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Unmanned aerial vehicles (UAVs) have been attracting a lot of attention in recent years
for its potential in numerous applications. Due to the flexibility and mobility of UAVs,
UAV-mounted base stations are effective and cost-efficient to provide wireless connec-
tivity and to improve the performance of terrestrial wireless network when fixed infras-
tructure is not available. In particular, UAVs can timely adjust their locations according
to the movement of ground users (GUs).

Against this background, we firstly propose a method to apply mobile edge caching on
UAVs in wireless communication systems. By investigating the user request preference
with the aid of latent Dirichlet allocation (LDA), the caching strategy can be optimized.
In the proposed system, we consider the design of intelligent caching strategies when
a number of UAVs are deployed to serve the GUs, where each UAV has a limited stor-
age capacity for caching useful user contents. We use LDA to extract the user request
preferences in order to intelligently caching data in the UAVs, while the k-means clus-
tering is utilized to classify GUs and to assist in deploying the UAVs. Additionally, we
consider three user-UAV association criteria, namely the user received signal to noise
ratio (SNR), user preferences and the delay. Our simulation results show that, when
compared to random caching, the average caching efficiency could be significantly im-
proved from 50% to 70%, while the latency of our proposed system can also be greatly
reduced.

Then, we propose an optimized UAV-user association technique that can mitigate the
challenge of the existence of “outliers” caused by limited UAV resources. More specif-
ically, in order to solve the sudden-shift of UAVs position, which is a challenge for tra-
ditional deployment algorithm such as the k-means clustering, we propose a reinforce-
ment learning based method to eliminate the challenge of sudden-shift requirement as
well as to provide an improved performance, when we have limited UAV resources.
Our simulation results show that the proposed UAV-user association can provide a so-
lution for the “outliers” problem. Meanwhile, the average downlink rate of the system,
which employs the proposed deep Q-learning (DQL) based UAV deployment, is close
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to the ideal system that employs a k-means clustering with infinite UAV speed. Addi-
tionally, we show that the DQL provides an improved performance, when the number
of UAV is limited for a given coverage area.

On the other hand, given the limited availability of on-board energy, we design an en-
ergy efficient communication scheme. Explicitly, we propose a method that combines
the concept of index modulation (IM) with the UAV communications systems, which
we refer to as IM-UAV, to attain an improved energy efficiency (EE). Furthermore,
based on the proposed IM-UAV communication system, a gradient descent based UAV
deployment scheme is designed to maximize the sum rate of the GUs in the target area.
Additionally, the maximum likelihood detection for the IM-UAV requires a high com-
putational complexity for detection at the GUs, while providing the best possible per-
formance. Hence, we propose a low-complexity detection scheme that can separately
detect the index symbols and data symbols to reduce the computational complexity at
the receiver side. The simulation results demonstrate that the proposed deployment
method is capable of attaining the appropriate positions to deploy the UAVs, while the
EE is also improved by combining IM with UAV communication system.

Finally, we consider a content-aware scenario that employs UAVs as aerial base sta-
tions to transmit data to GUs via air to ground communication links. Furthermore,
inspired by the concept of rate splitting (RS), we design two subcarrier-sharing (SS)
data transmission schemes to improve the average data rate of the GUs. Addition-
ally, based on the proposed transmission schemes, we design the UAV deployment
schemes, namely the fixed-point deployment scheme and traverse-search deployment
scheme. The simulation results demonstrate that our proposed data transmission tech-
niques significantly increase the average data rate, while the deployment schemes are
capable of optimizing the data rate in the respective application scenarios.
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Chapter 1

Introduction

Given the worldwide growth of smart devices and the continuous introduction of new
applications, the data traffic has increased dramatically in the past two decades and
will keep growing during the next decades [10]. Meanwhile, the communication tech-
nology has evolved from the 1st generation (1G) to the present 5th generation (5G).
Although the capacity and the data rate of our communication system have been sig-
nificantly improved by means of the physical layer techniques, such as code division
multiple access (CDMA), orthogonal frequency division multiplexing (OFDM), mul-
tiple input multiple output (MIMO) and so on [5], an ever-increasing data traffic of
mobile devices motivates the development of new architectures of the mobile network
to overcome the heavy load on backhaul links and long latency of the conventional cen-
tralized network. According to the white paper published by Cisco [11], global mobile
data traffic will increase seven-fold between 2017 and 2022 at a rate of 46% annually.
Furthermore, our wearable devices are becoming smarter and smarter in the comput-
ing capabilities and hence, there is the challenge of supporting massive machine to ma-
chine (M2M) connections [12]. On the other hand, unmanned aerial vehicles (UAVs)
which are commonly known as drones have raised a lot of interests over the past few
years, due to their mobility, flexibility, and wide range of application perspectives. Typ-
ical application scenarios of UAVs for Military are border surveillance, reconnaissance,
and strike, while potential civilian and commercial use of UAVs are numerous, such
as traffic monitoring, disaster warnings, and global climate observation [13, 14, 15]. In
wireless communication systems, UAVs are also predicted to bring fresh and meritori-
ous opportunities to the 6th generation (6G) and beyond cellular network [16, 17].

1.1 Motivations and Challenges

Along with the development of Internet of Things (IoTs) and mobile communication
technologies, it brings great challenges to design a mobile wireless network that can
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provide ultra-high data rate and extremely low latency. Meanwhile, The current cen-
tralized architecture of the mobile network cannot cope with the explosively growing
data traffic [18]. Although the remote cloud server could offer powerful computing
and caching resources, it has the challenge of degrading the user’s experience due to
the long latency and transmission cost [19]. Therefore, mobile edge computing and
caching are the promising paradigm which allows data to be processed and cached
by the device itself or by a local server rather than being transmitted to a remote data
center via computation offloading and distributed content caching [20], which helps
reduce the task processing latency [21]. Besides, it also adds a layer of security for
sensitive data without sending it to a public cloud.

On the other hand, due to their high agility and a broad range of applications, UAVs
have attracted an increasing attention in recent years [22]. UAVs can be rapidly de-
ployed without considering the geography when compared to conventional terrestrial
infrastructures [10]. For instance, UAVs can act as flying base stations (BSs) to cover
more wireless areas and enhance throughput [23, 24]. Additionally, UAVs are able
to serve as small BSs (SBSs) to improve users’ throughput and reduce transmission
delay by dynamically caching the popular contents and track the moving patterns of
corresponding users [24, 25]. Also, caching complexity could be significantly reduced
compared to traditional fixed base stations.

Moreover, by exploiting the property of contents reuse, multicast communication be-
comes one of the promising solutions for the explosively growing content-centric appli-
cations [26]. The authors of [27] proposed a rate adaptive resource allocation scheme for
multi-user OFDM systems based on the perceptual quality aspects of the transmitted
video. In [28], a content-aware cooperative transmission strategy is proposed to im-
prove the transmission data rate by offloading users from macro BSs to SBSs. Besides,
a content and computation-aware communication control framework was proposed in
[29] based on the software defined network paradigm to realise an adaptable and pro-
grammable user-controlled platform. Moreover, the authors of [30] jointly optimized
the locations and beamforming of cache-enabled UAVs to maximize the user admis-
sion, while the authors of [31] considered a practical operational constraint of limited
storage capacity for UAVs to meet the demand of minimum rate required by users.

However, UAVs have their inherent limitations. Due to the limited communication
range, a large number of UAVs would be required to provide wireless coverage to a
large geographical area throughout the considered period but this might not be possi-
ble because of the relatively high cost [32]. Therefore, a limited number of UAVs need
to be utilized to provide wireless coverage in a large geographical area to support a
large number of ground users (GUs). Nevertheless, the constraints on the available en-
ergy makes it vital to optimally utilize energy to serve users and to prolong the network
lifetime. In terms of open problems for UAV deployment, there is a need for new solu-
tions for the optimal three-dimensional (3D) placement of UAVs while accounting for
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their unique features. For example, it is necessary to study the optimal 3D deployment
in the presence of terrestrial networks because of the mutual interference between such
aerial and terrestrial system. Other key problems in deployment include: 1) joint opti-
mization of deployment and bandwidth allocation for low latency communications, 2)
joint optimal 3D deployment and cell association for flight time minimization, and 3)
obstacle-aware deployment of UAVs for maximizing wireless coverage [33].

Additionally, the performance of UAV communication system is fundamentally lim-
ited by the on-board energy, which is closely related to the size and weight of the
UAVs. In [34], the authors investigated energy-saving communication links in a down-
link air-to-ground wiretap system by formulating the power minimization and alloca-
tion problem with constraints to satisfy the effectiveness of the legitimate link and to
meet the security requirement of the communications link. In [35], the authors also
investigated the downlink transmission with specific security requirements, where an
energy-efficient transmission was proposed by considering user scheduling and power
allocation. Therefore, it is important to design an energy-efficient UAV communication
model to reduce the energy consumed per information bit.

1.2 Novel Contributions

The novel contributions of this thesis are summarized as follow:

1. We propose a UAV-aided intelligent strategy for mobile edge caching in the wire-
less communication system by employing latent Dirichlet allocation (LDA) algo-
rithm, which aims to minimize the system delay and hence improve the quality
of experience (QoE).

2. Then, a deep reinforcement learning based algorithm is proposed to enable mul-
tiple UAVs in a target area to automatically update their locations according to
the distribution of moving GUs and an optimal association algorithm has been
designed to fix the issue of “outliers” that could occur in the traditional greedy
association method.

3. Afterwards, we propose an index modulation (IM) based UAV wireless com-
munication system, which aims to increase the energy-efficiency (EE) of power-
limited UAV platforms. Meanwhile, a multi-UAV deployment scheme has been
designed to maximize the downlink sum rate of all GUs based on the proposed
IM-UAV communication system. Additionally, a low-complexity detection scheme
to separately detect the index symbols and the data symbols is designed for this
IM-UAV communication system.
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4. Finally, we propose two subcarrier-sharing (CS) transmission schemes, namely
private CS (PCS) and common CS (CCS), in a content-aware UAV-assisted wire-
less communication system, which aims to increase the average data rate of GUs.
Besides, we design two deployment schemes to find the appropriate UAV posi-
tion that maximizes the average data rate of GUs based on the proposed PCS and
CCS scheme.
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Figure 1.1: Outline of the Thesis.

1.3 Outline of Thesis

The structure of the thesis is illustrated by Fig. 1.1. In Chapter 1, we give a brief back-
ground of the emergence of UAV assisted wireless communication system. Then, the
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motivations and the challenges related to the design of UAV assisted communication
system are given followed by the novel contributions. Afterwards, Chapter 2 presents
a detailed literature review of related works and research backgrounds. Then, Chapter
3 introduces our proposed UAV-aided mobile edge caching system and its performance
has been studied under different scenarios. Also, Chapter 4 presents the structure of
our proposed UAV deployment methods with the help of ML scheme, including de-
tailed results and analysis. Moreover, we propose a method that combines the concept
of IM with the UAV communications systems to attain an improved EE in Chapter
5. Furthermore, we propose two subcarrier-sharing transmission schemes based on
the OFDMA scheme, which is employed in Chapter 5, by considering the the content-
aware scenario in Chapter 3 with the aim to further improve the sum rate of GUs. Fi-
nally, Chapter 7 concludes the thesis and presents further research development ideas.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, we present a review of the UAV-assisted wireless communication sys-
tems including channel modelling, UAV deployment, and user association at first.
Then, the mobile edge network structure is introduced to handle part of the tasks
from the centric network to the mobile edge, which could help meet the demand for
low-latency transmission and high-speed data rate in today’s wireless network. More
specifically, both mobile edge computing and mobile edge caching, are included to
illustrate the functions of mobile edge networks. Afterwards, several widely applied
machine learning (ML) techniques are presented as a tool that has been applied in many
applications. This includes two numerical optimization algorithms: fixed-point itera-
tion and gradient descent algorithm, as well as two classification algorithms: k-means
clustering and latent Dirichlet allocation (LDA). Furthermore, the concept of reinforce-
ment learning (RL)and two modulation schemes, namely orthogonal frequency divi-
sion multiplexing (OFDM) and spatial modulation (SM), are also introduced.

2.2 UAV Communication Networks

UAVs, also known as drones, have attracted a lot of attention over the past few years
due to their wide range of application areas. UAVs can be utilized for military, pub-
lic and civil applications. Military use includes strikes, surveillance and monitoring,
while for public use, they could be employed for public safety and transportation man-
agement. Besides, UAVs can assist in disaster warnings and rescue operations. In par-
ticular, there are several potential applications that UAVs could be applied in wireless
networks, where UAVs can work as aerial user equipment (UE), which is connected to
cellular networks, called cellular-connected UAVs, to coexist with ground users (GUs)
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supported by the terrestrial base station (TBS) [36]. Besides, they can also play the role
of a mobile relay in flying ad-hoc networks [37, 38] or as aerial base stations (ABSs) to
provide reliable and cost-effective communications for various scenarios, which signif-
icantly enhances the existing communication system [39, 40]. Moreover, UAVs can also
assist in wireless backhaul links [41] and smart cities [42]. This section will review sev-
eral key challenges of wireless communications in the UAV scenario from the aspects
of channel model, UAV deployment and user association.

2.2.1 Channel Model for UAV Communication

UAVs play an increasingly vital role in broad wireless connection and high data rate
transmission for future communication systems as essential aerial platforms. Notably,
UAV communications comprise a variety of communication situations, including in-
tercommunications between UAVs and communications with ground UEs and cellular
BSs. This section focuses on the fundamentals of air-to-air (A2A) and air-to-ground
(A2G) channels in UAV communications.

In wireless communications with UAVs, three typical communication scenarios are in-
cluded [43]:

• UAV to UE: The rotary-wing UAV can act as a temporary static ABS in disas-
ter zones and to enhance hotspot coverage to fulfil overloaded quality-of-service
needs from mobile UE on the ground; this is known as a UAV-assisted network.

• UAV to TBS: UAVs are intended to be aerial users of TBSs in cellular networks to
ensure reliable beyond line-of-sight (LoS) communication links in long-distance
flights, known as cellular-connected UAV communications [44].

• UAV to UAV: Intercommunication between UAVs is required for numerous use
cases, including aerial relay and flying ad hoc networks. UAV-to-UAV commu-
nication has other challenges than regular vehicle communication since drones
can fly in three-dimensional (3D) space at highly changeable heights. On the
other hand, vehicles usually follow a linear trajectory in the two-dimensional (2D)
plane.

The features of UAV channel are quite different from that of terrestrial communication
channels. In reality, any movement of UAVs would change the channel characteristics
[33]. Besides, type of UAVs, altitude, elevation angle and propagation environment are
the key factors to determine the channel conditions. The works in [45, 46, 47] charac-
terise the direct path and the multipath elements by a model of tapped delay line. Then,
according to the channel impulse response, parameters of wideband frequency selec-
tive channel could be derived. In [48], considering the scenario of urban environment,



2.2. UAV Communication Networks 9

the authors derived the likelihood of LoS links from A2G as a function of elevation
angle and the average height of obstacles. Similarly, the authors in [49] considered the
links between high altitude platforms and GUs by two cases: LoS and non line-of-sight
(NLoS), and further derived the probability of occurrence of each link. The unique fea-
tures that differentiate between UAV communication system and traditional wireless
communication system are summarized as follow [50]:

• The special channel conditions: A2G and A2A channels.

• The variation on space and time in variable channel.

• The shadowing caused by the fuselage structure and the maneuverability of UAVs.

These features become more challenging in a diverse propagation scenario of UAV
channel. Empirical and analytical models have well established the channel character-
istics of classical ground communication. Besides, in [51] and [52], the links of satellite
for mobile GUs were investigated. Nevertheless, all these models cannot be directly
applied to characterise the UAV channels due to the unique needs mentioned before.
Also, the A2G channel suffers more blockages when compared with A2A communica-
tion links which experience LoS in most of the time. Thus, an accurate A2G channel
model needs to be settled for a board range of UAV-aided applications.

Channel models generate formulated expressions which can be used directly in system
design and evaluation. As a result, we will concentrate on fundamental channel models
for UAV communications, such as the pathloss model, small-scale fading model, and
multipath components (MPCs) model. The most common pathloss models are log-
distance [47], modified free-space [53], close-in [54], floating intercept [44] and excess
loss models [55]. The log-distance model is the most widely used in these channel
models for both A2A and A2G channels. However, it is worth noting that the excess
loss model can only be used in A2G channels since it divides total loss into terrestrial
and aerial components.

The small-scale fading model, which can represent both narrowband fading channels
and individual MPCs in wideband channels, basically reflects the probability distri-
bution of the envelope of small-scale fading. Popular probability distributions include
the Rician, Rayleigh, and Nakagami-m distributions. Besides, numerous measurements
have shown that A2A and A2G channels are more likely to exhibit Rician fading in most
situations due to a strong LoS path [45, 47, 54]. Nakagami-m, on the other hand, can be
a more broad representation with increasing multipath, as shown in [53]. Rayleigh fad-
ing is uncommon in existing works; nonetheless, research in [56] reveals that Rayleigh
fading occurs in A2G channels under NLoS environments at low altitudes.

Wideband measurements and simulations make it simpler to detect and characterise
MPCs, allowing for a more accurate reconstruction of the channel impulse response.
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The two-ray propagation model has an intuitive description of the UAV channel. How-
ever, more MPCs were detected in measurements, where a three-ray model was shown
to accurately model A2G channels in an over-water environment, although the third
ray is intermittent and must be stated probabilistically [45]. Additionally, over-three-
ray models were discovered to simulate both A2A and A2G channels in built-up en-
vironments, where rays impinging on building walls result in additional MPCs. For
example, MPCs for A2G channels have been observed to reach nine in a suburban area
[47]. Furthermore, the most recent A2A channel measurements and ray-tracing simu-
lations in the rebuilt suburban environment revealed a total of seven MPCs, consisting
of the LoS, the ground reflection, four single-bounce wall reflections, and one double-
bounce wall reflection [57].

2.2.2 UAV Deployment

Among all challenges in the UAV scenario, the most fundamental issue is the sched-
ule for UAV deployment. A UAV deployment involves various scheduling problems
ranging from resource allocation to routing problems. Early works have studied the
deployment of a single UAV by maximizing the radio coverage on GUs [58, 59] or max-
imizing the number of users with minimum transmission power [60]. As the research
progressed, the UAV-assisted system draws more attention and has been combined
with many other promising technologies. For instance, authors of [61, 62, 63] employed
non-orthogonal multiple access to improve the performance of the UAV-assisted com-
munication system, which outperforms orthogonal multiple access. UAV-aided device-
to-device (D2D) communication has been investigated in [64], where they analyzed the
trade-off between the coverage area and the time needed to cover the target area by
UAV-aided acquisition. In [65], the authors proposed a framework to maximize the av-
erage data rate provided for users with static UAVs while also considering the fairness
amongst users. The authors of [66] jointly maximize both the total coverage area and
the battery operating period of UAVs by determining the most appropriate location
using the sphere packing theory.

On the other hand, mobile UAVs can provide better coverage than static UAVs. How-
ever, existing works are mainly considered static users on the ground [67, 68]. By apply-
ing the classic block coordinate descent and successive convex optimization techniques,
the authors of [69] invoked an iterative algorithm for solving the resultant non-convex
optimization problem between UAV trajectory and transmit power. In [70], by jointly
considering the communication throughput and the energy consumption, a new design
paradigm was proposed to determine the trajectory of the UAV, including its initial or
final location, velocities as well as maximum/minimum speed and acceleration. The
authors of [67] assumed two practical trajectories named straight flight and circular
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flight for collecting a given amount of data from a fixed ground terminal by consider-
ing the trade-off of associated energy dissipation. Additionally, [68] employed a novel
cyclical trajectory to serve users via time division multiple access (TDMA), and a sig-
nificant throughput gain could be achieved. In [71], a concise circular trajectory was
exploited to maximize the minimum average throughput of users. The work of [72]
was to minimize the UAV’s operation time by optimizing its trajectory in a scenario
where the UAV flew from one start point to a destination, while maintaining a reliable
connection with the cellular network by associating with one of the ground BSs at each
time instant.

2.2.3 User Association

User association is defined as a set of rules for assigning users to different BSs available
in the system. A decision to associate a user with one BS will affect the throughput
seen by that user and others associated with that BS. In traditional homogeneous cellu-
lar networks, user association is related to the downlink received signal strength (RSS).
Many works have been proposed that outperform the conventional rules in heteroge-
neous network (HetNets) [73, 74, 75]. However, it is hard to tell which one is better
since each study is based on different resource allocation schemes and assumptions.

Typically, HetNets are based on OFDM, where the HetNet is considered as a whole
and allocated a frequency band, which is divided into several orthogonal sub-channels
where each sub-channel has a bandwidth. Therefore, one of the resources to allocate
among different BSs is sub-channels. Besides, transmission power is also a significant
resource that needs to be considered in the network. Given all that, a resource allocation
and interference management (RAIM) scheme can determine how to allocate channels
among BSs and how to use the power budget on the allocated channels at each BS.
Hence, in its most complex form, a RAIM scheme is a centralized scheduling to decide
which BS should transmit, which user to tranmit to, which channel to use, and what
transmit power to apply. Even in a static scenario where channel gains are known
and fixed, and the association is given, this issue is not tractable due to the very large
number of parameters. In its simplest form, a RAIM scheme might allow each BS to
transmit continuously on all sub-channels (and to cope with the resulting interference)
using the same power on each channel. In that case, for a given association rule, each
BS can locally schedule its own users without any coordination with the other BSs.
Clearly, even in this simple case, one would expect different performances for different
association rules.

In traditional terrestrial wireless communication system, many works have been pre-
sented on user association schemes under different models and assumptions. Basically,
two metrics are considered for selecting the serving BS. The first one is the received sig-
nal quality, such as pilot signal strength, signal to interference plus noise ratio (SINR)
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or the corresponding achievable rate, while the second is cell traffic load. The authors
of [76] proposed a user association policy, which was focused on load balancing, while
the authors of [77] further considered the operational power consumption of BSs as the
user association metric, so that mobile users are likely to be associated with energy-
efficient BSs. The possibility of energy saving has been studied in [78]. The authors of
[79] conceived a predefined sleep pattern of BS for a deterministic traffic profile over
one day. However, under the setting where traffic patterns are not predictable from day
to day, the authors of [80, 81] proposed dynamic BSs switching algorithms. Addition-
ally, a sharing method was introduced by [82], in which different operators pool their
BSs together to conserve energy further.

On the other hand, the user association schemes in a UAV-assisted wireless communi-
cation system can be different due to the mobility and flexibility of UAVs. The works of
[83] studied a simultaneous UAV-user association and 3D placement problem in multi-
UAV enabled wireless networks, where a map-based approach for the optimal place-
ment of multiple UAV-based was proposed. In [84], the authors investigated a joint
user association and UAV location optimization problem for UAV-aided communica-
tions by maximizing users’ total achievable data rates and UAV’s fair coverage under
constraints of users’ required data rates and UAV’s service capability. Besides, a joint
optimization of user association, UAV trajectory, and uploading power of each UE to
maximize sum bits offloaded from all UEs to the UAV was investigated in [85] by em-
ploying an UAV as the edge computing server. Additionally, the user association for a
dual UAV-enabled wireless network with the help of D2D connections in disasters was
considered in [86], where two low-complexity algorithms, the cluster-based algorithm
and the relaxed optimization algorithm, were proposed to maximize the weighted sum
rate of the UAV-served users and the total number of D2D-connected users. After-
wards, the authors of [87] investigated the UAV location and user association problem
from a load balancing perspective, the target of this work is to make the traffic loads
of UAVs almost equal so that the networks can be stable and robust to unexpected
events by alternately invoking user association and location algorithms. Moreover, a
distributed algorithm that allows UAVs to dynamically learn their optimal 3D loca-
tions and associate with GUs while maximizing the network’s sum rate was proposed
in [88].

2.3 Mobile Edge Networks

In the past three decades, mobile cellular networks have experienced five generations
of information and telecommunications technology advancements. Meanwhile, the ex-
plosive growth of smart devices and mobile users also brings new challenges to mo-
bile wireless communication networks, such as high-speed data rates and low-latency
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transmission. However, the traditional BS centric architecture cannot meet these de-
mands anymore. Thus, a new paradigm that moves the centre of gravity from the
core network to the edge [89], which transforms the architecture of the network from
BS-centric to device-centric and content-centric, is a promising solution to break the
bottleneck of massive content delivery. The concept of a mobile edge network (MEN)
brings networks’ functions, contents and resources to the network edge, making it close
to users. The network resources include computing, caching and communication re-
sources [12]. While caching is also considered as a part of a computing resource in [90].
Based on the above discussion, we will discuss MEN by separately considering com-
puting and caching since the service types and problems they focus on are different.

2.3.1 Mobile Edge Computing

A 2-level hierarchy named “Client” and “Server” was first investigated for the mobile
computing scheme [91]. Afterwards, a concept called “Cloud” was used to describe a
cluster of servers that provide storage, computing and network resources for mobile de-
vices, and this gave rise to the study on mobile cloud computing (MCC) [92]. However,
MCC faces inevitable challenges like long latency and bandwidth limitation caused by
the long-distance backhaul links between mobile devices and the cloud. Therefore,
mobile edge computing (MEC) [93] [94] is a promising solution to this problem by de-
ploying cloud servers close to users. In this case, the computational capability is much
closer to mobile devices [95], which can reduce the service response time and improve
the user experience.

Moreover, edge servers could easily obtain network status information, which helps
to offer better services. Due to the superiority of low latency, high bandwidth and
proximity, MEC is considered as one key technology for the 5G networks by 5G In-
frastructure Public Private Partnership (5G PPP) [96]. As shown in Figure 2.1, MEC
is settled between the cloud and the mobile devices to comply with cloud computing
for supporting and enhancing the performance of the end devices [97]. Therefore, a
three-layer hierarchy, cloud, MEC and mobile devices, composes the cellular network
communication system infrastructure.

2.3.2 Mobile Edge Caching

A centralized network is established for traditional network architecture where the cen-
tral server deals with all the major processing. At the same time, end users with less
power have to submit their requests to the central server instead of performing oper-
ations locally. Unfortunately, a waste of network resources could occur due to dupli-
cate transmission of the same content in the whole network [98, 99, 100]. Therefore,
researchers have been investigating effective solutions to reduce the transmissions of
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Figure 2.1: Three-layer architecture [1].

duplicate requested contents by caching popular contents (e.g., popular videos) at the
mobile edge (e.g., gateways) with intelligent caching strategies [101, 102, 103]. The
MEC servers can be utilized as caching nodes to store requested popular contents from
users, and this method is referred to as mobile edge caching [90]. The mobile edge
caching helps to reduce the content delivery latency and also to alleviate the traffic
load by utilizing the cache-enabled edge servers to store popular contents and directly
send them to the user equipments, instead of transmitting them from a remote cloud
or server [104]. Consequently, the traffic load of the backhaul links could be largely
reduced.

Unlike a central cloud server with significant computing, memory and storage re-
sources, the edge server has limited computing capability due to its limited resources.
Additionally, mobile users have a variety of requests, which introduces a challenge to
utilize the mobile edge resources efficiently. Note that caching in wireless networks
faces the challenge of dynamic traffic loads caused by the user mobility [105], where
the network traffic is highly related to users’ mobility patterns. For caching at mobile
edge servers, the content popularity distribution is one key factor that the BSs need to
consider. Nevertheless, since the requested content from each BS will change over time,
the distributions of content popularity in individual BS may also change in space and
time [106]. On the other hand, users may also request contents from their correspond-
ing BSs based on content availability [107].

Additionally, there are several caching criteria available for consideration when design-
ing a caching scheme [105]:
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• Cache Hit Probability: The ratio of the number of cached files requested by users
to the total number of files in the caches is known as the cache hit probability. A
greater cache hit probability indicates that the cached information satisfy more
user requests. Increased cache size can enhance cache hit probability while low-
ering backhaul bandwidth requirements. As a result, there is a tradeoff between
cache size and required backhaul capacity.

• Spectrum Efficiency: The spectrum efficiency (SE) is the supported data rate over
a given frequency bandwidth. Network densification by deploying more SBSs in
a macro cell has been used to improve the area SE. Caching can also improve SE
by reducing network traffic and improving network throughput.

• Energy Efficiency: Energy efficiency (EE) is a key performance indicator for 5G
cellular networks, defined as the supported data rate per unit of energy con-
sumed. Turning BSs into sleep mode without traffic load can save energy in
typical cellular networks. Caching at the mobile edge can assist reduce energy
consumption by preventing duplicate transmissions.

• Network Throughput: The network throughput is defined as the maximum data
rate the network can provide and affects the network performance. A more sig-
nificant network throughput leads to lower content download delay. Caching
schemes should maximize network throughput by caching more data closer to
the users. The network throughput is also highly related to the caching storage
capacities.

• Content Retrieving Delay: The quality of service (QoS) of a user is directly re-
lated to the content retrieving delay, which is often defined as the roundtrip time
for acquiring content by users. The wireless transmission delay from BSs to UEs
and the backhaul delay from BSs to the mobile core network are commonly in-
cluded. Backhaul delay is determined by link length, traffic load, and the number
of BSs connected to the mobile core network, while wireless transmission delay
is determined by bandwidth and SINR. With varying latency, users can retrieve
content from local UEs, BSs, or the mobile core network.

• Offloaded Traffic: Mobile edge caching can offload the traffic from backhaul
links. Maximizing traffic offloading leads to better-caching performance.

2.3.2.1 Where to Cache

In mobile networks, caching can be used in a variety of ways. Given the importance
of D2D communication in 5G networks, caching in UE by utilizing its storage becomes
an attractive option for improving the quality of experience (QoE) of users. In the
meanwhile, caching at BSs is a way to have a pretty large coverage area and serve
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more users. Finally, the contents can be cached in the remote radio head (RRH) and
baseband unit (BBU) of the cloud radio access network (C-RAN) [108]. The related
works of caching palace on mobile edge caching is summarized in Table 2.1.

Table 2.1: Summary of caching places on mobile edge caching.

Place Related Work
Caching in UE [109, 110, 111, 112, 113, 114, 115, 116]
Caching in BSs [109, 117, 118, 119, 120, 121, 122, 123, 124,

125, 126, 127, 128]
Caching at Relays [129, 130, 131, 132, 133]
Caching in C-RAN [134, 135, 136, 137, 138]

Caching in UEs: D2D technology allows direct communication between devices by us-
ing licensed-band or unlicensed-band protocols [105]. The devices are separated into
groups according to their locations and controlled by base stations. In this scheme,
a user’s content requests can only be obtained from other users in the same group
[139]. The authors of [114] proposed content caching strategies for mobile D2D net-
works based on reinforcement learning that exploits the knowledge of content demand
history. Besides, a novel policy was proposed in [112] for device caching that combines
the emerging technologies of D2D and millimeter wave communication to enhance the
offloading and the delay performance of the cellular network. Moreover, the authors
of [115] proposed a data caching scheme in a D2D enabled fog radio access network
(F-RAN) from the social point of view. Furthermore, Internet of Things (IoT) devices
are considered as caching helpers in [116] to provide caching services for users.

Caching at Relays: Wireless relays are usually deployed to extend the wireless cov-
erages and improve SE. Therefore, they can also be used as urban hot spots where
contents can be cached [129]. In [130], the authors designed a relay caching mechanism
to improve the EE in cellular networks for multimedia applications. Besides, the author
of [140] proposed the cache-at-relay scheme, which jointly optimises content access en-
ergy, caching energy and relay deployment costs in three integer linear programming
models. Furthermore, the works of [133] studied a relay network where all nodes, in-
cluding the central server, relay nodes and users, are equipped with cache memories.

Caching in BSs: HetNet consists of several types of BSs like macro base station (MBS),
small base station, pico base station (PBS) and femto base station (FBS). Since MBSs
have a larger coverage area and caching memories than SBSs, they are usually used to
improve backhaul traffic and network latency [117, 120]. While the SBSs have relatively
small caching storages, a cooperative caching can be considered, where SBSs are able to
share contents with each other[124]. Besides, in order to make full use of caching mem-
ories, caching contents should be updated frequently in accordance with the dynamic
change in content popularities.
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Caching in C-RAN: C-RAN is proposed as a novel architecture for 5G cellular net-
works to reduce capital and operating expenditure by adopting cloud computing tech-
nology. C-RAN tackles the capacity and coverage challenges by deploying multiple
RRHs at cell sites. The computational functionalities of BSs are centralized in a BBU
pool. These RRHs serve as distributed antennas, allowing users to interact with one
another. RRHs and BBUs are connected by high bandwidth and low latency fronthaul
links [141]. Despite the fact that C-RAN can provide powerful computing capabilities
by sharing computing and storage resources at the BBU pool, it still has performance
constraints due to the limited capacities of fronthaul and backhaul links [142]. To com-
bat this shortage, caching techniques have been deemed a viable approach of allevi-
ating network traffic in both fronthaul and backhaul networks. Cache storage can be
deployed at the BBU or RRH levels in the C-RAN architecture. The F-RAN is a C-RAN
design that uses distributed edge caching techniques [134]. Besides, the works of [135]
presented an information-theoretic analysis of F-RANs by accounting for the total con-
tent delivery delay across the fronthaul and wireless segments of the network.

2.3.2.2 How to Cache

Furthermore, several caching schemes, which include proactive caching, distributed
caching, cooperative caching, coded caching and probabilistic caching, are introduced
in the following paragraphs. The related works of caching schemes on mobile edge
caching is summarized in Table 2.2.

Table 2.2: Summary of caching scheme on mobile edge caching.

Scheme Related Work
Proactive Caching [114, 115, 119, 124, 125, 126, 127, 128, 130,

140, 143, 144, 145, 146]
Distributed Caching [110, 113, 118, 136, 137, 138, 147, 148]
Cooperative Caching [109, 112, 119, 124, 125, 126, 131, 149, 150,

151]
Coded Caching [132, 133, 152, 153, 154, 155, 156]
Probabilistic Caching [111, 116, 123, 157, 158, 159, 160, 161]

Proactive Caching: The reactive caching policy governs whether or not to cache re-
quested content. It usually occurs during a peak-traffic hour when the network is
unable to cope with the increased demand. A proactive caching policy, on the other
hand, determines which contents should be cached before they are requested based on
user demand predictions [143]. Proactive caching usually estimates the request pat-
terns (e.g., user mobility patterns, user preferences and social relationships) to improve
caching performance and guarantee QoS requirements. As ML and big data analytics
get more sophisticated, it becomes more advantageous to cache popular information
locally before actual requests occur [144, 147]. Proactive caching improves the caching
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efficiency by pre-downloading popular contents during off-peak times and serving
predictable peak-hour demands. In [127], the authors proposed an online proactive
caching scheme based on a bidirectional deep recurrent neural network (NN) model to
predict time-series content requests and update edge caching accordingly. Besides, the
works in [128] introduced a predictive caching algorithm that utilises big data analytics
to predict user content requests and determine what content items need to be cached
in the network.

Distributed Caching: To determine caching techniques, centralized caching employs
a central controller with a global view of all network conditions. By extracting and
analysing the collected requests, the central controller normally keeps track of user
movement patterns and the channel state information (CSI). As a result, centralized
caching can achieve optimal performance by making the best judgments (e.g., content
placement). Obtaining entire network information, on the other hand, is difficult, es-
pecially in dynamic 5G wireless networks, which are expected to support a growing
number of mobile users [148]. Furthermore, the central controller must process a large
amount of traffic, putting a tremendous strain on the controller and the links between it
and the network entities. In that case, the mobile caching system’s bottleneck might be
the central controller. Cache nodes in distributed caching, also known as decentralized
caching, make choices (such as content placement and update) solely based on their lo-
cal information and that of neighbouring nodes. Distributed caching is applied in [147]
where neighbouring BSs are jointly optimized to increase the cache hit probability. By
fetching contents from multiple neighbouring caches, the total cache size seen from the
user can be improved. In [118], the authors proposed a distributed caching scheme con-
sidering the trade-off between the diversity and redundancy of BSs’ cached contents.
Besides, the authors of [113] proposed a distributed D2D relay-aided packet caching
scheme, which exploits the properties of the diverse packet requests and requirements
of physical link success among different UE groups. Afterwards, the works of [137]
proposed a dynamic distributed edge caching scheme in ultra-dense F-RANs by con-
sidering time-variant user requests. Moreover, an RL-based distributed edge caching
method was proposed in [136] for learning and tracking the potential dynamic process
of user requests. Similarly, another RL-based distributed edge caching with the con-
tent recommendation in F-RANs was investigated in [138]. Furthermore, the authors
of [110] developed an online and distributed edge caching and computation approach
to realise delay-sensitive Internet of Vehicles services in a cost-efficient way.

Cooperative Caching: Since a BS’s caching capacity is limited, designing a caching
policy for each BS may result in insufficient cache use. This occurs when certain caches
are overcrowded, while others have a large number of empty places. To solve this is-
sue, cooperative caching rules have been proposed to increase caching efficiency. In
cooperative caching, BSs can share cached contents [150]. However, the time it takes
to look for and get content from other caches may be substantial and should be taken
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into account. Furthermore, in order to implement cooperative caching, network nodes
must be aware of the caching state of other nodes via information transfers that might
result in considerable signalling overheads. Consequently, we need to discover a way
to convey the caching status with the least amount of overhead. In [131, 151], a novel
approach has been proposed to support cooperative caching in disruption tolerant net-
works, which enables the sharing and coordination of cached data among multiple
nodes and reduces data access delay. Besides, an optimal cooperative content caching
and delivery policy has been developed in [109], for which FBSs and UEs are all en-
gaged in local content caching. Moreover, a video popularity based cooperative edge
caching along with a proactive cache updating policy was proposed in [119] with an
aim to reduce the delay. Additionally, the authors of [124] proposed a learning-based
cooperative caching strategy based on mobile edge computing architecture to reduce
transmission costs while improving user QoE for future mobile networks. A proactive
caching algorithm for collaboration between the cloud and the MEC server to deter-
mine the caching status has been investigated in [125]. In [126], the authors proposed
the idea of deploying a collaborative caching and processing framework in multi-cell
MEC networks, whereby the MEC servers attached to the BSs can assist each other for
both caching and transcoding of adaptive bit rate videos.

Coded Caching: In a traditional switching network, the network node forwards pack-
ets one after another: two packets are present in the node simultaneously; one of the
two packets is forwarded while the other is queued, even though they are both bound
for the same destination. Separate transmissions are required by this classical packet
forwarding system, which reduces network efficiency. On the other hand, network
coding is a technique that combines two separate messages into a single coded mes-
sage and sends it to the intended recipient. After receiving the coded message, the
network node separates them into two original messages. To allow the network cod-
ing approach, the transmitted data is encoded at network nodes and then decoded at
the destinations. As a result, network coding uses fewer transmissions to deliver all
of the data. However, this scheme involves coding and decoding processes, which
will increase processing overheads to the network nodes. Therefore, efficient packet
transmissions can lower the complexity of network coding [154]. In [152], an online
coded caching algorithm termed “coded least-recently sent” was proposed to operate
the caches as well as the server such that these requests are satisfied with the mini-
mum number of bits sent over the shared link. Then, the authors of [153] introduced
a novel group-based coded caching scheme, which is suitable for caching systems that
have more users than the number of popular files in the database. Additionally, the
authors extended their works to a scenario where users have distinct cache capacities
to improve the delivery rate in [155]. Afterwards, the authors of [132] investigated
cache-aided combination networks by utilizing maximum distance separable coding
and jointly optimizing both cache placement and delivery phases. Besides, user mo-
bility and distributed storage are incorporated into the proposed coded probabilistic
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caching scheme in [156], with the aim of throughput maximization. In [133], the au-
thors designed a centralized caching scheme based on a two-layer file placement and a
superposition coding delivery strategy.

Probabilistic Caching: Unlike wired networks with fixed and known topologies, wire-
less networks face uncertainty about which user will connect to which BS due to inde-
terminate user locations and the variability of user demands. As a result, when a user
travels from one cell to another during content delivery, caching in wireless networks
becomes more complicated. A probabilistic caching policy, in which content is stored in
caches according to certain random distributions, is one way to overcome this problem
[160, 161]. The authors of [157, 158] proposed ProbCache, an algorithm that approxi-
mates the capability of paths to cache contents based on path lengths and multiplexes
content flows accordingly. Furthermore, in [159], the performance of the probabilis-
tic caching scheme when working with different cache replacement policies has been
investigated. Besides, the works of [111] studied probabilistic caching placement in
stochastic wireless D2D caching networks for maximizing cache hit probability and
maximizing the cache-aided throughput. Moreover, an optimal probabilistic caching
scheme for maximizing the successful delivery probability was investigated in [123].
Additionally, the works of [116] focus on the probabilistic caching for contents of dif-
ferent sizes in heterogeneous IoT networks, aiming at improving the offloading rate for
backhaul links.

Finally, the content patterns requested by users play a key role in determining the
caching strategy. The most common caching files are multimedia files (e.g., software,
video and audio), which could be treated as delay tolerant data since files can only be
used after delivery. Meanwhile, for the next-generation 5G networks, IoT is one of the
primary use cases, which is still increasing and has different characteristics (e.g., more
dimensions and shorter lifetime) compared to multimedia data [162]. Hence, we need
to be aware of request patterns to make an optimal decision. Request patterns can be
extracted and analysed to predict future requests and provide insights into proactive
caching. Observation of past request arrivals can be a feasible solution to obtain request
patterns. However, it is challenging to predict or model the request arrivals in the real
world. Hence, intelligent algorithms based on predictions and stochastic models are
required [163, 164].

Besides, content popularity is defined by the ratio of the requested times for a particular
content to the total number of requests from users. Generally, it is obtained from a spe-
cific region during a given period. The main feature of content popularity is that most
people are interested in a few popular contents within a particular period [147]. Hence,
these few contents account for major traffic loads. In general, the content popularity
distribution changes at a relatively slow speed. Accordingly, the content popularity
distribution is usually considered a constant over a long time. In addition, the global
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popularity in a large region like in a city or a country is often different from local pop-
ularity in a small area within it [143]. Hence, content popularity or user preference
must be estimated to determine the probability of a particular content being requested.
Several model-based forecasting schemes carried out by ML methods have been pro-
posed (e.g., autoregressive integrated moving average [165], regression models [166]
and classification models [167]).

In addition, mobility pattern is also an essential factor in mobile networks because
it impacts mobile network topologies, such as the dynamic user-BS association over
time [168]. The latency of mobile networks can be attributed to unpredictable topol-
ogy changes owing to the mobility of users [169]. User mobility also contains much
helpful information, such as social relationships and traffic patterns, which improves
the caching performance. The user mobility pattern is generally classified into two cat-
egories, spatial and temporal properties, which respectively reflect the location-based
and time-related characteristics [170].

2.3.3 Caching in UAV

Using UAVs as flying BSs to cache popular data that can serve GUs is a new trend in
caching techniques. Due to their limited energy resources, UAVs are typically built to
fly within a cell covered by an MBS. Therefore, the UAVs in the system can collaborate
with each other as well as the MBS and MEC servers to cache the requested contents
and tasks. The UAVs then deliver the contents to the corresponding end users and
requesters. In addition, the UAVs gather data from the GUs and either analyse and
make decisions locally or cache and transmit the data to cooperate with the MBS and
the MEC server. The UAVs can be linked together to establish a robust network that
better serves the GUs.

Particularly, in [145], a caching UAV-assisted secure transmission scheme has been pro-
posed in hyper-dense small-cell networks based on interference alignment. Besides,
the authors of [146] proposed a novel scheme to overcome the endurance issue for
UAV-enabled wireless communications by utilizing the technique of proactive caching.
Moreover, a novel scheme has been proposed in [149] to guarantee the security of UAV-
relayed wireless networks with caching via jointly optimizing the UAV trajectory and
time scheduling. Afterwards, the authors of [171] proposed a caching placement strat-
egy based on the probabilistic caching placement in a heterogeneous wireless network,
where there are several types of UAV-BS placed following the independent homoge-
neous Poisson point process. Moreover, the authors of [172] formulated a joint op-
timization problem of UAV deployment, caching placement and user association for
maximizing the QoE of users. Similarly, the work in [9] also considered the minimiza-
tion of transmission power used by UAVs. Additionally, the authors of [173] proposed
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Table 2.3: Major contribution of caching in UAV-assisted communication sys-
tem.

Year Author Contribution

2017 Chen et al. [9]
Proactive deployment of cache-enabled UAVs for
optimizing the QoE of wireless devices in a cloud radio
access network.

2018 Zhao et al. [145]
A caching UAV-assisted secure transmission scheme has
been proposed in hyper-dense small-cell networks based
on interference alignment.

2019 Cheng et al. [149]
A novel scheme to guarantee the security of UAV-relayed
wireless networks with caching via jointly optimization
of UAV trajectory and time scheduling.

2019 Lin et al. [171]

A caching placement strategy was proposed based on
the probabilistic caching placement in a heterogeneous
wireless network, where there are several types of
UAV-BS placed following the independent homogeneous
Poisson point process.

2020 Zhang et al. [172]
Formulated a joint optimization problem of UAV
deployment, caching placement and user association for
maximizing QoE of users.

2021 Gu et al. [173]

Proposed a coded caching strategy with resource
optimization to provide more multicast opportunities for
file requesting and reduce the backhaul transmission
volume in a cache-enabled satellite-UAV-vehicle
integrated network.

2022 Sun et al. [174]
A multi-UAV content-caching strategy and cooperative,
complementary content transmission among UAVs are
jointly studied.

a coded caching strategy with resource optimization to provide more multicast oppor-
tunities for file requesting and reduce the backhaul transmission volume in a cache-
enabled satellite-UAV-vehicle integrated network. Furthermore, a multi-UAV content-
caching strategy and cooperative, complementary content transmission among UAVs
are jointly studied in [174]. The major contribution of caching in UAV-assisted commu-
nication system is summarized in Table 2.3.

2.4 Overview of Machine Learning

Since its birth several decades ago, the digital computer has continually astounded
us with its incredible computing and data storage capability. However, on the other
hand, people are very interested in exploring the limits of what a computer can do be-
yond basic computing and storage capabilities. The fascinating question in this area is
whether the human-made hardware of digital computers can do complicated tasks that
traditionally need human intelligence. Therefore, the study of this kind of autonomous
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learning algorithm has emerged under the name of ML. ML is a fast-expanding field
of research that focuses on developing and analysing algorithms that allow computers
to learn. It can teach computers to perform a wide range of valuable tasks, including
automatic object detection in images, speech recognition, knowledge discovery in the
medical sciences, and predictive analytics. However, it is still a young discipline with
much more to discover than is currently known. In this section, two classification al-
gorithms, k-means clustering and LDA, that are used to distinguish between different
types of specific things or to discover the underlying patterns from a collection of data
will be introduced. Afterwards, RL, an important ML type that learns through trial
and error, is also included. Finally, the application of ML in UAV scenarios will be
summarized.

2.4.1 k-means Clustering Algorithm

The term “k-means” was first proposed in [175], while the standard algorithm of k-
means clustering was firstly conceived for pulse-code modulation [176] and published
later in [177]. It is an iterative approach for partitioning a dataset into K separate non-
overlapping clusters, with each data point belonging to just one of these clusters. It
aims to make intra-cluster data points as similar as possible while maintaining clusters
as distinct as possible. It allocates data points to clusters so that the sum of the squared
distance between them and the cluster’s centroid is as small as possible. Within a clus-
ter, the less variance there is, the more similar the data points are.

In the k-means clustering algorithm, the data points are clustered into k groups ac-
cording to their pairwise distances. Typically, squared Euclidean distance [178] is used
to measure the difference between two N-dimensional feature vectors or points pi =

[pi1, pi2, . . . , piN ] and pj = [pj1, pj2, . . . , pjN ], which is defined by:

d
(︁

pi, pj
)︁
= ∥pi − pj∥2

2. (2.1)

Besides, some other metrics can also be employed here, such as Manhattan distance
dM = ∑N

n=1 |pin − pjn| [179] and hamming distance for binary data. The algorithm be-
gins with initial estimates for the k centroids, which can be generated or selected at ran-
dom from the data set points {p1, p2, . . . , pn}. Then, the data points will be portioned
into K clusters by assigning them to the closets centroids based on squared Euclidean
distance. Afterwards, the centroid ck In each cluster k will be recalculated by:

ck =
1

Nck

Nck

∑
w=1

p(w)
ck , (2.2)
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where Nck is the number of points in kth cluster and p(w)
ck denotes the wth point in that

cluster. This procedure is repeated until the data points no longer change their clusters.
Finally, the whole procedure is summarized in Algorithm 1.

Algorithm 1 k-means clustering algorithm.

Input: Data set points {p1, p2, . . . pn}, number of clusters K
Initialization: Partition the dataset into K initial clusters selected at random

1: repeat
2: Associated data points with the closest centroids based on square Euclidean dis-

tance
3: Recalculate the new centroids
4: until The data points no longer change

In contrast to k-means clustering algorithm, where one entity can only be assigned
to one group (hard-clustering), a soft-clustering algorithm, LDA, which allows fuzzy
membership will be reviewed in the following section.

2.4.2 Latent Dirichlet Allocation

LDA [180] is a generative probabilistic model that allows sets of observations (e.g.,
discrete data) to be explained by unobserved groups. The most common use of LDA
is for modelling text collections, also known as topic modelling [181]. The topic here
is represented by a word probability distribution, which gives us the probability of a
collection of words for a given topic. If we consider the topic as a bag of words, then,
any word that is not in the bag has a zero chance of getting drawn. While the other
words in the bag, on the other hand, have a probability greater than zero.

The basic idea of LDA is that each document is made up of a variety of topics, each
of which is made up of a collection of words. This may also be used to generate new
documents (if we know the topics in advance) or to infer topics from a group of docu-
ments we already have. According to the name of LDA, the model can be explained as
follows:

• Latent: It means the topic structure is latent, which is hidden in the document.

• Dirichlet: The Dirichlet distribution establishes the proportions of topics and
words in each document.

• Allocation: Words are allocated to a certain topic.

To summarise, the words are allocated to a given topic and the topics are allocated to a
given document, we use latent structures in a corpus, with topic distributions in each
document and word distributions in each topic based on the Dirichlet distribution. In
the following, the generative progress [182] of LDA model will be presented.
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2.4.2.1 Generative Process

In this section, the LDA is considered as a generative model [182]. Generative models
are approaches that explicitly or implicitly characterise the distribution of inputs and
outputs so that synthetic data points in the input space can be generated by sampling
from them. This implies that we are able to generate documents containing a variety
of topics and words related to those topics. Before generating new documents, the
parameters and variables that will be used are summarized as follows [2]:

• K: Total number of topics.

• D: Total number of documents.

• k: Index of the kth topic.

• d: Index of the dth document.

• N : Total number of words in dth document.

• Wdn: The nth word of document d.

• Zdn: The topic index selected for the nth word of document d.

• α⃗: The values of α⃗ indicate our prior knowledge of the topic mixture in that doc-
ument. To determine the topic distribution θ of the document, we have to sample
from a Dirichlet distribution, which uses α as the input parameter.

• η⃗: The values of η⃗ represent our prior information of the word distribution in a
topic. To determine the word distribution θ of a given topic, we have to sample
from a Dirichlet distribution, which uses η as the input parameter.

• θ⃗d: θ⃗d is the topic proportion of a given document d. It will be employed as
a parameter in the multinomial distribution to determine the topic of the next
word. To be clear, the word distribution of the specified topic will be utilized to
choose a word.

• β⃗k: β⃗k is the word distribution of a given topic k. It indicates the probability of
each word that will be generated if a topic k is selected.

A graphical model [182] of LDA, which is used to illustrate the generative process of
LDA, is shown in Figure 2.2. We firstly generate topic-word distributions β for each
word in the vocabulary1. The value of βk, which gives us p(β|η), is randomly drawn
from the Dirichlet distribution Dirichlet(η). Then, we generate the topic mixture θ of the
document from the Dirichlet distribution Dirichlet(α), which gives us the distribution
of topic in this document p(θ|α). Afterwards, we use document-topic distribution to

1The vocabulary here is composed by the words in all documents.
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Figure 2.2: The graphical model of LDA [2].

generate a topic for each word p(Z|θ), and then we use the topic-word distribution to
select the word p(W|β) for each topic selected before. To sum, the generative process
of LDA for document d can be expressed by the following equation [183]:

p(W, Z, θ, β|α, η) = p(β|η)p(θ|α)p(Z|θ)p(W|βZ). (2.3)

Finally, based on the parameters and variables defined above, the generative process of
LDA is given in Algorithm 2.

Algorithm 2 The generative model of LDA.

1: for k from 1 to K, where K is the predefined total number of topics do
2: Sample the parameters for each topic-word distribution
3: ϕk ∼ Dirichlet(η)
4: end for
5: for d from 1 to D do
6: Sample the parameters for document-word distribution
7: θd ∼ Dirichlet(α)
8: for N from 1 to N do
9: Generate a topic zdj for word Wdn,

10: Zdn ∼Multinomial(θd)
11: Generate a word based on the topic-word distribution of Zdn
12: Wdn ∼Multinomial(ϕZdn )
13: end for
14: end for

2.4.2.2 Inference of LDA

In Section 2.4.2.1, LDA is considered as the generative model. However, the main use
of LDA is to turn the situation around. Usually, we hope to infer the topic of a bunch
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of documents and this can be solved with the assumption that the documents are gen-
erated by a generative process. Under this assumption, we have to find the solution
of

p(θ, β, Z|W, α, η) =
p(θ, β, Z, W|α, η)

p(W|α, η)
. (2.4)

(2.4) defines the probability of document-topic distribution θ, topic-word distribution
β and topic label in all documents when given all words of all documents and the
hyperparameters α and η. More explicitly, our target is to infer the probability of topic
Z for a given word and further to estimate θ and β. In this section, the key derivation
for LDA inference through Gibbs sampling [184, 185] will be introduced, while the
detailed derivation are presented in [181, 183, 186].

Before the mathematical derivations for inference, the known parameters and latent
parameters that related to the inference is summarized as follow:

Known parameters

• Document D: It indicates a bunch of documents we hope to estimate the topics
in.

• Words in document W: Each document includes a collection of words and word
counts.

• Vocabulary V: The list of words that appears in every document.

• Hyperparemeters:

– α⃗: The prior assumption of the topic distribution in documents.

– η⃗: The prior assumption of the word distribution of each topic.

Latent parameters

• Number of topics K: We need to define how many topics we expect to find in the
documents [187, 188].

• Topic-word distribution β: The distribution of words in each topic need to be
known.

• Document-topic distribution θ: The distribution of topics in each document has
to be determined.

• Topic assignment Z: This is the key point of the inference. If the topic assignment
of each word is known to us, the topic-word distribution β and the document-
topic distribution θ can be obtained.
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As mentioned before, the crucial point of LDA inference is to figure out the topic of
each word in each document. Here, we define Zn as the topic of the nth word. Please
note that the topic of the current word Zn depends on the topic assignments of all other
words but not including itself, which is defined by Z¬n. Then we have:

p(Zn|Z¬n, α, η, W) =
p(Zn, Z¬n, W, α, η)

p(Zn, W|Z¬n, α, η)
,

∝ p(Zn, Z¬n, W, α, η),

∝ p(Z, W, α, η).

(2.5)

It can be seen that p(Z, W, α, η) is similar to (2.3), while the difference is the lack of θ

and β. Therefore, (2.5) can be obtained from the integration of (2.3) with respect to θ

and β.

p(Z, W, α, η) =
∫︂ ∫︂

p(W, Z, θ, β|α, η)dθdβ,

=
∫︂ ∫︂

p(β|η)p(θ|α)p(Z|θ)p(W|β),

=
∫︂

p(θ|α)p(Z|θ)dθ
∫︂

p(W|βZ)p(β|η)dβ. (2.6)

Afterwards, the first term of (2.6) can be solved by utilizing the features of conjugate
prior between the Dirichlet distribution and multinomial. Therefore, the following in-
tegration of current document d can be obtained:

∫︂
p(θ|α)p(Z|θ)dθ = ∏

△(n⃗d + α)⃗

△(α)⃗
, (2.7)

where n⃗d =
[︁
n1

d, n2
d, . . . , nk

d

]︁
is the number of words assigned to each topic in the docu-

ment d, and△(α)2.

Similarly, the second term of (2.6) is given by:

∫︂
p(W|βZ)p(β|η)dβ = ∏

k

△(n⃗k + η)⃗

△(η)⃗
, (2.8)

where n⃗k =
[︁
n1

k , n2
k , . . . , nv

k

]︁
is the number of times one word occurred in topic k. Ac-

cordingly, the solution for p(Z, W, α, η) is:

p(Z, W, α, η) = ∏
k

△(n⃗d + α)⃗

△(α)⃗
∏

k

△(n⃗k + η)⃗

△(η)⃗
. (2.9)

2Dirichlet( p⃗|α⃗) =
Γ(∑K

k=1 αk)
∏K

k=1 Γ(αk)
∏K

k=1 pαk−1
k = 1

△(α⃗) ∏K
k=1 pαk−1

k , where α⃗ = [α1, α2, . . . , αk] and p⃗ =

[p1, p2, . . . , pk].
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Now, the equation required for Gibbs sampling can be obtained based on (2.9) through
chain rule:

p(Zn|Z¬n, W) =
p(W, Z)
W, Z¬n

=
p(Z)

p(Z¬n)

p(W¬n|Z¬n)

p(W|Z)p(Wn)
,

∝
(︂

nk
d,¬n + αk

)︂ nW
k,¬n + ηW

∑W nW
k,¬n + ηW

.
(2.10)

Finally, the topic-word distribution can be express by:

βk,W =
nW

k + ηW

∑V
W=1 nW

k + ηW
, (2.11)

while the document-topic distribution is calculated by:

θd,k =
nk

d + αk

∑K
k=1 nk

d + αk
. (2.12)

Until now, the word distribution under a topic k and the topic distribution in a docu-
ment d can be obtained by Gibbs sampling from (2.11) and (2.12). In the following, a
ML algorithm, RL, will be discussed. It is commonly used by software or machines to
find the optimum behaviour in a given situation.

2.4.3 Reinforcement Learning

RL is a learning paradigm that differs from classical ML. The idea underlying RL is that
an agent would learn from their environment by interacting with them and receiving
rewards for their actions [189]. It has typically been employed in planning/decision-
making applications such as robotics and autonomous driving, which mimics people
learning from interactions through trial-and-error. The goal of an RL task is to train an
agent that interacts with its environment. The agent will arrive at different scenarios,
referred to as states, by performing different actions, which will result in positive or
negative rewards and the agent has only one purpose to maximize its total reward
across an episode [190]. This episode is anything and everything that happens between
the first state and the terminal state within the environment. We reinforce the agent to
learn to perform the best actions by experience, which is known as strategy or policy
[3].

Firstly, we start by considering an example of news recommendation:

• Users are presented a list of articles that are of potential interest to them, and the
user decides to either read or not-read.

• The states are defined by what the user reads.
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Figure 2.3: Sequential decision process of RL [3].

• An episode is the length of reading.

• Clicking or not-clicking on an article is the action.

• Reward is defined by the click-through rate3 (CRT).

Thus, in order to maximize the CRT with RL, the agent will consider the sequence of
articles already read by users at each state. In other words, the agent are trying to
maximize the total future cumulative rewards (clicks) by recommending one article
given the fact that the user has already read the first, the second and the third articles.
The sequential decision process of RL is shown in Figure 2.3.

The RL is based on the idea of the reward hypothesis. All goals can be described by
the maximization of the expected cumulative reward. That means to have the best
behaviour, we need to maximize the expected cumulative reward. The cumulative
reward at each time step t is represented by [191]:

Gt = Rt+1 + Rt+2 + · · · =
T

∑
k=0

Rt+k+1. (2.13)

However, in reality, we cannot simply add the rewards as in (2.13). This is because
rewards at the beginning are more likely to happen since they are more predictable
than the long term future reward. Therefore, a discount rate γ between 0 and 1 is
defined. The larger the γ, the smaller the discount. This means the learning agent cares
more about the long term reward. On the other hand, the smaller the γ, the bigger the
discount. This means our agent cares more about the short term reward. Hence, the
discounted cumulative expected rewards can be written as [191]:

Gt =
∞

∑
k=0

γkRt+k+1, γ ∈ [0, 1). (2.14)

3A metric that measures the number of clicks advertisers receive on their advertisements per number
of impressions.
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In a word, each reward will be discounted by γ to the exponent of the time step, imply-
ing that the likelihood of a future reward decreases as the time step increases.

Besides, the task, episodic or continuous, in RL is defined as the instance of an RL prob-
lem. Episodic tasks are the tasks that have a terminal state, which creates an episode
composed by a list of states, actions, rewards and new states. For example, the ultra-
popular PubG game, an episode begins at the launch of a new game and end when you
are killed or all enemies are destroyed. Continuous tasks, on the other hand, are those
that go on forever and have no termination. In this case, the agent has to learn how
to choose the best action and simultaneously interacts with the environment. Taking
stock trading as an example, there is no specific starting state or terminal state. The
agent keeps running until people ask it to stop.

Moreover, there are also two ways of learning in RL problem. Monte Carlo approach
collects the rewards at the end of each episode and then calculates the maximum ex-
pected future reward [192], while temporal difference (TD) learning calculate the re-
wards at each step [193].

In Monte Carlo, rewards are only received at the end of the episode and the agent looks
at the total cumulative reward to see how well it did. Then, we start a new episode with
the added knowledge. Therefore, the agent is able to make better decisions after each
iteration. The process of Monte Carlo can be described by [194]:

V(St+1)← V(St) + α[Gt + V(St)], (2.15)

where V(St) is the maximum expected future reward at state St, Gt is the discounted
cumulative rewards and α is the learning rate.

For TD learning, it will not wait until the end of the episode to update the maximum
expected future rewards, where it will update the value V(St) for the non-terminal state
St occurring at that step. Hence, the value function of TD learning is [194]:

V(St+1)← V(St) + α[Rt+1 + γV(St+1)−V(St)]. (2.16)

At time step t + 1, it forms a TD target, Rt+1 + γV(St+1) by the observed reward Rt+1

and the current estimate V(St+1). TD target is an estimation, where we update the
previous estimate V(St) towards a one-step target.

Additionally, it can be seen that RL is a training algorithm that keeps interacting with
the environment. However, it is highly possible that the agent cannot learn “new skills”
anymore after a long period. In this situation, one very important topic in RL is the
exploration/exploitation trade-off [195]. Exploration means discovering more infor-
mation about the environment, while exploitation utilises what we already know to
maximize the reward. For instance, consider that someone and his friends are trying to
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decide where to eat. They used to go to a Mexican restaurant in the past, and they all
enjoyed it. However, one of his friends mentions that a new Lebanese place has opened
up down the street this time, and it is supposed to be good. None of them can come to
a consensus — should they go to the Mexican restaurant, which they know to be good,
or should they try the Lebanese place, which has the potential to be better or worse.
Similarly, in real life, the agent should decide whether it is preferable to exploit options
that it believes are the best rather than exploring options that may be better or worse
(or vice versa).

In the following sections, Q-learning (QL), a well-known RL algorithm that learns the
value of an action in a particular state, will be reviewed first. Then, since QL suffers
from having large Q-table in a complex environment, deep Q-learning (DQL) will be
introduced. Finally, several methods that improve the learning progress of DQL will
also be presented.

2.4.3.1 Q-learning

QL was first introduced in [196] as an extension of the dynamic programming paradigm
[197]. It is a value-based RL algorithm that relies on Markov decision processes (MDP)
[198]. The MDP consists of states st that an agent is in and actions at that the agent
can take to move onto a new state st+1 and receive a reward or a punishment Rt+1. QL
seeks to learn the corresponding Q-value (quality) of a given action-state pair.

G
Figure 2.4: Model of simple grid world.

Starting with an example, imagine a simple grid world in Figure 2.4 with two actions:
left and right, and four grid spaces with the goal (G) at the far side. If the agent reaches
the goal it gets a reward of +1 and the episode ends. Although solving such a small
environment is simple, it offers easy visualization of a Q-table. The Q-values in Figure
2.5 are understood as the expected discounted reward the agent will receive if it takes
action (left or right in this case) in a given state (1, 2, 3, or 4).

To calculate each value of this Q-table, we use the action-value function (Q-function) to
update the Q-value [191]:

Q(st, at) = E
[︁
Rt+1 + γRt+2 + γ2Rt+3 + · · · |st, at

]︁
. (2.17)
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Figure 2.5: Q-table of grid world.

The action-value function (2.17) takes two inputs: state and action, and outputs the
expected future reward at that state given that action. The function can be imagined as
a reader that scrolls through the Q-table to find the line associated with the state and
the column associated with the action. It returns the Q-value from the matching cell.
However, before the agent explores the environment, the Q-table must be initialized
with arbitrary fixed values. As long as the agent constantly explores the environment,
the Q-table will provide a better approximation by iteratively updating Q(s, a) using
the Bellman equation [197]:

Q(s, a) = Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)]. (2.18)

Starting from inside the parentheses, we first take the reward r we obtained from the
selected action a and add it to the discounted maximum Q-value for the next state s′,
and subtract it from the current estimation of the Q-value at that state. This step is
computing the error between the action just taken, and the action believed to be the
best from this new state. Then, scaling the error down by step-size α, also known as
the learning rate, adds to our current estimate for Q(s, a). Finally, we obtain the new
estimate for Q(s, a). The QL algorithm process is summarized as follow:

1. Initialization of Q-value: A m× n Q-table will be generated and initialized with
zero values, where m is the number of actions and n is the number of states.

2. Stopping condition: Repeating steps 3 to step 5 until a maximum number of
episodes has been achieved or manually stopped by people.

3. Select an action: Select an action a at the current state s according to the current
estimation of the Q-value.

4. Evaluation: After taking the selected action a, observe the resulting state s′ and
reward r.

5. Update the Q-value: Q(s, a) = Q(s, a) + α [r + γ max(Q′(s′, a′))−Q(s, a)].
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Recall the exploration/exploitation trade-off mentioned at the end of Section 2.4.3. In
step 3, an important issue is what action should be taken when all Q-values are zeros
at the initial stage. Here, the ϵ-greedy algorithm [199, 200] is employed to solve this
problem. The concept is that a large ϵ is needed at the start of the Q-function training.
Then, as the agent gains more confidence in estimating Q-values, it will gradually lower
it. Based on the idea of ϵ-greedy algorithm, the strategy is summarized as follow:

1. Since the agent knows nothing about the environment initially, ϵ will be set to 1
to allow a random selection of actions and do as much exploration as possible.

2. The value of ϵ will reduce as time goes on. Meanwhile, a random number δ will
be generated to compare with ϵ. If δ > ϵ, the agent does exploitation, which
means the agent will select an action based on the Q-table. Otherwise, the agent
will randomly select an action and does exploration.

Hence, the agent can sense the actions returning with the highest reward. However,
it will choose a random action from time to time to make sure that it is not missing
anything. Accordingly, the machine can converge to the optimal strategy for whatever
situation it is trying to learn. However, a limitation of QL is the size of the Q-table,
especially when there are hundreds of actions and thousands of states. Therefore, it
is hard for machines to traverse all possible conditions in a short time, which largely
decrease their efficiency. Hence, the DQL will be reviewed in the following section,
which is a deep-learning based QL algorithm, where the neural network [201] has been
employed to solve this issue.

2.4.3.2 Deep Q-learning

In the previous section, it was shown that QL is a simple but effective method for
creating a cheat sheet for the agent, enabling the agent to determine the optimal action
in any given state. However, as we can see, producing and updating a Q-table can
become ineffective in big state space environments. As a result, instead of employing a
Q-table, a deep Q-network (DQN) can be used in QL to approximate these Q-values.

As shown in Figure 2.6, a neural network is employed to approximate the function of
Q-Table in DQL [202]. Here, the state is considered as the input of the neural network
and the Q-values of all possible actions are the outcomes of the neural network.

Therefore, the steps involved in RL but using DQN are:

1. All the experience is stored in memory by the user.

2. The maximum output of the DQN determines the following action.



2.4. Overview of Machine Learning 35

Q-Table

State-Action Value

- 0

- 0

- 0

State

Action

Q-value

Q-learning

State

Q-value Action 1

Q-value Action 2

Q-value Action N

...

Deep Q-learning
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3. Here, the loss function is defined by the mean squared error between the pre-
dicted Q-value and the target Q-value, which is a regression problem. However,
as illustrated in (2.16), a target should be determined in an RL problem. There-
fore, going back to the Q-value update function (2.18):

Q(s, a) = Q(s, a) + α
[︂

r + γ max(Q′(s′, a′)) −Q(s, a)
]︂

. (2.19)

The target is represented by the section in the box in (2.19). As a result, it may be
claimed that it is predicting its own value. However, because r is an unbiased true
reward, the network will eventually converge by updating its gradient through back
propagation.

Additionally, it can be shown that the target is continuously changing at each step
or iteration, which is different from that in deep learning [203]. In deep learning, the
target variable will not change and hence the training is stable but this is not true for RL.
The same network calculates the predicted and target values, and there could be much
divergence between these two. As a result, two neural networks will be employed
for learning instead of one. As shown in Figure 2.7, the target network has the same
structure as that of the prediction network but with fixed parameters w′, where w′

and w are the parameters of neurons in each layer of the neural network [204]. The
parameters from the prediction network are transferred to the target network every N
iterations.
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Moreover, the experience replay is also an important strategy to efficiently utilize the
observed experience in DQL. Experience replay helps the system remember what it
learnt before and reduce the correlation of experience [202]. However, instead of run-
ning QL on state-action pairs as they occur, the DQL system stores the data in the
format of [state, action, reward, nextstate] in a large buffer. For instance, assume we are
attempting to create a video game bot in which each game frame represents a different
state. Then, a random batch of frames will be selected from the last, say 106 frames,
to train the network during training, which prevents the network from only learning
about what it has immediately done and avoiding forgetting previous experiences. Be-
sides, this also helps avoid being fixated on one region of the state space and prevents
repeatedly reinforcing the same action, which reduces the correlation between experi-
ences.

The concepts listed so far are combined to make the DQL algorithm achieve human-
level performance in real life and the steps involved in a DQL system are shown below:

1. Preprocess and feed the state s to DQN, which will return the Q-values of all
possible actions in the state.

2. Select an action with the ϵ-greedy algorithm. A random action a will be selected
with the probability ϵ, while an action that has a maximum Q-value will be se-
lected with probability 1− ϵ, i.e., a = argmax(Q(s, a, w)).

3. Perform selected action at the state s and move to the next state s′ to receive a
reward. Then, this transition will be stored in the replay buffer in the format of
< s, a, r, s′ >
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4. Randomly ample batch of transitions from the replay buffer and calculate the loss
L, which is defined by L = (r + γ maxa′ Q(s′, a′; w′)−Q(s, a; w))2.

5. Perform gradient descent with respect to the prediction network parameters w to
minimize the loss.

6. Transfer the parameters of prediction network to the target network every N iter-
ations.

7. Repeat for a total of M episodes until convergence is achieved.

So far, the theoretical aspects of DQL have all been reviewed. In the following section,
several improvements on DQL will be presented.

2.4.3.3 Improvements of Deep Q-learning

In this section, two improvement methods on DQL, namely double DQL and duelling
DQL, will be introduced to solve the issue of overestimation and accelerate the training
progress of DQN. Double DQL was introduced in [205] to handle the overestimation
issue of Q-values. Firstly, recall the way to calculate the TD target:

Q(s, a)⏞ ⏟⏟ ⏞
Q target

= r + γ max
a′

Q(s′, a′). (2.20)

Then, there is a fundamental question of how we know that the optimum action for
the next state is the one with the highest Q-value. The accuracy of Q-values depends
on what action we tried and what neighbouring states we explored. However, we
lack sufficient knowledge of the best action to take at the initial stage of the training.
Therefore, selecting the maximum Q-value as the best action can lead to false positives.
Furthermore, the learning will be complicated if non-optimal actions regularly give a
higher Q-value than the optimal best action.

Therefore, double DQL employs two networks to separate the action-selection proce-
dure from the generation of target Q-values. First, it uses the prediction network to
select the best action for the next state (the action with the highest Q-value). After-
wards, it uses the target network to calculate the target Q-value of taking that action
at the next state. As a result, double DQL reduces the overestimation of Q-values and
allows for quicker and more consistent learning. Since this method is commonly used
in today’s DQL and becomes a basic procedure when applying DQL, the structure of
double DQL is already illustrated by Figure 2.7 in Section 2.4.3.2.

Moreover, the value of each action at one state needs to be calculated in normal DQL.
However, it becomes meaningless if the value of the state is terrible. In other words,
the state itself is in bad condition, and all actions will lead to poor results no matter
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(a) The single stream Q-network.

(b) The dueling Q-network.

Figure 2.8: Top: Regular DQL architecture. Bottom: Dueling DQL architecture
[4].

how the actions are selected. As a consequence, duelling DQL was proposed in [4] to
solve this issue by decomposing Q(s, a) as follow:

Q(s, a) = B(s, a) + V(s), (2.21)

where V(s) indicates the value of being at a state and B(s, a) is the benefit of taking that
action at that state. Different from the single stream Q-network illustrated by Figure
2.8(a) in a regular DQL architecture. The duelling DQL, as shown in Figure 2.8(b),
separates the estimator of these two elements into two new streams: one that estimates
the state value V(s) and the other estimates the benefit for each action B(s, a).

As a result of decoupling the estimation, the duelling DQL may intuitively understand
whether a state is valued or not, without having to study the effect of each action at
each state, which is especially advantageous for states where their actions have no sig-
nificant impact on them. Accordingly, calculating the Q-value of each action at that
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state is unnecessary.

2.4.4 Machine Learning in UAV Communication System

UAVs will be an essential component of next-generation wireless communication net-
works [17]. Compared to traditional ground-based technologies, their use in various
communication applications is expected to improve coverage and spectral efficiency.
However, this new degree of freedom included in the network will also add new chal-
lenges. In this context, the ML framework is expected to provide solutions for the var-
ious problems for UAV-based communication purposes. This section reviews relevant
research works in which ML techniques have been used on UAV-based communica-
tions to improve the various design and functional aspects such as channel modelling
and deployment. Moreover, the ML schemes included in this section are not limited to
the ML schemes discussed in previous sections.

2.4.4.1 Channel Modelling

Precision prediction of channel behaviour is crucial in wireless networks, particularly
in mobile situations. Several ML approaches for predicting UAV channel behaviour
and RSS have been reported. The authors of [206, 207] used artificial neural networks
(ANNs) and ensemble methods to predict the RSS at the UAVs. Firstly, in [206], a
multiple-layer perceptron NN is used and trained by measurement data. Novel train-
ing methods are developed based on the combination of self-adaptive differential evo-
lution algorithms with the Levenberg–Marquardt method. The sequential application
of these two methods offers better initial starting weights than random weight gen-
eration, resulting in better solutions and faster convergence. While the works of [207]
focused on ensemble methods for UAV RSS prediction, it is an extension of [206], which
developed a new ensemble method relying on five base learners. On the other hand,
the study in [208] examines real-time 3D wireless channel modelling of the A2G chan-
nel among UAVs and ground nodes using unsupervised learning. Besides, a method
that optimises the positioning of UAVs acting as aerial relays in A2G wireless networks
was presented in [209]. In particular, to enable UAVs’ autonomous path planning by
exploiting a finely structured radio map, a joint clustering and regression problem us-
ing a maximum likelihood approach were formulated based on the K-segment ray-
tracing model. Moreover, the works of [210] extracted the environmental characteris-
tics through 3D image classification based on geo-referenced satellite imaging and 3D
point cloud. Then, all these characteristics were fed to the ML-based pathloss model
to improve the wireless network deployment by employing light detection and rang-
ing (LiDAR) and ANNs. Furthermore, the authors of [211] considered ML algorithms
consisting of the random forest (RandF) and K nearest neighbour (KNN) to study the
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application of ML on pathloss prediction for the A2A channels. Another study [212] fo-
cused on pathloss prediction for UAV networks communicating with ground nodes in
a millimetre-wave channel, where RandF and KNN were employed to realise pathloss
and delay spread prediction.

A significant challenge arising not only in UAV networks but also in wireless networks,
in general, is interference. The works of [213] studied opportunistic channel access
by UAVs. The problem was formulated as a non-cooperative interference mitigation
game, and a distributed log-linear learning algorithm was employed to achieve the
Nash Equilibrium of the interference mitigation game. A scenario where both ground
nodes and UAVs are connected through a cellular is studied in [214]. In particular, each
UAV aims to maximize EE and minimize both wireless latency and the interference
caused by the ground network along its path. The problem is formulated as a dynamic
game among UAVs. A deep RL (DRL) algorithm, based on echo state network (ESN)
cells, is proposed to solve this game. Afterwards, the authors of [215] regret-based
learning (RBL) dynamic duty cycle selection (DDCS) method for configuring the trans-
mission gaps in LTE-Unlicensed (LTE-U) ABSs, to ensure a satisfactory throughput for
all users.

The proper setting of the transmission parameters should be conducted to maintain
reliable communication and practical usage of wireless resources. The works in [216]
focus on the field of automatic modulation classification (AMC), where the authors
proposed a heterogeneous deep model fusion method to solve the AMC problem in
a unified framework with convolutional neural network (CNN) and long short-term
memory (LSTM). Besides, in massive multiple input and multiple output (MIMO) sys-
tems, precoding matrices are essential to improve the performance of the transmission
by exploiting the CSI. The major contributions of ML on channel modelling is summa-
rized in Table 2.4

2.4.4.2 Deployment of UAVs

As discussed in previous sections, the deployment of UAVs is also a significant issue
that needs to be considered in a UAV-assisted communication network. In [217], the
authors proposed a multi-agent QL-based placement algorithm for estimating the 3D
optimal placement of the UAVs with respect to the initial positioning of the GUs. Then,
mobility and the future positioning of the GUs were predicted by an ESN-based pre-
diction algorithm. Finally, a multi-agent QL-based algorithm was conceived for pre-
dicting the position of UAVs in each time slot based on the movement of users. These
three steps aim to maximize the throughput and satisfy the rate requirement of GUs by
jointly optimizing the trajectory and power control in multiple UAVs scenarios. Then,
the authors of [218] employed the nonlinear model predictive control (NMPC)-based
framework, an optimization-based trajectory planner for the relay UAV by utilizing the
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Table 2.4: Major contribution of ML for UAV channel modelling

Authors Targets ML methods
Goudos et al. [206, 207] RSS prediction of UAV ANN with DE LM train-

ing
Wang et al. [208] A2G channel modelling Unsupervised learning
Chen et al. [209] Radio map construction Segmented regression
Egi et al. [210] Pathloss prediction in ir-

regular terrains
ANN with LiDAR

Zhang et al. [211] A2A pathloss prediction KNN and RandF
Yang et al. [212] A2G pathloss prediction KNN and RandF
Chen et al. [213] Opportunistic channel ac-

cess by UAV
Distributed log-linear

Challita et al. [214] A2G interference mitiga-
tion

ESN-based DRL

Athukoralage et al. [215] Interference management
in Wi-Fi and LTE-U net-
works

RBL

Zhang et al. [216] AMC optimization DL with CNN and LSTM

communication properties learned from the Gaussian process (GP) method. Besides, a
novel QL-based system is designed to directly make movement decisions for a UAV
serving multiple users in [219], where the UAV acts as an autonomous agent in the en-
vironment to learn the trajectory that maximizes the sum rate of the transmission over
the whole flying time. Moreover, a hybrid channel modelling approach in support of
the trajectory planning for communication relay UAVs was studied in [220]. The pro-
posed NN-based approach predicted the correct discrete urban environment type that
provides essential information to be used in the low altitude platform model.

The QoE-driven 3D deployment and dynamic movement of multiple UAVs were jointly
studied in [221] to maximize the sum mean opinion score (MOS) of the users. More
specifically, a genetic algorithm based k-means (GAK-means) algorithm was utilised
to obtain the cell partition of the users. Then, a QL-based deployment algorithm was
proposed, in which each UAV acts as an agent, making its own decision for attaining
a 3D position by learning from trial and error. In [222], an unsupervised online self-
tuning learning algorithm for joint mobility prediction and object profiling of UAVs
was proposed. Afterwards, a UAV-based IoT data harvesting scenario in an urban area
was presented in [223], where a resource-constrained ABS was employed to serve mul-
tiple static ground nodes. Firstly, an optimised trajectory was devised for the UAV
that allows it to learn the propagation parameters. The learning trajectory optimiza-
tion depends on the dynamic programming techniques and the knowledge of the 3D
city map. Then, a joint trajectory and node scheduling problem was formulated based
on the learned parameters to maximize the traffic communicated from each node to
the UAV. Finally, an iterative algorithm was proposed to solve the optimization prob-
lem via a map compression method. The works of [224] consider the case of UAVs as
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Table 2.5: Major contribution of ML for UAV deployment

Authors Targets ML methods
Liu et al. [217] Average throughput of

users
QL

Ladosz et al. [218] Average throughput of
ground nodes

GP and NMPC based
method

Bayerlein et al. [219] sum rate QL
Ladosz et al. [220] Quality of communication NN
Liu et al. [221] QoE and MOS QL and GAK-means
Peng et al. [222] Mobility prediction and

object profiling
Unsupervised learning

Esrafilian et al. [223] Average throughput of
ground nodes and path
planning

Map compression based
method

Colonnese et al. [224] QoE QL
Dai et al. [225] Sum rate Distributed learning
Jailton et al. [226] Average throughput of

UAVs
ANN

Ghanavi et al. [227] QoS QL

mobile BSs providing video streaming services within a cellular macro area. The au-
thors devised a QL-based UAV flight planning algorithm to improve the QoE of video
users. The authors of [225] investigated the sum-rate maximization with α-fairness for
UAV-supported GUs, which are subject to flight region and limited power budget of
UAVs. They proposed a robust and distributed learning algorithm to gather useful in-
formation about GUs and jointly optimise the power allocation and UAVs’ mobility via
leveraging the game theory framework. The authors of [226] proposed a flight path
planning model, which involves a metaheuristic optimization-based approach. The
proposal relied on the ANNs to optimize the positioning of the relay device, so that
the throughput between the other devices could be increased. The performance of a
downlink A2G communication system was optimised in [227], where user mobility is
taken into account. In particular, QL was employed to find the optimal position of the
ABS for compensating the QoS loss due to user movements. The major contributions
of ML on UAV deployment is summarized in Table 2.5.

2.5 Modulation Schemes

Modulation, impressing the data to be sent on the radio carrier, is the fundamental tech-
nique for all wireless communications. The primary purpose of modulation is to inte-
grate as much data into the as little spectrum as possible. This goal, known as spectral
efficiency, quantifies how quickly data can be delivered within a given bandwidth. Sev-
eral techniques for achieving and improving spectral efficiency have evolved. A sine
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wave radio carrier may be modulated in three ways: amplitude, frequency, or phase.
More advanced approaches combine two or more of these variants to increase spec-
tral efficiency. Moreover, these fundamental modulation schemes are still employed
with digital signals today. In this section, two modulation schemes, OFDM and SM,
that have been employed in our proposed UAV-assisted communication system will be
reviewed.

2.5.1 Orthogonal Frequency Division Multiplexing

OFDM [228, 229] is a digital multi-carrier modulation system that uses multiple subcar-
riers to expand the idea of single carrier modulation. OFDM employs a large number
of closely-spaced orthogonal subcarriers that are transmitted in parallel rather than a
single carrier to convey a high-rate stream of data. Using a traditional digital modula-
tion method, each subcarrier is modulated at a low symbol rate (QPSK, 16QAM, etc.).
However, combining several subcarriers allows for data rates comparable to standard
single-carrier modulation techniques within the same bandwidth.

The frequency division multiplexing (FDM) technique is the foundation of OFDM. Dif-
ferent data streams are mapped onto different parallel frequency channels in FDM.
Besides, a frequency guard band separates each FDM channel from the others, which
reduces interference between neighbouring channels. Instead of sending data streams
serially, OFDM is an effective parallel data transmission technique carried by multiple
orthogonal subcarriers with serial to parallel (S/P) conversion. Guard intervals are also
used to reduce inter-symbol and inter-channel interference.

2.5.1.1 OFDM Modulation

As aforementioned, OFDM is a sort of multicarrier communication scheme in which
multiple subcarriers send data symbols in parallel while sharing the system bandwidth
using some form of FDM. The block diagram of the OFDM transmitter is depicted in
Figure 2.9. The first step is to convert the serial input data symbols into parallel (S/P)
and allocate them to M parallel subbranches, where am and bm represent the data sym-
bols that are allocated to in-phase (I) and quadrature-phase (Q) of mth subbranch. After
S/P conversion, each of the M subbranches is modulated onto one of the M subcarri-
ers. Finally, a composite transmitted signal is formed by adding all subbranch signals.

Additionally, the data symbols associated with different subbranches may have differ-
ent symbol dynamic ranges and are not required to be identical. Furthermore, the
modulation scheme can be independently selected on each subbranch. Due to the
frequency-selective communication environment, some subcarriers may suffer more
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Figure 2.9: Transmitter side block diagram of OFDM system with M number
of subcarriers [5].

severe degradation than other subcarriers. Therefore, those subcarriers with higher
output signal-to-noise ratio (SNR) may use higher rate modulation schemes, while
those with degraded output SNR may use lower rate modulation schemes or cancel
the transmission. Consequently, the OFDM signal s(t) in Figure 2.9 can be expressed
as [230]:

s(t) =
M−1

∑
m=0
ℜ
{︂
(am + jbm) ej2π fmt

}︂
,

=
M−1

∑
m=0

[am cos (2π fmt)− bm sin (2π fmt)] . (2.22)

The OFDM signal can be described as a set of closely spaced FDM subcarriers, the
frequency of each subcarrier is selected to form an orthogonal signal set. To maintain
orthogonality, the subcarrier signals obey the relationship of [5]:

∫︂ Ts

0
(am + jbm) ej2π fmt × (an + jbn)

∗ ej2π fntdt = 0, (2.23)

where m ̸= n and (·)∗ indicates the complex conjugation. As a result, it is simple to
find that the M number of frequencies should satisfy [5]:

fm − fn =
i

Ts
, (2.24)

where i ≥ 1 is an integer. In OFDM systems, using a frequency spacing equal to the
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inverse of the OFDM symbol duration Ts is the standard method of establishing orthog-
onality of subcarrier signals. Hence, the method of orthogonality of subcarrier signals
should be selected to satisfy [5]:{︃

0,
1
Ts

,
2
Ts

, · · · ,
M− 1

Ts

}︃
. (2.25)

Here, the symbol duration is defined by the following equation [5]:

Ts =

(︄
M−1

∑
i=0

mi

)︄
× Tb, (2.26)

where mi for i = 0, 1, . . . , M− 1 is the number of bits transmitted by the ith subcarrier.
Therefore, ∑M−1

i=0 mi is the total number of bits transmitted per OFDM symbol. More-
over, Tb is the bit duration of serial input to the S/P converter as illustrated in Figure
2.9.

2.5.1.2 OFDM Demodulation

2cos(2π f0 t)

-2sin(2π f0 t)

P/S

a0

b0

a0 , b0

2cos(2π fM-1 t)

-2sin(2π fM-1 t)

aM-1

bM-1

aM-1 , bM-1

s(t) Output

......

Figure 2.10: Receiver side block diagram of OFDM system with M number of
subcarriers [5].
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The procedure of OFDM demodulation is illustrated by Figure 2.10. In this system, 2M
number of correlators and one parallel-to-serial converter (P/S) are included. From
Figure 2.10, the recovery process of information symbols is obtained by multiplying
corresponding sinusoidal waveforms. For example, in the first subbranch, the symbol
a0 is recovered by first multiplying the OFDM signal s(t) with 2 cos(2π f0t) related to
it. Then, the product signal will be sent to a following integrator over a symbol time
interval. Hence, the whole process can be expressed by [5]:

1
Ts

∫︂ Ts

0
s(t)2 cos (2π f0t) dt,

=
1
Ts

∫︂
0Ts

M−1

∑
m=0

[am cos (2π fmt)− bm cos (2π fmt)] 2 cos (2π f0t) dt,

=
M−1

∑
m=0

am
1
Ts

∫︂ Ts

0
(cos [2π ( fm + f0)] + cos [2π ( fm − f0)]) dt,

−
M−1

∑
m=0

bm
1
Ts

∫︂ Ts

0
(sin [2π ( fm + f0)] + sin [2π ( fm − f0)]) dt. (2.27)

As mentioned before, the subcarrier frequencies are in the form of i
Ts

. Recall in (2.25),
the orthogonality of OFDM system in (2.27) can be reflected by [5]:

1
Ts

∫︂ Ts

0
cos [2π ( fm + f0) t] dt = 0.

1
Ts

∫︂ Ts

0
cos [2π ( fm − f0) t] dt =

⎧⎨⎩1, i f fm = f0;

0, i f fm ̸= f0.

1
Ts

∫︂ Ts

0
sin [2π ( fm + f0) t] dt = 0.

1
Ts

∫︂ Ts

0
sin [2π ( fm − f0) t] dt = 0.

(2.28)

Consequently, substituting the above results into (2.27), the following equation can be
obtained [5]:

1
Ts

∫︂ Ts

0
s(t)2 cos (2π f0t) dt = 0. (2.29)

Similarly, as shown in Figure 2.10, the quadrature-phase symbol b0 carried by the first
subcarrier f0 can be recovered by the same procedure mentioned above. Therefore, the
demodulation scheme of b0 is given by [5]:

1
Ts

∫︂ Ts

0
s(t)× [−2 sin (2π f0t)] dt = b0. (2.30)

Hence, all the data symbols carried by their corresponding subcarriers can be recov-
ered. Finally, all those demodulated symbols will pass through the P/S converter,
where they are converted from parallel data into serial output data.
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Since the subcarrier signals are orthogonal, the demodulation scheme mentioned above
shows no need to employ a bandpass filter in an OFDM demodulator for each subcar-
rier. This property is one of the benefits of employing OFDM because the complexity
of the demodulator can be significantly reduced when subcarrier associated filters are
not used in the demodulation. In addition, multicarrier modulation and demodulation
can be achieved in OFDM systems by employing low-complexity fast Fourier trans-
form (FFT) techniques: inverse discrete Fourier transform (IDFT) and discrete Fourier
transform (DFT). Assume we have a M length sequence {x(0), x(1), . . . , x(M− 1)},
then, the DFT and IDFT can be defined as: [230]:

DFT : X(k) =
1√
M

M−1

∑
m=0

x(m)e−j 2πkm
M , k = 0, 1, . . . , M− 1. (2.31)

IDFT : x(m) =
1√
M

M−1

∑
k=0

X(k)ej 2πkm
M , m = 0, 1, . . . , M− 1. (2.32)

Consequently, the complexity of OFDM system can be further improved.

2.5.2 Orthogonal Frequency Division Multiple Access

Orthogonal frequency division multiple access (OFDMA) [231, 232] divides the channel
into smaller frequency allocations, called resource units (RUs). It enables one access
point (AP) to synchronize communication with multiple individual clients assigned to
specific RUs. By dividing the channel, small frames can be simultaneously transmitted
to multiple users in parallel.

OFDMA can be considered as a technology that partitions a channel into smaller sub-
channels so that simultaneously multi-user transmissions can happen [233]. For exam-
ple, a 20 MHz channel can be partitioned into nine smaller subchannels. Therefore, the
AP can simultaneously serve nine clients by using OFDMA. It is ideal for most net-
work applications and results in better frequency reuse, reduced latency, and increased
efficiency [234], which is a much more efficient use of the medium for smaller frames.
The simultaneous transmission cuts down on excessive overhead at the medium access
control layer and medium contention overhead. The AP can allocate the whole channel
to a single user or partition it to serve multiple users simultaneously, based on traffic
needs.

2.5.2.1 Resource Unit

Figure 2.11 and Figure 2.13 show how frequency space is assigned to users for data
transmission, which helps to clarify the differences between OFDM and OFDMA. When
an AP uses OFDM to send data to clients, the entire frequency space is occupied for
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Figure 2.11: Transmissions of OFDM over time [6].

each independent transmission. In the example of Figure 2.11, the AP transmits to
6 clients independently over time. When 20 MHz channel bandwidth is used, all 64
subcarriers will be used for each independent transmission. In other words, the entire
channel is needed to communicate between the AP and a single OFDM client.

242

106

52

26

106

52 52 52

26 26 26 26 26 26 2613 13

Figure 2.12: Resource units of OFDM system with 20 MHz bandwidth [7].

As previously stated, an OFDMA system considered in [7] has a total of 256 subcarriers.
These subcarriers can be divided into RUs, which are smaller subchannels. For exam-
ple, as illustrated by Figure 2.12, an AP can specify 26, 52, 106, and 242 subcarrier RUs
with a 20 MHz frequency bandwidth, which corresponds to 2 MHz, 4 MHz, 8 MHz,
and 20 MHz channels, respectively. The AP decides how many RUs are used within
a 20 MHz channel, and different combinations can be used. For example, the AP may
allocate the whole channel to only one user at a time, or it may partition the channel to
serve multiple users simultaneously.

In the example shown in Figure 2.13, the AP first simultaneously transmits to clients
1, 4 and 6. The 20 MHz channel is effectively partitioned into three subchannels. Re-
member that an ODFMA 20 MHz channel has 256 subcarriers [7], however, the AP is
simultaneously transmitted to clients 1, 4 and 6 using two different 52-subcarrier RUs
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Figure 2.13: Transmissions of OFDMA over time [6].

and one 106-subcarrier RU. In the second transmission, the AP simultaneously trans-
mits downlink to clients 2 and 3. In this case, the ODFMA channel had to be partitioned
into two different 106-subcarrier RUs. The AP uses a single 242-tone resource unit to
transmit to a single client (client 1) in the third transmission. Using a single RU is
effectively using the entire 20 MHz channel. Then, the AP simultaneously transmits
downlink to clients 2, 4 and 6 using two 52-subcarrier RUs and one 106-subcarrier RU
in the fourth transmission. Afterwards, the AP simultaneously transmits to four clients
with four different 52-subcarrier RUs in the fifth transmission. In the sixth transmis-
sion, the AP simultaneously transmits downlink to clients 2, 4 and 6. In this instant, the
20 MHz channel is partitioned into three subchannels; two 52-subcarrier RUs are used
for clients 2 and 4 and a 106-subcarrier RU for client 6. In addition to 20 MHz channels,
40 MHz, 80 MHz, and even 160 MHz channels can also be partitioned into various
combinations of RUs. For example, if an 80 MHz channel was subdivided using 26
subcarrier RUs, 37 clients could theoretically communicate simultaneously using their
OFDMA capabilities.

2.5.3 Index Modulation

There has been much interest in the concept of index modulation (IM) in recent years
[235, 8]. IM is a spectrum-efficient and energy-efficient but simple digital modulation
technology that uses the indices of the associated building blocks of the corresponding
communication systems to transmit extra information bits [236]. IM systems provide
alternatives to traditional digital modulation techniques that rely on the modulation of
the amplitude/phase/frequency of a sinusoidal carrier signal for transmission, as has
been widely discussed in communications over the last fifty years.
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IM systems can map information bits by altering transmission entities’ on/off status,
such as transmit antennas, subcarriers, RF mirrors, etc [8]. In other words, IM in-
troduces entirely new dimensions to data transmission. Furthermore, these building
blocks can transmit information through the indices via an on/off keying mechanism.
As a result, IM schemes can move the saved transmission energy from inactive transmit
entities to active transmit entities, resulting in improved error performance compared
to traditional schemes that use the same total transmission energy. Additionally, IM
methods can convey information in a more energy-efficient manner by deactivating
parts of the system’s main elements while still utilizing them for data transfer pur-
poses. Finally, because IM introduces additional dimensions for transmitting digital
information, the spectral efficiency of the investigated communication system could be
efficiently boosted without adding hardware complexity.

SM [235, 237], which considers IM for the transmit antennas of a MIMO system [238,
239], has attracted tremendous attention over the past few years and introduced new
directions for the implementation of MIMO systems. Although having very strong
and well-established opponents such as vertical Bell Laboratories layered space-time
(V-BLAST) [240] and space-time coding (STC) systems [241], SM schemes have quickly
shown their potential in terms of spectral and EE and, consequently, have been re-
garded as possible candidates for next-generation small/large-scale and single/multi-
user MIMO, full-duplex, cooperative and cognitive radio systems.

2.5.3.1 Spatial Modulation

As aforementioned, SM utilises the indices of transmit antennas in a MIMO system for
sending extra information, which is the most well-known use of IM. Although the ori-
gins of SM may be traced back to the early twentieth century, the authors investigated
SM-like transmission systems in [242, 243, 244] by utilizing alternative terminology.
The term SM was originally used in the research of [245, 246, 247]. The SM idea sparked
a fresh wave of alternative digital modulation methods in the years that followed, with
several studies published in the literature [235, 237, 248].

In addition to the standard M-ary signal constellations, SM explores a new technique
for delivering information through the indices of the transmit antennas of a MIMO
system [235]. The traditional MIMO schemes rely on spatial multiplexing to increase
the data rate by transmitting different data symbols from different transmit antennas
[240], or spatial diversity to improve error performance by receiving multiple copies
of the data symbols at different time slots from different transmit/receive antennas
[249, 250]. In other words, unlike in SM, the different transmit antennas of a MIMO
system are employed for different purposes in these cases. In particular, there are two
information-carrying units in SM, the indices of accessible transmit antennas and the
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Figure 2.14: SM system model with Nt transmit and Nr receive antennas [8].

M-ary constellation symbols. As depicted in Figure 2.14, a total of

log2 (Nt) + log2 (M) (2.33)

bits enter the transmitter of a SM system within a transmission interval, where Nt and
Nr denote the number of transmit and receive antennas, respectively. While M is the
size of the considered signal constellation diagram, such as M-ary phase shift keying
(M-PSK) or M-ary quadrature amplitude modulation (M-QAM). The first log2(M) bits
of the incoming bit sequence are traditionally employed to modulate the amplitude
and/or phase of a carrier signal. In contrast, the remaining log2(Nt) bits of the incom-
ing bit sequence are used to determine the index (I) of the active transmit antenna that
transmits the corresponding modulated signal (S). As a result, the baseband transmis-
sion vector of SM, with dimensions Nt × 1 is given by:

S = [0 · · · 0 s 0 · · · 0]T . (2.34)

The sparse structure of the SM transmission vector S presented in (2.34) not only de-
creases the detection complexity of its maximum likelihood detector in terms of com-
plicated operations but also allows the implementation of compressed sensing-based
low/near-optimal detection methods for SM systems.

The SM scheme receiver needs to detect two essential tasks: the active transmit antenna
for the demodulation of index bits and the data symbol transmitted over the activated
transmit antenna for M-ary signal constellation demodulation. To accomplish these
two tasks, the optimal maximum likelihood detector of SM must search jointly over all
transmit antennas and constellation symbols [248]. As illustrated by Figure 2.14, the
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maximum likelihood detector employed in the SM scheme could be considered as a
mixture of Nt single-input and multiple-output maximum likelihood detectors, which
correspond to Nt transmit antennas and demodulate the corresponding complex data
symbol as ˆ︁s. This detector determines the most likely activated transmit antenna by
comparing the corresponding minimum decision metrics (m1, m2, . . . , mNt) and pro-
vides the detected activated antenna index (ˆ︁I) as well as the estimated complex data
symbol (ˆ︁s) to the SM demapper for retrieving the incoming bit sequence. The rudimen-
tary suboptimal detector of SM, on the other hand, deals with the two tasks mentioned
above, one after the other. It first detects the activated transmit antenna, and then it
identifies the data symbol transferred over this antenna [246, 251]. As a result, the
size of the search space becomes Nt ×M and Nt + M for the maximum likelihood and
suboptimal detectors, respectively. Although the suboptimal detector can significantly
reduce complexity for an increasing number of transmit antennas and higher-order
constellations, its error performance is considerably worse than that of the maximum
likelihood detector. Therefore, implementing the suboptimal detector can be problem-
atic for critical applications that require a low error rate. Additionally, the sparse struc-
ture of SM transmission vectors enables the implementation of near/sub-optimal low-
complexity detection methods for SM systems, such as matched-filter based detection
[252] and compressed-sensing based detection [253].

Given the above discussion on SM, MIMO systems can offer attractive advantages over
their traditional counterparts by employing SM techniques [?, 254, 255, 256]. In the
following, the key advantages of SM over classical MIMO systems will be summarized
[8]:

• High spectral efficiency: The SE of SM exceeds that of single-input single-output
systems and orthogonal space-time block codes due to the utilization of transmit
antenna indices as an additional method of transmitting the information.

• High energy efficiency: The power consumption of the SM transmitter is inde-
pendent of the number of antennas the transmitter has, while the information can
still be transferred via these antennas. In other words, a SM-MIMO system may
use a larger number of transmit antennas for data transmission without consum-
ing more energy. SM seems to be a energy-efficient MIMO technology from this
standpoint. Compared to V-BLAST, the improvements are up to 46% are reported
for different types of BSs equipped with multiple antennas in terms of the EE in
Mbits/J [257].

• Simple transceiver design: A single RF chain is enough for the SM technique
because only one transmit antenna is active during transmission. Additionally,
inter-channel interference and inter-antenna synchronization are also removed.
As a result, the decoding complexity of the SM receiver rises linearly with the
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constellation size and number of transmit antennas in terms of the total number
of real multiplications.

• Operation with flexible MIMO systems: Unlike the V-BLAST technique, which
needs Nr > Nt and zero-forcing type linear detectors to function with minimum
mean square error, SM could be designed for any number of transmit and receive
antennas. In other words, SM is ideally suited for unbalanced MIMO configu-
rations, such as the downlink of next-generation wireless networks with a larger
number of transmit antennas.

Although the SM scheme offers aforementioned appealing advantages, it also has cer-
tain drawbacks, which are summarized as follows:

• The SE of V-BLAST grows linearly with Nt, whereas the spectral efficiency of
SM increases logarithmically with Nt. As a result, SM requires more transmit
antennas to achieve the same spectral efficiency as V-BLAST. More crucially, the
spectral efficiency of plain SM cannot compete with that of V-BLAST for higher-
order constellation sizes.

• To ensure that a SM scheme operates effectively, the channel coefficients of dif-
ferent transmit antennas must be sufficiently different. In other words, rich scat-
tering environments are required for SM to achieve better error performance. In
contrast to classical systems, the bit error rate (BER) performance of SM degrades
significantly in situations with higher Rician K or Nakagami-m factors.

• SM transmit the data using the spatial domain, so plain SM cannot offer transmit-
diversity as STC systems. Therefore, one solution considers transmit-precoding,
which requires channel state information at the transmitter, while another is STC
techniques that require at least two transmission phases.

Given the benefits and drawbacks of SM systems discussed above, we can conclude
that the SM scheme offers a fascinating trade-off between encoding/decoding com-
plexity, spectral efficiency, and error performance. As a result, SM technologies have
been identified as potential options for next-generation wireless communication sys-
tems with high spectrum efficiency and low energy consumption.

2.5.3.2 Generalized Spatial Modulation

As outlined in the previous section, one of the primary downsides of SM is its compar-
atively low spectrum efficiency compared to the traditional V-BLAST system for the
same number of transmit antennas. Although the indices of the active transmit anten-
nas in SM can transmit a significant amount of information. Compared to V-BLAST,
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SM still has a significant loss in spectral efficiency due to inactive transmit antennas for
higher-order modulations and MIMO systems.

The generalised SM (GSM) scheme was one of the first to attempt to boost the spectral
efficiency of SM and to alleviate the limitation on the number of transmit antennas,
which must be an integer power of two for conventional SM. The number of active
transmit antennas is no longer set to one in the GSM method, and the same data symbol
is transmitted through a selection of numerous active transmit antennas. Inter-channel
interference is also avoided for GSM since the identical data symbol is transmitted from
all active transmit antennas. The spectral efficiency of GSM in terms of bits per channel
use becomes: ⌊︃

log2

(︃
Na

Nt

)︃⌋︃
+ log2(M), (2.35)

where Na, which satisfies the condition Na < Nt, is the the number of active transmit
antennas and ⌊·⌋ is the floor operation and (··) stands for the binomial coefficient. It
should be noted that SM is a special case of GSM with Na = 1. Considering log2(Nt) ≤⌊︂

log2 (
Na
Nt
)
⌋︂

for Nt = 2n (n = 1, 2, . . .), the spatial domain can be used in a more effective
way by the GSM scheme. For example, consider a case that has Nt = 8 transmit anten-
nas. The antenna indices can transmit only three bits in SM. However, GSM can convey
six bits with Na = 4. In [258], the concept of GSM has been extended to multiple-active
spatial modulation (MA-SM) by transmitting different data symbols from the activated
transmit antennas to further improve the spectral efficiency. As a result, the spectral
efficiency of the MA-SM scheme is calculated by:⌊︃

log2

(︃
Na

Nt

)︃⌋︃
+ Na log2(M), (2.36)

which is considerably higher than that of SM given in (2.33). MA-SM is an appeal-
ing intermediate solution between two extreme schemes: SM and V-BLAST, which are
special cases of MA-SM for Na = 1 and Na = Nt, respectively. Given the growing de-
mand for higher data rates in next-generation wireless networks and its adaptability,
GSM appears to be a feasible alternative to the SM and V-BLAST systems, each with
advantages and limitations. As a result, GSM techniques have received much atten-
tion in recent years and have been demonstrated to outperform V-BLAST in terms of
throughput and/or error performance [8].
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Chapter 3

Intelligent Caching in UAV-Aided
Networks

3.1 Introduction

In this chapter, we propose to use UAVs as flying BSs to increase the probability of
having LoS communication links. Moreover, we also investigate the content popularity
distribution based on the latent Dirichlet allocation (LDA) learning process, in order to
make an effective use of limited storage among BSs. The unique advantage of LDA
is that it can be easily used to train a model directly for the property of a completely
probabilistic generative model. Besides, due to the fixed size of parameter space in
LDA, there is no need to consider the size of the contents. Additionally, LDA largely
reduces the size of document feature vectors, which is originally the dimension of the
number of vocabularies. Furthermore, a content sharing method among BSs has been
considered to provide more chances of content availability. Finally, since the sharing
cost (latency) is affected by channel conditions and transmission distances, we propose
a method to reduce both request delay and transmission delay to minimize the total
delay.

The rest of this chapter is organized as follows. In Section 3.2, we present the system
model of our caching-enabled UAV system, while in Section 3.3 we propose three user
association methods for the UAV BSs. Afterwards, we analyse our system performance
in Section 3.4 followed by our conclusions in Section 3.5.

3.2 System Model

The downlink of cache-enabled network serving a set of mobile GUs via several UAVs
acting as flying BSs is shown in Fig. 3.1. As depicted in Figure 3.1, UAVs equipped
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with caching storage are connected to terrestrial MBSs, which have more storage and
computing resources than the UAVs. Meanwhile, these MBSs are connected to the
cloud servers via fibre backhaul links as shown in Figure 3.1. The transmission from
MBSs to UAVs is via wireless fronthaul links over licensed cellular band. Additionally,
in our model, we consider UAVs as flying BSs, which are used to cache GUs’ content in
order to reduce duplicate transmissions from BSs to the GUs. This can help to alleviate
the mobile traffic and reduce the content delivery latency [259].

However, in order to make a full use of the limited available storage at the UAVs,
LDA has been employed to estimate the content popularity distribution based on GUs’
browsing history. The LDA has a fixed parameter space, which is suitable for large
scale text sets and is easy to use. Moreover, LDA reduces the dimension of document
feature vectors [260]. Here, caching is used to store the most popular contents that may
be requested by the mobile GUs. By caching predicted contents, the transmission from
MBSs to UAVs can be significantly reduced, as UAVs can directly send contents to GUs.
Without loss of generality, we assume that each GU requests one content in a single time
slot for simplicity, and the LDA training process would be accomplished by the cloud
during off-peak period. Finally, unavailable content requests would be sent back to
MBSs to support the A2G communication between GUs and UAVs when the requested
contents are not cached in the UAVs. In our system, we consider three UAV-user asso-
ciation methods based on the received-SNR, user-preference and minimum-delay. The
received-SNR is closely linked with transmission delay while the user-preference in-
fluences the caching efficiency, which ultimately affects the request delay. Hence, we
develop an effective approach to consider both to achieve the minimum-delay. Further-
more, two databases with different popularity distributions have been investigated to
analyse how it can affect the system performance. The following section will introduce
the principle of LDA model.

Figure 3.1: Structure of caching-enabled UAV system [9].
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3.2.1 Latent Dirichlet Allocation Model

We propose a proactive caching scheme, which utilizes LDA [180, 186, 261] algorithm
in accordance with the user preferences for optimizing the caching performance and
guaranteeing the QoE. Given the advancement in machine learning and big data anal-
ysis, it is beneficial to cache popular contents before the GU requests are generated,
since this will help save the time to request contents from far away MBSs. The MBSs
are capable of collecting GU data by UAVs and sending them back to the cloud server
to perform the training process. Based on this collected information and the training
results, UAVs can cache contents accordingly.

Assume that the collected data by the flying BSs during GU communications is repre-
sented by Q documents, as shown in Figure 3.2 and the mth document is constructed
from a collection of Nq words. Furthermore, T essential topics1 are assumed in all doc-
uments with different probabilities. Please note here that we are concerned with the
number of topics and not what the topics are. Therefore, all the subsequent procedures
are based on T. Note that m, Nq and T are some of the important parameters. Fur-
thermore, each document (out of the Q available documents) has a Document-Topic
distribution2 based on T topics, while each topic has a Topic-Word distribution. There-
fore, with the help of Document-Topic distribution and Topic-Word distribution, we
can evaluate the Document-Word distribution, which is also known as the GU’s pref-
erence.

W11

W21

Wm1

W12

W22

Wm2

...

...

...

W1N1

W2N2

WmNm

......

Doc1

Doc2

Docm

WM1 WM2 ... WMNM

......

DocM

Figure 3.2: Latent Dirichlet Allocation model.

The generative process [182] of LDA will not generate the actual documents, it is the
model that explains how a document could be generated by LDA’s method. With the

1A topic, e.g. football, weather, economy, etc, is considered here as the GU’s preference.
2Please note that in the following we will refer to probability distribution as distribution.
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help of Gibbs samplings [262, 263], LDA is able to evaluate the document-topic distri-
bution and topic-word distribution from the training data. Let us here illustrate the
idea using an example, where the generative process mimics the process of generating
a file, which is a procedure we utilized to analyse the proportion of each component
accounted in those documents. Assuming that some of the latent topics have not been
observed in the considered documents and each document has a distribution over these
topics. After LDA training in this example, the results show that one document has the
following distribution: 50% politics, 40% economy, 8% weather and 2% technology. Be-
sides, for each topic, it has a distribution over the words in the vocabulary, and the
vocabulary is composed of words occurring in the documents. For instance, in the
weather topic, the word ‘temperature’ has a higher probability than that of ‘money’.
Now, considering the same topic distribution mentioned above, we firstly choose a
topic according to the distribution, which could be politics. Then, we choose a word
following the words distribution corresponding to the politics topic. This becomes the
first word of the document and this step is repeated for all the words of the document.
Finally, we are able to obtain the distribution of all words (contents) in this document,
which means the interests of each GU have been extracted because each document rep-
resents a data collected from one GU. According to the distribution of these contents,
the most popular contents will be cached in the UAVs. In the following section, we first
explain the mobility modelling of the GUs and then we illustrate how we can apply
caching on UAVs according to the training results of the LDA process.

3.2.2 Mobility Model

In our proposed system, we assume that all GUs are moving continuously in an area
with maximum velocity of Vmax. Initially, we give each GU a direction and a speed
randomly. However, if GUs hit the border, they will change the direction by 180◦ to
keep themselves in this target area. Four UAVs are moving according to the movement
of GUs with k-means clustering [264, 265] at a height of hd [266], which clusters the
GUs into four groups and deploys UAVs at the centroids of each group based on the
coordinates of GUs in this group. For instance, consider four GUs are in a group and
their coordinates on the ground are {(1, 1), (2, 3), (5, 2), (4, 6)}, then the k-means clus-
tering technique will deploy the UAVs at the point (3, 3) with a hight of hd. Also note
that, GUs3 are also randomly distributed in this area. An example of user association
by maximum-received-SNR method is illustrated by Figure 3.3.

Here, please note that each group is allocated geographically around one UAV to ini-
tialize the system at the very beginning. After that, the GUs would be allocated to their
corresponding UAV based on a specific criterion, which will be described in section
3.3. Additionally, the movement of GUs will then be used to determine the contents

3The proposed scheme will work for any number of GUs and they do not have to be equal.
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Figure 3.3: An example of user association by maximum-received-SNR, where
smaller markers represent GUs and bigger markers represent the UAVs.

that should be cached by the UAVs. More specifically, the movement of GUs could
lead to the change of user-UAV association and further cause the change of distribu-
tions in each group of associated GUs. However, GU movement does not affect the
user-preference method.

We give an example to illustrate how the movement of GUs affect the variation of
contents. Assume that two GUs are connected to one of the UAVs, and a total of 4
contents are considered, C = {c1, c2, c3, c4}. Furthermore, the popularities of each con-
tent are assumed to be different for each GU, which could be represented by P1 =

{0.1, 0.25, 0.4, 0.25} and P2 = {0.4, 0.15, 0.4, 0.05} respectively, with the order from 1 to
4. Therefore, the average probability of each content is Pa = {0.25, 0.2, 0.4, 0.15} and
the contents that should be cached are c1 and c3. However, if a new GU moves into this
group and the corresponding popularity distribution is P3 = {0.1, 0.5, 0.1, 0.3}, then the
Pa would change to {0.2, 0.3, 0.3, 0.2} and the contents to be cached would be c2 and c3.
In this model, a total of T topics and Nc words (contents) are considered. Moreover,
since the distance between UAVs is much smaller than that from UAVs to BS (We as-
sume that all the UAVs get information from the same BS4), a constant request delay
Dr per request is assumed [267]. The detailed simulation parameters are listed in Table
3.1.

4This does not have to be the case, we did this to simplify the system simulations.
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Table 3.1: Simulation parameters

Parameter Symbol Value Parameter Symbol Value

Number of GUs Nu 100 Noise power σ2 -95 dBm

Number of UAVs Nd 4 Carrier frequency fc 38 GHz

Number of topics T 4 Request delay from UAVs to BSs Dr 8 ms

Number of contents Nc 100 Bandwidth B 20 MHz

Transmission power Pt ≤ 30 dBm Memory Size nm 512000 bits

Area length L 300 m Content size nc 51200 bits

Path loss exponent α 2 Speed of light c 3× 108 m/s

UAV height hd 100 m Maximum velocity of each GU Vmax 2 m/s

3.2.3 Caching Model

For the procedure of caching, all the contents (words) are cached based on their corre-
sponding probabilities. For instance, we assume that there are 4 words in the vocabu-
lary with their probabilities given by P = {p1 = 0.1, p2 = 0.45, p3 = 0.05, p4 = 0.4}.
Hence, the caching order is I = {p2, p4, p1, p3} which is sorted from high to low based
on their probabilities. Based on the memory size, the contents are cached in sequence.
Finally, to measure the performance of LDA algorithm, the caching efficiency of each
UAV ηd is defined as a function of the GU requests that have been cached in the UAV:

ηd =
Nd

∑
i=1

Pd(Ci
d) =

Nd

∑
i=1

∑Ud
u=1 Pu(Ci

d)

Ud
, (3.1)

where d is the index of the UAV and u is the index of the GU served by this UAV,
Nd is the number of contents that is cached in UAV d, while Ud is the number of GUs
allocated to UAV d. Furthermore, Pd(x) and Pu(x) represent the PDFs of the UAV-
Content and the User-Content, respectively. Additionally, Ci

d is the ith content cached
in UAV d.

Here, we give an example to illustrate the process of calculating caching efficiency for
one UAV. Assuming that the memory size of the UAV is 2 units. Hence, only 2 out of 4
words Cd = {c1, c2} can be cached in the UAV. Besides, 3 GUs are allocated to this UAV
and the probabilities of these 2 words for the 3 GUs are indicated by P1 = {0.1, 0.3},
P2 = {0.25, 0.05} and P3 = {0.4, 0.3}. Then the average probabilities of these 2 words
in the UAV is Pd = {0.25, 0.22}, and the caching efficiency is 47%.

3.2.4 Channel Model

In our system, we use the Rician fading channel model [45, 268], which has a dominant
LoS path combined with some NLoS paths. Here, the effect of shadowing is not consid-
ered in our system. A Rician channel is described by two parameters: K and Ω, where
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K = µ2

2γ2 is the power ratio of the LoS path and the NLoS paths, while Ω = µ2 + 2γ2 is
the total power from both LoS and NLoS paths. The probability density function of the
Rican fading channel is given by:

f (x) =
x

γ2 exp
(︃
− x2 + µ2

2γ2

)︃
I0

(︃
xµ

γ2

)︃
, (3.2)

where I0 is the 0th order modified Bessel function of the first kind. Therefore, the nor-
malized complex-valued Rician channel h can be expressed by [269]:

h =

√︃
K

1 + K
· hLoS +

√︃
1

1 + K
· hNLoS, (3.3)

where hLoS represents the deterministic LoS component, while hNLoS denotes the stochas-
tic NLoS component of the scattered multipath signal. On the other hand, path loss is
also considered to describe the signal attenuation due to the signal propagation over
large distances. Path loss model is developed by using the numerical methods and
the empirical approximations of measured data collected in channel sounding experi-
ments, which is closely related to the environment where the transmitter and receiver
are located [270]. In general, the propagation path loss Pl is expressed by [271]:

Pl =

(︃
4π

λ

)︃2

dα. (3.4)

where d is the distance between the transmitter and receiver, α is the path loss exponent
which ranges from 2 to 6 and λ = c

fc
is the free space wavelength defined as the ratio

of the speed of light c in m/s to the carrier frequency fc in Hz. Therefore, the received
signal power Pr given a transmission power Pt is given by [272]

Pr =
Pt

Pl
= Pt

(︃
c

4π fc

)︃2 (︃1
d

)︃α

. (3.5)

In our system, the UAVs are assumed to operate in a environment at a height of 100
meters [273], where LoS communication links exist for most of the time. Hence, free
space path loss exponent α = 2 is considered to describe the path loss [44] and Pr is
transformed to:

Pr = Pt

(︃
c

4πd fc

)︃2

. (3.6)

One important criterion to determine the performance of a system is the achievable
rate, where the capacity of the Discrete-Input Continuous-Output Memoryless Channel
(DCMC) for two-dimensional M-ary complex signals is represented as [274]:

CDCMC = log2(M)− 1
M

M

∑
m=1

E

[︄
log2

M

∑
i

exp(Λm
i )

]︄
, (3.7)
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where we have:

Λm
i =

−|
√

Prh (xm − xi) + n|2 + |n|2
σ2 , (3.8)

where xm is the M-ary symbol and n is the complex-valued Additive white Gaussian
noise (AWGN) having a variance of σ2.

After obtaining the channel capacity, the transmission time Tu
t needed to send a data

content from the associated UAV to a GU u at time slot t can be evaluated as follows:

Tu
t =

nc

Cu
t × B

(3.9)

where Cu
t is the DCMC capacity of GU u at time slot t and B is the bandwidth.

3.3 User Association Strategies

There are various association methods to assign GUs to the UAVs, when there are mul-
tiple GUs and multiple UAVs available. Here, we propose different association meth-
ods according to different aspects of system performance, e.g. transmission delay, re-
quest delay and caching efficiency. In this section, we propose three user association
methods, which are referred to as the maximum-received-SNR, user-preference, and
minimum-delay methods. Here, the received-SNR is related to the transmission delay
while the user-preference method would affect whether UAVs have to request new con-
tents from BSs or not, which is related to the user-preference method. Besides, we also
assume that the distribution of GU interests will not change within a certain period of
time. Once the user-UAV association is done, an appropriate modulation scheme could
be invoked based on the estimated receive SNR of the transmission link.

3.3.1 User Association by the Maximum-Received-SNR Method

In this method, we consider the received-SNR as the criterion to associate GUs. Con-
sider an example of 4 UAVs with 100 GUs as depicted in Figure 3.3. It can be seen
that 4 UAVs are indicated by 4 different shapes and deployed at the center of 4 clus-
ters. Meanwhile, GUs are allocated to one of those UAVs, which are represented by
the same shape of the dedicated UAV but in a smaller size, according to the value of
received-SNR.

As shown in Algorithm 3, the whole procedure starts with the LDA training, which
is done at a BS, to analyse and extract GU preferences based on the browsing history.
Here, the GU preferences or interests can be represented by Θ = {ϑ1,ϑ2,...,ϑu}, where
u ≤ Nu. For each GU u, the interest is indicated by ϑu, which can be expressed by
ϑu = (ϑu1, ϑu2, ..., ϑuk), where k ≤ Nc. Additionally, ϑuk is the probability of the kth
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Algorithm 3 Operating procedure of maximum-received-SNR method.

1: Training by Latent Dirichlet Allocation
2: Extract the interest (probability) of each GU
3: Initialize the number of outage No = 0
4: while t ≤ Ns do
5: Deployment by k-means according to coordinates of GUs
6: User association by selecting the UAV with the highest SNR
7: Cache contents according to θu of associated GUs
8: Generate real-time requests
9: for n from 1 to Nu do

10: Check UAV-availability Au ∈ {0, 1}
11: if Au = 1 then
12: du

a = dmax
13: Select modulation scheme based on Cu

t
14: else
15: if Cu

t = 0 then
16: No = No + 1
17: else
18: du

a = dmax
19: Select modulation scheme based on Cu

t
20: Request content from far-away BS
21: end if
22: end if
23: end for
24: end while

content of GU u. Then, we apply the k-means clustering technique based on the co-
ordinates (or A2G distance) of each GU. Given the fact that the path loss Pl , which is
determined by distance when fc is fixed, dominantly affects the received-SNR, the k-
means will allocate those GUs with similar A2G distances to the same group and obtain
the centroids of each group. Consequently, the UAVs will be dispatched to the cluster
centroids for deployment. Afterwards, the GUs would be associated with the UAV,
which can provide the best quality of service in terms of the highest received-SNR, as
their server by calculating the received-SNR according to the current deployment ac-
complished by the k-means. Note that the received-SNR depends on both the path loss
(or distance) as well as the channel fading. As shown in Figure 3.3, GUs are allocated
to the UAV closest to them most of the time. However, some GUs may not be served
by the UAV nearest to them due to channel fading, which can cause a degradation on
the channel SNR. Furthermore, the UAVs can adaptively deploy themselves with this
low-complexity technique by simply recalculating the centroids according to the new
coordinates of GUs in each time slot t, where t ≤ Ns and Ns is the number of time slots.

Now, UAVs are able to cache the contents according to the interests Θ (“User-Content”
distribution) of GUs that have been allocated to them. The next step is to check the
UAV-availability Au of each GU when a new request is generated. If Au = 1, it means
the corresponding UAV is linkable and the content has been cached. So, the capacity
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Cu
t of each GU at current tth time slot can be simply obtained from their corresponding

received-SNR, which is indicated by SNRu. However, two cases will lead to Au = 0.
First, if Cu

t = 0, which means the quality of the channel is too bad to establish a stable
and reliable links between GU u and the corresponding UAV. Then, the GU u will be
counted as outage. Second, when the content has not been cached, a request delay will
occur, where the UAV will request this specific content from the BS and then forward
to the GU. In this method, the associated UAV du

a of GU u will always be dmax, where
dmax is the UAV that can provide the highest SNR.

Let us consider the following example to illustrate the procedure of this user association
method. Assume that the memory size of each UAV is 3 units and we have a set of
content S = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12}. Please note the amount of contents
could be any value and the number in the set only represent the index of contents
with no order. Based on the ’interests’ of GUs in the first group, if the contents in the
descending order is {c1, c12, c5, c7, c6, c4, c3, c2, c9, c10, c8, c11}, then the cached contents of
the first UAV should be D1 = {c1, c12, c5}. In practice, each GU will generate a new
request within one time unit, while the UAVs have to check the availability of those
requests in the memory. If those requests were not cached in advance, the UAVs have
to request for it from higher-level “servers” (BSs around them), which would incur a
request delay.

3.3.2 User Association by the User-Preference Method

In this section, user-preference is considered as the criterion to associate users with
UAVs. It is different from the purpose of utilizing k-means to accomplish UAV deploy-
ment in the scenario of maximum-received-SNR. Thus, users who have similar “inter-
ests” would be allocated to the same UAV. As shown in Algorithm 4, the LDA training
would be accomplished at the very beginning in accordance with the searching history
of all users. Then, based on the number of UAVs Nd, the k-means clustering is applied
to divide all the users into Nd groups according to the extracted LDA training results Θ
from all users. Therefore, according to the probabilities of contents θu of each GU, those
users who hold the most similar “interests” or “distributions” would be clustered into
one group. Then, based on the coordinates of users in each clustered group, the UAVs
will be deployed at the centroid of the corresponding group.

After each group has been allocated to its dedicated UAV, the corresponding UAV could
cache contents based on the content distributions of those users assigned to it. Similarly,
the UAV-availability of each GU is checked when a new request is generated at each
time slot. If Au = 1, GU u is able to communicate with dc and get the content directly
from the UAV. Otherwise, according to the cases that would cause Au = 0, GU u will
be considered as outage when Cu

t = 0. On the other hand, the GU can also request the
content from a far-away BS if the content is unavailable from the associated UAV. It is
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Algorithm 4 Operating procedure of user-preference method.

1: Training by Latent Dirichlet Allocation
2: Extract the interest (probability) of each GU
3: Initialize the number of outage No = 0
4: while t ≤ Ns do
5: GU clustering by k-means according to θu
6: Deploy UAVs at centroids of corresponding clusters
7: User association by connecting to corresponding UAVs
8: Cache contents according to θu of associated users
9: Generate real-time requests

10: for n from 1 to Nu do
11: Check UAV-availability Au ∈ {0, 1}
12: if Au = 1 then
13: du

a = dc
14: Select modulation scheme based on Cu

t
15: else
16: if Cu

t = 0 then
17: No = No + 1
18: else
19: du

a = dc
20: Select modulation scheme based on Cu

t
21: Request content from far-away BS
22: end if
23: end if
24: end for
25: end while

worth noting that the function of the k-means clustering technique used here is different
from that in the other two association methods. In this case, it is only employed for the
sake of user-UAV association. As aforementioned, users will firstly be divided into
different clusters according to their interests by k-means algorithm and then the UAVs
will be dispatched to the centroids of each cluster according to the coordinates of users
in each cluster to do user association. It is different from the case that utilises the k-
means for clustering and UAV-deployment, as done in the other two user association
methods.

Furthermore, consider an example where the memory size of each UAV is 3 units and
we have a set of content S = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12}. Also, the amount
of contents could be any value and the number in the set only represent the index of
contents with no order. Based on the ’interests’ of users in the first group, if the con-
tents in the descending order is {c7, c6, c4, c1, c12, c5, c3, c2, c9, c10, c8, c11}, then the cached
contents of the first UAV should be D1 = {c7, c6, c4}. Finally, If the real-time GU request
was not cached in the storage, the UAV has to send a request to the BS to ask for the
new content. In reality, it is possible that a certain UAV will serve a large percentage
of users if a large group of users are interested in the same thing, which could quickly
lead to a performance bottleneck of that specific UAV. For example, if there is only one
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group according to the LDA analysis, then the users in this area would have similar
interests. In this case, the GU interest factor is a “constant” and we do not need to
consider it as a variable. Hence, the communication link quality becomes the key in-
fluence and the maximum-received-SNR or minimum-delay method could be applied.
Furthermore, the bottleneck issue could be solved by increasing the number of UAVs
in this situation.

3.3.3 User Association by the Minimum-Delay Method

In order to provide the best quality of experience, both the transmission delay and the
request delay should be considered to minimize the total delay. Algorithm 5 shows the
operation procedure of the minimum-delay user association. In this method, k-means
is implemented to cluster users into groups based on the coordinates or A2G distances
and then find the centroid of each group. Afterwards, all the UAVs will be dispatched
to the centroids of these groups and then the same user association method employed
in maximum SNR scenario would be adopted to initialize the user-UAV association
between users and UAVs, which is only used as a “sketch” or a starting point for the
following optimization process. This does not mean users and UAVs are truly associ-
ated.

The caching method of UAVs is not in a “local” mode that has been applied in the for-
mer two cases due to the limited storage resources on UAVs. In this situation, all the
UAVs are considered as a whole and the data synchronization of UAVs will be done
periodically. During this process, extra signalling between the UAVs is needed in or-
der to facilitate an information exchange (cached contents and channel condition) and
for establishing a proper control of this system as illustrated by Algorithm 3. This sig-
nalling information will be transmitted via a control channel and hence it will not affect
the transmission from UAVs to users but would consume a small amount of energy.

In this method, we cache the top Nd×nm
nc

contents, which have the highest probability
to occur instead of caching individually by only considering the top nm

nc
contents in

each subgroup of a UAV. For example, the available memory size for each UAV is 3
units, and so, we have the set of content S = {c12, c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1},
which is ordered by the probability in the descending order, where the index 12 has
the highest probability while the index 1 has the lowest probability. Hence, the cached
content in each UAV would be D1 = {c12, c8, c4}, D2 = {c11, c7, c3}, D3 = {c10, c6, c2}
and D4 = {c9, c5, c1}. It is worth noting that C describes all the contents to be cached,
as opposed to the previous two cases where each UAV independently cache the top
three contents. In this case, the 4 UAVs are caching in a global way. Then, in order to
achieve a minimum total delay scheme, iterations to exchange users among different
groups will be applied. According to Algorithm 5, the number of iterations Ni has to be
set at the beginning of the process and the value of Ni should be selected to guarantee
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Algorithm 5 Operating procedure of minimum-delay method.

1: Training by Latent Dirichlet Allocation
2: Extract the interest (probability) of each GU
3: Initialize the number of outage No = 0
4: while t ≤ Ns do
5: Deployment by k-means according to coordinates of users
6: Initialise user association by maximum-received-SNR method
7: Do caching according to interests of associated users
8: for n from 1 to Ni do
9: Exchange users among different groups

10: if Tc
sum > Te

sum then
11: Keep the exchange and move to next GU
12: else
13: Move to next GU
14: end if
15: end for
16: Generate real-time requests
17: for u from 1 to Nu do
18: Check link-availability Al ∈ {0, 1}
19: if Al = 1 then
20: Check content-availability Ac ∈ {0, 1}
21: if Ac = 1 then
22: Select modulation scheme based on Cnl

t
23: Calculate total delay Tnl

sum of linkable UAVs
24: du

a = argmin
nl

Tnl
sum

25: else
26: du

a = dmax
27: Select modulation scheme based on Cnl

t
28: Request content from far-away BS
29: end if
30: else
31: No = No + 1
32: end if
33: end for
34: end while

the convergence, but it should not be too big as this may increase the complexity of
the system. During an iteration, each exchange may lead to a change of the contents
in UAVs as mentioned before. Therefore, it affects the theoretical request delay of each
GU, Tr(u), which can be calculated as:

Tr(u) =

(︄
1−

Nc

∑
i=1

Pu(Ci
da
)

)︄
× Dr. (3.10)

Hence, the theoretical request delay of GU u is determined by the probability of con-
tents not cached in the associated UAV du

a . Also, the change will directly affect the
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transmission delay Tt(u) due to the variation in distance and channel condition be-
tween the users and the different UAVs. Finally, the average total delay of the current
situation Tc

sum and the delay after-exchange Te
sum could be obtained by simply dividing

the sum of the two delay values by Nu. Hence, if Tc
sum > Te

sum, this GU exchange will
be kept, otherwise, it will be discarded. Since the number of users are fixed, the value
of total delay will continuously go down and converge to a certain level.

After this optimization in Algorithm 5, data communication commences. This iteration
is based on the number of users in the area. GU u will firstly check the link-availability
Al , when a new request is generated and it will be set to “1”, when at least one of
the UAVs can establish communication links, otherwise, it will be “0”. Secondly, the
content-availability Ac will be checked among those Nl linkable UAVs. If the requested
content has been cached in the memory (Ac = 1), then we calculate the total delay
Tnl

sum of all linkable UAVs by choosing appropriate modulation scheme based on the
channel capacity of the linkable UAVs, which is denoted by Cnl

t , where nl = 1, 2, . . . , Nl .
Afterwards, the UAV with the smallest total delay will be selected as the associated
UAV du

a . However, if the requested content has not been cached in these Nl UAVs,
the UAV dmax which is able to provide maximum received-SNR will be selected as the
associated UAV. Finally, if Al = 0, it means that the channel condition of all UAVs is not
good enough to establish a reliable communication link (Cu

t = 0) and this GU u will be
counted as outage. Using Algorithm 5, we can achieve a balance between the request
delay and the transmission delay to obtain the smallest total delay.

According to the user-UAV association introduced above, it can be found that complex-
ity is closely related to the number of UAVs Nd. From the GU perspective, UAVs will
firstly check if this GU is able to establish communication with them, which means to-
tally Nd examinations are required. Then, assume that the GU is able to associate with
Nl linkable UAVs, those Nl linkable UAVs have to check the content-availability of its
memory based on the requests sent by this GU. Hence, Nl times are required to finish
this task. Furthermore, the truly associated UAV will be determined by the compari-
son of the total delay and therefore Nl − 1 times of comparison is required. Finally, the
complexity of the proposed user-UAV association is given by:

O (Nd + 2Nl − 1) . (3.11)

It can be found that the complexity is almost linearly related to the number of UAVs
Nd, which provides us with a relatively low-complexity user-UAV association.

3.4 Performance Results and Evaluation

In this section, we investigate the performance of the proposed schemes in terms of
caching efficiency and time delay in a environment that users are moving in a target
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area. In order to further investigate how the learning results of LDA training affect the
system performance, two databases have been studied. As shown in Figure 3.4, the two
databases have quite different distributions. In database 1, some contents have a higher
probability compared to others. In this situation, we can say that users are interested
in a few specific contents, which could be exploited by the LDA algorithm. However,
database 2 has a rather uniform distribution, where all contents have similar probabili-
ties of occurrence. In other words, users do not exhibit any specific interests and hence
it would be harder for the LDA to decide which contents to cache from database 2.
Moreover, the movement of ground users could lead to the change of user-UAV asso-
ciation and further cause the change of distribution in each group of associated users.
In the simulation, the user-preference of each GU will not change but the mobility of
GU will cause the change of Pa and the cached content. Besides, the new request is
generated by sampling from the GU interests, hence the GU requests are different at
each time slot.
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Figure 3.4: The content distributions of the two databases.

In our system, we consider random caching as a benchmark to see how training affects
the performance of the caching efficiency. For UAV-user association, the signal strength
or received-SNR is a key criterion to associate a GU with a BS in today’s communica-
tion system, hence, we consider it as the benchmark of transmission delay, as it has the
smallest transmission delay. Besides, the system is a cache-enabled system, therefore,
the request delay which is affected by the user-preference, would be the second bench-
mark to measure the performance of request delay, as the user-preference has the small-
est request delay. Afterwards, we compare our proposed minimum-delay scheme with
them to illustrate the advantages of global caching and global UAV-user association.
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The following sections will illustrate how different databases affect the performance,
where the notations MD, MS, UP and RC denote minimum-delay, maximum-received-
SNR, user-preference and random caching5, respectively, while d1 and d2 represent
database 1 and database 2. Note that notations with RC indicate that the relevant
schemes employed random caching, while those without RC represent the relevant
schemes invoking LDA training for caching.

3.4.1 Channel Capacity

In order to obtain the duration it take to send a content from UAV to GU, we have to
know the quality of the channel between UAV and GU as the quality of channel af-
fects the rate of transmission, which is demonstrated by capacity. Figure 3.5 shows the
capacity for various modulation schemes when communicating over Rician channel,
where it can be seen that the channel capacity increases as SNR increases. However,
restricted by modulation schemes, the modulation-dependent DCMC capacity curve
would converge to log2(M) when the SNR reaches a certain level. Hence, in our pro-
posed system we choose a higher-order modulation type to increase the capacity when
the channel quality improves. The Shannon capacity represented by the dashed line
is the upper bound, which is independent of the modulation. Our aim is to design a
system to approach this upper limit. Therefore, coded modulation is applied to accom-
plish this task.

As shown in Figure 3.5, the SNRs needed to support the transmission of 3 bits/symbol
are 11 dB and 25 dB for 16-QAM and 8-QAM, respectively, where the DCMC capac-
ity curve of the 16-QAM is much closer to the Shannon capacity compared to that of
8-QAM. This means that a scheme using a channel coding having a rate of 3

4 (1 addi-
tionally parity bit for each group of 3 information bits) in conjunction with 16-QAM
can perform closer to the Shannon capacity limit, compared to the uncoded 8-QAM
scheme. On the other hand, a near Shannon capacity scheme can also be created by
using a low rate channel coding in conjunction with higher order modulation schemes,
however, it is not advisable because higher order modulation has a higher complexity,
which means a higher chance to get errors. The general rule of thumb to transmit k bits
using M-QAM is to have M = 2k+1. Thus, the transmission of k = 3 bits using 16-QAM
can be achieved at SNR = 11 dB, using a perfect channel code having a rate of k

k+1 = 3
4 .

Based on the aforementioned theory, the transmission delay can be obtained according
to the size of contents and the channel conditions. The channel capacity has direct
impact on the transmission delay. More explicitly, the SNR increases with the increase
of the transmission power, which can support a higher capacity transmission using a

5Random caching means we randomly choose the contents to cache without considering the occurrence
probabilities of each content.
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higher-order modulation. A higher capacity would permit a higher transmission rate,
which could reduce the transmission time for the same amount of data.
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Figure 3.5: The DCMC capacity for various M-QAM schemes when communi-
cating over Rician channel with K = 3.

3.4.2 Caching Efficiency

Figure 3.6 shows the average caching efficiency of these UAVs, where it could be found
that the caching efficiency of user-preference scenario is higher than that of maximum-
received-SNR and minimum-delay scenarios. In the user-preference scenario, those
GUs who have similar interests are grouped together to be served by the same UAV and
hence, the hit rate of the requested contents would be higher than that of maximum-
received-SNR and minimum-delay scenarios. It is worth noting that the caching method
in minimum-delay scenario is global, which means the hit rate in each subgroup served
by a particular UAV would be lower than that in the other two cases. Additionally, the
caching efficiency of random caching in the three scenarios is similar, since in this case
all the contents have equal probability and we randomly choose the content for caching.
The random caching technique has a low caching efficiency but the system complexity
is low, because there is no training required. Here, we assume that GUs’ preferences
will not change during the simulation period; hence, the caching efficiency of these
three scenarios is stable. Moreover, the quality of training will also affect the caching
efficiency. More specifically, when the GUs’ interests could be distinctively classified,
as in database 1, the caching efficiency would be much higher than that of database 2,
due to a better training. Finally, LDA training helps us to significantly improve caching
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efficiency and enhances the quality of experience compared to the random caching sce-
nario that has no training. As seen in Figure 3.6, the performance of the RC based
schemes is independent of the database used. Hence, we will denote RC based schemes
without the d1 or d2 notation for the rest of our analysis.
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Figure 3.6: Average caching efficiency of UAVs,where the notations MD, MS,
UP and RC denote minimum-delay, maximum-SNR, user-preference and ran-
dom caching, respectively, while d1 and d2 represent database 1 and database
2.

3.4.3 Request Delay

Figure 3.7 shows the request delays of the three scenarios as a function of the change
of transmission power. From the figure, it could be found that the request delay of
maximum-received-SNR and user-preference is stable, which is independent of trans-
mission power. Under the premise of high transmission power, it can be seen that the
maximum-received-SNR scheme has the highest request delay because it considers the
received-SNR as the primary point but neglects the user-preference. Hence, it needs to
request new content more frequently from the BSs than that of the other two scenar-
ios. On the contrary, user-preference scenario achieves a lower request delay as it puts
user-preference as the key element, which reduces the number of times of requesting
new content from the base station. Note that the request delay for UP and SNR based
schemes is independent of the transmission power because both of them are in the local
mode and cannot connect to other UAVs.
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Additionally, request delay considers the transmission and processing time from a BS
to a UAV, which is independent of the transmission power. Therefore, the interest of
the GUs (the distributions of the content) is the main factor that affects the request
delay. When this interest does not change, the request delay would stay the same.
However, since the minimum-delay scenario caches contents in a global way, it is less
frequent that the UAVs would ask for new requests from the BSs and hence, it provides
the smallest request delay when the transmission power is sufficiently high. However,
when a low transmission power is considered, it is hard for GUs to connect to the other
UAVs even if the content is available at these other UAVs that could be far away. To
elaborate further, as discussed in the previous section, the caching efficiency in the
minimum-delay methods is the lowest among the three user association methods. So,
the request delay is much higher than that of the other two methods. This is because the
system only caches the most popular contents once and it is possible that the contents
needed by those users are not cached in their accessible UAVs. Hence, there is a reduced
chance to meet their demands.

Indeed, it is good to cache the same content at different UAVs if it is very popular and
has extremely high probability, which clarifies the observation that the caching effi-
ciency of MS and UP methods is significantly higher than that of the minimum-delay
method. However, the contents needed to be cached are larger than the size of a prac-
tical UAV memory. Hence, the minimum-delay method sacrifices some transmission
delay and caching efficiency in order to attain significant gains in the request delay as
shown in Figure 3.7.
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Figure 3.7: Average request delay of UAVs, where the notations MD, MS, UP
and RC denote minimum-delay, maximum-SNR, user-preference and random
caching, respectively, while d1 and d2 represent database 1 and database 2.
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3.4.4 Transmission Delay

The transmission delay is the time delay for the transmission of one content from UAVs
to GUs. As shown in Figure 3.8, it could be found that the transmission delay will
decrease when increasing the transmission power. In our system, we assume perfect
channel coding schemes having a code rate of k

k+1 to transmit k bits using M = 2k+1-
QAM to achieve the DCMC capacity as shown in Figure 3.5. The modulation or-
der M would become higher as the transmission power increases, which increases
the throughout or transmission rate and reduces the transmission delay. Besides, the
caching methods will not affect the transmission delay in the maximum-received-SNR
and user-preference scenarios. The transmission delay is the primary consideration in
the maximum-received-SNR scenario but not in the user-preference scenario; therefore,
the curves of these two scenarios become the lower bound and the upper bound, re-
spectively. Note that the transmission delay is only counted when the content is avail-
able. Hence, when the training is good (as in database 1), a lot of GU requests can be
fulfilled by the minimum-delay method that consider cooperation among UAVs. How-
ever, this translates to a high transmission delay as it becomes even higher than that of
user-preference method with the increase of transmission power. By contrast, when the
training is poorer (as in database 2 or in the RC scenario), less GU requests can be ful-
filled in the minimum-delay method and hence less transmissions are needed, which
resulted in a lower transmission delay.
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dom caching, respectively, while d1 and d2 represent database 1 and database
2.
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3.4.5 Total Delay

In Figure 3.9, the total delay is determined by both the request and the transmission de-
lay. When the transmission power is high, transmission delay is low due to improved
channel quality. Hence, the request delay becomes more important than the transmis-
sion delay when the channel SNR is high. From the curves, we can see that the total
delay is closely linked to the training results, where efficient training results can greatly
reduce the overall delay, due to a reduced request delay. As expected, the minimum-
delay method always provides the best performance in terms of delay except for the
low transmission power condition because it requires a reasonably good channel con-
dition to support the shift among different UAVs.
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Figure 3.9: Average total delay of UAVs, where the notations MD, MS, UP
and RC denote minimum-delay, maximum-SNR, user-preference and random
caching, respectively, while d1 and d2 represent database 1 and database 2.

3.5 Conclusion

In this chapter, we proposed a UAV-aided intelligent strategy for mobile edge caching
in the wireless communication system, which aims to minimize the system delay and
hence improve the QoE. The system delay is composed of the transmission delay and
the request delay. The transmission delay is determined by GU’s receive SNR, while the
request delay is related to the cached contents in the UAVs’ storage. Three user asso-
ciation methods have been investigated based on the receive SNR, user-preference and
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minimum-delay. The results have shown that increasing the received-SNR (transmis-
sion power) will largely reduce the transmission delay, while the request delay can be
improved by considering user-preference as the main aspect. However, it was found
that both methods can only solve part of the issue. Hence, both SNR and user asso-
ciation have been considered to obtain the minimum-delay method. Our simulation
results have demonstrated that the proposed method can improve the system’s perfor-
mance in terms of delay.
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Chapter 4

Deep Q-learning for UAV
Deployment in Dynamic
Environments

4.1 Introduction

In Chapter 3, we have designed a caching-enabled UAV communication system by
considering UAVs as aerial BSs to reduce the latency of data transmission. Besides,
three user association schemes have been analysed for achieving the lowest latency.
Moreover, the k-means clustering algorithm based deployment algorithm has been em-
ployed to adapt to the movement of GUs by utilizing the maneuverability and flex-
ibility of UAVs. However, the realistic deployment issues such as the limited speed
of UAVs has not been detailed. It requires impractical fast movement of the UAVs,
because a small change on the distribution of GUs can cause a large shift of centroid
locations, which makes the UAVs hard to arrive at the new location within practical
time. In this context, we aim to solve the frequent position-shift and the impractical
fast movement in the deployment of multiple UAVs.

In this chapter, we explore the application of deep reinforcement learning in the deploy-
ment of multiple UAVs with multiple targets serving a number of GUs, when operating
in a target geographical area with a limited number of UAVs. Besides, the UAV-user
association can also affect the network’s performance after the deployment of UAVs.
Traditionally, the received power based user association rule is the most prevalent one,
where a user chooses to associate with the specific BS, which provides the maximum re-
ceived signal strength [275, 276]. However, given the restrictions of UAV assisted com-
munications systems in terms of limited bandwidth resources and their relatively low
transmission power, some of the GUs in a target area might be associated with UAVs
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that are far from them. We refer to this as “outliers”, whose quality of the communi-
cations link is significantly degraded. Thus, in order to solve the issue of “outliers”
and to allow the UAVs to work within their capabilities, a new UAV-user association
algorithm should be designed. Furthermore, the collision of UAVs has to be taken into
consideration to make sure that UAVs are sufficiently far apart to keep the good qual-
ity communication links. Besides, the movement of GUs requires UAVs to adaptively
adjust the position of deployment to provide stable and reliable services. Finally, the
frequent position-shift of UAVs is also a challenge for the adaptive deployment in prac-
tice due to the relatively large area and the limited speed of UAVs.

The rest of this chapter is organized as follows. In Section 4.2, we first present the
system model, which contains the mobility model of GUs and UAVs, then we present
the proposed UAV-user association algorithms. In Section 4.3, we firstly introduce the
UAV deployment by k-means clustering techniques and then we propose a DQL based
deployment technique. Afterwards, we analyse our simulation results in Section 4.4
followed by our conclusions in Section 4.5.

4.2 System Model

We consider a UAV-assisted downlink communication network in a target square area
with a side length of L, where a limited number of UAVs are deployed to operate as
aerial BSs to support GUs in this area as shown in Figure 4.1. We assume that these
Nd UAVs are able to fly horizontally and hover at a certain altitude hd [266], where
they are capable of knowing each other’s location by periodically exchanging informa-
tion using A2A links. For the connection between the UAV and GUs, a UAV-assisted
system has been employed to support multiple GUs simultaneously and the UAVs are
backhaul-connected to the core network. The framework of our system is illustrated by
Figure 4.1, where several UVAs are supporting ground mobile devices in a given target
area. Here, UAVs are capable of exchanging information by A2A links, while all these
UAVs are backhaul connected to central servers, which sends control information to
the UAVs. Besides, the battery power of the UAV is assumed to be supplied by wire-
less charging techniques [277], hence, these UAVs are capable of operating for a long
period of time.

In our scenario, we consider a limited number of UAVs to provide wireless coverage to
the GUs. In most cases, the system performance can be improved by deploying more
UAVs, for covering a larger area as well as for providing a higher data rate for the GUs.
However, this results in a high cost, in addition to the fact that the control of multiple
UAVs becomes more complicated with the increased number of UAVs. In addition, the
inter-UAV collision problem becomes more serious as the density of UAVs increases.
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Figure 4.1: UAV-assisted network model that provides service of wireless com-
munication for GUs.

All these aforementioned issues will cause a degradation in the system performance
and further lead to a poor user experience.

One potential enabling technique for multiple UAV deployment is the k-means cluster-
ing, which is characterised by its scalability, universality and simple implementation
[278]. The k-means algorithm is originally used to partition the dataset into k pre-
defined distinct non-overlapping clusters, where each data point belongs to only one
cluster [177]. However, the deployment of multiple UAVs is not identical to a clustering
problem, since we are considering a limited number of UAVs, which have limited fly-
ing speed that forbids them to suddenly move a long distance instantly while tracking
the GU movements. Furthermore, the traditional greedy UAV-user association scheme
based on the received signal strength will cause some poor association in UAV assisted
communication system, where some of the GUs will connect to distant UAVs due to
the priority generated from the signal strength and the number of GUs that each UAV
can serve. As a consequence, some GUs could not be associated with their preferred
UAVs due to this bi-directional selection.

In this contribution, DQL is employed for assisting a limited number of UAVs to adapt
to the movement of GUs in a large geographical area. The whole target area will then
be divided into small grid cells for application of DQL.

4.2.1 Mobility model

In our system, Nu GUs are moving continuously in an area with a constant veloc-
ity1. Accordingly, the serving UAVs have to change their formation for adapting to

1Please note that the proposed technique readily work for the case of variable user speed, where we
consider the assumption of constant speed for the sake of simplifying the discussion.
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the movement of GUs. In wireless networks, apart from global positioning system,
there are various metrics that could be used to find the location of radio-frequency de-
vices, such as received signal strength [279, 280], time of arrival [281], time difference
of arrival [282], frequency difference of arrival [283] and angle of arrival [284]. All these
metrics or measurements are assumed in a LoS environment, which is applicable in the
UAV assisted system. Based on these metrics, the location information of each GU is
available and could be collected by the UAVs. The coordinates of the GUs can then be
utilized to determine the deployment position of the UAV.

In each time slot t, the terrestrial coordinate of the nth GU, n ∈ Nu, could be rep-
resented by (xn(t), yn(t)) and the coordinates of the mth UAV, m ∈ Nd, is given by
(xm(t), ym(t), h), where t ≥ 0. In the initialization phase at t = 0, all GUs are uniformly
distributed in the target area. Without loss of generality, we assume that all GUs’ co-
ordinates will not change in duration ∆t,t+1, where ∆t,t+1 is the time interval between
t and t + 1. The coordinates (xn(t + 1), yn(t + 1)) of the nth GU is determined by the
velocity vn(t) and direction θn(t) in time slot t, which could be represented by:

xn(t + 1) = xn(t) + vn(t) ∗ cos(θn(t)), (4.1)

yn(t + 1) = yn(t) + vn(t) ∗ sin(θn(t)). (4.2)

In our model, the whole target area has been discretized into a set of unit square cells
with a length of lu = ∆t,t+1 · vd, where vd is the speed of the UAV. In our system, the
UAV is assumed to hover at the centre of each grid cell within each time slot.

Figure 4.2: Movement strategy of UAV in deep Q-learning.

As shown in Figure 4.2, the UAVs are only allowed to fly to their adjacent grid cells
or stay at the current position [217, 285, 286], which is illustrated by black arrows
and red circle, respectively. All permitted actions could be summarized by action =
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{Forward, Backward, Le f t, Right, Hover}, while flying diagonally is not allowed due to
the speed limit of the UAV and the length of ∆t,t+1.

4.2.2 Channel Model

In our system, the carrier frequency considered is 38 GHz [9, 287, 288, 289], which
is capable of providing adequate bandwidth resources. Since UAVs are considered as
aerial BSs to serve GUs, the communication between the GUs and the UAVs is in strong
LoS propagation environment [290]. Therefore, we consider the Rician fading channel
model [45, 268], which has a dominant LoS path combined with some NLoS paths, to
measure the signal propagation environment [291, 292, 293]. The Rician channel em-
ployed in our A2G communication decomposes the channel into two parts: determin-
istic LoS component hLoS and stochastic NLoS component hNLoS. The NLoS component
is used to represent the scattered multipath propagation of the signals and the Rician K
factor is the power ratio of the two components [269]. The channel h is given by:

h =

√︃
K

1 + K
· hLoS +

√︃
1

1 + K
· hNLoS. (4.3)

It is worth noting that h becomes a pure LoS channel when K = ∞, while it corresponds
to Rayleigh fading channel when K = 0. Consequently, we employ a high K value to
generate a LoS-dominant channel in our UAV-assisted communication networks [294].
Besides, since we consider the target area in a environment that the LoS link dominate
any other links [295], the pathloss between the nth GU and the mth UAV at time slot t
can be expressed as [296]:

PLm
n (t) =

(︃
4π fc

c

)︃2

(dm
n (t))

α , (4.4)

where fc is the carrier frequency, c is the speed of light and α (α ≥ 2) is the pathloss
exponent that indicates the nature of the propagation environment. The A2G distance
between the nth GU and the mth UAV during time slot t is denoted by dm

n (t), which

can by obtained as
√︂

h2
d + (rm

n (t))
2, where hd is the height of the UAVs and rm

n (t) is the
horizontal distance between the nth GU and the mth UAV during time slot t. Therefore,
the received signal power Pr

m
n (t) at the nth GU from the mth UAV during time slot t

given a transmission power Pt is given by [272]:

Pr
m
n (t) =

Pt

PLm
n (t)

= Pt

(︃
4π fc

c

)︃−2

(dm
n (t))

−α . (4.5)

Additionally, the UAVs are assumed to operate at a height of 100 meters [273], where
the LoS communication links exist for most of the time. Hence, free space pathloss
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exponent α = 2 is considered [44] and Pr
m
n (t) is transformed to:

Pr
m
n (t) = Pt

(︃
4πdm

n (t) fc

c

)︃−2

. (4.6)

We assume that all UAVs are transmitting with the same power Pt and all the UAVs
have the same bandwidth resources. Again, each UAV can simultaneously communi-
cate with multiple GUs by allocating the bandwidth resources to different GUs. Specif-
ically, the bandwidth resources can be divided into Na

m sub-channels, based on the
number of successfully associated GUs of the mth UAV. Here, only when the GU’s SNR
reaches a certain level γmin that the GU is considered successfully associated to a UAV
for supporting communication. Finally, we assume that the interference from other
GUs can be successfully cancelled [297].

Hence, the received SNR during time slot t at the receiver side of the nth GU from the
mth UAV can be expressed as γm

n (t) = Pr
m
n (t) · |h|2/σ2, where σ2 represents the noise

power. Since hLoS = e−j 2π
λ d [298], where λ is the wavelength and d indicates the distance

between the transmitter and the receiver. According to the (6.1), it is straightforward
to find that the power of channel h is approximated to 1 when the LoS component of
the channel is much stronger than the NLoS component. In other words, the NLoS part
can be neglected. Consequently, the received SNR γm

n (t) can be simplified to Pr
m
n (t)/σ2

and the capacity of the nth GU and mth UAV link measured in bits/s/Hz in time slot t
is given by:

Cm
n (t) = Fn(t)Bn(t) log10 (1 + γm

n (t)) , (4.7)

where BN(t) is the bandwidth allocated to the nth GU in time slot t and Fn(t) is a flag
to indicate if γm

n (t) could support a basic communication in time slot t, which is deter-
mined by:

Fn(t) =

⎧⎨⎩0 γm
n (t) < γmin,

1 γm
n (t) ≥ γmin.

(4.8)

Accordingly, the overall sum rate of all successfully associated GUs during time slot t
is evaluated as:

R(t) =
Nd

∑
m=1

Nm

∑
n=1

Cm
n (t), (4.9)

where Nm is the number of GUs allocated to the mth UAV. When the strength of the
received signal is weak, some GUs links will be considered as outage even though they
have been allocated to one of the UAVs. Thus, the relationship of Nm and Na

m is given
by Nm ≥ Na

m.
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4.2.3 UAV-user Association Strategy

User association, namely associating a user with a particular serving UAV, could sub-
stantially affect the network performance. However, there are various user association
methods to assign users to the BSs according to different objectives, realistic constraints
and operation environment, when there are multiple users and multiple BSs available.
In existing works, the received power based user association method is the most preva-
lent one, where a GU chooses to associate with a specific BS that provides the maximum
received signal strength [276, 299]. In our UAV-aided communication system, the num-
ber of UAVs and the bandwidth resources are limited. Therefore, we consider the most
widely used user association scheme that considers received signal strength as a mea-
sure to link with GUs. However, pure received signal strength will lead to unfairness,
since the number of GUs a UAV can support is limited. Hence, a part of GUs will have
weak links because they cannot connect to their “favored” UAVs. Therefore, a modi-
fication of the current received signal strength based scheme is necessary to improve
the communication of these disadvantaged GUs, namely the outliers. Again, we con-
sider a LoS dominant communication environment in our UAV-assisted system, where
the signal strength is largely determined by the pathloss and is slightly affected by the
NLoS signal propagation. Hence, the received signal is largely up to the A2G distance
between the UAV and the GUs. In the following we describe the conventional greedy
association method followed by our proposed UAV-user association technique.

4.2.3.1 Greedy UAV-user Association

Let us consider the scenario where there are Nd UAVs, each capable of supporting Ns

GUs, and there are Nd × Ns GUs in a target area. Then, the procedure of the greedy
algorithm which only considers the received signal strength is shown in Figure 4.3.

From the flow chart in Figure 4.3, we can see that GUs who have low received SNR will
be directly considered as outage, while the GUs that meet that required threshold will
prioritize the UAVs according to their received SNR. Hence, smaller distance between
the UAV and GU will result in a higher priority. After that, the GUs will initially select
their highest priority, this means UAV that could support them with the strongest signal
strength will be selected. However, due to the limited UAV service capacity, UAVs will
also prioritize GUs according to the quality of communication links, which is essential
when the number of GUs that initially choose one of those UAVs is beyond the capacity
of the UAV. Hence, this process is a bi-directional selection. Then, only GUs whose first
priorities is in the ranking of their corresponding UAVs are able to accomplish this
association, otherwise, they have to wait for their next highest priorities and repeat the
aforementioned steps until all GUs have been associated.
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Figure 4.3: Operating procedure of greedy UAV-user association algorithm.

An example of greedy association with four UAVs is shown in Figure 4.4(a), where the
UAVs are distinguished by different large size shapes and their corresponding associ-
ated GUs will be marked by the same but smaller size shape. Here, we consider the
scenario where all the GUs in this square area can be detected by all four UAVs, which
means that the channel quality of all GUs is good enough to establish stable and re-
liable communication links to all UAVS. Then, the GUs can prioritize their favourite
UAVs according to the received signal strength. If the signal strength of some GUs
is weak, the information contained in the signal cannot be decoded correctly, which
means that these GUs are treated as outage and there is no need to consider the associ-
ation between this GU and UAVs.

According to Figure 4.4(a), there are three “outliers” marked by two red circles, which
are associated with unsuitable UAVs. This is caused by the priority in the algorithm,
where both UAVs and GUs try their best to connect with the closest GUs or UAVs. More
specifically, in the blue “outlier” case, assume that the first priority of the blue square
is the green UAV, however, the distance between them is not included in the first Ns

closest candidates of this UAV. Then, the blue square GU has to try to associate with
its second choice, which is the red UAV. Again, it is still not in the ranking of the red
UAV and the same situation occurred at the purple UAV. Finally, it has no choice but to
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(a) Common condition. (b) Severe condition.

Figure 4.4: Example of greedy UAV-user association in four UAVs scenario
with 100 GUs.

associate with the blue UAV because it still has a space in its ranking list. However, the
communications link quality for this specific GU to the blue UAV can be very poor.

As mentioned before, some GUs would be connected with far-away UAVs, and hence
this greedy user association rule is unsuitable in our UAV communication system, be-
cause the “outliers” would have a very poor communication link with the associated
UAV. Although it can be argued that we can achieve a good QoS by sacrificing only a
small number of GUs, in Figure 4.4(b) we show a relatively extreme scenario, where,
we set one of the UAVs at the top-left corner while the other UAVs are deployed at the
lower right, which is aimed at generating a relatively high difference on the received
signal strength. At the bottom-left and top-middle of the figure, lots of unsuitable asso-
ciations occur, when using the greedy user association technique. In this situation, the
QoS could be significantly reduced due the “extended” A2G distance. Hence, in the
following section, we present our proposed user association technique, that deals with
those unsuitable UAV-user association issues that may occur in UAV-aided communi-
cation system.

4.2.3.2 Proposed UAV-user Association Strategy

We propose an improved algorithm to avoid the occurrence of unsuitable association,
while considering the limited UAV resources. Hence, whether a request from GU is
admitted or rejected should be decided according to the priority level of the request
and to the availability of the radio resources, with the goal of maximizing the radio
resource utilization. Explicitly, instead of choosing the highest received SNR or closest
UAV/user to establish communication, we iteratively exchange GUs among different
UAVs to achieve a global optimum as shown in the procedure presented in Algorithm
6.
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Algorithm 6 Operating procedure of our proposed optimized UAV-user asso-
ciation.

1: Locate position of each GU
2: Obtain the quality of communication links (γm

n )
3: for n from 0 to Nu do
4: if max {γm

n (t)} ≥ γmin then
5: Fn(t) = 1
6: else
7: Fn(t) = 0
8: end if
9: end for

10: Remove outage GUs (Fn(t) = 0)
11: Initialize the UAV-user association randomly
12: Calculate the current total A2G distances Dc

sum
13: for i from 0 to Ni do
14: while k ≤ Nl do
15: Exchange with GUs associated with other UAVs
16: Calculate the total distances De

sum after exchange
17: if Dc

sum > De
sum then

18: Dc
sum = De

sum
19: k = k + 1
20: else
21: Move to next other UAV’s GU
22: end if
23: end while
24: end for

In each time slot t, the mth UAV measures the quality of communication link with the
nth GU based on the SNR γm

n (t) in order to decide if the nth GU can be supported with
a reliable and stable link by the mth UAV, i.e. γm

n (t) ≥ γmin. If the GU meets the re-
quirement, the flag Fn(t) will be set to 1, otherwise, it will be set to 0 and considered
as an outage user. After removing those GUs that cannot connect to the specific UAV,
GUs will be randomly allocated to other UAVs at the initialization stage. However, it
is worth noting that the initialization process of UAV-user association can be changed
according to the actual demand. Explicitly, starting from one of those UAVs and select-
ing one of the GUs that are associated with this selected UAV, the system (the group of
UAVs) will exchange this GU with any other GU associated with other UAVs. Then the
total distance of all these GUs is calculated after the change of association. As a result,
the current association change would be kept if the current total distance Dc

sum is larger
than the total distance De

sum after the exchange, otherwise, it selects next GU of other
UAVs and repeat the steps. Again, it is worth noting that the order of UAVs or GUs
that the algorithm starts with is not important, because both of them will not affect the
final convergence. Finally, after Ni iterations, where Ni is the number of iterations set
based on actual demands that can ensure the convergence of system, the total distance
will converge to a minimum and an optimized solution can be achieved.
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Figure 4.5: Illustration diagram of toy example with four GUs and two UAVs.

For instance in Figure 4.5, we consider an example employing two UAVs in a target
area with four GUs and each UAV can only support two GUs. In this example, we
assume no outage exists, where each GU can be successfully detected and associated
with both UAVs. Then, the A2G distances of each GU is given by d1 = [115, 141],
d2 = [110, 120], d3 = [125, 105] and d4 = [130, 104], where the unit of distances is
in meter while du is the distance from the uth GU to the two UAVs. More specifically,
du = [du1 , du2 ], where du1 and du2 are the distances between the uth GU to the first
and second UAVs, respectively. According to the algorithm, we start by randomly
allocating GUs to UAVs. Without loss of generality, we assume that GU1 and GU4 are
connected to the UAV1 while GU2 and GU3 are connected to the UAV2. Hence, the
current total distance is given by Dc

sum = 115 + 130 + 120 + 105 = 470. Then, the two
UAVs start to exchange their GUs, assuming that the first two exchanged GUs are GU1

and GU3 and the corresponding total distance is De
sum = 141 + 120 + 125 + 130 = 516,

and this exchange is invalid due to Dc
sum < De

sum. Next, GU1 will exchange with GU2

and the resulting De
sum = 486 which is still larger than Dc

sum = 484. Then, GU4 will
exchange with GU2 and the resulting total distance is De

sum = 434, this exchange will be
kept because it leads to Dc

sum > De
sum. The same process is repeated for Ni times or until

the system convergence. Finally, a comparison between the greedy and the proposed
techniques is shown in Figure 4.6, where it is clear that in our proposed technique, those
unreasonable associations have been revised and “outliers” have been reallocated to
appropriate UAVs.

4.3 UAV Deployment

In the previous section, the UAV-user association in UAV-aided communication system
has been investigated to improve the QoE of GUs. However, the deployment of UAVs
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(a) Greedy algorithm. (b) Optimized algorithm.

Figure 4.6: Comparison between the greedy and optimized UAV-user associa-
tion.

will also affect the quality of the communication links and hence the deployment of
multiple UAVs is presented in this section.

4.3.1 Deployment by k-means Algorithm

In this section, we present the k-means clustering technique, which has been considered
in the literature for UAV deployment [300]. In this case, the k-mean can be considered
as a benchmark of the system performance, since there is the impractical assumption
that the UAV can move instantly to a new center of the cluster over a large distance
depending on the GU mobility. This algorithm is capable of clustering the GUs into
groups according to their ground coordinates. It is an iterative, data-partitioning algo-
rithm that assigns n observations to exactly one of k clusters defined by the centroids,
where k is chosen before the algorithm starts. In our system, the k is defined by the
number of UAVs, and we assume that all the GUs can be detected by all UAVs.

In Figure 4.7, we show an example of two UAVs serving a number of GUs as aerial BSs,
where we show that the k-means is capable of finding the centroid of each group using
the real-time location of the GUs. However, we show in Figure 4.7 that a sudden-shift
would occur if the user distributions are quite different within two consecutive time
slots because the distance between the two centroids in the two time slots is signifi-
cantly changed. Recall that the deployment by based on the centroids obtained from
k-means. Therefore, if the centroids of two adjacent time slots are quite different which
is far beyond the distance a UAV can move within a time slot, the sudden shift occurs.
In Figure 4.7, the circle and square are used to represent two UAVs and the size of
shapes is used to distinguish two time slots. However, the finite speed of the UAVs
limits the distance that a UAV can travel within a time slot and hence practical UAVs
cannot move to the target position instantly within a time slot. In Figure 4.7 (b), we
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Figure 4.7: k-means clustering aided UAV-user association.

show the percentage of time where there is a sudden-shift of UAV by allowing GUs
to move according to the mobility model introduced in section 4.2.1 and counting the
times of sudden-shift that occurred in total number of time slots.

When the speed of the UAV is fixed, we define the sudden-shift as the scenario where
the distance space between the two k-means deployment positions in two time slots
is larger than the distance that a UAV can fly within the time slot. It can be observed
in Figure 4.7 (b) that there is a high probability of sudden-shift during the operation
period. Furthermore, with the increase of GU speed, this phenomenon will occur more
frequently, which means that it is hard for UAVs to adapt to the movement of GUs.
If the UAV does not move to the cluster centroid as decided by the k-means algorithm
then the communication performance is affected due to the distance related to pathloss.
Therefore, it is necessary to take the speed of UAVs into consideration, which results
in a finite speed k-means deployment method. In this method, if the distance between
two deployment positions is larger than that the UAVs can move, it will only move
in the direction illustrated by Figure 4.7 (a) with a certain distance and it will cause
degradation of the communication link performance. Hence, in the following section a
deep Q-learning based UAV deployment technique will be presented.

4.3.2 Deployment by Deep Q-Learning

Given the challenges of the k-means deployment, we consider a DQL based deploy-
ment method, which takes the speed of UAVs into consideration by discretizing the
movement of UAVs. In this UAV-assisted communication system, all the UAVs are
considered as a cooperative unit. Besides, the coordinates of the GUs are shared by
all UAVs and the data synchronization of UAVs will be periodically updated to make
sure that each UAV has the latest GU information [301, 302, 303]. During this process,
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extra signalling between the UAVs is needed in order to facilitate the information ex-
change, which can include the coordinate of the GUs, the coordinates of the UAVs and
the channel conditions. This signalling information will be transmitted via a control
channel and hence it will not affect the data transmission from the UAVs to the GUs.

In the DQL algorithm, the agent will continuously interact with the environment and
obtain the information from the environment by doing some tests. Please note that,
all the information is collected by the UAVs and sent back to the bachhaul server to
complete the relatively high-complexity training process due to the limitation of the
computation ability and power supply on the UAVs. The whole system is composed of
a set of states S and specified set of actions A at each state. Firstly, the time is discretized
into equally divided time slots. Then, the agent takes one action (a(t) ∈ A) at the ob-
served state (s(t) ∈ S) in time slot t and the state will change to (s(t + 1) ∈ S), which
is the initialized state of the next time slot. The agent will get a reward r(t) after taking
one action, which is used to evaluate the “value” of that action at that state. Based on
the state-action pair in the format of [state, action, reward, next− state], the target of the
system is to find out a policy π (s, a) that provides the highest reward.

The QL seeks to learn the corresponding Q-value (quality) of a given action-state pair
based on the received reward which is indicated by Q(s, a). To calculate the value of
these state-action pairs, we use the QL algorithm called action-value function to update
the Q-value. As we explore the environment, it will give us improved approximation
by iteratively updating Q(s, a) using the Bellman equation [304]:

Q(s(t), a(t)) = (1− αl)Q(s(t), a(t))+

αl [r(t) + γ max
a

Q(s(t + 1), a)].
(4.10)

Starting from inside the square parentheses, we first take the reward r(t) we got from
our selected action a(t) in (4.10) and add it to the discounted maximum Q-value for
next state s(t + 1), and subtract it from our current estimate of the Q-value of that state.
This step is computing the error between the action we just did and what we believe to
be the best action available to us from this new state. Then, we scale the error down by
step-size αl which is also known as the learning rate and add it to our current estimate
for Q(s(t), a(t)). Finally, we obtain the new estimate for Q(s(t), a(t)).

In the proposed DQL system, as shown in Figure 4.8, the state s(t) in each time slot
is denoted by the horizontal coordinates of the UAVs S(t) = [s1(t), s2(t), . . . , sNd(t)]
and si(t) ∈

{︁
(x1(t), y1(t)), (x2(t), y2(t)), . . . , (xg×g(t), yg×g(t))

}︁
, where g is the num-

ber of units for each side of the target area and si(t) represents the coordinates of the
center of the ith grid cell in time slot t. Theoretically, the order of numbering those grid
cells will not affect the results, but it could be more understandable to number them
according to certain rules, e.g. clockwise or anticlockwise. Due to the high complex-
ity of continuous action space and the limited speed of the UAV, the possible actions
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Figure 4.8: Illustration of discretized target area.

are A = [(0, 1), (0,−1), (−1, 0), (1, 0), (0, 0)], which represents the five actions men-
tioned in the mobility model. Then, the next states of taking those actions are summa-
rized as:

s(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(t) + lu · (0, 1) Forward,

s(t)− lu · (0, 1) Backward,

s(t)− lu · (1, 0) Left,

s(t) + lu · (1, 0) Right,

s(t) + lu · (0, 0) Hover.

(4.11)

After taking action an(t) in time slot t, the transition from state s(t) to s(t + 1) gener-
ates reward rt which is defined by three parameters: average transmission rate Ra(t),
valid average transmission rate Rv(t) and number of outage GUs No(t). The average
transmission rate is the mean of all GUs’ transmission rate, which is defined by:

Ra(t) =

⎧⎨⎩ 1
Nu
· R(t) Nu > 0,

0 Nu = 0,
(4.12)

while the valid average transmission rate is determined by those successfully associ-
ated GUs and it can be calculated by:

Rv(t) =

⎧⎨⎩ 1
Nu−No(t)

· R(t) Nu > No(t),

0 Nu = No(t).
(4.13)

Here, it is worth noting that the bandwidth resources allocated to each UAV is limited
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and each UAV can only connect with GUs whose received SNRs are higher than the
threshold γmin. Hence, when the distance between the GU and the UAV is very long,
this will lead to a weak signal strength due to the high pathloss. As a consequence,
if the UAV cannot support a stable and reliable communication link with some GUs,
then these GUs will be considered as outage and any bandwidth resources originally
allocated to them will be allocated to those successfully associated GUs. This situation
will cause Ra(t)≪ Rv(t) when lots of outages exist. However, our target is to cover as
many GUs as possible instead of offering high performance communication to a limited
number of GUs. To sum up, the reward r(t) at time slot t is calculated by:

r(t) = [Ra(t), Rv(t), No(t)]×w, (4.14)

and w is a column vector that contains the weight elements assigned to the row vector
[Ra(t), Rv(t), No(t)] respectively, which is given by w = [w1, w2, w3]

T and w is subject
to w1 + w2 + w3 = 1. By adjusting the proportion of each element, we are able to train
our DQL system with different targets. For example, when the transmission power is
very low and lots of GUs are in outage, our target should be for minimising the number
of outages. However, if the transmission power is good enough to support all the GUs,
our target can be to maximize the average rate of GUs. Therefore, by setting different
targets in different situations, it makes our neural network more efficient in finding the
appropriate locations to deploy the UAVs.

However, with multiple UAVs flying in close proximity to each other, sharing the same
air space, the risk of inter-UAV collisions increases. Hence, it is vital to avoid these col-
lisions while having minimal impact on the UAV-aided communications performance.
In Figure 4.9, we show a 4-level classification of collision for UAVs. When the distance
between two UAVs is smaller than 2lu, it will be identified as collision. Hence, it is
clear that we only need to calculate the distance between two ground coordinates to
determine the level of collision, since in our system we consider the same flying height
for the UAVs. To measure the impact of collision, the four-level criterion is given by:

• Level 0: The distance between two UAVs is equal or greater than 2lu, which means
no collision occurred.

• Level 1: The distance between two UAVs is
√

2lu and it will lead to a slight colli-
sion.

• Level 2: The distance between two UAVs is lu and it will cause a medium colli-
sion.

• Level 3: Two UAVs are overlapped, which brings about the worst collision with
0 distance.



4.3. UAV Deployment 93

Figure 4.9: Classification of collision level in accordance with the position of
UAV.

In our design, we consider collision as a penalty in our proposed system that is repre-
sented by:

P(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p0, Level 0

p1, Level 1

p2, Level 2

p3, Level 3

(4.15)

where P(t) is a positive constant value in time slot t, while p0 < p1 < p2 < p3, which
are used to avoid UAV collision.

The proposed DQL system is illustrated in Algorithm 7. Firstly, we have a replay buffer
B with a length of lB at the servers. We assume that the UAVs do not have enough com-
putation power to finish the training process, and hence the training process will be
done at the servers. More specifically, the UAVs will send all collected information
back to servers through backhaul links. Then the parameters of the predicted network
Q and target network Q′ will be initialized. Here, totally Ne episodes will be set and
each episode contains Nt time slots. In each episode e, we initialize the state (loca-
tion) of the UAVs randomly at the beginning. Afterwards, the UAV selects one action
a(t) at the given state s(t) based on the ϵ-greedy algorithm in each time slot t. Then,
according to the collision level P(t) and the reward r(t) obtained from taking that ac-
tion a(t) with the corresponding w predefined, the final reward r(t) can be calculated
by r(t) = r(t) − P(t). The transition will then be stored in buffer B in the format of
⟨s(t), a(t), r(t), s(t + 1)⟩. The next step is to randomly choose lm samples from buffer
B and calculate the difference of Q-values between the target network and predicted
network. In this step, we employ double-dueling DQL method to calculate the Q-value
of both networks in order to reduce the over-estimation and to accelerate the training
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process [4, 305]. Now, the loss can be calculated by the squared difference between tar-
get Q′ and predicted Q, where l2 is employed here to perform l2 regularization which
is used to address over-fitting and feature selection, and λr is used to adjust the level of
regularization. Then the gradient descent will be performed to minimize this loss with
respect to our actual network parameters. Ultimately, parameters of the target network
will be updated by using smoothing factor τ, where τ < 1 and is used to determine
the proportion that the parameters of the predicted network will be copied to the target
network.

Algorithm 7 UAV deployment by deep Q-learning.

1: Initialise replay buffer B with a length of lB in the format of ⟨s(t), a(t), r(t), s(t + 1)⟩

2: Initialise predicted action-value function Q(s, a; θ) arbitrarily
3: Initialise target action-value function Q′(s, a; θ′) arbitrarily
4: for episode e = 1, . . . , Ne do
5: for t = 1 to Nt do
6: Initialize the state s1 randomly
7: Select action by ϵ-greedy algorithm

a(t) =

{︄
argmaxaQ(s(t), a), ϵ

random, 1− ϵ

8: Take a(t) to obtain next state s(t + 1)
9: Execute UAV-user association and calculate reward r(t)

10: Evaluate the level of inter-UAV collision and obtain penalty P(t)
11: Update r(t) = r(t)− P(t)
12: Store the transition ⟨s(t), a(t), r(t), s(t + 1)⟩ in replay buffer B
13: Randomly sample lm mini-batch of transitions from B
14: for i = 1 to lm do
15: Obtain Q(i; θ) and Q′(i; θ′) according to double-dueling method
16: end for
17: Loss = 1

2lm ∑lm
1 (Q(i; θ)−Q′(i; θ′))2 + λr · l2

18: Update target θ′ by θ′ = τθ′ + (1− τ)θ
19: end for
20: end for

In summary, the GUs are continuously moving on the ground based on their direction
and velocity, then the UAVs will take actions according to the ϵ-greedy algorithm to
move to different positions. At each new deployment position, UAVs perform the pro-
posed UAV-user association and obtain the reward r(t), while the UAVs will record
these information in each time slot t and send back to servers. Finally, the UAVs will
learn how to take action at different position according to the experiences saved in
memory. Therefore, we use our proposed optimized UAV-user association technique
to make sure that the association of all GUs in the target area is appropriate and rea-
sonable. Additionally, we use DQL based deployment to find the suitable position to
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deploy the UAVs. By combination of this two techniques, we are able to provide our
GUs with stable and reliable communication services.

4.4 Performance Results and Evaluation

In this section, we employ Nd = 2 and 4 UAVs that are moving in two different square
target area with length 200 m and 1000 m, which are virtually divided into 10× 10 and
50× 50 grid cells, respectively. The area accommodates Nu = 100 GUs moving with a
constant speed of vn but in different directions. In our simulation, if GUs hit the border,
they will change the direction by 180◦ to stay in this target area.

Each UAV is allowed to move in a straight line between the current grid cell and the
adjacent grid cell with a speed of vd = 20 m/s [306], and one time unit in our simulation
corresponds to 1 second. Moreover, each UAV is assumed to fly at a constant altitude
of 100 m according to safety consideration. For air to ground communication, we set
the carrier frequency to fc = 38 GHz and the pathloss component to α = 2, while the
bandwidth of each UAV is given by B = 20 MHz [307, 296]. Besides, the number of
GUs that each UAV can serve is Nu

Nd
and the noise power is given by −95 dBm [9, 307].

All the parameters used in our simulation are summarized in Table 4.1.

Table 4.1: Simulation parameters

Parameter Symbol Value Parameter Symbol Value
Time slot ∆t,t+1 1 s Bandwidth B 20 MHz

Noise power σ2 -95 dBm Transmission power Pt 6 to 40 dBm
Carrier frequency fc 38 GHz Pathloss exponent α 2

UAV height hd 100 m Number of GUs Nu 100
Number of UAVs Nd 2 and 4 Velocity of GU vn 1 to 25 m/s
Velocity of UAV vd 20 m/s Grid length lu 20 m
Mini-batch size lm 128 Buffer Size lB 1e5

Area length L 200 ∼ 1000 m Learning rate αl 0.001
Discount factor γ 0.99 Smoothing factor τ 0.01
Size of Layers Nn (100, 100, 100) Number of Layers Nl 3

The main difference between k-means clustering and DQL is that the number of GUs
allocated to all UAVs in DQL is identical while the number of GUs allocated to each
UAV in k-means varied from one to another. Besides, the frequent sudden-shifts in k-
means makes it difficult for UAVs to adapt in time to the movement of GUs, due to
the limitation of UAV speed. Hence, we consider a modification of the k-means, which
we refer to as ‘finite-speed k-means’, where the distance between two deployment po-
sitions is evaluated and then if this distance is larger than the practical distance that a
UAV can reach in a time slot, then the UAV moves in the direction of the new position
but with a limited distance. This results in a degradation of the communications link
performance. Nevertheless, our proposed DQL aided deployment does not suffer from
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the sudden-shift required in the k-means scenario, because the agent of DQL is able to
find an appropriate position to deploy UAVs step by step and the positions chosen by
agents are decided from the long-term experience of operation, which means that place
is able to provide GUs with good communication services for most of the time.

In Figure 4.10, we consider two scenarios in a given target area with the size of 1 km
by 1 km. The left side of Figure 4.10 is a scenario with only 2 UAVs in operation,
while the right side depicts a scenario with 4 UAVs. Here, “Fin-k-means” represents the
deployment by finite-speed k-means algorithm with a fixed speed as that in the “DQL”
system within a time slot. Also, three typical transmission power have been selected
to illustrate how the density of UAVs affects the distribution of the average downlink
rate per GU. It can be seen from the left figures that Fin-k-means deployment method
has a longer tail than that of the DQL deployment method, which means that lots of
GUs have a poor quality of experience for the communication links when deploying
the Fin-k-means algorithm. This shows the limitations of the k-means method, where
the UAVs cannot move to the desired positions in time, which causes the degradation
of communication links as shown in the long tail of the results in Figure 4.10.

While, for the 4-UAV scenario depicted in the right part of Figure 4.10, the downlink
rate of the DQL algorithm is shown to be in the tail of Fin-k-means. It is clear that the
average downlink rate of both Fin-k-means and DQL has been improved along with
the increase of the number of UAVs, although the tail of Fin-k-means scheme still exist.
This phenomenon indicates that with the increase in the number of UAVs serving a
specific area2, the average rate of the Fin-k-means is higher that that of the DQL, due to
the reduced probability of sudden-shifts as the increased number of UAVs will reduce
the distances that UAVs have to move from the current deployment position to the
next deployment position as required by the k-means algorithm. However, the DQL
deployment method cannot update instantly to the movement of GUs due to the nature
that the agent learns based on a long-term perspective.

Therefore, when we use a reduced number of UAVs in the target area, the DQL de-
ployment method gives us a better user experience where the average downlink rate
of both DQL and Fin-k-means are similar, but the Fin-k-means has a long tail result-
ing in a large number of GUs experiencing a significantly reduced rate. Although the
performance of DQL is not as good as that of Fin-k-means when using 4 UAVs, it is
clear that the variance of DQL is much smaller than that of Fin-k-means, which in-
dicates that DQL is more stable and provides GUs with better QoE. In other words,
DQL can be employed to reduce the unstable communication links (long-tail) caused
by the sudden-shift of Fin-k-means and to provide GUs with a better QoE. The com-
parison shows that both DQL and Fin-k-means have similar high of downlink rate end

2A large amount of UAVs is infeasible due to the high cost and the complexity of control will also
increase, hence, it is reasonable to utilize limited number of UAVs to establish communication service
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(a) Average downlink rate of 25 dBm
using 2 UAVs.

(b) Average downlink rate of 25 dBm
using 4 UAVs.

(c) Average downlink rate of 30 dBm
using 2 UAVs.

(d) Average downlink rate of 30 dBm
using 4 UAVs.

(e) Average downlink rate of 35 dBm
using 2 UAVs.

(f) Average downlink rate of 35 dBm
using 4 UAVs.

Figure 4.10: The probability distribution of average downlink rate for different
transmission power with different number of UAVs in a 1 km by 1 km target
area.
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but DQL is better at the lower end of downlink rate. Also, it could be found that in-
creasing the number of UAVs can improve the overall performance significantly and
immediately. Nevertheless, it is quite complex and expensive to deploy a large number
of UAVs to provides communication coverage to GUs in a relatively large target area.
Hence, we will focus on how two different deployment methods operate in a relatively
small target area but with a limited number of UAVs in the following investigations.

In Figure 4.11, two UAVs are operating in a square target area with the length of 200
m. Figure 4.11 shows two kinds of rates as defined in (4.12) and (4.13) for the Fin-k-
means and the DQL schemes. The performance of DQL is indicated by “DQL-x m/s”,
here, x represents the speed value of GUs in m/s. It could be found in both cases that
the speed of GUs has no great impact on the average downlink transmission rate. It is
worth noting that we choose the Fin-k-means as the benchmark for a fair comparison
due to the consideration of limited UAV speed in practice. This UAV speed is identical
in all scenarios, which is 20 m/s. In the Fin-k-means scenario, the occurrence of sudden-
shifts is less frequent when GUs are moving slowly, therefore, the curve we select as
benchmark is the scenario that all GUs are moving with a speed of 1 m/s due to the
best performance it can achieve in this case. For the movement of GUs, we select the
range of speed from 1 m/s to 25 m/s.
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Figure 4.11: Comparison of the average downlink transmission rate.

From Figure 4.11, all those curves under different GU speed conditions are very close
to that of Fin-k-means, when the speed of UAVs is held constant for both Fin-k-means
and DQL cases. With the increase of transmission power, the valid average downlink
rate would improve. However, for the low transmission power scenario (5 dBm to
10 dBm), due to the small number of GUs that are associated with UAVs, they have
more bandwidth resources than that of fully associated GUs with high transmission
power. As mentioned before, the limited bandwidth resources will be allocated to GUs
equally. Furthermore, only a small amount of GUs are able to successfully associate
with UAVs in the scenario of lower transmission power. Therefore, the bandwidth



4.4. Performance Results and Evaluation 99

resources allocated to each user are more than that of higher transmission power. Thus
the valid downlink rate goes down and up in the range 6 ∼ 10 dBm.

Figure 4.12 shows the outage probability of GUs which is calculated as the number of
outage GUs divided by the total number of GUs in the target area. The DQL based
deployment of UAVs are always located at the center of the divided grid cell in the
target area, Hence, it is not as flexible as the k-means method that can be deployed
at any point in the given target area. In other words, the UAVs of the DQL based
scheme would cover fewer GUs than that of the Fin-k-means, since a small difference
of position would cause more outages at low transmission power and the DQL method
cannot be flexibly deployed, which leads to a deviation most of the time. Similarly,
the speed of GUs affects the outage slightly, because DQL considers at which grid cell
(location) the UAV can cover most of the GUs most of the time. The important factor
here is the density of GUs. If we just focus on a unit area within one time slot, some
GUs may walk out while some GUs will walk in, and thus the speed will not affect
the outage significantly. Hence, it forms a dynamic balance that gives a stable user
distribution.
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Figure 4.12: Comparison of the outage of GUs.

In Figure 4.13, we show how the number of GUs affects the performance of the aver-
age downlink rate per GU, where we choose 5 different power values to represent a
different stage of transmission power. Here, the legend is different from that of Fig-
ure 4.11 and 4.12. The legend is indicated by “DQL-x” and x represents the number of
GUs in the given target area. Also, the Fin-k-means-100 used here consider 100 GUs in
the target area as a lower bound and all other parameters are the same. All GUs are
assumed to move at 1 m/s and UAVs are working at the speed up to 20 m/s in a 200
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m by 200 m area. For the low transmission power scenario (6 dBm to 15 dBm), only a
small number of can successfully connected to UAVs, although the limited bandwidth
resources will be allocated to GUs equally as aforementioned, it still makes no big dif-
ference on the rate. However, with the increase of transmission power scenario, more
and more GUs can connect to UAVs. Therefore, the bandwidth resources will finally
all be equally allocated to GUs and the average rate of each GU can be improved. Nev-
ertheless, increasing the number of GUs also results in a reduced bandwidth allocated
to each user, thus the transmission rate will decrease as the number of GUs increases,
when the transmission power is the same. Furthermore, the performance of DQL and
that of Fin-k-means are very close under the same transmission power condition.
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Figure 4.13: Comparison of average downlink transmission rate with different
number of GUs.

4.5 Conclusion

In this chapter, we proposed a deep reinforcement learning based algorithm, which en-
ables multiple UAVs in a target area to automatically update their locations according
to the distribution of moving GUs. Firstly, to achieve a global optimal QoS for all GUs,
by exchanging GUs among different UAVs, an optimal association algorithm has been
designed to fix the issue of “outliers” that could occur in the traditional greedy asso-
ciation method. Besides, the issue of collision in multiple UAVs systems could cause
a performance degradation in the system, so a four-level criterion has been developed
to classify the degree of collision and transform it into the penalty of our DQL system
for avoiding the collision. The simulation results show that our proposed system has a
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close performance when compared with the k-means clustering method. The k-means
clustering can find the centroids of each group of GUs and deploy UAVs at that po-
sition, however, it is impractical to do so in reality due to the limited speed of UAVs
and high probability of sudden-shifts. Hence, by keep interacting with the environ-
ment, our proposed DQL algorithm can find an appropriate position to cover most of
the GUs with more stable communication links and to improve the QoE of GUs.
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Chapter 5

Low-Complexity Energy-Efficient
Aerial Communication Platforms

5.1 Introduction

In Chapter 3 and 4, the UAVs are employed as flying BS to serve GUs in a target area.
More explicitly, the memory resource of UAVs has been exploited to realise caching-
enabled flying BSs in Chapter 3, which could largely reduce the latency of data trans-
mission. While in Chapter 3, a deep reinforcement learning based deployment schemes
has been proposed against the sudden-shift issue of deployment by classic k-means
clustering algorithm. However, the limited energy onboard is another factor that re-
stricts the application of UAVs. Therefore, the energy consumption of UAVs is con-
sidered from the aspect of wireless communication to reduce the power consumption
during data transmission.

In this chapter, UAVs are still considered as flying BSs to increase the probability of
having LoS communication links. Meanwhile, in order to support multiple GUs simul-
taneously and alleviate the performance degradation caused by the multipath channel
fading of the NLoS propagation, we employ OFDMA techniques [232, 308]. Further-
more, due to the power limitation of UAVs, it is important to design energy-efficient
transmission schemes, and hence we combine the concept of IM with UAV communi-
cations to establish an IM-UAV communication system, which treats the activated UAV
as index to separately send data bits by conventional data symbols and using the index
information. Besides, the deployment of UAVs will also affect the QoS of GUs, hence
we propose a gradient descent based deployment algorithm to maximize the sum rate
of GUs in the target area. Moreover, the optimal maximum likelihood detection that can
provide the best BER performance, requires a high detection complexity. Consequently,
a low-complexity detection scheme is required to reduce the detection computational
complexity at the receiver side.
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The rest of this chapter is organized as follows. In Section 5.2, we present the system
model of proposed IM-UAV communication system, Afterwards, we analyze our sim-
ulation results in Section 5.3 followed by our conclusions in Section 5.4.

5.2 System Model

In this chapter, we consider a UAV-assisted downlink communication network in a
target area, where Nd UAVs are deployed to operate as aerial BSs and each equipped
with one transmitter (Tx) antenna to provide wireless communication services to GUs
in this area as shown in Figure 5.1. We assume that these Nd UAVs are capable of flying
horizontally and hovering at a certain altitude of hd [266]. In this scenario, UAVs can
periodically exchange their location information by air to air (A2A) communciation
links [302, 303]. Meanwhile, both OFDMA and SM techniques have been employed
to support the A2G communication links between UAVs and GUs simultaneously, as
will be detailed later. In the conventional SM, a set of information bits is mapped to a

A2A link

A2G link1

UAV1

A2G link2

UAV2

Figure 5.1: UAV-assisted network model that provides service of wireless com-
munication for GUs.

constellation symbol and a spatial symbol. The spatial symbol is utilized to select one
combination of activated transmit antennas from all possible combinations at each time
slot. Here, the actual combination of active transmit antennas depends on the random
incoming data bits [237]. However, in our proposed IM-UAV system, the function of
the index bits is different as detailed in the following section. Since OFDMA is im-
plemented in our system to realise multi-user communication, the bandwith resources
is divided into small units (subcarriers), which are assigned to GUs according to their
real-time requirements [309, 310, 311]. In the proposed system, the indices are utilised
to select the UAVs that will be used to modulate the constellation symbols onto those
pre-allocated subcarriers.



5.2. System Model 105

Data

Splitter

&

Allocator

N-Point

IFFT

M bits

I bits

R bits

r1 bits

r2 bits

r3 bits

rg bits

UAV1

UAV2

UAV3

UAVg

OFDM 

Symbol 1

OFDM 

Symbol 2

OFDM 

Symbol 3

OFDM 

Symbol g

x(1)

x(2)

x(3)

x(g)

X(1)

X(2)

X(3)

X(g)

Mapper

OFDM 

Block

Creator

Mapper

Mapper

Mapper

OFDM 

Block

Creator

OFDM 

Block

Creator

OFDM 

Block

Creator

N-Point

IFFT

N-Point

IFFT

N-Point

IFFT
CP & P/S

CP & P/S

CP & P/S

CP & P/S

UAV

Selection

(On the Assigned 

Subcarrier)

Figure 5.2: Block diagram of the IM-UAV transmitter.

As shown in Figure 5.2, all GUs are served by all UAVs in our system and each GU will
be assigned their corresponding subcarrier by using OFDMA scheme. Firstly, the M
incoming data bits of all GUs are shared by all UAVs, which will be divided into two
parts: the index part that has I bits used to select the transmitting UAVs per subcarrier
and the remaining R data bits are used to map to the conventional modulation sym-
bols, such as quadrature phase-shift keying (QPSK). Since all the UAVs are working
together to serve all the GUs, the UAVs will use these I bits to correspondingly activate
themselves on the assigned subcarriers of the GUs. Then, according to those activated
UAVs on the assigned subcarriers, the remaining R bits will be split and mapped onto
constellation symbols as shown in Figure 5.2. It is worth noting that the number of
constellation symbols assigned to each UAV can be different but the total number of
bits transmitted satisfy the constraint:

R = r1 + r2 + r3 + . . . + rg, (5.1)

where g is the number of UAVs and rg corresponds to the bits transmitted from the
gth UAV. Afterwards, each UAV will generate a OFDM block based on its assigned
constellation symbols. After this point, each frequency domain OFDM symbol x(i)
will be transferred to time domain block X(i) using the inverse fast Fourier transform
(IFFT) as depicted in Figure 5.2, where i ∈ [1, 2, . . . , g]. At the output of the IFFT, cyclic
prefix (CP) is appended to each OFDM block [312]. It is worth noting that all these
aforementioned steps happen at all UAVs in our system as depicted in Figure 5.2.

In the following, we will explain the “OFDM block creator” processing of Figure 5.2 in
the transmitter of the proposed IM-UAV system using the example shown in Figure 5.3.
In this specific example, we consider employing 4 UAVs and 8 subcarriers indicated by
the boxes in Figure 5.3. For simplicity, we assume that each GU is assigned one subcar-
rier, thus, totally 8 GUs are served by all 4 UAVs. In this case, only one UAV is activated
at a time in the frequency domain. Hence, 2 bits are required for the selection of UAVs.
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UAV1

UAV2

UAV3

UAV4

00

01

10

11

11

01

01

10

00

10

11 00

0011 1001 1101 1010 0000 1110 0111 0100
UAV

Subcarrier

Figure 5.3: Illustration of the IM-UAV block creator using 4 UAVs, 8 RUs and
QPSK modulation scheme in the frequency domain.

Additionally, we assume data symbols are modulated using QPSK. Therefore, totally
4 bits are needed for the selection of UAV and the modulation of data symbols for
each subcarrier. Here, we assume the incoming information bits requested by each GU
on their assigned subcarriers are (0011, 1001, 1101, 1010, 0000, 1110, 0111, 0100)1 and all
these information will be shared by A2A links among all UAVs to control the modula-
tion scheme [302, 303]. As shown in Figure 5.3, each UAV is indexed by binary number
sequence. Besides, the first two bits of each data bits block marked by red color are
used to select one of the UAVs. In each column of boxes, only the corresponding box
of the activated UAV is outlined by red. For instance, the data for the first GU in the
above example is “0011”. Here, we have “00” to indicate the UAV index and “11” for
the symbol, which means the first subcarrier is occupied by the first UAV and the fol-
lowing two data bits “11” will be mapped to their constellation symbols and carried by
this subcarrier. Again, the four boxes in each column in the illustration of Figure 5.3
are to indicate which UAV will occupy this subcarrier. Afterwards, each UAV has its
own OFDM block in the frequency domain followed by the classical OFDM procedures
[5]. In the following, we will present the channel model followed by the deployment
of IM-UAV communication and then a modified power consumption model and a low-
complexity detection scheme will be presented.

5.2.1 Channel Model

Given that the UAVs are considered as aerial BSs to serve GUs, the communication be-
tween GUs and UAVs is in strong LoS propagation environment [290]. The strong LoS
is usually considered as a cause of low rank channel matrix in MIMO communication
system, which brings correlation among MIMO channels, which reduces the capability

1Here, each four-bit sequence corresponds to one GU.
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of supporting multiple parallel data streams. However, those aerial BSs or UAVs are
separately deployed in a target area and it gives enough space to reduce the correla-
tions. According to [298], the channel is largely determined by the distance between
the transmitter (UAV) and the receiver (GU) in a LoS environment, since the UAVs are
usually separately deployed when in operation and hence the distances from each UAV
to the same GU end is different most of the time. Therefore, this will lead to phase dif-
ferences between different channels as will be detailed in the following. In other words,
the receiver side is able to clearly distinguish between different signals from different
UAVs.

We consider a downlink MIMO scenario, where each UAV is equipped with one Tx
antenna and totally Nt = Nd antennas employed at the transmitter side, which is com-
prised on the joint UAVs forming a virtual MIMO. Also, Nr receiver (Rx) antennas are
employed at each GU and a frequency-flat channel is assumed on the subcarriers due
to the OFDMA technique [5]. Hence, the received signal in the frequency domain can
be expressed as [313]:

y =
√

PtHx + v, (5.2)

where x denotes the Nt-dimensional transmitted symbol vector, while y denotes the
Nr-dimensional received symbol vector. H indicates the Nr×Nt channel matrix, where
each element |hij|2 = 1 for i = 1, 2, . . . , Nr and j = 1, 2, . . . , Nt. v is the Nr-dimensional
independent identically distributed (i.i.d) zero-mean complex Gaussian noise vector
with covariance matrix INr . Pt is the achievable transmission power at each Tx antenna
over a transmission interval.

The Rician MIMO channel is employed in our A2G communication as it decomposes
the channel into two parts [314]: deterministic LoS component HLoS and stochastic
NLoS component HNLoS. The NLoS component is used for scattered multipath propa-
gation of signals and the Rician K factor is the ratio of the power of the two components
[269]. Hence, the channel matrix H is given by:

H =

√︃
K

K + 1
· HLoS +

√︃
1

K + 1
· HNLoS. (5.3)

Accordingly, in the condition of A2G transmission in our UAV-aided communication
system, a relatively large value of K, which ranges from 0.51 to 6.31 [294], will be con-
sidered to generate a LoS-dominant channel. The LoS component of H is determined
by the LoS distances between the UAV and the GU. A model with 1 Tx antenna and Nr

Rx antennas is illustrated by Figure 5.4, where the vertical distance from air to ground
is hd and the coordinate of the Tx antenna is assumed to be (xt, yt, hd). Besides, the Rx
antennas at the GU on the ground is considered as a uniform linear array (ULA) [315],
which means all antennas are uniformly distributed with an interval of λ

2 where λ is
the wavelength of the carrier. For simplicity, we assume that the coordinate of the first
Rx antenna is (xr, yr) as the height of Rx antenna is negligible compared with the A2G
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distance. As depicted by Figure 5.4, the coordinates of the nth
r Rx antenna can be rep-

resented by (xr +
λ(nr−1)

2 , yr), where nr ∈ [1, 2, . . . , Nr] is the index of the Rx antenna.

d1

d2 dNr

hl

Tx

Rx 1
Rx 2

Rx Nr

Figure 5.4: Illustration of A2G distances with one aerial Tx antenna and Nr
ground Rx antennas of a ULA.

Finally, the distance between the Tx antenna and the nth
r Rx antenna is given by:

dnr =

√︃
(xt − xr −

λ(nr − 1)
2

)2 + (yt − yr)2 + h2
d. (5.4)

The LoS component vector in this example from the UAV antenna can be expressed by
[298]:

HLoS =
[︂
e−j 2π

λ d1 , e−j 2π
λ d2 , . . . , e−j 2π

λ dNr

]︂T
, (5.5)

where (·)Tdenotes the transpose. Afterwards, the NLoS part of the channel HNLoS is
caused by multipath propagation, which can be described by Rayleigh fading chan-
nel. Therefore, the channel H in (5.3) can be obtained by adding the LoS part and the
NLoS part together, while the K factor that indicates the ratio between them is used to
describe the channel condition.
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Besides, the path loss is commonly considered in A2G communication system, which
is closely linked with the environment, where the Tx and Rx are operating [270, 316].
In general, the propagation path loss Pl is expressed by [271]:

Pl =

(︃
4π

λ

)︃2

dα, (5.6)

where d is the distance between the Tx and Rx, the path loss exponent α ranges from 2
to 6 and the free space wavelength λ = c

fc
is defined as the ratio of the speed of light c

in m/s to the carrier frequency fc in Hz. Therefore, the received signal power Pr given
a transmission power Pt is formulated by [272]:

Pr =
Pt

Pl
= Pt

(︃
c

4π fc

)︃2 (︃1
d

)︃α

. (5.7)

In our IM-UAV communication system, the UAVs are considered to work at a height
of 100 m [273] and the LoS communication links are assumed to exist for most of the
time [290]. Hence, free space path loss exponent α = 2 is chosen to describe the signal
attenuation [44] and Pr is transformed to:

Pr = Pt

(︃
c

4πd fc

)︃2

. (5.8)

Additionally, the transmission scheme in our proposed IM-UAV communication net-
work is a downlink MIMO system with distributed Tx antennas as we assume each
UAV will use one TX antenna to transmit data symbols simultaneously in each trans-
mission interval. Therefore, the signal y received by one GU is given by:

y =
√

Pr Hx + v, (5.9)

where the signal power Pr at the receiver side is a diagonal matrix in the form of:

Pr =

⎡⎢⎢⎢⎢⎣
pr1 0 · · · 0
0 pr2 · · · 0
...

...
. . .

...
0 0 · · · prNt

⎤⎥⎥⎥⎥⎦ . (5.10)

5.2.2 UAV Deployment for the IM-UAV Communication System

In a UAV-assisted communication system, it is important to utilise the maneuverabil-
ity and flexibility of UAVs, which cannot be realised in traditional fixed BSs, to further
improve the QoE of GUs. Therefore, we design a new deployment scheme to improve
the sum rate of GUs in the context of our proposed IM-UAV communication system.
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Since the channel model of our IM-UAV communication has been provided, the ca-
pacity related to this channel can be formulated. When evaluating the capacity of the
conventional MIMO systems, the transmitted vector x is assumed to be a zero-mean
complex Gaussian random vector [317], which is able to maximize the mutual infor-
mation between the transmitted and received vectors. Additionally, the normalized
transmitted vector x is subject to the power constraint [317, 318, 319]:

Tr
(︂

E
[︂

xxH
]︂)︂
≤ 1, (5.11)

where (·)H denotes the conjugate transpose.

On the other hand, consider the multiple data streams defined as s = [s1, s2, . . . , sNa ]
T

that satisfy the unity power constraint, where Na is the number of activated UAVs, and
the form of transmitted vector x is given by [320]:

x = Qs, (5.12)

where Q ∈ CNt×Na such that Q ∈ Q =
{︁

Q1, Q2, . . . , QKNa

}︁
and KNa depends on the

structure of the activated UAVs, which is the number of all possible combinations. For
example, when considering the example of employing four UAVs and activating one
UAV based on the index modulation, then there are KNa = 4 possible combinations that
can be represented by: ⎡⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ , (5.13)

where {Q1, Q2, Q3, Q4} correspond to the rows of (5.13). Moreover, the power con-
strain in (5.11) makes the x satisfy the condition:

Tr
(︂

E
[︂

QissHQH
i

]︂)︂
≤ 1. (5.14)

The matrix set Q can be mapped to a set of covariance matrix V =
{︁

V1, V2, . . . , VKNa

}︁
.

For instance, in the case of fixed Na number of data streams, the ith covariance matrix
of the transmitted vector can be written as:

Vi = E
[︂

xxH |Q = Qi

]︂
= E

[︂
QissHQH

i

]︂
= QiQH

i , (5.15)

for i = 1, 2, . . . , KNa , where Vi is the covariance of the transmitted vector x by assum-
ing that s has complex Gaussian i.i.d. entries with zero mean and unit variance. This
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covariance matrix Vi is related to the achievable rate, which will be used in the follow-
ing section to calculate the gradient of the achievable rate and deploy the UAVs in the
target area.

Based on (5.15) the lower bound of the achievable rate is given by [320]:

RM
L = − 1

KNa

log

(︄
KNa

∏
i=1

(︄
KNa

∑
j=1

1
πNr |Σi + Σj|

)︄)︄
+ log KNa − Nr log (πe) , (5.16)

where | · | indicates the determinant operation, Σi = ρHVi HH + INr for i = 1, 2, . . . , KNa ,
where ρ is the signal to noise ratio and INr is the Nr-dimensional identity matrix. It can
be found that when the structure of the transmission is defined, the element which
will affect RM

L is H. As stated in the previous section, the path loss has a steady and
significant impact on H, which is mainly determined by the distance between the Tx
and the Rx. Meanwhile, the locations of the GUs affect the A2G distances, which is
related to the path loss. Therefore, the gradient of the achievable rate of GUs can be
obtained by taking the derivative of RM

L with respect to the coordinates (location) of the
GUs, then the value of the achievable rate can be optimized by following the gradient
descent approach [321].

Firstly, the UAVs will take the derivative of RM
L with respect to channel H based on the

information of GUs location they collected. Here, since we consider a LoS dominant
environment, the channel condition or the received signal power is largely dependent
on the distance between GUs and UAVs. Even if there is a small NLoS component
existing in the channel, we cannot exactly find the relation between the distance and
the received signal as it is totally random and uncontrollable. Therefore, we take the
derivative of HLoS instead of H. Then, in the rest of this section we use H to denote the
LoS component. Here, the derivative of H with respect to the A2G distance D between
the UAVs and the GUs will be obtained. Afterwards, the derivative of D with respect
to the coordinates (location) of UAVs will be calculated. Finally, the derivative of RM

L

with respect to the coordinates (location) of UAVs can be obtained based on the chain
rule.
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Then, the derivative of RM
L with respect to H can be obtained as:

d
(︂

RM
L

)︂
= −K−1

M d

[︄
log

(︄
KNa

∏
i=1

(︄
KNa

∑
j=1

1
πNr |Σi + Σj|

)︄)︄]︄

= −K−1
Na

KNa

∑
i=1

d
(︂

∑
KNa
j=1 |Σi + Σj|−1

)︂
∑

KNa
j=1 |Σi + Σj|−1

= −K−1
Na

KNa

∑
i=1

∑
KNa
j=1

[︁
−|Σi + Σj|−2d

(︁
|Σi + Σj|

)︁]︁
∑

KNa
j=1 |Σi + Σj|−1

, (5.17)

where it can be shown that we only need to calculate the derivative of |Σi + Σj| with
respect to H if we would like to figure out the derivative of RM

L with respect to H.
Therefore, take Σi = ρHVi HH + INr into |Σi + Σj| and the derivative of |Σi + Σj| with
respect to H can be obtained as:

∂|Σi + Σj|
∂H

=
∂|ρH

(︁
Vi + Vj

)︁
HH + 2INr |

∂H

=
∂|H

(︁
Vi + Vj

)︁
HH |

∂H
, (5.18)

where the symbol ∂ is used to denote partial derivative. Besides, the coefficient ρ and
the identity matrix INr can be neglected as they are constant.

Please note that H is a complex matrix, and hence, the derivative of |Σi + Σj| is related
to the real part and the imaginary part of H. Consequently, the derivative of |Σi + Σj|
with respect to H is given based on the rule of complex derivative in [322]:

∂|Σi + Σj|
∂H

=

(︄
∂|H

(︁
Vi + Vj

)︁
HH |

2∂ℜH
− i

∂|H
(︁
Vi + Vj

)︁
HH |

2∂ℑH

)︄

= |Σi + Σj|
[︂(︁

Vi + Vj
)︁

HH (︁Σi + Σj
)︁−1
]︂T

, (5.19)

and the complex conjugate derivative yields:

∂|Σi + Σj|
∂H∗

=

(︄
∂|H

(︁
Vi + Vj

)︁
HH |

2∂ℜH
+ i

∂|H
(︁
Vi + Vj

)︁
H|

2∂ℑH

)︄
= |Σi + Σj|

[︂(︁
Σi + Σj

)︁−1 H
(︁
Vi + Vj

)︁]︂
, (5.20)

where ℜ and ℑ refer to the real and imaginary parts. Finally, the derivative of RM
L with

respect to H is given by:

∂RM
L

∂H
= K−1

Na

KNa

∑
i=1

∑
KNa
j=1 |Σi + Σj|−2

[︂
∂|Σi+Σj|

∂H +
∂|Σi+Σj|

∂H∗

]︂
∑

KNa
j=1 |Σi + Σj|−1

. (5.21)
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Afterwards, we can calculate the derivative of H with respect to distance D. Firstly, the
channel matrix H is in the form of:

H =

⎡⎢⎢⎢⎢⎣
h11 h12 · · · h1Nt

h21 h22 · · · h2Nt
...

...
...

...
hNr1 hNr2 · · · hNr Nt

⎤⎥⎥⎥⎥⎦ , (5.22)

and the corresponding distance matrix is given by:

D =

⎡⎢⎢⎢⎢⎣
d11 d12 · · · d1Nt

d21 d22 · · · d2Nt
...

...
...

...
dNr1 dNr2 · · · dNr Nt

⎤⎥⎥⎥⎥⎦ , (5.23)

where hij and dij represent the channel and the distance from the jth Tx antenna to the ith

Rx antenna, respectively, for i = 1, 2, . . . , Nr and j = 1, 2, . . . , Nt. Hence, the derivative
of H with respect to D can be calculated by the point-to-point derivative because only
the corresponding dij of D is related to hij in H and the derivative of H with respect to
D is in the form of:

∂H
∂D

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂h11
∂d11

∂h12
∂d12

· · · ∂h1Nt
∂d1Nt

∂h21
∂d21

∂h22
∂d22

· · · ∂h2Nt
∂d2Nt

...
...

...
...

∂hNr1
∂dNr1

∂hNr2
∂dNr2

· · · ∂hNr Nt
∂dNr Nt

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.24)

Recall that the path loss has to be considered in our A2G communication links. So, the
element hij of H including the path loss can be obtained using (5.5) and (5.9), and is
given by:

hij =
√

Pre−j 2π
λ dij . (5.25)

Hence, the element ∂hij
∂dij

of ∂H
∂D is calculated by:

∂hij

∂dij
=
√

Pre−j 2π
λ dij

[︃
− α

dij
− j

2π

λ

]︃
, (5.26)

and the complex conjugate derivative yields:

∂h∗ij
∂dij

=
√

Prej 2π
λ dij

[︃
− α

dij
+ j

2π

λ

]︃
. (5.27)
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Then, as the height of UAVs is fixed to hd and each UAV has only one Tx antenna, the
coordinate matrix Pd of the UAVs can be represented by:

Pd =

⎡⎢⎢⎢⎢⎣
Pd1

Pd2
...

PdNd

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
xd1 yd1

xd2 yd2
...

...
xdNd

ydNd

⎤⎥⎥⎥⎥⎦ . (5.28)

Additionally, the coordinate matrix Pu representing the coordinates of the Rx antennas
of the uth GU is given by:

Pu =

⎡⎢⎢⎢⎢⎣
Pu1

Pu2

...
PuNr

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
xu1 yu1

xu2 yu2

...
...

xuNr
yuNr

⎤⎥⎥⎥⎥⎦ . (5.29)

Then, the derivative of D with respect to Pd can be calculated by:

∂D
∂Pd

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂d11
∂Pd1

∂d11
∂Pd2

· · · ∂d11
∂PdNd

∂d21
∂Pd1

∂d21
∂Pd1

· · · ∂d21
∂xPNd

...
...

...
...

∂dNr Nd
∂Pd1

∂dNr Nd
∂Pd1

· · · ∂dNr Nd
∂PdNd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.30)

while the element ∂dij
Pdnd

for nd = 1, 2, . . . , Nd is calculated based on (5.4), and can be

expressed by:

∂dij

Pdnd

=

[︂
xdnd
− xunr

ydnd
− yunr

]︂
√︂
(xdnd

− xunr
)2 + (ydnd

− yunr
)2 + h2

=
[︂ xdnd

−xunr
dij

ydnd
−yunr
dij

]︂
. (5.31)

Consequently, the derivative is in the form of:

∂D
∂Pd

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂d11
∂xd1

∂d11
∂yd1

· · · ∂d11
∂xdNd

∂d11
∂ydNd

∂d21
∂xd1

∂d21
∂yd1

· · · ∂d21
∂xdNd

∂d21
∂ydNd

...
...

...
...

...
∂dNr Nd

∂xd1

∂dNr Nd
∂yd1

· · · ∂dNr Nd
∂xdNd

∂dNr Nd
∂ydNd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.32)

Finally, the derivative of RM
L with respect to the location of the UAVs Pd can be obtained

as:
∂RM

L
∂H
· ∂H

∂D
· ∂D

∂Pd
=

∂RM
L

∂Pd
. (5.33)
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Hence, since the gradient of RM
L of the GUs can be obtained and the locations of each

UAV will be periodically updated through A2A links, the UAVs can use the gradient
descent algorithm to find the position that can maximize the sum rate of all GUs. The
whole procedure is summarized in Algorithm 8.

Algorithm 8 Deployment procedure of IM-UAV communication system.

1: for n from 1 to Nu do
2: Obtain the lower bound of achievable rate RM

L
3: Take the derivative of RM

L with respect to channel HLoS using (5.21)
4: Take the derivative of HLoS with respect to D according to (5.24)
5: Take the derivative of D with respect to Pd as in (5.32)
6: Obtain the derivative of RM

L with respect to the location of UAVs Pd through chain
rule using (5.33)

7: end for
8: Add the gradients of all Nu GUs together to get the final gradient
9: Apply gradient descent algorithm and deploy UAVs to the position when converg-

ing

5.2.3 Power Consumption Model

The performance of UAV communication system is fundamentally limited by the on-
board energy. The on-board power is mainly consumed by two parts, one is used for
flying, while the other is used to establish communication. The major task of this work
is about the A2G communications between the UAVs and the GUs. Therefore, it is
important to design an energy-efficient UAV communication scheme to reduce the en-
ergy consumed per information bit. The calculation of all energy consumed by data
transmission in the UAV-assisted communication system is quite different from that in
traditional communication system especially in our proposed IM-UAV communication
system, since all UAVs in our IM-UAV communication system will be active all the
time. For simplicity, the baseband signal processing blocks (e.g., source coding, pulse
shaping and digital modulation) have been omitted [323]. Given the UAV is a power
limited platform, we care more about the communication energy consumed at the Tx
side (UAV) than the Rx side, and hence the energy consumption at the Rx side will not
be considered in this chapter.

The total average power consumption along the signal path is composed by two main
components [324]: the power consumption of the power amplifier Pa and other cir-
cuit blocks Pc. The first term Pa depends on the transmission power Pt and the power
consumption of the power amplifier can be calculated by [325]:

Pa =
Pt

η
, (5.34)
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where η is the drain efficiency, which we set as 10% in our system as OFDMA is em-
ployed to support multi-user communication [326]. The second term Pc is composed
by [327]:

Pc = PDAC + PMix + PFilt + PSyn, (5.35)

where PDAC, PMix, PFilt and PSyn are the power consumption values for the digital-to-
analogue converter (DAC), the mixer, the filter and the frequency synthesizer. Finally,
according to the power constraint in (5.11), the total power consumed by the UAVs can
be written as:

Psum = NaPa + NdPc. (5.36)

A binary-weighted current-steering DAC is considered in our system [328] and the
power consumption of the DAC consists of two components: static power consumption
Ps and dynamic power consumption Pd. Firstly, the total output current Io of a N-bit
DAC is closely related to the unit current source, which is denoted by Iu. For the ith bit,
totally 2i unit current resources are needed. Thus, the total number of Iu, which is also
known as code k, can be expressed by:

k =
N−1

∑
i=0

2ibi, (5.37)

where bi is independent binary random variables taking values of 0 or 1 with percent-
age of 50%. Here, bN−1 is the most significant bit and b0 is the least significant bit.
Therefore, the total output current is given by:

Io = kIu. (5.38)

Consequently, the static power consumption can be calculated by:

Ps = VddE [Io] =
1
2

Vdd Iu

(︂
2N − 1

)︂
, (5.39)

where Vdd is the power supply voltage.

The dynamic power consumption occurs during the switching process (on or off) be-
tween symbols. For simplicity, we assume that each switch has the same parasitic
capacitance Cp and each switch has a chance of 50% to change status during a tran-

sition. Then, the average value of Pd can be obtained by Pd =
NCp fsV2

dd
2 for the first-

order approximation [329]. The sampling frequency can be approximately taken as
fs = 2(2B + fcor) in our proposed system as we assume it is a low intermediate fre-
quency structure, where fcor is the corner frequency of the 1

f noise [325] and B is the
bandwidth. Thus, the expression for Pd can be rewritten as:

Pd = NCp (2B + fcor)V2
dd. (5.40)
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Hence, the total power consumption of the DAC is given by:

PDAC = β (Ps + Pd) , (5.41)

where β is a correcting factor to incorporate second-order effects. Hence, we are able to
calculate the energy consumed by communication, which can be utilised to analyze EE
in the following section.

5.2.4 Low-Complexity Detection

For our IM-UAV communication system, the optimal ML detection, which jointly searches
all the possible transmit antenna combinations and the modulated symbols, increases
exponentially in complexity with the number of UAVs and modulation levels. By con-
trast, both the maximal-ratio combining and the zero-forcing algorithms have very low-
complexity, but their error performance is significantly worse than the ML. In order
to reduce the computational complexity but also keep the BER performance satisfac-
tory, we propose a new low-complexity detection scheme that can provide a trade-off
between BER performance and complexity. The proposed low-complexity detection
scheme utilizes the fact that the signals transmitted from different UAVs have different
signal power at the receiver side, which typically exists in UAV-assisted communica-
tion networks, to identify signals received from different UAVs. Besides, by addition-
ally considering the phase difference of the data symbols, the detection accuracy can be
further improved.

We assume perfect channel knowledge at the GUs and that the GUs are aware of the
number of activated UAVs Na. Therefore, all possible combinations of the channels can
be represented by the set:

H = {h1, h2, . . . , hnh , . . . , hNh} , (5.42)

where Nh is the number of all channel combinations and can be calculated by:

Nh =

⌊︃
log2

(︃
Na

Nd

)︃⌋︃
, (5.43)

where Nd it the total number of UAVs, ⌊·⌋ is the floor operation and (··) stands for the
binomial coefficient. For example, if we have 4 UAVs and only 3 of them are activated,
the Nh = 4 possible combinations of the channels is shown in Table 5.1, where hi in-
dicates the ith possible combination and hi indicates the channel of the ith UAV, for
i = 1, 2, 3, 4.

After the FFT operation at the receiver side, all the Nh possible combinations of the
transmitted signals x̂ = [x1, x2, . . . , xnh , . . . , xNh ] in frequency domain can be obtained
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Table 5.1: Example for Nd = 4 and Na = 3.

Combinations Corresponding block
h1 {h1, h2, h3}
h2 {h2, h3, h4}
h3 {h1, h2, h4}
h4 {h1, h3, h4}

by:

xnh = h†
nh

y, (5.44)

= x + h†
nh

n, (5.45)

= [S1, S2, . . . , Sna , . . . , SNa ]
T , (5.46)

where (·)† indicates the pseudo inverse operation and (·)T denotes the transpose. Here,
the nth

h possible recovered signal xnh has a size of Na and Sna represents the nth
a data sym-

bol of xnh . Then, the Euclidean distances between the constellation symbols and each
possible received data symbol Sna can be calculated based on the cosine rule in (5.47).
Therefore, a Euclidean distance vector Ds = [d1, d2, . . . , dnh , . . . , dNh ] can be obtained by
calculating all Nh possible combinations in x̂, where dnh is the sum Euclidean distance
of all symbols from nth

h combination xnh . Thereafter, based on the sum Euclidean dis-
tances that has been obtained, the combinations that has the smallest distance will be
considered as the original transmitted data symbol vector.

According to the cosine rule, it states that the third side of a triangle can be obtained
when two sides and their enclosed angle are known, which can be evaluated as:

ω2 = µ2 + λ2 − 2µλ cos ϕ. (5.47)

Therefore, it could be shown that the length of ω is only related to the angle ϕ, when µ

and λ are fixed. For simplicity, we assume that the modulation scheme used in the sys-
tem is star-QAM or M-PSK, which keeps all constellation symbols around a ring with
fixed amplitudes but different phases. However, if there is a need to use other modula-
tion scheme that is not naturally grouped by amplitudes and phases, it is necessary to
“manually” cluster constellation symbols into different groups according to the level of
amplitudes. For example, 16-QAM whose constellation symbols form a “square”, the
detector then has to cluster those symbols into different groups according to their am-
plitudes and phases. Since cosine is monotonically decreasing in the range [0, π], the
smallest Euclidean distance between Sna and the potential constellation symbols can be
obtained when the smallest phase difference is achieved. Hence, we name this detec-
tion scheme amplitude-phase detection. To further illustrate, let us consider a QPSK
modulated system as shown in Figure 5.5. In this example, the modulus of the received
data symbol Snc and the modulus of the constellation symbols are known and fixed,
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Im

Re

Figure 5.5: Illustration of calculating smallest distance with QPSK by
amplitude-phase detection.

and our target is to find the smallest phase difference between Snc and the constella-
tion symbols. The solution to identify which range the received symbol belongs to is
summarized in Algorithm 9.

As shown in Figure 5.5, the detector obtains the phase θr of the received symbol and the
start phase αs of the constellation symbols, where the start phase αs means the smallest
angle of constellation symbols in range [0, 2π] and αs = π

4 in this case. Then, we do
the parity check based on the value of αs and the valid phase range αv, where αv indi-
cates the valid phase range of constellation symbols around the same ring, which can
be calculated by αv = π

M , where M is the modulation order. To further illustrate, we
consider the top right constellation symbol on the ring of QPSK in Figure 5.5 as an ex-
ample. Here, it could be found that when Snc is located within the phase range of (0, π

2 ),
the phase difference will be calculated based on this constellation symbol. However,
if Snc is located outside this range, it will choose other constellation symbol as a base
to calculate the phase difference. Therefore, it can be seen that the valid phase range
is π

4 on both side of this constellation symbol. Since all constellation symbols around
the same ring are space arranged with equal phase difference, the valid phase range is
identical for all constellation symbols around the same ring. Finally, the smallest phase
difference θd between the received symbol and the constellation symbols is related to
multiple of αv, and thus a flag F is set to identify the parity of ⌊θr⌋ or ⌊θr − αv⌋. Now, the
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smallest distance can also be calculated based on θd and the cosine formula presented
in (5.47).

Algorithm 9 Operating procedure of minimum phase difference.

1: Obtain the phase θr of the received symbol
2: Obtain the start phase αs of the constellation symbols
3: if αs = 0 then
4: F = ⌊θr−αv⌋

αv
mod 2

5: else
6: F = ⌊θr⌋

αv
mod 2

7: end if
8: θd = |F× αv − (θr mod αv)|

Afterwards, all those smallest distances of the received symbols will be added together
for each combination and the combination that results in the smallest dnc will be con-
sidered as the detected symbols. Therefore, the index of the activated UAVs can be ob-
tained according to this combination. Finally, we use the corresponding channel com-
bination to do the data bits recovery with ML detection. Our proposed low-complexity
detection scheme separately detects the index symbols and data symbols, which largely
reduce the complexity of the optimal ML detection.

For example, we consider one scenario that Na = 2 UAVs will be activated and to-
tally I possible combinations of index bits (activated UAV) is considered. Then, if S
constellation symbols and T rings are assumed, the search space for the ML detection
scheme is I × SNa , while the search space of the proposed low-complexity detection
scheme is I × T + SNa . Therefore, the search space of our proposed low-complexity de-
tection scheme is significantly smaller than that of ML detection scheme as discussed
numerically in the following section.

5.3 Performance Results and Evaluation

In this section, we investigate the performance of our proposed IM-UAV communica-
tion system in a 1 km × 1 km square area with totally Nu = 18 GUs and Nd = 4 UAVs.
For all GUs in this target area, we assume that Nr = 4 antennas are mounted on their
equipments. UAVs operate at a height of hd = 100 m and each is equipped with one an-
tenna. Then, we set the carrier frequency to fc = 5.8 GHz for the A2G communication,
while the path loss exponent α and the Rician K-factor are set to 2 and 3, respectively.
Meanwhile, the noise power spectral density (PSD) N0 is set to -174 dBm/Hz and the
transmission power Pt of the UAVs is in the range from 1 dBm to 40 dBm. Additionally,
OFDMA is employed to support multi-user communications, where the total band-
width B allocated to all GUs is 40 MHz. In our system, the whole bandwidth is divided
into 512 subcarriers and only 468 of them will be used as data subcarriers to transmit



5.3. Performance Results and Evaluation 121

data bits, while the rest will be set as guard intervals [330]. Moreover, all GUs in our
system has the same weight, which means 26 subcarriers will be assigned to each user.

Table 5.2: Simulation parameters

Parameter Symbol Value Parameter Symbol Value

K-factor K 3 Bandwidth B 40 MHz
Noise PSD N0 -174 dBm/Hz Transmission power Pt 1 to 40 dBm

Carrier frequency fc 5.8 GHz Path loss exponent α 2
UAV height hd 100 m Speed of light c 3× 108 m/s

Number of UAVs Nd 4 Number of activated UAVs Na 1 to 4
Number of Rx antennas Nr 4 Number of subcarriers Ns 512

Number of data subcarriers Nds 468 Learning rate lr 5
Number of GUs Nu 18 Number of epochs Ne 300
Correcting factor β 1 Drain efficiency η 10%

Power supply Vdd 3 V Resolution of DAC N 10 bits
Unit current source Iu 10 µ A Parasitic capacitance Cp 1 pF
Corner frequency fcor 1 MHz Power consumption of filter Pfilt 2.5 mW

Power consumption of synthesizer Psyn 50 mW Power consumption of mixer Pmix 30.3 mW

In the following, we first analyze the effect of the UAV deployment on the sum rate
of all GUs. Afterwards, the EE of the proposed IM-UAV system will be investigated.
Finally, the BER performance of our proposed low-complexity detection scheme will
be examined. The detailed simulation parameters are listed in Table 5.2.

In our proposed IM-UAV communication system, the sum rate of all GUs is taken as
the objective function for optimising the deployment of UAVs. Figure 5.6(a) and Figure
5.6(b) depict the performance of our proposed deployment schemes in the scenario of
2 activated UAVs out of 4 deployed UAVs. Based on the gradient of the rate in (6.51)
with respect to the position of all UAVs, it can be found from Figure 5.6(a) that the sum
rate of all GUs in the target area steadily increases by the gradient descent algorithm.
Finally, the curve will reach steady state after enough number of epochs, where the
epoch is the maximum number of steps the algorithm will run for convergence. The
blue curve, which represents the lower bound of the achievable rate, is obtained from
(5.16), while the red curve named by ‘Real Rate’ is obtained from (8) and (14) of [331] to
indicate the true rate of the GUs by Cholesky decomposition [182]. It is straightforward
to see that the trend of the lower bound and the real rate is consistent and this means the
deployment of multiple UAVs does effectively improve the QoS of the downlink rate.
In Figure 5.6(b), the distribution of GUs and the location of UAVs in correspondence
with this two curves have been illustrated. Here, all UAVs are represented by red circles
and GUs are indicated by blue crosses. The hollow red circles are the initial location
of UAVs (UAVI), and the solid ones are the final location (UAVF) where UAVs will be
deployed.

In Figure 5.7(a), we show the average capacity of different activated patterns,where we
show 4 curves that represent different activated patterns. Here, the legend “1-UAV”
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Figure 5.6: Illustration of the deployment of 2 activated UAVs out of 4 de-
ployed UAVs in the proposed IM-UAV communication system with 18 GUs
by gradient descent algorithm, where UAVI and UAVF indicate the initial loca-
tions and the final locations, respectively

means only 1 UAV has been activated among all 4 deployed UAVs and so on. With the
increase of transmission power, it can be seen that the capacity will increase. Besides,
increasing the number of activated UAVs improves the achievable capacity, as shown
in Figure 5.7(a). However, it also can be deduced that the capacity at the level of high
transmission power increases slowly, which means the overall increase of information
bits is smaller than the increase of the transmission power.
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Figure 5.7: Performance illustration of different activated patterns in the pro-
posed IM-UAV communication system with 4 UAVs and 18 GUs.

This phenomenon is also reflected by Figure 5.7(b), where at lower levels of transmis-
sion power, the EE of “4-UAV” is the best as it transmits the most information bits with
the same transmission power. However, with the increase of transmission power, the
trend of all curves increases to a peak and then starts to reduce. Besides, it can be found
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that the EE of IM-UAV communication starts to surpass the fully-activated scenario at
around 15 dBm transmission power, which is the practical transmission power to con-
sider. Explicitly, the transmission power of common UAVs will not operate in the 5
dBm to 20 dBm range due to the relatively high A2G path loss, where Figure 5.8 also
indicates that the BER performance of the system is bad in this range. Hence, it can
be concluded that the IM-UAV system attains a higher EE compared to activating all
UAVs, in the practical transmission power range as depicted in Figure 5.7(b). Finally,
it can also be find that the the EE is quite low when transmitting in a relatively high
transmission power, while the improvement of transmission delay requires a relatively
high transmission. Hence, there is a trade-off between EE and transmission delay when
designing a system with different purposes.
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Figure 5.8: BER performance of low-complexity detection and ML detection
by 8-PSK in the proposed IM-UAV communication system with 4 UAVs and
18 GUs.

Figure 5.8 shows the BER performance of the proposed low-complexity detection by
considering 8-PSK modulation scheme. In this case, we test three activation patterns
that activates 1 UAV, 2 UAVs and 3 UAVs, when 4 UAVs are deployed. Below a trans-
mission power of 27 dBm, the low-complexity and ML detection follow the same pat-
tern, where activating more UAVs results in a worse BER performance. However, the
performance of 2 activated UAVs and 3 activated UAVs becomes better than that of 1
activated UAV scenario with the increase of the transmission power for the proposed
low-complexity detection scheme. This is caused by the characteristics of our proposed
detection scheme as we consider both the amplitude and phase of the received signals.
In the low transmission power range the signal is deeply affected by the noise, where
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activating more UAVs results in a higher transmission rate, which results in more de-
tection errors due to the noise. On the other hand, this phenomenon will be improved
with the increase of transmission power because the average path loss of 2 activated
UAV and 3 activated UAV is smaller than that of 1 activated UAV scenario and noise is
not the dominant factor that affects the BER performance in the higher transmit power
scenarios.

Based on the BER comparison between two detection schemes, it can be seen that the
degradation of BER performance is mainly caused by the index detection. In our pro-
posed low-complexity detection scheme, we firstly detect the index of activated UAVs
by analyzing the amplitude and phase of the constellation symbols. As mentioned
before, the complexity of this scheme depends on the level of amplitudes (number of
rings) and the corresponding phase differences of constellation symbols around these
rings. Therefore, instead of searching all possible combinations of index symbols and
data symbols, this amplitude-phase detection scheme will reduce the detection com-
plexity significantly when high order modulation schemes or large number of UAVs
have been employed.

Table 5.3: Search space for Nd = 4 and Na = 3 by QPSK, 8-PSK and star 16-
QAM.

Modulation ML detection Low-complexity detection
QPSK 256 68
8-PSK 2048 516

Star 16-QAM 16384 4104

In Table 5.3, a scenario that Na = 3 out of 4 UAVs will be activated has been included
to illustrate the complexity of this two detection schemes. It could be found that to-
tally I = 4 combinations of index bits or activated UAVs exist, therefore, according to
the number of constellation symbols S and the number of rings T for each modulation
scheme, the search space can be obtained. However, the reduction of complexity also
cause a degradation on BER performance, because the wrong detection of index sym-
bols will cause severe effects on the following detection of data symbols. Therefore, it
is a complexity-performance trade-off.

5.4 Conclusion

In this chapter, we proposed an IM based UAV wireless communication system, which
aims to increase the EE of power-limited UAV platforms. Furthermore, by combining
the UAV communication system with IM, the BER performance of the system could be
improved. Besides, based on the proposed IM-UAV communication system, a multi-
UAV deployment scheme has been designed to maximize the downlink sum rate of
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all GUs. Additionally, we designed a low-complexity detection scheme to separately
detect the index symbols and the data symbols, rather than jointly detecting them using
the exhaustive search in the IM-UAV scheme.
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Chapter 6

Content-Aware Transmission in
UAV-Assisted Multicast System

6.1 Introduction

In Chapter 3, we designed a caching-enabled UAV wireless communication system,
which utilizes the memory resource onboard to pre-download the popular content
for reducing the latency of data transmission. Meanwhile, the OFDMA technique is
employed to support multiple GUs simultaneously and to alleviate the performance
degradation caused by NLoS propagation (multipath channel fading) in Chapter 5. In
this chapter, we further design a new transmission scheme under the content-aware
condition (e.g., augmented reality and caching) by considering the two-layer rate split-
ting (RS) in each subcarrier to effectively utilize the bandwidth resources of UAV. How-
ever, the results of this RS based method is proved to either be a pure private scenario
or a pure common scenario. Therefore, we directly consider two different subcarrier-
sharing (SS) methods instead based on the analysis of RS based method. Firstly, we
investigate the private subcarrier-sharing (PSS) scheme, which considers the SS among
those GUs who requested the same content. Secondly, we optimize the proportion
of contents in each subcarrier by a common subcarrier-sharing (CSS) scheme to fur-
ther improve the utilization of bandwidth resources. Furthermore, the deployment of
UAVs will also affect the QoE of GUs, hence we propose a fixed-point based algorithm
to maximize the average rate of GUs in the target area.

6.2 System Model

In this chapter, we consider a UAV-assisted communication system in a downlink sce-
nario to serve a number of GUs in its target area, as shown in Fig. 6.1. In this case,



128 Chapter 6. Content-Aware Transmission in UAV-Assisted Multicast System

the UAV is acting as a flying BS serving the GUs1. Moreover, the UAV is capable of
flying horizontally and hovering at a certain altitude of hd and it also knows the lo-
cations of the GUs [332]. Meanwhile, OFDMA technique is employed to support the
A2G communication links between the UAV and the multiple GUs. Here, the band-
with resource is divided into subcarriers, which are assigned to GUs according to their
real-time requirements [309].

A2G link

UAV

Figure 6.1: UAV-assisted network model that provides service of wireless com-
munication for GUs.

Additionally, we assume that all GUs generate their own request periodically based on
their preferences, which can be represented by a set of distributions. Fig. 6.2 shows an
example of GU’s preference represented by the distribution of available contents. In
Fig. 6.2, a total of 50 different contents have been taken into consideration and each can
be thought of as a category (e.g. sports, weather, literature.). The probability is used
to measure the level of user interests in each content, where the higher the probability,
the greater the chance of being requested. However, since the requested contents are all
known by the UAV as a flying BS and the bandwidth resources on the UAV is limited, it
is necessary to design new transmission schemes to fully utilize the limited bandwidth
resources. Besides, the UAV’s deployment location also needs to be adjusted to further
improve the downlink performance by exploiting the flexibility and maneuverability
of the UAV.

Moreover, we consider a capacity-achieving2 transmission scheme in an OFDMA sys-
tem, which means that all GUs can achieve the data rate at their full capacity on their
assigned subcarrier [333]. Specifically, the whole bandwidth will be equally divided
into subcarriers according to the number of GUs Nu and each GU will be assigned one
subcarrier. The channel capacity is only related to the received signal power Pr, when

1The case illustrated here is one UAV with its associated GUs. However, the scheme can also be applied
to a scenario of multiple UAVs and each UAV has their own associated GUs.

2We assume that the data bits are transmitted at capacity limit without considering any specific modu-
lation schemes in our system.
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Figure 6.2: An example of GU preference represented by content distribution.

the bandwidth B and the noise power spectral density (PSD) N0 are fixed. Besides, due
to the dynamic A2G distances of the GUs, the different GUs will receive the OFDM
modulated signal with different received signal power. Therefore, the capacity of each
subcarrier is different for different GUs. For example, consider a system supporting
two GUs and each is assigned with one subcarrier, where the received signal power of
the first GU is assumed stronger than that of the second GU (P1

r > P2
r ). In this case, the

data throughput that the first GU can be supported based on its assigned subcarrier is
higher than that of the second GU. Additionally, we consider the case that each subcar-
rier is modulated depending on the received signal power of its assigned GU. Hence,
the first GU is capable of correctly recovering the information on both subcarriers while
the second GU can only recover the information of its own subcarrier. This is because
the power needed to demodulate the information of the first subcarrier, which is also
the first GU’s subcarrier, should be greater than or equal to P1

r , while the second GU
has a lower received power.

In our system, subcarriers are preallocated to GUs before the transmission and the in-
formation is encoded based on the channel condition of the GUs. Accordingly, it can be
found that one GU can only demodulate the subcarriers that have a reduced received
power, which means a lower capacity, in our capacity-achieving communication sys-
tem. In the following, we will present the channel model of the proposed UAV-assisted
communication followed by the structure of our proposed RS-OFDMA. Afterwards,
two CS schemes, namely PCS and CCS, will be detailed.
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6.2.1 Channel model

Since the UAV is operating as an aerial BS to serve the GUs at a certain height hd in our
system, the communication links between the GUs and the UAV can be considered to
be in strong LoS propagation environment [290]. Therefore, the Rician fading channel
model [268], which is composed of a dominant LoS path and some non line of sight
(NLoS) paths, is considered to model the signal propagation environment [293]. The
Rician channel employed in our A2G communication decomposes the channel into two
components [314]: deterministic LoS component hLoS and stochastic NLoS component
hNLoS. Then, the channel h is given by:

h =

√︃
K

1 + K
· hLoS +

√︃
1

1 + K
· hNLoS, (6.1)

where hNLoS is used to describe the scattered multipath propagation of signals, while
the Rician K factor is the power ratio of the LoS path and the NLoS paths. Accordingly,
the Rician K factor in our UAV-assisted communication system ranges from 0.51 to 6.31
[294], to generate a LoS dominant channel.

On the other hand, path loss is commonly considered to measure the signal attenuation
in A2G communication system. Path loss is closely linked with the environment, where
the transmitter and receiver are operating [316]. Generally, the propagation path loss
Pl can be expressed by [271]:

Pl =

(︃
4π

λ

)︃2

dα, (6.2)

where d indicates the distance between the transmitter and receiver, while the path loss
exponent α, which ranges from 2 to 6, indicates the nature of the propagation environ-
ment. The wavelength λ = c

fc
is defined as the ratio of the speed of light c in m/s to the

carrier frequency fc in Hz. Therefore, the received signal power Pr given a transmission
power Pt is formulated as [272]:

Pr =
Pt

Pl
= Pt

(︃
c

4π fc

)︃2 (︃1
d

)︃α

. (6.3)

In our UAV-assisted communication system, the UAV is considered to fly at a given
altitude of hd = 100 m [273] and the LoS communication links are assumed to exist for
most of the time [290]. Under the LoS model, the free space path loss exponent α = 2
is chosen to describe the signal attenuation. Then, the received signal power Pr can be
represented as:

Pr = Pt

(︃
c

4πd fc

)︃2

. (6.4)

Additionally, one important criterion to measure the performance of a system is the
achievable rate and the channel capacity C in bits per second (bits/s) that uses the
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received signal power Pr perturbed by additive white Gaussian noise (AWGN) of PSD
N0 with bandwidth B is given by [334]:

C = B log2

(︃
1 +

Pr

BN0

)︃
. (6.5)

6.2.2 Proposed Rate Splitting OFDMA

Inspired by the concept of RS that splits the message into common and private parts,
we apply the RS concept to traditional OFDMA modulation in order to improve the
throughput due to the fact that a common part will be repeatedly needed by multiple
users, which would largely increase the bandwidth utilization.

P1

C1

P2

C2

P3

P4

P5
P6

P7

P8

C3
C4

C5
C6

C7
C8

Figure 6.3: A toy example of RS-OFDMA in frequency domain with RS in each
subcarrier, where “P” indicates the private message and “C” indicates the com-
mon message.

Fig. 6.3 shows the structure of the proposed RS-OFDMA, where instead of separating
the users by different power layers in RSMA, the users are partitioned by frequency
(subcarriers). Then, we consider a two-layer RS structure in each subcarrier to separate
the private and common messages since users are already separated by subcarriers. In
each subcarrier, the private message means the content requested by the GU assigned
with this subcarrier, while the common message is a mixture of all possible contents
considered in this system but with different proportion. Here, the contents conveyed
by each subcarrier usually cannot be demodulated by all GUs in a capacity-achieving
communication system, especially for the common message. Therefore, the contents
modulated on the common part in each subcarrier need to be adjusted based on the
number of GUs who can successfully demodulate the information conveyed by each
subcarrier and the contents requested by those accessible GUs. As a result, the trans-
mitted signal modulated on the ith subcarrier can be expressed as:

xi =
√

pixc +
√︁

1− pixp, (6.6)

where pi is the power allocation coefficient of the common message in the ith subcarrier,
subject to the constraint 0 ≤ pi ≤ 1, while xc and xp represent the common message
and the private message, respectively. Consequently, the total received signal of the uth
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GU at the ith subcarrier is given by:

yi
u = hi

uxi + ni,

=
√

pihi
uxc +

√︁
1− pihi

uxp + ni, (6.7)

where hi
u represents the channel gain including the path loss of the uth GU at the ith

subcarrier and ni is the AWGN with variance σ2 at the ith subcarrier. For simplicity, in
the following we assume the index of subcarrier, which intends to transmit the private
message to its corresponding GU, equals to the index of its corresponding GU in our
system, because only the common part is “public” for all GUs.

As mentioned before, each GU is only allowed to demodulate those subcarriers that
have weaker received signal power or weaker channel condition than its allocated sub-
carrier, in our capacity-achieving system. It is worth noting that we consider the sce-
nario where the weakest channel condition can also support the basic A2G communi-
cation. Here, the common message is public for all GUs, while the private message
cannot. Besides, it can be seen that the common message in a subcarrier can be de-
modulated or utilized by more GUs if a weaker channel power is used to modulate
the common message. In an extreme case, the system employs the weakest channel
among those GUs to modulate the common message, then the common message in
each subcarrier is available for all GUs. However, it is highly possible that the sum
rate can be lower even though the number of GUs who can access the subcarriers is in-
creased, because the channel condition employed is too weak to support a high-speed
data transmission. As a result, a threshold hT need to be firstly set for the received sig-
nal power over all subcarriers before formulating the rate of the common message. In
fact, the threshold is used to control the accessibility of the common message in each
subcarrier and further affect the sum rate. As an example, let us consider a two-GUs
scenario that has |h1|2 > |hT|2 > |h2|2. Then, only the first GU can obtain the com-
mon message on both subcarriers as well as its private message modulated on its own
subcarrier, while the second GU can only obtain the private message on its assigned
subcarrier since the common message of all subcarriers is modulated based on hT.

Based on the above discussion, we know that a GU can only demodulate the subcarriers
that have a poorer channel condition. Therefore, to calculate the data rate of the system,
a filter vector Fi with a length of Ns needs to be defined to demonstrate the accessibility
of the ith subcarrier, which is used to count the utilization of the common message.
For instance, we consider a group of 6 GUs and each of them is assigned with one
subcarrier. Besides, the channel gain of each GU in a descending order is represented
by |h2|2 < |h3|2 < |h1|2 < |h5|2 < |h6|2 < |h4|2. Consequently, the filter vector of each
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subcarrier can be expressed by:

F1 = [1, 1, 1, 0, 0, 0]T , (6.8)

F2 = [0, 1, 0, 0, 0, 0]T , (6.9)

F3 = [0, 1, 1, 0, 0, 0]T , (6.10)

F4 = [1, 1, 1, 1, 1, 1]T , (6.11)

F5 = [1, 1, 1, 0, 1, 0]T , (6.12)

F6 = [1, 1, 1, 0, 1, 1]T . (6.13)

In (6.8), the power of the first subcarrier p1 ranks third among all subcarriers, and the
two that have stronger received signal power are GU2 and GU3. Hence, only the first
three positions of F1 have been set to “1”.

Meanwhile, the weight vector Wi ∈ WS, which is used to indicate the percentage of
content in the common part of the ith subcarrier, is given by:

WS = {W1, W2, . . . , Wi, . . . , WNs} , (6.14)

for i = 1, 2, 3, . . . , Ns, where Wi represents the weight vector of the ith subcarrier, which
is given by:

Wi =
[︁
wi1, wi2, . . . , wij, . . . , wiNc

]︁
, (6.15)

where wij is the jth content of the ith subcarrier. Additionally, the weight vector Wi is
also subject to the constraint:

Nc

∑
j=1

wij = 1, (6.16)

where 0 ≤ wij ≤ 1 and Nc is the number of contents considered in the system. Af-
terwards, a selection matrix S ∈ CNc×Nu is necessary to link the Nu GUs with their
corresponding contents and the selection matrix S is in the form of:

S =

⎡⎢⎢⎢⎢⎣
s11 s12 · · · s1Nu

s21 s22 · · · s2Nu
...

...
. . .

...
sNc1 sNc2 · · · sNc Nu

⎤⎥⎥⎥⎥⎦ , (6.17)

where sju represents the flag of the jth content from the uth GU, for j = 1, 2, 3, . . . , Nc

and u = 1, 2, 3, . . . , Nu. Hence, sju will be set to “1” if the uth GU asks for the jth content,
otherwise, it will be set to “0”. To further illustrate the format of S, an example that
considers 6 GUs with totally 4 contents is included. Firstly, the contents requested by
6 GUs is {c1, c4, c3, c4, c2, c4} and the order of these contents is arranged sequentially
based on the index of GUs. As a result, the selection matrix for this example is given
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by:

S =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 0 1

⎤⎥⎥⎥⎥⎦ . (6.18)

It can be seen that the first, the second and the third contents are requested once by
the first, the fifth and the third GUs, respectively. While the forth content is three times
requested by the other GUs. Therefore, the position of the requested content in each
column of the corresponding GU is set to “1”, while the rest will be set to “0”.

Since all the factors that will be used have been provided, the derivation of data rate in
our proposed RS-OFDMA communication system will be detailed in the following by
two scenarios:

6.2.2.1 Scenario 1

In the first scenario of RS-OFDMA, we consider that the private message has a higher
power allocation in each subcarrier. Besides, since the bandwidth assigned to each
GU is equally divided, the bandwidth is removed from the equations in the following
sections. Consequently, the private rate Ri

p and the common rate Ri
c of the ith subcarrier

can be given by:

Ri
p = log2

(︃
1 +
|hi|2 (1− pi)

|hi|2 pi + σ2

)︃
, (6.19)

Ri
c = Ai log2

(︃
1 +
|hT|2 pi

σ2

)︃
, (6.20)

where hi is channel of the ith GU at the ith subcarrier, which is a metric that is used to
modulated the private message at the ith subcarrier. While Ai = WiSFi is a coefficient
for the utilization measurement of common message in the ith subcarrier named by
“sharing times”. Back to the definition of Ai, it can be found that Wi represents the
proportion of each content, S links the GUs to their corresponding content and Fi helps
to find out the accessible GUs of the ith subcarrier. Therefore, the sharing times of each
content can be obtained based on the proportion of each content and the number of
accessible GUs requesting for this content. Accordingly, it is straightforward to see
that Ai is actually the sum sharing times of all contents carried by the ith subcarrier.
Therefore, the sum rate of the ith subcarrier can be obtained by:

Ri
s = Ri

p + Ri
c

= Ai log2

(︁
|hT|2 pi + σ2)︁

− log2

(︁
|hi|2 pi + σ2)︁+ C1, (6.21)



6.2. System Model 135

where C1 = log2

(︁
|hi|2 + σ2)︁− Ai log2

(︁
σ2)︁. Hereafter, the derivative of Ri

s with respect
to pi can calculated as:

∂Ri
s

∂pi
=

Ai|hT|2
|hT|2 pi + σ2 −

|hi|2
|hi|2 pi + σ2 . (6.22)

Hence, the optimum value pe of the power allocation coefficient pi for Ri
s can be ob-

tained by setting ∂Ri
s

∂pi
= 0, which is given by:

pe =
|hi|2 − Ai|hT|2

Ai − 1
· σ2

|hT|2|hi|2
. (6.23)

Since A ≥ 1, we have three conditions if |hT|2 < σ2

A−1 :⎧⎪⎪⎪⎨⎪⎪⎪⎩
pe > 1, if |hi|2 > Ai |hT |2σ2

σ2−(Ai−1)|hT |2
;

0 ≤ pe ≤ 1, if Ai|hT|2 ≤ |hi|2 ≤ Ai |hT |2σ2

σ2−(Ai−1)|hT |2
;

pe < 0, if |hi|2 < Ai|hT|2.

(6.24)

However, it always satisfies the condition that pe ≤ 1 if |hT|2 ≥ σ2

Ai−1 . Hence, we have:⎧⎨⎩0 ≤ pe ≤ 1, if |hi|2 ≥ Ai|hT|2;

pe < 0, if |hi|2 < Ai|hT|2.
(6.25)

Besides, Ri
s is monotonically increasing when pe < 0 and it is monotonically decreasing

when pe > 1. Therefore, if we aim to maximize the sum rate of all users, the value of pi

must satisfy the following constraint:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi = 0, if pe ≥ 1;

pi = 1, if pe ≤ 0;

pi = arg max
pi∈{0,1}

Ri
s (pi) , if 0 < pe < 1.

(6.26)

6.2.2.2 Scenario 2

The second scenario considers that the common part has a higher power allocation.
Therefore, the private rate Ri′

p and the common rate Ri′
c of the ith subcarrier are given

by:

Ri′
p = log2

(︃
1 +
|hi|2 p′i

σ2

)︃
, (6.27)

Ri′
c = Ai log2

(︃
1 +
|hT|2 (1− p′i)
|hT|2 p′i + σ2

)︃
. (6.28)
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Accordingly, the sum rate of the ith subcarrier can be expressed by:

Ri′
s = Ri′

p + Ri′
c ,

= −Ai log2

(︁
|hT|2 p′i + σ2)︁

+ log2

(︁
|hi|2 p′i + σ2)︁+ C2, (6.29)

where C2 = Ai log2

(︁
|hT|2 + σ2)︁− log2

(︁
σ2)︁. Hereafter, the derivative of Ri′

s with respect
to p′i is calculated by:

∂Ri′
s

∂p′i
= − Ai|hT|2
|hT|2 p′i + σ2 +

|hi|2
|hi|2 p′i + σ2 , (6.30)

where the optimum value p′e can be obtained by setting ∂Ri′
s

∂p′i
= 0, which is computed as:

p′e =
|hi|2 − Ai|hT|2

Ai − 1
· σ2

|hT|2|hi|2
. (6.31)

Since Ai ≥ 1, we have three conditions if |hT|2 < σ2

Ai−1 :⎧⎪⎪⎪⎨⎪⎪⎪⎩
p′e > 1, if |hi|2 > Ai |hT |2+σ2

σ2−(Ai−1)|hT |2
;

0 ≤ p′e ≤ 1, if Ai|hT|2 ≤ |hi|2 ≤ Ai |hT |2+σ2

σ2−(Ai−1)|hT |2
;

p′e < 0, if |hi|2 < Ai|hT|2.

(6.32)

However, it always satisfies the condition that p′e ≤ 1 if |hT|2 ≤ σ2

Ai−1 . Hence, we have:⎧⎨⎩0 ≤ p′e < 1, if |hi|2 ≥ Ai|hT|2;

p′e < 0, if |hi|2 < Ai|hT|2.
(6.33)

Besides, Ri′
s is monotonically increasing when p′e > 1 and it is monotonically decreasing

when p′e < 0. Therefore, if we aim to maximize the sum rate of all users, the value of p′i
must satisfy the following constraint:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p′i = 1, if p′e ≥ 1;

p′i = 0, if p′e ≤ 0;

p′i = arg max
p′i∈{0,1}

Ri′
s (p′i) , if 0 < p′e < 1

(6.34)

Therefore, it could be found that the power allocation coefficient is either 1 or 0 based
on (6.26) and (6.34), which means that the ith subcarrier should transmit all private mes-
sage or all common message based on the condition of the threshold hT and the channel
gain of the ith subcarrier hi. In other words, the subcarrier should serve GUs either pri-
vately or publicly based on the channel condition, and hence there is no combination
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of them to serve GUs in a hybrid way. Inspired by this results, the idea of directly
sharing the contents in subcarriers among all GUs to increase the utilization of limited
bandwidth resources is proposed. In the following two sections, two CS schemes will
be introduced in details.

6.2.3 Proposed Private Content-Sharing Scheme

The first CS scheme is inspired from the first conclusion of RS-OFDMA, namely each
subcarrier will only carry the information of the content that is requested by its cor-
responding GU. Therefore, it can be found that this scheme is operated in a relatively
“private” way, which can be referred to as private CS (PCS).

Subcarrier1 Subcarrier2 Subcarrier3 Subcarrier4 Subcarrier5 Subcarrier6 Subcarrier7 Subcarrier8

Figure 6.4: Illustration of content-sharing in the frequency domain of OFDMA
communication system.

As shown Fig. 6.4 the subcarriers that carried the same kind of contents have been
marked by the same colors in CS scheme. Instead of considering to transmit the con-
tents in a hybrid way (private and common), the system directly shares the contents
requested by each GU. As a result, the data rate could be improved if we allow those
GUs who request the same content to share their contents with each other. For in-
stance, we take the GUs who are requesting the same “Grey” content in the first and
third subcarriers as an example, if the corresponding two GUs can only demodulate
their allocated subcarriers, the same data need to be transmitted repeatedly on their
subcarriers. However, the data rate can be increased if they are allowed to share their
subcarriers, because the UAV can now transmit two packages of this content. Here, it is
worth noting that the content need to be transmitted by several data packages. There-
fore, the GU with a higher channel gain can directly obtain the first data from the GU
that has a lower channel gain and obtain the second one by his own subcarrier in our
capacity-achieving communication system, which means the GUs with higher channel
gain can utilise the data package from other GUs who requested the same content and
reduce the duplicate transmissions.

So far, it is straightforward to see that most of the subcarriers can be shared by other
GUs if available. In order to calculate the average data rate of the PCS scheme, we take
the 4th, 6th and 8th subcarriers that all requested the “Aqua” content in Fig. 6.4 and we
assume that the capacity of each subcarrier is in the descending order of 4-6-8. Then,
the corresponding sharing times of these 3 subcarriers is 1, 2 and 3, because only these
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3 GUs need this content while the others do not. It could be found that the utilization
of subcarriers is significantly improved. Finally, the average rate RA of all GUs in PCS
transmission scheme can be formulated as:

RA =
1

Nu

Ns

∑
i=1

Ai log2

(︃
1 +
|hi|2
σ2

)︃
, (6.35)

where Ai is the sum sharing times of the ith subcarrier. However, to further improve the
average data rate of PCS, we propose an advanced CS method, referred to as common
CS (CCS).

6.2.4 Proposed Common Content-Sharing Scheme

As mentioned before, the GU in PCS can only obtain the information from the subcar-
riers of GUs that request the same content but have weaker received signal strength.
However, GUs will not be restricted by the category of contents since all subcarriers
are able to carry all related contents in a pure “common” way, which means GUs are
capable of demodulating all available subcarriers. Then, the utilization of each subcar-
rier can be further improved. Besides, the data rate can also be controlled by adjusting
the proportion of contents in each subcarrier. Here, an example of one subcarrier with
5 contents represented by different colors is shown in Fig. 6.5 to illustrate the format
of CCS in one subcarrier, where the message is composed by all contents considered in
the system but different proportion.

Proportion

Content 1 Content 2 Content 3 Content 4 Content 5

Figure 6.5: An example of content proportion in one subcarrier with 5 contents.
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Similar to the common part in RS-OFDMA, a filter vector Fi is used to select those
accessible GUs for the ith subcarrier. Accordingly, the rate of the ith subcarrier in CCS
scheme can be calculated by:

Ri = WiSFi log2

(︃
1 +
|hi|2
σ2

)︃
,

= Ai log2

(︃
1 +
|hi|2
σ2

)︃
, (6.36)

where Ai is the sharing times of the ith subcarrier. Consequently, the average data rate
RA of the CCS scheme can also be expressed by:

RA =
1

Nu

Ns

∑
s=1

Ri =
1

Nu

Ns

∑
i=1

Ai log2

(︃
1 +
|hi|2
σ2

)︃
. (6.37)

Our objective is to maximize the average data rate RA by optimizing the weight vec-
tor of each subcarrier, under the weight constraint stated by (6.16) and the individual
minimum rate requirement Rm of the GUs. Hence, it is necessary to formulate the rate
of each GU before the optimization. Firstly, the rate of the uth GU is defined by Ru.
Then, the subcarrier based weight vector Wi should be transferred to the content based
format, which is given by:

Wc = [wc1, wc2, . . . , wci, . . . , wcNs ] , (6.38)

where wci is the weight of the cth content in the ith subcarrier. Therefore, the weight
vector of the uth GU is given by Wu ∈ WC = {W1, W2, . . . , Wc, . . . , WNc}. Besides, the
capacity vector V that indicates the capacity of each subcarrier is of the form:

V = [v1, v2, . . . , vi, . . . , vNs ]
T , (6.39)

where vi is the capacity of the ith subcarrier obtained by (6.5) and the rate of the uth GU
can be written accordingly as:

Ru = Wu (Fu · V) . (6.40)

As defined before, it is worth noting that Fu = Fi since the index of subcarriers (i) is
identical to the index of the GUs (u). Mathematically, the average data rate maximiza-
tion problem can be formulated as:

max
Wc

1
Nu

Ns

∑
i=1

Ai log2

(︃
1 +
|hi|2
σ2

)︃
, (6.41a)

s.t. Ru ≥ Rmin. (6.41b)
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Recall that Ai is the sharing times of the ith subcarrier, which can be represented by:

Ai = wi1ni1 + wi2ni2 + · · ·+ wiNc niNc ,

= WiNi,

= WiSFi, (6.42)

where Ni = SFi is a vector that represents the number of accessible GUs requesting for
each content in the ith subcarrier, which is given by:

Ni =
[︁
ni1, ni2, . . . , nij, . . . , niNc

]︁T , (6.43)

where nij is the number of accessible GUs requesting for jth content in the ith subcar-
rier. As a result, it can be found that the sharing times of the ith subcarrier can be
obtained from the percentage of each content in the ith subcarrier Wi and the number
of accessible GUs requesting for each content in the ith subcarrier Ni. Therefore, the
optimization of the average data rate in CCS is translated into a linear programming
problem by adjusting the weight of contents in each subcarrier as Ni is a fixed value for
each subcarrier [335].

6.3 UAV Deployment

In the case of a UAV-assisted communication system, the advantages of rapid establish-
ment and controlled mobility should be utilized to enhance the communication quality
of GUs when compared with traditional fixed terrestrial BSs. Therefore, we propose
two different deployment schemes to optimize the average rate of our proposed CS
transmission schemes in a content-aware scenario. Here, we need to emphasize that the
user association [275, 276] has been done before the deployment and the deployment
scheme is considered according to the associated GUs. Hence, a one-UAV scenario
is provided here to illustrate the progress of UAV deployment. Firstly, inspired from
the traditional k-means clustering algorithm, a fixed-point based deployment scheme
is designed for the PCS transmission scheme. Afterwards, a traverse-search based de-
ployment is proposed for the CCS transmission scheme.

Here, we consider a LoS dominant communication environment in our UAV-assisted
communication system, which means that the received signal power is determined by
the path loss between the UAV and the GUs. It is worth noting that the fast fading is
unpredictable and uncontrollable during the communication. Besides, the time scales
of the fast fading and the UAV deployment is different, in other words, the fast fad-
ing is always changing during the process of deployment. Therefore, we only consider
the hLoS and the path loss to optimize the deployment of UAV. Firstly, we assume that
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the UAV is flying at a fixed height of hd, and the coordinate of the UAV can be ex-
pressed by G = [xa, ya, hd]. Similarly, the coordinate of the uth GU can be represented by
Uu = [xu, yu, 0]. Here, the height of GUs is negligible compared with the A2G distance.
Additionally, we also define the terrestrial coordinates G̃ = [xa, ya] and Ũu = [xu, yu] to
represent the terrestrial coordinates of the UAV and the GUs, respectively. Therefore,
the A2G distance du between the uth GU and the UAV is given by:

du =
√︂
(xa − xu)

2 + (ya − yu)
2 + h2

d,

= ∥G−Uu∥. (6.44)

Besides, hLoS can be expressed by [298]:

hLoS = e−j 2π
λ d, (6.45)

where d is the distance in meter between the transmitter and the receiver. Conse-
quently, the received signal power of the ith subcarrier in the LoS dominant environ-
ment is given by:

Prs = Pt|hLoS|2
(︃

c
4πdu fc

)︃2

,

= Pt

(︃
c

4πdu fc

)︃2

. (6.46)

The traditional k-means clustering algorithm uses the squared Euclidean distance to
find out the mean of the points in that cluster iteratively. Here, we choose the capacity
as the “distance metric” in our PCS based communication system, where the deploy-
ment of the UAV can be transformed to the following optimisation problem:

max
G̃

Nu

∑
u=1

Au log2

(︄
1 +

Pt

σ2

(︃
4π fc∥G−Uu∥

c

)︃−α
)︄

, (6.47)

where Au is the sharing times of the uth subcarrier, while G̃ is the ground coordinates of
the UAV and can be represented by G̃ = (xa, ya). Furthermore, the transmit power Pt

is large enough to cover all GUs in the target area, which means the received signal to
noise power ratio (SNR) is high. Therefore, we may use the following approximation:

max
G̃

Nu

∑
u=1

Au log2

(︄
Pt

σ2

(︃
4π fc∥G−Uu∥

c

)︃−α
)︄

, (6.48)

which is equivalent to:

max
G̃
−α

Nu

∑
u=1

Au log2 ∥G−Uu∥. (6.49)
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As mentioned before, the free space path loss exponent α = 2 is selected in the LoS
dominant environment. Thus, (6.49) can be further simplified as:

min
G̃

Nu

∑
u=1

Au log2 ∥G−Uu∥2. (6.50)

Taking the gradient with respect to G and set to zero, we have:

Nu

∑
u=1

Au(G̃− Ũu)

∥G−Uu∥2 = 0. (6.51)

Simplifying the above equation, we obtain:

G̃ =
∑Nu

u=1
AuŨu
∥G−Uu∥2

∑Nu
u=1

Au
∥G−Uu∥2

. (6.52)

Afterwards, we use fixed-point iteration to obtain the solution as follow [336]:

G̃(t+1)
=

∑Nu
u=1

AuŨu
∥G(t)−Uu∥2

∑Nu
u=1

Au
∥G(t)−Uu∥2

. (6.53)

It can be seen that G̃ is the linear combination of Ũu and Ũu is a convex hull. Therefore,
the UAV will be restricted in the convex hull (target area) and will be rapidly dragged
into the convex hull even if the initial point is selected outside the convex hull. Fur-
thermore, we set E = Au(G̃−Ũu)

∥G−Uu∥2 and the Hessian matrix with respect to G based on E
can be expressed by:

∂E
∂G

=
Au
(︁
2I∥G−Uu∥2 − 4(G̃− Ũu)(G̃− Ũu)T)︁

∥G−Uu∥4 ,

=
Au
(︁
2I∥G−Uu∥2 − 4∥G̃− Ũu∥2ZZT)︁

∥G−Uu∥4 , (6.54)

where Z = G̃−Ũu
∥G̃−Ũu∥

is the direction vector of G̃ − Ũu, which can also be represented
in parametric form: Z = [cos θ, sin θ] and the direction angle θ can be obtained by
θ = arccos(cos θ). Then, the expectation of (6.54) is calculated by:

E

{︃
∂E
∂G

}︃
=

2Au I
∥G−Uu∥4

(︁
∥G−Uu∥2 − ∥G̃− Ũu∥2)︁ ,

=
2Au Ih2

d
∥G−Uu∥4 . (6.55)

Additionally, it is worth noting that the expectation of ZZT satisfy the following condi-
tion:

E
{︂

ZZT
}︂
=

[︄
cos θ2 cos θ sin θ

cos θ sin θ sin θ2

]︄
=

1
2

I, (6.56)
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when a large number of GUs are uniformly distributed in a target area. Therefore, it can
be seen that (6.55) is positive definite and the objective function (6.50) is convex, which
means that the proposed deployment can always “converge” to the global optimum
position.

The above deployment process is also applicable in the classic OFDMA scenarios by
simply setting the coefficient Au to 1. Here, it can be found that both of the cases have a
constant Au, where the sum of Au is a constant no matter how the location of the UAV
changes. To further illustrate this phenomenon, we consider that three GUs request the
same content under this condition. Then, the corresponding sharing times Au must be
one of the cases illustrated by Table 6.1 based on the order of received signal power.
Therefore, it is clear that the sum of Au is always a constant even during the process of
deployment, i.e. ∑Nu

u Au = 6.

Table 6.1: The combinations of weight vector when 3 GUs request the same
content in content-sharing scheme.

w1 w2 w3

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

However, this is not the case in the CCS scenario. As shown in Fig. 6.6, the sum of
sharing times at different deployment locations of UAV in a scenario of 50 GUs in a 1
km × 1 km target area is not a constant any more. Also, the red point in both subfig-
ures indicates the position that gives us the highest sum of Ai or Au.The reason for the
variation of the sum of sharing times at different locations is the optimization process.
At different locations, the optimization process cannot guarantee that the weight vec-
tor Wi is fixed because different positions will result in different capacity for the GU.
Therefore, to meet the demand of the basic data requirement Rm, the system has to
adjust the weight of each content, which will cause the variation of the weight vector.
Besides, the change of locations will also change the filter vector, and further affect the
sum of sharing times.

Since the sum of Ai is related to the location of UAV, the deployment scheme proposed
in previous scheme is not applicable for the CCS case any more. Therefore, we design
a traverse-search based deployment scheme for our proposed CCS scenario. Firstly,
we divide the whole target area into small grids as shown in Fig. 6.7. Afterwards,
all possible locations (points) are tested and then the point where maximum average
data rate can be achieved, as illustrated in Fig. 6.6, is selected as the final deployment
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(a) 2D figure. (b) 3D figure.

Figure 6.6: The sum of sharing times in CCS scenario at different deployment
locations in 1 km × 1 km area with 50 subcarriers.

location. Consequently, the computation complexity is directly related to the size of
the grids. Fortunately, this procedure can be accomplished by sending the location
information back to the terrestrial BS via backhaul links as the computation ability of
terrestrial BS is much stronger than that on the UAV or it can also be accomplished by
UAV itself if the UAV’s computation ability is good enough to support this process.
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Figure 6.7: The grids of 1 km × 1 km target area with a space of 100 m for
traverse-search in CCS scenario.

6.4 Performance Results and Evaluation

In this section, we investigate the performance of our proposed content-aware commu-
nication system in a 1 km × 1 km square area with a total of Nu = 50 GUs uniformly
distributed on the ground. Besides, the UAV flies at a height of hd = 100 m and oper-
ate at a frequency band of fc = 5.8 GHz for the A2G communication. Under the LoS
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model, the path loss exponent α is set to 2. Meanwhile, the noise PSD N0 is set to -174
dBm/Hz and the transmission power Pt of the UAVs is 26 dBm. Additionally, OFDMA
is employed to support multi-user communications, where the total bandwidth B al-
located to all GUs is 40 MHz. In our system, the whole bandwidth is equally divided
into Ns = 50 subcarriers and each GU will be assigned one subcarrier. Moreover, we
assume that the interests of GUs are stable within a long period, which means the dis-
tribution of GUs interests is fixed in our simulation time3. In the following, we first
analyze the effect of the UAV deployment based on the average rate of all GUs. After-
wards, the average rate of each transmission scheme will be investigated. The detailed
simulation parameters are listed in Table 6.2.

Table 6.2: Simulation parameters

Parameter Symbol Value

Bandwidth B 40 MHz
Noise PSD N0 -174 dBm/Hz

Carrier frequency fc 5.8 GHz
Path loss exponent α 2

Transmission power Pt 26 dBm
UAV height hd 100 m

Speed of light c 3× 108 m/s
Number of UAV Nd 1
Number of GUs Nu 50

Number of subcarriers Ns 50

In our proposed content-aware transmission schemes, the average rate of each GU is
taken as the objective function for optimising the UAV deployment. Fig. 6.8 depicts the
performance of our proposed deployment schemes in the scenario of one UAV with 50
GUs in the target area. In our simulation, we tested 3 different deployment schemes,
which are classic k-means algorithm, fixed-point algorithm and traverse-search algo-
rithm. In Fig. 6.8, the fixed-point deployment scheme is applied on two scenarios,
where we use non-content-sharing (NCS) to indicate the scenario that uses fixed-point
deployment scheme without CS, while use PCS and CCS to indicate the scenario with
CS. Besides, the proposed CS transmission schemes are also included to further illus-
trate the effects of the requested contents on deployment results. Then, in order to
reveal the generality of our proposed deployment scheme, we randomly set the initial
points of the fixed-point deployment scheme with two different snapshots as seen in
Fig. 6.8(a) and Fig. 6.8(b). Here, two different snapshots means the locations of GUs
and the requested contents are different. Additionally, the GUs are classified by the

3The UAV has to request the new contents from the core network if new contents are requested by GUs.
Therefore, this will cause a request delay since the new contents have not been cached in advance but the
proposed transmission scheme can still be applied when the new contents are obtained.
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requested times of contents, which is pointed out by the number in the legend. For
example, those GUs marked by small blue “▽” in Fig. 6.8(a) means that their requested
contents occurred only once, but it is worth noting that the same requested times does
not mean they requested the same content.
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Figure 6.8: Illustration of the UAV deployment with 50 GUs and Rmin = 2 Mbit-
s/s by the proposed deployment algorithm, where NCS, PCS and CCS denote
non-content-sharing, private content-sharing and common content-sharing,
respectively. While the repetition-x indicates that the requested times of con-
tents for GUs represented by the same markers is x. Moreover, the subscripts I
and F indicate the initial locations and the final locations, respectively.

As shown in Fig. 6.8(a) and Fig. 6.8(b), we consider a scenario that 50 GUs are in a target
area served by one UAV with different deployment schemes under the constraint of
Rmin = 2 Mbits/s. It could be found that the final deployment locations of k-means and
fixed-point under NCS are very close under LoS dominant condition as the capacity is
directly related to the A2G distances. Besides, the sharing times of the contents, which
are indicated by repetition-x in Fig. 6.8, plays an important role in the deployment of
UAV in each setup. Compared to the first two deployment schemes that stay at the
centroids of all GUs, the final deployment position of PCS is more bias to those GUs
with requested contents of high sharing times. However, CCS is accomplished based on
an exhaustive search on the whole area, the final deployment position is the location it
obtains the maximum average rate. Unlike PCS, CCS may not show any bias to specific
group of GUs as the Rmin is also a key factor to affect the decision of final position, and
hence it cannot deploy the UAV by purely considering the frequency of contents.

Additionally, Fig. 6.9 illustrates the convergence progress of fixed-point deployment
algorithm in NCS scenario. For conciseness, the scenario of PCS will not be repeatedly
illustrated here to show the same property. It can be found from Fig. 6.9(a) and Fig.
6.9(b) that two different initial points (within and outside convex hull) have been se-
lected to test the performance of the proposed fixed-point deployment scheme in the
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Figure 6.9: Convergence progress of the UAV deployment with 50 GUs by
fixed-point deployment algorithm in NCS method.

same distribution of GUs. These two figures show that the UAVs will iteratively con-
verge to the final deployment position no matter where the initial point is selected.
Besides, it can be seen that the convergence is very fast. If we consider other itera-
tive algorithm, such as gradient algorithm, the speed of convergence will be very slow
when the step size is too small. On the other hand, the final results may not be satisfac-
tory if the step size is too big. Therefore, our proposed deployment scheme can rapidly
and precisely find the position where the maximum average rate can be achieved.
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Figure 6.10: Illustration of average SE by different deployment schemes and
transmission schemes, where NCS and k-means all indicate the NCS scenario
but with different deployment schemes.

In Fig. 6.10, the average SE is obtained by Monte Carlo simulation, where we run a
large number of setups with different locations of GUs with different requested con-
tents for testing the performance of our system. Fig. 6.10(a) shows the average SE of
different investigated transmission and deployment schemes. From the aspect of UAV
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deployment, it can be seen that the average SE of k-means and fixed-point deploy-
ment schemes are very close, which means that both distance based and the capacity-
achieving deployment scheme give us similar performance in a LoS dominant environ-
ment without CS. However, if PCS is considered in the data transmission with fixed-
point deployment scheme, the average data rate is almost tripled when compared to
the previous two cases. Besides, it is worth noting that k-means is solely depend on the
A2G distance and cannot be combined with the proposed the PCS scheme. Moreover,
the minimum data rate threshold will affect the performance. Hence, we set Rmin = 9.6
Mbits/s (12 bits/s/Hz) based on the average minimum data rate of the first two sce-
narios for a fair comparison. It is worth noting that the Rmin is not obtained from the
minimum data value of all setups, it was calculated by collecting the minimum data
rate in each setup and the average of these minimum values was taken. Therefore, it is
clear to see from Fig. 6.10(a) that the average SE of PCS is more than twice as much as
that of k-means and NCS. Additionally, the average SE of CCS under this Rmin condi-
tion is close to 1.5 times of PCS, which further improves the SE of GUs. Furthermore,
it could be found from Fig. 6.10(b) that the increase of threshold Rmin will gradually
reduce the average SE of CCS, which means that the system cannot exploit more subcar-
rier resources from those GUs with low-frequency requested contents when their data
rate demand is higher. In other words, the optimization need to increase the weight of
those low-frequency requested contents in subcarriers to achieve the minimum SE set
by Rmin. Consequently, this will conversely reduce the weight of those high-frequency
requested contents since the sum of weight is fixed to 1.

6.5 Conclusion

In this chapter, we proposed two CS transmission schemes, namely PCS and CCS, in a
UAV-assisted wireless communication, which aims to increase the average SE of GUs.
Afterwards, based on the proposed PCS and CCS scheme, we designed two deploy-
ment schemes to find the appropriate UAV position that maximizes the average SE of
GUs. The simulation results indicate that our proposed PCS and CCS transmission
scheme will significantly improve the average SE and that the deployment schemes are
able to help the UAV to find the appropriate deployment position. The simulation re-
sults prove that our proposed two CS transmission schemes outperform the traditional
transmission scheme by 25 bits/s/Hz and 40 bits/s/Hz, respectively.
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Chapter 7

Conclusion and Future Work

7.1 Thesis Conclusion

In this thesis, we initially seeked to reduce the system latency of the UAV-assisted wire-
less communication system to enhance the GUs’ QoE by taking mobile edge caching on
UAVs into consideration. Both transmission delays and request delays were taken into
account in the system. The received SNR by the GUs determines the transmission de-
lay, whereas the request delay depends on the cached contents in the storage of the
UAVs. Three user association methods have been investigated based on the received
SNR, user preference, and minimum delay. The results have shown that increasing the
received SNR (transmission power) will reduce transmission delay. Meanwhile, the re-
quest delay can also be improved by considering user preference as the central aspect.
However, it turns out that neither of these two strategies can fully address the problem.
Therefore, we proposed a global caching method that collaboratively utilizes the stor-
age resources on UAVs to achieve a minimum delay by considering both received SNR
and user preference.

Additionally, we devised an approach based on deep reinforcement learning that en-
ables multiple UAVs in a target area to update their positions automatically based on
the distribution of moving GUs. First, to achieve a global optimal QoS for all GUs
by swapping GUs among the problem of “outliers” that may arise in the conventional
greedy association method, which only considers the strongest received signal power.
In addition, the collision challenge in multiple UAVs systems may degrade system per-
formance. Thus a four-level criterion has been created to identify the collision intensity
and convert it into the penalty of our DQL system for avoiding the collision. The simu-
lation results demonstrate that our proposed method performs similarly to the k-means
clustering technique described in Chapter 3. The k-means clustering algorithm can lo-
cate the centre of each group of GUs and deploy UAVs accordingly. It is impractical,
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however, due to the limited speed of UAVs and the probability of sudden shifts. Conse-
quently, by interacting with the environment, our proposed DQL method can locate an
optimal position to cover the majority of GUs with more robust communication links
and enhance the QoE of GUs.

Then, the constraint of onboard energy stimulates the development of a more energy-
efficient information transmission method, and the deployment of multiple UAVs might
negatively impact the QoE of GUs. Therefore, we proposed an approach that combines
the concept of IM with UAV communications systems to improve EE. In addition, based
on the proposed IM-UAV communication system, a gradient descent based UAV de-
ployment scheme was designed to optimize the sum rate of GUs in the target area.
On the other hand, maximum likelihood detection for the IM-UAV necessitates a high
computational complexity for detection at the GUs while offering the best possible per-
formance. In order to reduce the computational complexity on the receiver side, we
proposed a low-complexity detection scheme that can detect index symbols and data
symbols separately. The simulation results demonstrate that the proposed deployment
method can attain the appropriate positions to deploy the UAVs. At the same time, the
EE is also enhanced by combining IM with a UAV communication system.

Finally, we presented two CS transmission techniques, PCS and CCS, based on the
OFDMA methodology employed in Chapter 5 for a UAV-assisted wireless communi-
cation in the content-aware scenario in Chapter 3. This two proposed transmission
schemes aim to increase the average data rate of GUs. Afterwards, based on the pro-
posed CS transmission scheme, we developed two deployment schemes to determine
the optimal UAV position for maximizing the average data rate of GUs. The simu-
lation results indicate that our proposed CS transmission scheme would significantly
increase the average data rate. Meanwhile, the deployment strategies will assist the
UAV in finding the appropriate deployment position.

7.2 Future Work

In this thesis, we have investigated the feasibility of considering UAVs as ABSs to sup-
port GUs with different targets, such as latency, QoE, EE and data rate. In this section,
we will briefly discuss several future research ideas.

7.2.1 Content Update of UAVs

In Chapter 3, we have investigated the potential of applying caching on UAVs to reduce
the transmission latency, where LDA was employed to find out the interests of GUs.
However, the preferences of GUs is considered as a “constant” in the system. Therefore,
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it is worth considering the scenario where the preferences of GUs are slowly varying
and the strategy of updating the contents should be taken into consideration. Besides,
different content popularity analysis algorithms may also affect the content cached in
UAVs. Hence, there is a need to investigate the performance of different popularity
analysis algorithms and test how they affect the caching efficiency.

7.2.2 Hybrid Deployment of UAVs

In this thesis, the distribution of GUs is mainly considered as a uniform distribution.
However, it is highly possible that GUs are not uniformly distributed in the service area
in reality. Hence, the deployment of UAVs may have to operate in a hybrid way, for
example, a swarm of UAVs may have to decoupled into several sub-swarms or solely
to serve GUs according to the distribution of GUs.

7.2.3 Joint Optimization of Deployment and Caching

Moreover, the moving pattern of GUs may also help to determine the contents to be
cached in UAVs. More explicitly, the prediction of GUs’ trajectory should be able to
help UAVs adjust their positions in advance. Besides, it can be seen that the contents
cached on UAVs can also be updated accordingly before the arrival of GUs, which
largely improve the QoE of GUs.

7.2.4 Strategy of Resource Allocation

Additionally, the bandwidth of each GU is identical in our systems for simplicity. How-
ever, the allocation of bandwidth resources will also affect the system performance. For
example, if we hope to maximize the minimum data rate of GUs in the system, then,
the bandwidth resources allocated to those that have poor channel conditions are usu-
ally more than that of GUs having good channel condition. Therefore, the strategy of
resource allocation can be taken into consideration according to specific design target.

7.2.5 Multi-Dimensional Index Modulation

In Chapter 5, the IM was employed on UAVs to activate UAVs on corresponding sub-
carriers, where each UAV can only modulate data symbols onto the allocated subcar-
riers according to the index bits. However, it is worth considering multi-Dimensional
IM to further improve the EE. For example, we can consider OFDM-IM, which is also
known as subcarrier IM, in the frequency domain to add more index bits by using only
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part of the assigned subcarriers to transmit data symbols while keeping the remainings
empty.

7.2.6 Interference Cancellation

In this thesis, the A2G interference issue was not considered in our UAV-assisted com-
munication system. How to mitigate the severe A2G interference is deemed a signifi-
cant challenge in practically realizing cellular-connected UAVs. Although various in-
terference mitigation techniques have been studied in terrestrial networks, they may be
ineffective or insufficient to deal with UAVs’ new and more severe interference issues.
Owing to their unique LoS-dominant A2G channels, new and more sophisticated inter-
ference mitigation techniques are needed to achieve efficient spectrum sharing between
the existing GUs and UAVs in future cellular networks.
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[39] I. Bucaille, S. Héthuin, A. Munari, R. Hermenier, T. Rasheed, and S. Allsopp,
“Rapidly deployable network for tactical applications: Aerial base station with
opportunistic links for unattended and temporary events absolute example,” in
MILCOM 2013-2013 IEEE military communications conference. IEEE, 2013, pp.
1116–1120.

[40] A. Orsino, A. Ometov, G. Fodor, D. Moltchanov, L. Militano, S. Andreev, O. N. Yil-
maz, T. Tirronen, J. Torsner, G. Araniti et al., “Effects of Heterogeneous Mobility
on D2D-and Drone-Assisted Mission-Critical MTC in 5G.” IEEE Communications
Magazine, vol. 55, no. 2, pp. 79–87, 2017.

[41] U. Siddique, H. Tabassum, E. Hossain, and D. I. Kim, “Wireless backhauling of
5G small cells: Challenges and solution approaches,” IEEE Wireless Communica-
tions, vol. 22, no. 5, pp. 22–31, 2015.

[42] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and A. Tuncer, “UAV-
enabled intelligent transportation systems for the smart city: Applications and
challenges,” IEEE Communications Magazine, vol. 55, no. 3, pp. 22–28, 2017.

[43] L. Zhou, H. Ma, Z. Yang, S. Zhou, and W. Zhang, “Unmanned aerial vehicle
communications: Path-loss modeling and evaluation,” IEEE Vehicular Technology
Magazine, vol. 15, no. 2, pp. 121–128, 2020.

[44] R. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovács, J. Wigard, and T. B. Sørensen,
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