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Abstract—Existing deep-network based texture synthesis ap-
proaches all focus on fine-grained control of texture generation
by synthesizing images from exemplars. Since the networks
employed by most of these methods are always tied to individual
exemplar textures, a large number of individual networks have
to be trained when modeling various textures. In this paper, we
propose to generate textures directly from coarse-grained control
or high-level guidance, such as texture categories, perceptual
attributes and semantic descriptions. We fulfill the task by
parsing the generation process of a texture into the three-
level Bayesian hierarchical model. A coarse-grained signal first
determines a distribution over Markov random fields. Then a
Markov random field is used to model the distribution of the final
output textures. Finally, an output texture is generated from the
sampled Markov random field distribution. At the bottom level of
the Bayesian hierarchy, the isotropic and ergodic characteristics
of the textures favor a construction that consists of a fully
convolutional network. The proposed method integrates texture
creation and texture synthesis into one pipeline for real-time
texture generation, and enables users to readily obtain diverse
textures with arbitrary scales from high-level guidance only.
Extensive experiments demonstrate that the proposed method is
capable of generating plausible textures that are faithful to user-
defined control, and achieving impressive texture metamorphosis
by interpolation in the learned texture manifold.

Index Terms—Texture synthesis, Bayesian hierarchy, Markov
random field, fully convolutional network.

I. INTRODUCTION

Natural images are generally difficult to be characterized
by either deterministic or statistical models [1]-[4]. Textures,
as a special type of images, are however most amenable
to statistical modeling [5]-[7]. The notion of texture has a
long history in visual perception, computer vision, computer
graphics, computational geometry, etc. These applications all
have slightly different characterizations of texture [8]. In this
paper, we leverage the viewpoint of texture as an image
containing repeating visual patterns with some amount of
randomness [5]. More formally, a texture is a realization of
a stationary, ergodic and Markovian stochastic process [8].
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Even artists for the virtual world design find it challenging
to efficiently design realistic and complex textures with a
high resolution [9]. Although a plethora of textures in the
real world can be re-created in games or virtual worlds by
applying existing texture synthesis techniques [10]-[12], the
output is limited to be similar to the input sample. More
specifically, for the tasks, such as texture synthesis [13], style
transfer [14], colorization [15], dehaze [16], super-resolution
[17], sketch/paint/segmentation to image [15], [18] and others
[19]-[21], the distributions of particular characteristics of the
target images need to be described in detail in the form of
two-dimensional structured data, which provides ‘fine-grained
controls’ for the tasks. By contrast, we believe that texture
categories, perceptual attributes [22], semantic descriptions
and other high-level cognitive conditions are ‘coarse-grained
controls’. In practice, texture generation under coarse-grained
control is in high demand and poses a greater challenge [22].

An intuitive idea to accomplish generating textures from
coarse-grained control is to first create a high-quality texture
in some manners, and then apply a texture synthesis algorithm
to produce textures with larger scale and similar appearance.
For the first stage, direct image generation without using the
traditional rendering pipeline [23]-[27] has attracted signif-
icant interest due to the promising results of deep networks
[28], [29]. For the second stage, non-parametric methods often
excel at generating realistic results but with limited general-
ization ability [6], [26], [30], whereas parametric approaches,
especially deep learning based approaches, have produced
promising results in recent years [28], [29]. Nevertheless, this
intuitive two-stage procedure can neither provide users with
flexible control on the appearance of the synthesized textures,
nor is sufficiently efficient for real-time applications.
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Fig. 1. The proposed hierarchical generating process. 7 represents the real
distribution of the coarse-grained signals. M represents a distribution over the
Markov random fields, which is determined by the sampled coarse-grained
signal. T is the distribution of the texture images, which is a Markov random
field sampled from M. ¢ represents the texture sampled from T.
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In this paper, we propose a framework that integrates exem-
plar texture creation and larger-scale texture synthesis into one
pipeline, enabling coarse-grained control and real-time texture
generation. This is achieved by parsing the generation of a
texture into the three-level Bayesian hierarchy illustrated in
Fig. 1. Specifically, a coarse-grained signal first determines
a distribution over Markov random fields. Then a Markov
random field is used to model the distribution of the final
output textures. Finally the output texture is generated from
the sampled Markov random field distribution. To the best
of our knowledge, this is the first completely data-driven and
controllable texture generation method. Before elaborating our
contributions further, we review the related works.

A. Related Works

As one of the most powerful texture models, Markov
random fields characterize texture by statistical interactions
within local neighborhoods [10], [31]-[39]. However, the
linear feature banks and small Markov blankets adopted by
typical Markov texture models are usually insufficient for
capturing complex structures [10], [40]. Thus, textures should
be treated as samples of high-order Markov random fields,
and complicated non-linear filters are needed to model the
interplay between local regions. This however will impose
high complexity. Despite of this drawback, realizations of the
estimated model suggest that utilizing high-order interaction
is realistic.

A Markov random field was traditionally simulated by
a number of approximation techniques, with Markov chain
Monte Carlo algorithm being the most popular one. With the
recent reviving in deep learning [41]-[47], researchers can no
longer limit to Markov random fields and take advantages
of deep learning’s powerful fitting ability to solve general
random fields [28], [29], [48]-[52]. Various methods have been
developed, which can be categorized into two main types:
1) likelihood based models, including autoregressive models
[48], [53], variational autoencoders (VAEs) [28], [49], [54]
and flow-based generative models [55], [56]; and 2) implicit
generative models, such as generative adversarial networks
(GANSs) [29], [57] and moment matching based generative
models [58]-[63]. These methods are generally concerned
with the extremely challenging tasks of modeling all the
dependencies within very high-dimensional input data, usually
specified in the form of full joint probability distribution.

This formulation, however, makes it difficult to use these
methods when dealing with large-scale images due to the
curse of dimensionality [64], [65]. On the other hand, for
many practical applications, e.g., computer graphics, virtual
reality, animation, etc., there exists particular need to create
large-scale textures with photo-realistic imagery. Therefore,
the prevailing generative methods can hardly serve as off-
the-shelf models for texture generation, although they may
perform well on some natural image generation tasks [49],
[52], [66], [67]. In fact, capturing all the patterns within
the sample data for modeling textures is unnecessary due to
the actuality that spatial ergodicity of textures is essentially
satisfied as the array expands. Specifically, an ergodic texture

has the same behavior averaged over locations as averaged
over all the states in its phase space. Since the state of an
ergodic process after a long time is nearly independent of
its initial state, it is unnecessary to employ enormous models
which would require huge amount of computation resources.
In particular, after we capture the parameters of the Markov
random field, we can arbitrarily enlarge the content of the
texture by consciously controlling the boundary conditions.

Indeed, a number of efforts have been devoted into this re-
gard recently [7], [10]-[12], [18], [68], [69], and large body of
works leverage GANs [12], [18], [68]-[70] for learning texture
models (some works [18], [69] also deal with natural images).
However, the networks employed by these methods [11], [12],
[18], [68]-[70] are always tied to individual exemplar textures,
meaning that a large number of individual networks have to be
trained when various textures need to be modeled. In addition,
other neural texture synthesizers [7], [10], [71] either produce
compromised visual quality [71] or need a long runtime for
deconvolution [7], [10]. Furthermore, we may also emphasize
that the current approaches all focus on fine-grained control of
texture generation, i.e., synthesizing images from exemplars
[71, [111, [18], [68], [71], [72], whereas texture generation
based on coarse-grained control, e.g., categorical, perception
[22] and semantic [73] attributes, are rarely investigated.
Another limitation of the current methods is that the trained
networks lack the ability to realize textures metamorphosis,
i.e., they lack the ability to smoothly transform a source texture
into another one so that new texture can be created.

B. Our Novel Contributions

It can be seen that most existing approaches compose tex-
ture synthesizer of specific style, where separate convolutional
networks have to be trained when modeling different textures.
Furthermore, the existing texture models focus on fine-grained
control of texture generation. Against this background, this
paper exploits GANs [22], [57], [74]-[79] in a new realm
— generating diverse textures from coarse-grained signals.
Differing from the previous works [7], [11], [12], [18], [68]-
[72], the proposed texture model is trained on multifaceted
texture datasets and therefore our model inherently supports
realization of dramatic visual variations owing to coarse-
grained guidance. The Markov random field employed at the
bottom level of the Bayesian hierarchy depicted in Fig. 1
makes it possible to generate textures of arbitrary scale and
width/height aspect ratio. Therefore, the proposed method can
be seen as a unified pipeline that integrates texture creation
(from coarse-grained signals) and texture synthesis.

This is the first fully tractable yet flexible texture model that
provides an efficient way for generating textures directly from
coarse-grained control. Our proposed method has the follow-
ing characteristics which make it state-of-the-art for texture
generation: 1) high quality of the generated textures, 2) high
scalability with respect to the output texture size, 3) real-time
capability for large-scale texture generation, 4) large variety
of the generated appearances under the same coarse-grained
control, and 5) hallucinogenic texture metamorphosis.



II. PROPOSED METHOD
A. Preliminary and Notations

Consider an undirected graph G = (V, E)) with the sets of
vertices V' and edges E, respectively, as well as a set of ran-
dom variables X = (X,),cy indexed by V. We denote each
output of the random vector X as z=(z1, 22, ... 7xcard(V))7
where x,, is associated with vertex v and card(V') represents
the cardinality of V. Let P(z,|z_,) denote the conditional
distribution of x,,, given all other values z_, ={x, : u # v}.
Then, the random vector X forms a Markov random field with
respect to G if the following local Markov property is satisfied:

P(mv‘va) = P(xv|378v)7 (D

where Ov represents the neighbours of vertex v. The Markov
property of an arbitrary probability distribution can be difficult
to establish, and a commonly used class of Markov random
fields are those that can be factorized according to the cliques
of the graph. Specifically, if the joint density of the random
variables can be factorized over the cliques of G:

PX=2)= ][] ¢clxo), ©)

Cecl(G)

then the random vector X forms a Markov random field with
respect to G. Here, cl(G) is the set of cliques of G, and
xc is a particular field configuration of the clique C. The
functions ¢ are sometimes referred to as factor potentials
or clique potentials. Although the factorization is favorable
for computing purpose, not all Markov random fields can be
factorized. A Markov random field can be factorized if at least
one of the following two conditions is satisfied:

e The density is positive (by the Hammersley-Clifford
theorem).

o The graph is chordal' (by equivalence to a Bayesian
network).

Essentially, natural images lie in a low dimensional mani-
fold [80], and the model distribution is also supported by a
low dimensional manifold as we use deep learning methods
to map low dimensional vectors to the training data space
[81]. Therefore, the modeled joint density is no way to be
positive. On the other hand, since we adopt fully convolutional
networks (FCNs) [82] for simulating Markov random fields,
the implied graph must not be chordal, details of which will be
discussed in Subsection II-D. To address these two problems,
we adopt two strategies: (i) we audaciously postulate that the
employed deep model can assign infinitely small probabilities
to samples that are unlikely to appear in the real distribution,
so that the first condition is approximately met; and (ii) we
add instance noise into the generated and real data samples to
create a proxy distribution that is nearly positive, and the proxy
distribution is optimized during training. As a result, we can
think that the density of the modeled Markov random field is
factorable. How to create the proxy distribution can be found
in Subsection II-D, and the effects of these two solutions will
be analyzed in the ablation study of Section III.

'A chordal graph is one in which all cycles of four or more vertices have
a chord.

Coarse-grained signals ,
p

_________________ ~

[/
| circle Middle Sparse

Circle Large Sparse
Circle Small Dense
Circle Middle Dense
Circle Large Dense
density variance
Square Small Dense Randomness

@ Square Middle Dense
Square Large Dense

Fig. 2. Flowchart of the generating process. To obtain one texture, we
do sampling three times. First, as the coarse-grained signals are fetched
from training data, we are indeed sampling from the real distribution. A
coarse-grained signal (e.g., ‘granular texture’) depicts only certain aspects
of the appearance of the textures, and it determines a distribution over
the Markov random fields (denoted by blue rectangles in the figure) which
share some common cues about the appearance. Second, a Markov random
field is sampled from the distribution. The sampled Markov random field
determines how the appearance of the textures behaves as it associates distinct
probabilities with different visual patterns. Third, a texture is sampled from
the Markov random field, where the randomness will create abundant location
variances and appearance distortions around the textons. These randomness
make the generated textures look more realistic. Furthermore, arbitrary-scale
texture generation can be achieved as the Markov random field formulates a
full condition to guide the growth of the texture according to existing contents.
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B. Resolve Texture Generation Process

Similar to the previous work [12], [68], [70], we treat
textures as outputs of Markov random fields. However, we
further view the Markov random fields as samples of another
distribution, which is itself a sample of a stochastic process. As
illustrated in Fig. 1, 7 represents the prior distribution of the
coarse-grained signals and ¢ represents one observable texture,
while M and T are implicit probability models. In order to
realize coarse-grained control on the appearance of the syn-
thesized textures, our framework eventually optimizes the joint
probability of the coarse-grained signals and textures, and two
latent variables will be introduced to simulate samplings from
M and T. This will be further explained in Subsection II-C.

Fig. 2 exemplifies the generating process with four curated
types of textures (coarse-grained controls). First, one coarse-
grained signal is sampled from the prior distribution, and we
denote it as ¢, i.e., ¢ ~ m. Each coarse-grained signal (e.g.,
‘granular texture’) determines a distribution over a random
variable m, and we denote this distribution as M. The coarse-
grained signal, e.g., ‘granular textures’, indeed corresponds to
large variants, each of which represents a family of textures
that share similar appearance and are outputs of the same
Markov random field. In other words, m implicitly determines
a Markov random field, and the prior distribution 7 conforms
to a stochastic process whose sample orbital is the probability
function over the Markov random fields. Second, a particular
m is sampled from M, and emits a Markov random field T.
Afterward, various textures can be sampled from T. In Fig. 2,
T represents textures composed of sparsely distributed middle
circles, and the sampled textures from T are preattentively
indistinguishable to a human observer [83], yet containing



different texton configurations and distortions.

The above analysis declares that a sample of 7 is a seed
to M, determining a distribution over Markov random fields,
and a sample of M is a seed to T, determining a distribution
over textures. The seeds here are in a way reminiscent of the
base distribution of the Dirichlet Process [84]. Therefore, the
complete workflow depicted in Fig. 2 should be:

mT—c—M->m—T-—t, 3)
where — represents sampling from the distribution and —
represents derivation of a distribution from the given seed.
This workflow formulates a Bayesian hierarchy:

M|m ~ m(c), “4)
TM ~ P(m]ec,0), (5)
t|T ~ P(t|m70T)a (6)

where 6, represents the parameters of the probabilistic model
that casts the coarse-grained signals to distributions over
Markov random fields and 61 represents the parameters that
formulate the Markov random field according to m.

By combining (4) to (6), we obtain the joint distribution:

P(,T,M) =P(M)P(T|M)P(¢|T, M) %
—P(M)P(TIM)P(t[T) = m(M(T)T(t) ()
=m(c)P(m|c,Opr) P(t|m, Or) )
=m(c)P(m|c,0)P(t|m,0), (10)

where 0 = {057, 07} denote all the parameters of the model.
From (7) to (10), we utilize an assumption that the parameters
of the Markov random field are sufficient to model the distribu-
tion over textures, and the other information can be neglected.
As m—T and ¢— M persist, P(¢,T,M) = P(t, m,c) holds
all the time. To obtain the joint probability of coarse-grained
signals and textures, we integrate out the other variable:

P(t,c) :/ P(t,m, c)dm:/ 7 (c)P(mlc,0)P(t|m,0)dm

To obtain a good approximation of this joint probability, a
large batch size should be applied during training.

C. Hierarchy Model Construction

Eq. (11) indicates that three samplings occur in the simula-
tion process: firstly a coarse-grained signal is sampled from
the prior distribution 7; secondly a Markov random field is
sampled from p(m|c, #); and thirdly a texture is sampled from
p(tlm, ). Because coarse-grained signals are fetched from
the training data, they are naturally consistent with the prior
distribution 7r. As mentioned in Subsection II-B, we need to
use two implicit probability models to estimate M and T. For
this purpose, we define two transformations:

for (¢, 21),

gor (ma 22)3

(12)
13)

m
t =

where z; and zo are two factorable latent variables whose
values are independently and identically sampled from a Gaus-
sian distribution N (0, 1). Clearly, fs,,, along with specific c,
implies a distribution over m, and similarly, gy,., along with
specific m, implies a distribution over ¢, which is assumed to
be a Markov random field. Afterwards, sampling from M and
T can be converted to sampling from p(z1) and p(z3) and then
applying the corresponding transformation functions.
By substituting m in (13) with fy,, (¢, z1), we obtain:

t:gQT(feM(cvzl)wZ?) :he(C,Zl,ZQ), (14)

where hy is the composite function formed by fy,, and gy,
with 0={0,s,07} as the parameters. The composite function
makes m implicit and its working mechanism enrolled in the
model parameters, which avoids striving for the dedicated
formalism of m. Because gy, induces a Markov random field
over t when m is fixed, hy conformably forms a Markov
random field over ¢ when ¢ and z; are fixed. In fact, we can
view ¢ and m as the parameters of the two transformations
from z; and zy, respectively, namely, m = fp,, .(21) and
t = gor,,(22), and a specific combination of c¢ and z;
corresponds to a particular parameter configuration of ga,. ..

To simulate the Markov random field realized by hy when
c and z; are fixed, we apply a FCN on z; and adopt ¢ and
z1 to adjust the computation of the network. The reason why
such a FCN substantiates a Markov random field can be found
in [68]. Basically, the limited receptive field of a FCN makes
remote portions of the same output independent of each other,
which implies a stationary and ergodic stochastic process. In

1x1 Conv

1
1
1
1
| 1
! |
1 c 21
! Conditional BN / :
1
1
| 1
| 1
I > > : >
! o3 : Nl :
! (o] ()| ) =) | [
: — (] 1 [}
X < | x
1 i [a2] | (a2}
1
1
1z
12 Conv+Upsamplin :
1 psampling i
1
| 1
! |
1
1 G 1
| 1
1

L AN

Conv+Downsampling
Broadcastlng

Fig. 3. Architecture of the implementation. Conv+Upsampling represents a FCN consisting of cascaded convolutional layers, non-linear activation functions,
conditional batch normalization (CBN) layers [14], and bilinear interpolation layers. Conv+Downsampling represents a FCN consisting of cascaded
convolutional layers, non-linear activation functions, and average pooling layers. () and €D represent element-wise multiplication and addition.



accordance with the FCN structure, zo embodies a 3-D tensor
that stands for the random variance of appearance among
spatial locations, while ¢ and z; turn into global variables
that impose systematic effects on the transformation function
from z5 to t. In the sequel, we regard the composite function
hg and the FCN employed to realize it as interchangeable.

D. Implementation

The overall architecture of our implementation is illustrated
in Fig. 3. We substantiate an implicit generative model to
learn our hierarchical texture model. Specifically, SN-GAN
[85] is employed as the basic scheme for training. Compared to
other GAN variants [66], [74], [80], [81], [86], [87], SN-GAN
affords stable training with large learning rate and improves
the quality of the generated images by using spectral normal-
ization as a novel way to realize the Lipschitz constraint [66],
[81]. Besides normalizing the spectral of each layer’s weights
of the discriminator D, we also apply spectral normalization
in our generator G according to the recommendation of [52]
to achieve better generalization by reducing the generator’s
sensitivity to the perturbation of inputs [88], [89].

Since the scale of the generated textures can be changed,
the discriminator also implements a FCN and forms a two-
dimensional tensor as the output with each element represent-
ing the possibility of being a patch from the real textures (patch
discriminator [15]). To embed ¢ and z; into hy, we supply c
and z; with conditional gains and biases in batch normalization
(conditional batch normalization [14], [90]) layers to exert a
global influence on the transformation from z5 to ¢. In addition,
we introduce a newly designed squeeze-excitation noise layer
in certain building blocks of the generator to compensate for
local stochasticity of the generated textures. Full details of the
network structure can be found in Subsection III-B.

As discussed in Subsection II-A, the density of the modeled
Markov random field is factorable, either i) the deep model
can assign infinitely small probabilities to samples which are
forbidden by the real distribution or ii) we add instance noise
to the generated and real-data samples to create a proxy
distribution for optimization. In light of this, the possibility
of the whole texture being realistic can be formulated as the
product of probabilities of all maximal cliques of the texture.
Even so, Eq. (2) is still difficult to realize in the deep learning
regime, where summation is preferred to multiplication as
summation scales more easily to high dimensional data with
light computational footprint. Thus, we alternatively adopt an
exponential family probability of the Markov random field:

PX=2)= [] ewn(éc(zc)))

Cec(Q@)
=exp( > fc<xc>>, (15)
Ced(G)

where fo(zco) is the logarithm of the potential ¢¢(zc).
Eq. (15) enables us to optimize P(X) through adapting the
sum of all the elements in the set {fo(zc)|C € cl(G)}.
Multi-scale training [91] is a common technique to enable
a trained deep model to naturally generalize to images of
different sizes. We emphasize that single-scale training is

sufficient to ensure our designed deep model to generalize
to the textures of any scale in inference. In fact, we found out
in the experiments that multi-scale training is not beneficial
to the generalization of our model. This is because the non-
padding convolutions are used in both our generator and dis-
criminator networks, and hence the deep model has no means
to know where the border is and inevitably treats patches as
samples for optimization, ultimately formulating random fields
strictly conformable to Markov properties. Therefore, multi-
scale training has no effect on the generalization of the trained
model. All the reported results in the experiment section are
obtained through training our model on a single scale, which
confirm that our model is capable of generalizing the textures
to different scales. In addition, because we aim to fit the
joint probability of the coarse-grained signals and textures,
the coarse-grained signal c is taken into consideration together
with ¢ for the calculation of the discriminator’s response.

The size of the maximal clique of the simulated Markov ran-
dom field is just the size of the projective field of the generator.
Pixels within a projective field interact with each other through
the point they receive information, on the foundation that some
proximal (in terms of Chebyshev distance) pixels interplay
through more common clues. If we denote the pixels within
a projective field as C' and add a pixel outside the projective
field, the added pixel must be independent of the most remote
(in terms of Chebyshev distance) pixels in C'. Therefore, the
projective field constitutes the maximal clique of the Markov
random field. Accordingly, we set the size of the receptive field
of the discriminator the same as that of the projective field of
the generator to estimate logarithm potentials of the maximal
cliques. It should be noted that the Markov blanket of certain
pixel is twice the size of the maximal clique minus one. This
results in an easy inducement of a non-chordal cycle of four
vertices in the implied graph, which has been mentioned in
Subsection II-A. To enlarge the Markov blanket for capturing
more complex textons, we can apply a bigger projective field
within the available computation resources.

In Subsection II-A, we point out that a proxy distribution
can be created to make the modeled Markov random fields
factorable. Even though we process all data in float point,
the raw images are in uint8 format and the generated images
also have to be converted into uint8 format for displaying and
persistence. That is, the distribution of the real data is discrete,
and the distribution of the generated data also becomes discrete
after quantization. What we really want is to align these two
discrete distributions, even though, for convenience, we treat
all data as continuous during training (plugging quantization
into the network will interrupt the gradient flow, because it
produces zero gradients almost everywhere).

Reconsidering the quantization process, we know that the
resulted discrete distribution consists of the integrals of the
density (or cumulative masses if the distribution is inherently
discrete) over evenly divided intervals of the value space.
Without loss of generality, if a uniform scalar quantizer
(i.e., each element is rounded to the nearest integer: &, =



round(z,)) is applied, the following formula will hold:

2+0.5+¢
lim P(z)dz, Vi € z¢mdV),
e=0" Jz—05

P(&) = (16)
P(z) may be inherently discrete or a fusion of discrete and
continuous distributions, and if so, we treat it as a train of
Dirac delta functions with weights equal to the probability
mass function, so that we can uniformly use integral operation
for probability aggregation. The same trick is utilized in the
sequel, whenever the same situation is encountered.

On the other hand, if we add the independent and iden-
tically distributed (i.i.d.) uniform noise n ~ U(I) with I =
(—0.5, 0.5]°74Y) to the data, we can obtain

P(%) =P(z)* P(n) = /P(x)b{(:% — z)dz,

where £ = x + n is the corrupted data, and * denotes
convolution operation. For any integer value of 7,

P(z = z) :/P(x)u(z —z)dx
z40.5+¢
P(x)dz, Yz € 2"V (18)

a7)

= lim

e—=0~J,._05

By combining with (16), the above result shows that the
probability density of & at any integer value is equal to the
probability mass of & at the same value. For the real data,
the aggregation of the probabilities over the quantization bin
(—0.5, 0.5]°¢74(V) is just the probability mass of the real
data at the bin center, as the distribution of the real data is
discrete. Therefore, if we create the proxy distributions for
the generated data and real data by contaminating them with
the uniform noise n, we can essentially align the probability
mass functions of the generated data (after quantization) and
real data by alternatively aligning their proxy distributions.
Adding instance noise bears some resemblance to what used
to stabilize the training of generative models [92], in particular,
GANSs [80], [93], [94], but it differs from the latter in the
constraints imposed to ensure the alignment of the discrete
probability mass functions all along the training dynamics.
As a result, rather than reporting an estimate of the discrete
distribution, the implementation creates an ensemble consider-
ing ultimate morphology of data and pronounces performance
using the actual resulted distribution, thus demonstrating the
feasibility of our solution as a complete storage data generation
method. It should be noted that the added uniform noise
thickens the manifold, which usually owns a zero volume [81],
using a unit hypercube brush, pushing the distribution one step
closer (but not really) positive. The efficacy of performing
optimization in the proxy distribution space will be analyzed
empirically through ablation study in the experiment section.

III. EXPERIMENTS
A. Datasets

Publicly available texture datasets [95]-[99] are usually
constructed many years ago and they are not suitable for our
purpose, i.e., generating high-quality textures from coarse-
grained control. For example, textures in CuRet [95] and

Outex [96] are in low resolutions and of low quality, whereas
many textures in VisTex [98] and DTD [99] are neither
stationary nor ergodic. To illustrate the generation ability of
our hierarchical texture model, we introduce two new high-
quality, large-variety texture datasets (HRTD-G and HRTD).
The both datasets consist of 1000 textures from 10 categories.

In the first dataset, procedural textures are generated in a
way similar with [100]. However, we only choose 10 pro-
cedural texture models: ‘CA(forest fire model)’, ‘CA(surface
tension model)’, ‘CA(excitable media model)’, ‘Cellular’,
‘Folding texton’, ‘Folding cellular’, ‘Folding fractal’, ‘Folding
perlin’, ‘Fractal(one-over-fBeta-noise)’, and ‘Fractal(Fourier
spetral synthesis)’, to produce 100 textures for each model. All
the textures in this dataset have a resolution of 512 x 512 and
an 8 bit grey scale. We refer to this dataset as high resolution
texture dataset with grey scale (HRTD-G). In the following
experiments, we crop the central 448 x 448 part from each
texture, and then resize it to 224 x 224 as a training sample.

Textures in the second dataset are natural images collected
from websites. They are from 10 categories: ‘blanket’, ‘brick’,
‘fabric’, ‘marble’, ‘metal’, ‘water’, ‘sky’, ‘stone’, ‘tile’ and
‘wood’, with 100 textures in each category. Textures in this
dataset vary in size with the shortest side as 240, the longest
side as 6038, the lowest aspect ratio (width/height) as 0.56, and
the highest aspect ratio as 1.88. All the textures in this dataset
are 24 bit RGB images. We call this dataset high resolution
texture dataset (HRTD). In the experiments, we centrally crop
along the longer side of each image to form a square image,
and then resize it to 224 x 224 as a training sample.

In addition, we use the perceptual texture database (PTD)
[101] for evaluating the ability of generating textures from
perceptual descriptions. PTD consists of 450 textures with
each texture owning 12 perceptual attributes: contrast, rep-
etition, granularity, randomness, roughness, feature density,
directionality, structural complexity, coarseness, regularity, lo-
cal orientation, and uniformity [101], [102]. These perceptual
attributes are all labeled based on psychophysical experiments.
Textures in this dataset have a resolution of 512x 512 with 256
grey scales. Each perceptual attribute has a value in the range
of 1 to 9, with the high value and low value representing the
opposite properties of a perceptual feature. In our experiments,
we crop the central 448 x 448 patch from each texture, and
then resize it to 224 x 224 as a training sample.

For all the datasets, we randomly crop a 146 x 146 patch
from each of the training samples in every epoch to train
our texture model. All the displayed textures in the following
figures (except the two large textures in Fig. 10) are of
622 x 622 resolution but shown in smaller spaces due to the
page limit. Readers can zoom in to see more details.

B. Networks

We adopt the network structure of [67] as the backbone to
construct our generator and discriminator, and apply the same
hyperparameters of [67]. However, we remove all the fully
connected layers from the original structure, and extend the
input of the generator from a vector to a 3-D tensor, and form
the output of the discriminator as a 2-D tensor. As underlined
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Fig. 4. Residual modules of the generator with (a) and (b) corresponding
to GBl and GB2 in Fig. 3, respectively. Therein, 1 represents bilinear
upsampling, and € represents element-wise addition.

in Subsection II-D, we alter the residual modules [41] to avoid
any zero padding in the convolutional layers. Specifically, we
synchronously drop pixels of the input as the convolutional
layers proceed, while other operations remain the same as the
original, in every residual module. Thus, the cropped input and
the convolutional layers’ output fit seamlessly in the spatial
dimensions at the final stage of the residual operation. The
overall architecture has been given in Fig. 3, where all the
convolutional layers are with a stride of 1 and a kernel size of
3 x 3. The two building blocks of the generator are illustrated
in Fig. 4(a) and (b), while the two building blocks of the
discriminator are illustrated in Fig. 5(a) and (b).

Inspired by [103], [104], we provide the generator with
a direct means to generate stochastic details by introducing
explicit noise inputs to the intermediate layers. However, rather
than feeding a dedicated noise image to each convolutional
layer of the generator as in [103], [104], we compensate for
randomness only when the resolution is doubled (as depicted
in Fig. 4 (a)), because we believe that doubling the resolu-
tion creates urgent requirement for additional randomness to
support plausible local variety. Moreover, the authors of [103],
[104] utilize the learned per-feature scaling factors to broadcast
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Fig. 5. Residual modules of the discriminator with (a) and (b) corresponding

to DB1 and DB?2 in Fig. 3, respectively. Therein, | represents average pooling
for downsampling, and €D represents element-wise addition.

0 it

Tllustration of the SE noise layer used by the residual modules of

Fig. 6.
the generator. Therein, GAP is global average pooling, fc represents fully
connected layer, B represents broadcasting along the spatial axis. @) and €
represent element-wise multiplication and addition, respectively.

the single-channel noise image to all feature maps. However,
these scaling factors become constant after the model is opti-
mized. A more reasonable solution is to adaptively recalibrate
the noise image for each instance, because a distinct instance
predictably requires a distinguishing level of compensation for
randomness. To this end, we borrow the spirit of the ‘Squeeze-
and-Excitation’ (SE) block [46] to produce personalized per-
feature scaling factors for each instance. We call this module
‘SE Noise Layer’, and depict it in Fig. 6.

In addition, before feeding the coarse-grained signals to the
networks, if they are categorical, an embedding layer is applied
to embed the discrete signals into continuous vectors (as in
[67]). Otherwise when real-valued vectors are encountered, an
affine transformation combined with a non-linear activation
function is applied to form a mapping from the original
signals to more disentangled latent space [103]. After that, the
transformed coarse-grained signals are fed into the generator
and discriminator, respectively. Note that we apply the same
embedding or mapping function to the coarse-grained signals
in all the layers of the generator, i.e., all the applications
of the transformation share the same set of parameters. The
embedding or mapping function in the discriminator however
differs from that of the generator. As an example, Fig. 7 depicts
this utilization along with CBN in the generator.
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Fig. 7. Processing of the guidance signals in the CBN module of the
generator. Demodulation is standard batch normalization for zero-centering
and whitening of the features, while modulation shifts and scales the feature
maps according to the input guidance. The dotted arrow indicates that the
input guidance is either a categorical signal or a continuous signal, but not
both at the same time, and only one data stream is enabled at a time.

C. Generating Quality Textures from Coarse-Grained Control

The way humans perceive a texture is not easily quantifiable
with statistics or metrics. In fact, in the absence of a recognized
quantitative standard for image quality analysis [105], there
is no standard metric to quantitatively evaluate the texture
synthesis models [12], [13], [68]. Nonetheless, one can qualita-
tively assess whether a texture model generates the right visual
characteristics according to the given guidance. Furthermore,
qualitative analysis is a very common practice in the field
of texture synthesis [12], [13], [68], [70], [106]. Hence,
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Fig. 8. Texture samples generated from categorical signals. All the textures in the figure are of 622 X 622 resolution (Zoom in to see more details).
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Fig. 9. Texture generation controlled by perceptual attributes (Zoom in to see the details). In both (a) and (b), the bar chart on the left-side of each row lists
the 12 perceptual features: contrast, repetition, granularity, randomness, roughness, feature density, directionality, structural complexity, coarseness, regularity,
local orientation, and uniformity in bottom-to-top order. In (b), the bar chart on the right-side of each row lists these 12 perceptual features but in top-to-bottom
order. The textures in each row of (a) are generated from the same perceptual features depicted in the bar chart on the left side. In (b), the leftmost texture
in each row is generated from the perceptual features depicted in the left bar chart, and the rightmost texture in each row is generated from the perceptual
features depicted in the right bar chart, while the middle textures in each row are generated by interpolating the perceptual features in the latent space.

Fig. 10. Generating arbitrarily large textures. After the texture model has been trained on a particular dataset (here are HRTD at the top and HRTD-G at the
bottom), it can be applied to generate textures of arbitrary scales, with coarse-grained signals as the interactive control on the appearance.




we intuitively display the generated textures to manifest the
capability of the proposed method qualitatively.

We first train the texture model on HRTD and HRTD-
G, respectively, and report the generated textures in Fig. 8.
Textures in each row of Fig. 8 are generated from the same
categorical signal, namely, ‘bricks’, ‘water’, ‘sky’ and ‘wood’,
respectively, in Fig. 8 (a) and ‘CA(forest fire model)’, ‘Folding
cellular’, ‘CA(excitable media model)’ and ‘Cellular’, respec-
tively, in Fig. 8 (b). Fig. 9 (a) presents the generated textures
by training the model on PTD. The left diagram in each row of
Fig. 9 (a) indicates the values of the perceptual features that
are used for generating the textures in this row. For clarity,
the most prominent three perceptual features are colored in
red. Observe that the textures in the first row of Fig. 9 (a)
are predominant in contrast, granularity and randomness, and
the textures in the second row of Fig. 9 (a) are significant in
feature density, directionality, and local orientation, while the
textures in the third row of Fig. 9 (a) show significant features
in repetition, feature density and uniformity.

Note that our texture model can be applied to generate
arbitrarily large textures of any shape even though it is trained
on a dataset of a single scale. To illustrate this important
capability, Fig. 10 displays the ‘blanket’ and ‘CA(excitable
media model)’ textures generated by using our texture model
after it has been trained on HRTD and HRTD-G, respectively.

©

D. Smooth Texture Metamorphosis

Existing texture synthesizers cannot generate customized
textures, and cannot achieve plausible texture metamorphosis
either. In our proposed texture model, flexible sampling in
the noise space zo allows to create novel textures of poten-
tially infinite output size, while high-level guidance permits
to designate particular texture appearance. Furthermore, in-
terpolation in the noise space z; allows smooth transition
between textures of the same type, and interpolation in the
disentangled latent space provides smooth transition between
different types of textures. Fig. 9(b) and Fig. 11 illustrate
this advantage. Specifically, textures in Fig. 9 (b) persuades
a visual translation between different perceptual descriptions.
It can be seen that the textures in the first row of Fig. 9 (b)
illustrate perceptual translation from granular to uniform with
randomness and feature density retained, and the textures
in the second row of Fig. 9(b) demonstrate a decrease of
feature density and an increase of uniformity, regularity and
repetition, while the textures in the third row of Fig. 9(b)
show a decrease of structural complexity and contrast and an
increase of randomness and roughness.

Fig. 11 describes several texture galleries, in which textures
are generated using our generator by interpolating in the noise
(z1) or latent space. Specifically, textures in each row of
Fig. 11 (a) and (b) demonstrate a visual translation within the

(b)

(d)

Fig. 11. Smooth texture metamorphosis (Zoom in to see the details). In each row of (a) and (b), textures are generated by applying the same categorical signal,
specifically, ‘sky’, ‘water’ and ‘bricks’, respectively, in (a), and ‘Folding perlin’, ‘Cellular’ and ‘CA(excitable media model), respectively, in (b). Observe
smooth translation between textures of the same control, i.e., gradually disappeared clouds in the sky, gradually changed ripples of the water, gradually changed
bricks, and gradually increased feature density of the texture. Texture galleries in (c) and (d) represent texture translation from one type to another, i.e., from
water to sky, from sky to bricks, from wood to water, and from one procedural model to another.



TABLE I
ABLATION STUDY FOR THE PROPOSED TECHNIQUES. EACH CONFIGURATION IS TRAINED ON THE DATASETS WITH THE SAME SETUP. FIDg, FID,,,
FID;, AND FID ;7 REPRESENT THE FID VALUES CALCULATED ON THE SCALES 146, 166, 186 AND 206, WHILE MSFID IS THE MEAN VALUE OF THEM.

HRTD HRTD-G PTD
FIDs FID p/ FID, FID gy MSFID FIDg FID 5, FIDp FID i MSFID FIDg FID 5 FID FID MSFID
Baseline 87.12 89.34 90.71 92.50 89.92 71.40 72.01 72.34 72.98 72.18 70.88 71.12 71.69 72.02 71.43
+Large Batchsize 85.42 86.46 87.65 89.66 87.30 69.34 69.36 69.43 69.51 69.41 68.15 68.20 68.23 68.40 68.25
+Proxy Distribution 83.08 85.92 87.74 90.85 86.90 68.12 68.78 69.02 69.56 68.87 66.34 66.50 66.51 66.61 66.49
+SE Noise Layer 83.10 84.25 86.50 88.43 85.57 67.10 67.23 67.40 67.58 67.33 62.98 63.11 63.27 63.35 63.18

same control, that is, different Markov random fields of the
same control are sampled by interpolating in z;. Textures in
each row of Fig. 11 (c) and (d) demonstrate the visual transla-
tion between different guidance signals, that is, interpolation
is performed in the disentangled latent space of c. Clearly
our method achieves hallucinating texture metamorphosis and
smooth texture translation in very natural manner.

E. Ablation Studies

In order to analyze the effectiveness of each proposal of our
method, we use the ‘plain’ version of our model, in which all
the bells and whistles (SE Noise Layer, Proxy Distribution)
are removed, as the baseline. From this baseline, we perform
control experiments by enabling the proposals one by one.

For quantitative comparison, we create a variant of the
popular Fréchet inception distance (FID) [107], to measure
the distribution distance between the generated textures and
the ground truth textures. Specifically, to probe the content-
growth ability, we calculate the FID values on progressively
increasing scales (146, 166, 186, 206), and then average them.
These scales are chosen because the texture models are trained
on 146 x 146 texture patches, and the size of the training
samples is 224 x 224 (see Subsection III-A). In terms of
measuring the scalability of the texture synthesis models, it
is meaningless to evaluate on a scale smaller than the training
texture patches. Also it is impossible to evaluate the model
on a larger scale than the training samples, since there are
no ground truth textures. We refer to this variant of FID as
MSFID. Indeed, MSFID is inspired by MS-SSIM [78] and
c-FID [13], but MS-SSIM fails to react to image quality in
terms of similarity to the training set and c-FID only operates
on crops of images of the same size.

The experimental results are listed in Table I, where each
configuration is separately trained on the datasets with the
same hyperparameters. The baseline is trained with a batch
size of 50, and Large Batchsize indicates a larger batch
size of 100. From Table I, we can observe the performance
improvement as each technique is enabled. This demonstrates
the effectiveness of each proposal. Note that in a few cases
(HRTD with scales 186 and 206, and HRTD-G with scale 206),
proxy distribution does not improve the performance. This
is because the proxy distribution does not always guarantee
strictly positive.

F. Comparison with Other Methods

Since this is the first work aiming to synthesize textures
directly from coarse-grained control, there is no target or
benchmark method for comparison in the literature. To pro-
mote our method for this important application, we will
illustrate the advantage of our method over ‘adjusted’ existing
methods. With the current advances of image generation and
texture synthesis, to synthesize an arbitrarily large texture from
coarse-grained control, we can first use an image generation
method to create a fixed-size texture from the coarse-grained
control, and then apply a texture synthesis method to extend
the content of the texture to a larger scale. We would like
to apply the most celebrated image generation and texture
synthesis methods to compose the combination rival of our
method. The image generation and texture synthesis methods
that catch our eyes include: BigGAN [67], StyleGAN [103],
and StyleGAN2 [104] for image generation; DeepTextures
[106], Texture Networks [11], SGAN [12], PSGAN [68], and
Transposer [13] for texture synthesis.

Among the image generation methods, StyleGAN?2 achieves
the best results in most image generation tasks [104]. Hence,
we choose StyleGAN?2 as the implementation of the first stage.
For texture synthesis, DeepTextures [106] needs to solve an
optimization problem in the pixel space to synthesize a texture,
while Texture Networks [11] and SGAN [12] have to train a
separate deep network for each texture of interest. Therefore,
these three methods are computationally prohibitive, since a
quantitative evaluation of the produced image quality requires
the calculation of the MSFID metric on a huge number of
samples (in our experiments, each scale entails 20,000 texture
patches, which is abbreviated as FID20K). Consequently, only
PSGAN [68] and Transposer [13] can be employed as the
synthesis model in the second stage, because they support
learning multiple textures from datasets composed of one or
more complex large images. However, Transposer [13] just
doubles the size of the synthesized texture in each forward
propagation, which does not help the implementation. There-
fore, we construct the combination method by integrating
StyleGAN2 and PSGAN together (abbreviated as S+PSGAN).

We compare our method with this combination method on
the three datasets. It seems to be reasonable that we should
first train StyleGAN2 on the datasets, and then train PSGAN
on the same datasets. In this way, in the inference stage,

TABLE II
QUANTITATIVE PERFORMANCE COMPARISON FOR THE PROPOSED METHOD AND THE COMBINATION METHOD (S+PSGAN). FIDg, FID,,, FID;, AND
FID iy REPRESENT THE FID VALUES CALCULATED ON THE SCALES 146, 166, 186 AND 206, WHILE MSFID IS THE MEAN VALUE OF THEM.

HRTD HRTD-G PTD
FIDg FID 5/ FID[, FID i MSFID FIDg FID )/ FID, FID MSFID FIDg FID 5/ FID;, FID g MSFID
S+PSGAN 138.41 140.74 145.53 148.62 143.32 221.08 223.71 22738 230.92 225.77 210.34 213.78 216.80 221.84 215.69
Proposed 83.10 84.25 86.50 88.43 85.57 67.10 67.23 67.40 67.58 67.33 62.98 63.11 63.27 63.35 63.18




PSGAN can successively undertake the textures generated by
StyleGAN2. Nonetheless, when PSGAN is applied to a mul-
tifaceted dataset, the output can no longer be controlled in the
inference stage. That is, PSGAN will randomly give a texture
that it believes comes from the training data’s distribution.
In this case, we cannot directly utilize PSGAN to extend the
contents of the textures generated by StyleGAN2. If we tie
an individual PSGAN to each texture, although the above
problem is solved, PSGAN immediately loses its flexibility.
We adopt a roundabout way to tackle this hurdle. We first train
StyleGAN2 with the default configuration (config F) on each
dataset until convergence (totally 737k, 1,065k, and 3,522k
real images shown to the discriminator on HRTD, HRTD-G
and PTD, respectively). Since StyleGAN2 can only process
square-shaped images with a power-of-two size and PSGAN
outputs textures whose size is an integer multiple of 32, the
texture crops used for training are resized from 146 x 146 to
256 x 256 on the fly, and the final outputs of the combination
method are accordingly resized back to the original scale at
the ratio of 146,/256. After StyleGAN2 has been trained, it is
utilized to generate 20,000 textures, and the generated textures
are then used to train PSGAN. When PSGAN is fully trained
(100 epoches as default), it is applied to generate 1,000 (450
for PTD) textures of 384 x 384 (resized back to 219 x 219) for
evaluation. The output resolution 384 x 384 is selected to make
the restored size the closest to 224 x 224. We can safely assume
that training the model at a higher resolution will not harm
the performance, because the higher resolution only introduces
redundant information but does not lose information.

Table II summarizes the quantitative comparison of our
method and the combination method based on the FID met-
ric. To obtain MSFID, on each scale, the FID20K value is
calculated by looking over 20,000 crops from the synthesized
textures and 20,000 crops from the dataset. In this manner,
the calculated MSFID reflects an estimate of the synthesized
image quality on average of tying a specific PSGAN to each
texture generated by StyleGAN2. The estimate is reasonable
on the condition that flexibility of the texture synthesis method
needs to be considered. Furthermore, the accurate evaluation
is impossible because training separate networks for 20,000
textures” will consume unaffordable computational resources.
The experimental results of Table II demonstrate the superior-
ity of our method over the combination method quantitatively.
Surprisingly, the combination method performs very poorly
on HRTD-G, which is a relatively simple dataset compared to
HRTD according to the results of our method.

Qualitatively, an illustration of the textures synthesized
using the combination method is given in Fig. 12 (the textures
are also proportionally resized from the output resolution
1088 x 1088 to the benchmark resolution 622 x 622). It is
obvious that the quality of the synthesized textures in Fig. 12
is much poorer compared to that of Fig. 8. In particular,
the textures generated by the combination method tend to
dully repeat the very basic structural elements. In addition
to the inferior visual performance, the combination method

2 Although only 1,000 textures of 384 x 384 are sampled for evaluation,
training PSGAN on 1,000 textures generated by StyleGAN2 may hamper the
performance as many modalities will be absent from the training set.

Fig. 12. Texture samples generated by the combination method. The textures
in the first, second, and third rows are generated by training the models
(StyleGAN2 and PSGAN) within the combination method on HRTD, HRTD-
G and PTD, respectively. All the textures in the figure are of 622 x 622
resolution.

consumes much more synthesis time (estimated by the sum
of the generation time and synthesis time) than our method
due to the inherent shortcoming of two-stage calculation. This
efficiency issue becomes even more serious in practice. For
the combination method, the heavy burden of training a neural
network will probably be involved in the second stage when
a particular texture is desired, because each texture thrown by
the first stage is likely to be an unseen sample of the synthesis
model.

G. Practical Application

The motivation of our work comes from practical demand.
For example, designers of game companies would like an
efficient method to acquire arbitrarily large and visually di-
verse textures by simply providing the semantic descriptions
to create realistic backgrounds for game scenes. To this
end, we have implemented a demonstration system that can
produce high-quality textures according to the user’s inputs,
and provide previews, individual and batched download of the
generated textures. Fig. 13 is a demonstration of the system,
where textures of certain type and size are produced. This
system provides a convenient way for even inexperienced
designers to obtain high-quality textures, and it further verifies
the effectiveness of our proposed method. Although the system
only supports the basic demonstration functions currently, it
can easily be extended to offer a comprehensive design toolkit.
The development of a complete game software is beyond the

Fig. 13. Interactive user interface of the proposed texture generation system.
In this diagram, 20 textures of 512x512 from the “wood” category are
generated.



scope of this paper. Potential users in other related fields,
wallpaper production, film post-production, animation, etc.,
can also use the system to experience the convenience of
texture generation at any scale under coarse-grained control,
and obtain inspiration for their particular applications.
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Fig. 14. Missed modalities of our texture model. These textures either have
complex structures (not stationary) or regular arrangements (not stochastic).
The displayed textures are all of their original resolutions in the datasets.

H. Limitations

Although we impress the conversion from zo to t with
a global influence by adjusting the Markov random field’s
parameters through c and z;, we find that the learned Markov
random field lacks the ability of spatial alignment. We believe
that the responsibility lies in the Markov random field itself,
which models data through local properties and thus is unable
to capture long-range dependencies. Fig. 14 gives the missed
cases of our texture model. Textures in Fig. 14 are samples
from the datasets, but absent from the generated results of
our texture model. Obviously, these missed modalities are all
regular or non-stationary textures whose formation requires
spatially global interaction. In a nutshell, our learned texture
model can only support generating random textures strictly
conformable with a positive Markov random field.

We reiterate that the purpose of the proposed method is
to solve the coarse-grained controllable texture synthesis, that
is, to establish the mapping relationship between human-
understandable coarse-grained control variables and texture
images of arbitrary scales. The proposed method does not
support texture synthesis under fine-grained control (the work-
ing paradigm of example-based texture synthesis), and cannot
synthesize a larger-scale texture image given an exemplar
texture. We further point out that texture synthesis under
coarse-grained control and texture synthesis under fine-grained
control can complement each other in various application
scenarios to complete various texture synthesis tasks, while
constructing a large unified model that supports both coarse-
grained controllable texture synthesis and fine-grained control-
lable texture synthesis is not very necessary.

1. Latency Analysis

Since the texture model aims to learn enormous Markov ran-
dom fields for different guidance signals to support generation

of different types of textures, it takes a relatively long time for
training. However, once the training is completed, the texture
model is very efficient at synthesis. Generally, it takes about 9
hours to train on HRTD, 7 hours to train on HRTD-G, and 5
hours to train on PTD. Because the model supports generation
of textures of arbitrary scale, it consumes on average 0.25
(0.22) microseconds for one color (gray) pixel in the synthesis
stage. In other words, it can produce a 512 x 512 color (gray)
texture within 0.07 (0.06) seconds’.

IV. CONCLUDING REMARKS

In this paper, we have presented a framework for arbitrary-
scale texture generation from coarse-grained control. Although
deconvolution approaches allow generation of textures over a
variety of natural images, they need to solve a complicated
optimization problem with iterative back propagation just for
creating a single output texture. Fitting a convolutional net-
work in a feed-forward fashion can improve the efficiency of
deep texture synthesis, but most existing approaches compose
texture synthesizer of specific style, where separate networks
have to be trained when various textures need to be modeled.
The challenge is to find the right balance between tractability
and flexibility. Our work has contributed to this endeavour
by introducing a fully tractable yet flexible texture model. In
addition, existing texture models focus on fine-grained control
of texture generation (synthesis, stylization) but controllable
synthesis with user interaction is even more useful. The
proposed method has provided an efficient way for generating
textures directly from coarse-grained controls, which makes it
convenient for users to author realistic visual content according
to their own desire. Extensive experiments have demonstrated
that the proposed method is effective at generating high-quality
and large-scale textures from high-level guidance.

However, since Markov random fields are employed at the
bottom of the Bayesian hierarchy for our texture modeling, the
learned texture model can only generate stochastic textures.
In our future work, we will investigate more universal texture
models for both random and regular texture synthesis.
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