BOLD UPPER
CASE and vectors (one dimensional matrices) are shown in bold lower case.
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Where the vectors of velocities and pressures along the upper chamber of the cochlea
are defined as:

vB = [vB(1), vB(2), · · · , vB(N)]T

vCU = [vCU(1), vCU(2), · · · , vCU(N)]T

uST = Stapes linear velocity = [uST, 0, · · · , 0]T

pM = Unloaded stapes / middle ear pressure = [pM, 0, · · · , 0]T

pU = [pU(1)|z=0, pU(2)|z=0, · · · , pU(N)|z=0]
T

pEU = [pEU(1)|z=0, pEU(2)|z=0, · · · , pEU(N)|z=0]
T

YCU =


1/zCU(1) 0 0 · · · 0

0 1/zCU(2) 0 · · · 0

0
. . . . . . . . . 0

0 0 0 · · · 1/zCU(N)



YM =
h
∆
× Middle ear linear admittance =

h
∆


1/zME 0 0 0

0 0 0 0
...

...
...

...
0 0 0 0


yC =

iωh
c2

0ρ

Equation (3.44) can be abbreviated by writing the inversion of the fluid coupling
impedance matrix as:

YFC = [ZFC]
−1 =

h
iωρ∆2



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
...

. . . . . . . . . . . .
...

0 0 0 −1 2 −1
0 0 0 0 −1 1


(3.45)

Note the changes of sign in the matrix, so that:

vB = YCU(pU − pEU) + YM(pU − pM) + YFCpU + yCpU (3.46)

Similarly, the matrix equation for the lower chamber is:

vB = YCL(pL − pEL) + YR(pL − pM) + YFCpL + yCpL (3.47)
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Where : pR = Unloaded round window pressure, normally zero = [pR, 0, · · · , 0]T

pEL = [pEL(1)|z=0, pEL(2)|z=0, · · · , pL(N)|z=0]
T

pL = [pL(1)|z=0, pL(2)|z=0, · · · , pL(N)|z=0]
T

yCL = [1/zCL(1), 1/zCL(2), · · · , 1/zCL(N)]T

yR =
h
∆
× Round window linear admittance =

h
∆
[1/zR, 0, · · · , 0]T

Equations 3.46 and 3.47 can be expressed diagrammatically as shown in figure 3.4,
below. (In figures 3.4 to 3.7, elements that have been included for completeness, but
not used for this project, are shown in grey.)

FIGURE 3.4: Circuit Diagram with Pressure Sources of Excitation. (In this diagram and
the three following figures, components that are available in the model, but not used,
are shown in grey. Unused pressure sources are replaced with short circuits; other

unused components are replaced with open circuits.)

The Thevenin pressure sources with their series impedances are then converted to
their equivalent Norton velocity sources with their respective admittances in parallel,
as shown in figure 3.5, below. zFC(n) is the fluid coupling impedance between
elements n and n + 1.

As usual, each admittance has the value of the reciprocal of the corresponding
impedance in figure 3.4, above, and each velocity source has the value of the
corresponding pressure source multiplied by the associated admittance.

Further simplification is achieved by adding velocity sources and admittances that are
in parallel, as shown in figure 3.6, below.

Greater clarity can be achieved if the circuit in figure 3.6 is made planar by moving the
reference node from the middle to the outside, as in figure 3.7, below.
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FIGURE 3.5: Circuit Diagram with Velocity Sources. (This is the Norton equivalent of
the previous diagram.)

FIGURE 3.6: Circuit Diagram with Parallel Sources and Admittances

FIGURE 3.7: Planar Circuit Diagram with Parallel Sources and Admittances

Equations (3.46) and (3.47) can be simplified by replacing [ZFC]
−1 with YFC and the

component pressure sources and impedances of each element by their corresponding
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velocity sources and admittances, and then by their combined values.

vB = YCUpU + YMpU + YFCpU + yCpU − vEU − vM (3.48)

vB = (YTU + YFC) pU − vTU (3.49)

vB = −YCLpL − YRpL − YFCpL − yCpL + vEL + vR (3.50)

vB = vTL − (YTL + YFC) pL (3.51)

Where YTU = YCU + YM + yC

vTU = vM + vEU

YTL = YCL + YR + yC

vTL = vR + vEL

Equations (3.49) and (3.51) can now be inverted to give pU and pL in terms of vB, and
then the difference between the pressure vectors in the upper and lower chambers is
computed in equation (3.54), below. This pressure difference, pD is also related to vB in
equation (3.56).

pU = [YTU + YFC]
−1 (vTU + vB) (3.52)

pL = [YTL + YFC]
−1 (vTL − vB) (3.53)

pD = pU − pL = [YTU + YFC]
−1 (vTU + vB)− [YTL + YFC]

−1 (vTL − vB)

pD = ZUvTU − ZLvTL + (ZU + ZL) vB (3.54)

Where ZU = [YTU + YFC]
−1 and ZL = [YTL + YFC]

−1

pD = pEB − ZBvB (3.55)

YBpD = vEB − vB (3.56)

Where: ZB =


zB(1) 0 0 · · · 0

0 zB(2) 0 · · · 0

0
. . . . . . . . . 0

0 0 0 0 zB(N)

 (3.57)

and YB = [ZB]
−1 (3.58)

pEB − ZBvB = ZUvTU − ZLvTL + (ZU + ZL) vB (3.59)

vEB − vB = YB (ZUvTU − ZLvTL + (ZU + ZL) vB) (3.60)

ZBvB + (ZU + ZL) vB = ZBvEB − ZUvTU + ZLvTL (3.61)

The vector of BM velocity, vB, can thus be written in terms of the matrices of
impedance of the compliant elements in the upper and lower chambers, ZU, ZL, and
YB, the admittance matrix of the BM, together with the vectors of excitation velocities
vEB, vTU and vTL.

vB = [ZUYB + ZLYB + I]−1 (vEB − ZUYBvTU + ZLYBvTL) (3.62)

vB = [ZU + ZL + ZB]
−1 (ZBvEB − ZUvTU + ZLvTL) (3.63)
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It is this equation that is used in Matlab to compute vB. It can model compressible
fluid and excitation from the stapes, an intracochlear actuator or the round window,

3.5 Stiffening the Round Window

The effect of stiffening the round window by implantation has been simulated by
decreasing yR and hence increasing ZL. The associated hearing loss is then calculated.
The effect of incorporating a bubble within the implant has also been simulated by
increasing yCL, and then calculating the reduction in hearing loss.

In the formulation below, for the passive cochlea, the superficial impedance (pressure
per unit linear velocity), zB(n), of each finite element of the basilar membrane is
modelled as a stiffness, s, a resistance, r and a mass, m, per unit area in each case, as
shown in the diagram in figure 3.2. Each of these components is expressed as a
superficial quantity, that is a value per unit area, relating the pressure to the linear
velocity in m/s.

zB(n) =
s(x)
iω

+ r(x) + iωm(x), where : (3.64)

x = n∆ = the distance of element, n from the base.

m(x) = m0, which is assumed constant with x.

r(x) = r(1)(e−ax − 0.88eaL), from Greenwood’s Equation (1990) (3.65)

s(x) = s(1)(e−ax − 0.88eaL)2, and (3.66)

s(1) = (ωmax)
2m0, and (3.67)

r(1) =

√
s(1)m0

Q
, and so (3.68)

ωn(x) =

√
s(x)
m(x)

= natural frequency of uncoupled BM at x. (3.69)

Where: L = N∆ is the length of the cochlea,

ωmax = the angular frequency that causes the maximum BM response

to be at element 1,

and Q = the Q factor of each finite element,

which is assumed independent of x, and

= 2.5

This formulation, or a version based on a simple exponential stiffness taper, is used in
many previous models, and the interpretation of ωn(x) often implicitly assumes that
the maximum BM response occurs where the micromechanical element resonates, so
that ωn(x) is the "best frequency" for a given place. This is incorrect, because the wave
along the cochlea becomes evanescent before the resonant point is reached, and so the
maximum response occurs closer to the base than does the resonance. To avoid this
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problem, an empirical factor of 1.3 has been used here to implement this model; the
value of ωmax used for calculating s(1) is thus the maximum audible frequency
(conventionally 20 kHz) multiplied by 1.3, which causes the maximum BM response
to occur at element 1, when the frequency is 20 kHz.
Each finite compressible element is assumed to be governed by a mass, spring,
damper system whose impedance and admittance is calculated as:

zC(n) =
sC(n)

iω
+ rC(n) + iωm(n) (3.70)

for both upper and lower chambers.

The components of the elements of zC can be set individually to model the features of
the upper and lower chambers, enabling the impedance of a cochlear implant in the
lower chamber to be modelled, along with any bubbles within it. The excitation
source of the stapes pM, together with the impedance of the middle ear zM can be
included within the first compressible element of the upper chamber, and the round
window impedance, zR can be modelled by including it within the first element of the
lower chamber. Any of the compressible elements of either chamber can be modelled
as an excitation pressure source behind a mass-spring-damper series impedance. The
second element from the base in each chamber is used to model the respective
aqueduct as an impedance, with no spring and no excitation, and so zCU(2) = zVA and
zCL(2) = zCA. When the round window is stiffened, it has been found necessary to
account for the effects of the vestibular and cochlear aqueduct impedances, whose
impedances are discussed in Appendix A. All the remaining compressible elements in
the upper chamber are normally set to have no excitation source and zero admittance.
Those in the lower chamber can be used to simulate bubbles or actuators. The
excitation sources in the basilar membrane are also normally set to zero, but they are
included to allow future enhancement to model an active cochlea. The round window
can also be given an excitation source, to allow for middle ear implant excitation; this
is normally set to zero.

The physiological properties of the middle ear / stapes / oval window are taken from
Puria (2003). Those of the round window are taken from Nakajima et al (2008). Those
of the aqueducts are computed from physical dimension measurements published by
Stenfelt (2015). Measured cochlear aqueduct dimensions with ranges have also been
published by Anson (1965). In Appendix A, the aqueduct sizes are used to compute
the respective aqueduct impedances, ZVA and ZCA, which are then inverted and
incorporated into the model as yCU(2) and yCL(2).

The physical properties of a bubble within the implant are computed from first
principles, using the published properties of silicone rubber and the best dimensions
that can be reasonably considered to be achievable, as described in Chapter 6. Details
of the Matlab version used for producing the graphs and calculations have been
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obtained by using the Matlab ’ver support’ command, and they are as follows: » ver
support
MATLAB Version: 9.9.0.1467703 (R2020b)
MATLAB License Number: 648372
Operating System: Microsoft Windows 10 Enterprise Version 10.0 (Build 18363)
Java Version: Java 1.8.0_202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit
Server VM mixed mode.
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Chapter 4

Verification and Validation of the
Model

Any model that is used for scientific prediction of performance needs to be validated
against experimental data. It is generally more expeditious first to verify the code of
the model by comparison with the calculated results of existing models that have,
themselves, been the subject of peer review and validated by comparison with
measurements.

In the context of this thesis, the term verification is used to mean checking that the
formulation and coding of the model correctly process the input data and
assumptions to calculate the results. Correspondingly, validation means an overall
check on whether the model, together with its input data and assumptions, provide an
adequate representation of a real cochlea, and that the model is deployed so that its
results are fit for purpose.

4.1 Verification

4.1.1 Comparison with a Distributed Single Chamber Model

One way in which the model has been verified is by comparison with the single
chamber elemental model developed and published by Elliott and Ni (2018), setting
the properties of the two chambers to be identical and as equal as possible to those
used in their paper. For example, the shunt admittances of the round window and the
stapes have been set to very low values (zero causes ill-conditioned matrices). The
compressibility of the cochlear fluid has been set to zero (infinite speed of sound), as
have the admittances of the aqueducts (infinite viscosity) and the admittance of the
first element of the BM. The excitation source is the first element of the basilar
membrane, rather than the stapes. For the comparison, the taper of the basilar
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membrane elasticity used in the two chamber model has been set to a simple
exponential one, as used in the Elliott and Ni paper, as opposed to the Greenwood
equation normally used for the model described in this thesis. A comparison between
the position of maximum response along the cochlea against frequency with various
measurements and Greenwood’s formula has already been made in Section 2.3.3 on
page 16. It has not been possible to set the impedance of the first basilar membrane
element to zero, as in the Elliott and Ni model, but it has been set to a negligibly low
value, which allows an accurate comparison, but avoids division by zero. In their 2018
paper, Elliott and Ni comprehensively compare their model with earlier models,
showing consistency and compatibility. Those earlier models have been published
and peer reviewed, so that the Elliott and Ni (2018) model, for which the Matlab code
is publicly available, is therefore considered to be a suitable model for verification by
comparison. The results from the two models are compared in figure 4.1.

FIGURE 4.1: Comparison with Elliott and Ni (2018) Single-Chamber Model in terms
of spatial response at an excitation frequency of 2 kHz (left hand plots) and frequency
response at a position 10 mm along the cochlea from the base (right hand plots). Blue

line = this model; black line = Elliott and Ni model uniform 1D.

Although the results of using the two models are not precisely the same, the
magnitude difference in both the spatial and frequency domains is much less than
1 dB up to the characteristic frequency, and the phase difference is less than 45°.
(Three minor differences have been found between the published paper that describes
the single chamber model and the Matlab code that implements it. The present model
originally used the values and formulae in the paper, rather than the Matlab code.
Changing the corresponding values in the present model from those in the paper to
those in the code has reduced the minor differences from those found on first
comparison. There still remain some very minor differences between the input
variables used for each of the compared models, as discussed in Appendix A, which
account for the small differences seen in Figure 4.1.
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4.1.2 Comparison with a Distributed Two Chamber Model

Peterson and Bogert (1950) describe a two chamber model, but this is some 70 years
old. It was solved partly analytically and partly numerically for particular parameters,
and so it cannot practicably be run with different input variables to show the effects of
including an implant, a bubble or an excitation source within the cochlea. A
comparison between the current model and the pressures in the two chambers
reported by Peterson and Bogert (1950) without these complications is described in
Subsection 4.1.2. Comparisons for models including bubbles and internal excitation
have been made with lumped element models that have been published more
recently. The results of using these to model the hearing loss with a bubble and an
actuator adjacent to the round window are compared with the corresponding results
from the present model in Chapters 6 and 7, respectively.

Peterson and Bogert’s model 1950 was formulated before suitable digital computers
were available, and so the computation was performed manually. Such computations
cannot now be repeated at reasonable cost with inputs that simulate an implanted
cochlea, nor can they be readily repeated to produce additional output graphs to
show, for example, basilar membrane velocity. The graph of pressure at 1000 Hz
published as their Fig 14 is shown in Figure 4.2, and that produced by the model
described here (using Peterson and Bogert’s geometric data) is shown in Figure 4.4. To
avoid the singularity that challenged Peterson and Bogert in 1950, damping1 of the
basilar membrane, and the taper of elasticity and damping along the cochlea was set
to their simple exponential taper. With these changes, the present model produces
results that are very similar to those of Peterson and Bogert. There are small
differences of the location and height of the crossing points of amplitudes of the two
chamber pressures; these small differences are attributed to the modelling by Peterson
and Bogert of the taper of the chambers that is not included in the present model. The
uniform cross-section chambers of the present model cause the pressure to diminish
more rapidly with distance from the stapes, and so the point of maximum vibration in
the present model is closer to the stapes than when the chambers are tapered. The
purple line in Figure 4.4 is a graph of the pressure difference between the two
chambers, which is very similar to the solid line in Fig 5 in Bogert (1951), reproduced
here as Figure 4.3. At the base, the pressure in the SV is determined by the stapes
velocity , and that in the ST is zero, due to the total pressure-release at the flexible
round window. The pressures in the two chambers are given by the sum of a uniform
mean pressure, equal to half that at the base of the SV and plus or minus half the
pressure difference. The pressure difference drives the motion of the BM and
generates the "slow wave", which causes the BM response to peak at the best place.
The mean pressure does not drive the BM motion, since it is the same in both
chambers, but it could generate a compressional "fast wave".

1The value used was taken from Bogert (1951), which is based on measurements by Békésy (1949).
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FIGURE 4.2: Pressure magnitude in the scala vestibulae |Pv| and in the scala tympani
|Pt| versus distance along the basilar membrane for f = 1000Hz. Reprinted with
permission from Peterson and Bogert (1950) (Fig 14). Copyright 1950, Acoustic Society

of America.

The numerical values, used by Peterson and Bogert and loaded, in SI units, into the
present model are:

BM stiffness, s = 1.72x109 ∗ e2x dyne/cm3, (NB x is in cm.)

BM damping resistance, r = 6.737 ∗ 103 ∗ ex g/cm2.s,

BM superficial mass, m = 0.143 g/cm2,

Cochlear fluid density, ρ0 = 1 g/cm3

Chamber height, H ≈ 0.1 cm

Frequency range 102 < ω < 105 c.p.s.

4.1.3 Comparison with Two Chamber Lumped Element Models

There are several published lumped element models; comparison with one such
model is made for a normal ear and for an ear with a stiffened RW and an ideal bubble
in Chapter 6. In Chapter 7 comparisons are made with two such models for an ear
with an intracochlear point actuator adjacent to a stiffened RW.
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FIGURE 4.3: "Pressure difference |P − | across the cochlear partition as a function of
distance for a frequency of 1,000 cps. Solid curve: dissipation corresponding to a decay
of the basilar membrane of 12 db per cycle. Dotted curve: no dissipation. (This is the
same graph as |P− | in Fig 7 of Peterson and Bogert (1950). Reprinted with permission

from Bogert (1951) (Fig 5). Copyright 1951, Acoustic Society of America.

FIGURE 4.4: Pressure magnitude in the scala vestibulae |Pv| and in the scala tympani
|Pt| versus distance along the basilar membrane for f = 1002.4Hz normalized to the
middle ear or stapes pressure PME. The magnitude of the mean pressure and the pres-

sure difference are also plotted.
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4.2 Validation

4.2.1 Validation by Comparing Predicted and Measured Best Places

Some validation is obtained by comparing the model’s prediction of the location of
best place as a function of frequency with two sets of measured results. Figure 2.5 in
Chapter 2 shows the comparison.

4.2.2 Validation by Comparing Predicted and Measured Hearing Loss

Some further validation is obtained by comparing the model’s prediction of hearing
loss due to RW stiffening as a function of frequency with two sets of measured loss
following implantation. Figure 5.10 in Chapter 5 shows the comparison.
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Chapter 5

Simulating Middle Ear Excitation in
a Two Chamber Model

In this Chapter, the two chamber model is used to calculate the cochlear response to
middle ear excitation with both a normally functioning round window and with a
round window stiffened due to cochlear implantation. Since the stiffening of the
round window affects the cochlear input impedance it is necessary to reproduce the
subsequent change in the loading of the middle ear. It is thus not sufficient to assume
a constant stapes velocity, as was done in the previous chapter, and a more complete
model of excitation from the middle ear is necessary. For completeness, all of the
parameters used for the model are listed in Table 5.1.

The values of those parameters are simply examples taken from the literature to
illustrate the working of the model. In the main, the values are those used in the
papers 2016 and 2018 by Elliott et al. The few exceptions to this generality are
explained in the thesis wherever they are relevant. Alternative values can be input by
changing the related text file.

Elliott et al. (2016) used finite element analysis to model the stiffening of the round
window resulting from insertion through it of the implant. They conclude for low
frequencies (c 100 Hz) that insertion of a typical (1 mm diameter) implant would
increase the stiffness of a round window by a factor of 40, and that this would be
increased to a factor of 170 when account is taken of doubling the thickness of the RW
as a result of the surgery. Because a thickening of the RW is likely to result
immediately from the trauma of surgery and subsequently from the growth of fibrotic
or callous tissue, a stiffening factor of 170 is used in this thesis to illustrate use of the
model and to test the feasibility of the proposed remedies for recovering acoustic
hearing loss.
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TABLE 5.1: Input parameters used by the model.

General
Symbol Value Unit Description
B 0.00032 m BM Width
L 0.035 m Cochlea Length
fmin 20 Hz Min Frequency
fmax 20000 Hz Max Frequency
rho 1000 kg/m³ Density of Cochlear Fluids
mu 7e-4 Pa s Dynamic Viscosity of Cochlear Fluids
Pr 4.71 Prandtl number of Cochlear Fluids
FN 301 No of Frequencies
XN 350 No of Elements
AST 3.2e-6 m² Stapes Area
ARW 3e-6 m² Round Window Area
ACH 0.84e-6 m² Average Chamber Area
ECHL 115 dB pEC Relative to Normal Hearing Threshold
c0 1500 m/s Velocity of Sound in Cochlear Fluids
sf 170 RW Stiffening Factor
a 60 /m BM Elasticity Exponent
A 0.88 BM Elasticity Co-efficient
vEB1 0 mm/s BM Excitation Velocity in 1st Element of OoC

Impedances
Symbol Unit Inertance Resistance Stiffness Description
zB Pa s/m 0.28 1.41e4 7.47e9 BM Impedance
ZM Pa s/m³ 4.4e5 1.0e10 8.1e13 Rev ME Impedance
ZR Pa s/m³ 56e6/

√
ω 4.4e7∗

√
ω 1.0e13 RW Impedance

Zb Pa s/m³ 1.85e3 9.2e7 1e14 15 × 0.32 × 0.3 mm.
Bubble Impedance

Aqueducts
Parameter Radius length Units
CA 0.075 10 mm
VAinner 0.15 1.5 mm
VAouter 0.3 8.5 mm

5.1 Basilar Membrane Responses

Clearly, the response of the basilar membrane is very dependent on the magnitude of
the excitation. To be able to calculate hearing loss when the characteristics of the
cochlea are altered, it is necessary to refer the BM response to an excitation source
whose output is unaffected by changes to the downstream cochlea, for example those
resulting from stiffening the round window. The excitation source has an impedance,
which affects its output, when it is loaded by the impedance presented to it by the
cochlea. The load presented to the stapes is the input impedance of the cochlea, which
is significantly altered when the round window is stiffened, and so referencing to the
stapes vibration is not suitable for the purposes of this work. The excitation
mechanism can be modelled as a constant pressure source in series with an impedance
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or a constant velocity source, in parallel with an admittance. These are often known as
Thevenin and Norton sources respectively. The constant pressure and constant
velocity sources do not change their output when their load changes, and so they can
be used to normalize the cochlear response to a quantity that is independent of the
characteristics of the cochlea itself. Figure 5.1 shows the equivalent circuit diagram of
the Norton source, qM, the reverse middle ear impedance, ZM or M3 and the cochlear
input impedance, ZC.

FIGURE 5.1: Diagram, showing a simplified arrangement of the acoustic excitation of
the cochlea using a Norton equivalent of the middle ear.

This formulation allows modelling of hearing loss caused by stiffening the RW, and it
also allows determination of the cochlear response to the output of an intracochlear
actuator, which may have a different impedance from the ear upstream of the stapes,
and which may be loaded by a different cochlear impedance from that presented to
the stapes. Unfortunately, there is no point within the middle or outer ear that has a
measurable pressure or velocity that corresponds to that of an ideal constant source,
whose output is unaffected by the downstream load. The pressure presented to the ear
canal is a better choice for the reference quantity, as it is not affected significantly by
changes in the RW impedance. Ear canal pressure can be measured, and it can be used
as the input to a microphone that drives an actuator. In this sub-section, the Norton
equivalent source is calculated assuming a given ear canal pressure. This can be
achieved by initially considering the case in which the round window is not stiffened,
in which case the parameters of the middle ear impedance and the cochlear input
impedance are well known. Xue et al. (2020) have modelled the middle ear pressure
gain ratio (M1X) of the pressure in the scala vestibuli to the ear canal pressure, the
middle ear impedance (M3X) and the cochlear input impedance (ZCX), and their
modelled results have been checked against results of measurements of the same
quantities made by a number of others. The Norton equivalent middle ear acoustic
velocity, qM can be calculated, as a function of ear canal pressure, pEC, from these three
quantities using the circuit diagram in 5.1.

The Norton equivalent velocity is first related to the stapes velocity by considering the
pressure pSV in Figure 5.1, where the specific values of M3 and ZC from Xue et al.
(2020), M3X and ZCX, are now used.
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pSV = qM
M3XZCX

M3X + ZCX
= qSZCX, thus (5.1)

qM

qS
=

M3X + ZCX

M3X
(5.2)

The stapes volume velocity under these conditions is now related to the ear canal
pressure, pEC, using the middle ear pressure gain, M1X, and the cochlear input
impedance, M3X.

qS = pECM1X/ZCX, thus (5.3)
qM

pEC
=

M3X + ZCX

M3XZCX
M1X (5.4)

It is important to ensure that all of the quantities M3X, ZCX and M1X are taken from the
same model, because the loaded stapes velocity will be dependent on both the load
ZCX and the upstream impedance feeding it, M3X.

The present model calculates qM/pEC, as a function of frequency, using the value of
M3X, and approximations to ZCX and M1X from the model developed by Xue et al. The
resultant value of qM is then used as an input to the present model. This is valid for all
the cases considered in this thesis, because qM does not vary , when M3 and ZC alter,
whereas measured values of M1, and hence the modelled values that match them, are
dependent on both the load (ZC) and the upstream impedance (M3) feeding it in each
case.

For simplicity, rather than re-computing the value of M1X and ZCX produced by the
model in Xue et al. (2020), polynomial approximations have been used in the present
model, in combination with the value of M3X computed from the inertance, resistance
and stiffness values, given by Xue et al. (2020) to compute the Norton equivalent
middle ear velocity, qM. The two chamber model can then use a different value for M3,
because doing so will not cause qM to change. The value given by Puria (2003) has
been chosen, because that paper gives both measured values and mass, spring,
damper values that fit the measurements.) Figure 5.2 shows Xue et al.’s modelled
values of M1X and the quartic approximation used by the present model. Figure 5.3
shows the magnitude and phase of ZME or M3, as a function of frequency, from figure
8(a) of Xue et al. (2020) and the corresponding values used by the present model. The
magnitude and phase of ZCX are shown in Figure 5.4, as a function of frequency,
which also shows the corresponding polynomial approximations used as inputs to the
present model.

Finally, Figure 5.5 shows the middle ear Norton velocity normalized by the ear canal
pressure calculated from equation 5.4 using M3X and the approximations to M1X and
ZCX defined above.
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FIGURE 5.2: A comparison of the middle ear pressure gain (M1X) from Figure 7 of
Xue et al. (2020) with its fourth order polynomial approximation used by the present

model.

FIGURE 5.3: A comparison of the reverse middle ear impedance (ZME or M3X) from
Figure 8(a) of Xue et al. (2020) with the corresponding impedance used by the present
model. (The difference occurs because the present model uses parameters from Puria
(2003), and Xue et al. (2020) uses slightly different values. Both papers use simple

mass, spring, damper models, and so no approximation is needed.)

The author is very grateful to Professor Houguang Liu, who is the corresponding
author for Xue et al. (2020), for sharing the data plotted in that paper, and which are
re-plotted here in Figures 5.2 to 5.4 and 7.23.

The model used in these calculations is shown diagrammatically in Figure 5.1.
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FIGURE 5.4: Cochlear Input Acoustic Impedance modelled by Xue et al. together with
its polynomial approximation, used as an input to the present model.

FIGURE 5.5: Normalized Middle Ear Norton Acoustic Velocity for a constant ear canal
pressure, calculated using the quartic approximation to M1, and used as an input to

the present model.

5.2 Modelling the BM response to Ear Canal Pressure

The present two-chamber model of the cochlea can be configured to include oval and
round windows with different impedances, but its correct use to model the BM
response for different cochleae is dependent on deriving a relationship between ear
canal pressure,pEC and cochlear excitation that is independent of the cochlear input
impedance. This has been achieved, as set down in Section 5.1, and it enables the
model to predict the performance of the cochlea when an implant is inserted through
the round window, causing it to stiffen and thereby impairing its ability to act as a
pressure release. Stiffening of the RW increases the impedance of the RW itself, and it
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also changes the input impedance of the whole cochlea, as presented to the excitation
source. The functionality of the two-chamber model also enables it to emulate the
effects of including a bubble, to act as a substitute pressure release, or an actuator in
the implant as an alternative source of acoustic excitation. These opportunities are
discussed in Chapters 6 and 7.

The behaviour of the cochlea can be portrayed, as in other published work, using
graphs of the amplitude and phase of the basilar membrane (BM) velocity in both the
spatial and frequency domains, examples of which are shown in Figures 5.6 to 5.8.
Similar graphs can be generated by the model for the pressure difference across the
basilar membrane, but they are less informative than the BM velocity graphs, and so
they are not shown here.

These graphs are shown for a normal round window stiffness (blue lines), as given in
Table 5.1, and for a round window stiffened by the stiffening factor of 170 given in the
same table.

FIGURE 5.6: BM Velocity Response divided by the Ear Canal Pressure in the Spatial
Domain at 100 Hz and in the Frequency Domain at 32 mm from the Base, for a Normal

and a Stiffened RW.

For these graphs, frequencies of 100, 250 and 1000 Hz, have been chosen to be the
lower and upper limits of the frequency range of interest and an arbitrary mid-range
frequency. Those frequencies are paired with the corresponding characteristic ’best
place’ positions of 32, 29 and 21 mm from the base, respectively, as shown in Figure
2.5.

The spatial domain amplitude responses for each of the three chosen frequencies
increase uniformly from the base to approaching the characteristic place, followed by
a steep fall from the characteristic place to the helicotrema, as shown in the left hand
sides of Figures 5.6 to 5.8. Although not shown here, this remains so for frequencies
outside the range of interest. This is similar to the predictions of previous models. The
gap between the graphs for normal and stiffened round windows varies according to
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FIGURE 5.7: BM Velocity Response divided by the Ear Canal Pressure in the Spatial
Domain at 250 Hz and in the Frequency Domain at 29 mm from the Base, for a Normal

and a Stiffened RW.

FIGURE 5.8: BM Velocity Response divided by the Ear Canal Pressure in the Spatial
Domain at 1 kHz and in the Frequency Domain at 21 mm from the Base, for a Normal

and a Stiffened RW.

the effect of the stiffening at the particular frequency, which will be generally greater
at lower frequencies than at higher frequencies, wherever the BM response is
determined by the stiffness of the round window.

The loss of BM velocity amplitude at 100 Hz due to implantation is calculated to be
close to 26 dB, wherever the reduction is measured along the cochlea.

At 250 Hz, the loss is similar and also constant at 27 dB.

At 1 kHz, the reduction is also constant with distance from the stapes, and it is
calculated to be about 5 dB.

In the frequency domain, the BM velocity responses to ear-canal pressure at a given
place are also shown on the right hand sides of Figures 5.6 to 5.8. The results are now
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slightly complicated by the frequency response of the of the Norton equivalent middle
ear velocity and by the interaction between the reverse middle ear impedance and the
cochlear input impedance, both of which vary with frequency.

At frequencies above the range of interest (100 - 1000 Hz) the loss continues to
diminish as the impedance of the unstiffened round window becomes less dependent
on its stiffness. At these frequencies, the round window impedance becomes
dominated by its resistance and its inertance, which are not significantly affected by
implantation.

5.3 The Cochlear Input Impedance of the Two Chamber
Model

Figure 5.9 shows the magnitude and phase of the modelled cochlear input impedance
calculated using the two chamber model before and after stiffening of the round
window. In this graph, the magnitude of the input impedance of a normal ear is
modelled as a little under 2 × 1010 Ω at 100 Hz, which aligns reasonably closely with
the magnitude measurements of Puria (2003), Nakajima et al. (2009), Marquardt and
Hensel (2013) and Frear et al. (2018), and very closely with that of Aibara et al. (2001)
and the average of the others. However, the present model predicts the rate of rise
with frequency as about 10 dB/decade from 70 Hz up to a few kHz, whereas the
lumped element models show slopes starting from higher frequencies between 100
and 1000 Hz and with slopes much less steep. The present model shows the
impedance rising to a gentle peak at almost 10 kHz, whereas the magnitudes given by
the measurements and the lumped element models, except Marquardt and Hensel’s,
show a sharper peak at a few kHz, followed by a decline. Also the present model
gives a phase angle that is generally greater than that of the measurements and the
lumped element models. The reason for these discrepancies is thought to be caused by
limitations of the present model, which does not allow for the taper of the fluid
chambers, or the damping caused by the viscosity of the cochlear fluids in the
chambers. Taper has the effect of reducing the phase angle of the cochlear input
impedance, by reducing the inertance where the chamber area is increased near the
base. Because the acoustic flow starts at the base in the upper chamber and finishes at
the base in the lower chamber, irrespective of where the flow passes through the BM,
the reduction in inertance will apply at virtually all frequencies. The absence of taper
in the present model means that it will predict a greater inertance than the measured
results at virtually all frequencies. This increased inertance will have a greater impact
on the cochlear input impedance at high frequencies than at low frequencies, because
its contribution to the input impedance is proportional to frequency. Qualitatively, this
explains why the increased inertance in the present model only changes the phase
angle of the input impedance at low frequencies, and also significantly increases the
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magnitude at high frequencies. Because the three dimensional shape of the two
chambers is complex, particularly near the base in the upper chamber, a quantitative
explanation of these discrepancies is beyond the scope of this thesis. A theoretical
analysis of the effects of taper is provided by Shera and Zweig (1991), and this is
summarised in a readily understood graphical presentation to the Workshop on the
Mathematics of Hearing at the Fields Institute by Shera (2017). It is noted, however,
that these publications assume an exponential taper of BM stiffness and damping,
whereas the present model uses Greenwood’s (1961 and 1990) equation. The predicted
increase in the cochlear input impedance after stiffening of the round window appears
reasonable. Marquardt and Hensel (2013), for example, model the cochlea input
impedance as the series combination of an almost entirely real impedance across the
BM and the round window stiffness. To compare the effect of stiffening the round
window on the results of another model, it can be seen from figure 5B in that paper
that increasing ZRW by two orders of magnitude for frequencies up to about 400 Hz
and by an amount diminishing to zero up to a few kHz would increase ZC by about
half an order of magnitude, as predicted by the present model.

FIGURE 5.9: Modelled Cochlear Input Impedance, with and without an Implant.

5.4 Hearing Loss

The most important use of the model as far as the present work is concerned is the
prediction of hearing loss as a function of frequency. This is calculated as the
difference between the BM mechanical velocity at the best place with a normal and a
stiffened RW.

Figure 5.10 shows the calculated difference between the peak responses predicted by
the model at different frequencies before and after stiffening of the round window as a
function of excitation frequency. Also shown are the means and standard deviations of
two sets of measured values, from Causon et al. (2015) and Verschuur et al. (2016).
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Within the frequency range of interest (100 – 1000 Hz), the hearing loss graph has a
minimum at 159 Hz, where there is a resonance between the middle ear and the
vestibular aqueduct when the round window is stiffened and the lower chamber has a
high impedance, giving rise to a peak in the BM velocity. A normal RW has a much
lower impedance in parallel with the vestibular aqueduct, and so there is no
resonance and no peak. Because there is a response peak with a stiffened RW, but no
peak with a normal RW, the hearing loss is a minimum at this frequency. At 263 Hz,
the cochlear aqueduct resonates with the parallel stiffened RW to give a high
impedance and a low BM response. With a normal RW the resonant frequency is
20 Hz, and there are no peaks or troughs in the BM response. Because stiffening the
RW causes a trough in the BM response that does not occur with a normal RW, the
hearing loss peaks at about 263 Hz.

Although outside the frequency range of interest, there is a resonance between the
normal RW and the vestibular aqueduct at 53 Hz. This causes a peak in the hearing
loss at that frequency. There is also a minor loss peak at about 28 Hz, which is caused
by a resonance between the helicotrema and the other components of the wave
impedance, as modelled and reported by Marquardt and Hensel (2013).

5.4.1 Comparison with Hearing Loss Measurements

As well as showing the loss in residual acoustic hearing predicted by the two chamber
model, Figure 5.10 also shows the measured hearing loss after implantation by both
Verschuur et al. (2016), and Causon et al. (2015). The ±1 standard deviation value is
shown for these measurements, as well as the mean. It should be explained that there
are many potential causes of residual hearing loss after implantation, such as tissue
damage, trauma and fibrotic growth, as described by Causon et al. (2015). The
difference between the modelled and the measured values of loss at each frequency,
however, is less than half the standard deviation of the measurements, and the rms
difference over the frequency range of interest (100 - 1000 Hz) is 6.7 dB. In Figure 5.10,
the measured hearing loss at each frequency has been calculated by the authors of
these papers as the difference between the pre- and post-implantation hearing
thresholds, averaged over the 90 or so patients reported in each study. The graph
compares these measured results with the prediction of the new model, expressed as a
reduction in the maximum BM velocity.

Comparison of the measured and predicted hearing loss should be treated with
caution, because there are many potential causes of hearing loss, and the present
model predicts only the part of the loss that is caused by stiffening of the round
window. The measured hearing loss changes with time after implantation as well as
with frequency. Scar tissue from the trauma of insertion can cause additional
stiffening, but that additional stiffening diminishes over a period of a few months.
Foreign body response and fibrosis growth can also cause hearing loss by effectively



64 Chapter 5. Simulating Middle Ear Excitation in a Two Chamber Model

FIGURE 5.10: A comparison of measured and modelled post implantation hearing
loss, calculated as the difference in basilar membrane velocities before and after im-
plantation. For Verschuur data, n=93 (250-1000 Hz); for Causon data, n=91 for (125-
1000 Hz), showing the mean measured losses as squares and the ± SD variance as

vertical lines.

stiffening the round window, but this can take months to accumulate according to, for
example, Foggia et al. (2019), who has published a review of 90 papers on the subject;
the data collated by Causon and used for this comparison were measured within two
months of implantation; Verschuur’s measurements were made within 6 months of
implantation. By choosing the measured data for comparison in this way, some of the
hearing loss caused by implantation trauma and fibrotic growth can be eliminated.
Most implants occupy only the most basal 24 mm or so of the length of the lower
chamber; at 24 mm the characteristic place has a characteristic frequency of about
700 Hz. It is not possible for an implant to cause tissue damage in the most apical
12 mm of the cochlea, because it does not reach that far, and so it is unlikely that such
damage would cause hearing loss at frequencies below 700 Hz. By taking the mean of
100 or so measurements in each study, the impact of rare occurrences is greatly
diminished. It thus appears reasonable to assume that at least some of the average
measured hearing loss can be predicted using a model of the cochlear mechanics,
incorporating a stiffened round window.

5.5 Bubble and Actuator Inclusion

The model can also be used to predict the effects of incorporating a small bubble or an
electro-acoustic actuator at different points along the cochlea. Either of these concepts
could be developed to restore low frequency acoustic hearing, and they are discussed
in the following three chapters. The input parameters of the model can be varied to
model bubbles and actuators of different sizes and at different positions.
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The model could also be used to predict the performance of middle ear implants that
deliver excitation through the round window, although this is not explored further in
this thesis.
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Chapter 6

Integration of a Bubble in the
Cochlear Implant

In this Chapter the effects of including a compliant element in the lower chamber are
simulated. This compliant element may either be concentrated at a single element of
the model or distributed along the cochlea, and it may be integrated as a gas-filled
bubble incorporated within a cochlear implant. The aim is to re-introduce sufficient
compliance to overcome the detrimental effects of the stiffening of the round window
that can occur after implantation, as discussed in Chapter 5.

When the compliant element is modelled as an ideal bubble concentrated into a single
element of the model, it is modelled with a compliance exactly equal to the compliance
lost from the lower chamber by the assumed stiffening of the round window. For ideal
point bubbles their mechanical impedance is calculated using the equation:

zb =
−i KRW s f

ωB∆(s f − 1)
(6.1)

When the volume of a point bubble is specified, the mechanical impedance is
calculated using the equation:

zb =
−i ρc2

0
ωB∆Vb

(6.2)

Where ρ and c0 are the density of and velocity of sound in the gas in the bubble, which
is assumed to be air at 37 °C and at atmospheric pressure.

For an achievable bubble, the impedance of the gas in the bubble is first calculated
using equation 6.2, and then the impedance of the diaphragm is added, as shown in
Appendix D.

In this Chapter, the same physiological input data have been used for the
two-chamber finite element model as were given in Table 5.1 of the previous Chapter.
This model has been used to compute the normalised BM velocity and pressure
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TABLE 6.1: Input variables used by Elliott et al. (2016).

Input parameters
SI units Elliott et al. Elliott et al. Symbol

Cochlear inertance kg.m-4 7.00E+07 LFL
Wave resistance kg.s-1.m-4 2.00E+10 RWA
RW inertance kg.m-4 1.00E+06 LRW
RW stiffness kg.s-2.m-4 1.00E+13 1/C0
RW resistance kg.s-1.m-4 2.50E+09 RRW
VA inertance kg.m-4 5.10E+07 LVA
VA resistance kg.s-1.m-4 1.10E+10 RVA
CA inertance kg.m-4 5.60E+08 LCA
CA resistance kg.s-1.m-4 3.50E+11 RCA
ME stiffness kg.s-2.m-4 8.33E+13 1/CME
ME resistance kg.s-1.m-4 1.00E+10 RME
ME inertance kg.m-4 4.40E+05 LME
Source Elliott et al. (2016) table 1

difference at the base of the cochlea, with a normal RW and a stiffened RW with and
without an adjacent single bubble, whose size is chosen to restore the compliance of
the normal RW. The normalised BM velocity and pressure difference have also been
calculated as described in Chapter 5 and shown in Figure 6.1 with the bubble
impedance added, using the parameters listed in Table 6.1 as used in Elliott et al.
(2016). Figure 6.2 shows the normalised pressure differences and figure 6.3 the
normalised BM velocities in all of these cases.

FIGURE 6.1: Cochlear Structures Diagram, showing a simplified arrangement of the
acoustic structures of the cochlea and a bubble at the RW. ZW is the sum of the fluid
impedance in the upper chamber, the impedance of the BM and the fluid impedance

in the lower chamber.

Below the 400 Hz resonant frequency of the normal round window, the two chamber
model produces a broadly similar result to the model by Elliott et al (2016) model.
Above that frequency, the two chamber model imitates the shape of the lumped
element model, but they diverge by more than 15 dB, as frequency is increased. This
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difference is caused by the computation by the two chamber model of a significantly
different value for the wave impedance. Elliott et al. (2016) have modelled their ZBM

as a constant resistance in parallel with an inertance; the two chamber model allows
for variable BM resistance, but it does not model taper of the dimensions of the
cochlear chambers or the Basilar membrane. In a finite element (distributed) model,
most of the acoustic velocity flows through the BM between the stapes and the place
of maximum velocity, which is slightly nearer the stapes than the point of resonance.
The bulk of the volume velocity will therefore pass through the BM where its
impedance will be dominated by its resistance and/or its stiffness. This effect is
exaggerated by the lack of taper of the chambers in the two chamber model, which
also leads to the difference between the modelled and measured cochlea input
impedance graphed and explained in Chapter 5.

FIGURE 6.2: Normalized BM Pressure Difference Response with RW Stiffening Factor
of 170, computed for a normal ear (blue), a stiffened RW (red) and a stiffened RW with
an adjacent ideal single element bubble (green), using both the two chamber model
(solid Lines) and that of Elliott et al. (2016) (dashed lines). The compliance of the ideal

bubble is chosen to reverse the effect of stiffening the RW.
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FIGURE 6.3: Normalized BM Volume velocity Response with RW Stiffening Factor of
170, computed for a normal ear (blue), a stiffened RW (red) and a stiffened RW with
an adjacent ideal single element bubble (green), using both the two chamber model
(solid Lines) and that of Elliott et al. (2016) (dashed lines). The compliance of the ideal

bubble is chosen to reverse the effect of stiffening the RW.

6.1 Changing the Bubble Position

In this section the two chamber finite element model has been used to compute the
normalised pressure difference and BM velocity distributions under the following
conditions:

Case Name

1 Normal ear, no implant
2 Stiffened RW
3 Stiffened RW, with bubble 0 mm from RW
4 Stiffened RW, with bubble at 10 mm from RW
5 Stiffened RW, with bubble at 20 mm from RW
6 Stiffened RW, with bubble 1 to 16 mm from RW

The two chamber model has been used to show the effects of changing the location of
a point bubble and of using a bubble of finite length.

6.1.1 Pressure and Velocity Normalized Responses from the Stapes to the
BM

Figures 6.4 to 6.9, below, show graphs of the amplitude and phase of basilar
membrane velocity in both the spatial and frequency domains, as in other published
work for four different bubble configurations (theoretical point bubbles at 0, 10,
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20 mm and an achievable long bubble, extending from 1 to 16 mm from the round
window). The theoretical point bubbles are set to occupy only a single element, and
the compliance of each is set to match the compliance lost by stiffening the round
window; this is done for simplicity and to allow comparison with lumped element
models, but it is recognized that a sufficiently compliant point bubble cannot be
achieved in practice. The 15 mm long bubble can be achieved in practice, and it
compensates reasonably, but not completely, for the hearing loss over the frequency
range of interest (100 to 1000 Hz). Below 100 Hz the achievable bubble does not
compensate well for the stiffening of the RW, because it has insufficient compliance to
compensate for the predicted loss of compliance due to implantation.

Each of Figures 6.4 to 6.9 provides a snap-shot at a particular selected pair of a
frequency and a position; three frequencies have been chosen, 100, 250 and 1000 Hz
approximately; each is paired with the position of the corresponding characteristic
place (32, 29 and 21 mm from the base, respectively). 1 For Figures 6.4 to 6.9, as well as
Figures 6.13 to 6.14, the pressure across the BM and its velocity have been normalized
to the ear canal pressure.

The loss of amplitude due to implantation at 100 Hz is a little over 20 dB, and all of
this can be recovered fairly precisely by including a theoretical point bubble adjacent
to the round window. When the bubble is at a distance from the RW, the inertance of
the fluid in the path from the excitation source (stapes) to the pressure release (bubble)
is shortened, decreasing the inertance in the moving fluid and thereby shifting the
frequency response graphs to slightly higher frequencies (to the right) in the
frequency domain. Within the frequency range of interest, the maximum frequency
shift occurs at 1 kHz when the bubble is located at 21 mm; the length of moving fluid
then halves, the inertance approximately also halves, and the frequency shifts by a
factor of no more than 1.4. Near to the best frequency, the shift is reduced, because the
inertance of the BM and other structures are a significant fraction of the total
inertance. Reducing the fluid inertance and shifting the frequency also changes the
damping in the lower chamber and the interaction of the various stiffnesses and
inertances of the cochlear structures. An exact explanation of the frequency responses
resulting from different bubble positions is complex, particularly at frequencies
greater than the range of interest.

However, deducing the hearing loss from the frequency response graphs is somewhat
simpler. At any frequency, the hearing loss is the difference between the BM velocities
of a normal ear and with a stiffened RW and a bubble. For each bubble position there
is a small frequency shift, and the hearing loss will be that shift multiplied by the

1The frequencies are not exact, because only a finite number of frequencies are modelled, and so the
nearest frequency may not be exactly equal to the nominal value. Similarly, only a finite number of posi-
tions are modelled, but careful choice of the number will allow the actual to exactly match the nominal.
Setting the positions and frequencies modelled is easily changed by entering the numbers in a text file. In
each case, the implant is considered to have increased the stiffness of the round window by a factor of 170.
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difference in slopes of the two BM responses.

HL(dB) =

(
dHL
d f

normal − dHL
d f

stiffened + bubble
)
× ∆ f (6.3)

Where HL(dB) is the hearing loss measured in dB, and

∆ f is the frequency shift

If each of the two slopes are constant over the frequency shift, then this is a good
approximation; if not, then the hearing loss is calculated at each frequency as the
difference in the two BM velocities.

Around 1000 Hz, the implantation loss diminishes to zero, because the stiffened round
window and the cochlear aqueduct are inertive, and so adding compliance decreases
the admittance in the lower chamber. As the bubble is moved away from the RW, the
inertance of the fluid between it and the RW will increase, and the effective
compliance will decrease. At this frequency, the inertive admittance of the RW is close
to the compliant admittance of the bubble, and so moving the bubble away from the
RW will add sufficient inertance to cause a parallel resonance, which will increase the
hearing loss. The greater the distance of the bubble from the RW, the lower the
frequency of this resonance.

At all audio frequencies, a bubble 0 mm from the round window generally
compensates for the stiffening. The further the bubble is from the round window, the
worse the compensation, to an increasing extent at higher frequencies. This is shown
in Figure 6.10, with a bubble in each of four configurations. The bubbles and their
positions are the same as those used in the position and frequency snapshot graphs.
(Single element point bubbles with compliance equal to that lost by the stiffening of
the round window, at 0, 10 and 20 mm from the round window and a long, achievable
bubble from 1 to 16 mm from the RW with a compliance calculated from its physical
properties.) In all cases, the loss of hearing is considered to be the equivalent of the
reduction in BM velocity at the characteristic place. It can be seen that between 100 Hz
and 10 kHz, the long, achievable bubble restores hearing so that the loss is no worse
than about 5 dB at all audio frequencies. It is recognized that it is not possible to create
a bubble with the compliance of the round window within a single element of the
implant.

A realistic bubble would not have the compliance to compensate for the expected
increase in stiffness of the round window, because a diaphragm of such a small area
would be too stiff, as would the enclosed gas volume. Equally, a bubble that would
precisely compensate for the expected RW stiffness would be too large to fit into an
implant. A reasonable compromise can be achieved by creating a bubble with the
same width as the basilar membrane and a length of about half that of the cochlea, or
about two thirds the length of an implant.
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FIGURE 6.4: Normalized Pressure semi-difference across the BM for a normal RW
(blue line), a stiffened round window (red line) and a stiffened RW with four bubble
configurations (green lines) in the spatial domain at 100 Hz and the frequency domain

at 32 mm.

FIGURE 6.5: Normalized Pressure semi-difference across the BM for a normal RW
(blue line), a stiffened round window (red line) and a stiffened RW with four bubble
configurations (green lines) in the spatial domain at 250 Hz and the frequency domain

at 29 mm.



74 Chapter 6. Integration of a Bubble in the Cochlear Implant

FIGURE 6.6: Normalized Pressure semi-difference across the BM for a normal RW
(blue line), a stiffened round window (red line) and a stiffened RW with four bubble
configurations (green lines) in the spatial domain at 1000 Hz and the frequency domain

at 21 mm.

FIGURE 6.7: Normalized BM linear velocity for a normal RW (blue line), a stiffened
round window (red line) and a stiffened RW with four bubble configurations (green

lines) in the spatial domain at 100 Hz and the frequency domain at 32 mm.
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FIGURE 6.8: Normalized BM linear velocity for a normal RW (blue line), a stiffened
round window (red line) and a stiffened RW with four bubble configurations (green

lines) in the spatial domain at 250 Hz and the frequency domain at 29 mm.

FIGURE 6.9: Normalized BM linear velocity for a normal RW (blue line), a stiffened
round window (red line) and a stiffened RW with four bubble configurations (green

lines) in the spatial domain at 1000 Hz and the frequency domain at 21 mm.
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6.1.2 Hearing Loss

The spatial and frequency domain graphs show clearly the sensitivity at different
positions along the cochlea to a particular frequency and to different frequencies at a
particular position. They can do this for a cochlea with a normal RW and one with a
stiffened RW, with or without a bubble. In this way, each graph can show the loss of
sensitivity at one frequency or at one position. To visualize the full extent of hearing
loss, it is necessary to show the decrease of sensitivity at the best place for all the audio
frequencies. This is achieved in Figure 6.10 below.

FIGURE 6.10: Hearing loss due to a stiffened RW, with no bubble (red line) and with
four different bubble configurations (green lines).

This graph also shows that an ideal point bubble 0 mm from the round window
almost exactly compensates for the stiffening of the round window, returning the
hearing loss at all frequencies to 0 dB. The model can be used to model a practicable
bubble, whose length spans many elements. To replace exactly the normal pressure
release function of the round window, the bubble needs to be positioned as close as
possible to the round window. Practically, there needs to be some separation, so that
the bubble is certain to be within the cochlea, considering the uncertainties of surgical
precision and the growth of a callous around the implant. It is considered practicable
to avoid any covering of the bubble by the round window itself or a callous, by
positioning the bubble in the cochlea so that it is no nearer than ≈ 1 mm to the round
window, which is illustrated for the three position/frequency pairs of snapshots in
Figures 6.4 to 6.9. The corresponding graph of post implantation hearing loss, with
achievable bubble is shown as the solid green line in Figure 6.10. Figures 6.4 to 6.10
show that a practicably achievable bubble will restore hearing loss to better than 4.6
dB across the frequency range of interest.
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6.2 Varying the Volume of a Bubble near the Round Window

In this section the two chamber finite element model has been used to compute the
normalised pressure difference and BM velocity distributions under the following
conditions:

Case Name

1 Normal RW, bubble volume 0 mm³
2 Stiff RW, bubble volume 0 mm³
3 Stiff RW, bubble at 0 mm from RW, and volume 0.5 mm³
4 Stiff RW, bubble at 0 mm from RW, and volume 1 mm³
5 Stiff RW, bubble at 0 mm from RW, and volume 1.5 mm³
6 Stiff RW, bubble at 0 mm from RW, and volume 2 mm³
7 Stiff RW, bubble at 0 mm from RW, and volume 2.5 mm³
8 Stiff RW, bubble at 0 mm from RW, and volume 3.3 mm³
9 Stiff RW, bubble at 0 mm from RW, and volume 4 mm³

10 Stiff RW, bubble at 0 mm from RW, and volume 5 mm³
11 Stiff RW, bubble at 0 mm from RW, and volume 7 mm³
12 Stiff RW, bubble at 0 mm from RW, and volume 15 mm³
13 Stiff RW, with bubble 1 to 16 mm from RW, and volume 1.5 mm³

As well as predicting the effects of stiffening the round window, the model has also
been used to show that incorporating an achievable bubble in the implant near the
round window will restore the acoustic hearing to within a few decibels of its
pre-implant level. For four selected bubble volumes, the normalized BM velocity and
pressure difference responses, as a function of frequency, are shown in figures 6.11 to
6.16, with bubble size as a parameter, and the corresponding graphs of hearing loss
are shown in figure 6.17. Hearing loss is also graphed as a function of bubble volume,
with frequency as a parameter in Figure 6.18. These graphs show that a very
reasonable recovery of hearing loss to within a few decibels of the pre-implant value
can be achieved by including a bubble of only 1.5 mm³, or one tenth of the ideal
volume. In all cases except the last, the calculations are for an ideal point bubble
adjacent to the RW. A 15 mm long bubble with a volume of 1.5 mm³ would fit within
an implant.



78 Chapter 6. Integration of a Bubble in the Cochlear Implant

FIGURE 6.11: Pressure semi-difference across the BM for a normal RW (blue line), a
stiffened round window (red line) and a stiffened RW with bubbles of four volumes

(green lines) in the spatial domain at 100 Hz and the frequency domain at 32 mm.

FIGURE 6.12: Pressure semi-difference across the BM for a normal RW (blue line), a
stiffened round window (red line) and a stiffened RW with bubbles of four volumes

(green lines) in the spatial domain at 250 Hz and the frequency domain at 29 mm.
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FIGURE 6.13: Pressure semi-difference across the BM for a normal RW (blue line), a
stiffened round window (red line) and a stiffened RW with bubbles of four volumes

(green lines) in the spatial domain at 1000 Hz and the frequency domain at 21 mm.

FIGURE 6.14: BM velocity for a normal RW (blue line), a stiffened round window
(red line) and a stiffened RW with bubbles of four volumes (green lines) in the spatial

domain at 100 Hz and the frequency domain at 32 mm.
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FIGURE 6.15: BM velocity for a normal RW (blue line), a stiffened round window
(red line) and a stiffened RW with bubbles of four volumes (green lines) in the spatial

domain at 250 Hz and the frequency domain at 29 mm.

FIGURE 6.16: BM velocity for a normal RW (blue line), a stiffened round window
(red line) and a stiffened RW with bubbles of four volumes (green lines) in the spatial

domain at 1000 Hz and the frequency domain at 21 mm.
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FIGURE 6.17: Hearing loss as a function of frequency for different sized point bubbles
located at the RW, with bubble volume as a parameter.

FIGURE 6.18: Hearing loss due to a stiffened RW, as a function of bubble volume, with
frequency as a parameter.

6.3 The Configuration of an Achievable Bubble

To make an achievable bubble, it needs to have significant length and a diaphragm to
separate the air it contains from the liquid in the chamber. It is estimated that to fit in a
cochlear implant, the maximum dimensions that a bubble can have are
15×0.3×0.3 mm, and so the estimated maximum achievable volume is 1.5 mm3.
Figures 6.4 to 6.18 show the effect of bubbles of different volumes and in different
positions. Outside the frequency range of interest the graphs showing the effect of
varying the position of the bubble have irregular patterns as a result of the reduced
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distance of the bubble from the stapes, which changes the inertance of the cochlear
fluid that is moving as a result of the excitation by the stapes. The effect on hearing
loss is complex and dependent on how the inertance of the fluid interacts with the
other impedances in the cochlea. Because the complex and irregular patterns occur
outside the frequency range of interest, this matter has not been investigated further.
Within (and below) the frequency domain of interest, reducing the fluid inertance will
have the effect of increasing the frequency at which a BM response occurs, or shifting
the normal ear response to the right. The frequency shift will be small.

6.4 Modelling an Encapsulated Bubble

In order to incorporate a bubble of gas into a cochlear implant, it must be
encapsulated within the implant and separated from the cochlear fluid by a light, thin
and flexible diaphragm. The two chamber model simulates this diaphragm as a series
of independent flexible pistons that are clamped along their lateral extremes, and that
slide freely past their longitudinal neighbours. That is to say that they have no
longitudinal mechanical coupling, and so they would behave similarly to the basilar
membrane. This is shown diagrammatically in Figures 3.2 and 3.3 in Chapter 3. In
practice, there would be some longitudinal mechanical coupling in a real diaphragm.
Although no encapsulation has been assumed for point bubbles, the distributed
bubble has been modelled with a thin silicone rubber diaphragm. The calculations of
the combined stiffness of the gas volume of the bubble and the diaphragm are given in
Appendix D.
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Chapter 7

Acoustic Excitation Within the
Cochlea

7.1 Introduction and Motivation

The motivation for the investigation in this chapter is the possibility of including an
acoustic actuator within the cochlear implant, and so developing a single device that
can provide simultaneously both high frequency electric stimulation and low
frequency acoustic stimulation, without the need for an external high power hearing
aid.

Electric stimulation from cochlear implants works well for frequencies above 1 kHz,
which are required for recognizing the verbal content of speech. Lower frequency
hearing is required to recognize the non-verbal content of speech, to appreciate music
and to hear some traffic noise (McDermott and Looi (2004)). Furthermore, pitch
discrimination is better when sound is transmitted through the normal hearing
mechanism, rather than electrically via a cochlear implant, because it is difficult for an
implant to select the nerve cells stimulated as finely as a healthy cochlea. The
advantages of combined electrical and acoustic stimulation for speech perception have
already been discussed in Section 2.5, and the results from Imsiecke et al. (2020) are
shown in Figure 2.7. Therefore, low frequency residual acoustic hearing should not
only be maintained, but ideally it should be enhanced to normal hearing levels.

A further advantage of EAS is that it provides an opportunity to implant a shorter
electrode array, because electrical hearing can be cut off at higher frequencies. A
shorter array means easier insertion, less trauma and less risk of tissue damage.
Detailed examination of this matter is included in this thesis.

For many cochlear implant patients, implantation stiffens the round window, causing
loss of usable acoustic hearing in addition to any pre-existing loss. Inclusion of a
bubble within an implant would help to restore low frequency hearing to
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pre-implantation levels, as detailed in Chapter 6, but powerful conventional hearing
aids are sometimes still required to provide the amplification needed to compensate
for any pre-existing low frequency deafness that often accompanies the higher
frequency deafness that has justified implantation. This low-frequency hearing loss
impairs speech recognition and the enjoyment of music. Conventional ear-canal
hearing aids often have insufficient amplification to provide adequate acoustic levels
of sensation to overcome this low-frequency loss. For example, the hearing aid and
cochlear implant manufacturer, Medel, recommend an EAS system for patients with a
hearing loss up to 65 dB for frequencies up to 500 Hz. Their system offers a gain up to
48 dB see https://blog.medel.pro/eas-implant-system (viewed on 15/6/22) and a
power output SPL up to 118 dB. However, as the amplification of a conventional
hearing aid becomes greater, there is a greater likelihood of oscillation due to feedback
from the ’receiver’ to the microphone, as measured by Kuk (1994). The measurements
in this paper indicate that the hearing aids tested are limited to a maximum achievable
gain of 30 dB in ideal circumstances at a few hundred Hertz, and the maximum SPL
available was 140 dB. An excitation source within the cochlea could provide the
amplification necessary to achieve normal hearing for a patient with 97 dB hearing
loss over the full frequency range of interest (100 - 1000 Hz), producing a power
output of 141.5 dB (SPL), as shown in this Chapter and in Chapter 8.

This chapter assesses the engineering requirements for an intracochlear actuator, and
the feasibility of designing and manufacturing such a device is discussed in Chapter 8.

7.2 Assessing the Requirements of an Intracochlear Actuator

The mechanics of stimulation from an acoustic source within the lower chamber of the
cochlea are investigated using both the two chamber model developed in Chapter 3
and the published work of others. An eight stage approach is adopted to enable the
subjective requirements of a typical implant user to be converted to the objective
requirements of an intracochlear actuator:

1. Determine the frequency range over which the actuator needs to be effective.

2. Determine the maximum hearing sensation level required.

3. Convert the sensation level to the hearing level (in dB above normal threshold)
needed to compensate for the pre-implantation hearing loss.

4. Convert the required hearing level to the equivalent sound pressure level for
air-conduction at the entrance to the ear canal.

5. Determine the stapes velocity produced by this SPL.
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6. Use the two chamber model of the cochlea to convert this stapes velocity to a
basilar membrane velocity with normal RW stiffness.

7. Use the two chamber model again to find the intracochlear actuator velocity that
would produce the same basilar membrane velocity with a stiffened RW.

8. Finally, use the two chamber model a third time to determine the acoustic
impedance seen by the actuator to compute the acoustic pressure required of the
actuator to generate the same sensation as 115 dB above normal hearing
threshold would generate in a healthy ear.

The optimum changeover frequency from acoustic to electric stimulation will be
determined by various hard to predict and subjective factors, such as frequency
selectivity and degree of recruitment, both of which vary with hearing loss, see
Imsiecke et al. (2020) and Gifford et al. (2017). Fortunately, virtually all of the
requirements of an intracochlear actuator are most challenging at the lower end of its
required frequency range, and it has to be accepted that it will not be possible to
design an actuator that can be configured to give optimum compensation for extreme
cases of hearing loss.

7.3 Determination of the Required Frequency Range

In order to replace fully an external acoustic hearing aid, the intracochlear actuator
would need to be able to generate, without undue distortion, sufficient acoustic
pressure and velocity to produce the same sensation as in a "normal" ear for the entire
range of sounds required to be heard acoustically. For this exercise, the range is
considered to be expressed in terms of frequency and amplitude. Above a frequency
of 500 Hz, a cochlear implant provides acceptable sensation of hearing level by electric
stimulation, and so, to allow reasonable overlap for electro-acoustic stimulation, the
upper bound of the required frequency range for acoustic stimulation is taken to be 1
kHz.

No research on the contribution to speech recognition of frequencies below 125 Hz has
been found, and so it is assumed that the information value of sounds for speech
recognition diminishes at frequencies below 100 Hz. From personal subjective
experience, it is very rare for speech to contain frequencies below that frequency.

Regarding traffic noise, Bąkowski et al. (2019) state, "The calculations of the equivalent
sound level generated by all vehicles, depending on the frequency, showed that the
noise with the highest values occurs in the octave band with the center frequency f0=
1000 Hz. The minimum values are in the octave band f0= 125 Hz." The decline from
the 1 kHz band to the 125 Hz band is progressive, and the measured values at 125 Hz
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are 20 dB less than those at 1 kHz. It is therefore assumed that traffic noise below the
125 Hz band is insignificant.

Very few musical notes have a fundamental frequency below 100 Hz, and those that
do are very often rich in harmonics, enabling the ear to "imagine" the fundamental.

Because of all of these factors, 100 Hz is considered to be the lower bound of the
required frequency range. The frequency band from 100 Hz to 1 kHz is thus
considered to be the range of interest for determining the requirements of an actuator.

7.4 Determination of the Required Amplitude Range

Assuming that the intracochlear actuator is linear, only the upper bound of this
amplitude range needs to be considered when determining the duty of the actuator.
Clearly, the electronic driver of the actuator will need to apply amplification to match
the relationship between sound pressure levels and sensation to that of a "normal" ear.
It is unlikely to be possible for an actuator to compensate for the acoustic pre-op
deafness in the ears of all patients, because some implant patients are so profoundly
deaf that they have virtually no residual acoustic hearing, even at low frequencies.
The studies by Verschuur et al. (2016) and Causon et al. (2015) give mean and standard
deviation figures for measured pre-op hearing loss at a frequencies between 125 Hz
and 1 kHz for a total of over 280 patients. These statistics are used here to determine
the maximum pre-op hearing loss below 1 kHz, affecting more than 80% of the
patients in the studies. At every measured frequency of 750 Hz or less, 80% of the
patients had a pre-op loss of less than 97 dB. At 1 kHz, 63% of the patients had a
hearing loss of less than 97 dB. This means that an acoustic actuator could be used in
conjunction with an implanted electrode array to compensate for loss of speech
perception in 80% of cochlear implant patients, if it could compensate for a 97 dB
hearing loss over the frequency range of interest. As a result, it is assumed that an
acoustic actuator would be satisfactory, if it could compensate for a 97 dB loss of
hearing level over the frequency range 100 Hz to 1 kHz.

7.4.1 Subjective Performance Requirement

Normal conversation is in the range 60 - 70 dB HL. The term ’dB HL’ means the
number of decibels above the reference threshold of hearing, which is defined in BS
EN ISO 389-7:2019 as:

3.3 reference threshold of hearing at a specified frequency, sound pressure level of a
pure tone or a one-third-octave band of noise corresponding to the median value of
the binaural thresholds of hearing of otologically normal persons (3.2.) within the age
limits from 18 years to 25 years inclusive
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The same document defines an otologically normal person as:

3.2 otologically normal person person in a normal state of health who is free from all
signs or symptoms of ear disease and from obstructing wax in the ear canals, and who
has no history of undue exposure to noise, exposure to potentially ototoxic substances,
or familial bearing loss

To allow a reasonable margin for louder sounds without need for user adjustment, an
actuator would need to reproduce, without excessive distortion, the equivalent SPL of
up to 80 dB HL in a typical implanted ear.

7.4.2 Objective Performance Requirement

Sensation level is reflected in the compound action potential (CAP) of the auditory
nerve. It is assumed that sounds that generate equal CAPs will generate equal
sensations. Eggermont (1977) have published a graph of CAP measurements plotted
against hearing levels for the median of 20 "normal" ears and those of five individuals
with sensorineural hearing loss (SNHL) and loudness recruitment, which Eggermont
shows is normally associated with severe SNHL. This graph is shown in figure 7.1,
and it is used here to convert from subjective to objective requirements for an
intracochlear actuator. The graph for the patient with 75 dB hearing loss has been
copied and displaced to show the likely result for a patient with 97 dB hearing loss, as
a green line. A red vertical line has then been added from the 80 dB point on the
horizontal axis to touch the curve for normal ears, to find the sensation level that
would be experienced by an otologically normal person when hearing sound 80 dB
above normal hearing threshold. At this CAP sensation level, a red horizontal line has
been added from the 80 dB point on the normal ear curve, to intersect the graph for a
patient with 97 dB hearing loss. From that intersection point, a red vertical line has
been added down to the horizontal axis, to find the hearing level that would produce
the same sensation in the 97 dB hearing loss implant patient as 80 dB hearing level
would produce in a normal ear. So the graph shows that a level of 115 dB above the
normal hearing threshold would be required.



88 Chapter 7. Acoustic Excitation Within the Cochlea

FIGURE 7.1: Compound Action Potential for Ears with Different Hearing Losses. The
vertical axis is the amplitude of the compound action potential (CAP), measured us-
ing a trans-tympanic technique and expressed in µV. (Taken from Eggermont (1977)
fig. 2, with coloured lines and some annotation added.) This graph is captioned by
Eggermont as "Equivalent Loudness Levels", and so the compound action potentials
plotted here are taken as a proxy for equivalent loudness levels. This figure is pub-
lished by Sage, who permit re-use of up to three figures from one of their journal arti-
cles into a thesis or a dissertation without seeking a license or permission. See https:
//us.sagepub.com/en-us/nam/pre-approved-permission-requests-journals

Once the hearing level requirement is determined, it is a simple matter to convert this
to an SPL at the entrance to the ear canal, using the conversion number from BS EN
ISO 389-7:2019 for the frequencies concerned, to give the air-conduction sound
pressure level needed to achieve the required sensation level. At 100 Hz, in free field
conditions, the threshold of normal hearing is 26.5 dB above 0 dB SPL, or 20 µPa (BS
EN ISO 389-7:2019). So, an actuator would need to reproduce the same sensation as

https://us.sagepub.com/en-us/nam/pre-approved-permission-requests-journals
https://us.sagepub.com/en-us/nam/pre-approved-permission-requests-journals
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would 141.5 dB SPL (or 238 Pa) at 100 Hz and 117.4 dB, (or 15 Pa) at 1000 Hz, free-field
in a normal ear1.

The relationship between SPL and hearing level given in BS EN ISO 389-7:2019
approximates very closely to the equation:

T = 25.201(log f )2 − 152.32 log f + 231.34 (7.1)

Where T is the difference in dB to be added to the hearing level to give the
corresponding SPL, and log means common logarithm (base 10). The conversion
number given in the standard for each frequency is plotted in figure 7.3, together with
the approximate values calculated using equation 7.1. For simplicity, the present
model uses the approximation equation 7.1. The expressions for SPL and pressure in
the ear canal at all frequencies <2 kHz are:

SPLEC = HL + 25.201(log f )2 − 152.32 log f + 231.34 dB, or (7.2)

pEC = 20 × 10−6 × 10(HL+231.34+25.201(log f )2−152.32 log f )/20 Pa. (7.3)

pEC = 10(HL+137.36+25.201(log f )2−152.32 log f )/20 Pa. (7.4)

pEC = 10(HL/20) × 10(5.567+1.26(log f )2−7.616 log f ) Pa. (7.5)

pEC = 10HL/20 × 3.69 × 105 × f 1.26 log f−7.616 Pa. (7.6)

For a hearing level of 115 dB,

SPLEC = 115 + 25.201(log f )2 − 152.32 log f + 231.34 dB, or (7.7)

SPLEC = 25.201(log f )2 − 152.32 log f + 346.34 dB, and (7.8)

pEC = 20 × 10−6 × 10346.34/20 × f (1.26log f )/ f 7.616 Pa (7.9)

pEC = 20 × 10−6 × 10(1.3−6+17.317) × f (1.26log f )/ f 7.616 Pa (7.10)

pEC = 1012.617 × f (1.26log f−7.616) Pa. (7.11)

So: pEC = 266 Pa at 100 Hz. (7.12)

= 13 Pa at 1 kHz. (7.13)

The corresponding numbers from BS EN ISO 389-7:2019 quoted above for 100 Hz and
1 kHz are 238 Pa and 15 Pa, respectively. This confirms that the regression
approximation is within 1.25 dB of the 100 Hz and 1 kHz spot data points in BS EN

1Please note that the definition (3.4) of free sound field in BS EN ISO 389-7:2019 is "sound field where
the boundaries of the room exert a negligible effect on the sound waves." This may be different from
definitions of free-field used elsewhere. Because the specification is derived as a best fit to measured data,
rather than theoretical calculation, it is assumed for the present purposes that the measurements were
made and the specification intended for air conduction from a separate source with a listener present. The
relevant column in Table I of the BS EN ISO 389-7:2019 is headed "free-field listening (frontal incidence)",
which further implies the presence of a listener.
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ISO 389-7:2019, and the left hand graph [a] in figure 7.3 shows that the approximation
remains within that limit between those frequencies.

7.4.3 Stapes Velocity Resulting from the Required Maximum SPL

Xue et al. (2020) have published a graph of the results of their model (validated by
another model and two independent sets of measured results) that shows the
normalized velocity response from the ear canal to the stapes, VFS/pEC, as a function
of frequency. Xue et al. define pEC as the ear canal input pressure. Their model
includes the tympanic membrane and the ear canal as separate entities, and so it is
assumed that the ear canal pressure is taken as that at the outer end of the ear canal.

FIGURE 7.2: Stapes footplate velocity normalized to ear canal pressure (vST/pEC).
Reprinted with permission from Xue et al. (2020) (FIG. 6). Copyright 2020, Acoustic

Society of America..
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FIGURE 7.3: [a] Plots of data points given in BS EN ISO 389-7:2019 for converting free
field SPL to hearing level, together with a plot of equation 7.1 and [b] normalized BM
velocity response Xue et al. (2020) extracted from figure 7.2, together with a plot of

equation 7.23.

This graph enables the SPL at the outer ear to be converted to a linear stapes velocity.
Over the frequency range up to 2 kHz, the graph from the Xue et al model shown in
the right hand graph [b] of figure 7.2 approximates closely to a quadratic equation of
the form:

log |VFS/pEC| = a(log( f ))2 + b log( f ) + c (7.14)

Noting from the graph and the associated text that the maximum of 9.65 × 10−2 occurs
at 1 kHz and that the value at 100 Hz is 1.25 × 10−2, the equation becomes:

log |VFS/pEC| = − log (9.65/1.25)(log f )2 + 6 log (9.65/1.25) log( f )

+ log (1.25 × 10−2)− 8 log (9.65/1.25) (7.15)

This can be re-written as:

|VFS/pEC| = 10−0.888 log f 2+6×0.888 log f−8×0.888+log (1.25×10−2) (7.16)

= f 0.888×(6−log f ) × 10−8×0.888 × 1.25 × 10−2 (7.17)

At 100 Hz, = 1.25 × 10−2 × 100.888×(12−8−2×log f ) (7.18)

= 0.0125 mm/s/Pa (7.19)

At 1 kHz, = 1.25 × 10−2 × 100.888×(18−8−3×log f ) (7.20)

= 0.0965 mm/s/Pa (7.21)
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(The values produced by equations 7.19 and 7.21 are given with the same precision as
that used by Xue et al. (2020) in their text, to show that the approximation is precise at
these two frequencies. In the context of this thesis, such precision is otherwise not
needed.)

Equation 7.17 can then be used with equation 7.6 to compute the stapes velocity
required to create the required hearing level.

VFS = 10HL/20 × 106.868 × f 1.26 log f−7.616 × f 0.888×(6−log f ) × 10−9.007 (7.22)

VFS = 10HL/20 × f 0.372 log f−2.288 × 10−2.139 (7.23)

For 115 dB Hearing Level at the ear canal, the linear stapes velocity must thus be:

VFS = 4083 × f 0.372 log f−2.288 (7.24)

At 100 Hz, = 4083 × 1000.372 log 100−2.288 (7.25)

= 3.33 mm/s, (7.26)

if stapes area = 3.2 mm2 Békésy and Wever (1960)(7.27)

Volume velocity, VS = 11 × 10−9 m3/s (7.28)

At 1 kHz, VFS = 4083 × 10000.372 log 1000−2.288 (7.29)

= 1.24 mm/s (7.30)

Volume velocity, VS = 4 × 10−9 m3/s (7.31)

Equation 7.23 can be used now with the new model to calculate the basilar membrane
velocity required to generate the required hearing level, for all frequencies <= 2 kHz.

The left hand graph in figure 7.3 shows the stapes normalized velocity response from
the ear canal derived by Xue et al. (2020), together with the corresponding quadratic
approximation of equation 7.23 that is used with the present model to compute the
required actuator velocity.

7.4.4 Computation of the Required Basilar Membrane Velocity

The new model computes the normalized velocity response from the stapes to the
basilar membrane; this is used in combination with equation 7.23 and the required
hearing level to compute the linear BM velocity that occurs when a free field sound
wave at 115 dB above normal hearing level is presented to the ear canal. This BM
velocity is calculated as a function of frequency. From the work of Eggermont (1977), it
is concluded that this is the BM velocity required to produce in the ear of an implant
patient the same compound action potential and hence the same sensation in an
implanted ear as would 80 dB above normal hearing level produce in a normal ear
(with no sensorineural hearing loss and no implant), which is measured by
Eggermont et al as 5 µV.
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7.4.5 Computation of the Required Actuator Velocity

The cochlear model can be used to calculate the normalized velocity response from the
actuator to the BM. This is used to compute the actuator diaphragm velocity needed to
produce the same BM velocity as described in subsection 7.4.4. This actuator velocity
will produce the same sensation in a typical implanted ear as that produced by the
required SPL in the pre-implanted ear of a typical CI candidate. The magnitude of this
velocity is shown for all audio frequencies in figure 7.10, and it is tabulated at the end
of this Chapter for particular frequencies within the range of interest in Table 7.2.

7.4.6 Computation of the Pressure Required from the Actuator

The cochlear model can also be used to calculate the acoustic impedance that the
cochlear presents to the actuator, which is shown in Figure 7.11. This is multiplied by
the velocity requirement to give the pressure requirement. The resultant pressure is
shown for all audio frequencies in figure 7.12, and it is shown for particular
frequencies in the range of interest in Table 7.2. For a magnetic actuator, such as the
balanced armature type, the coil current required will be proportional to the
diaphragm pressure.

7.4.7 Summary of Requirements

A step-wise approach has been used to determine the velocities and pressures that an
intracochlear actuator needs to generate, in order to restore to normal the hearing in
an implanted ear over the range of frequencies where electric stimulation does not
restore hearing sensation to that of a "normal" ear. The contributions of the new model
are in comparing the normalized velocity responses from the stapes and the actuator
to the basilar membrane, together with computing the cochlear impedance at the
actuator. Discussion of these calculations follows in the next Section. The following
Chapter uses these results to determine the feasibility of designing and constructing a
suitable actuator, using a variety of different technologies.

7.5 The Cochlear Response due to an Implanted Actuator

When the excitation is from the stapes at low frequencies, all of the flow beyond the
vestibular aqueduct is along the upper chamber of the cochlea towards the apex, with
negligible flow passing through the BM, until the characteristic place for the frequency
is approached, where the flow passes through the BM to the lower chamber, and
returns towards the base, where it passes through the cochlear aqueduct and the
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round window. An explanation of the modelled behaviour of the cochlear when
excited from the stapes is provided in Chapter 5, above.

When the excitation is from an actuator in the lower chamber, the flow divides; some
remains within the lower chamber and flows out through the cochlear aqueduct and
the round window, and some flows through the BM into the upper chamber, and
flows out through the vestibular aqueduct and the stapes to the middle ear. With an
unstiffened round window, the former path would be the lower impedance, taking
virtually all of the flow, because the round window has an impedance less than that of
the middle ear, typically by a factor of ten at low frequencies. When the round
window is stiffened by a factor of 170 or so, the situation is reversed at frequencies
below a few kHz, and the path through the BM and the upper chamber generally has
the lower impedance, and so it takes most of the flow, and the normalized response is
more or less the same as that of a normal ear. However, above the 289 Hz frequency at
which the middle ear impedance resonates with the cochlear input impedance, that
increased impedance remains much greater than that of the combined cochlear
aqueduct and the round window, and so the normalized response from an actuator is
greater than that for stapes excitation.

Figures 5.6 to 5.8 from Chapter 5 have been augmented to add the normalized
responses for four different actuator configurations. These configurations are single
element point actuators at 0, 10 and 20 mm from the round window, and an achievable
actuator with a diaphragm from 1 to 16 mm from the round window. These
normalized responses are shown as magenta lines in Figures 7.4 to 7.6. Because the
actuator would be incorporated in a cochlear implant, the round window is
considered to be stiffened in each case. The actuator in each case is a hypothetical
device whose length occupies just one finite element, to show the effects of locating
the actuator in different positions. For comparison, the blue and red lines show the
normalized response from the stapes, with a normal and a stiffened round window,
respectively.
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FIGURE 7.4: Normalized Basilar membrane linear velocity response predicted at
100 Hz in the spatial domain and at 32 mm in the frequency domain for a point ac-
tuator just one finite element long at each of three positions and for a 15 mm long
actuator. For comparison, graphs are also plotted for a normal ear and for an im-
planted ear, each with excitation from the stapes. The Norton equivalent excitation
volume velocity from the actuator is the same as that from the stapes (when the ear

canal sound pressure is 115 dB above normal hearing level).

FIGURE 7.5: Normalized Basilar membrane linear velocity response predicted at
250 Hz in the spatial domain and at 29 mm in the frequency domain for a point ac-
tuator just one finite element long at each of three positions and for a 15 mm long
actuator. For comparison, graphs are also plotted for a normal ear and for an im-
planted ear, each with excitation from the stapes. The Norton equivalent excitation
volume velocity from the actuator is the same as that from the stapes when the ear
canal sound pressure is 115 dB above Normal Hearing level. (vExc is the pressure at

the excitation source: the stapes or the actuator as indicated in the legend.)
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FIGURE 7.6: Normalized Basilar membrane linear velocity response predicted at 1 kHz
in the spatial domain and at 21 mm in the frequency domain for a point actuator just
one finite element long at each of three positions and for a 15 mm long actuator. For
comparison, graphs are also plotted for a normal ear and for an implanted ear, each
with excitation from the stapes. The Norton equivalent excitation volume velocity
from the actuator is the same as that from the stapes when the ear canal sound pressure

is 115 dB above Normal Hearing level.

The graphs show that the location of the actuator makes only a small difference when
the actuator is basal to the best place. As shown by Figure 7.6, when the actuator is
apical to the normal best place, a peak in the BM response will occur at the actuator
location, with a BM velocity magnitude comparable with that at the best place. To
avoid multiple ’best places’ at high frequencies, the actuator should be located as close
as possible to the round window. In the frequency range of interest for low frequency
hearing (100 - 1000 Hz), there are only a few decibels difference between the results of
locating the bubble at 0, 10 or 20 mm from the round window or extending an actuator
from 1 to 16 mm.



7.5. The Cochlear Response due to an Implanted Actuator 97

FIGURE 7.7: Basilar membrane pressure difference response predicted at 250 Hz in
the spatial domain and at 29 mm in the frequency domain for a point actuator just
one finite element long at each of three positions and for a 15 mm long actuator. For
comparison, graphs are also plotted for a normal ear and for an implanted ear, each
with excitation from the stapes. The Norton equivalent excitation volume velocity
from the actuator is the same as that from the stapes when the ear canal sound pressure

is 115 dB above Normal Hearing level. (pEC is the pressure in the ear canal.)

Provided that the actuator is basal to the best place, the velocity and pressure
responses with excitation from an actuator are very similar to those of a normal ear
with stapes excitation. This will be the case for the frequency range of interest when
the actuator is no more than 20 mm from the RW.

7.5.1 Comparison with a Lumped Component Model

To verify the modelled relationship between actuator velocity and BM velocity, the
volume velocity normalized response has been calculated by both the present model
and the lumped component models developed byElliott et al. (2016) and Xue et al.
(2020), modified to include a point intracochlear actuator at the RW, as shown in
Figure 7.8. The input parameters of the two lumped element models are given in Table
7.1, and the results are plotted as a function of frequency on the same graph in figure
7.9. The normalized responses are similar. The minima occur at the resonant
frequency of the stiffened RW in parallel with the cochlear aqueduct. The trough is
narrower for the two lumped models than the present model, because the viscous
resistance of the cochlear aqueduct is less, and the frequency of the resonance is higher
for the Xue et al. model, because it models a less compliant, greater inertance RW.
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TABLE 7.1: Table of values of parameters input to two lumped element models.

Input parameters
Xue symbol SI units Xue ENV ENV symbol

Wave inertance MCH kg.m-4 6.46E+07 7.00E+07 LFL
Wave resistance RCH kg.s-1.m-4 3.04E+10 2.00E+10 RWA
RW inertance MRW kg.m-4 7.30E+05 1.00E+06 LRW
RW stiffness KRW kg.s-2.m-4 2.79E+13 1.00E+13 1/C0
RW resistance RRW kg.s-1.m-4 5.00E+07 2.50E+09 RRW
VA inertance MVA kg.m-4 5.00E+06 5.10E+07 LVA
VA resistance RVA kg.s-1.m-4 9.80E+10 1.10E+10 RVA
CA inertance MCA kg.m-4 7.10E+08 5.60E+08 LCA
CA resistance RCA kg.s-1.m-4 2.50E+11 3.50E+11 RCA
ME stiffness KME kg.s-2.m-4 1.38E+14 8.33E+13 1/CME
ME resistance RME kg.s-1.m-4 1.80E+10 1.00E+10 RME
ME inertance MME kg.m-4 5.70E+05 4.40E+05 LME
Source Xue (2020) table I and fig 8a ENV (2016) table 1

Xue = Xue et al. ENV = Elliott et al..

FIGURE 7.8: Circuit diagram of the cochlear structures lumped element models, in-
cluding a point intracochlear actuator at the RW to the BM



7.6. Actuator Diaphragm Velocity Needed to Emulate 115 dB HL at the Ear Canal 99

FIGURE 7.9: Normalized BM Responses to a Point Actuator at the RW. The minimum
at 13 kHz is attributed to a resonance in the lower chamber, ie of the RW in parallel

with the cochlear aqueduct.

7.6 Actuator Diaphragm Velocity Needed to Emulate 115 dB
HL at the Ear Canal

The velocity normalized responses from the ear canal has been divided by that from a
15 mm long actuator to calculate the actuator diaphragm velocity needed to produce
the same BM velocity and hence the same sensation. The results are shown in figure
7.10, below. It can be seen from the graph that the greatest velocity required is 2.42
mm/s. This figure is included in Table 7.2, and it used in the following chapter to
determine the capability of various transducer technologies to generate sufficient
velocity when the actuator is small enough to fit within an implant.
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FIGURE 7.10: Actuator Diaphragm Linear Velocity Needed to Emulate 115 dB at the
Ear Canal for a diaphragm area of 4.8 mm²

7.7 Actuator Diaphragm Pressure when Emulating 115 dB at
the Ear Canal

The actuator diaphragm pressure has been calculated by multiplying the actuator
linear velocity calculated in section 7.6 by the diaphragm area and the impedance of
the lower chamber at the actuator, as calculated by the new model and shown in
figure 7.11.

The modelled magnitude of the impedance presented to the actuator by the cochlear
fluid rises to a peak at about 157 Hz, as the parallel resonant frequency of the middle
ear and the vestibular aqueduct is approached. As the series resonance of the middle
ear and the wave impedance is approached at about 318 Hz, the impedance falls to a
minimum. There is then a slow and small increase to about 833 Hz, where the wave
impedance itself rises to a gentle peak. At about 2.3 kHz, the middle ear resonates as a
series circuit producing a relatively sharp minimum in the impedance presented to the
actuator. The pressure developed in the lower chamber when excited by an
intracochlear actuator is computed by multiplying the actuator diaphragm velocity by
the cochlear input impedance presented to the diaphragm. The result of the
multiplication is shown in figure 7.12, below. It can be seen from the graph that the
greatest pressure required is 910 Pa. This figure is used in the following chapter to
determine the capability of various transducer technologies to generate sufficient
velocity and pressure when the actuator is small enough to fit within an implant. The
present model gives a falsely high value of cochlear input impedance at the stapes,
because the taper of the real cochlear is not modelled. As explained in Chapter 5, the
lack of taper causes the wave impedance to be too high. The wave impedance is
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FIGURE 7.11: Graph of Cochlear Input Impedance Presented to an Actuator in the
Lower Chamber, Extending from 1 to 16 mm from the stiffened Round Window, to-
gether with the impedances Presented to the Stapes with a Normal and Stiffened RW.

broadly unaffected by the location of excitation, and so it is reasonable to assume that
the modelled cochlear input impedance at an actuator would also be falsely high. In
that case, the pressure requirement of the actuator would be exaggerated by the
present model, and the calculated value would be pessimistic.

FIGURE 7.12: Actuator Diaphragm Pressure when Emulating 115 dB at the Ear Canal

7.8 Other Requirements

Clearly, an intracochlear acoustic actuator would need to have a diaphragm that could
be embedded in the electrode array of a cochlear implant. The feasibility of designing
such an actuator is examined in Chapter 8. No evidence has been found of the
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f Linear Volume Linear Dis- Required Pressure∗ω Cochlear
velocity velocity placement pressure Impedance

Hz mm/s mm3/s µm kPa MPa/s GΩ
100 2.2 10 3.4 0.8 0.5 77.5
148 1.3 6.4 1.4 0.91 0.84 146
159 1.3 6.1 1.3 0.88 0.88 151
980 1.6 7.7 0.26 0.57 3.5 75.1

TABLE 7.2: Velocity, displacement, pressure and pressure∗ω
requirements of an intracochlear actuator, together with the cochlear
impedance at the actuator, for the frequencies at which each Variable

is a maximum are shown in red. The conversion from linear
(mechanical) to volume (acoustic) velocity uses a diaphragm area of

15×0.32=4.8 mm². (The value of pressure∗ω is useful for calculating the
maximum and minimum reactive parts of actuator impedances.)

existence of any commercially available actuators sufficiently small to meet this
requirement. The actuator modelled is a hypothetical one measuring 15 mm long by
0.3 mm wide by 0.3 mm deep, located from 1 to 16 mm from the round window.

The requirements of the electronic driver circuitry are similar to those of the drivers
for conventional ear canal hearing aids as are used presently for conventional
electro-acoustic stimulation, and the requirements of the driver are not considered to
be challenging, and so this matter is not examined any further in this thesis.

7.9 Summary of Actuator Requirements

To summarise the results from this study, it has been shown that in order to generate a
BM velocity that corresponds to 80 dB above normal Hearing Level in a normal ear
over the frequency range from 100 Hz to 1 kHz, assuming a sensorineural hearing loss
of 97 dB, would require an intracochlear actuator capable of generating a volume
velocity of 10 mm3/s, when driving into an acoustic impedance of 90 GΩ at 100 Hz. A
maximum of 910 Pa of pressure would be required within the frequency range of
interest at 148 Hz, as shown in Table 7.2. It is assumed that an implant’s electrode
array would provide satisfactory hearing at frequencies greater than the range of
interest by electric stimulation of the auditory nerve. Clearly, an implantable actuator
has to fit within an implant. The values in Table 7.2 are used in the following chapter
to test by calculation the feasibility of a number of actuator technologies. The
calculations show that more than one technology is feasible.
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Chapter 8

Intracochlear Acoustic Stimulation
Feasibility

8.1 Motivation

Traditionally, combined electro- and acoustic- stimulation (EAS) has been achieved by
using a cochlear implant to stimulate the auditory nerve electrically and an external,
conventional hearing-aid to deliver amplified sound to the outer ear for transmission
to the hair cells in the organ of Corti and thence to the auditory nerve, in the normal
way. For the severely deaf patients that qualify for a cochlear implant, this technique
has the disadvantage that a large amount of amplification is required to achieve
adequate levels of acoustic stimulation. Achieving so much amplification is difficult,
partly because the hearing aid becomes prone to acoustic feedback, when the loop
gain exceeds unity around the acoustic circuit including the microphone and the
acoustic actuator.

Additionally, part of the power requirement of the hearing aid is approximately
proportional to the power output and hence to the amplification, which is, in turn,
governed by the hearing loss. Typically, a patient that qualifies for a conventional
hearing aid, but not an implant, and having a hearing loss of, say, 50 dB, would need
to change the battery in the appliance about once per week. A patient with a hearing
loss of 80 dB (the minimum loss to qualify for an implant) may thus require a change
of battery daily or after only hours use.

If the acoustic stimulation is achieved by an actuator coupled directly to the cochlear
fluid, both the feedback and the power problems would be greatly mitigated. This is
because the acoustic coupling between the actuator output and the external
microphone would be greatly diminished, and it is also anticipated that the power
requirement would generally be greatly reduced.
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Although it is beyond the scope of this project to undertake the detailed design of an
intracochlear actuator, it is pertinent and possible to examine the feasibility of doing
so, by performing calculations using the laws of physics and the properties of
available materials.

After reviewing the requirements for such an actuator in the previous Chapter, the
feasibility of creating one using a number of different technologies is discussed in this
Chapter.

8.2 Actuator Diaphragm Velocity and Pressure Requirements

The approach adopted to determine sound pressure and velocity requirements is set
out in section 7.2 of the preceding chapter, and the results are summarized in Table 7.2.
It is shown that an actuator with a diaphragm 15 mm long and 0.32 mm wide, with a
volume of 1.5 mm³, will produce sufficient basilar membrane velocity to create the
same sensation as 115 dB above normal hearing level in the ear canal, if it is capable of
generating a diaphragm linear velocity of 2.2 mm/s, a volume velocity of
10 × 10−9 m3/s, a linear displacement of 3.4 µm/s without undue distortion and a
pressure of 910 Pa, across the frequency range 100 - 1000 Hz. Even with shorter
electrode arrays, cochlear implants work very well at frequencies down to 500 Hz, and
so the advantages of EAS are not as great as at lower frequencies. This overlap of
frequency range capability will ensure that satisfactory restoration of hearing can be
achieved for severely deaf patients over the audio frequency range above 100 Hz, by
the combination of electric and acoustic stimulation.

8.3 Achievability of the Required Cochlear Fluid Pressure and
Flow

The achievability of the cochlear fluid pressure and velocity requirements can be
determined in two ways. One is scaling, using the relationship between size and
sound output level determined for a range of existing commercial actuators, and that
relationship can be extrapolated to the size of an actuator that would fit into an
implant, as in Section 8.4. Additionally, the sound pressure and velocity capability can
be calculated from first principles for an actuator of the size required. The results of
the two sets of calculations can then be compared. The calculations from first
principles are set down in Section 8.5 for a balanced armature actuator, which is how
the most commonly used actuator in hearing aids is described.

In Subsections 8.7.1 to 8.7.7, below, the calculations are repeated for a number of other
actuator technologies, to test the feasibility of each technology.
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8.4 Scaling of Commercially Available Actuators

The scaling of physical parameters with size can provide useful insight into the
performance of different transducers, particularly as they are miniaturized Madou
(2018). By plotting the non-dimensional coupling factors of a wide variety of moving
coil electromagnetic actuators against their masses, Elliott and Zilletti (2014), for
example, showed that this coupling factor scaled with the cube root of the actuator
mass. This study shows the value of scaling by using dimensionless parameters,
which is a technique used in this chapter. However, the choice of scaling factor needs
to match the characteristics of the transducer and its environment.

In Chapter 7, it is assumed that the transducer is a constant pressure (Thevenin)
source. This is because the acoustic velocity is almost entirely determined by the
current in the coil and independent of the back-emf generated by the velocity of the
diaphragm, which is negligible when compared with the input voltage of the
transducer. Detailed calculations of the back-emf are in Appendix B. Because the
relationship between the electrical impedance of the transducer and that of the load is
different from the corresponding relationship in Elliott and Zilletti (2014) a different
scaling factor of output is used here, and it is SPL/volume. The graphs by Sonion
(https://www.sonion.com/wp-content/uploads/What-is-Balanced-Armature-
Receiver-Technology_rev002.pdf) and that derived from Knowles data
(https://www.knowles.com/subdepartment/dpt-ba-receivers/subdpt-hearing-
instruments-receivers) show that that scaling factor for balanced armature transducers
is independent of the size of the actuator and hence dimensionless, when the SPL is
measured at a constant level of distortion.

To estimate whether commercially available actuators would produce sufficient
acoustic pressure and diaphragm velocity when small enough to fit within the
cochlea, the maximum SPLs (into an air-filled, 2 cc cavity) of a range of Knowles
balanced armature actuators was taken from their technical specifications (as shown
in Table 8.1) and plotted in Figure 8.1 against their volumes, and a regression line was
computed, which gives a correlation co-efficient (R2) of 0.94. Assuming that an
actuator can be scaled down to this size, an actuator with a volume of 1.5 mm3 would
produce an SPL of 98 dB or a pressure, p of 1.6 Pa in the standard 2 ml test cavity,
which has an acoustic impedance of −1.07i × 108 acoustic ohms at 100 Hz. The

impedance of such a cavity, Z =
1

iωC
, where the compliance of the cavity, C =

V
ρc2 ,

V=cavity volume, ρ =density of the fluid (air) in the cavity and c = the velocity of
sound in the cavity fluid, and where Z is the ratio of pressure to volume velocity. This
pressure would thus generate a volume velocity, q of 15 × 10−9m3/s in the air-filled
standard test cavity. The required maximum volume velocity for an intracochlear
actuator is 10 × 10−9m3/s, and so it is predicted that a volume velocity could be
produced that is just sufficient to meet the requirement.
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Series Length Width Height Volume SPL SPL Res Freq
(mm) (mm) (mm) (mm3) (dB) (Pa) (kHz)

FK 5.00 2.73 1.93 26 123 28.3 2.7
FH/FFH 5.09 2.80 2.59 37 124 31.7 2.2
DFK 5.00 2.73 3.86 53 130 63.2 2.6
FC/FFC 5.17 3.55 3.00 55 127 44.8 2.5
EH/FEH 5.19 3.55 3.00 55 128 50.2 2.5
FJ 5.08 2.79 5.18 73 129 56.4 2.2
ED/FED 6.32 4.31 2.97 81 129 56.4 2.0
EJ 6.33 4.32 5.97 163 135 112.5 1.8
EF/FEF 7.87 5.59 4.01 176 139 178.3 1.0
CI 9.47 7.18 4.10 279 143 282.5 0.9

TABLE 8.1: Details of Knowles "balanced" armature actuators, including
their volume, the maximum SPL that they can produce and their approx-
imate lowest resonant frequency. Retyped by the author using data from
(https://www.knowles.com/subdepartment/dpt-ba-receivers/subdpt-hearing-

instruments-receivers)

Extended Regression Line
<-- SPL (dB) = 19.24log(Volume (mm3)) + 94

R² = 0.94
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FIGURE 8.1: Correlation and relationship between maximum output and volume
(mm³), on a log scale, for Knowles actuators. Plotted by the author using data
from https://www.knowles.com/subdepartment/dpt-ba-receivers/subdpt-hearing-

instruments-receivers

Another manufacturer, Sonion, has produced a similar graph for their transducers,
which is shown as figure 8.2. Extrapolation of their graph to the volume of an
implantable actuator gives a slightly smaller SPL than the corresponding value from
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the graph of Knowles actuators, but the quoted values apply to slightly different
distortion limits, frequencies and loadings. Sonion produce an actuator with a volume
of 13.2 mm3, which they claim to be the world’s smallest, and it is less than an order of
magnitude greater than the volume of the proposed implantable actuator.

FIGURE 8.2: Sonion Graph of SPL output at 500 Hz and 5% THD
against volume (mm3) for their actuators, measured when coupled
to a 2 cc cavity. https://www.sonion.com/wp-content/uploads/
What-is-Balanced-Armature-Receiver-Technology_rev002.pdf Copyright
permission requested through Sonion web-site in October 2021, but no response

received.

A reasonable fit for the data plotted in both of figures 8.1 and 8.2 is a linear
relationship between SPL and Volume, with a slope of 20 dB/decade, so that the
volume velocity is directly proportional to the square root of actuator volume. This
indicates that maximum pressure in the cavity and hence the volume velocity
capability of the actuator is directly proportional to its volume, for both Knowles and
Sonion balanced armature actuators. The overall level of the Sonion actuators is about
9 dB lower than the Knowles devices of a similar volume; this comparison is
influenced by the output levels being quoted at different distortion limits and different
frequencies. However, these differences do not affect the slopes of the regression lines,
which are comparable and close.

https://www.sonion.com/wp-content/uploads/What-is-Balanced-Armature-Receiver-Technology_rev002.pdf
https://www.sonion.com/wp-content/uploads/What-is-Balanced-Armature-Receiver-Technology_rev002.pdf
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8.5 Calculation of a Balanced Armature Capability from First
Principles

Balanced armature actuators using permanent magnets are the most established
technology, but they require the use of relatively long ferromagnetic or ferrimagnetic
components that are not flexible. The lack of flexibility increases the risk of damage to
the cochlea on insertion. The static field from the permanent magnet poses no
significant health or safety hazard, and the balanced armature concept avoids
significant interference from external vibration. 1 The requirements for sound
pressure and velocity in an intracochlear transducer are translated into current,
voltage and power requirements of a theoretical balanced armature actuator that is
small enough to fit inside an implant, as discussed in section 8.4.

FIGURE 8.3: Cross-section of a Balanced Armature Actuator. url: http://www.aes.
org/images/blog_img/25/ID/1570.jpg. Permission to copy requested from the Au-
dio Engineering Society in the USA on 22/5/22, but no response received. NB. In this
type of actuator, the magnetic forces are balance by the stiffness of the armature, which
is not itself balanced on a pivot as it is in the alternative design shown in figure 8.4;

see footnote 2 in the text.

This is done for the actuator shown in figure 8.4 that has four air-gaps, each measuring
0.1 mm tall by 1 mm along the cochlea by 0.3 mm across the cochlea, driving a rigid
diaphragm 15 mm by 0.32 mm, as shown in Figure 8.4. The dimensions of the

1Commercially available actuators are strictly attracted armature, rather than balanced armature trans-
ducers, and they are susceptible to interference from external vibration. This susceptibility is overcome by
using a dual design, which uses two armatures and two diaphragms which move in opposite directions,
arranged so that the pressure produced by one adds to the pressure from the other. Dual designs require
more volume than single designs for the same SPL output.

http://www.aes.org/images/blog_img/25/ID/1570.jpg
http://www.aes.org/images/blog_img/25/ID/1570.jpg
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diaphragm are those used by the model, and they are set by the text file used by the
model that also sets the physiology of the ear; the other dimensions stated here are
chosen to fit within a 1 mm diameter electrode array.

FIGURE 8.4: Diagram of a Balanced Armature Actuator, with the assumed dimen-
sions used in the calculation of its sensitivity. The diagram without dimensions is
reproduced with permission from the copyright holder, JH Audio Inc. (see https:

//images.app.goo.gl/a2WVtx1HoX1rCf447)

Airgap pressure, pg =
1
2

B2
g/µ0 Pa, in each of four gaps; (8.1)

Each air-gap is 0.1 mm long × 1 mm × 0.3 mm

=
1
2
(

Bp ± µ0NI/lg
)2 /µ0 (8.2)

=
1
2

B2
p/µ0 ± BpNI/lg +

1
2

µ0
(

NI/lg
)2 (8.3)

Where Bp = Flux density in the air-gaps due to the permanent magnets.

Bg = Total air-gap flux density due to the permanent magnets and coils.

N = number of turns in the coil,

µ0 = magnetic permeability of free space, = 4π × 10−7.

lg = air-gap length, armature to magnet pole (= 0.1 mm)

In equation 8.3, the ± sign is replaced with a + sign when the flux from the coil adds
to the permanent flux, and - sign, when it subtracts. The air-gap pressure difference is
calculated by subtracting equation 8.3 with a + sign from itself with a - sign, and so the
first and last terms cancel while the middle term doubles to form the right hand side

https://images.app.goo.gl/a2WVtx1HoX1rCf447 
https://images.app.goo.gl/a2WVtx1HoX1rCf447 
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of in equation 8.4.

Air-gap pressure difference , pd = 2pg = 2BpNI/4lg = BpNI/2lg (8.4)

each end of armature.

= (8.5)

Magnetic force on armature = 2pd × Ag (8.6)

= 2AgBpNI/lg (8.7)

Cochlear Pressure, pc = Force/diaphragm area = 2
AgBpNI

Adlg
(8.8)

Where Ad = the diaphragm area.

The maximum required pressure, pc = 0.9 kPa, (8.9)

pc =
2AgBpNI

Adlg
. Assume permanent magnet field strength, (8.10)

Bp = 1 Tesla, and so

NI =
pc Adlg
2AgBp

=
0.9 kPa × 15 mm × 0.32 mm × 0.1 mm

1 mm × 0.32 mm × 1 T
= 1.3 AT (8.11)

This is the “locked armature” current required to generate the pressure required,
because it assumes that the air-gap lengths do not alter when the current is applied.

For the purposes of this feasibility study, the current density rating of enamelled
copper wire is assumed to be 1.6 A/mm2, see footnote 2, below.

Cross-sectional area of coil, Ac = 1.3/1.6 = 0.8 mm2, (8.12)

for current density = 1.6 A/mm2. (8.13)

This should be multiplied by 1.1 (2
√

3/π) to allow for the packing factor of a coil
neatly wound with enamelled wire and by 1.3 to allow for the maximum diameter
over the insulation (BS EN 60317-0-1:2014+A1:2019) to give 1.2 mm². Assuming a coil
length along the armature of 8 mm, the thickness of the coil would be 0.15 mm.
Referring to Figure 8.4, the length, lci of one inner turn of the coil would be
2 × 0.1 mm + 2 × 0.32 mm = 0.84 mm, and that of an outer turn, lco would be
0.84 + 4 × 0.15 + 2π × 0.25 = 3 mm. The rms length, lc is 3.2 mm, and so the total
length, Lc would be 3.2 × N mm. The cross-sectional area, ac of each turn would be

2Before metrication was prevalent in the UK, the current rating of enamelled copper wire for coil-
winding was traditionally considered to be 1000 A/in2, evidence for which was scarce, but it was a con-
venient round number. Suppliers of enamelled copper wire, such as Farnell, publish current ratings,
which equate to 1.55 A/mm2, which is the same current density as 1000 A/in2, and evidence to support
this figure remains as hard to acquire as it was before metrication. This figure appears conservative, be-
cause PVC insulated 1mm2 copper wiring in buildings is rated at 10 A (BS 7671), with the current density
rating increasing as cross-sectional area of the conductor decreases, but a considerable reduction would
be necessitated for a group of 1000 wires. A search of British, European and international standards has
revealed no standards giving current ratings or current density limits for enamelled copper wire, and so
reliance has to be placed on suppliers’ claims and established practice.
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Ac/N mm2, and so the resistance, R of the coil would be proportional to N2, when lc

and Ac are fixed by the geometry of the actuator.

R =
ρLc

ac
=

ρNlc

Ac/N
(8.14)

=
ρN2lc

Ac
, where ρ is the resistivity of the wire. (8.15)

The required emf, E = IR =
(NI)

N
ρN2lc

Ac
(8.16)

=
ρN(NI)lc

Ac
(proportional to N and NI), (8.17)

(Ohm’s law) (8.18)

If ρ = 1.8 × 10−8Ωm (copper at 37◦C) (8.19)

E =
1.8 × 10−8Ωm × N × 2.2AT × 3.5 × 10−3m

1.4 × 10−6m2 (8.20)

≃ 100NµV (8.21)

I =
NI
N

=
2.2
N

A (8.22)

Assuming that N = 1000, (N = the number of turns), (8.23)

Then, E ≃ 100 mV, I ≃ 2.2 mA and R ≃ 45 Ω. (8.24)

Wire diameter, dc =

√
4ac

π
=

√
4 × 1.4 × 10−6

Nπ
(8.25)

= 133 µm (8.26)

The wire diameter is about that of a human hair. The breaking force of such a thin
copper wire is about 6 N, and it would normally be wound with a tension of 0.5 N to
give a ’springback’ of less than 80° (BS EN 60317-0-1:2014+A1:2019).

The values calculated in 8.24 and 8.26 are acceptable values for a practicable design.

The required power, W = I2R =
(NI)2

N2
ρN2lc

Ac
=

ρ(NI)2lc

Ac
, (8.27)

which is independent of N. (8.28)

=
1.8 × 10−8 × 2.2 × 2.2 × 3.5 × 10−3

1.4 × 10−6 ≃ 217µW. (8.29)

To put the power requirement in perspective, the energy available from a 1.45 V size
13 hearing aid battery is about 400 mWh
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423287/), and it lasts typically
for one week in a conventional hearing aid that is worn for about 100 hours per week.
This means that the typical power consumption of a hearing aid is about 4 mW, and
the 200 µW consumption of an intracochlear actuator would amount to only a very
small increase. Assuming a reasonable overall efficiency of the system in converting
battery power input to electrical power in the actuator, the battery life would be
adequate. The system design would need, of course, to consider the transfer of the
driving voltage and current from the battery and processor unit, through the magnetic
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coupler at the scalp, along the electrode array to the actuator, but there appears to be
no problem of principle in doing so.

By using approximate estimates of sizes and other physical properties of the
components, it has been shown by two different methods that it should be feasible to
construct a permanent magnet balanced armature actuator that is capable of
producing the required pressure and velocity requirements, whilst being small
enough to fit inside a cochlear implant. Voltage, current and power requirements,
together with the tensile strength and heating of the wire needed for a magnetizing
coil, have been considered in reaching this conclusion. When the diaphragm and the
armature move, the changing magnetic field will induce an emf in the coil. Even
though the relatively high input impedance of the cochlea, compared with that of the
actuator, will limit the movement to a small fraction of that in air for the same
diaphragm pressure, it is shown in Appendix B that the linear velocity requirement of
2.2 × 10−3 m/s would not cause an excessive emf to be induced in the coil. It is also
shown there that the inductive voltage-drop caused by the coil will be small in
comparison with the resistive volt-drop in the coil.

8.6 General Requirements

For intracochlear acoustic stimulation to be fully feasible, it is necessary to show that
there is at least one actuator technology that is suitable for incorporation into a
cochlear implant so that the implant can be inserted without undue difficulty and
without damage to the cochlea. An important factor in such considerations is the need
for sufficient flexibility for the implant to follow the curve of the cochlea for about two
complete turns, while remaining rigid enough to avoid kinking or doubling back on
itself. Fortunately, the best place acoustically for an actuator is as close as possible to
the round window, as shown in previous chapters, and so the actuator would be
outside the cochlea for most of the insertion process. Furthermore, the curvature of
the cochlea is much less near the base than it is nearer the apex.

The two preceding Sections have shown, each independently of the other, that if a
suitably designed balanced armature actuator could be made small enough to fit in an
implant, it should produce sufficient acoustic pressure, velocity and displacement
over the required frequency range to meet the requirements. However, the overall
feasibility is dependent on techniques both to fabricate such a small device and to
insert an electrode array containing such a long, rigid device without causing damage
to the cochlea. Although it is reasonable to be optimistic that both techniques will
become available, it is prudent to explore alternative technologies that are not so
dependent on the availability of both of these techniques.

In the following section, the feasibility of using other technologies is explored.
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8.7 Other Potential Intracochlear Actuator Technologies

8.7.1 Ceramic and polymeric piezoelectric actuators

Using the material properties in Table 8.2, the feasibility of a piezoelectric transducer
is investigated in this subsection.

TABLE 8.2: Properties of piezoelectric materials. PZT is lead zirconate titanate, and
its properties are from Preument (2018), who has also provided those for polyvinyli-
dene flouride (PVDF). The terpolymer is poly(vinylidene fluoride-trifluoroethylene-
chlorotrifluoroethylene) 65/35/10% (PVDF-TrFE-CTFE); its properties are from Xu
et al. (2001) and from the PolyK manufacturuer’s web-site, whose URL is given in

the text

Material properties Unit PZT PVDF Terpolymer

Piezoelectric constants

d33 pC/N=pm/V 300 -25 -200
d31 pC/N=pm/V -150
uniaxial: d31 15
uniaxial: d32 3
bi-axial: d31 = d32 3
d15 pC/N=pm/V 500 0
e31 = d31/sE C/m² -7.5 0.025

Electromechanical coupling factors

k33 0.7
k31 0.3 0.1
k15 0.7

Dielectric constant ϵT/ϵ0 1800 10 60
Max. Electric field MV/m 2 500 400
Max. operating (Curie) Temp °C 80-150 90 92
Density kg/m³ 7600 1800
Young’s modulus 1/sE GPa 50 2.5 0.4
Maximum stress Traction MPa 80 200
Maximum stress Compression MPa 600 200
Maximum strain Brittle 50%

Assume 15 mm×0.32 mm×0.3 mm PZT or P(VDF–TrFE–CTFE) actuator, only moving
in the thickness direction.
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The mechanical stiffness of such a device, K =
E
L
=

F
A∆L

Where E = Young’s Modulus, and

F = force exerted

So that the acoustic impedance, Zacoustic =
p
q
=

F
jωA2∆L

=
K

jωA2

=
EA

jωA2L
=

E
jωAL

Assuming, A = 15 × 10−3 × 0.32 × 10−3

= 4.8 × 10−6 mm2

L = 0.3 × 10−3 m

Zacoustic =
E

jω × 4.8 × 10−6 × 0.3 × 10−3

=
E

jω × 1.44
GΩ

∆L = d33V, where

V = the applied voltage, and

d33 =
strain resulting

V
,

both measured in the material’s poling direction.

The voltage requirement is thus V =
∆L
d33

So the linear actuator velocity, vAC depends on only d33 and the maximum voltage that
can be applied to the piezoelectric element. This maximum voltage is determined by
the lesser of the maximum that can be accommodated within the implant and the
breakdown electric field strength of the material multiplied by the length of the
piezoelectric element, L. The acoustic impedance is dependent on only the Young’s
Modulus of the piezoelectric material and the dimensions of the piezoelectric element.

8.7.1.1 For PZT

(See Table 8.2, above, or table 4.1 in Preument (2018) for PZT properties),

Assume density = 1,780 kg/m3, mass = 1.78 × 103 × 10−6 kg

= 1.78 g

E = 50 GPa.

Internal Zacoustic =
E

jω × 1.44

= 17 × 1015Ω or Pas/m at 159 Hz,
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151 Hz is the frequency at which the cochlear impedance is a maximum, see Table 7.2.
At this frequency, the cochlear impedance at the actuator, ZC = 158 × 109Ω, and so the
actuator’s internal Zacoustic >> ZC. The actuator is therefore of much higher
impedance than the acoustic input impedance of the cochlea at the actuator, and so it
can be considered to be a constant velocity source.

From table 7.2, the maximum displacement, ∆L occurs at 100 Hz, with the value,
3.4 µm.

d33 = 3 × 10−10 m/V

V =
∆L
d33

=
3.4 × 10−6

3 × 10−10

= 12, 800 V

Electric field =
V

0.3 mm
= 43 MV/m

Dielectric breakdown strength of PZT = 6.7 MV/m

Because the required electric field exceeds the material’s breakdown strength, a simple
PZT transducer is inherently not feasible.

8.7.1.2 For P(VDF-TrFE-CTFE)

From Table 8.2, above or Xu et al. (2001), E = 0.4 GPa

Internal Zacoustic = − E
jω × 1.44

=
4 × 108

2π f × 1.44 × 10−9

= 1.34 × 1013Ω at 159 Hz.

Again, 159 Hz is the frequency at which the cochlear impedance is a maximum, see
Table 7.2. At this frequency, the cochlear impedance at the actuator, ZC = 151 × 109Ω,
and so the actuator’s internal Zacoustic >> ZC. The actuator is therefore of much
higher impedance than the acoustic input impedance of the cochlea at the actuator,
and so it can be considered to be a constant velocity source.
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From table 7.2, the maximum displacement, ∆L occurs at 100 Hz, with the value,
3.4 µm.

d33 = 2 × 10−10 m/V, at 20°C, graph slope Fig 2(b) Xu et al (2001)

V =
∆L
d33

=
3.4 × 10−6

2 × 10−10

= 19 kV at 100 Hz

Electric field =
V

0.3 mm
= 64 MV/m

Breakdown strength = 400 MV/m (PolyK)

http://www.polyk-lab.com/PVDF-TRFE-CFE-CTFE

For P(VDF-TrFE-CTFE), the driving voltage required would be excessive for both the
dielectric breakdown strength of the material and a reasonable voltage to be
accommodated within an implant. For P(VDF-TrFE-CTFE), the required electric field
would be less than the breakdown strength by a factor of five, but the driving voltage
would be excessive. However, the driving voltage, but not the electric field, could be
reduced by deploying a "sandwich" structure with alternate layers of piezoelectric
material poled in opposite directions, as in Figure 8.5, below.
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FIGURE 8.5: Diagram of "sandwich" transducer, with n piezoelectric layers of thick-
ness t, showing that for the same the electric field, E, the required overall extension of
length, ∆L, can be achieved with an applied voltage of V/n between each of the n lay-
ers, where V is the voltage required for a single layer actuator of the same height.
Reprinted/adapted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Vibration Control of Active Structures - An Introduction,

by André Preumont © (2018)

Piezoelectric materials contract with one polarity of electric field and expand for the
opposite polarity, according to which way they are poled. This allows the possibility
of the inversion of layers so that alternate layers are poled upwards and downwards,
and adjacent electrodes are of the same polarity, requiring no insulation between
electrodes. This allows nearly twice as many layers in the same height, and so nearly
halve the required driving voltage, because it is necessary to include only one metal
electrode between layers to make a connection to the power source.

Polymeric piezoelectric film is available commercially with thicknesses down to 3µm ,
and an electrode thickness of less than 1 µm is readily achievable. Such a film would
permit 75 layers in 300 µm, and hence a maximum driving voltage of about 250 V,
which is a great improvement over 19 kV, but still unacceptable for implantation.
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Unfortunately, although this "Sandwich" technique reduces the driving voltage
required, it does not overcome the problem of excessive electric field, because the
reduced driving voltage is applied to an equally reduced thickness of material. As a
result, this technology is not feasible to provide an implantable ceramic actuator that
meets the requirements determined in Chapter 7.2.

8.7.2 Axially constrained piezo membrane

As shown in Table 8.2, polymeric piezoelectric transducers are very much more
flexible than ceramics, but their relationships between displacement and driving
voltage (d33) are similar. Because they are flexible, it is easier to form them into
sinusoidal domes, so that elongation by the application of a longitudinal electric field
produces amplified transverse movement when the ends of the dome are constrained.
This opens the possibility of an actuator with a domed membrane that generates
enough transverse acoustic velocity to meet the requirements in Table 7.2. This has
been investigated, and the mathematics are set out in Appendix E.

FIGURE 8.6: Axially Constrained Polymer Piezoelectric Membrane Actuator

The conclusion is that such an arrangement would produce a transverse displacement
780 times greater than the longitudinal elongation of the membrane, without excessive
non-linear distortion. A transformation factor, ∆h

∆L , of 780 should be achievable for this
type of construction. This would reduce the driving voltage required from 19 kV to c.
25 V and the electric field from 64 MV/m to 82 kV/m. 25 V is acceptable within an
implant, if rather higher than desirable. However, a voltage gradient of 82 kV/m will
need to be contained within the implant and not allowed to enter the cochlear fluid.
This should be possible by applying a thin insulating layer of bio-compatible material
over the piezo membrane. The transformation factor of 780 is sufficient for an actuator
of this configuration to meet the requirements of Table 7.2 when small enough to fit
within an electrode array. This technology is feasible if an actuator of this type can be
made sufficiently small and it can be inserted without damage to the cochlea or itself.
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8.7.3 MEMS Xylophone (Cantilever) Technology

Zhao (2018) has successfully produced an implantable electro-acoustic transducer
sufficiently small to be incorporated into a cochlear implant. The device is designed as
a microphone, and so it is intended for lower power levels than would be needed for
an actuator. The technique uses bimorphs consisting of two 400 µm by 200 µm, 1.5 µm
thick layers of aluminium nitride semiconductor piezoelectric material with opposite
poling to form a cantilever, in which one wafer expands longitudinally and the other
contracts when a transverse electric field is applied, as does a bimetallic strip when it
is heated. As well as successfully testing the overall performance as a hydrophone in
the cochlea of a live guinea pig, Zhao had tested his completed device as an actuator
in water, and the sensitivity is 2 − 3 × 10−8 m/V, measured at the tip of each
cantilever; the mean displacement would be about half of this. To achieve the required
mean linear displacement of 3.8 µm, this would require around 250 - 400 V, which is
excessive to be contained within an electrode array, and the electric field within the
aluminium nitride would exceed its electric breakdown strength. The corresponding
electric field would be about 200 MV/m; the dielectric strength of aluminium nitride
has been measured by Ruemenapp and Peier (1999) to be a little over 20 MV/m for
AC fields and around 75 MV/m for DC in laboratory conditions.
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FIGURE 8.7: Photographs of the ultraminature MEMS xylophone transducer, showing
the four piezoelectric bimorph cantilevers. (From Zhao (2018), reproduced with per-

mission of the author.)

As it stands, this is not a feasible technology for the proposed purpose. However, the
constrained piezoelectric dome technology described in Subsection 8.6 would benefit
from the fabrication techniques described by Zhao, by exploiting the transformation
factor of the dome, instead of the cantilever and the much greater dielectric strength
and flexibility of polymers, while utilizing the fabrication technique and benefits of
d31 coupling with transverse excitation used in the MEMS cantilever.

Regarding scale, it is interesting to note that Tu et al. (2018) publish details of larger,
but otherwise similar cantilever transducers, 17.5 mm by 5 mm, 8 µm thick that "yield
useful mechanical output at low driving voltages below 100 V." The output
displacement is not specified in the text, but the graphs show it to be a few µm at 90 V
input, above the resonant frequency (c. 13 Hz).
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8.7.4 Attracted armature actuators without permanent magnets

It is possible to make an attracted armature actuator, similar to a Knowles or Sonion
actuator, but with no permanent magnet. The magnetic field generated by the current
in the coil around the armature causing the air gap to shorten and compression of the
spring of the armature. This arrangement has the advantage over balanced or
attracted armature actuators that it is less prone to the latch-up that can occur with
permanent magnet versions if there is enough force due to shock to cause the
armature to touch the poles of the magnet. This latch-up can be avoided or mitigated
by fitting non-magnetic caps over the poles of the permanent magnets, known as
shock-protectors, and so this advantage is considered to be minimal.

As before, pc = 910 Pa at 148 Hz, where it is greatest. (8.30)

Air-gap pressure = pg = pc
Adiaphragm

Agap
(8.31)

pgap =
1
2

µ0H2 Pa (8.32)

=
1
2

µ0
N2 I2

l2
g

Pa (8.33)

NI = lg

√(
2pc Adiaphragm

µ0Agap

)
(8.34)

Assume air-gap is 0.1 mm tall × 1 mm long × 0.32 mm wide. (8.35)

NI = 0.1 × 10−3

√(
2 × 910 × 15 × 10−3 × 0.32 × 10−3

4π × 10−7 × 1 × 10−3 × 0.32 × 10−3

)
(8.36)

= 0.1 × 10−3

√(
2 × 910 × 15
4π × 10−7

)
= 18AT (8.37)

Area of coil = > 12mm2 of coil cross section for 1.5 A/mm2 (8.38)

A coil with such a large cross-section would not fit inside a cochlear implant, and so
this technology is not feasible. Attracted armature actuators without permanent
magnets have few advantages over actuators that have permanent magnets, and they
require more current and power to achieve the required acoustic pressure level.

8.7.5 Moving coil actuators

Moving coil (dynamic) actuators use components similar to those in balanced
armature devices, but the smallest available designs generally occupy volumes very
much larger than balanced armature devices with similar outputs, because they are
mainly used in over-ear headphones, rather than in-ear earphones. They may have
some sound quality advantages when coupled to cochlear perilymph liquid, where
the acoustic load impedance is greater, and so the diaphragm velocity and
displacement is much less than for air-loading.
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FIGURE 8.8: Diagram of a Moving Coil Actuator reproduced with permission
of the copyright holder My New Microphone: https://mynewmicrophone.com/

how-do-headphones-work-illustrated-guide-for-all-hp-types/

Assume diaphragm area, Ad = 15 × 0.3 mm = 4.5 mm2

Force on coil = BlI

where: B = Flux density in air gap 1 T assumed

l = length of wire in the coil

≃ 2 × (15 + 0.3)× N turns ≃ 30N mm.

Pressure, pc = Force / diaphragm area

=
BlI
Ad

=
1 × I × 30N × 10−3

15 × 0.32 × 10−6 ≃ 670NIPa.

Required Pressure = 0.91 kPa

NI = 1.4 AT

Assume 1.5A/mm2, Area of winding = 0.9 mm2 of coil cross section

This cross-section is too large be fitted into the magnetic air-gap of such a device, and
the precision required for the positioning of the coil within the air-gap would be an
extreme challenge. The air-gap needs to be narrow, around 0.1 mm, to avoid the flux
spreading and B reducing, and the length of the coil is ultimately limited by the
diameter of the implant, which is around 1 mm; this limits the coil cross section area to
much less than 0.1 mm². This technology is not feasible, unless more optimistic
assumptions can be justified. Future work may provide such justification, and so
make this technology usable.

https://mynewmicrophone.com/how-do-headphones-work-illustrated-guide-for-all-hp-types/
https://mynewmicrophone.com/how-do-headphones-work-illustrated-guide-for-all-hp-types/
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8.7.6 Magnetostriction calculations

Terfenol-d appears to have the best magnetostrictive properties; it has a d33 of 6-10
nm/AT and a relative permeability, µr of 2-10. The properties of Terfenol-d have been
published by one of its manufacturers, TdVib LLC on their web-page:
http://tdvib.com/terfenol-d/. The actuator is assumed a cuboid piece of Terfenol
15 × 1 × 0.32 mm, this gives an actuator "diaphragm" area, Ad, of 4.8 mm2 and an
actuator length, lactuator of 1 mm. The effective length of the magnetic air-path, lair−path,
is assumed to be three times the 1 mm dimension of the actuator, lactuator. The number
of ampere-turns can be calculated from the maximum displacement given in Table 7.2.

Required displacement, ∆l = d33 × HTer f enol × lTer f enol m

Magnetic field strength required, HTer f enol =
∆l

d33 × lTer f enol
AT/m

= Hair−path × µr

Required ampere-turns = Hair−path × lair−path

Assume lair−path = 3 × lTer f enol

AT = 3HTer f enol × µr × lTer f enol

= 3
∆l × µr × lTer f enol

d33 × lTer f enol

= 3
3.4 × 10−6 × 2

10 × 10−9 = 2000 AT

Assume 1.5 A/mm2, Area of winding = 1500 mm2 of coil cross section.

Such a large coil could not be fitted in a cochlear implant, and so this technology is not
feasible, even assuming the most optimistic case of the smallest µr and the greatest d33.
The size of the coil could be reduced by an order of magnitude by placing a negligibly
magnetostrictive ferromagnetic bar parallel to the Terfenol to reduce the length of the
air-path. However, reducing the coil size by an order of magnitude would not make
this technology feasible.

8.7.7 Externally excited permanent magnet attracted armature calculations

The final technology considered is one in which the cochlear implant contains a
simple permanent magnet, which is made to vibrate by the magnetic field from a
current-carrying coil on the scalp or in the outer ear. (The axes of symmetry of the
magnet and the coil are to be approximately collinear.) This concept was suggested by
an ex-colleague and friend of the author, Dr B G Gaydon, whose contact details are
available from the author. This technology will cause significant electromagnetic fields
to be imposed on the scalp, skull and brain, as well as the inner ear and the auditory
nerve. However, the calculations in Appendix C show that such electromagnetic fields
are within the Exposure Limit Values stipulated in the European Council Directive



124 Chapter 8. Intracochlear Acoustic Stimulation Feasibility

2013/35/EU. An advantage of this concept to the design and development engineer is
that the necessary change to the implant is minimal and simple, and the external coil
can be readily changed if necessary for any reason (eg redesign or failure).

FIGURE 8.9: Diagram of the modelled cochlea with an implant containing an exter-
nally excited permanent magnet. This diagram is not to scale. The north pole of the
permanent magnet forms the top surface of the implant. the south pole is on the un-
derside of the magnet, and there is an air-space, or bubble below it so that the magnet
can move independently of the implant. The Actuator is composed of the magnet and

the bubble.

Assume a small permanent bar magnet fixed to an implant. Assume that it is 20 mm
from the scalp, where there is a 10 mm radius circular coil of wire. As shown in figure
8.9, the magnet would have pole faces 15 mm by 0.32 mm, and it would be 0.1 mm
"long" in the z direction. The axis of the implanted permanent magnet is assumed to
be collinear with the axis of the coil, and hence perpendicular to its diameter.

Calculations of the power demand and coil size of this type of actuator are set down in
Appendix F. The coil size that would be required is about 40 mm outside diameter
and 12.5 mm thick. The power requirement would be about 200 mW. Both of these are
technically achievable, but too great to be acceptable.

This power requirement would require a change of a size 13 battery too frequently, but
a larger battery pack within a pocket and connected by a thin cable would make this
feasible. Such a battery pack could be rechargeable overnight. Rechargeable AA cells
are available with a 2.85 Ah capacity; a battery of four of these would have a capacity
of 13 Wh, and would need charging after about 60 hours’ use. [It is, perhaps, worth
noting in this context that the first personal electronic hearing aid, made for Irene
Ewing by Thomas Littler in the 1930s weighed 28 pounds or 12.7 kg. Dawes (2014)]

Appendix C considers the potential health effects of the generated magnetic field on
the human body, using the EU Directive 2013/35/EU. The Appendix shows that the
arrangement described in this section would comply with the requirements of that
directive.
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Despite the heavy battery drain, this technology may be worth investigating further,
because of its simplicity, and since everything except the permanent magnet is
accessible without surgery, to enable design-change and repair. Furthermore,
manufacture would be possible without the need for the development of techniques
for fabrication of highly miniaturized components.

This technology is feasible with a suitably located battery pack, but improvements in
both size of external coil and power consumption are necessary to make it acceptable
for widespread use. Such improvements could include reducing the current required
to generate the required pressure by fitting a suitably sized and clad ferromagnetic
core to the coil, and inserting the core into the ear canal to reduce the length of the air
gap from the assumed 20 mm to about 10 mm. This would reduce the cross sectional
area of the coil and the power requirement by a factor of up to 4, or the power
requirement alone by a factor of up to 16. Its success would be dependent on the
geometry of the individual ear, particularly on there being an approximate right angle
between the ear canal and the basal turn of the cochlea.

8.8 Summary

A number of actuator technologies have been considered for use as intracochlear
transducers. Their feasibility has been assessed using both the requirements for such
an actuator derived in the previous chapter and theoretical estimates of their
capabilities. In addition a scaling study has been conducted for commercial hearing
aid "receivers", which supports the theoretical estimates. It is shown that although
some technologies do not appear feasible in this application, several are feasible if
their construction could be miniaturized, perhaps using MEMS technology. Feasible
technologies include the balanced armature, two piezoelectric geometries and an
externally excited intracochlear permanent magnet. Although feasibility could only be
definitively established by demonstrating a prototype, which is beyond the scope of
this thesis, the ability of several technologies to meet the requirements of an
intracochlear actuator, in principle, is encouraging.

The following actuator technologies have been considered, together with a note about
conclusions drawn regarding the feasibility of their producing the required acoustic
pressure and velocity:
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TABLE 8.3: Summary of the technologies considered and their feasibilities.

Actuator Technology Feasible Section Note
Balanced armature with permanent magnets Yes 8.5 1

Ceramic and polymeric piezoelectric No 8.7.1 2

Polymeric piezoelectric constrained dome Yes 8.7.2 3

MEMS xylophone (cantilever) No, but 8.7.3 4

Attracted armature without permanent magnets No 8.7.5 5

Moving coil No 8.7.6 6

Magnetostrictive No 8.7.7 7

Externally excited permanent magnet Yes, but 8.7.8 8

For an explanation of ’No, but’ and ’Yes, but’, see Note.

Notes on Table 8.3

1. Balanced armature actuators are established technology, which would be
feasible, provided both that they can be fabricated at the required scale and that
an electrode array can be satisfactorily inserted, when it contains a rigid device
between 1 and 16 mm from the round window.

2. Linear piezoelectric actuators are not feasible, because the electric field required
exceeds the electric breakdown strength of suitable piezoelectric material.

3. Piezoelectric actuators appear to be feasible if a thin film of the material can be
formed into a longitudinally constrained dome, whose longitudinal elongation
is limited so that a longitudinal electric field causes amplified transverse
movement. This technology is feasible provided both that the dome can be
adequately constrained, and that the electrode array can be inserted without
causing damage to either the cochlea or the dome.

4. MEMS cantilever actuators designed as microphones are probably not feasible as
actuators, because of the rather excessive voltage requirements (c. 300 V).
However, the proven fabrication technique of this type of microphone could be
beneficially investigated for use in combination with the constrained
piezoelectric dome technology.

5. Balanced armature actuators without permanent magnets are not feasible for
this purpose, because of the excessive current requirement that results in a coil
that would not fit into an electrode array.

6. Moving coil actuators are not feasible, because the axial length of the coil would
need to be too large to fit transversely into an electrode array.

7. Magnetostrictive actuators are not feasible, because they require excessive
currents.
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8. An actuator composed of a permanent magnet within an electrode array excited
by a coil attached to the scalp would be feasible, provided that an electrode array
containing a rigid magnet from 1 to 16 mm could be inserted without causing
damage to the cochlea. However, larger batteries in a separate battery pack
would be required, and there may be complications if an MRI scan is required
for any purpose after implantation.
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Chapter 9

Conclusions and Further Work

Post implantation loss of residual acoustic hearing can occur because stiffening of the
round window results from the presence of the implant that is inserted through it. A
new two-chamber finite element model has been developed from first principles that
quantifies the hearing loss resulting from this cause. This model has then been used to
calculate the optimum size and position of a compliant element, such as a bubble, that
would need to be incorporated into the cochlear implant to overcome the effect of
round window stiffening. The model has been used further to calculate the
requirements of an intracochlear actuator that could restore low frequency hearing to
that of a normal ear. Several different actuator technologies have been examined to see
whether a theoretically scaled actuator that would fit in an implant would be capable
of meeting the requirements.

9.1 Development of a Model

A model has been developed that can be used to compare the sensitivity of cochleas
with different mechanical properties. The characteristics of the upper and lower
chambers can be set independently. The relevant physiology of the ear is defined by
values entered into two text files that are read by the Matlab model as its input
variables. The same text files have been copied into the Latex code that has produced
this thesis, to ensure that the model and the thesis relate to the same cochlea. The
model takes into account middle ear, round window and aqueduct impedances,
together with cochlear fluid compressibility and the dimensions of the cochlea. The
model generates graphs of basilar membrane velocity and pressure difference in both
the spatial and frequency domains. The model can be readily scaled to facilitate the
simulation of prototype implants on non-human mammals.

The model includes a simplified method of calculating the round window impedance
and, for the aqueducts, a formulation based on the Hagen-Poiseuille formula that
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applies at all frequencies and avoids the need to decide whether the aqueducts are
tubes of "very small radius" or "intermediate radius". This avoids a factor of three
discrepancy in the resistance of the cochlear aqueduct at 100 Hz using the
"intermediate" formula, or a factor of 2.5 error for the vestibular aqueduct at 100 Hz
and a factor of four error at 1 kHz using the "very small" formula.

The model has been verified by comparison with previous single chamber models and
validated by comparison with the available measurements on humans and other
mammals.

9.2 Modelling an Implanted Cochlea

There is discrepancy between results predicted by the model and the measurements of
cochlear input impedance, which is explained by the lack of taper in the model. There
is also a slight underestimate of the hearing loss due to round window stiffening,
which is explained by modelling only the loss due to stiffening the RW, whereas the
measurements average the losses from all causes, including tissue damage. The model
can be used to simulate the mechanical effect of an implanted cochlea and to calculate,
as a function of frequency, the extent of residual acoustic hearing loss caused by
stiffening of the round window. The stiffening factor can be set by altering a number
in one of the input text files. Again, BM velocity and pressure can be calculated in the
spatial and frequency domains in a way that facilitates comparison with a normal ear.
The hearing loss caused by the stiffening of the round window is shown as a function
of frequency and compared with measured results.

9.3 Modelling a Cochlea Implanted with an Electrode Array
containing a Bubble

The model can be used to simulate the effects of introducing to the lower chamber an
implant containing a compressible element such as a bubble to test proposed remedies
for post-implantation loss of residual acoustic hearing. Graphs are produced in the
normal way to show the effects of different bubble positions and sizes on BM velocity
and pressure difference in the spatial and frequency domains; the graphs facilitate
comparison between a normal ear and one with a stiffened round window. Graphs are
also produced to show the effect of different bubble sizes on predicted hearing loss as
a function of frequency. This facilitates balancing the completeness of restoration of
residual hearing against the size of the bubble, and it is found that a bubble size of
about 1 mm³ reduces the loss of residual hearing from about 20 dB to about 5 dB, over
the frequency range of interest, and a bubble size of 5 mm³ reduces the loss to less
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than 1 dB 9as shown in Figure 6.18. Bubble parameters are set by entering the relevant
dimensions into a third text file that is read by the model.

9.4 Modelling Intracochlear Excitation

The model can be used to simulate the effects of acoustic excitation sources at various
axial positions within the implant. BM velocity and pressure difference are simulated
by the model in the spatial and frequency domains for actuators at different positions
and of different sizes, from which hearing loss is calculated as a function of frequency.
Graphs of these quantities are also produced to facilitate comparison of the predicted
effects of different actuator positions and sizes with those for a stiffened RW with no
actuator or bubble. The results are used to determine the pressure, velocity and
displacement requirements for an intracochlear actuator.

9.5 Determining the Requirements of an Actuator

A method has been developed to relate ear canal acoustic pressure in a deaf ear to that
in a normal ear, so that the same hearing sensation occurs in each case. This ear canal
pressure has been translated into an unloaded (Norton equivalent) middle ear volume
velocity using an existing lumped element model, and the present model has
converted that middle ear Norton velocity into a BM velocity at the characteristic
place. The model then calculates the velocity and pressure requirements of an
implanted actuator if it is to produce the same sensation in an implanted ear as would
a particular sound pressure level in the ear canal of a normal ear. The model produces
a table of requirements for the volume velocity of the actuator and the pressure that it
needs to generate.

These requirements have then been used to test the feasibility of using various types
of actuator as sources of intracochlear excitation. Eight potential technologies have
been considered, of which four appear to be feasible, subject to the development of
suitable designs and the acceptability of certain limitations.

9.6 Further Work

In order to achieve completion of the model in a reasonable time, it has been necessary
to make certain limiting assumptions before knowing what impact these assumptions
would have on the accuracy of the model.

The results of using the model have also revealed some areas of interest for further
investigation and ideas for improvement that there has not been time to pursue.
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All of these concepts are discussed briefly in the following Subsections.

9.6.1 Taper

The decision not to model the taper of the real cochlea has probably had more impact
on the model than any other of the assumptions made. Fortunately, the effect of
making this assumption has been limited, and it appears that the effect has been to
make the model pessimistic in its predictions of performance. The impact of not
including tapering has been to increase the impedance of the wave propagating from
the stapes to the characteristic place and returning to the round window. This, in turn,
has affected the cochlear input impedance and the normalized response of the
unloaded stapes velocity to BM velocity. The impact on the normalized response from
a velocity source actuator to the BM is less in the frequency range of interest, because
the distance that the wave has to travel is less. Including taper in the present model
would also improve its comparison with the Peterson and Bogert (1950) model, which
does include tapering.

9.6.2 Three Dimensional Modelling

The present model is a one dimensional model of a three dimensional cochlea. This
necessitates assumptions to be made and correction factors to be applied, without
accurate knowledge of the extent of the errors that these introduce. It also limits the
ability of the model to predict the effects of the position of the implant in the lower
chamber, which it is difficult to control during the surgical insertion process.
Extending the present model to three dimensions would enable assessment of the
importance of controlling implant position within the cross section of the lower
chamber for acoustic hearing purposes.

9.6.3 Chamber, Helicotrema and Implant Viscosities

Although including further viscosity calculations alone in the present model is
unlikely to have much impact on its results, it is possible that chamber and
helicotrema viscosity calculations would make more difference to results when the
model is enhanced to include taper.

It has been assumed that the presence of the implant in the lower chamber would
have little impact beyond that of causing stiffening of the round window. This is
because the speed of sound and the density of the silicone rubber of the implant are
both virtually the same as those of the perilymph. However, when taper is modelled
and chamber viscosity included, a more detailed examination may be merited of the
acoustic properties of implants, particularly the mechanical loss angle.
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9.6.4 Design and Manufacture

Clearly, the model will be of use to the world only if it leads to the design,
manufacture, fitting and user acceptance of improved implants. The next stage of this
is to obtain the interest of those with the necessary skills to begin the designing
process and progressing it to the point of testing prototype enhanced implants,
containing a bubble or an actuator, initially on an inanimate physical model of the
cochlea. The author is aware that the Target Fabrication Department of the Atomic
Weapons Establishment (at Aldermarston, Berkshire, UK) has a manufacturing facility
capable of making very small intricate objects, such as a 2 mm bicycle. This facility is
available to other organizations for research purposes. They have confirmed that they
could investigate this in principle, but, understandably, they could not make any
commitment until a more specific design is presented for manufacture. Their ability to
manufacture would depend very much on the detail of the design and the
requirements of the product. They do not provide design consultancy, and so the
design department of a manufacturer would need to be involved. Similar facilities
may be available at other establishments, such as the Catholic University of Leuven.
Because this thesis is concerned only with theoretical feasibility, this facility has not
been investigated further.

9.6.5 Modelling Excitation from the Round Window with an Actuator in
the Middle Ear

The model is capable of simulating a cochlea stimulated by vibrating the round
window, for example by attaching a middle ear implant to a cochlear implant. This
has not been pursued in this thesis, but it has the advantage of using two established
technologies that would need no more than the design of the interface where the two
devices are coupled, although such excitation would be complicated after
implantation by progressive stiffening of the round window. Investigation of this
matter could reasonably be undertaken in parallel with enhancing the model as
suggested in the two preceding subsections.

9.6.6 Masking

The frequency domain graphs output by the model show that at certain positions
along the cochlea the frequency that causes the maximum BM velocity is less than the
characteristic frequency for that place. This phenomenon is reflected in published
measurements of BM velocity or displacement in small mammals. It is possible that
this could contribute to the explanation of the masking by low frequency sounds of
those of higher frequency.
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9.6.7 Investigation of Techniques for Improving the Magnetic Coupling
between an Implanted Permanent Magnet and an External Coil

At a late stage in the project, it was suggested that an actuator could be constructed by
embedding just a permanent magnet in a cochlear implant and using a coil on the
scalp to vibrate it. This has been explored in this thesis and found to be feasible,
subject to its having a larger than usual battery. The need for such a large (pocket size)
battery arises from the huge air-gap between the permanent magnet and the coil. At a
later stage, it was suggested that improvements to the power consumption could be
made by decreasing the effective size of the air-gap and/or shaping the magnetic field
generated by the coil. These are outlined in Section 8.7. Unfortunately the suggestions
were made too late in the project to pursue them within the time-frame available, but
they could be the subject of further work.

9.6.8 Determination of Characteristic Place as a Function of Frequency in
Live Humans

As detailed below, there is a clear discrepancy between the frequency range of the
human ear calculated from measured values of BM elasticity, the best frequency
localization measured directly and the accepted KRM BM structure / travelling wave
theory. For many decades, there were few measurements in live humans of the
relationship between the characteristic place on the basilar membrane and the audio
frequency of excitation. Probably the most notable measurements were those of von
Békésy in 1942. Von Békésy also measured BM elasticity, and he reported his results in
Békésy (1941). The elasticity measurements were made over the range 3 - 30 mm of a
35 mm cochlea, and the range of measured elasticities over that range was close to two
orders of magnitude. The BM is traditionally considered to be a KRM (stiffness,
resistance, mass) structure with constant mass and damping along the length of the
cochlea, as modelled, for example, by Elliott and Ni (2018). In such a structure, the
resonant frequency at a particular place, and hence the best frequency, will be
proportional to the square root of the elasticity. For a uniform BM width, this means
that the best frequency range for the region 3 to 33 mm will be close to just one order
of magnitude. This will be increased by a factor of 3.3 for a typically tapered cochlea
(Wever (1949), to a factor of 33. The measured best frequency range for locations from
3 to 33 mm of a 35 mm human cochlea is reported by Greenwood (1990), with a little
extrapolation, as 12,500 to 50 Hz, which is a factor of 250. Resolving this disparity
would facilitate improvements both to the present model and to other finite element
models of the cochlea.

As described in Békésy (1952), reliable measurements of the elasticity of the BM are
possible, because the tissue does not change its mechanical properties post mortem, if
it is kept under water. However, his direct observation of BM vibration patterns were
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accomplished by drilling a hole in the bony wall of the cochlea. Békésy refers to the
difficulty of making such measurements. There would be benefit in having available
an easier, reliable technique for measuring best frequency localization.

Recently, much work has been done to develop tomographic methods that have the
spatial resolution and the speed to make accurate and reliable measurements, but
these methods require the use of costly equipment. Another possibility is to use the
tonotopic technique developed by Stevens et al. (1937) to determine the relationship
between frequency and characteristic place by measuring audiometrically the
frequency limen in live humans. Their work assumed a uniform distribution of
hair-cells along the organ of Corti, which subsequent published work, such as Wright
et al. (1987), has shown not to be the case, even in young adults. There is now an
opportunity to re-visit this work, with a view to developing an inexpensive and
ethical approach to measurements that would improve the understanding of cochlear
mechanics and be quicker and more economical than tomographic techniques.
Tomographic methods could be used to validate the results of measurements of the
frequency limen and its integration along the cochlea. The use of Greenwood’s
equation in the present model certainly gives a closer correspondence of modelled
characteristic place to measured results than an exponential taper, but it still leaves
plenty of room for improvement in relating cochlear action to the mechanical
properties of the basilar membrane, particularly elasticity. Now that a two chamber
distributed model has been developed, a more precise relationship between
characteristic frequency and cochlear location may be useful to designers of implants
and to the surgeons that control the depth of insertion into the cochlea.

Such further work would enable a revised version of the present model to use an
elasticity taper based on measured values of BM elasticity as an input. The present
model would then enable alternative theories of sensing and discrimination to be
tested for the audio frequency ranges where they may be more applicable, to see how
well each theory correlated with data from measurements of both best frequency
localization and BM elasticity.
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Appendix A

Deviations from Previous Models

This Appendix discusses various differences between the model developed in this
thesis and previously published models. Most of the differences clarify typographical
errors in previous reports, but slightly modified models for the round window and the
aqueduct impedances have been developed from first principles.

A.1 Calculation of Required Bubble Size

Initially, the unencapsulated bubble size of 0.15 mm3 recommended in Elliott et al
(2016) was loaded into the model, but the predicted reduction in hearing loss was not
as expected. On further investigation, it was discovered that the 0.15 mm3 figure in
the 2016 paper was too small by a factor of 100. The authors of the paper kindly
accepted that this was the case, and so larger, more compliant bubbles were modelled
from then onwards.

A.2 Differences found between input variable values and a
formula in Elliott and Ni (2018) and the associated Matlab
code

The minor difference found in a formula is that there is a minus sign after the equals
sign in equation 20 of the published paper, whereas the corresponding equation in the
code has no minus sign. The formula in the paper is considered to be correct, and so a
minus sign has been added to line 143 in the Matlab code for the purpose of making a
comparison.

In the paper, the BM width at the apex is 0.15 mm, whereas the Matlab script uses a
value of 0.2 mm. The final value used for the present model is 0.2 mm. The value in
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the paper of the average scala area is 0.8 mm, whereas the value used in the Matlab
script is 0.822 mm. The value used by the script is now used in the present model for
the comparison.

These differences are trivial for most purposes, but they are noticeable when making a
comparison of the results of two models.

A.3 Interpretation of the Law of Conservation of Momentum

Equation (12) in Elliott and Ni (2018) is written:∣∣∣∣∂p(x)
∂x

∣∣∣∣
x=0

= iωρv1 (A.1)

This is difficult to understand without further explanation, because
∣∣∣ ∂p(x)

∂x

∣∣∣
x=0

is the x
direction component of the pressure gradient, which is a vector whose direction is
along the x axis. In contrast, v1 (the BM velocity) is a vector in the z direction. A strict
interpretation of the Law of Conservation of Momentum means that the horizontal
velocity of the fluid, u1, rather than the vertical velocity of the BM, v1, is related to the
pressure gradient by the equation∣∣∣∣∂p(x)

∂x

∣∣∣∣
x=0

= iωρ |u1|x=0 (A.2)

However, if |u0|x=0 = 0 when the stapes/oval window is locked, the Law of
Conservation of Mass (and hence Volume for an incompressible fluid) provides a
relationship between v1 and u1:

v1B∆ = ACHu1 (A.3)

Where B = Effective chamber height

∆ = BM element length

ACH = Chamber area = Bh

and so: u1 =
∆v1

h∣∣∣∣∂p(x)
∂x

∣∣∣∣
x=0

=
∆
h

iωρv1 (A.4)

Strictly this is correct only when dv
dz is constant, but this will be a very close

approximation when the wavelength is >> h, which will be so for all frequencies
within the audio range. Equation (A.4) appears to be more in accordance with the Law
of Conservation of Momentum than equation (12) in Elliott and Ni (2018).
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A.4 Modelling the Impedance of the Round Window

Nakajima et al. (2009) found that, as frequency was increased above 500 Hz, the rate of
increase of round window impedance became asymptotic to 3 dB per octave, and the
phase of the impedance became asymptotic to 45 degrees. They concluded that the
acoustic resistance of the round window is proportional to the square root of
frequency and the inertance or inductance is inversely proportional to the square root
of frequency. They went on to model this as a network of 6 parallel branches, each
containing a resistance and inertance in series, with values determined by a Foster or
Cauer network iterative process. Frear et al. (2018) have adopted the same approach.
Elliott et al (2016) use a single resistance value that is independent of frequency. The
present model differs by modelling the resistance and inertance as being proportional
and inversely proportional to the square root of frequency, respectively. This approach
is simpler than the iterative technique (for both understanding and modelling), and it
produces results that are slightly closer to the mean of the measured values reported
in Nakajima et al. (2009). In Nakajima et al.’s paper, Figure 13 shows that the
measured results are generally less than those modelled in the frequency range of
interest; the present model produces results less than their model in this range, and so
closer Nakajima et al.’s measured results.

1.00E+09

1.00E+10

1.00E+11

100 1000 10000
FREQUENCY

|Z|

Nakajima Model
Present Model

FIGURE A.1: Comparison of Round Window Impedance Calculations using Foster or
Cauer Networks used by Nakajima et al. (2009) and Simpler

√
f Method used in the

Present Model.
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FIGURE A.2: Round window impedance, |ZRW|=|PST/UStap| is plotted with a
black line for the mean and dotted lines for the standard deviation. Below 300 Hz,
ZRW behaves as a compliance. Above 300 Hz, ZRW becomes dominated by inertia
and resistance. This behavior is consistent with distributed loss and inertia, wherein
impedance increases as approximately the square root of frequency much as in a sys-
tem with “skin effect.” Behavior of a lumped parameter model for this system is plot-
ted with a gold-colored line. The graph shows that the mean of the measured data is
smaller than the modelled values over the frequency range 100 - 1000 Hz. Reprinted
by permission from Springer Nature, JARO - Journal of the Association for Research
in Otolaryngology, from Differential intracochlear sound pressure measurements in

normal human temporal bones,Nakajima et al., © 2009

Xue et al. (2020) derive the round window impedance values for their model from
Frear et al. (2018), but neither paper specifies the values that they have used for the
resistances or inertances in each of the six network branches. The present model uses
the model of the ear in Xue et al. (2020) to calculate only the relationship between ear
canal pressure and unloaded stapes velocity.

A.5 Calculation of the Impedances of the Aqueducts

The cochlea has two aqueducts: the cochlear aqueduct and the vestibular aqueduct.
The former equalizes perilymphatic pressure between the cranial cavity and the scala
tympani and hence the scala vestibuli, via the helicotrema. The latter equalizes
endolymphatic pressure between the scala media and the endolymphatic sac. The
cochlear and vestibular aqueducts have the effect of adding lumped inertance and
damping to the cochlea near the round and oval windows, respectively.

All but one of the previous cochlear models studied calculate the impedances of the
aqueducts using the formula for tubes of very small radius given in Beranek (1954).
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Beranek’s criterion for a tube being of very small radius depends on the frequency, f ,
and it is that the radius, a < 0.002/

√
f . It is clear from Beranek’s text that this

criterion is for air at 100 kPa and 20 ◦C. This criterion is derived from the boundary
layer thickness, given by δ =

√
µ

ωρ , where µ is the co-efficient of viscosity, which will
be different for different fluids, and it is assumed to be that of water for cochlear
fluids. The ratio of boundary layer thickness in water at 37 ◦C to that in air at 20 °C is
0.21. This means that the corresponding criterion for cochlear fluids (whose viscous
properties closely resemble those of water) is a < 0.00042/

√
f . It is assumed that

Beranek was using the metre as the unit of length and the Hz as the unit of frequency.
If the frequency range of interest is 100 Hz to 1 kHz, then the criterion becomes
a < 0.042 mm to a < 0.0133 mm. As observed by Elliott et al. (2016), neither aqueduct
meets this criterion in the frequency range of interest, because the smallest aqueduct
radius used in the models studied is 0.075 mm. All of the models, including that
developed in this thesis, refer to Stenfelt (2015) for vestibular aqueduct dimensions
and to Gopen et al. (1997) for those of the cochlear aqueduct.

As stated in Chapter 5, the dimensions used for the aqueducts are:
Radius length Units

Cochlear Aqueduct 0.075 10 mm
Vestibular Aqueduct inner 0.15 1.5 mm
Vestibular Aqueduct outer 0.3 8.5 mm

The calculations of aqueduct impedances in Appendix B of Elliott et al. (2016) are
based on the formula given by Beranek (1954) for tubes that meet his criterion for
intermediate sized tubes, which is a > 0.01/

√
f for air, which becomes

a > 0.0021/
√

f for the water-like cochlear fluids. For the frequency range of interest,
this amounts to a radius of 2.1 mm at 100 Hz and 0.66 mm at 1 kHz. However, the
largest radius used in both this and the other models is 0.3 mm, and so this criterion is
also not met. (NB. The 1954 edition of Beranek’s book and the 1987 reprint both
misprint this criterion as a < 0.01

√
f , whereas the 2012 edition, Beranek and Mellow

(2012), written jointly with Mellow has corrected this to a < 0.01/
√

f .) This means
that the aqueducts have diameters that lie between those suitable for calculating their
impedances using Beranek’s formulae for very small and intermediate sized tubes.
The significance of using either formula where the relevant criterion is not met
depends on both the frequency range of interest and the purpose of the modelling. It
is clear that the two aqueducts qualify under Beranek’s criteria for small tubes at only
the lowest audio frequencies, and it is also clear that they qualify as intermediate
diameter tubes in only the upper frequencies of the audio range. At frequencies at
which residual acoustic hearing is impaired by implantation, the aqueducts have radii
between those that meet Beranek’s criteria for very small and intermediate tubes.
Beranek states that interpolation is necessary in such circumstances to determine the
aqueduct acoustic resistances, but he offers no formulation for doing so. To address
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this and to avoid any significant inaccuracy in the present model from applying the
wrong formula, the Hagen-Poiseuille formula has been used. This can be applied to a
tube of any radius less than, say, 0.1λ where λ is the wavelength. Ostadfar (2016) has
applied this formula to an oscillating flow in a circular tube, to give the volume
velocity,Qφ (t) in terms of the driving pressure, P0(t) as:

Qφ (t) =
∫ a

r=0
2πrUφ (r, t)dr =

iπP0a2

ρωl

1 −
2J1

(√
i ρω

µ a
)

√
i ρω

µ aJ0

(√
i ρω

µ a
)
 eiωt (A.5)

Where:

Qφ =volume velocity of oscillatory flow
Uφ (r, t) = linear velocity of oscillatory flow
P0 = peak acoustic pressure
l = tube length
a = tube radius
ρ = density
ω = angular frequency
µ = dynamic viscosity

J1 is a Bessel function of the first order
J0 is a Bessel function of zero order.

If
√

iρω
µ is written as kv, then equation A.5 can be written:

Qφ (t) = Q0eiωt =
−iπP0a2

ρωl

(
1 − 2J1 (kva)

kvaJ0 (kva)

)
eiωt (A.6)

(kv is equal to

√
i

δ
, where δ is the viscous boundary layer thickness.)

From this equation, the acoustic impedance of an aqueduct due to viscous dissipation,
Zv can be calculated as:

Zv =
P0

Q0
=

ρωl
iπa2

(
kvaJ0 (kva)

kvaJ0 (kva)− 2J1 (kva)

)
(A.7)

The analysis by Beranek and Mellow is similar to Ostadfar’s, but it is more
comprehensive (and harder to follow), because it also considers molecular slip, which
is not significant for liquids. Some details in the derivation in Ostadfar (2016) are
unclear. On further examination, two typographic errors have been found in equation
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1.67 of Ostadfar (2016)1 To address this, Matlab has been used to calculate the
aqueduct resistances for the present model, according to the corrected Ostadfar’s
formula for viscous losses, and then enhanced to account for thermal losses, as
described below.

FIGURE A.3: Cochlear and Vestibular Duct Resistances. Whereas the approximations
for small or intermediate sized tubes have been used in previous models, the more

accurate Poiseuille formula has been used in the present model.

Beranek and Mellow’s formulae for the resistances of very small tubes (R constant
with frequency) and intermediate tubes (Rα1/ f ) are comparable with Ostadfar’s
formula, for the two aqueducts, when they have sizes corresponding to the means of
the measurements by Gopen et al. (1997) and by Clemis and Valvassori (1968).

The mathematics in Beranek and Mellow (2012) is the same as the Poiseuille formula
for tubes of radius in the range covering the aqueducts, but Elliott et al. (2016) state
that Beranek has assumed a factor of two increase in the boundary layer thickness,
because of thermal losses in air that do not occur in water. Beranek and Mellow (2012)
compute the acoustic resistance due to viscosity alone in their equation 4.23 as

RA =
l
a

√
2ωρ0µ

πa2 Nsm−5 (A.8)

11. For pulsatile flow the velocity, Qφ , must be a function of the pulsatile pressure, Pφ, and not the
static pressure, Ps. 2. The total volume velocity into the tube cannot be a function of the radius at which
it is measured, and so the argument of the first order Bessel function should be Λ, rather than ζ. After
correcting these two errors, this equation becomes consistent with equations 4.197 and 4.198 in Beranek
and Mellow (2012), and it gives results identical with those obtained using an alternative formulation for
oscillatory flow determined by the Hagen-Poisseuille equation in Wikipaedia.
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This is the acoustic resistance for an intermediate-sized tube. This is equivalent to the
real part of the specific impedance, ZV , given in their equation 4.251

RV =
1
a
√

2ωρ0µ Nsm−3 (A.9)

RV is defined in their equation 4.248 as being the real part of ZV , and immediately
following their equation 4.241, they state that the first [real] term is the resistance due
to viscous flow. It is therefore concluded that their equation 4.23 and Beranek (1954)’s
equation 5.54 make no allowance for thermal losses, and so it is not necessary to
double the resistance as Elliott et al. suggest.

To be more precise, the Prandtl number needs to be used to calculate the thermal
losses or diffusivity and to increase the aqueduct resistance accordingly. The Prandtl
number is defined as the ratio of dissipation by momentum to dissipation by thermal
conductivity. Baumgart (2011) gives the same formula for calculating the Prandtl
number as Beranek and Mellow (2012), which is:

Pr = Cpµ/kth (A.10)

In this equation Cp is the specific heat at constant pressure, kth is the thermal
conductivity, and µ is the dynamic viscosity (NB η is used elsewhere). Baumgart
(2011) gives the Prandtl number for water as ≈ 10, at 20◦C. When this is calculated for
a temperature of 37◦C using his formula, then Pr = 4.71. The total dissipation and
hence the total acoustic duct resistance is assumed to be related to the resistance due
to viscosity alone by the equation:

Rtotal = Rviscous

(
1 +

1
Pr

)
(A.11)

This is an approximation, because the thermal losses may modify the flow profile
across the tube, and hence change the viscous losses. However, if the thermal losses
are only about 20% of the total, the resultant error is unlikely to have much overall
significance in the modelling of a minor component of the inner ear. Using this
relationship, and the value of Pr calculated for 37◦C,

Rtotal = Rviscous

(
1 +

1
4.71

)
= 1.21 (A.12)

This value is used in the present model. The resultant aqueduct impedances have
been calculated as functions of frequency by adding the inertance of the fluid and the
stiffness of the cranial cavity that terminates each aqueduct; the impedances are
shown graphically in Figure A.4.
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FIGURE A.4: Cochlear and Vestibular Duct Impedances Calculated by the Present
Model.
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Appendix B

Transducer Characteristics of
Miniaturized Balanced Armature
Actuators

FIGURE B.1: Diagram of a Balanced Armature Actuator, with the assumed dimensions
used in the calculation of its sensitivity.
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B.1 Calculation of the Electrical to Acoustic Transduction
Coefficient, T2

From equation 8.8:

Cochlear Pressure, pc = Force/diaphragm area =
2AgBpNI

Adlg
(B.1)

= T2 I (B.2)

Where Ad = the diaphragm area.

I = Actuator current.

T2 =
2AgBpN

Adlg
=

2 × 0.3e − 6 × 1 × 1000
3.2e − 6 × 0.1e − 3

= 1.875e6 (B.3)

Where T2 is the cochlear pressure, pc, when unit current is injected into the electrical
input, and the acoustic output is blocked, so that the diaphragm does not move.

B.2 Calculation of the Electrical Impedance

The resistive part of the electrical impedance is calculated in Section 8.5. The inductive
part of the electrical impedance is that caused by the magnetization of the magnetic
circuit, which becomes the locked ’rotor’ impedance, when the resistive voltage drop
of the coil is added to it. If the mmf of the ferro-magnetic components is neglected, the
inductive, or magnetizing impedance will be controlled by the number of turns and
the geometry of the air-gaps.

E ≃ N
dΦa

dt
= NωBAg for each air-gap, and also overall, (B.4)

there are two series pairs of air-gaps, in parallel with each other.

≃ iωµ0N2 Ag

lg
I (B.5)

Zinductive =
E
I
≃ iωµ0N2 Ag

lg

Numerically, Ag = 1 mm × 0.3 mm = 0.3 × 10−6 m2

Bp = 1 T

N = 1000

Ad = 15 mm × 320 µm = 4.8 × 10−6 m2

lg = 0.1 mm = 0.1 × 10−3 m

Zresistive = 45 Ω, from Equation 8.24 (B.6)

Zelectrical = Zresistive + Zinductive = 45 + 1.38 × 10−3iω Ω (B.7)
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It can be seen from this that the imaginary part, Zinductive, very much the minor term
within the frequency range of interest (ω = 628 to 6283 rad/s. (For simplicity in
Section 8.3, Zelectrical is considered to be only its resistive part. Its inductive part is less
than 20% of its resistive part within the frequency range of interest, and so the
maximum error arising from this is 2%. This is considered adequate accuracy for
considerations of feasibility, but for completeness, the reactive term is taken into
account in calculating the overall actuator impedance.)

B.3 Calculation of the Acoustic to Electrical Transduction
Coefficient T1

When the diaphragm and the armature move, the changing magnetic field will induce
an emf in the coil. Even though the high impedance of the cochlear fluid will limit the
movement to a small fraction of that in air for the same diaphragm pressure, it is
advisable to check that the linear velocity requirement of 2.2 × 10−3m/s would not
cause an excessive emf to be induced in the coil. The emf will be:

E = N
dΦa

dt
= N

dBa

dt
Aa,

Where Φa = flux,

Ba = flux density and

Aa = area of the armature.

The flux in parallel paths of a magnetic circuit divides in inverse proportion to the
reluctance of each path, when there is no difference in the currents surrounding the
parallel paths. Assuming that the reluctances of all parts of the magnetic circuits
except the air gaps are negligible, this means that the flux in the armature will be
related to the lengths of the air-gaps. If the air-gaps are all of length lg when the
armature is held centrally between the poles of the magnets, and they change to two
gaps of length l + δl and two of l − δl when the armature and the diaphragm move,
then the flux in the armature and the emf that it induces in the coil will be given in
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terms of the flux from the permanent magnet, Φp by the equations:

Φa = Φp

(
2lg

2
(
lg − δlg

) − 2lg
2
(
lg + δlg

)) = Φplg

(
lg(

lg − δlg
) − lg(

lg + δlg
))

= 2Φplg

(
δlg

l2
g −

(
δlg
)2

)
≃

2Φpδlg
lg

, assuming that
∣∣δlg

∣∣≪ lg,

Where Φp = total flux from the permanent magnet.

Φp = Bp Ag

Φa ≃
2Φpδlg

lg
≃

2Bp Agδlg
lg

E = N
dΦa

dt

E ≃ 2NBp Ag
d
(
δlg
)

dt
, assuming that Bp remains constant with δlg,

and hence with time.

d(δlg)
dt will be equal to the linear velocity of the diaphragm. The induced emf is given in

terms of the linear velocity by the following equation:

E ≃
2NBp Ag

lg
vd, (B.8)

≃
2NBp Ag

lgAd
qd, (B.9)

Where vd = diaphragm linear velocity = 2.2 × 10−3 m/s. (B.10)

Where qd = diaphragm volume velocity = 10 × 10−9 m/s. (B.11)

Using the same values as used above : (B.12)

E ≃ 14 × 10−3 m2 T/s ≃ 16 mV. (B.13)

This emf is less than the 100 mV emf required to drive the required current through
the resistance of the coil, and so it can be neglected in calculations of the voltage and
power requirements.

Adopting the convention that vd is positive when a positive current is driving the flow
into the cochlea, then the back EMF is given by Equation B.8:

Back EMF, E ≃
2NBp Ag

lg
vd ≃

2NBpAg

Adlg
qd, (B.14)

Where vd = diaphragm linear velocity

qd = diaphragm volume velocity, and so (B.15)

T1 = −
2AgBpN

Adlg
= −2 × 0.3e − 6 × 1 × 1000

3.2e − 6 × 0.1e − 3
= −1.875e6 (B.16)

Where T1 is the open circuit voltage at the electrical terminals when unit volume
velocity is injected into the actuator from the cochlea.
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B.4 Calculation of the Acoustic Impedance

Sun and Hu (2016) have published a lumped element model of a balanced armature
receiver, which calculates a resonant frequency of 2958 Hz for the first mode. They do
not specify the overall volume of the receiver, but it appears to be reasonably similar
in size to a Knowles FK series, which has a volume of 26 mm³. Knowles actuators
show a reasonable correlation (R²=0.66) between resonant frequency and the
reciprocal of the fifth root of volume. By scaling in this way, a resonant frequency of
about 5 kHz is obtained for a 1.5 mm³ actuator.

FIGURE B.2: Loglog Graph of Transducer Resonant Frequency as a Function of Vol-
ume, showing Regression Line and Equation

The mechanical stiffness of their model is 727 N/m and the mass is 2.11 mg. The
stiffness will be inversely proportional to the volume, because the rear volume of the
actuator is the principle contributor to the stiffness, and so the mechanical stiffness of
a 1.5 mm³ actuator is 12.6 kN/m; the corresponding acoustic stiffness is 547 TPa/mm³
for a 4.8 mm² diaphragm. However, the mass of the armature and diaphragm will not
scale according to the volume, because their thicknesses cannot be scaled. It is difficult
to scale the magnetic circuit and to ensure sufficient magnetic flux can be transferred
from the permanent magnet(s) to the air-gap(s) without saturation. The thickness of
the diaphragm will need to be sufficient to keep it rigid, so that the force applied at a
point will result in widespread deflection. It is therefore assumed that the moving
mass will be inversely proportional to the volume raised to the power of about 0.6 for
a Knowles or Sonion type actuator, so that the resonant frequency scales as shown in
Figure B.2. Using this scaling for the 2.11 mg mass calculated by Sun and Hu matches
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reasonably closely the mass calculated from the size of the actuator and diaphragm in
Figure 8.4. The value assumed for the mechanical mass is 2.4 mg, which is an acoustic
inertance of 104 kPa/m³ for a diaphragm area of 4.8 mm².

Stiffness, k = mω2
res = 2.4 × 10−6 × (2 × π × 5 × 103)2 = 12.6 kN/m (B.17)

=
12.6 × 103

(4.8 × 10−6)2 = 547 TPa/m³ for a 4.8 mm² diaphragm. (B.18)

Zacoustic = 104 × 103iω − 547 × 1012i/ω Ω (B.19)

= 0.1i − 569i ≃ −548i GΩ at 159 Hz (B.20)

B.5 Calculation of the Internal Impedance of the Actuator

Zinternal = Zacoustic −
T1T2

Zelectrical
(B.21)

T2 = −T1 = 1.875e6 (B.22)

Zinternal = Zacoustic −
T1T2

Zelectrical
(B.23)

Zelectrical = 45 + 1.38 × 10−3iω Ω, from Equation B.7

Zinternal = 104 × 103iω − 547 × 1012i/ω +
(1.875e6)2

45 + 1.38 × 10−3iω
GΩ (B.24)

= 78 − 550i GΩ at 159 Hz, and (B.25)

= 75 − 563i GΩ at 980 Hz. (B.26)

The maximum cochlear input impedance magnitude at the actuator calculated by the
present distributed model is 151 G acoustic ohms at 159 Hz.
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Appendix C

The Health Effects of a Magnetic
Field from a Scalp-Mounted Coil

Table A1 of Directive 2013/35/EU of the European Parliament and of the Council of
26 June 2013 requires that static magnetic fields (from 0 to 1 Hz) are limited to 2 T, to
avoid sensory effects. (There is a greater limit of 8 T to avoid health effects that applies
in controlled conditions.) The Action Levels in Table B2 for alternating magnetic fields
are frequency dependent, but the lowest limit within the audio frequency range is
100µ T. The assumed field from the permanent magnet is 1 T, which is within the limit
for a static magnetic field. With 307 AT in the coil, the magnetic flux density at the
centre of the coil (z = 0), where it is greatest would be:

Bcoil = µ0H =
µ0NIa2

2(z2a2)
3
2
=

4π × 10−7 × 307 × a2

2(0 + a2)
3
2

=
4π × 10−7 × 307

2a
(C.1)

=
4π × 10−7 × 307

2 × 10 × 10−3 ≃ 19 mT (C.2)

This greatly exceeds the Action Levels of 100 - 1000 µT for the audio frequency range.
However, these Action levels apply to whole body exposure, and they are intended as
a simplified way of specifying large scale magnetic fields, such as that from an electric
generator. For small scale fields the Directive requires more precise calculations or
measurements of the electric field induced by the magnetic field, to ensure that the
Exposure Limit Values specified in Tables A2 and A3 of the Directive are not exceeded.

The Exposure Limit Value to avoid sensory effects for electric fields in Table A3 of the
Directive is 2 × 10−3 f Vm−1 between 25 Hz and 400 Hz. Above that frequency, the
ELV to avoid health effects is stricter, and it is 0.27 × 10−3 f Vm−1 from 1.64 kHz to 10
MHz. Between 400 Hz and 1.64 kHz, the E / f limit tapers. In all cases, the maximum
electric field calculated here is less than the Exposure Limit Value stipulated in the



154 Appendix C. The Health Effects of a Magnetic Field from a Scalp-Mounted Coil

Directive. The Exposure Limit Values for electric fields in the Directive are specified as
peak values, whereas those used in this document are RMS values throughout; in
transcribing the values from the Directive, they have been adjusted to RMS values for
sinusoidal waveforms.

The electric field, E is related to the magnetic vector potential, A by the equation:

E = −dA
dt

− gradV (BandB eqn 6.6)

In the absence of significant electrostatic charges,

gradV = 0, and so

E = −dA
dt

Assuming a coil with a single turn, A is a function of the current in the coil, given by
the equation:

A =
µI
4π

∫ ds
r
(Bleaney and Bleaney (1965) eqn 5.49), where

µ = magnetic permeability at the point of measurement = µrµ0

I = current in the coil

ds = a vector element of the coil carrying current

r = distance between the current carrying element and the measurement point.

By symmetry, A will be independent of the angle, Φ subtended at the centre of the
coil, between the point of measurement and the x axis. For simplicity, the point of
measurement is chosen to be vertically above the x axis, so that its y co-ordinate is
zero.

Calculation of A on the surface of the coil is difficult, because the current density
distribution within the wire then needs to be considered, rather than considering the
current to be concentrated in a filament of negligible radius. To keep the calcuation as
simple as possible, a point of measurement is chosen to be a distance of 1 mm above
the coil, which is one tenth of the radius of the coil, and which is assumed to be much
greater than the diameter of the wire. 1 mm is a reasonable estimate of the thickness of
the encapsulation that would separate the coil from human tissue. The x, y and z
co-ordinates of the point of measurement are a, 0 and 0.1a, respectively, where a is the
radius of the coil.
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Because the current lies only in the plane where z = 0, dsz = 0, andAz = 0.Ax is given
by the equation from Bleaney and Bleaney:

Ax =
µI
4π

∫ 2π

0

−a sin ϕdφ

r(φ)

=
µI
4π

[∫ π

0

−a sin φdφ

r(φ)
+
∫ π

0

−a sin(−φ)dφ

r(−φ)

]
By inspection, r(−φ) = r(φ), and

sin(−φ) = − sin(φ), andso

Ax = 0

The equation for Ay given by Bleaney and Bleaney (1965) is:

Ay =
µI
4π

∫ 2π

0

a cos φdφ

r(φ)

r(φ) =
√

a2 + z2 − 2az cos φ, if z = 0.1a,

then r(φ) =
√

1.01a2 − 0.2a2 cos φ

= a
√

1.01
√

1 − 0.2 cos φ/1.01

≃ 1.005a
√

1 − 0.198 cos φ

Ay ≃ µI
4.02π

∫ 2π

0

cos φdφ√
1 − 0.198 cos φ

(1 + x)n =
∞

∑
k=0

(
n
k

)
xk

=
∞

∑
k=0

(
n!

k!(n − k)!

)
xk =

∞

∑
k=0

(
nn ( 1

n n
)
!

n(n−k)
( 1

n n − 1
n k
)
!

)
xk

k!

=
∞

∑
k=0

 (−1
n k − 1

)
!(−1)k(−1

n

)(2k−1)
(k − 1)!

 xk

k!

If n = −1
2

;
−1
n

= 2

(1 + x)−
1
2 = 1 +

∞

∑
k=1

(2k − 1)!(−1)kxk

2(2k−1)(k − 1)!k!
= 1 − x

2
+

3x2

8
− 5x3

16
+

35x4

128
− · · ·

(1 − x)−
1
2 = 1 +

∞

∑
k=1

(2k − 1)!xk

2(2k−1)(k − 1)!k!
= 1 +

x
2
+

3x2

8
+

5x3

16
+

35x4

128
+ · · ·

If x = 0.198 cos φ

Ay ≃ µI
4.02π

∫ 2π

0

(
1 +

∞

∑
k=1

(2k − 1)!(0.198 cos φ)k

2(2k−1)(k − 1)!k!

)
cos φdφ

≃ µI
4.02π

∫ 2π

0
cos φdφ +

µI
4.02π

∫ 2π

0

∞

∑
k=1

(2k − 1)!(0.198 cos φ)k

2(2k−1)(k − 1)!k!
cos φdφ
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µI
4.02π

∫ 2π

0
cos φdφ = [sin φ]2π

0 = 0

Ay ≃ µI
4.02π

∫ 2π

0

∞

∑
k=1

(2k − 1)!(0.198 cos φ)k+1

2(2k−1)(k − 1)!k!
dφ

Ay ≃ µI
4.02π

∫ 2π

0

∞

∑
k=1

(2k − 1)!0.198k+1 cosk+1 φ

2(2k−1)(k − 1)!k!
dφ

=
µI

4.02π

∞

∑
k=1

(2k − 1)!0.198k+1

2(2k−1)(k − 1)!k!

∫ 2π

0
cosk+1 φdφ

∫ 2π

0
cosk+1 φdφ =

[
1

k + 1
cosk φ sin φ

]2π

0
+

k
k + 1

∫ 2π

0
cosk−1 φdφ[

1
k + 1

cosk φ sin φ

]2π

0
= 0∫ 2π

0
cosk+1 φdφ =

k
k + 1

∫ 2π

0
cosk−1 φdφ;

When k + 1 is even:∫ 2π

0
cos2k φdφ = η(k)

∫ 2π

0
dφ = 2πη(k),

where η(k) is a function of only k.

When k + 1is odd :∫ 2π

0
cos2k+1 φdφ = η(k)

∫ 2π

0
cos φdφ

= [η(k) sin φ]2π
0 = 0;

and so all odd powers of cos φ integrate to zero

over the interval 0 to 2π.
∞

∑
k=1

∫ 2π

0
cosk+1 φdφ =

∞

∑
k=1

∫ 2π

0
cos2k φdφ +

∞

∑
k=1

∫ 2π

0
cos2k+1 φdφ

∫ 2π

0
cos2k+1 φdφ = 0

∞

∑
k=1

∫ 2π

0
cosk+1 φdφ =

∞

∑
k=1

∫ 2π

0
cos2k φdφ

∫ 2π

0
cos2k φdφ =

[
(2k)!φ

22k(k!)2

]2π

0
=

2π(2k)!
22k(k!)2

∞

∑
k=1

∫ 2π

0
cosk+1 φdφ =

∞

∑
k=1

2π(2k)!
22k(k!)2

Ay =
µI

4.02π

∞

∑
k=1

2π(2k − 1)!0.198k+1

2(2k−1)(k − 1)!k!
(2k)!

22k(k!)2

=
2πµI
2.01

∞

∑
k=1

(2k)!(2k − 1)!0.198k+1

2(4k−1)(k!)3(k − 1)!

=
2πµI
2.01

∞

∑
k=1

((2k)!)20.198k+1

24k(k!)4
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Ey = −dA
dt

= −ωAyfor a sinusoidal wave-form, where

ω = the angular frequency in rad/s.

= −2πωµI
2.01

∞

∑
k=1

((2k)!)20.198k+1

24k(k!)4

= −2πωµI
2.01

(0.0495 + 0.005513 + 0.000758 + 0.000115 + . . .)

≃ −2πωµI
2.01

× 0.05598,

≃ −πωµNI2.01 × 0.05598, for a multi-turn coil.

where N = the number of turns.

NI ≃ 307 AT

≃ −2π f × 4 × 10−6 × 307×0.056, assuming that µ = 4π × 10−7 then

E ≃ 123 f µ V/m, where f is the frequency in Hz.

The lowest Exposure Limit Value in the European Parliament Directive 2013/35/EU is
2800 f µV/m for sensory effects, and 380 f µV/m for health effects, at frequencies
within the audio range. When the current in the coil is at its maximum, the greatest
electric field induced in the tissues of the head will be less than the Exposure Limit
Values.
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Appendix D

Calculation of Encapsulated Bubble
Impedance

It is assumed that the diaphragm is composed of a number of adjacent strips, or
beams, of silicone rubber arranged with their length across the cochlea, each with a
width, ∆, of one element, and of the same length as the width of the BM, B. The
thickness of the beam, t is that of the diaphragm. Each beam is assumed to act
independently of its neighbours; that is, there is no longitudinal mechanical coupling
between the elements of the diaphragm, and so the assembly of beams behaves
similarly to the basilar membrane, which has little mechanical coupling along the
length of the cochlea.

For a uniformly loaded, uniform beam of length, B, width, ∆, second moment of area,
I and Young’s Modulus, E, the deflection, y, at position z is related to the force per unit
length, q, by the following equation:

y =
qz2(B − z)2

24EI
(D.1)

yAverage =
q

24EIB

∫ B

0
z2(B − z)2dz (D.2)

=
q

24EIB

∫ B

0
(z2B2 − 2z3B + z4)dz (D.3)

=
q

24EIB
(

B5

3
− B5

2
+

B5

5
) (D.4)

=
q

720EI
B4 (D.5)
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The pressure, p, acting on the beam will be related to the force per unit length and
hence to the average deflection by the following formulae:

p =
q
∆

(D.6)

yAverage =
pB4∆
720EI

(D.7)

The average stiffness, sbeam of the beam is a component of the impedance of an
equivalent piston, and it is calculated by using the following formulae:

sbeam =
p

yAverage
(D.8)

=
720EI
B4∆

(D.9)

The second moment of area of the beam, I, about its neutral axis is given in terms of its
thickness,t and its length, B by:

I =
t3∆
12

(D.10)

sb =
720Et3∆
12B4∆

=
60Et3

B4 (D.11)

The gas within the bubble will contribute additional stiffness by increasing pressure
on the opposite side of the beam as the deflection increases. The bubble is modelled as
a series of similar, independent, cuboid elemental volumes, V, of depth, d, parallel
with the deflection, width along the cochlea, ∆, and length across the cochlea, B, with
each beam acting as a rigid sliding piston, with no mechanical coupling to its
neighbours. The total stiffness, s, the additional stiffness due to the gas, sg, gas
pressure, pg, average deflection and acoustic impedance ρ0c0 are related by the
following equations:

sg =
−dpg

dyAverage
(D.12)

= −B∆
dpg

dV
= −B∆

dpg

dρg

dρg

dV
(D.13)

dpg

dρg
= c0

2 (gas) (D.14)

sg = −B∆c0
2 (gas)

d
dV

(m
V

)
(D.15)

= B∆c0
2 (gas)

m
V2 =

ρgc0
2 (gas)
d

(D.16)

Bubble stiffness, sb = sbeam + sg =
60Et3

B4 +
ρgc0

2 (gas)
d

(D.17)
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The mass of the beam, Mbeam can be calculated from its thickness, t, and its density,
ρbeam:

mbeam = ρbeamtB∆ (D.18)

Mass per unit area, mbeam =
Mbeam

B∆
(D.19)

= ρbeamt (D.20)

The damping term of the impedance, r, can be determined from the value of
mechanical tan δ given in the published data-sheet for the silicone rubber, via the
resonance quality factor, Q.

rbeam =
1
Q
√

sbeammbeam (D.21)

= tan δ
√

sbeammbeam (D.22)

= tan δ

√
720EI
B4∆

ρbeamt (D.23)

= tan δ

√
60Et4

B4 ρbeam (D.24)

= tan δ
t2

B2

√
60Eρbeam (D.25)

Assuming that the acoustic compression of the gas in the bubble is adiabatic, there will
be no damping from it. As long as the damping is the minor term of the impedance of
the bubble, it will not be important to match its damping to that of the round window.
Similarly, the mass of both the bubble and the round window can be neglected for
frequencies below the resonances of both. The significant challenge is to match, as
nearly as necessary, the combined stiffness of the bubble and the silicone rubber
membrane that separates it from the cochlear fluid to that of the round window.

The constants of the silicone rubber that composes each ’beam’ and hence the
diaphragm have been obtained from "Materials and Coatings for Medical Devices:
Cardiovascular" published by ASM international (2009), and they are general for a
number of different types of Silicone Rubber, including Silastic MDX-4-4210, which is
commonly used in the manufacture of cochlear implants. They are as shown in D.1.

The stiffness, resistance and inertance values calculated above are linear values that
relate linear displacement, velocity and acceleration to pressure. They are converted to
the corresponding volume values by dividing by the area of the bubble’s diaphragm,
B × Lb, where Lb is the total length of the bubble. The formulae for these volume
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values are:

Kb =
60Et3

LbB5 +
ρgc0

2 (gas)
B × Lb × d

(D.26)

Rb = tan δ
t2

LbB3

√
60Eρbeam (D.27)

Mb =
ρbeamt
LbB

(D.28)

TABLE D.1: Table of properties of bubble materials (Silastic MDX-4-4210 and air)

Property Symbol Value Value Unit
Range Assumed

Tensile strength 6.03-10 MPa
Bulk modulus 1.5-2 GPa
Young’s modulus E 0.003-0.03 0.01 GPa
Shear modulus 0.0003-0.02 GPa
Flexural strength
(modulus of rup-
ture)

3.73-3.9 3.73 MPa

Elongation 388-961 %
Mechanical loss
coefficient

tanδ 0.517-1.22 0.868

Poisson’s ratio 0.47-0.49 0.48
Yield strength
(elastic limit)

3.73-3.9 3.73 MPa

Fatigue strength
at 107 cycles

3.55-3.71 MPa

Fracture tough-
ness

0.157-0.277 MPa/m0.5

Flexural modulus 0.003-0.03 GPa
Velocity of sound
in air

c0 353 m/s

To complete the calculations of the acoustic properties to give numeric values, it is
necessary to assume values for the geometric dimensions of the bubble. The thickness,
t of the beam needs to be as thin as possible, while being strong enough to resist
without permanent deformation from the rigours of insertion of the implant. The
value assumed is 8µm. The assumed maximum achievable length, Lb, width, B and
depth t are 15, 0.32 and 0.32 mm, respectively, and so the stiffness, resistance and
inertance of the bubble, Kb, Rb and Mb respectively, are calculated as follows, using the
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relevant values from the table above:

Kb =
60 × 0.01 × 109 × (8 × 10−6)3

15 × 10−3(0.32 × 10−3)5 +
1.2 × 3532

15 × 0.32 × 0.32 × 10−9

= 1.03 × 1014 Pa/m3 (D.29)

Rb = 0.8685
(8 × 10−6)2

15 × 10−3 × (0.32 × 10−3)3

√
0.6 × 109 × 1110

= 9.23 × 107 Pa.s/m3 (D.30)

Mb =
1110 × 8 × 10−6

15 × 10−3 × 0.32 × 10−3 = 1.85 × 103 kg/m4 (D.31)

These values are entered into Table 5.1 and the Impedances.txt file, which is read by
the model’s Matlab script and used as input variables.





165

Appendix E

Calculations for a Longitudinally
Constrained Dome Actuator

This Appendix contains the mathematical calculations of the transformation factor
(transverse displacement / longitudinal elongation) that can be achieved without
excessive distortion, by using a longitudinally constrained dome.

FIGURE E.1: Axially Constrained Polymer Piezoelectric Membrane Actuator
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Bending Moment, BM = −2Fy = EIk, where :

F = horizontal force applied along the beam

E = Youngs Modulus

I = Second Moment of Area

k = Curvature = (radius of curvature)−1

k =
y′′

(1 + y′2)
3
2

If y′ ≪ 1, then k ≃ y′′

−2Fy ≃ EIy′′

y′′ ≃ −2F
EI

y

y = a sin cx + b cos cx

y′ = ac cos cx − bc sin cx

y′′ = −ac2 sin cx − bc2 cos cx

Boundary conditions: y = 0, when

x = 0 and

x = X, axial distance between constraints

cX = π

b = 0
y′′

y
= −c2 =

−2F
EI

c =

√
2F
EI

=
π

X
2F
EI

=
π2

X2

y = h, when x = X/2 andcx = π/2, where :

h = greatest height of membrane.

h = a sin
π

2
a = h

y = h sin
(πx

X

)
y′ ≃ hπ

X
cos

(πx
X

)
y′′ ≃ −hπ2

X2 sin
(πx

X

)
Membrane length, L =

∫ X

0

√
1 + y′2dx

=
∫ X

0

√
1 +

h2π2

X2 cos2
(πx

X

)
dx.
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Expanding with the binomial series:√
1 + z2 = 1 +

1
2

z − 1
8

z2 +
1
16

z3 − 5
128

z4 · · ·√
1 +

h2π2

X2 cos2
(πx

X

)
= 1 +

h2π2

2X2 cos2
(πx

X

)
− h4π4

8X4 cos4
(πx

X

)
+

h6π6

16X6 cos6
(πx

X

)
. . .

=
∞

∑
m=0

(2m)!
(−4)m(m!)2(1 − 2m)

h2mπ2m

X2m cos2m
(πx

X

)
L =

∫ X

0

(
∞

∑
m=0

(2m)!
(−4)m(m!)2(1 − 2m)

h2mπ2m

X2m cos2m
(πx

X

))
dx

L =
∞

∑
m=0

(
(2m)!

(−4)m(m!)2(1 − 2m)

h2mπ2m

X2m

∫ X

0
cos2m

(πx
X

)
dx
)

∫
cos2m

(πx
X

)
dx =

X
π

sin
(πx

X

) m−1

∑
r=0

(2m)!(r!)2

22m−2r(2r + 1)!(m!)2 cos2r+1
(πx

X

)
+

(2m)!
22m(m!)2 x

∫ X

0
cos2m

(πx
X

)
dx =

X
π

sin π
m−1

∑
r=0

(2m)!(r!)2

22m−2r(2r + 1)!(m!)2 cos2r+1 π

+
(2m)!

22m(m!)2 X

− X
π

sin 0
m−1

∑
r=0

(2m)!(r!)2

22m−2r(2r + 1)!(m!)2 cos2r+1 0 +
(2m)!

22m(m!)2 0

=
X
π

0
m−1

∑
r=0

(2m)!(r!)2

22m−2r(2r + 1)!(m!)2 cos2r+1 π +
(2m)!

22m(m!)2 X

=
(2m)!

22m(m!)2 X
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L =
∞

∑
m=0

(
(2m)!

(−4)m(m!)2(1 − 2m)

h2mπ2m

X2m
(2m)!

22m(m!)2 X
)

L = X
∞

∑
m=0

(
(−1)m

(1 − 2m)

(
hmπm

Xm
(2m)!

4m(m!)2

)2
)

= X
(

1 +
1
2

π2h2

X2 − 1
8

π4h4

X4 +
1

16
π6h6

X6 . . .
)

L + ∆L = X
∞

∑
m=0

(
(−1)m

(1 − 2m)

(
(h + ∆h)mπm

Xm
(2m)!

4m(m!)2

)2
)

= X
(

1 +
π2(h + ∆h)2

2X2 − π4(h + ∆h)4

8X4 +
π6(h + ∆h)6

16X6

. . .)

If ∆h << h,

∆L ≃ X
(

1 +
1
2

π2(h2 + 2h∆h + (∆h)2)

X2 − 1 − 1
2

π2h2

X2

)
∆L ≃

(
1
2

π2(2h∆h + (∆h)2)

X

)
∆h
∆L

≃ 2X
π2(2h + ∆h)

≃ 2X(2h − ∆h)
π2(2h)2 . For <10% non-linearity,

∆h < 0.2h

For X = 15 mm and ∆h = 3.8 µm, as in Table 7.2:

h >
3.8 × 10−6

0.2
= 19 × 10−6 m, and so

∆h
∆L

≃ X
hπ2 ≃ 15 × 10−3m

19 × 10−6m
≃ 780

A transformation factor, ∆h
∆L , of 780 should be achievable for this type of construction,

without undue distortion of the sound. This would reduce the driving voltage
required from 19,220 V to c. 25 V and the electric field from 64 MV/m to 82 kV/m.
25 V is acceptable within an implant, if rather higher than desirable. However, a
voltage gradient of 82 kV/m will need to be contained within the implant and not
allowed to enter the cochlear fluid. This should be possible by applying a thin
insulating layer of, say, silicone rubber over the piezo membrane. This technology
thus appears to be feasible.
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Appendix F

Externally Excited Intracochlear
Permanent Magnet Actuator

The magnetic air-gap pressure is the same as the energy per unit volume of the
air-gap, which is:

pg =
1
2

BH (F.1)

whereB = air-gap flux density (T).

= Br + µ0µr H, (F.2)

whereBr is the remanence of the permanent magnet, and (F.3)

H is the magnetic field strength from the coil.

pg =
1
2
(Br + µ0µr H)H (F.4)

=
1
2
(Br H + µ0µr H2)

=
H
2
(Br + µ0µr H) but Br ≫ µ0µr H, and so

pg ≃ 1
2

Br H (F.5)

(F.6)
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H = air-gap magnetic field (A/m) from the coil

=
NIa2

2(z2 + a2)
3
2

, Bleaney and Bleaney’s equation (5.54).

Where a = the coil radius,

z = the distance from the coil along the axis of symmetry, and (F.7)

NI = the number of ampere turns in the coil (F.8)

pg ≃ Br NIa2

4(z2 + a2)
3
2

(F.9)

NI ≃ −
4pg(z2 + a2)

3
2

Bra2 (F.10)

The magnetic force on the magnet will be the sum of the air-gap pressures at each end
of the magnet ≃ 2pg, multiplied by its cross-sectional area. Assuming that the magnet
lies between a low acoustic impedance cavity and the cochlea fluid, the pressure in the
cochlear fluid would be the force on the magnet divided by its cross-sectional area ie
≃ 2pg. This means that the required air gap pressure would need to be half the
required 0.8 kPa pressure in the cochlear fluid.

Substituting numbers from the second paragraph of Subsection 8.7.7 into equation
(F.10):

NI ≃
2 × 0.91 kPa ×

(
202 × 10−6 m2 + 102 × 10−6 m2) 3

2

1T (102 × 10−6 m2)
=

≃ 1820 × (500 × 10−6)
3
2 Pa m3

1 × 10−4 T m2 =
1820 × 5001.5 × 10−9 Pa m3

1 × 10−4T m2 =
18.2 × 51.5Pa m

1T
≃ 200 AT

Although this number of ampere turns is much greater than that required by
intracochlear moving coil and balanced armature devices, the room available outside
the skull to accommodate a coil is much greater. The coil cross section at 1.5 A/mm²
would give Ac = 133mm², which becomes 177 mm², or 13 × 13 mm, to allow for a 75%
packing factor. This is large enough to merit investigating reduction, but within an
order of magnitude of what may be considered to be reasonable. The effective length
of a turn is lc = 24π × 10−3 = 0.076 m. For a coil of N turns:
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R =
ρN2lc

Ac
= 6.78N2µΩ, where ρ is the resistivity of the wire.

The required emf, E = IR =
(NI)

N
ρN2lc

Ac
=

ρN(NI)lc

Ac

=
1.8 × 10−8 Ω m × N × 200 AT × 0.076m

200 × 10−6 m2

= 1.2N mV, or 12 V for 10,000 turns, which is reasonable.

The required power, W =
ρ(NI)2lc

Ac
, which is independent of N.

=
1.8 × 10−8 Ω m × 200 AT × 200AT × 0.076 m

200 × 10−6 mm2

≃ 200 mW.
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