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Although the Lighthill–Curle acoustic analogy theory is formally exact, the pres-

ence of linear source terms related to viscous stresses and non-isentropic den-
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Ffowcs Williams and Hawkings formulation, with thermoviscous effects explicitly

included, to find an analytical solution to the canonical problem of sound radi-

ation from a circular cylinder immersed in a viscous heat-conducting fluid and

rotating sinusoidally about its axis. Existing published solutions are compared

and an earlier null result is explained. The new analysis reveals the dominant

source of sound at low Mach numbers to be unsteady viscous dissipation rather

than Reynolds-stress quadrupoles, unless the fluid parameter 𝐵 = 𝛼𝑐2/𝑐𝑝 is zero.
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Notation19

𝑎 Thermal expansion parameter 𝑎 = 𝛼/𝜌𝑐𝑝
𝐴 Dimensionless thermodynamic property 𝐴 = 𝛼𝑇

𝐵 Dimensionless thermodynamic property 𝐵 = 𝛼𝑐2/𝑐𝑝
𝑐 Sound speed 𝑐 = (𝜕𝑝/𝜕𝜌)1/2

𝑠

𝑐𝑝 Constant-pressure specific heat
¤𝐷 instantaneous rate of energy dissipation per unit volume due to

viscous stresses
¤𝐷𝑇 instantaneous rate of energy dissipation per unit volume due to

heat conduction ¤𝐷𝑇 = 𝜅 |∇𝑇 |2/𝑇

𝑓 (x, 𝑡) indicator function, positive in V and negative in V, with |∇ 𝑓 | = 1

on S

𝑔(𝑟 | 𝜉) Green’s functions for the Helmholtz operator in cylindrical coor-

dinates (1D)

ℎ̂ Complex amplitude of outward heat flux from the cylinder

H( 𝑓 ) Heaviside (unit step) function acting as a spatial window

H (1)
𝑛 (𝜉) Hankel function of the first kind H (1)

𝑛 (𝜉) = 𝐽𝑛 (𝜉) + i𝑌𝑛 (𝜉)

i Imaginary unit

𝐽𝑛 (𝜉) Bessel function of the first kind of order 𝑛

𝑘 Radial wavenumber (Sec. 3); lossless acoustic wavenumber 2Ω/𝑐0

(Sec. 5)

𝑘𝑎 Complex wavenumber for the acoustic mode (Sec. 5, 𝑘𝑎 =

𝑘
[
1 + 1

2 i𝜀𝐿 + 1
2 i(𝛾 − 1)𝜀𝜅 +𝑂 (𝜀2)

]
)

2



𝑘𝑤 Characteristic wavenumber for the vorticity mode 𝑘𝑤 =

(iΩ/𝜈0)1/2

𝐾 Helmholtz number 𝐾 = Ω𝑟0/𝑐0

𝑀 Mach number 𝑀 = 𝑈/𝑐0

𝑛 Azimuthal order in cylindrical coordinates

n̂ Unit vector normal to surface S, pointing outward from excluded

region V

𝑝 Thermodynamic pressure of fluid

𝑝′′ Scaled pressure perturbation 𝑝′′ = 𝑝/𝑝0 − 1 (Sec. 3)

𝑝′mod Acoustic mode pressure variable, 𝑝′mod = 𝑐2
0(𝜌

★ − 𝜌0) − 𝜇Θ𝑠

𝑝1, 𝑝2, 𝑝3 Complex amplitudes of radiated pressure contributions from 𝑞,

𝑞𝜙𝜙, q · n̂ respectively

𝑃 Dimensionless quantity 𝑃 = 𝑃𝑟 𝑆

𝑃𝑟 Prandtl number of fluid 𝑃𝑟 = 𝑐𝑝𝜇/𝜅

𝑞, 𝑞𝜙𝜙 Monopole, quadrupole source density for the acoustic mode vari-

able 𝑝′mod

q Heat flux vector

𝑟 Radial coordinate in cylindrical coordinates

𝑟0 Radius of rotationally oscillating cylinder

𝑟′′ Scaled radial coordinate𝑈𝑟/𝜈0 (Sec. 3)

𝑟′′0 Scaled cylinder radius 𝑟′′0 = 𝑈𝑟0/𝜈0

𝑠 Specific entropy

𝑆 Stokes number 𝑆 = Ω𝑟2
0/𝜈0

S Surface separating excluded region V from region V, defined by

𝑓 (x) = 0
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𝑡 Time

𝑡′′ Scaled time 𝑡′′ = 𝑈2𝑡/𝜈0

𝑇 Thermodynamic temperature

u Fluid velocity vector

𝑢𝑟 , 𝑢𝜙 Fluid velocity components

𝑣𝑟 , 𝑣𝜙 Scaled fluid velocity components 𝑣𝑟 = 𝑢𝑟/𝑈, 𝑣𝜙 = 𝑢𝜙/𝑈 (Sec. 3)

V Fluid region

V Excluded region, adjacent to V

w Vector potential in the representation u = ∇𝜑 + curl w

𝑤𝑥 Component of w in 𝑥 direction

𝑊rad,𝑊diss Power radiated, power dissipated (per unit length of cylinder)

𝑥 Axial coordinate in cylindrical coordinates

x, 𝑥𝑖 Position vector, cartesian components (𝑖 = 1, 2, 3)

𝛼 Volume thermal expansivity of fluid

𝛽 Thermal admittance of cylinder boundary 𝛽 = −ℎ̂/𝑇 (𝑟0)

𝛾 Ratio of specific heats 𝛾 = 𝑐𝑝/𝑐𝑣, equal to the isentropic index in

the case of an ideal gas

Γvol, Γsurf Volume and surface sources in an acoustic analogy

𝛿( 𝑓 ) Dirac delta function

𝛿 Viscous length scale (𝜈0/Ω)1/2

Δ Relative error in asymptotic approximations

𝜀 max(𝜀𝜅, 𝜀𝐿)

𝜀𝜅 Thermal-diffusion parameter 𝜀𝜅 = 2Ω𝜒0/𝑐2
0

𝜀𝐿 Longitudinal-viscosity parameter 𝜀𝐿 = 2Ω𝜇𝐿/𝜌0𝑐
2
0

𝜀𝜇 Viscosity parameter 𝜀𝜇 = 𝐾2/𝑆 = Ω𝜈/𝑐2
0
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𝜂ac Acoustic conversion efficiency𝑊rad/𝑊diss

Θ Fluid dilatation rate Θ = div u

𝜅 Thermal conductivity

𝜆 Acoustic wavelength

𝜇 Shear viscosity of fluid

𝜇𝐵 Bulk viscosity of fluid

𝜇𝐿 Longitudinal viscosity of fluid 𝜇𝐿 = 𝜇𝐵 + 4
3𝜇

𝜇 Thermoviscous coefficient 𝜇 = 𝜇𝐵 + 4
3𝜇 − 𝜅/𝑐𝑝0

𝜈 Kinematic viscosity of fluid 𝜈 = 𝜇/𝜌

𝜉 Radial source position in cylindrical coordinates

𝜉max Displacement amplitude of cylinder surface

𝜌 Fluid density

𝜌★ Isentropic density 𝜌★ = 𝜌(𝑝, 𝑠0)

𝜌′′ Scaled density perturbation 𝜌′′ = 𝜌/𝜌0 − 1 (Sec. 3)

𝜏𝑟𝜙 Complex amplitude of viscous shear stress at cylinder surface

𝜑 Scalar potential of velocity in the representation u = ∇𝜑 + curl w

𝜙 Azimuthal coordinate in (𝑥, 𝑟, 𝜙) system

𝜒 Thermal diffusivity 𝜒 = 𝜅/𝜌𝑐𝑝
𝜔0 Scaled angular frequency 𝜔0 = Ω𝜈0/𝑈2 (Sec. 3)

𝜔𝑥 Axial component of vorticity

𝜔𝜔𝜔 Fluid vorticity vector𝜔𝜔𝜔 = curl u

∼ Varies asymptotically as

≃ Asymptotically equals

(·)0 Uniform unperturbed value of any local property of the fluid (𝜌,

𝑝, 𝑠, 𝑇 , etc.)
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(·)′ Departure of local property from its unperturbed value

(·̂) Complex amplitude of a sinusoidally varying quantity (phasor)

(·)∗ Complex conjugate

1. Introduction20

In the early days of theoretical aeroacoustics, following the pioneering work of21

Lighthill [1] and Curle [2], the debate over the role of solid boundaries in aerody-22

namic sound generation led to a demand for analytically-solvable model problems23

able to provide insight into this issue. The presence of an infinite plane bound-24

ary, either rigid or pressure-release, was shown by Powell [3] to act as a simple25

reflector for the quadrupole sources in Lighthill’s acoustic analogy [1]. This idea26

was later extended by Ffowcs Williams [4] to a plane boundary with a uniform27

locally-reacting impedance. Lauvstad and Meecham [5], however, recognized that28

the Lighthill–Curle theory could be applied to any localized unsteady flow with29

solid boundaries for which an analytical solution existed in the incompressible30

limit, and that this would enable prediction of the surface and volume radiated31

sound at low Mach numbers. They proposed to use this approach to examine the32

role of the surface dipoles in Curle’s formulation [2].33

To this end (and following an earlier attempt by Meecham [6]), Lauvstad34

and Meecham [5] applied the Lighthill–Curle theory to the idealized problem of35

sound generation by a long circular cylinder, rotating sinusoidally about its axis and36

surrounded by an infinite uniform viscous fluid initially at rest. In the limit𝑀 → 0,37

where 𝑀 = 𝑈/𝑐0 is the ratio of the surface velocity amplitude to the unperturbed38

sound speed, the unsteady flow field can be described analytically provided the39

flow remains laminar and stable. The incompressible velocity field in the viscous40
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boundary layer, and the incompressible pressure on the cylinder boundary, then41

provide the necessary source terms for the sound to be predicted using Ref. [2].42

A distinctive feature of the solution is that because of the rotational symmetry, no43

sound is radiated in the linear approximation: to obtain the sound field one has44

to proceed to second order. In this respect the rotating-cylinder problem deviates45

from the general rule that tangential oscillations of a solid boundary next to a46

viscous fluid generate a linear acoustic response [7, 8].47

Surprisingly, the calculation in [5] yielded a null result, with the normal-48

dipole surface term in Curle’s expression for the far-field density exactly cancelling49

the volume quadrupole term. This outcome contradicted a previous estimate by50

Lauvstad [9], based on the entirely different approach of matched asymptotic51

expansions. It also left unanswered the question of which approach (if either) is52

valid for problems in viscous-fluid aeroacoustics.53

The aim of the present paper is to resolve the issue and to show that the problem54

chosen is more complex than was allowed for in Refs. [5] and [9]. Our approach is55

a nonlinear extension of earlier work by Pierce [10, 11], who used an asymptotic56

approximation to describe the excitation of linear modes in thermoviscous fluids57

by external sources. It can be viewed as a generalization to arbitrary fluids of the58

bilateral mode-interaction analysis in Chu and Kovásznay [12], with the addition59

of boundary source terms. The restriction in [12] to an ideal gas with constant spe-60

cific heats and Prandtl number 3
4 is removed, and we focus on the sound produced61

by vorticity–vorticity interaction. The results provide new insights into aerody-62

namic sound generation in such fluids, along with a benchmark analytical solution63

that may have value in validating numerical codes for nonlinear thermoviscous64

acoustics.65
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Our objectives are (a) to adapt the Lighthill–Curle acoustic analogy formulation66

in its generalized form due to Ffowcs Williams and Hawkings [13], to better handle67

flows that involve viscosity and heat conduction; (b) to use the modified analogy to68

predict the sound field generated by the oscillating cylinder described above; (c) to69

account for the apparent zero radiation found in Lauvstad and Meecham [5]; (d) to70

rework the matched-expansion calculation of Lauvstad [9] and thereby clarify the71

assumptions involved; and (e) to show how the sound output from the oscillating72

cylinder is affected by the thermal boundary condition at the cylinder wall.73

The outline of the article is as follows. Section 2 provides a statement of the74

problem. In Section 3 we re-examine Lauvstad’s matched asymptotic solution,75

under his isothermal condition. In Section 4 we introduce a thermoviscous acoustic76

analogy that can be used to solve the problem for a real fluid (i.e. without assuming77

an ideal gas with 𝛾 = 1, so that heat conduction is important as well as viscosity);78

results of this procedure are given in Section 5. Finally, the effects of non-adiabatic79

boundary conditions at the cylinder wall are discussed in Section 6.80

2. Statement of problem81

The problem to be solved is that defined in Lauvstad [9], to find the sound radiated82

by a long circular cylinder rotating sinusoidally around its axis in a viscous com-83

pressible fluid. Thus Figure 1 shows a cross-section through an infinitely long rigid84

cylinder of radius 𝑟0, whose axis lies along the 𝑥-axis of a cylindrical coordinate85

system (𝑥, 𝑟, 𝜙). The cylinder is surrounded by an unbounded fluid with pressure86

𝑝, density 𝜌 and temperature𝑇 . Fluid properties are represented as (·) = (·)0+ (·)′,87

where (·)0 is the uniform unperturbed value and (·)′ is the perturbation. The fluid88

has constant shear viscosity 𝜇.89
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Figure 1: Diagram of Lauvstad’s rotating-cylinder problem.

The cylinder rotates sinusoidally about its axis at angular frequency Ω with90

alternating clockwise and anticlockwise motion, 𝑈 being the amplitude of the91

velocity at the cylinder’s surface where 𝑟 = 𝑟0. We assume, with Lauvstad [9], that92

𝑈 ≪ 𝑐0, the speed of sound in the fluid, and is also low enough that transition to93

turbulent flow does not occur; conditions for this are discussed in Appendix A. In94

the limit 𝑈/𝑐0 → 0 the density perturbations will be proportional to the unsteady95

component of the pressure whose gradient balances the acceleration field induced96

by the cylinder’s motion. When heat conduction and thermal expansivity are97

present, however, the fluid will be heated by the work done in shearing it, causing98

it to dilate, and this dissipative heating will be a significant sound-generation99

mechanism, at least in comparison with the isothermal case assumed in [9].100

The fluid velocity field u =
[
0, 𝑢𝑟 (𝑟, 𝑡), 𝑢𝜙 (𝑟, 𝑡)

]
is subject to the following101
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boundary conditions:102

• The no-slip condition at the cylinder’s surface gives𝑢𝜙 (𝑟0, 𝑡) = Re [𝑈 exp(−iΩ𝑡)]103

(we follow Lauvstad [9] in using complex exponentials despite the nonlin-104

earity of the problem).105

• The rigidity and axisymmetry of the cylinder give 𝑢𝑟 (𝑟0, 𝑡) = 0.106

• The decay of disturbances with distance from the cylinder gives 𝑢𝑟 (∞, 𝑡) =107

𝑢𝜙 (∞, 𝑡) = 0.108

Note that we omit dependence on 𝑥 and 𝜙 when writing the components of the109

velocity field.110

In [9] Lauvstad implicitly assumes that the fluid is an ideal gas with adiabatic111

index 𝛾 = 1, meaning that the speed of sound can be taken as its isothermal value112

𝑐0 =
√︁
𝑝0/𝜌0, the temperature 𝑇 never departs from 𝑇0 and no heat conduction113

occurs; in addition the bulk viscosity is assumed to be zero. We retain these as-114

sumptions in Sec. 3 where we reproduce Lauvstad’s matched-asymptotic analysis.115

Thereafter, however, we relax them and allow the fluid to have thermal expansivity116

𝛼, and thermal conductivity 𝜅 and bulk viscosity 𝜇𝐵, both constant.117

The governing equations conserving mass and momentum can be written [14]:

𝜕𝜌

𝜕𝑡
+ 1
𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑢𝑟) = 0, (1a)

𝜌

(
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
−
𝑢2
𝜙

𝑟

)
= −𝜕𝑝

𝜕𝑟
+ 4

3
𝜇
𝜕

𝜕𝑟

1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟), (1b)

𝜌

(
𝜕𝑢𝜙

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜙

𝜕𝑟
+
𝑢𝑟𝑢𝜙

𝑟

)
= 𝜇

𝜕

𝜕𝑟

1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜙). (1c)
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Under the isothermal assumption of Lauvstad [9] the energy equation is not re-118

quired. The problem then is to find the far-field pressure fluctuations 𝑝′(𝑟, 𝑡) for119

large 𝑟.120

3. Lauvstad’s matched asymptotic solution revisited121

In this section we reproduce Lauvstad’s matched asymptotic analysis of the prob-122

lem described above. Lauvstad used dashed variables for physical quantities so123

that the scaled variables in which he analysed the problem were plain. Although we124

follow his scaling for ease of comparison, we prefer to use plain physical variables,125

and where scaled variables using the same symbols appear in Sec. 3 they will be126

given double dashes. In what follows, Lauvstad’s dimensionless radial coordinate127

is introduced as 𝑟′′ = 𝑈𝑟/𝜈0 and 𝑡′′ = 𝑈2𝑡/𝜈0 denotes the dimensionless time.128

The dimensional radius of the cylinder 𝑟0 is converted to non-dimensional form

as 𝑟′′0 = 𝑈𝑟0/𝜈0. The instantaneous density is scaled as 𝜌/𝜌0 = 1 + 𝜌′′, and the

velocity field is scaled as 𝑣𝑟 = 𝑢𝑟/𝑈, 𝑣𝜙 = 𝑢𝜙/𝑈. The fluid is modelled as an ideal

gas with the pressure scaled as 𝑝/𝑝0 = 1+ 𝑝′′, and the scaled pressure perturbation

is related to the density perturbation by 𝑝′′ = 𝜌′′, equivalent to assuming the flow is

isothermal. Finally the Mach number is introduced based on the isothermal sound

speed as 𝑀 = 𝑈/(𝑝0/𝜌0)1/2 = 𝑈/𝑐0. Then the system of governing equations (1)

becomes, in terms of scaled perturbation variables,

𝜕𝜌′′

𝜕𝑡′′
+ 1
𝑟′′

𝜕

𝜕𝑟′′
(𝑟′′𝜌′′𝑣𝑟) = 0, (2a)

𝜌′′
(
𝜕𝑣𝑟

𝜕𝑡′′
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟′′
−
𝑣2
𝜙

𝑟′′

)
= −𝑀−2 𝜕𝜌

′′

𝜕𝑟′′
+ 4

3
𝜕

𝜕𝑟′′
1
𝑟′′

𝜕

𝜕𝑟′′
(𝑟′′𝑣𝑟), (2b)

𝜌′′
(
𝜕𝑣𝜙

𝜕𝑡′′
+ 𝑣𝑟

𝜕𝑣𝜙

𝜕𝑟′′
−
𝑣𝑟𝑣𝜙

𝑟′′

)
=

𝜕

𝜕𝑟′′
1
𝑟′′

𝜕

𝜕𝑟′′
(𝑟′′𝑣𝜙). (2c)
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To facilitate comparison of these equations with Eq. (7) in [9], we note that Lauvstad129

used primes to designate dimensional variables and no primes for dimensionless130

scaled variables. For consistency, we also note that the factor 4
3 is missing from131

the final term in his Eq. (7b), which is the counterpart of our Eq. (2b). The same132

applies to the final term in Lauvstad’s Eq. (13). However, these errors do not affect133

the end result Eq. (43) in [9] because the solution for the outer field does not use134

these equations.135

To solve the scaled equations, Lauvstad used the method of matched asymptotic

expansions. We follow him in solving the inner problem. The inner expansion is

expanded in ascending powers of 𝑀2 as

𝜌′′(𝑟′′, 𝑡′′;𝑀) ≃ 𝑀2𝜌′′1 (𝑟
′′, 𝑡′′) + 𝑀4𝜌′′2 (𝑟

′′, 𝑡′′) + · · · , (3a)

𝑣𝑟 (𝑟′′, 𝑡′′;𝑀) ≃ 𝑣𝑟0 + 𝑀2𝑣𝑟1(𝑟′′, 𝑡′′) + · · · , (3b)

𝑣𝜙 (𝑟′′, 𝑡′′;𝑀) ≃ 𝑣𝜙0 + 𝑀2𝑣𝜙1(𝑟′′, 𝑡′′) + · · · . (3c)

This solution ansatz is substituted into Eqs. (2) and the chain rule is used to solve136

problems of ascending order in the parameter 𝑀 . This will lead to a first-order137

inner solution for the radial velocity, which is then matched to an outer acoustic138

field.139

The zeroth-order equation for the radial velocity is140

1
𝑟′′

𝜕

𝜕𝑟′′
(𝑟′′𝑣𝑟0) = 0. (4)

Since at the surface of the cylinder (𝑟′′ = 𝑟′′0 ) this velocity component equals zero,141

i.e. 𝑣𝑟0(𝑟′′0 , 𝑡
′′) = 0 it also vanishes in the whole fluid volume, giving 𝑣𝑟0(𝑟′′, 𝑡′′) = 0.142

The first-order equations for the density disturbances are143

𝜕𝜌′′1
𝜕𝑡′′

+ 1
𝑟′′

𝜕

𝜕𝑟′′
(𝑟′′𝑣𝑟1) = 0 and

𝜕𝜌′′1
𝜕𝑟′′

=
𝑣2
𝜙0

𝑟′′
. (5)
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Density fluctuations are readily eliminated in this system to yield the equation for144

the first non-vanishing component of the radial velocity:145

𝜕

𝜕𝑟′′

[
1
𝑟′′

𝜕

𝜕𝑟′′
(𝑟′′𝑣𝑟1)

]
= − 1

𝑟′′
𝜕

𝜕𝑡′′
(𝑣2
𝜙0). (6)

To find the right-hand side of Eq. (6) we solve the zeroth-order problem for the146

circumferential velocity component:147

𝜕𝑣𝜙0

𝜕𝑡′′
=

𝜕

𝜕𝑟′′
1
𝑟′′

𝜕

𝜕𝑟′′
(𝑟′′𝑣𝜙0). (7)

Hereafter the rotating motion of the cylinder is assumed time-harmonic so that148

𝑣𝜙0(𝑟′′, 𝑡′′) = Re
[
𝑣̂𝜙0e−i𝜔0𝑡

′′ ] . We note that the second equation from the set149

Eq. (1) in [9], which is meant to be written in dimensional form, uses 𝜔0 for the150

dimensional angular frequency; we use Ω instead and reserve 𝜔0 for the scaled151

frequency, as later adopted by Lauvstad in his Eq. (16). Thus, the frequency152

scaling is 𝜔0 = Ω𝜈0/𝑈2, and Eq. (7) becomes153

−i𝜔0𝑣̂𝜙0 =
d

d𝑟′′
1
𝑟′′

d
d𝑟′′

(𝑟′′𝑣̂𝜙0), (8)

with boundary condition 𝑣̂𝜙0(𝑟′′0 ) = 1. The solution is154

𝑣̂𝜙0 =
𝐻

(1)
1 (𝑟′′

√
i𝜔0)

𝐻
(1)
1 (𝑟′′0

√
i𝜔0)

. (9)

In this equation, and throughout the article, the principal value of the complex155

square root is taken. The nonlinear term 𝑣2
𝜙0(𝑟

′′, 𝑡′′) from (6) is represented in156

terms of 𝑣̂𝜙0 by writing157

𝑣2
𝜙0(𝑟

′′, 𝑡′′) = 1
4

[
𝑣̂𝜙0(𝑟′′)e−i𝜔0𝑡

′′ + 𝑣̂∗𝜙0(𝑟
′′)ei𝜔0𝑡

′′
]2

= 1
2 Re[𝑣̂𝜙0(𝑟′′)e−i𝜔0𝑡

′′]2+ 1
2 |𝑣̂𝜙0(𝑟′′) |2.

(10)
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This shows that the quadratic quantity 𝑣2
𝜙0(𝑟

′′, 𝑡′′) should be represented by the158

phasor 1
2 [𝑣̂𝜙0(𝑟′′)e−i𝜔0𝑡

′′]2, rather than [𝑣̂𝜙0(𝑟′′)e−i𝜔0𝑡
′′]2 as in [9].159

Combining Eq. (6) with (9) and (10) gives a frequency-domain equation for160

the first-order radial component of velocity,161 (
d2

d𝑟′′2
+ 1
𝑟′′

d
d𝑟′′

− 1
𝑟′′2

)
𝑣̂𝑟1(𝑟′′) =

i𝜔0
𝑟′′
𝑣̂2
𝜙0(𝑟

′′) = i𝜔0
𝑟′′

[
𝐻

(1)
1 (𝑟′′

√
i𝜔0)

𝐻
(1)
1 (𝑟′′0

√
i𝜔0)

]2

, (11)

with Dirichlet boundary condition 𝑣̂𝑟1(𝑟′′0 ) = 0. From the discussion above it fol-162

lows that when returning to the time domain the radial velocity is Re
[
𝑣̂𝑟1(𝑟′′)e−2i𝜔0𝑡

′′ ] .163

The operator in (11) is a limiting case of the Helmholtz radial operator in164

cylindrical coordinates, with azimuthal order 𝑛 = 1 and eigenvalue 𝑘2 → 0. In165

the general case, the one-dimensional Green’s function for this operator can be166

defined as the solution of167 (
𝜕2

𝜕𝑟′′2
+ 1
𝑟′′

𝜕

𝜕𝑟′′
− 𝑛

𝑟′′2
+ 𝑘2

)
𝑔(𝑟′′ | 𝜉) = − 1

𝑟′′
𝛿(𝑟′′ − 𝜉), (12)

that satisfies the Dirichlet boundary condition 𝑔− = 0 at 𝑟′′ = 𝑟′′0 and outgoing-wave

condition (𝜕/𝜕𝑟′′)𝑔+ = i𝑘𝑔+ as 𝑟′′ → ∞. This solution is given by

𝑔+(𝑟′′ | 𝜉) = 𝜋

2
[
𝐽𝑛 (𝑘𝑟′′0 )𝑌𝑛 (𝑘𝜉) − 𝑌𝑛 (𝑘𝑟

′′
0 )𝐽𝑛 (𝑘𝜉)

] 𝐻 (1)
𝑛 (𝑘𝑟′′)

𝐻
(1)
𝑛 (𝑘𝑟′′0 )

(𝑟′′ > 𝜉 ≥ 𝑟′′0 ),

(13a)

𝑔−(𝑟′′ | 𝜉) = 𝑔+(𝜉 | 𝑟′′) (𝜉 > 𝑟′′ ≥ 𝑟′′0 ).

(13b)

It is specialized for the case 𝑛 = 1, 𝑘 = 0 as:

𝑔+1 (𝑟
′′ | 𝜉) = 𝜉

2𝑟′′
−
𝑟′′20

2𝑟′′𝜉
(𝑟′′ > 𝜉 ≥ 𝑟′′0 ), (14a)

𝑔−1 (𝑟
′′ | 𝜉) = 𝑟′′

2𝜉
−
𝑟′′20

2𝑟′′𝜉
(𝜉 > 𝑟′′ ≥ 𝑟′′0 ). (14b)
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Then168

𝑣̂𝑟1(𝑟′′) =
∫ ∞

0
𝐹 (𝑧)𝑔1(𝑟′′ | 𝑧) d𝑧, 𝐹 (𝑧) = −i𝜔0

[
𝐻

(1)
1 (𝑧

√
i𝜔0)

𝐻
(1)
1 ((𝑟′′0

√
i𝜔0)

]2

, (15)

which gives

𝑣̂𝑟1(𝑟′′) = − i𝜔0

2𝑟′′
[
𝐻

(1)
1

(
𝑟′′0

√
i𝜔0

)]2

{∫ 𝑟 ′′

𝑟 ′′0

𝑧

[
𝐻

(1)
1

(
𝑧
√︁

i𝜔0

)]2
d𝑧

+ 𝑟′′2
∫ ∞

𝑟 ′′

1
𝑧

[
𝐻

(1)
1

(
𝑧
√︁

i𝜔0

)]2
d𝑧 − 𝑟′′20

∫ ∞

𝑟 ′′0

1
𝑧

[
𝐻

(1)
1

(
𝑧
√︁

i𝜔0

)]2
d𝑧

}
. (16)

Next we use the large-argument asymptotic form of the Hankel function to write169 [
𝐻

(1)
1

(
𝑦
√︁

i𝜔0

)]2
≃ 2
𝜋𝑦

√
i𝜔0

exp
(
2i𝑦

√︁
i𝜔0

)
, (𝑦 = 𝑟′′0 , 𝑧). (17)

This substitution allows the integrals in (16) to be evaluated analytically for 𝑆1/2 ≫

1, and the product of radial velocity and radial distance can be written in terms of

re-scaled radial distance 𝑟′′/𝑟′′0 = 𝑟/𝑟0 as follows:

𝑟′′𝑣̂𝑟1(𝑟′′) =
1
4
− 3(1 + i)

√
2

16
√
𝑆

+
(1 + i)

[
3
√

2 − 2(1 − i) (𝑟′′/𝑟′′0 )
√
𝑆

]
exp

[√
2𝑆(1 − 𝑟′′/𝑟′′0 ) (1 − i)

]
16

√
𝑆(𝑟′′/𝑟′′0 )2

, (18)

where 𝑆 = Ω𝑟2
0/𝜈0 = 𝜔0𝑟

′′2
0 is the conventional Stokes number. This function170

vanishes at 𝑟′′ = 𝑟′′0 by virtue of the Green’s function (14b). For large Stokes171

numbers and outside the viscous boundary layer, the first term dominates, and this172

formula becomes:173

𝑟′′𝑣̂𝑟1(𝑟′′) ≃
1
4
. (19)

Examples of inner-solution velocity profiles are presented in Fig. 2.174
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Figure 2: (a) Real and (b) imaginary parts of inner-solution radial velocity multiplied by radial

distance 𝑟 ′′ and plotted against scaled radial distance 𝑟 ′′/𝑎, for three values of Stokes number 𝑆.

Naturally, this solution is for the inner zone, and the thickness of the boundary175

layer collapses as the Stokes number increases. Ep. (19) gives the purely real176

velocity at the outer edge of the boundary layer, which is the asymptote for velocity177

profiles given by (18) at all Stokes numbers. Imaginary parts of velocities from (18)178

attain the same maximum at different positions for different Stokes numbers and179

vanish at different rates.180

Substituting (19) into Eq. (3b) and converting to dimensional form gives the181

inner solution for the radial velocity outside the viscous boundary layer to order182

𝑀2,183

𝑢𝑟 (𝑟, 𝑡) =
1
4
𝜈0
𝑟

(
𝑈

𝑐0

)2
e−2iΩ𝑡 =

1
4
𝑐0
𝑟0
𝑟

𝐾𝑀2

𝑆
e−2iΩ𝑡 , (20)
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where 𝐾 = Ω𝑟0/𝑐0 is the Helmholtz number and the real part of phasor quantities184

is henceforth implied.185

The radial velocity extrapolated back to the surface of the cylinder is predicted186

by (20) as187

𝑢𝑟 (𝑟0, 𝑡) ≃
1
4
𝑐0
𝐾𝑀2

𝑆
e−2iΩ𝑡 , (21)

Obviously, it does not satisfy the Dirichlet boundary condition, and Lauvstad [9]188

followed the rigorous procedure of matching the inner (nonlinear viscous) and189

outer (linear acoustic) solutions inside and outside the boundary layer.190

However, inspection of the velocity profiles in Fig. 2 provides an incentive191

to use a much simpler method of patching. We consider (21) as a source of the192

acoustic far field pressure, and assume that the viscous boundary layer thickness is193

so small that the formula for 𝑢𝑟 (𝑟0, 𝑡) may be used just as a boundary condition for194

the conventional linear acoustics problem. We also follow Lauvstad in assuming195

𝐾 ≪ 1; this assumption is introduced at Eq. (34) in [9]. Then the dimensional196

time-harmonic velocity potential is:197

𝜑(𝑟, 𝑡) = −𝜋i
8
𝐾2𝑀2

𝑆

𝑐2
0
Ω
𝐻

(1)
0

(
2Ω𝑟
𝑐0

)
e−2iΩ𝑡 . (22)

The acoustic pressure becomes198

𝑝′(𝑟, 𝑡) = 𝜋

4
𝜌0𝑐

2
0
𝐾2𝑀2

𝑆
𝐻

(1)
0

(
2Ω𝑟
𝑐0

)
e−2iΩ𝑡 . (23)

In the far field we have199

𝑝′(𝑟, 𝑡) =
√
𝜋

4
𝜌0𝑐

2
0

(
Ω𝑟0
𝑐0

)3/2
𝜈0

Ω𝑟2
0

(
𝑈

𝑐0

)2 √︂
𝑟0
𝑟

exp [−i (2Ω(𝑡 − 𝑟/𝑐0) + 𝜋/4)] .

(24)

Then200

|𝑝′(𝑟, 𝑡) |
𝜌0𝑈2 =

√
𝜋

4

(
Ω𝑟0
𝑐0

)3/2
𝜈0

Ω𝑟2
0

√︂
𝑟0
𝑟

=
1
4

√︂
𝜋𝑐0
Ω𝑟

Ω𝜈0

𝑐2
0
. (25)
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This result perfectly agrees with Eq. (59) in Sec. 5.6.201

In Lauvstad [9], the classical van Dyke method is used to match the solution of202

the inner problem to the conventional solution of the outer linear acoustic problem.203

The possible problem with this method, pointed out by Lesser and Crighton [15],204

of logarithmic gauge functions and ‘switchback’ does not arise in this problem.205

The end result is given in dimensional form as Eq. (43) by Lauvstad [9]. When206

corrected by a factor of 1
2 , as has been explained, this becomes:207

𝜌(𝑟, 𝑡) − 𝜌0 =

√
𝜋

4
𝜌0𝑀

2𝜀𝜇

(
1

√
𝑘0𝑟

)
exp

[
2i𝑘0(𝑟 − 𝑐0𝑡) +

3i𝜋
4

]
, (26)

where 𝜀𝜇 = 𝜈0Ω/𝑐2
0 corresponds to symbol 𝑆 in [9], where it is referred to as208

the modified Stokes number. To avoid confusion with our Stokes number defined209

following Eq. (18), we have replaced Lauvstad’s 𝑆 with the symbol 𝜀𝜇 in the210

present main text.211

The pressure fluctuations are related to the density fluctuations in the conven-212

tional way,213

𝑝′(𝑟, 𝑡) = 𝑐2
0 [𝜌(𝑟, 𝑡) − 𝜌0] . (27)

The acoustic far-field pressure corresponding to (26) is then214

𝑝′(𝑟, 𝑡) = 𝜌0𝑐
2
0

1
4

√︂
𝜋𝑐0
Ω𝑟

(
𝑈

𝑐0

)2
Ω𝜈0

𝑐2
0

exp
[
2i
Ω

𝑐0
(𝑟 − 𝑐0𝑡) +

3i𝜋
4

]
, (28)

giving the non-dimensional pressure amplitude for 𝐾 ≪ 1 as215

|𝑝′(𝑟, 𝑡) |
𝜌0𝑈2 =

1
4

√︂
𝜋𝑐0
Ω𝑟

Ω𝜈0

𝑐2
0
. (29)

Lauvstad’s corrected pressure amplitude in (29) agrees with the result in (25) and216

with Eq. (59) in Sec. (5.6). However there is a sign difference between Eq. (28)217

and the corrsponding result from Sec. 5 which remains unexplained.218
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4. Outline of the weakly thermoviscous acoustic analogy equation219

An acoustic analogy consists of an exact rearrangement of the governing equations220

with a propagation operator applied to the variable of interest on the left-hand side,221

and with the remaining terms interpreted as equivalent sources for that variable. In222

Lighthill’s original acoustic analogy [1] the propagation operator was the lossless223

wave operator and the variable of interest was the density fluctuation, and this224

was also the case for its extensions to bounded domains by Curle [2] and by225

Ffowcs Williams and Hawkings [13].226

As remarked in the introduction, the application by Lauvstad and Meecham227

[5] of Curle’s form of Lighthill’s acoustic analogy failed to replicate the matched228

asymptotic result of Lauvstad [9]. This failure follows from their use of the large229

Stokes number approximation 𝑆 ≫ 1 which, when combined with Curle’s formu-230

lation [2], leads to volume and surface terms that cancel to lowest order. We show231

below that the problem disappears if one uses the more general Ffowcs Williams232

and Hawkings formulation [13] together with a Neumann Green’s function, rather233

than the free-field Green’s function implicit in [2]; there is then no surface term,234

and the lowest-order large-𝑆 approximation gives a finite result.235

If, however, we wish to generalize the problem to allow for the fluid not being236

an ideal gas, or even for realistic gases with 𝛾 > 1, the Lighthill analogy runs into237

difficuties because the flow is no longer isothermal. The resulting temperature238

perturbations lead to linear heat conduction terms in the apparent source distribu-239

tion, violating the basic premise of the acoustic analogy approach that no linear240

volume terms should appear. In this section we describe a thermoviscous-fluid241

acoustic analogy that leads to purely nonlinear volume source terms. Applying242

the modified analogy allows us in the remaining sections to solve the generalized243
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version of Lauvstad’s rotating-cylinder problem.244

Infinitesimal disturbances to a uniform thermoviscous fluid at rest have three245

modes of propagation: acoustic, entropy and vorticity [10, 11, 12, 16]. Our analogy246

uses the acoustic-mode wave operator, together with a version of the acoustic-mode247

variable that corresponds to the weakly-thermoviscous approximation as developed248

in Pierce [11], Sec. 10-3. Our acoustic wave variable will be defined by249

𝑝′mod = 𝑐2
0(𝜌

★ − 𝜌0) − 𝜇Θ𝑠, (30)

where 𝜇 = (𝜇𝐿 − 𝜅/𝑐𝑝0) and 𝜇𝐿 is the longitudinal viscosity 4
3𝜇 + 𝜇𝐵; 𝜅 is the250

thermal conductivity, and 𝑐𝑝 is the constant-pressure specific heat. Symbol 𝜌★251

is the isentropic density 𝜌★ = 𝜌(𝑝, 𝑠0), with 𝑠 denoting the specific entropy, and252

the quantity Θ𝑠 = (𝛼𝑇/𝑐𝑝)D𝑠′/D𝑡 is the dilatation rate associated with entropy253

changes following a fluid particle.254

Note that for a fluid with Prandtl number 3
4 and 𝜇𝐵 = 0, as assumed in [12],255

𝜇 vanishes. The subtracted term in Eq. (30) represents the entropy-mode com-256

ponent of the pressure perturbation. Outside any thermoviscous boundary layers,257

the acoustic-mode pressure variable 𝑝′mod → 𝑝′ in the limit of small pressure258

perturbations 𝑝′ ≪ 𝜌0𝑐
2
0.259

The equations of motion for a bounded compressible fluid, with 𝜇, 𝜇𝐵 and 𝜅 all260

assumed constant [14], can be rearranged without approximation to give a forced261

acoustic wave equation,262 {
1
𝑐2

0

𝜕2

𝜕𝑡2
− (1 + D)∇2

}
(𝑝′mod H) = Γvol + Γsurf, (31)

where D is a damping operator defined below. The left-hand side of Eq. (31)263

corresponds to the linearized acoustic mode equation in a uniform thermoviscous264
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fluid at rest with sound speed 𝑐0. The wave operator in Eq. (31) is equivalent265

to that used in Eq. (10-3.13) of Pierce [11], which can be recovered by dividing266

Eq. (31) by (1 + D) and dropping 𝑂 (𝜀2) terms.267

The spatial window function H is the unit step function H( 𝑓 ) , whose derivative268

is the delta function 𝛿( 𝑓 ). Their argument 𝑓 (x, 𝑡) is an indicator function, positive269

in the fluid region V and negative in the complementary region V , with 𝑓 = 0270

on the common interface S; thus H = 1 in V and H = 0 in V. Ep. (31) differs271

in two main respects from the windowed-variable acoustic analogy introduced by272

Ffowcs Williams and Hawkings [13]. First, 𝑝′mod contains an additional term [10,273

11] that cancels the entropy-mode component of 𝑝′ in the weakly thermoviscous274

limit, thus ensuring that Γvol contains no linear terms. Secondly, the acoustic275

wave operator on the left allows for long-range attenuation of sound, via the276

thermoviscous damping operator277

D =
[
𝜇𝐿 + (𝛾0 − 1)𝜅/𝑐𝑝0

] 1
𝜌0𝑐

2
0

𝜕

𝜕𝑡
. (32)

In order to apply Eq. (31) to the oscillating-cylinder problem where the sound278

field has angular frequency 2Ω, the thermoviscous frequency parameters 𝜀𝐿 =279

2Ω𝜇𝐿/𝜌0𝑐
2
0 and 𝜀𝜅 = 2Ω𝜒0/𝑐2

0 need to be much less than 1, where 𝜒 = 𝜅/𝜌𝑐𝑝280

denotes the thermal diffusivity of the fluid. The relative error in Eq. (31) is then281

Δ = 𝑂 (𝜀), where 𝜀 = max(𝜀𝐿 , 𝜀𝜅).282

To within relative error Δ = 𝑂 (𝜀), the volume source distribution in Eq. (31)283

is free of terms linear in perturbation variables, in contrast to earlier acoustic284

analogy formulations. Thus the Γvol source terms in Eq. (31) are of second or285

higher order in the perturbation quantities u, 𝑝′, 𝑠′, 𝑇 ′ etc. If one limits attention286

to second-order terms, then of the six possible bilateral combinations among the287

acoustic, entropy and vorticity modes only one is relevant to the present problem,288
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since the linear field is confined to the vorticity mode. A detailed analysis in the289

time domain yields the dominant vorticity–vorticity interaction terms responsible290

for acoustic mode generation as follows:291

Γvol ≃ 𝜌0
𝜕

𝜕𝑡
(𝑎 ¤𝐷 H) + 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝜌0𝑢𝑖𝑢 𝑗 H). (33)

Here ¤𝐷 is the viscous dissipation rate per unit volume, and 𝑎 is the fluid thermal-292

expansion parameter 𝛼/𝜌𝑐𝑝, where 𝛼 is the fluid’s thermal expansivity. In order293

to arrive at Eq. (33), each term in the exact Γvol expression has been scaled using a294

quasilinear assumption; the far-field pressures contributed by each term can then295

be ordered with respect to the small parameters 𝜀𝐿 and 𝜀𝜅 defined earlier. The Γvol296

expression above is an asymptotic approximation, based on the vorticity–vorticity297

terms whose contributions to 𝑝′ in the far field are of lowest order in (𝜀𝐿 , 𝜀𝜅).298

The surface source distribution Γsurf, on the other hand, does contain linear299

components. We choose |∇ 𝑓 | = 1 on S, so that300

𝜕 H
𝜕𝑥𝑖

= 𝑛̂𝑖𝛿( 𝑓 ) (34)

where n̂ is the unit normal to S pointing into V. For the rotating-cylinder301

application, S is chosen to coincide with the cylinder surface, so may be taken as302

impermeable. Then Γsurf is given by303

Γsurf ≃ 𝜌0
𝜕

𝜕𝑡
[(u · n̂ + 𝑎q · n̂)𝛿( 𝑓 )] + div [𝜇(𝜔𝜔𝜔 × n̂)𝛿( 𝑓 )] − div

[
𝑝′modn̂𝛿( 𝑓 )

]
,

(35)

where q is the heat flux and 𝑎 = 𝛼/𝜌𝑐𝑝. The 𝜇(𝜔𝜔𝜔 × n̂) term, where 𝜔𝜔𝜔 is304

the vorticity, corresponds to Section 10-6 of Pierce’s textbook [11], where the305

Kirchhoff–Helmholtz representation is modified to include viscosity effects. A306

linearized version of (31) and (35), with Γvol = 0, was developed by Morfey et al.307
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[8] with no restriction placed on 𝜀𝐿 . However, their result was limited to fluids308

with zero thermal expansivity 𝛼; the heat flux term in (35) was therefore absent.309

The u · n̂ term in Eq. (35) vanishes for the rotating-cylinder problem, since310

the normal velocity on the boundary is zero. Likewise the tangential-dipole term311

div [𝜇(𝜔𝜔𝜔 × n̂)𝛿( 𝑓 )] is zero by symmetry, while the normal-dipole term in 𝑝′mod312

can be eliminated by using the Neumann Green’s function to solve for the pressure313

field. This leaves the q · n̂ term, which we can remove only by choosing an314

adiabatic boundary condition at the cylinder surface. Any alternative requires315

formulating an extra equation for the entropy perturbation 𝑠′, which is possible but316

more complicated and is discussed in Sec. 6.317

5. Acoustic analogy results for the oscillating cylinder318

5.1. Vorticity equation for axisymmetric two-dimensional flow319

Provided rotational symmetry about the cylinder’s axis is maintained, with ve-320

locity u =
[
0, 𝑢𝑟 (𝑟, 𝑡), 𝑢𝜙 (𝑟, 𝑡)

]
, vorticity 𝜔𝜔𝜔 = [𝜔𝑥 (𝑟, 𝑡), 0, 0] and 𝜌 = 𝜌(𝑟, 𝑡) in321

cylindrical (𝑥, 𝑟, 𝜙) coordinates, the nonlinear vorticity equation for axisymmetric322

flow of a compressible fluid with constant shear and bulk viscosity is given by323

𝜕𝜔𝑥

𝜕𝑡
+ 1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟𝜔𝑥) = 𝜇

[
𝜕𝜌−1

𝜕𝑟

𝜕𝜔𝑥

𝜕𝑟
+ 𝜌−1

(
𝜕2𝜔𝑥

𝜕𝑟2 + 1
𝑟

𝜕𝜔𝑥

𝜕𝑟

)]
. (36)

This equation follows from Eqs. (1b, c) on dividing by 𝜌 and taking the curl.324

In the limiting case of small perturbations to a uniform fluid at rest, with initial325

density 𝜌 = 𝜌0, Eq. (36) reduces to a linear equation describing the diffusion of326

vorticity,327

𝜕𝜔𝑥

𝜕𝑡
− 𝜈0

(
𝜕2𝜔𝑥

𝜕𝑟2 + 1
𝑟

𝜕𝜔𝑥

𝜕𝑟

)
= 0, (𝜈0 = 𝜇/𝜌0). (37)
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5.2. Linear solution for the velocity field328

The velocity field corresponding to Eq. (37) is solenoidal, with the velocity ex-329

pressible in terms of a vector potential w:330

u = curl w, div u = 0. (38)

The vorticity follows as 𝜔𝜔𝜔 = curl u = −∇2w. In (𝑥, 𝑟, 𝜙) cylindrical coordinates,331

the symmetry of the problem gives the flow field as332

w = w(𝑟, 𝑡) = (𝑤𝑥 , 0, 0); u = u(𝑟, 𝑡) = (0, 0, 𝑢𝜙). (39)

For harmonic oscillations with time factor e−iΩ𝑡 , the vector potential w is the real333

part of the phasor ŵe−iΩ𝑡 . The complex amplitude ŵ(𝑟 > 𝑟0), where 𝑟0 is the334

cylinder radius, satisfies a Helmholtz equation that follows from Eq. (37):335 (
∇2 + 𝑘2

𝑤

)
ŵ = 0, 𝑘2

𝑤 =
iΩ
𝜈0
. (40)

The component of (40) in the 𝑥 direction is the homogeneous Bessel equation336

1
𝑟

d
d𝑟

(
𝑟

d𝑤̂𝑥
d𝑟

)
+ 𝑘2

𝑤𝑤̂𝑥 = 0, 𝑟 > 𝑟0, (41)

with outgoing-wave solution 𝑤̂𝑥 ∝ H (1)
0 (𝑘𝑤𝑟). The fluid circumferential velocity337

𝑢𝜙 (𝑟, 𝑡) = Re
(
𝑢̂𝜙e−iΩ𝑡 ) then follows as338

𝑢̂𝜙 (𝑟) = −d𝑤̂𝑥
d𝑟

= 𝑈
H (1)

1 (𝑘𝑤𝑟)

H (1)
1 (𝑘𝑤𝑟0)

, 𝑟 > 𝑟0, (42)

where 𝑈 (taken as real) is the amplitude of the tangential velocity at the cylinder339

surface.340
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5.3. Acoustic analogy formulation341

The weakly thermoviscous acoustic analogy equation can be used to relate the342

sound field of the oscillating cylinder to the velocity field in the viscous boundary343

layer. The final result depends on the thermal boundary condition applied at the344

cylinder surface. We assume initially for simplicity that the boundary is adiabatic,345

since this eliminates the one significant boundary source term (for details, see346

Sec. 4). The dominant volume sources of sound then follow from Eq. (33). They347

comprise a quadrupole density 𝑞𝜙𝜙 and a monopole density 𝑞, given to leading348

order by349

𝑞𝜙𝜙 (𝑟, 𝑡) ≃ 𝜌0𝑢
2
𝜙; 𝑞(𝑟, 𝑡) ≃ 𝜌0𝑎0

𝜕 ¤𝐷
𝜕𝑡
. (43)

The role of unsteady dissipation in sound generation, represented by the monopole350

term in Eq. (43), was discussed theoretically and demonstrated experimentally by351

Kambe and Minota [17] and Minota and Kambe [18]. Viscous energy dissipation352

in the flow around the cylinder is confined to the viscous boundary layer, and is353

related to the velocity field by354

¤𝐷 = 𝜇

(
𝜕𝑢𝜙

𝜕𝑟
−
𝑢𝜙

𝑟

)2
. (44)

In (43) 𝑢2
𝜙

and ¤𝐷 both contain a mean component which does not radiate, plus a355

component at angular frequency 2Ω. It follows from Eqs. (42–44) that the relevant356

source terms are 𝑞𝜙𝜙 (𝑟, 𝑡) = Re
(
𝑞𝜙𝜙e−2iΩ𝑡 ) and 𝑞(𝑟, 𝑡) = Re

[
𝑞e−2iΩ𝑡 ] , where357

𝑞𝜙𝜙 (𝑟) = 1
2𝜌0𝑈

2

{
H (1)

1
[
(i𝑆)1/2 𝑟/𝑟0

]
H (1)

1
[
(i𝑆)1/2

] }2

, 𝑞(𝑟) = 𝜌2
0𝑎0Ω

2𝑈2

{
H (1)

2
[
(i𝑆)1/2 𝑟/𝑟0

]
H (1)

1
[
(i𝑆)1/2

] }2

.

(45)

The relation (𝑘𝑤𝑟0)2 = i𝑆 has been used in (45), where 𝑆 is the Stokes number358

Ω𝑟2
0/𝜈0.359
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5.4. Green’s function solutions360

The quadrupole component of the radiated pressure outside the boundary layer is361

represented in what follows by 𝑝′1 = Re
[
𝑝1(𝑟)e−2iΩ𝑡 ] , and the monopole compo-362

nent by 𝑝′2 = Re
[
𝑝2(𝑟)e−2iΩ𝑡 ] . To relate these to 𝑞𝜙𝜙 and 𝑞 respectively, we use363

the Neumann acoustic Green’s function 𝑔(𝑟 | 𝜉; 𝑛 = 0) whose value 𝑔+ in 𝑟 > 𝜉364

represents axisymmetric outgoing waves and has gradient 𝜕𝑔+/𝜕𝜉 = 0 in the limit365

𝜉 → 𝑟0. The governing equation is366 {
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕

𝜕𝑟

)
+ 𝑘2

𝑎

}
𝑔(𝑟 | 𝜉) = −1

𝑟
𝛿(𝑟 − 𝜉), (𝑟, 𝜉) ≥ 𝑟0. (46)

The acoustic wavenumber 𝑘𝑎 in (46) can be substituted by2Ω/𝑐0 = 𝑘 in the present367

weakly thermoviscous approximation, provided 𝑟 is not so large that attenuation368

due to viscosity and heat conduction becomes significant. The resulting relative369

error in the Green’s function is of order 𝜀 = max(𝜀𝐿 , 𝜀𝜅) where 𝜀𝐿 = 2Ω𝜇𝐿/𝜌0𝑐
2
0370

and 𝜀𝜅 = 2Ω𝜒0/𝑐2
0 are the dimensionless frequency parameters defined in Sec. 4.371

The solution of (46) for 𝑟 > 𝜉 is then372

𝑔+(𝑟 | 𝜉) = 𝜋

2
[𝐽1(𝑘𝑟0)𝑌0(𝑘𝜉) − 𝑌1(𝑘𝑟0)𝐽0(𝑘𝜉)]

𝐻
(1)
0 (𝑘𝑟)

𝐻
(1)
1 (𝑘𝑟0)

. (47)

With 𝜉 = (1 + 𝑦)𝑟0, 𝑔+(𝑟 | 𝜉) may be expanded in powers of 𝑘 (𝜉 − 𝑟0) = 2𝐾𝑦 to

give

𝑔+(𝑟 | 𝜉) ≃
𝐻

(1)
0 (𝑘𝑟)

2𝐾𝐻 (1)
1 (2𝐾)

[
1 − 2𝐾2𝑦2 + 2

3𝐾
2𝑦3 − 1

2𝐾
2𝑦4 + · · ·

]
, 𝐾 = Ω𝑟0/𝑐0;

(48)

𝜕

𝜕𝜉
𝑔+(𝑟 | 𝜉) ≃ 2Ω

𝑐0

𝐻
(1)
0 (𝑘𝑟)

𝐻
(1)
1 (2𝐾)

[
−𝑦 + 1

2 𝑦
2 − 1

2 𝑦
3 + · · ·

]
. (49)

For points 𝜉 within the boundary layer, the parameter 𝐾𝑦 is of order 1
2 𝑘𝛿 =373 (

Ω𝜈0/𝑐2
0

)1/2
, where 𝛿 = (𝜈0/Ω)1/2 is a measure of the viscous boundary-layer374
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thickness. Since Ω𝜈0/𝑐2
0 = 𝐾2/𝑆 has to be small for the weakly thermoviscous375

approximation to be valid, convergence of the series in (48) and (49) is assured for376

all values of 𝜉 within the boundary layer. However, several terms may be required377

if 𝛿 is comparable with 𝑟0 , which would lead to 𝑦 being of order 1.378

For purposes of this discussion we follow Lauvstad [9] and restrict attention379

from here on to large Stokes numbers (𝑆 ≫ 1), so the boundary layer thickness is380

much less than the cylinder radius. The pressure field outside the boundary layer381

due to each source component is given by382

𝑝1(𝑟) ≃
∫ ∞

𝑟0

𝑞𝜙𝜙 (𝜉)
𝜕

𝜕𝜉
𝑔+(𝑟 | 𝜉) d𝜉, 𝑝2(𝑟) ≃

∫ ∞

𝑟0

𝜉𝑞(𝜉)𝑔+(𝑟 | 𝜉) d𝜉, (50)

with relative error𝑂 (𝜀). Substituting 𝑞𝜙𝜙 and 𝑞 from (45), with the expansions of

𝑔+(𝑟 | 𝜉) and 𝜕𝑔+/𝜕𝜉 truncated after the first term, gives

𝑝1(𝑟)
𝜌0𝑈2 ≃ −𝐽 (𝑆) 𝐾

𝐻
(1)
1 (2𝐾)

𝐻
(1)
0

(
2Ω𝑟
𝑐0

)
, (51)

𝑝2(𝑟)
𝜌0𝑈2 ≃ 1

2𝐵0𝐼 (𝑆)
𝐾

𝐻
(1)
1 (2𝐾)

𝐻
(1)
0

(
2Ω𝑟
𝑐0

)
. (52)

Here 𝐵 is the non-dimensional fluid property 𝛼𝑐2/𝑐𝑝, equal to (𝛾 − 1) for an ideal383

gas. The coefficients 𝐽 (𝑆), 𝐼 (𝑆) are the non-dimensional integrals defined below:384

𝐽 (𝑆) =
∫ ∞

0

{
𝐻

(1)
1

[
(1 + 𝑦) (i𝑆)1/2)]

𝐻
(1)
1

[
(i𝑆)1/2)]

}2

𝑦 d𝑦, 𝐼 (𝑆) =
∫ ∞

0

{
𝐻

(1)
2

[
(1 + 𝑦) (i𝑆)1/2)]

𝐻
(1)
1

[
(i𝑆)1/2)]

}2

d𝑦.

(53)

5.5. Asymptotic approximations for large 𝑆385

For 𝑆 ≫ 1, replacement of the Hankel functions in (53) by their large-argument386

asymptotic forms gives387

𝐽 (𝑆) ≃
∫ ∞

0

(
𝑦

1 + 𝑦

)
e2i(i𝑆)1/2𝑦d𝑦, 𝐼 (𝑆) ≃

∫ ∞

0

(
−1

1 + 𝑦

)
e2i(i𝑆)1/2𝑦d𝑦. (54)
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The integrals in (54) may be expanded in inverse powers of 𝑆1/2 by using the388

binomial theorem to expand (1+𝑦)−1, and integrating by parts to obtain a recurrence389

relation between successive terms. Thus for integrals of this form with exponent390

𝑏𝑦, provided Re(𝑏) < 0, we have391 ∫ ∞

0

(
𝑦

1 + 𝑦

)
e𝑏𝑦d𝑦 =

1
𝑏2+

2
𝑏3+

3
𝑏4+· · · ,

∫ ∞

0

(
−1

1 + 𝑦

)
e𝑏𝑦d𝑦 =

1
𝑏
+ 1
𝑏2+

1
𝑏3+· · · ,

(55)

which with 𝑏 = 2i(i𝑆)1/2 yields392

𝐽 (𝑆) ≃ 1
4

(
i
𝑆

)
−1

4

(
i
𝑆

)3/2
+ 3

16

(
i
𝑆

)2
−· · · , 𝐼 (𝑆) ≃ −1

2

(
i
𝑆

)1/2
+1

4

(
i
𝑆

)
−1

8

(
i
𝑆

)3/2
+· · · .

(56)

5.6. Far-field radiated pressure393

In the acoustic far field (2Ω𝑟/𝑐0 ≫ 1), Eqs. (51), (52) and (56) give the quadrupole

and monopole complex pressure amplitudes as follows, in the limit 𝑆 ≫ 1.

𝑝1(𝑟)
𝜌0𝑈2 ≃ −1

4𝜋1/2

(𝑟0
𝑟

)1/2 𝐾1/2/𝑆
H (1)

1 (2𝐾)
ei(𝑘𝑟+𝜋/4) , (57)

𝑝2(𝑟)
𝜌0𝑈2 ≃ −1

4𝜋1/2𝐵0

(𝑟0
𝑟

)1/2 (𝐾/𝑆)1/2

H (1)
1 (2𝐾)

ei𝑘𝑟 . (58)

Comparison of (57) and (58) shows that |𝑝2(𝑟) | is larger than |𝑝1(𝑟) | by a fac-394

tor 𝐵0𝑆
1/2. The reason for the difference is that radiation from the 𝜙𝜙 volume395

quadrupole distribution is partially suppressed by the Neumann boundary condi-396

tion at 𝑟 = 𝑟0, as follows from Eqs. (49) and (50) above. Had we used a free-field397

rather than a Neumann Green’s function to calculate the quadrupole sound, the398

same end result would have been obtained, but the source terms would have in-399

cluded a normal-dipole term related to the pressure on the boundary at 𝑟 = 𝑟0 (see400

Sec. 5.8 and Sec. 4). However the normal-dipole term and the volume quadrupole401
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term cancel to lowest order in 𝑆−1/2 (the ratio of viscous penetration depth to402

cylinder radius). Thus the free-field Green’s function can be misleading when403

approximations are used, as was found earlier by Lauvstad and Meecham [5].404

For the acoustically compact special case 𝐾 ≪ 1, where the cylinder radius is405

much smaller than the sound wavelength 𝜆, Eqs. (57) and (58) reduce to406 {
𝑝1(𝑟)
𝜌0𝑈2 ,

𝑝2(𝑟)
𝜌0𝑈2

}
≃ 1

4
𝜋1/2

(𝑟0
𝑟

)1/2
ei𝑘𝑟

{
(𝐾3/2/𝑆)e−i𝜋/4, 𝐵0𝐾

1/2𝜀
1/2
𝜇 e−i𝜋/2

}
, (59)

where the parameter 𝜀𝜇 = Ω𝜈0/𝑐2
0 = (𝜋𝛿/𝜆)2 = 𝐾2/𝑆 has to be small for the407

present acoustic analogy to be valid.408

5.7. Radiated sound power and acoustic conversion efficiency409

A useful parameter for characterizing the far-field radiation from aeroacoustic410

sources is the ratio of the mean sound power output to the mean power dissipated411

by viscous stresses. For oscillatory rotation of an infinite cylinder, the power412

dissipated per unit surface area can be obtained from Eq. (42) by defining the413

tangential impedance 𝑧𝑡 as414

𝑧𝑡 = (−𝜏𝑟𝜙/𝑢̂𝜙)𝑟=𝑟0 , 𝜏𝑟𝜙 = 𝜇

(
𝜕𝑢̂𝜙

𝜕𝑟
−
𝑢̂𝜙

𝑟

)
. (60)

The mean dissipated power per unit cylinder surface area is 1
2𝑈

2 Re(𝑧𝑡). Expressed415

per unit length, the power dissipated follows from (60) and (42) as416

𝑊diss = 𝜋𝑟0𝑈
2 Re(𝑧𝑡) = 𝜋𝜇𝑈2 Re

[
𝑘𝑤𝑟0 H (1)

2 (𝑘𝑤𝑟0)/H (1)
1 (𝑘𝑤𝑟0)

]
, (61)

where 𝑘𝑤 = (iΩ/𝜈0)1/2. In the limit 𝑆1/2 ≫ 1, (61) becomes417

𝑊diss ≃
𝜋

2
𝜇𝑈2(2𝑆)1/2. (62)
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The radiated sound power per unit length of cylinder is418

𝑊rad ≃ 𝜋𝑟 |𝑝(𝑟) |2 /𝜌0𝑐0 (63)

where 𝑝(𝑟) is the far-field pressure, given when 𝑆1/2 ≫ 1 by Eq. (57) for the419

quadrupole mechanism and by Eq. (58) for the monopole mechanism. Acoustic420

attenuation due to viscosity and heat conduction is here neglected for purposes421

of estimating the sound power output, as was done for estimating the Green’s422

function.423

The acoustic conversion efficiencies associated with the two mechanisms follow424

from (62) and (63). Assuming 𝐾2 ≪ 1 as well as 𝑆1/2 ≫ 1 gives425 (
𝑊rad
𝑊diss

)
1
= 𝜂ac,1 ≃ 𝜋

√
2

8
𝑀2𝐾2𝑆−3/2,

(
𝑊rad
𝑊diss

)
2
= 𝜂ac,2 ≃ 𝜋

√
2

8
𝐵2

0𝑀
2𝐾2𝑆−1/2.

(64)

In the opposite case (𝐾2 = 𝜀𝜇𝑆 ≫ 1) where the cylinder radius 𝑟0 is large426

compared with the acoustic wavelength, Eqs. (57) and (58 shows that 𝜂ac,2 becomes427

independent of 𝑟0, while 𝜂ac,1 tends to zero in the flat-plate limit:428

𝜂ac,1 ≃
√

2
16

𝑀2𝜀
1/2
𝜇 𝑆−1, 𝜂ac,2 ≃

√
2

16
𝐵2

0𝑀
2𝜀

1/2
𝜇 . (65)

It is interesting to rewrite the conversion efficiencies in Eq. (64) in terms of429

the nonlinearity parameter 𝑁 = 𝜉max/𝛿 = 𝑀/𝜀1/2
𝜇 where 𝜉max is the maximum430

displacement 𝑈/Ω of the cylinder surface. The 𝑁 value determines the stability431

of the viscous boundary layer in the flat-plate limit 𝑆1/2 ≫ 1 (see Appendix A).432

Ep. (64) becomes433

𝜂ac,1 ≃
√

2
8
𝜋𝑁2𝜀2

𝜇𝑆
−1/2, 𝜂ac,2 ≃

√
2

8
𝜋𝐵2

0𝑁
2𝜀

3/2
𝜇 𝐾 (𝐾2 = 𝜀𝜇𝑆 ≪ 1, 𝑆1/2 ≫ 1).

(66)

Once 𝑁 reaches around 350, the viscous boundary layer becomes turbulent and434

the present description of the sound radiation breaks down.435
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5.8. Comparison with previous results436

In Lauvstad’s matched asymptotic expansion calculation [9], reviewed in Sec. 3,437

it is assumed that 𝐾2 ≪ 1 as well as (𝑆1/2 ≫ 1, 𝑀2 ≪ 1). With the correction438

factor 1
2 noted in Sec. 3, Lauvstad’s far-field pressure agrees with our quadrupole439

result in Eq. (59) apart from the sign.440

In a later paper, Meecham [19] adopted the simple-source approach of Ribner441

[20, 21, 22] and treated the cylinder as a line monopole source in a general fluid,442

again assuming 𝐾2 ≪ 1 as well as (𝑆1/2 ≫ 1, 𝑀2 ≪ 1). By combining this source443

model with a free-field Green’s function, and doubling the source strength to allow444

for reflection by the cylinder, a far-field pressure result was found that agrees with445

the quadrupole component in Eq. (59). However in the limit𝐾2 ≪ 1, the Neumann446

and free-field Green’s functions for radiation from sources on the boundary are447

the same. The source strength should therefore not have been doubled, and the448

agreement in [19] appears to result from two errors cancelling.449

As mentioned in Sec. 5.6, Lauvstad and Meecham [5] failed to replicate the450

result of Ref. [9] by using Curle’s acoustic analogy formulation [2]. If we had451

followed Ref. [2] and used a free-field Green’s function when applying our ther-452

moviscous acoustic analogy to the rotating cylinder problem, the 𝑝1 expression in453

Eq. (50) above would have been replaced by454

𝑝1(𝑟) ≃
∫ ∞

𝑟0

𝑞𝜙𝜙 (𝜉)
𝜕

𝜕𝜉
𝑔+∞(𝑟 | 𝜉) d𝜉 + 𝑟0𝑝mod(𝑟0)

𝜕𝑔+∞
𝜕𝜉

����
𝜉=𝑟0

= 𝑝1,𝑉 + 𝑝1,𝑆 . (67)

Here the free-field acoustic Green’s function 𝑔+∞(𝑟 | 𝜉) replaces the Neumann455

Green’s function of Eq. (50), and a surface term 𝑝1,𝑆 appears due to the 𝑝′modn̂456

normal-dipole distribution on the cylinder boundary, as shown in Eq. (35).457

Evaluating the surface term 𝑝1,𝑆 can be done in two ways: either one uses an458

incompressible estimate of the surface pressure to write 𝑝mod(𝑟0) ≃ 𝑝inc(𝑟0) as459
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in [5], or one solves directly for 𝑝mod(𝑟0) by means of a Neumann Green’s function.460

In the limit 𝐾 ≪ 1 these give the same result, because the surface pressure in this461

case is dominated by the quadrupole component 𝑝1. Assuming the boundary is462

adiabatic,463

𝑝mod(𝑟0)
𝜌0𝑈2 ≃ −1

4

(
i
𝑆

)1/2
(𝐾 ≪ 1, 𝑆 ≫ 1). (68)

If 𝐾 is not small Eq. (68) is not valid and the dissipation-generated pressure has464

to be taken into account, as Eq. (82) below indicates. For 𝐾 ≪ 1, however, it is465

interesting to examine the sound field prediction obtained from (67) and (68) since466

it casts light on the failure of Ref. [5] to obtain a result from Curle’s formulation [2].467

The Green’s function derivative (𝜕/𝜕𝜉)𝑔+∞(𝑟 | 𝜉) for 𝑟 > 𝜉 appearing in the468

integral of Eq. (67) is469

𝜕𝑔+∞
𝜕𝜉

= −i
𝜋

2
𝑘𝐽1(𝑘𝜉) H (1)

0 (𝑘𝑟). (69)

Comparison of 𝜕𝑔+∞/𝜕𝜉 with 𝜕𝑔+/𝜕𝜉 from Eq. (49) gives their ratio as 1/(2𝑦)470

where 𝑦 = (𝜉/𝑟0 − 1) ≃ 𝑆−1/2, to lowest order in 𝑦. Thus provided 𝑆1/2 ≫ 1, the471

integral in (67) resembles the 𝑝1(𝑟) integral in (50), but with 𝐽 (𝑆) replaced by472

− 1
2 𝐼 (𝑆). It follows from Eqs. (54) and (56) that 𝑝1,𝑉 (𝑟) ≃ (i/𝑆)−1/2𝑝1(𝑟) to lowest473

order in 𝑆−1/2, so from Eq. (59)474

𝑝1,𝑉 (𝑟)
𝜌0𝑈2 ≃ 1

4
𝜋1/2

(𝑟0
𝑟

)1/2
ei(𝑘𝑟−𝜋/2)𝐾3/2𝑆−1/2. (70)

The surface term 𝑝1,𝑆 in (67) is given by putting 𝜉 = 𝑟0 in Eq. (67) and using (68):475

𝑝1,𝑆 (𝑟)
𝜌0𝑈2 ≃ −1

4
𝜋1/2

(𝑟0
𝑟

)1/2
ei(𝑘𝑟−𝜋/2)𝐾3/2𝑆−1/2. (71)

Equations (70) and (71) show that in the present approximation, the volume and476

surface sources 𝑝1,𝑉 and 𝑝1,𝑆 do indeed cancel.477
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6. Effect of a non-adiabatic boundary condition at the cylinder wall478

On removal of the restriction to an ideal gas with 𝛾 = 1 implied in Lauvstad’s479

analysis [9], not only does dissipative heating take over as the dominant mechanism480

of sound generation, but the far-field pressure amplitude now depends on the481

thermal boundary condition imposed at the cylinder wall 𝑟 = 𝑟0. To demonstrate482

the influence of a non-adiabatic boundary, we recalculate the sound field using the483

isothermal boundary condition 𝑇 ′ = 0 in place of the adiabatic condition q · n̂ = 0484

assumed in Sec. 5. This leads to an additional boundary source term involving the485

normal heat flux q · n̂, as indicated in Eq. (35).486

6.1. Nonlinear equation for the entropy mode487

In order to apply a boundary condition on 𝑇 ′ at the cylinder wall, we require a488

solution for 𝑠(𝑟0) as well as 𝑝mod(𝑟0). The linearized equation that describes the489

entropy mode to lowest order in 𝜀 in a general thermoviscous fluid is [11, 10]490

𝜕𝑠′

𝜕𝑡
− 𝜒0∇2𝑠′ = 0, (72)

but it ceases to be accurate when perturbations from the uniform reference state are491

no longer small. In this section we outline the development of a nonlinear version492

of (72) that describes the generation of the entropy mode in bounded regions with493

relative error Δ = 𝑂 (𝜀), analogous to the weakly thermoviscous acoustic mode494

equation in Sec. 4. As in that case, the resulting equation contains volume source495

terms arising from second-order interactions between first-order perturbations.496

The exact entropy equation for a compressible thermoviscous fluid is given in497

[14], Eq. (49.4) as498

𝜌𝑇
D𝑠
D𝑡

= 𝜏𝑖 𝑗
𝜕𝑢𝑖

𝜕𝑥 𝑗
− div q, (73)
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where 𝜏𝑖 𝑗 are the components of the viscous stress tensor 𝜏𝜏𝜏, and q is the heat flux499

vector. The first term on the right is the rate of viscous energy dissipation, denoted500

by ¤𝐷. We also define the instantaneous rate of energy dissipation per unit volume501

associated with heat flux down a temperature gradient,502

¤𝐷𝑇 = −(q · ∇𝑇)/𝑇 = 𝜅 |∇𝑇 |2/𝑇, (74)

where the second expression applies to a fluid with constant thermal conductivity503

𝜅. If we also assume that the shear viscosity 𝜇 and the bulk viscosity 𝜇𝐵 are504

constant,505

¤𝐷 = ¤𝐷shear+ ¤𝐷vol, with ¤𝐷shear =
1
2
𝜇

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2

3
Θ𝛿𝑖 𝑗

)2
and ¤𝐷vol = 𝜇𝐵Θ

2.

(75)

Ep. (73) can then be written506

𝜌𝑇
D𝑠
D𝑡

= 𝜅𝑇
𝜕

𝜕𝑥𝑖

(
1
𝑇

𝜕𝑇

𝜕𝑥𝑖

)
+ ¤𝐷𝑇 + ¤𝐷. (76)

Note that both ¤𝐷𝑇 and ¤𝐷 are positive definite, as shown by (74) and (75).507

Ep. (76) can be rearranged without approximation to give a forced entropy508

mode equation for the windowed variable 𝑠′ H( 𝑓 ), with the same operator on the509

left as Eq. (72) above:510 {
𝜕

𝜕𝑡
− 𝜒0∇2

}
(𝑠′ H) = Γvol + Γsurf. (77)

To solve for the entropy field in the boundary layer, we note that in the linear511

approximation only the vorticity mode is present, and the dominant vorticity-512

vorticity volume source term is due to dissipative heating. Thus in Eq. (77) we513

have514

Γvol ≃
1
𝜌0𝑇0

¤𝐷 H, (78)
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provided the convective term in D𝑠/D𝑡 (namely 𝑢𝑖𝜕𝑠/𝜕𝑥𝑖 = 𝑢𝑟𝜕𝑠
′/𝜕𝑟) can be515

shown to contribute a vanishingly small fraction of the total material derivative1.516

The weakly thermoviscous asymptotic description on which Eq. (78) is based517

requires 𝜀 = max(𝜀𝐿 , 𝜀𝜅) ≪ 1, as in Eq. (31).518

As in Sec. 4 the boundary S is chosen to coincide with the cylinder surface, so519

may be taken as impermeable. Then Γsurf is given by520

Γsurf ≃
1
𝜌𝑇

q·n̂𝛿( 𝑓 )−
(
𝛼𝜒

𝜌

)
0

[
𝜌

Du
D𝑡

· n̂𝛿( 𝑓 ) + div [𝜇(𝜔𝜔𝜔 × n̂)𝛿( 𝑓 )]
]
−𝜒0 div [𝑠′n̂𝛿( 𝑓 )] .

(79)

The factor (Du/D𝑡) · n̂ in Eq. (79) may be replaced by −𝑢2
𝜙
/𝑟, since the normal521

velocity on the boundary is zero. The tangential-dipole term div [𝜇(𝜔𝜔𝜔 × n̂)𝛿( 𝑓 )],522

where 𝜔𝜔𝜔 is the vorticity, is zero by symmetry; and the normal-dipole term in 𝑠′523

can be eliminated by using the Neumann Green’s function to solve for the entropy524

field. This leaves the q · n̂ term as an unknown, to be determined by setting a525

thermal boundary condition at 𝑟 = 𝑟0.526

The solution procedure for Eq. (77) is similar to that used for the acoustic mode527

in Sec. 5, with the main difference being that we wish to solve for the fluctuating528

entropy at the cylinder boundary, 𝑠′(𝑟0, 𝑡). We shall also need the acoustic-mode529

solution for 𝑝′mod(𝑟0, 𝑡). A thermal boundary condition can then be imposed and530

the unknown heat flux determined.531

6.2. Results for an isothermal cylinder boundary532

To describe the boundary heat flux and associated second-order temperature fluc-533

tuations associated with a non-adiabatic cylinder boundary, we write534

𝑇 ′(𝑟, 𝑡) = Re
[
𝑇 (𝑟)e−2iΩ𝑡 ] , (q · n̂) (𝑟0, 𝑡) = Re

[
ℎ̂e−2iΩ𝑡 ] . (80)

1This is shown to be the case for the generalized oscillating-cylinder problem in Sec. 6.4 below.
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The complex amplitude𝑇 (𝑟) is a combination of acoustic-mode and entropy-mode535

components, given with relative error Δ = 𝑂 (𝜀) by536

𝑇 (𝑟)
𝑇0

≃ 𝐵0

𝜌0𝑐
2
0
𝑝mod(𝑟) +

1
𝑐𝑝0

𝑠(𝑟). (81)

Solving the acoustic-mode equation for 𝑝mod(𝑟0) and the entropy-mode equation537

for 𝑠(𝑟0) gives, assuming 𝑆1/2 ≫ 1 and 𝑃1/2 ≫ 1,538

𝑝mod(𝑟0)
𝜌0𝑈2 ≃ −1

4

(
i
𝑆

)1/2
− 𝐵0

[
1
4

(
i
𝑆

)1/2
𝐾 + iℎ̂

𝜌0𝑐0𝑈2

]
𝐻

(1)
0 (2𝐾)

𝐻
(1)
1 (2𝐾)

, (82)

and539

𝑠(𝑟0)
𝑐𝑝0

≃ 1
𝜅𝑇0

[
1
4
𝑋

𝑆
Ω𝜌0𝑈

2𝑟2
0 +

(
i

2𝑃

)1/2
𝑟0 ℎ̂

]
. (83)

Here 𝑃 = (Pr)𝑆 and 𝑋 =
[
Pr +(2 Pr)1/2]−1, where Pr = 𝑐𝑝0 𝜇/𝜅 is the fluid540

Prandtl number.541

Imposing an isothermal boundary condition 𝑇 (𝑟0) = 0 allows the boundary542

heat flux ℎ̂ to be determined from Eqs. (81)–(83). It turns out that regardless of543

𝐾 , the 𝑝mod(𝑟0) contribution to the boundary temperature may be neglected for544

purposes of estimating ℎ̂, provided (𝑃1/2, 𝑆1/2) ≫ 1. Specifically, if we define545

𝐴 = 𝛼𝑇 = (𝛾−1)/𝐵 the relative error in ℎ̂ is of order 𝐴0(𝑃−1/2+𝑆−1/2) for 𝐾 ≪ 1546

and (𝛾0 − 1) (𝜀1/2
𝜇 + 𝜀1/2

𝜅 ) for 𝐾 ≫ 1. Then547

ℎ̂

𝜌0𝑐0𝑈2 ≃ − 1
4 e−i𝜋/4𝑋𝜀

1/2
𝜇 (isothermal boundary) (84)

where 𝑋 = (2 Pr)1/2𝑋 .548

The acoustic consequence of (84) is that the sound pressure radiated outside549

the boundary layer acquires an extra term550

𝑝3(𝑟) = −2iΩ𝜌0𝑎0𝑟0 ℎ̂𝑔
+(𝑟 | 𝑟0), (85)
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where 𝑔+ is the outgoing-wave acoustic Green’s function introduced in Eq. (47).551

Thus for𝐾 ≪ 1, the adiabatic-boundary results in Eq. (59) for the far-field pressure552

are supplemented by a heat-flux term553

𝑝3(𝑟)
𝜌0𝑈2 ≃ 1

4
𝜋1/2

(𝑟0
𝑟

)1/2
ei(𝑘𝑟+𝜋/2)𝐵0𝐾

1/2𝑋𝜀
1/2
𝜇 . (86)

Comparison of 𝑝3(𝑟) from (86) with 𝑝2(𝑟) from Eq. (59) shows the two pressure554

components to be of opposite sign, with |𝑝3 |/|𝑝2 | = 𝑋 =

(
1 +

√︁
Pr/2

)−1
. As555

Pr → 0, 𝑋 → 1 and these two contributions cancel, leaving the much smaller556

quadrupole component 𝑝1(𝑟).557

6.3. Generalized thermal boundary condition558

Our two assumptions of an adiabatic or isothermal rigid boundary at 𝑟 = 𝑟0 may559

be viewed as limiting cases of a solid cylinder that is heat-conducting, but does560

not expand on heating (to ensure 𝑢𝑟 = 0 at the boundary). If the thermal boundary561

condition for this generalized case is written as ℎ̂ = −𝛽𝑇 (𝑟0), and we assume562

the thermal penetration depth in the solid to be small compared with the cylinder563

radius, it follows that564

𝛽 ≃ 𝜅𝑠
(
2Ω
𝜒𝑠

)
e−i𝜋/4, (87)

where 𝜅𝑠 and 𝜒𝑠 are respectively the thermal conductivity and thermal diffusivity565

of the solid material. Solving for ℎ̂ then gives566

ℎ̂ = 𝑍ℎ̂isothermal, with 𝑍 =

[
1 + 𝜅

𝜅𝑠

(
𝜒𝑠

𝜒0

)1/2
]−1

. (88)

The sum 𝑝2 + 𝑝3 is now (1 − 𝑍𝑋) times 𝑝2. The isothermal result 𝑍 = 1 is567

recovered in the limit (𝜅𝜌𝑐𝑝)𝑠/(𝜅𝜌𝑐𝑝)0 → ∞.568
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6.4. Source terms omitted from the nonlinear entropy-mode equation569

Results have been derived in this section based on a restricted set of entropy-mode570

source terms, namely571

Γvol ≃
1
𝜌0𝑇0

¤𝐷 H and Γsurf ≃
1
𝜌𝑇

q · n̂𝛿( 𝑓 ). (89)

Although other terms are present in general, in the present context these can572

mostly be seen to either vanish or be small. The two terms whose omission is573

not obviously justified are the surface term in (Du/D𝑡) · n̂𝛿( 𝑓 ) that appears in574

Eq. (79), and the volume term in 𝑢𝑟𝜕𝑠′/𝜕𝑟 that arises from the difference between575

D𝑠′/D𝑡 and 𝜕𝑠′/𝜕𝑡.576

The first of these can be assessed by noting that the radial component of Du/D𝑡577

at the cylinder boundary is −𝑢2
𝜙
/𝑟0, since 𝑢𝑟 (𝑟0, 𝑡) = 0. The ratio of the Du/D𝑡578

source term to the q · n̂ source term in (89) then follows from (84) as579

|ratio of terms| ∼ 𝐴0
𝑋

Pr
𝑆−1/2. (90)

Since we are assuming 𝑆1/2 ≫ 1, dropping the Du/D𝑡 surface term is justified.580

The discarded volume source term 𝑢𝑟𝜕𝑠
′/𝜕𝑟 is potentially significant on ac-581

count of the large factor 𝜀−1/2
𝜅 introduced by taking the gradient of the fluctuating582

entropy. To assess this term, one should in principle calculate the amplitude583

of 𝑢𝑟𝜕𝑠′/𝜕𝑟 within the boundary layer. This involves solving the nonlinear en-584

tropy mode equation to find 𝑠(𝑟), and likewise the acoustic mode equation to find585

𝑝(𝑟) ≃ 𝑝mod(𝑟). Using the notation 𝑢𝑟 (𝑟, 𝑡) = Re
[
𝑢̂𝑟 (𝑟)e−2iΩ𝑡 ] , the continuity586

equation then gives587

𝑢̂𝑟 (𝑟) =
1
𝑟

∫ 𝑟

𝑟0

𝜉Θ̂(𝜉) d𝜉, where Θ̂ = 2iΩ

(
1
𝜌0𝑐

2
0
𝑝 − 𝐴0

𝑐𝑝0
𝑠

)
. (91)

38



The amplitude of 𝑢𝑟𝜕𝑠′/𝜕𝑟 follows as 1
2 |𝑢̂𝑟𝜕𝑠/𝜕𝑟 |. To justify neglecting this term,588

its maximum value through the boundary layer, |𝑢𝑟𝜕𝑠′/𝜕𝑟 |max, needs to be small589

compared with the maximum of the dissipation source term ¤𝐷/𝜌0𝑇0.590

Alternatively one can avoid the detailed calculation above by using scaling591

arguments, based on the solutions already presented for 𝑠(𝑟) and 𝑝(𝑟). These give592

the amplitude ratio of the two entropy-mode source terms as593

|𝑢𝑟𝜕𝑠′/𝜕𝑟 |max/
1
𝜌0𝑇0

| ¤𝐷 |max ∼ 𝐵0𝐹 (Pr)𝑀2, (92)

where 𝐹 (Pr) is a function of the Prandtl number Pr = 𝑐𝑝0𝜇/𝜅. Provided 𝐹 (Pr) is594

of order 1, dropping the 𝑢𝑟𝜕𝑠′/𝜕𝑟 term is justified as long as 𝑀2 ≪ 1.595

7. Conclusions596

The following conclusions can be drawn regarding the aeroacoustic sound output597

of a rotationally oscillating infinite circular cylinder in the stable oscillatory flow598

regime with 𝑆1/2 ≫ 1, for a cylinder whose boundary is adiabatic:599

• Sound is generated in the viscous boundary layer by two different mecha-600

nisms. In the present acoustic analogy formulation these appear as a 𝜌𝑢2
𝜙

601

quadrupole distribution, and a monopole distribution due to viscous dissi-602

pation. The latter mechanism depends on the thermal expansivity of the603

fluid.604

• The quadrupole term 𝑞𝜙𝜙 is equivalent, in the present approximation with605

𝑀2 ≪ 1 and 𝜀 ≪ 1, to a centrifugal body force field 𝑔𝑟 = 𝑢2
𝜙
/𝑟; it is a606

nonlinear (second order) source, quadratic in the vorticity-mode velocity607

field. Likewise the monopole dissipation term is also a second-order source,608

equivalent to a heat input distribution ¤𝐷 per unit volume.609
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• For the special case of a fluid with 𝐵0 = 0, where 𝐵 is the dimensionless610

quantity 𝛼𝑐2/𝑐𝑝 based on the thermal expansivity 𝛼, sound speed 𝑐, and611

constant-pressure specific heat 𝑐𝑝, only the first mechanism operates. This612

was effectively the case considered by Lauvstad [9], who modelled the fluid613

as an ideal gas with density changes occurring isothermally, corresponding614

to a specific heat ratio 𝛾 = 1.615

• For a general fluid, the sound power output due to the viscous-dissipation616

mechanism is greater by a factor 𝐵2
0𝑆 than that due to the quadrupole mech-617

anism.618

• The acoustic analogy calculations of Lauvstad and Meecham [5] and Meecham619

[19] were not restricted to fluids with 𝐵0 = 0. However only the quadrupole620

mechanism was considered.621

• The attempt by Lauvstad and Meecham [5] to calculate the radiated quadrupole622

field at large Stokes numbers 𝑆 using surface and volume terms based on623

Curle’s free-field formulation [2] was unsuccessful, because to lowest order624

in 𝑆−1/2 the two contributions cancel as demonstrated in Sec. 5.8. It appears625

that for the present problem the formulation in [5] is ill-conditioned, whereas626

the Neumann formulation used in Sec. 5 is much less sensitive to large-𝑆627

approximations.628

• It is interesting to note that Doak [23], writing at the same time as Pow-629

ell [3], was already making the point that one can choose any of a wide630

range of Green’s functions to represent sound radiation in the presence of631

boundaries, and not just the free-field Green’s function implicit in Curle’s632
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formulation of Lighthill’s theory [2]. Thus the split between surface and633

volume contributions to the radiated sound is to a large extent arbitrary.634
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Appendix A. Stability of the oscillatory boundary layer639

The transition to turbulence in an oscillatory boundary layer has been studied640

experimentally by Akhavan et al. [24] for the special case of incompressible641

rectilinear flow, corresponding to 𝑆 → ∞, 𝑀 → 0 in the present problem where642

𝑆 is the Stokes number Ω𝑟2
0/𝜈0 and 𝜈0 is the kinematic viscosity. They showed643

that in pulsatile fully-developed pipe flow, with a sinusoidally-oscillating volume644

flowrate proportional to sinΩ𝑡 and zero mean flow, bursts of turbulence appear645

in the boundary layer when the amplitude 𝑈 of the cross-sectional mean velocity646

reaches 𝑈 ≈ 350(Ω𝜈0)1/2. Their experiments used two pipe diameters, 16 and647

30 times the viscous length scale (𝜈0/Ω)1/2 = 𝛿, with no significant difference in648

the onset of turbulent flow. The criterion 𝑈crit ≈ 350(Ω𝜈0)1/2 for laminar flow649

breakdown corresponds to a value of 350 for the parameter 𝑁 = 𝜉max/𝛿, where650

𝜉max is the relative displacement amplitude between the wall and the fluid outside651

the boundary layer.652

In a second paper, Akhavan et al. [25] carried out numerical simulations of653

oscillatory two-dimensional flow in a plane channel of width 28𝛿. The results654

were consistent with the findings from the pipe-flow experiments, and showed655
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that the onset of turbulence was due to the nonlinear growth of three-dimensional656

disturbances, rather than to linear instability. We conclude that for the present657

cylinder problem with 𝑆 ≫ 1, the oscillatory boundary layer remains stable as658

long as 𝑁 is less than around 300.659
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