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A B S T R A C T

Although the Lighthill–Curle acoustic analogy theory is formally exact, the presence of linear
source terms related to viscous stresses and non-isentropic density changes makes it unsuitable
for studying aerodynamic sound generation in low Reynolds number thermoviscous flows. Here
we use an extension of the Ffowcs Williams and Hawkings formulation, with thermoviscous
effects explicitly included, to find an analytical solution to the canonical problem of sound
radiation from a circular cylinder immersed in a viscous heat-conducting fluid and rotating
sinusoidally about its axis. Existing published solutions are compared and an earlier null result
is explained. The new analysis reveals the dominant source of sound at low Mach numbers to be
unsteady viscous dissipation rather than Reynolds-stress quadrupoles, unless the fluid parameter
𝐵 = 𝛼𝑐2∕𝑐𝑝 is zero.

. Introduction

In the early days of theoretical aeroacoustics, following the pioneering work of Lighthill [1] and Curle [2], the debate over the
ole of solid boundaries in aerodynamic sound generation led to a demand for analytically-solvable model problems able to provide
nsight into this issue. The presence of an infinite plane boundary, either rigid or pressure-release, was shown by Powell [3] to act as
simple reflector for the quadrupole sources in Lighthill’s acoustic analogy [1]. This idea was later extended by Ffowcs Williams [4]

o a plane boundary with a uniform locally-reacting impedance. Lauvstad and Meecham [5], however, recognized that the Lighthill–
urle theory could be applied to any localized unsteady flow with solid boundaries for which an analytical solution existed in the

ncompressible limit, and that this would enable prediction of the surface and volume radiated sound at low Mach numbers. They
roposed to use this approach to examine the role of the surface dipoles in Curle’s formulation [2].

To this end (and following an earlier attempt by Meecham [6]), Lauvstad and Meecham [5] applied the Lighthill–Curle theory
o the idealized problem of sound generation by a long circular cylinder, rotating sinusoidally about its axis and surrounded by an
nfinite uniform viscous fluid initially at rest. In the limit 𝑀 → 0, where 𝑀 = 𝑈∕𝑐0 is the ratio of the surface velocity amplitude to
he unperturbed sound speed, the unsteady flow field can be described analytically provided the flow remains laminar and stable.
he incompressible velocity field in the viscous boundary layer, and the incompressible pressure on the cylinder boundary, then
rovide the necessary source terms for the sound to be predicted using Ref. [2]. A distinctive feature of the solution is that because
f the rotational symmetry, no sound is radiated in the linear approximation: to obtain the sound field one has to proceed to second
rder. In this respect the rotating-cylinder problem deviates from the general rule that tangential oscillations of a solid boundary
ext to a viscous fluid generate a linear acoustic response [7,8].
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Notation

𝑎 Thermal expansion parameter 𝑎 = 𝛼∕𝜌𝑐𝑝
𝐴 Dimensionless thermodynamic property 𝐴 = 𝛼𝑇
𝐵 Dimensionless thermodynamic property 𝐵 = 𝛼𝑐2∕𝑐𝑝
𝑐 Sound speed 𝑐 = (𝜕𝑝∕𝜕𝜌)1∕2𝑠
𝑐𝑝 Constant-pressure specific heat
𝐷̇ instantaneous rate of energy dissipation per unit volume due to viscous stresses
𝐷̇𝑇 instantaneous rate of energy dissipation per unit volume due to heat conduction 𝐷̇𝑇 = 𝜅|∇𝑇 |2∕𝑇
𝑓 (𝐱, 𝑡) indicator function, positive in  and negative in  , with |∇𝑓 | = 1 on 
𝑔(𝑟 ∣ 𝜉) Green’s functions for the Helmholtz operator in cylindrical coordinates (1D)
ℎ̂ Complex amplitude of outward heat flux from the cylinder
𝐻(𝑓 ) Heaviside (unit step) function acting as a spatial window
𝐻 (1)

𝑛 (𝜉) Hankel function of the first kind 𝐻 (1)
𝑛 (𝜉) = 𝐽𝑛(𝜉) + i𝑌𝑛(𝜉)

i Imaginary unit
𝐽𝑛(𝜉) Bessel function of the first kind of order 𝑛
𝑘 Radial wavenumber (Section 3); lossless acoustic wavenumber 2𝛺∕𝑐0 (Section 5)
𝑘𝑎 Complex wavenumber for the acoustic mode (Section 5, 𝑘𝑎 = 𝑘

[

1 + 1
2 i𝜀𝐿 + 1

2 i(𝛾 − 1)𝜀𝜅 + 𝑂(𝜀2)
]

)

𝑘𝑤 Characteristic wavenumber for the vorticity mode 𝑘𝑤 = (i𝛺∕𝜈0)1∕2

𝐾 Helmholtz number 𝐾 = 𝛺𝑟0∕𝑐0
𝑀 Mach number 𝑀 = 𝑈∕𝑐0
𝑛 Azimuthal order in cylindrical coordinates
𝐧̂ Unit vector normal to surface , pointing outward from excluded region 
𝑝 Thermodynamic pressure of fluid
𝑝′′ Scaled pressure perturbation 𝑝′′ = 𝑝∕𝑝0 − 1 (Section 3)
𝑝′mod Acoustic mode pressure variable, 𝑝′mod = 𝑐20 (𝜌

⋆ − 𝜌0) − 𝜇𝛩𝑠
𝑝̂1, 𝑝̂2, 𝑝̂3 Complex amplitudes of radiated pressure contributions from 𝑞, 𝑞𝜙𝜙, 𝐪 ⋅ 𝐧̂ respectively
𝑃 Dimensionless quantity 𝑃 = 𝑃𝑟𝑆
𝑃 𝑟 Prandtl number of fluid 𝑃𝑟 = 𝑐𝑝𝜇∕𝜅
𝑞, 𝑞𝜙𝜙 Monopole, quadrupole source density for the acoustic mode variable 𝑝′mod
𝐪 Heat flux vector
𝑟 Radial coordinate in cylindrical coordinates
𝑟0 Radius of rotationally oscillating cylinder
𝑟′′ Scaled radial coordinate 𝑈𝑟∕𝜈0 (Section 3)
𝑟′′0 Scaled cylinder radius 𝑟′′0 = 𝑈𝑟0∕𝜈0
𝑠 Specific entropy
𝑆 Stokes number 𝑆 = 𝛺𝑟20∕𝜈0
 Surface separating excluded region  from region  , defined by 𝑓 (𝐱) = 0
𝑡 Time
𝑡′′ Scaled time 𝑡′′ = 𝑈2𝑡∕𝜈0
𝑇 Thermodynamic temperature
𝐮 Fluid velocity vector
𝑢𝑟, 𝑢𝜙 Fluid velocity components
𝑣𝑟, 𝑣𝜙 Scaled fluid velocity components 𝑣𝑟 = 𝑢𝑟∕𝑈 , 𝑣𝜙 = 𝑢𝜙∕𝑈 (Section 3)
 Fluid region

Surprisingly, the calculation in [5] yielded a null result, with the normal-dipole surface term in Curle’s expression for the far-field
ensity exactly cancelling the volume quadrupole term. This outcome contradicted a previous estimate by Lauvstad [9], based on
he entirely different approach of matched asymptotic expansions. It also left unanswered the question of which approach (if either)
s valid for problems in viscous-fluid aeroacoustics.

The aim of the present paper is to resolve the issue and to show that the problem chosen is more complex than was allowed
or in Refs. [5,9]. Our approach is a nonlinear extension of earlier work by Pierce [10,11], who used an asymptotic approximation
o describe the excitation of linear modes in thermoviscous fluids by external sources. It can be viewed as a generalization to
rbitrary fluids of the bilateral mode-interaction analysis in Chu and Kovásznay [12], with the addition of boundary source terms.
2
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 Excluded region, adjacent to 
𝐰 Vector potential in the representation 𝐮 = ∇𝜑 + curl𝐰
𝑤𝑥 Component of 𝐰 in 𝑥 direction
𝑊rad, 𝑊diss Power radiated, power dissipated (per unit length of cylinder)
𝑥 Axial coordinate in cylindrical coordinates
𝐱, 𝑥𝑖 Position vector, cartesian components (𝑖 = 1, 2, 3)
𝛼 Volume thermal expansivity of fluid
𝛽 Thermal admittance of cylinder boundary 𝛽 = −ℎ̂∕𝑇̂ (𝑟0)
𝛾 Ratio of specific heats 𝛾 = 𝑐𝑝∕𝑐𝑣, equal to the isentropic index in the case of an ideal gas
𝛤vol, 𝛤surf Volume and surface sources in an acoustic analogy
𝛿(𝑓 ) Dirac delta function
𝛿 Viscous length scale (𝜈0∕𝛺)1∕2

𝛥 Relative error in asymptotic approximations
𝜀 max(𝜀𝜅 , 𝜀𝐿)
𝜀𝜅 Thermal-diffusion parameter 𝜀𝜅 = 2𝛺𝜒0∕𝑐20
𝜀𝐿 Longitudinal-viscosity parameter 𝜀𝐿 = 2𝛺𝜇𝐿∕𝜌0𝑐20
𝜀𝜇 Viscosity parameter 𝜀𝜇 = 𝐾2∕𝑆 = 𝛺𝜈∕𝑐20
𝜂ac Acoustic conversion efficiency 𝑊rad∕𝑊diss
𝛩 Fluid dilatation rate 𝛩 = div𝐮
𝜅 Thermal conductivity
𝜆 Acoustic wavelength
𝜇 Shear viscosity of fluid
𝜇𝐵 Bulk viscosity of fluid
𝜇𝐿 Longitudinal viscosity of fluid 𝜇𝐿 = 𝜇𝐵 + 4

3𝜇
𝜇 Thermoviscous coefficient 𝜇 = 𝜇𝐵 + 4

3𝜇 − 𝜅∕𝑐𝑝0
𝜈 Kinematic viscosity of fluid 𝜈 = 𝜇∕𝜌
𝜉 Radial source position in cylindrical coordinates
𝜉max Displacement amplitude of cylinder surface
𝜌 Fluid density
𝜌⋆ Isentropic density 𝜌⋆ = 𝜌(𝑝, 𝑠0)
𝜌′′ Scaled density perturbation 𝜌′′ = 𝜌∕𝜌0 − 1 (Section 3)
𝜏𝑟𝜙 Complex amplitude of viscous shear stress at cylinder surface
𝜑 Scalar potential of velocity in the representation 𝐮 = ∇𝜑 + curl𝐰
𝜙 Azimuthal coordinate in (𝑥, 𝑟, 𝜙) system
𝜒 Thermal diffusivity 𝜒 = 𝜅∕𝜌𝑐𝑝
𝜔0 Scaled angular frequency 𝜔0 = 𝛺𝜈0∕𝑈2 (Section 3)
𝜔𝑥 Axial component of vorticity
𝜔𝜔𝜔 Fluid vorticity vector 𝜔𝜔𝜔 = curl𝐮
∼ Varies asymptotically as
≃ Asymptotically equals
(⋅)0 Uniform unperturbed value of any local property of the fluid (𝜌, 𝑝, 𝑠, 𝑇 , etc.)
(⋅)′ Departure of local property from its unperturbed value
(⋅̂) Complex amplitude of a sinusoidally varying quantity (phasor)
(⋅)∗ Complex conjugate

The restriction in [12] to an ideal gas with constant specific heats and Prandtl number 3∕4 is removed, and we focus on the sound
produced by vorticity–vorticity interaction. The results provide new insights into aerodynamic sound generation in such fluids, along
with a benchmark analytical solution that may have value in validating numerical codes for nonlinear thermoviscous acoustics.

Our objectives are (a) to adapt the Lighthill–Curle acoustic analogy formulation in its generalized form due to Ffowcs Williams
and Hawkings [13], to better handle flows that involve viscosity and heat conduction; (b) to use the modified analogy to predict the
sound field generated by the oscillating cylinder described above; (c) to account for the apparent zero radiation found in Lauvstad
and Meecham [5]; (d) to rework the matched-expansion calculation of Lauvstad [9] and thereby clarify the assumptions involved;
and (e) to show how the sound output from the oscillating cylinder is affected by the thermal boundary condition at the cylinder
wall.
3
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Fig. 1. Diagram of Lauvstad’s rotating-cylinder problem.

The outline of the article is as follows. Section 2 provides a statement of the problem. In Section 3 we re-examine Lauvstad’s
matched asymptotic solution, under his isothermal condition. In Section 4 we introduce a thermoviscous acoustic analogy that can
be used to solve the problem for a real fluid (i.e. without assuming an ideal gas with 𝛾 = 1, so that heat conduction is important as
well as viscosity); results of this procedure are given in Section 5. Finally, the effects of non-adiabatic boundary conditions at the
cylinder wall are discussed in Section 6.

2. Statement of problem

The problem to be solved is that defined in Lauvstad [9], to find the sound radiated by a long circular cylinder rotating
sinusoidally around its axis in a viscous compressible fluid. Thus Fig. 1 shows a cross-section through an infinitely long rigid cylinder
of radius 𝑟0, whose axis lies along the 𝑥-axis of a cylindrical coordinate system (𝑥, 𝑟, 𝜙). The cylinder is surrounded by an unbounded
fluid with pressure 𝑝, density 𝜌 and temperature 𝑇 . Fluid properties are represented as (⋅) = (⋅)0 + (⋅)′, where (⋅)0 is the uniform
unperturbed value and (⋅)′ is the perturbation. The fluid has constant shear viscosity 𝜇.

The cylinder rotates sinusoidally about its axis at angular frequency 𝛺 with alternating clockwise and anticlockwise motion, 𝑈
being the amplitude of the velocity at the cylinder’s surface where 𝑟 = 𝑟0. We assume, with Lauvstad [9], that 𝑈 ≪ 𝑐0, the speed
of sound in the fluid, and is also low enough that transition to turbulent flow does not occur; conditions for this are discussed
in the Appendix. In the limit 𝑈∕𝑐0 → 0 the density perturbations will be proportional to the unsteady component of the pressure
whose gradient balances the acceleration field induced by the cylinder’s motion. When heat conduction and thermal expansivity
are present, however, the fluid will be heated by the work done in shearing it, causing it to dilate, and this dissipative heating will
be a significant sound-generation mechanism, at least in comparison with the isothermal case assumed in [9].

The fluid velocity field 𝐮 =
[

0, 𝑢𝑟(𝑟, 𝑡), 𝑢𝜙(𝑟, 𝑡)
]

is subject to the following boundary conditions:

• The no-slip condition at the cylinder’s surface gives 𝑢𝜙(𝑟0, 𝑡) = Re
[

𝑈 exp(−i𝛺𝑡)
]

(we follow Lauvstad [9] in using complex
exponentials despite the nonlinearity of the problem).

• The rigidity and axisymmetry of the cylinder give 𝑢𝑟(𝑟0, 𝑡) = 0.
• The decay of disturbances with distance from the cylinder gives 𝑢𝑟(∞, 𝑡) = 𝑢𝜙(∞, 𝑡) = 0.

Note that we omit dependence on 𝑥 and 𝜙 when writing the components of the velocity field.
In [9] Lauvstad implicitly assumes that the fluid is an ideal gas with adiabatic index 𝛾 = 1, meaning that the speed of sound can

be taken as its isothermal value 𝑐0 =
√

𝑝0∕𝜌0, the temperature 𝑇 never departs from 𝑇0 and no heat conduction occurs; in addition the
bulk viscosity is assumed to be zero. We retain these assumptions in Section 3 where we reproduce Lauvstad’s matched-asymptotic
analysis. Thereafter, however, we relax them and allow the fluid to have thermal expansivity 𝛼, and thermal conductivity 𝜅 and
bulk viscosity 𝜇𝐵 , both constant.

The governing equations conserving mass and momentum can be written [14]:
𝜕𝜌
𝜕𝑡

+ 1
𝑟
𝜕
𝜕𝑟

(𝑟𝜌𝑢𝑟) = 0, (1a)

𝜌

(

𝜕𝑢𝑟 + 𝑢𝑟
𝜕𝑢𝑟 −

𝑢2𝜙
)

= −
𝜕𝑝

+ 4𝜇 𝜕 1 𝜕 (𝑟𝑢𝑟), (1b)
4

𝜕𝑡 𝜕𝑟 𝑟 𝜕𝑟 3 𝜕𝑟 𝑟 𝜕𝑟
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𝜌
( 𝜕𝑢𝜙

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜙
𝜕𝑟

+
𝑢𝑟𝑢𝜙
𝑟

)

= 𝜇 𝜕
𝜕𝑟

1
𝑟
𝜕
𝜕𝑟

(𝑟𝑢𝜙). (1c)

Under the isothermal assumption of Lauvstad [9] the energy equation is not required. The problem then is to find the far-field
pressure fluctuations 𝑝′(𝑟, 𝑡) for large 𝑟.

3. Lauvstad’s matched asymptotic solution revisited

In this section we reproduce Lauvstad’s matched asymptotic analysis of the problem described above. Lauvstad used dashed
variables for physical quantities so that the scaled variables in which he analysed the problem were plain. Although we follow
his scaling for ease of comparison, we prefer to use plain physical variables, and where scaled variables using the same symbols
appear in Section 3 they will be given double dashes. In what follows, Lauvstad’s dimensionless radial coordinate is introduced as
𝑟′′ = 𝑈𝑟∕𝜈0 and 𝑡′′ = 𝑈2𝑡∕𝜈0 denotes the dimensionless time.

The dimensional radius of the cylinder 𝑟0 is converted to non-dimensional form as 𝑟′′0 = 𝑈𝑟0∕𝜈0. The instantaneous density is
scaled as 𝜌∕𝜌0 = 1+𝜌′′, and the velocity field is scaled as 𝑣𝑟 = 𝑢𝑟∕𝑈 , 𝑣𝜙 = 𝑢𝜙∕𝑈 . The fluid is modelled as an ideal gas with the pressure
scaled as 𝑝∕𝑝0 = 1+𝑝′′, and the scaled pressure perturbation is related to the density perturbation by 𝑝′′ = 𝜌′′, equivalent to assuming
the flow is isothermal. Finally the Mach number is introduced based on the isothermal sound speed as 𝑀 = 𝑈∕(𝑝0∕𝜌0)1∕2 = 𝑈∕𝑐0.
Then the system of governing Eqs. (1) becomes, in terms of scaled perturbation variables,

𝜕𝜌′′

𝜕𝑡′′
+ 1

𝑟′′
𝜕
𝜕𝑟′′

(𝑟′′𝜌′′𝑣𝑟) = 0, (2a)

𝜌′′
(

𝜕𝑣𝑟
𝜕𝑡′′

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟′′

−
𝑣2𝜙
𝑟′′

)

= −𝑀−2 𝜕𝜌′′

𝜕𝑟′′
+ 4

3
𝜕
𝜕𝑟′′

1
𝑟′′

𝜕
𝜕𝑟′′

(𝑟′′𝑣𝑟), (2b)

𝜌′′
( 𝜕𝑣𝜙
𝜕𝑡′′

+ 𝑣𝑟
𝜕𝑣𝜙
𝜕𝑟′′

−
𝑣𝑟𝑣𝜙
𝑟′′

)

= 𝜕
𝜕𝑟′′

1
𝑟′′

𝜕
𝜕𝑟′′

(𝑟′′𝑣𝜙). (2c)

To facilitate comparison of these equations with Eq. (7) in [9], we note that Lauvstad used primes to designate dimensional variables
and no primes for dimensionless scaled variables. For consistency, we also note that the factor 4∕3 is missing from the final term
in his Eq. (7b), which is the counterpart of our Eq. (2b). The same applies to the final term in Lauvstad’s Eq. (13). However, these
errors do not affect the end result Eq. (43) in [9] because the solution for the outer field does not use these equations.

To solve the scaled equations, Lauvstad used the method of matched asymptotic expansions. We follow him in solving the inner
problem. The inner expansion is expanded in ascending powers of 𝑀2 as

𝜌′′(𝑟′′, 𝑡′′;𝑀) ≃ 𝑀2𝜌′′1 (𝑟
′′, 𝑡′′) +𝑀4𝜌′′2 (𝑟

′′, 𝑡′′) +⋯ , (3a)

𝑣𝑟(𝑟′′, 𝑡′′;𝑀) ≃ 𝑣𝑟0 +𝑀2𝑣𝑟1(𝑟′′, 𝑡′′) +⋯ , (3b)

𝑣𝜙(𝑟′′, 𝑡′′;𝑀) ≃ 𝑣𝜙0 +𝑀2𝑣𝜙1(𝑟′′, 𝑡′′) +⋯ . (3c)

This solution ansatz is substituted into Eqs. (2) and the chain rule is used to solve problems of ascending order in the parameter 𝑀 .
This will lead to a first-order inner solution for the radial velocity, which is then matched to an outer acoustic field.

The zeroth-order equation for the radial velocity is
1
𝑟′′

𝜕
𝜕𝑟′′

(𝑟′′𝑣𝑟0) = 0. (4)

Since at the surface of the cylinder (𝑟′′ = 𝑟′′0 ) this velocity component equals zero, i.e. 𝑣𝑟0(𝑟′′0 , 𝑡
′′) = 0 it also vanishes in the whole

luid volume, giving 𝑣𝑟0(𝑟′′, 𝑡′′) = 0.
The first-order equations for the density disturbances are

𝜕𝜌′′1
𝜕𝑡′′

+ 1
𝑟′′

𝜕
𝜕𝑟′′

(𝑟′′𝑣𝑟1) = 0 and
𝜕𝜌′′1
𝜕𝑟′′

=
𝑣2𝜙0
𝑟′′

. (5)

Density fluctuations are readily eliminated in this system to yield the equation for the first non-vanishing component of the radial
velocity:

𝜕
𝜕𝑟′′

[ 1
𝑟′′

𝜕
𝜕𝑟′′

(𝑟′′𝑣𝑟1)
]

= − 1
𝑟′′

𝜕
𝜕𝑡′′

(𝑣2𝜙0). (6)

To find the right-hand side of Eq. (6) we solve the zeroth-order problem for the circumferential velocity component:
𝜕𝑣𝜙0
𝜕𝑡′′

= 𝜕
𝜕𝑟′′

1
𝑟′′

𝜕
𝜕𝑟′′

(𝑟′′𝑣𝜙0). (7)

Hereafter the rotating motion of the cylinder is assumed time-harmonic so that 𝑣𝜙0(𝑟′′, 𝑡′′) = Re
[

𝑣̂𝜙0e−i𝜔0𝑡′′
]

. We note that the second
quation from the set Eq. (1) in [9], which is meant to be written in dimensional form, uses 𝜔0 for the dimensional angular frequency;

we use 𝛺 instead and reserve 𝜔0 for the scaled frequency, as later adopted by Lauvstad in his Eq. (16). Thus, the frequency scaling
s 𝜔0 = 𝛺𝜈0∕𝑈2, and Eq. (7) becomes

− i𝜔 𝑣̂ = d 1 d (𝑟′′𝑣̂ ), (8)
5

0 𝜙0 d𝑟′′ 𝑟′′ d𝑟′′ 𝜙0
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with boundary condition 𝑣̂𝜙0(𝑟′′0 ) = 1. The solution is

𝑣̂𝜙0 =
𝐻 (1)

1 (𝑟′′
√

i𝜔0)

𝐻 (1)
1 (𝑟′′0

√

i𝜔0)
. (9)

In this equation, and throughout the article, the principal value of the complex square root is taken. The nonlinear term 𝑣2𝜙0(𝑟
′′, 𝑡′′)

from (6) is represented in terms of 𝑣̂𝜙0 by writing

𝑣2𝜙0(𝑟
′′, 𝑡′′) = 1

4

[

𝑣̂𝜙0(𝑟′′)e−i𝜔0𝑡′′ + 𝑣̂∗𝜙0(𝑟
′′)ei𝜔0𝑡′′

]2
= 1

2
Re[𝑣̂𝜙0(𝑟′′)e−i𝜔0𝑡′′ ]2 + 1

2
|𝑣̂𝜙0(𝑟′′)|

2. (10)

his shows that the quadratic quantity 𝑣2𝜙0(𝑟
′′, 𝑡′′) should be represented by the phasor 1

2 [𝑣̂𝜙0(𝑟
′′)e−i𝜔0𝑡′′ ]2, rather than [𝑣̂𝜙0(𝑟′′)e−i𝜔0𝑡′′ ]2

as in [9].
Combining Eq. (6) with (9) and (10) gives a frequency-domain equation for the first-order radial component of velocity,

(

d2

d𝑟′′2
+ 1

𝑟′′
d
d𝑟′′

− 1
𝑟′′2

)

𝑣̂𝑟1(𝑟′′) =
i𝜔0
𝑟′′

𝑣̂2𝜙0(𝑟
′′) =

i𝜔0
𝑟′′

[

𝐻 (1)
1 (𝑟′′

√

i𝜔0)

𝐻 (1)
1 (𝑟′′0

√

i𝜔0)

]2

, (11)

with Dirichlet boundary condition 𝑣̂𝑟1(𝑟′′0 ) = 0. From the discussion above it follows that when returning to the time domain the
adial velocity is Re

[

𝑣̂𝑟1(𝑟′′)e−2i𝜔0𝑡′′
]

.
The operator in (11) is a limiting case of the Helmholtz radial operator in cylindrical coordinates, with azimuthal order 𝑛 = 1

nd eigenvalue 𝑘2 → 0. In the general case, the one-dimensional Green’s function for this operator can be defined as the solution of

(

𝜕2

𝜕𝑟′′2
+ 1

𝑟′′
𝜕
𝜕𝑟′′

− 𝑛
𝑟′′2

+ 𝑘2
)

𝑔(𝑟′′ ∣ 𝜉) = − 1
𝑟′′

𝛿(𝑟′′ − 𝜉), (12)

that satisfies the Dirichlet boundary condition 𝑔− = 0 at 𝑟′′ = 𝑟′′0 and outgoing-wave condition (𝜕∕𝜕𝑟′′)𝑔+ = i𝑘𝑔+ as 𝑟′′ → ∞. This
solution is given by

𝑔+(𝑟′′ ∣ 𝜉) = 𝜋
2
[

𝐽𝑛(𝑘𝑟′′0 )𝑌𝑛(𝑘𝜉) − 𝑌𝑛(𝑘𝑟′′0 )𝐽𝑛(𝑘𝜉)
] 𝐻 (1)

𝑛 (𝑘𝑟′′)

𝐻 (1)
𝑛 (𝑘𝑟′′0 )

(𝑟′′ > 𝜉 ≥ 𝑟′′0 ), (13a)

𝑔−(𝑟′′ ∣ 𝜉) = 𝑔+(𝜉 ∣ 𝑟′′) (𝜉 > 𝑟′′ ≥ 𝑟′′0 ). (13b)

It is specialized for the case 𝑛 = 1, 𝑘 = 0 as:

𝑔+1 (𝑟
′′ ∣ 𝜉) =

𝜉
2𝑟′′

−
𝑟′′20
2𝑟′′𝜉

(𝑟′′ > 𝜉 ≥ 𝑟′′0 ), (14a)

𝑔−1 (𝑟
′′ ∣ 𝜉) = 𝑟′′

2𝜉
−

𝑟′′20
2𝑟′′𝜉

(𝜉 > 𝑟′′ ≥ 𝑟′′0 ). (14b)

Then

𝑣̂𝑟1(𝑟′′) = ∫

∞

0
𝐹 (𝑧)𝑔1(𝑟′′ ∣ 𝑧) d𝑧, 𝐹 (𝑧) = −i𝜔0

[

𝐻 (1)
1 (𝑧

√

i𝜔0)

𝐻 (1)
1 (𝑟′′0

√

i𝜔0)

]2

, (15)

which gives

𝑣̂𝑟1(𝑟′′) = −
i𝜔0

2𝑟′′
[

𝐻 (1)
1

(

𝑟′′0
√

i𝜔0

)]2

{

∫

𝑟′′

𝑟′′0
𝑧
[

𝐻 (1)
1

(

𝑧
√

i𝜔0

)]2
d𝑧

+ 𝑟′′2 ∫

∞

𝑟′′

1
𝑧

[

𝐻 (1)
1

(

𝑧
√

i𝜔0

)]2
d𝑧 − 𝑟′′20 ∫

∞

𝑟′′0

1
𝑧

[

𝐻 (1)
1

(

𝑧
√

i𝜔0

)]2
d𝑧

}

. (16)

ext we use the large-argument asymptotic form of the Hankel function to write
[

𝐻 (1)
1

(

𝑦
√

i𝜔0

)]2
≃ 2

𝜋𝑦
√

i𝜔0
exp

(

2i𝑦
√

i𝜔0

)

, (𝑦 = 𝑟′′0 , 𝑧). (17)

This substitution allows the integrals in (16) to be evaluated analytically for 𝑆1∕2 ≫ 1, and the product of radial velocity and radial
istance can be written in terms of re-scaled radial distance 𝑟′′∕𝑟′′0 = 𝑟∕𝑟0 as follows:

𝑟′′𝑣̂𝑟1(𝑟′′) =
1
4
−

3(1 + i)
√

2

16
√

𝑆

+
(1 + i)

[

3
√

2 − 2(1 − i)(𝑟′′∕𝑟′′0 )
√

𝑆
]

exp
[
√

2𝑆(1 − 𝑟′′∕𝑟′′0 )(1 − i)
]

√

′′ ′′ 2
, (18)
6

16 𝑆(𝑟 ∕𝑟0 )
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Fig. 2. (a) Real and (b) imaginary parts of inner-solution radial velocity multiplied by radial distance 𝑟′′ and plotted against scaled radial distance 𝑟′′∕𝑟′′0 , for
hree values of Stokes number 𝑆.

here 𝑆 = 𝛺𝑟20∕𝜈0 = 𝜔0𝑟′′20 is the conventional Stokes number. This function vanishes at 𝑟′′ = 𝑟′′0 by virtue of the Green’s
unction (14b). For large Stokes numbers and outside the viscous boundary layer, the first term dominates, and this formula becomes:

𝑟′′𝑣̂𝑟1(𝑟′′) ≃
1
4
. (19)

xamples of inner-solution velocity profiles are presented in Fig. 2.
Naturally, this solution is for the inner zone, and the thickness of the boundary layer collapses as the Stokes number increases.

q. (19) gives the purely real velocity at the outer edge of the boundary layer, which is the asymptote for velocity profiles given
y (18) at all Stokes numbers. Imaginary parts of velocities from (18) attain the same maximum at different positions for different
tokes numbers and vanish at different rates.

Substituting (19) into Eq. (3b) and converting to dimensional form gives the inner solution for the radial velocity outside the
iscous boundary layer to order 𝑀2,

𝑢𝑟(𝑟, 𝑡) =
1
4
𝜈0
𝑟

(

𝑈
𝑐0

)2
e−2i𝛺𝑡 = 1

4
𝑐0

𝑟0
𝑟
𝐾𝑀2

𝑆
e−2i𝛺𝑡, (20)

where 𝐾 = 𝛺𝑟0∕𝑐0 is the Helmholtz number and the real part of phasor quantities is henceforth implied.
The radial velocity extrapolated back to the surface of the cylinder is predicted by (20) as

𝑢𝑟(𝑟0, 𝑡) ≃
1
4
𝑐0

𝐾𝑀2

𝑆
e−2i𝛺𝑡, (21)

Obviously, it does not satisfy the Dirichlet boundary condition, and Lauvstad [9] followed the rigorous procedure of matching the
inner (nonlinear viscous) and outer (linear acoustic) solutions inside and outside the boundary layer.

However, inspection of the velocity profiles in Fig. 2 provides an incentive to use a much simpler method of patching. We
consider (21) as a source of the acoustic far field pressure, and assume that the viscous boundary layer thickness is so small that the
formula for 𝑢𝑟(𝑟0, 𝑡) may be used just as a boundary condition for the conventional linear acoustics problem. We also follow Lauvstad
n assuming 𝐾 ≪ 1; this assumption is introduced at Eq. (34) in [9]. Then the dimensional time-harmonic velocity potential is:

𝜑(𝑟, 𝑡) = −𝜋i 𝐾2𝑀2 𝑐20 𝐻 (1)
(

2𝛺𝑟
)

e−2i𝛺𝑡. (22)
7

8 𝑆 𝛺 0 𝑐0
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The acoustic pressure becomes

𝑝′(𝑟, 𝑡) = 𝜋
4
𝜌0𝑐

2
0
𝐾2𝑀2

𝑆
𝐻 (1)

0

(

2𝛺𝑟
𝑐0

)

e−2i𝛺𝑡. (23)

In the far field we have

𝑝′(𝑟, 𝑡) =

√

𝜋
4

𝜌0𝑐
2
0

(

𝛺𝑟0
𝑐0

)3∕2 𝜈0
𝛺𝑟20

(

𝑈
𝑐0

)2 √ 𝑟0
𝑟
exp

[

−i
(

2𝛺(𝑡 − 𝑟∕𝑐0) + 𝜋∕4
)]

. (24)

hen

|𝑝′(𝑟, 𝑡)|
𝜌0𝑈2

=

√

𝜋
4

(

𝛺𝑟0
𝑐0

)3∕2 𝜈0
𝛺𝑟20

√

𝑟0
𝑟

= 1
4

√

𝜋𝑐0
𝛺𝑟

𝛺𝜈0
𝑐20

. (25)

This result perfectly agrees with Eq. (59) in Section 5.6.
In Lauvstad [9], the classical van Dyke method is used to match the solution of the inner problem to the conventional solution of

the outer linear acoustic problem. The possible problem with this method, pointed out by Lesser and Crighton [15], of logarithmic
gauge functions and ‘switchback’ does not arise in this problem. The end result is given in dimensional form as Eq. (43) by Lauvstad
[9]. When corrected by a factor of 1∕2, as has been explained, this becomes:

𝜌(𝑟, 𝑡) − 𝜌0 =

√

𝜋
4

𝜌0𝑀
2𝜀𝜇

(

1
√

𝑘0𝑟

)

exp
[

2i𝑘0(𝑟 − 𝑐0𝑡) +
3i𝜋
4

]

, (26)

here 𝜀𝜇 = 𝜈0𝛺∕𝑐20 corresponds to symbol 𝑆 in [9], where it is referred to as the modified Stokes number. To avoid confusion with
ur Stokes number defined following Eq. (18), we have replaced Lauvstad’s 𝑆 with the symbol 𝜀𝜇 in the present main text.

The pressure fluctuations are related to the density fluctuations in the conventional way,

𝑝′(𝑟, 𝑡) = 𝑐20 [𝜌(𝑟, 𝑡) − 𝜌0]. (27)

The acoustic far-field pressure corresponding to (26) is then

𝑝′(𝑟, 𝑡) = 𝜌0𝑐
2
0
1
4

√

𝜋𝑐0
𝛺𝑟

(

𝑈
𝑐0

)2 𝛺𝜈0
𝑐20

exp
[

2i𝛺
𝑐0

(𝑟 − 𝑐0𝑡) +
3i𝜋
4

]

, (28)

giving the non-dimensional pressure amplitude for 𝐾 ≪ 1 as

|𝑝′(𝑟, 𝑡)|
𝜌0𝑈2

= 1
4

√

𝜋𝑐0
𝛺𝑟

𝛺𝜈0
𝑐20

. (29)

auvstad’s corrected pressure amplitude in (29) agrees with the result in (25) and with Eq. (59) in Section 5.6. However there is a
ign difference between Eq. (28) and the corresponding result from Section 5 which remains unexplained.

. Outline of the weakly thermoviscous acoustic analogy equation

An acoustic analogy consists of an exact rearrangement of the governing equations with a propagation operator applied to
he variable of interest on the left-hand side, and with the remaining terms interpreted as equivalent sources for that variable. In
ighthill’s original acoustic analogy [1] the propagation operator was the lossless wave operator and the variable of interest was
he density fluctuation, and this was also the case for its extensions to bounded domains by Curle [2] and by Ffowcs Williams and
awkings [13].

As remarked in the introduction, the application by Lauvstad and Meecham [5] of Curle’s form of Lighthill’s acoustic analogy
ailed to replicate the matched asymptotic result of Lauvstad [9]. This failure follows from their use of the large Stokes number
pproximation 𝑆 ≫ 1 which, when combined with Curle’s formulation [2], leads to volume and surface terms that cancel to lowest
rder. We show below that the problem disappears if one uses the more general Ffowcs Williams and Hawkings formulation [13]
ogether with a Neumann Green’s function, rather than the free-field Green’s function implicit in [2]; there is then no surface term,
nd the lowest-order large-𝑆 approximation gives a finite result.

If, however, we wish to generalize the problem to allow for the fluid not being an ideal gas, or even for realistic gases with 𝛾 > 1,
he Lighthill analogy runs into difficulties because the flow is no longer isothermal. The resulting temperature perturbations lead
o linear heat conduction terms in the apparent source distribution, violating the basic premise of the acoustic analogy approach
hat no linear volume terms should appear. In this section we describe a thermoviscous-fluid acoustic analogy that leads to purely
onlinear volume source terms. Applying the modified analogy allows us in the remaining sections to solve the generalized version
f Lauvstad’s rotating-cylinder problem.

Infinitesimal disturbances to a uniform thermoviscous fluid at rest have three modes of propagation: acoustic, entropy and
orticity [10–12,16]. Our analogy uses the acoustic-mode wave operator, together with a version of the acoustic-mode variable
hat corresponds to the weakly-thermoviscous approximation as developed in Pierce [11], Sec. 10-3. Our acoustic wave variable
ill be defined by

′ 2 ⋆ 𝜇𝛩 , (30)
8

𝑝mod = 𝑐0 (𝜌 − 𝜌0) − 𝑠
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where 𝜇 = (𝜇𝐿 − 𝜅∕𝑐𝑝0) and 𝜇𝐿 is the longitudinal viscosity 4
3𝜇 + 𝜇𝐵 ; 𝜅 is the thermal conductivity, and 𝑐𝑝 is the constant-

ressure specific heat. Symbol 𝜌⋆ is the isentropic density 𝜌⋆ = 𝜌(𝑝, 𝑠0), with 𝑠 denoting the specific entropy, and the quantity
𝛩𝑠 = (𝛼𝑇 ∕𝑐𝑝)D𝑠′∕D𝑡 is the dilatation rate associated with entropy changes following a fluid particle.

Note that for a fluid with Prandtl number 3∕4 and 𝜇𝐵 = 0, as assumed in [12], 𝜇 vanishes. The subtracted term in Eq. (30)
epresents the entropy-mode component of the pressure perturbation. Outside any thermoviscous boundary layers, the acoustic-mode
ressure variable 𝑝′mod → 𝑝′ in the limit of small pressure perturbations 𝑝′ ≪ 𝜌0𝑐20 .

The equations of motion for a bounded compressible fluid, with 𝜇, 𝜇𝐵 and 𝜅 all assumed constant [14], can be rearranged without
pproximation to give a forced acoustic wave equation,

{

1
𝑐20

𝜕2

𝜕𝑡2
− (1 +)∇2

}

(𝑝′mod𝐻) = 𝛤vol + 𝛤surf, (31)

where  is a damping operator defined below. The left-hand side of Eq. (31) corresponds to the linearized acoustic mode equation in
a uniform thermoviscous fluid at rest with sound speed 𝑐0. The wave operator in Eq. (31) is equivalent to that used in Eq. (10-3.13)
of Pierce [11], which can be recovered by dividing Eq. (31) by (1 +) and dropping 𝑂(𝜀2) terms.

The spatial window function 𝐻 is the unit step function 𝐻(𝑓 ), whose derivative is the delta function 𝛿(𝑓 ). Their argument 𝑓 (𝐱, 𝑡)
s an indicator function, positive in the fluid region  and negative in the complementary region  , with 𝑓 = 0 on the common
nterface ; thus 𝐻 = 1 in  and 𝐻 = 0 in  . Eq. (31) differs in two main respects from the windowed-variable acoustic analogy

introduced by Ffowcs Williams and Hawkings [13]. First, 𝑝′mod contains an additional term [10,11] that cancels the entropy-mode
component of 𝑝′ in the weakly thermoviscous limit, thus ensuring that 𝛤vol contains no linear terms. Secondly, the acoustic wave
operator on the left allows for long-range attenuation of sound, via the thermoviscous damping operator

 =
[

𝜇𝐿 + (𝛾0 − 1)𝜅∕𝑐𝑝0
] 1
𝜌0𝑐20

𝜕
𝜕𝑡
. (32)

In order to apply Eq. (31) to the oscillating-cylinder problem where the sound field has angular frequency 2𝛺, the thermoviscous
requency parameters 𝜀𝐿 = 2𝛺𝜇𝐿∕𝜌0𝑐20 and 𝜀𝜅 = 2𝛺𝜒0∕𝑐20 need to be much less than 1, where 𝜒 = 𝜅∕𝜌𝑐𝑝 denotes the thermal
iffusivity of the fluid. The relative error in Eq. (31) is then 𝛥 = 𝑂(𝜀), where 𝜀 = max(𝜀𝐿, 𝜀𝜅 ).

To within relative error 𝛥 = 𝑂(𝜀), the volume source distribution in Eq. (31) is free of terms linear in perturbation variables,
n contrast to earlier acoustic analogy formulations. Thus the 𝛤vol source terms in Eq. (31) are of second or higher order in the
erturbation quantities 𝐮, 𝑝′, 𝑠′, 𝑇 ′ etc. If one limits attention to second-order terms, then of the six possible bilateral combinations
mong the acoustic, entropy and vorticity modes only one is relevant to the present problem, since the linear field is confined to
he vorticity mode. A detailed analysis in the time domain yields the dominant vorticity–vorticity interaction terms responsible for
coustic mode generation as follows:

𝛤vol ≃ 𝜌0
𝜕
𝜕𝑡
(𝑎𝐷̇𝐻) + 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝜌0𝑢𝑖𝑢𝑗𝐻). (33)

Here 𝐷̇ is the viscous dissipation rate per unit volume, and 𝑎 is the fluid thermal-expansion parameter 𝛼∕𝜌𝑐𝑝, where 𝛼 is the fluid’s
thermal expansivity. In order to arrive at Eq. (33), each term in the exact 𝛤vol expression has been scaled using a quasilinear
assumption; the far-field pressures contributed by each term can then be ordered with respect to the small parameters 𝜀𝐿 and 𝜀𝜅
defined earlier. The 𝛤vol expression above is an asymptotic approximation, based on the vorticity–vorticity terms whose contributions
to 𝑝′ in the far field are of lowest order in (𝜀𝐿, 𝜀𝜅 ).

The surface source distribution 𝛤surf, on the other hand, does contain linear components. We choose |∇𝑓 | = 1 on , so that

𝜕𝐻
𝜕𝑥𝑖

= 𝑛̂𝑖𝛿(𝑓 ) (34)

where 𝐧̂ is the unit normal to  pointing into  . For the rotating-cylinder application,  is chosen to coincide with the cylinder
surface, so may be taken as impermeable. Then 𝛤surf is given by

𝛤surf ≃ 𝜌0
𝜕
𝜕𝑡

[

(𝐮 ⋅ 𝐧̂ + 𝑎𝐪 ⋅ 𝐧̂)𝛿(𝑓 )
]

+ div
[

𝜇(𝜔𝜔𝜔 × 𝐧̂)𝛿(𝑓 )
]

− div
[

𝑝′mod𝐧̂𝛿(𝑓 )
]

, (35)

where 𝐪 is the heat flux and 𝑎 = 𝛼∕𝜌𝑐𝑝. The 𝜇(𝜔𝜔𝜔 × 𝐧̂) term, where 𝜔𝜔𝜔 is the vorticity, corresponds to Section 10-6 of Pierce’s
textbook [11], where the Kirchhoff–Helmholtz representation is modified to include viscosity effects. A linearized version of (31)
and (35), with 𝛤vol = 0, was developed by Morfey et al. [8] with no restriction placed on 𝜀𝐿. However, their result was limited to
fluids with zero thermal expansivity 𝛼; the heat flux term in (35) was therefore absent.

The 𝐮 ⋅ 𝐧̂ term in Eq. (35) vanishes for the rotating-cylinder problem, since the normal velocity on the boundary is zero. Likewise
the tangential-dipole term div

[

𝜇(𝜔𝜔𝜔 × 𝐧̂)𝛿(𝑓 )
]

is zero by symmetry, while the normal-dipole term in 𝑝′mod can be eliminated by using
the Neumann Green’s function to solve for the pressure field. This leaves the 𝐪 ⋅ 𝐧̂ term, which we can remove only by choosing
an adiabatic boundary condition at the cylinder surface. Any alternative requires formulating an extra equation for the entropy

′

9

perturbation 𝑠 , which is possible but more complicated and is discussed in Section 6.
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5. Acoustic analogy results for the oscillating cylinder

5.1. Vorticity equation for axisymmetric two-dimensional flow

Provided rotational symmetry about the cylinder’s axis is maintained, with velocity 𝐮 =
[

0, 𝑢𝑟(𝑟, 𝑡), 𝑢𝜙(𝑟, 𝑡)
]

, vorticity 𝜔𝜔𝜔 =
𝜔𝑥(𝑟, 𝑡), 0, 0

]

and 𝜌 = 𝜌(𝑟, 𝑡) in cylindrical (𝑥, 𝑟, 𝜙) coordinates, the nonlinear vorticity equation for axisymmetric flow of a
compressible fluid with constant shear and bulk viscosity is given by

𝜕𝜔𝑥
𝜕𝑡

+ 1
𝑟
𝜕
𝜕𝑟

(𝑟𝑢𝑟𝜔𝑥) = 𝜇
[

𝜕𝜌−1

𝜕𝑟
𝜕𝜔𝑥
𝜕𝑟

+ 𝜌−1
(

𝜕2𝜔𝑥

𝜕𝑟2
+ 1

𝑟
𝜕𝜔𝑥
𝜕𝑟

)]

. (36)

This equation follows from Eqs. ((1b), (1c)) on dividing by 𝜌 and taking the curl.
In the limiting case of small perturbations to a uniform fluid at rest, with initial density 𝜌 = 𝜌0, Eq. (36) reduces to a linear

equation describing the diffusion of vorticity,

𝜕𝜔𝑥
𝜕𝑡

− 𝜈0

(

𝜕2𝜔𝑥

𝜕𝑟2
+ 1

𝑟
𝜕𝜔𝑥
𝜕𝑟

)

= 0, (𝜈0 = 𝜇∕𝜌0). (37)

5.2. Linear solution for the velocity field

The velocity field corresponding to Eq. (37) is solenoidal, with the velocity expressible in terms of a vector potential 𝐰:

𝐮 = curl𝐰, div𝐮 = 0. (38)

The vorticity follows as 𝜔𝜔𝜔 = curl𝐮 = −∇2𝐰. In (𝑥, 𝑟, 𝜙) cylindrical coordinates, the symmetry of the problem gives the flow field as

𝐰 = 𝐰(𝑟, 𝑡) = (𝑤𝑥, 0, 0); 𝐮 = 𝐮(𝑟, 𝑡) = (0, 0, 𝑢𝜙). (39)

For harmonic oscillations with time factor e−i𝛺𝑡, the vector potential 𝐰 is the real part of the phasor 𝐰̂e−i𝛺𝑡. The complex amplitude
𝐰̂(𝑟 > 𝑟0), where 𝑟0 is the cylinder radius, satisfies a Helmholtz equation that follows from Eq. (37):

(

∇2 + 𝑘2𝑤
)

𝐰̂ = 0, 𝑘2𝑤 = i𝛺
𝜈0

. (40)

he component of (40) in the 𝑥 direction is the homogeneous Bessel equation

1
𝑟
d
d𝑟

(

𝑟
d𝑤̂𝑥
d𝑟

)

+ 𝑘2𝑤𝑤̂𝑥 = 0, 𝑟 > 𝑟0, (41)

with outgoing-wave solution 𝑤̂𝑥 ∝ 𝐻 (1)
0 (𝑘𝑤𝑟). The fluid circumferential velocity 𝑢𝜙(𝑟, 𝑡) = Re

(

𝑢̂𝜙e−i𝛺𝑡) then follows as

𝑢̂𝜙(𝑟) = −
d𝑤̂𝑥
d𝑟

= 𝑈
𝐻 (1)

1 (𝑘𝑤𝑟)

𝐻 (1)
1 (𝑘𝑤𝑟0)

, 𝑟 > 𝑟0, (42)

where 𝑈 (taken as real) is the amplitude of the tangential velocity at the cylinder surface.

5.3. Acoustic analogy formulation

The weakly thermoviscous acoustic analogy equation can be used to relate the sound field of the oscillating cylinder to the
velocity field in the viscous boundary layer. The final result depends on the thermal boundary condition applied at the cylinder
surface. We assume initially for simplicity that the boundary is adiabatic, since this eliminates the one significant boundary source
term (for details, see Section 4). The dominant volume sources of sound then follow from Eq. (33). They comprise a quadrupole
density 𝑞𝜙𝜙 and a monopole density 𝑞, given to leading order by

𝑞𝜙𝜙(𝑟, 𝑡) ≃ 𝜌0𝑢
2
𝜙; 𝑞(𝑟, 𝑡) ≃ 𝜌0𝑎0

𝜕𝐷̇
𝜕𝑡

. (43)

The role of unsteady dissipation in sound generation, represented by the monopole term in Eq. (43), was discussed theoretically
and demonstrated experimentally by Kambe and Minota [17] and Minota and Kambe [18]. Viscous energy dissipation in the flow
around the cylinder is confined to the viscous boundary layer, and is related to the velocity field by

𝐷̇ = 𝜇
( 𝜕𝑢𝜙

𝜕𝑟
−

𝑢𝜙
𝑟

)2

. (44)

In (43) 𝑢2𝜙 and 𝐷̇ both contain a mean component which does not radiate, plus a component at angular frequency 2𝛺. It follows
rom Eqs. (42)–(44) that the relevant source terms are 𝑞𝜙𝜙(𝑟, 𝑡) = Re

(

𝑞𝜙𝜙e−2i𝛺𝑡) and 𝑞(𝑟, 𝑡) = Re
[

𝑞e−2i𝛺𝑡], where

𝑞𝜙𝜙(𝑟) =
1
2
𝜌0𝑈

2

{

𝐻 (1)
1

[

(i𝑆)1∕2 𝑟∕𝑟0
]

𝐻 (1)
1

[

(i𝑆)1∕2
]

}2

, 𝑞(𝑟) = 𝜌20𝑎0𝛺
2𝑈2

{

𝐻 (1)
2

[

(i𝑆)1∕2 𝑟∕𝑟0
]

𝐻 (1)
1

[

(i𝑆)1∕2
]

}2

. (45)

he relation (𝑘 𝑟 )2 = i𝑆 has been used in (45), where 𝑆 is the Stokes number 𝛺𝑟2∕𝜈 .
10
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5.4. Green’s function solutions

The quadrupole component of the radiated pressure outside the boundary layer is represented in what follows by 𝑝′1 =
Re

[

𝑝̂1(𝑟)e−2i𝛺𝑡], and the monopole component by 𝑝′2 = Re
[

𝑝̂2(𝑟)e−2i𝛺𝑡]. To relate these to 𝑞𝜙𝜙 and 𝑞 respectively, we use the Neumann
coustic Green’s function 𝑔(𝑟 ∣ 𝜉; 𝑛 = 0) whose value 𝑔+ in 𝑟 > 𝜉 represents axisymmetric outgoing waves and has gradient 𝜕𝑔+∕𝜕𝜉 = 0
n the limit 𝜉 → 𝑟0. The governing equation is

{1
𝑟
𝜕
𝜕𝑟

(

𝑟 𝜕
𝜕𝑟

)

+ 𝑘2𝑎
}

𝑔(𝑟 ∣ 𝜉) = −1
𝑟
𝛿(𝑟 − 𝜉), (𝑟, 𝜉) ≥ 𝑟0. (46)

The acoustic wavenumber 𝑘𝑎 in (46) can be substituted by2𝛺∕𝑐0 = 𝑘 in the present weakly thermoviscous approximation, provided
𝑟 is not so large that attenuation due to viscosity and heat conduction becomes significant. The resulting relative error in the Green’s
function is of order 𝜀 = max(𝜀𝐿, 𝜀𝜅 ) where 𝜀𝐿 = 2𝛺𝜇𝐿∕𝜌0𝑐20 and 𝜀𝜅 = 2𝛺𝜒0∕𝑐20 are the dimensionless frequency parameters defined
n Section 4. The solution of (46) for 𝑟 > 𝜉 is then

𝑔+(𝑟 ∣ 𝜉) = 𝜋
2
[

𝐽1(𝑘𝑟0)𝑌0(𝑘𝜉) − 𝑌1(𝑘𝑟0)𝐽0(𝑘𝜉)
]
𝐻 (1)

0 (𝑘𝑟)

𝐻 (1)
1 (𝑘𝑟0)

. (47)

With 𝜉 = (1 + 𝑦)𝑟0, 𝑔+(𝑟 ∣ 𝜉) may be expanded in powers of 𝑘(𝜉 − 𝑟0) = 2𝐾𝑦 to give

𝑔+(𝑟 ∣ 𝜉) ≃
𝐻 (1)

0 (𝑘𝑟)

2𝐾𝐻 (1)
1 (2𝐾)

[

1 − 2𝐾2𝑦2 + 2
3
𝐾2𝑦3 − 1

2
𝐾2𝑦4 +⋯

]

, 𝐾 = 𝛺𝑟0∕𝑐0; (48)

𝜕
𝜕𝜉

𝑔+(𝑟 ∣ 𝜉) ≃ 2𝛺
𝑐0

𝐻 (1)
0 (𝑘𝑟)

𝐻 (1)
1 (2𝐾)

[

−𝑦 + 1
2
𝑦2 − 1

2
𝑦3 +⋯

]

. (49)

For points 𝜉 within the boundary layer, the parameter 𝐾𝑦 is of order 1
2𝑘𝛿 =

(

𝛺𝜈0∕𝑐20
)1∕2, where 𝛿 =

(

𝜈0∕𝛺
)1∕2 is a measure of the

viscous boundary-layer thickness. Since 𝛺𝜈0∕𝑐20 = 𝐾2∕𝑆 has to be small for the weakly thermoviscous approximation to be valid,
convergence of the series in (48) and (49) is assured for all values of 𝜉 within the boundary layer. However, several terms may be
required if 𝛿 is comparable with 𝑟0, which would lead to 𝑦 being of order 1.

For purposes of this discussion we follow Lauvstad [9] and restrict attention from here on to large Stokes numbers (𝑆 ≫ 1), so
he boundary layer thickness is much less than the cylinder radius. The pressure field outside the boundary layer due to each source
omponent is given by

𝑝̂1(𝑟) ≃ ∫

∞

𝑟0
𝑞𝜙𝜙(𝜉)

𝜕
𝜕𝜉

𝑔+(𝑟 ∣ 𝜉) d𝜉, 𝑝̂2(𝑟) ≃ ∫

∞

𝑟0
𝜉𝑞(𝜉)𝑔+(𝑟 ∣ 𝜉) d𝜉, (50)

with relative error 𝑂(𝜀). Substituting 𝑞𝜙𝜙 and 𝑞 from (45), with the expansions of 𝑔+(𝑟 ∣ 𝜉) and 𝜕𝑔+∕𝜕𝜉 truncated after the first term,
gives

𝑝̂1(𝑟)
𝜌0𝑈2

≃ −𝐽 (𝑆) 𝐾
𝐻 (1)

1 (2𝐾)
𝐻 (1)

0

(

2𝛺𝑟
𝑐0

)

, (51)

𝑝̂2(𝑟)
𝜌0𝑈2

≃ 1
2
𝐵0𝐼(𝑆)

𝐾
𝐻 (1)

1 (2𝐾)
𝐻 (1)

0

(

2𝛺𝑟
𝑐0

)

. (52)

Here 𝐵 is the non-dimensional fluid property 𝛼𝑐2∕𝑐𝑝, equal to (𝛾 − 1) for an ideal gas. The coefficients 𝐽 (𝑆), 𝐼(𝑆) are the
non-dimensional integrals defined below:

𝐽 (𝑆) = ∫

∞

0

{

𝐻 (1)
1

[

(1 + 𝑦)(i𝑆)1∕2
]

𝐻 (1)
1

[

(i𝑆)1∕2
]

}2

𝑦 d𝑦, 𝐼(𝑆) = ∫

∞

0

{

𝐻 (1)
2

[

(1 + 𝑦)(i𝑆)1∕2
]

𝐻 (1)
1

[

(i𝑆)1∕2
]

}2

d𝑦. (53)

.5. Asymptotic approximations for large 𝑆

For 𝑆 ≫ 1, replacement of the Hankel functions in (53) by their large-argument asymptotic forms gives

𝐽 (𝑆) ≃ ∫

∞

0

(

𝑦
1 + 𝑦

)

e2i(i𝑆)
1∕2𝑦d𝑦, 𝐼(𝑆) ≃ ∫

∞

0

(

−1
1 + 𝑦

)

e2i(i𝑆)
1∕2𝑦d𝑦. (54)

he integrals in (54) may be expanded in inverse powers of 𝑆1∕2 by using the binomial theorem to expand (1+𝑦)−1, and integrating by
arts to obtain a recurrence relation between successive terms. Thus for integrals of this form with exponent 𝑏𝑦, provided Re(𝑏) < 0,
e have

∫

∞

0

(

𝑦
1 + 𝑦

)

e𝑏𝑦d𝑦 = 1
𝑏2

+ 2
𝑏3

+ 3
𝑏4

+⋯ , ∫

∞

0

(

−1
1 + 𝑦

)

e𝑏𝑦d𝑦 = 1
𝑏
+ 1

𝑏2
+ 1

𝑏3
+⋯ , (55)

which with 𝑏 = 2i(i𝑆)1∕2 yields

𝐽 (𝑆) ≃ 1 ( i ) − 1 ( i )3∕2
+ 3 ( i )2

−⋯ , 𝐼(𝑆) ≃ −1 ( i )1∕2
+ 1 ( i ) − 1 ( i )3∕2

+⋯ . (56)
11
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5.6. Far-field radiated pressure

In the acoustic far field (2𝛺𝑟∕𝑐0 ≫ 1), Eqs. (51), (52) and (56) give the quadrupole and monopole complex pressure amplitudes
as follows, in the limit 𝑆 ≫ 1.

𝑝̂1(𝑟)
𝜌0𝑈2

≃ −1
4𝜋1∕2

( 𝑟0
𝑟

)1∕2 𝐾1∕2∕𝑆

𝐻 (1)
1 (2𝐾)

ei(𝑘𝑟+𝜋∕4), (57)

𝑝̂2(𝑟)
𝜌0𝑈2

≃ −1
4𝜋1∕2

𝐵0

( 𝑟0
𝑟

)1∕2 (𝐾∕𝑆)1∕2

𝐻 (1)
1 (2𝐾)

ei𝑘𝑟. (58)

omparison of (57) and (58) shows that |𝑝̂2(𝑟)| is larger than |𝑝̂1(𝑟)| by a factor 𝐵0𝑆1∕2. The reason for the difference is that radiation
rom the 𝜙𝜙 volume quadrupole distribution is partially suppressed by the Neumann boundary condition at 𝑟 = 𝑟0, as follows from

Eqs. (49) and (50) above. Had we used a free-field rather than a Neumann Green’s function to calculate the quadrupole sound, the
same end result would have been obtained, but the source terms would have included a normal-dipole term related to the pressure
on the boundary at 𝑟 = 𝑟0 (see Section 5.8 and Section 4). However the normal-dipole term and the volume quadrupole term cancel
o lowest order in 𝑆−1∕2 (the ratio of viscous penetration depth to cylinder radius). Thus the free-field Green’s function can be

misleading when approximations are used, as was found earlier by Lauvstad and Meecham [5].
For the acoustically compact special case 𝐾 ≪ 1, where the cylinder radius is much smaller than the sound wavelength 𝜆,

Eqs. (57) and (58) reduce to
{

𝑝̂1(𝑟)
𝜌0𝑈2

,
𝑝̂2(𝑟)
𝜌0𝑈2

}

≃ 1
4
𝜋1∕2

( 𝑟0
𝑟

)1∕2
ei𝑘𝑟

{

(𝐾3∕2∕𝑆)e−i𝜋∕4, 𝐵0𝐾
1∕2𝜀1∕2𝜇 e−i𝜋∕2

}

, (59)

where the parameter 𝜀𝜇 = 𝛺𝜈0∕𝑐20 = (𝜋𝛿∕𝜆)2 = 𝐾2∕𝑆 has to be small for the present acoustic analogy to be valid.

5.7. Radiated sound power and acoustic conversion efficiency

A useful parameter for characterizing the far-field radiation from aeroacoustic sources is the ratio of the mean sound power
output to the mean power dissipated by viscous stresses. For oscillatory rotation of an infinite cylinder, the power dissipated per
unit surface area can be obtained from Eq. (42) by defining the tangential impedance 𝑧𝑡 as

𝑧𝑡 = (−𝜏𝑟𝜙∕𝑢̂𝜙)𝑟=𝑟0 , 𝜏𝑟𝜙 = 𝜇
( 𝜕𝑢̂𝜙

𝜕𝑟
−

𝑢̂𝜙
𝑟

)

. (60)

The mean dissipated power per unit cylinder surface area is 1
2𝑈

2 Re(𝑧𝑡). Expressed per unit length, the power dissipated follows
rom (60) and (42) as

𝑊diss = 𝜋𝑟0𝑈
2 Re(𝑧𝑡) = 𝜋𝜇𝑈2 Re

[

𝑘𝑤𝑟0𝐻
(1)
2 (𝑘𝑤𝑟0)∕𝐻

(1)
1 (𝑘𝑤𝑟0)

]

, (61)

where 𝑘𝑤 = (i𝛺∕𝜈0)1∕2. In the limit 𝑆1∕2 ≫ 1, (61) becomes

𝑊diss ≃
𝜋
2
𝜇𝑈2(2𝑆)1∕2. (62)

The radiated sound power per unit length of cylinder is

𝑊rad ≃ 𝜋𝑟 |𝑝̂(𝑟)|2 ∕𝜌0𝑐0 (63)

where 𝑝̂(𝑟) is the far-field pressure, given when 𝑆1∕2 ≫ 1 by Eq. (57) for the quadrupole mechanism and by Eq. (58) for the monopole
echanism. Acoustic attenuation due to viscosity and heat conduction is here neglected for purposes of estimating the sound power

utput, as was done for estimating the Green’s function.
The acoustic conversion efficiencies associated with the two mechanisms follow from (62) and (63). Assuming 𝐾2 ≪ 1 as well

s 𝑆1∕2 ≫ 1 gives
(

𝑊rad
𝑊diss

)

1
= 𝜂ac,1 ≃

𝜋
√

2
8

𝑀2𝐾2𝑆−3∕2,
(

𝑊rad
𝑊diss

)

2
= 𝜂ac,2 ≃

𝜋
√

2
8

𝐵2
0𝑀

2𝐾2𝑆−1∕2. (64)

In the opposite case (𝐾2 = 𝜀𝜇𝑆 ≫ 1) where the cylinder radius 𝑟0 is large compared with the acoustic wavelength, Eqs. (57) and (58)
shows that 𝜂ac,2 becomes independent of 𝑟0, while 𝜂ac,1 tends to zero in the flat-plate limit:

𝜂ac,1 ≃

√

2
16

𝑀2𝜀1∕2𝜇 𝑆−1, 𝜂ac,2 ≃

√

2
16

𝐵2
0𝑀

2𝜀1∕2𝜇 . (65)

It is interesting to rewrite the conversion efficiencies in Eq. (64) in terms of the nonlinearity parameter 𝑁 = 𝜉max∕𝛿 = 𝑀∕𝜀1∕2𝜇 where
max is the maximum displacement 𝑈∕𝛺 of the cylinder surface. The 𝑁 value determines the stability of the viscous boundary layer
n the flat-plate limit 𝑆1∕2 ≫ 1 (see Appendix). Eq. (64) becomes

𝜂ac,1 ≃

√

2
8

𝜋𝑁2𝜀2𝜇𝑆
−1∕2, 𝜂ac,2 ≃

√

2
8

𝜋𝐵2
0𝑁

2𝜀3∕2𝜇 𝐾 (𝐾2 = 𝜀𝜇𝑆 ≪ 1, 𝑆1∕2 ≫ 1). (66)

nce 𝑁 reaches around 350, the viscous boundary layer becomes turbulent and the present description of the sound radiation breaks
own.
12
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5.8. Comparison with previous results

In Lauvstad’s matched asymptotic expansion calculation [9], reviewed in Section 3, it is assumed that 𝐾2 ≪ 1 as well as (𝑆1∕2 ≫ 1,
2 ≪ 1). With the correction factor 1∕2 noted in Section 3, Lauvstad’s far-field pressure agrees with our quadrupole result in Eq. (59)

part from the sign.
In a later paper, Meecham [19] adopted the simple-source approach of Ribner [20,21,22] and treated the cylinder as a line

onopole source in a general fluid, again assuming 𝐾2 ≪ 1 as well as (𝑆1∕2 ≫ 1, 𝑀2 ≪ 1). By combining this source model with a
ree-field Green’s function, and doubling the source strength to allow for reflection by the cylinder, a far-field pressure result was
ound that agrees with the quadrupole component in Eq. (59). However in the limit 𝐾2 ≪ 1, the Neumann and free-field Green’s
unctions for radiation from sources on the boundary are the same. The source strength should therefore not have been doubled,
nd the agreement in [19] appears to result from two errors cancelling.

As mentioned in Section 5.6, Lauvstad and Meecham [5] failed to replicate the result of Ref. [9] by using Curle’s acoustic analogy
ormulation [2]. If we had followed Ref. [2] and used a free-field Green’s function when applying our thermoviscous acoustic analogy
o the rotating cylinder problem, the 𝑝̂1 expression in Eq. (50) above would have been replaced by

𝑝̂1(𝑟) ≃ ∫

∞

𝑟0
𝑞𝜙𝜙(𝜉)

𝜕
𝜕𝜉

𝑔+∞(𝑟 ∣ 𝜉) d𝜉 + 𝑟0𝑝̂mod(𝑟0)
𝜕𝑔+∞
𝜕𝜉

|

|

|

|

|𝜉=𝑟0

= 𝑝̂1,𝑉 + 𝑝̂1,𝑆 . (67)

ere the free-field acoustic Green’s function 𝑔+∞(𝑟 ∣ 𝜉) replaces the Neumann Green’s function of Eq. (50), and a surface term 𝑝̂1,𝑆
appears due to the 𝑝′mod𝐧̂ normal-dipole distribution on the cylinder boundary, as shown in Eq. (35).

Evaluating the surface term 𝑝̂1,𝑆 can be done in two ways: either one uses an incompressible estimate of the surface pressure to
write 𝑝̂mod(𝑟0) ≃ 𝑝̂inc(𝑟0) as in [5], or one solves directly for 𝑝̂mod(𝑟0) by means of a Neumann Green’s function. In the limit 𝐾 ≪ 1
these give the same result, because the surface pressure in this case is dominated by the quadrupole component 𝑝̂1. Assuming the
boundary is adiabatic,

𝑝̂mod(𝑟0)
𝜌0𝑈2

≃ −1
4

( i
𝑆

)1∕2
(𝐾 ≪ 1, 𝑆 ≫ 1). (68)

If 𝐾 is not small Eq. (68) is not valid and the dissipation-generated pressure has to be taken into account, as Eq. (82) below indicates.
For 𝐾 ≪ 1, however, it is interesting to examine the sound field prediction obtained from (67) and (68) since it casts light on the
failure of Ref. [5] to obtain a result from Curle’s formulation [2].

The Green’s function derivative (𝜕∕𝜕𝜉)𝑔+∞(𝑟 ∣ 𝜉) for 𝑟 > 𝜉 appearing in the integral of Eq. (67) is

𝜕𝑔+∞
𝜕𝜉

= −i𝜋
2
𝑘𝐽1(𝑘𝜉)𝐻

(1)
0 (𝑘𝑟). (69)

Comparison of 𝜕𝑔+∞∕𝜕𝜉 with 𝜕𝑔+∕𝜕𝜉 from Eq. (49) gives their ratio as 1∕(2𝑦) where 𝑦 = (𝜉∕𝑟0 − 1) ≃ 𝑆−1∕2, to lowest order in 𝑦.
Thus provided 𝑆1∕2 ≫ 1, the integral in (67) resembles the 𝑝̂1(𝑟) integral in (50), but with 𝐽 (𝑆) replaced by − 1

2 𝐼(𝑆). It follows from
Eqs. (54) and (56) that 𝑝̂1,𝑉 (𝑟) ≃ (i∕𝑆)−1∕2𝑝̂1(𝑟) to lowest order in 𝑆−1∕2, so from Eq. (59)

𝑝̂1,𝑉 (𝑟)
𝜌0𝑈2

≃ 1
4
𝜋1∕2

( 𝑟0
𝑟

)1∕2
ei(𝑘𝑟−𝜋∕2)𝐾3∕2𝑆−1∕2. (70)

The surface term 𝑝̂1,𝑆 in (67) is given by putting 𝜉 = 𝑟0 in Eq. (67) and using (68):

𝑝̂1,𝑆 (𝑟)
𝜌0𝑈2

≃ −1
4
𝜋1∕2

( 𝑟0
𝑟

)1∕2
ei(𝑘𝑟−𝜋∕2)𝐾3∕2𝑆−1∕2. (71)

qs. (70) and (71) show that in the present approximation, the volume and surface sources 𝑝̂1,𝑉 and 𝑝̂1,𝑆 do indeed cancel.

6. Effect of a non-adiabatic boundary condition at the cylinder wall

On removal of the restriction to an ideal gas with 𝛾 = 1 implied in Lauvstad’s analysis [9], not only does dissipative heating take
over as the dominant mechanism of sound generation, but the far-field pressure amplitude now depends on the thermal boundary
condition imposed at the cylinder wall 𝑟 = 𝑟0. To demonstrate the influence of a non-adiabatic boundary, we recalculate the sound
field using the isothermal boundary condition 𝑇 ′ = 0 in place of the adiabatic condition 𝐪 ⋅ 𝐧̂ = 0 assumed in Section 5. This leads
to an additional boundary source term involving the normal heat flux 𝐪 ⋅ 𝐧̂, as indicated in Eq. (35).

6.1. Nonlinear equation for the entropy mode

In order to apply a boundary condition on 𝑇 ′ at the cylinder wall, we require a solution for 𝑠̂(𝑟0) as well as 𝑝̂mod(𝑟0). The linearized
equation that describes the entropy mode to lowest order in 𝜀 in a general thermoviscous fluid is [10,11]

𝜕𝑠′

𝜕𝑡
− 𝜒0∇2𝑠′ = 0, (72)

but it ceases to be accurate when perturbations from the uniform reference state are no longer small. In this section we outline
the development of a nonlinear version of (72) that describes the generation of the entropy mode in bounded regions with relative
13
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error 𝛥 = 𝑂(𝜀), analogous to the weakly thermoviscous acoustic mode equation in Section 4. As in that case, the resulting equation
ontains volume source terms arising from second-order interactions between first-order perturbations.

The exact entropy equation for a compressible thermoviscous fluid is given in [14], Eq. (49.4) as

𝜌𝑇 D𝑠
D𝑡

= 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− div 𝐪, (73)

where 𝜏𝑖𝑗 are the components of the viscous stress tensor 𝜏𝜏𝜏, and 𝐪 is the heat flux vector. The first term on the right is the rate of
viscous energy dissipation, denoted by 𝐷̇. We also define the instantaneous rate of energy dissipation per unit volume associated
with heat flux down a temperature gradient,

𝐷̇𝑇 = −(𝐪 ⋅ ∇𝑇 )∕𝑇 = 𝜅|∇𝑇 |2∕𝑇 , (74)

where the second expression applies to a fluid with constant thermal conductivity 𝜅. If we also assume that the shear viscosity 𝜇
and the bulk viscosity 𝜇𝐵 are constant,

𝐷̇ = 𝐷̇shear + 𝐷̇vol, with 𝐷̇shear =
1
2
𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2
3
𝛩𝛿𝑖𝑗

)2

and 𝐷̇vol = 𝜇𝐵𝛩
2. (75)

q. (73) can then be written

𝜌𝑇 D𝑠
D𝑡

= 𝜅𝑇 𝜕
𝜕𝑥𝑖

(

1
𝑇

𝜕𝑇
𝜕𝑥𝑖

)

+ 𝐷̇𝑇 + 𝐷̇. (76)

ote that both 𝐷̇𝑇 and 𝐷̇ are positive definite, as shown by (74) and (75).
Eq. (76) can be rearranged without approximation to give a forced entropy mode equation for the windowed variable 𝑠′𝐻(𝑓 ),

ith the same operator on the left as Eq. (72) above:
{ 𝜕
𝜕𝑡

− 𝜒0∇2
}

(𝑠′𝐻) = 𝛤vol + 𝛤surf. (77)

To solve for the entropy field in the boundary layer, we note that in the linear approximation only the vorticity mode is present,
nd the dominant vorticity–vorticity volume source term is due to dissipative heating. Thus in Eq. (77) we have

𝛤vol ≃
1

𝜌0𝑇0
𝐷̇𝐻, (78)

provided the convective term in D𝑠∕D𝑡 (namely 𝑢𝑖𝜕𝑠∕𝜕𝑥𝑖 = 𝑢𝑟𝜕𝑠′∕𝜕𝑟) can be shown to contribute a vanishingly small fraction of the
otal material derivative.1 The weakly thermoviscous asymptotic description on which Eq. (78) is based requires 𝜀 = max(𝜀𝐿, 𝜀𝜅 ) ≪ 1,

as in Eq. (31).
As in Section 4 the boundary  is chosen to coincide with the cylinder surface, so may be taken as impermeable. Then 𝛤surf is

given by

𝛤surf ≃
1
𝜌𝑇

𝐪 ⋅ 𝐧̂𝛿(𝑓 ) −
(

𝛼𝜒
𝜌

)

0

[

𝜌D𝐮
D𝑡

⋅ 𝐧̂𝛿(𝑓 ) + div
[

𝜇(𝜔𝜔𝜔 × 𝐧̂)𝛿(𝑓 )
]

]

− 𝜒0 div
[

𝑠′𝐧̂𝛿(𝑓 )
]

. (79)

he factor (D𝐮∕D𝑡) ⋅ 𝐧̂ in Eq. (79) may be replaced by −𝑢2𝜙∕𝑟, since the normal velocity on the boundary is zero. The tangential-dipole
erm div

[

𝜇(𝜔𝜔𝜔 × 𝐧̂)𝛿(𝑓 )
]

, where 𝜔𝜔𝜔 is the vorticity, is zero by symmetry; and the normal-dipole term in 𝑠′ can be eliminated by using
the Neumann Green’s function to solve for the entropy field. This leaves the 𝐪 ⋅ 𝐧̂ term as an unknown, to be determined by setting
a thermal boundary condition at 𝑟 = 𝑟0.

The solution procedure for Eq. (77) is similar to that used for the acoustic mode in Section 5, with the main difference being
hat we wish to solve for the fluctuating entropy at the cylinder boundary, 𝑠′(𝑟0, 𝑡). We shall also need the acoustic-mode solution
or 𝑝′mod(𝑟0, 𝑡). A thermal boundary condition can then be imposed and the unknown heat flux determined.

.2. Results for an isothermal cylinder boundary

To describe the boundary heat flux and associated second-order temperature fluctuations associated with a non-adiabatic cylinder
oundary, we write

𝑇 ′(𝑟, 𝑡) = Re
[

𝑇̂ (𝑟)e−2i𝛺𝑡] , (𝐪 ⋅ 𝐧̂)(𝑟0, 𝑡) = Re
[

ℎ̂e−2i𝛺𝑡] . (80)

he complex amplitude 𝑇̂ (𝑟) is a combination of acoustic-mode and entropy-mode components, given with relative error 𝛥 = 𝑂(𝜀)
y

𝑇̂ (𝑟)
𝑇0

≃
𝐵0

𝜌0𝑐20
𝑝̂mod(𝑟) +

1
𝑐𝑝0

𝑠̂(𝑟). (81)

1 This is shown to be the case for the generalized oscillating-cylinder problem in Section 6.4 below.
14
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Solving the acoustic-mode equation for 𝑝̂mod(𝑟0) and the entropy-mode equation for 𝑠̂(𝑟0) gives, assuming 𝑆1∕2 ≫ 1 and 𝑃 1∕2 ≫ 1,

𝑝̂mod(𝑟0)
𝜌0𝑈2

≃ −1
4

( i
𝑆

)1∕2
− 𝐵0

[

1
4

( i
𝑆

)1∕2
𝐾 + iℎ̂

𝜌0𝑐0𝑈2

] 𝐻 (1)
0 (2𝐾)

𝐻 (1)
1 (2𝐾)

, (82)

and
𝑠̂(𝑟0)
𝑐𝑝0

≃ 1
𝜅𝑇0

[

1
4
𝑋
𝑆
𝛺𝜌0𝑈

2𝑟20 +
( i
2𝑃

)1∕2
𝑟0ℎ̂

]

. (83)

Here 𝑃 = (𝑃𝑟)𝑆 and 𝑋 =
[

𝑃𝑟 + (2𝑃𝑟)1∕2
]−1, where 𝑃𝑟 = 𝑐𝑝0 𝜇∕𝜅 is the fluid Prandtl number.

Imposing an isothermal boundary condition 𝑇̂ (𝑟0) = 0 allows the boundary heat flux ℎ̂ to be determined from Eqs. (81)–(83). It
turns out that regardless of 𝐾, the 𝑝̂mod(𝑟0) contribution to the boundary temperature may be neglected for purposes of estimating
ℎ̂, provided (𝑃 1∕2, 𝑆1∕2) ≫ 1. Specifically, if we define 𝐴 = 𝛼𝑇 = (𝛾 − 1)∕𝐵 the relative error in ℎ̂ is of order 𝐴0(𝑃−1∕2 + 𝑆−1∕2) for
𝐾 ≪ 1 and (𝛾0 − 1)(𝜀1∕2𝜇 + 𝜀1∕2𝜅 ) for 𝐾 ≫ 1. Then

ℎ̂
𝜌0𝑐0𝑈2

≃ −1
4
e−i𝜋∕4𝑋𝜀1∕2𝜇 (isothermal boundary) (84)

where 𝑋 = (2𝑃𝑟)1∕2𝑋.
The acoustic consequence of (84) is that the sound pressure radiated outside the boundary layer acquires an extra term

𝑝̂3(𝑟) = −2i𝛺𝜌0𝑎0𝑟0ℎ̂𝑔
+(𝑟 ∣ 𝑟0), (85)

where 𝑔+ is the outgoing-wave acoustic Green’s function introduced in Eq. (47). Thus for 𝐾 ≪ 1, the adiabatic-boundary results in
Eq. (59) for the far-field pressure are supplemented by a heat-flux term

𝑝̂3(𝑟)
𝜌0𝑈2

≃ 1
4
𝜋1∕2

( 𝑟0
𝑟

)1∕2
ei(𝑘𝑟+𝜋∕2)𝐵0𝐾

1∕2𝑋𝜀1∕2𝜇 . (86)

Comparison of 𝑝̂3(𝑟) from (86) with 𝑝̂2(𝑟) from Eq. (59) shows the two pressure components to be of opposite sign, with |𝑝̂3|∕|𝑝̂2| =

𝑋 =
(

1 +
√

𝑃𝑟∕2
)−1

. As 𝑃𝑟 → 0, 𝑋 → 1 and these two contributions cancel, leaving the much smaller quadrupole component 𝑝̂1(𝑟).

6.3. Generalized thermal boundary condition

Our two assumptions of an adiabatic or isothermal rigid boundary at 𝑟 = 𝑟0 may be viewed as limiting cases of a solid cylinder
that is heat-conducting, but does not expand on heating (to ensure 𝑢𝑟 = 0 at the boundary). If the thermal boundary condition for
this generalized case is written as ℎ̂ = −𝛽𝑇̂ (𝑟0), and we assume the thermal penetration depth in the solid to be small compared
with the cylinder radius, it follows that

𝛽 ≃ 𝜅𝑠

(

2𝛺
𝜒𝑠

)

e−i𝜋∕4, (87)

where 𝜅𝑠 and 𝜒𝑠 are respectively the thermal conductivity and thermal diffusivity of the solid material. Solving for ℎ̂ then gives

ℎ̂ = 𝑍ℎ̂isothermal, with 𝑍 =

[

1 + 𝜅
𝜅𝑠

(

𝜒𝑠
𝜒0

)1∕2
]−1

. (88)

The sum 𝑝̂2 + 𝑝̂3 is now (1 −𝑍𝑋) times 𝑝̂2. The isothermal result 𝑍 = 1 is recovered in the limit (𝜅𝜌𝑐𝑝)𝑠∕(𝜅𝜌𝑐𝑝)0 → ∞.

.4. Source terms omitted from the nonlinear entropy-mode equation

Results have been derived in this section based on a restricted set of entropy-mode source terms, namely

𝛤vol ≃
1

𝜌0𝑇0
𝐷̇𝐻 and 𝛤surf ≃

1
𝜌𝑇

𝐪 ⋅ 𝐧̂𝛿(𝑓 ). (89)

Although other terms are present in general, in the present context these can mostly be seen to either vanish or be small. The two
terms whose omission is not obviously justified are the surface term in (D𝐮∕D𝑡) ⋅ 𝐧̂𝛿(𝑓 ) that appears in Eq. (79), and the volume
term in 𝑢𝑟𝜕𝑠′∕𝜕𝑟 that arises from the difference between D𝑠′∕D𝑡 and 𝜕𝑠′∕𝜕𝑡.

The first of these can be assessed by noting that the radial component of D𝐮∕D𝑡 at the cylinder boundary is −𝑢2𝜙∕𝑟0, since
𝑢𝑟(𝑟0, 𝑡) = 0. The ratio of the D𝐮∕D𝑡 source term to the 𝐪 ⋅ 𝐧̂ source term in (89) then follows from (84) as

|ratio of terms| ∼ 𝐴0
𝑋
𝑃𝑟

𝑆−1∕2. (90)

Since we are assuming 𝑆1∕2 ≫ 1, dropping the D𝐮∕D𝑡 surface term is justified.
The discarded volume source term 𝑢𝑟𝜕𝑠′∕𝜕𝑟 is potentially significant on account of the large factor 𝜀−1∕2𝜅 introduced by taking

the gradient of the fluctuating entropy. To assess this term, one should in principle calculate the amplitude of 𝑢 𝜕𝑠′∕𝜕𝑟 within the
15
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boundary layer. This involves solving the nonlinear entropy mode equation to find 𝑠̂(𝑟), and likewise the acoustic mode equation to
ind 𝑝̂(𝑟) ≃ 𝑝̂mod(𝑟). Using the notation 𝑢𝑟(𝑟, 𝑡) = Re

[

𝑢̂𝑟(𝑟)e−2i𝛺𝑡], the continuity equation then gives

𝑢̂𝑟(𝑟) =
1
𝑟 ∫

𝑟

𝑟0
𝜉𝛩̂(𝜉) d𝜉, where 𝛩̂ = 2i𝛺

(

1
𝜌0𝑐20

𝑝̂ −
𝐴0
𝑐𝑝0

𝑠̂

)

. (91)

The amplitude of 𝑢𝑟𝜕𝑠′∕𝜕𝑟 follows as 1
2
|

|

𝑢̂𝑟𝜕𝑠̂∕𝜕𝑟||. To justify neglecting this term, its maximum value through the boundary layer,
|𝑢𝑟𝜕𝑠′∕𝜕𝑟|max, needs to be small compared with the maximum of the dissipation source term 𝐷̇∕𝜌0𝑇0.

Alternatively one can avoid the detailed calculation above by using scaling arguments, based on the solutions already presented
for 𝑠̂(𝑟) and 𝑝̂(𝑟). These give the amplitude ratio of the two entropy-mode source terms as

|𝑢𝑟𝜕𝑠
′∕𝜕𝑟|max∕

1
𝜌0𝑇0

|𝐷̇|max ∼ 𝐵0𝐹 (𝑃𝑟)𝑀2, (92)

where 𝐹 (𝑃𝑟) is a function of the Prandtl number 𝑃𝑟 = 𝑐𝑝0𝜇∕𝜅. Provided 𝐹 (𝑃𝑟) is of order 1, dropping the 𝑢𝑟𝜕𝑠′∕𝜕𝑟 term is justified
as long as 𝑀2 ≪ 1.

7. Conclusions

The following conclusions can be drawn regarding the aeroacoustic sound output of a rotationally oscillating infinite circular
cylinder in the stable oscillatory flow regime with 𝑆1∕2 ≫ 1, for a cylinder whose boundary is adiabatic:

• Sound is generated in the viscous boundary layer by two different mechanisms. In the present acoustic analogy formulation
these appear as a 𝜌𝑢2𝜙 quadrupole distribution, and a monopole distribution due to viscous dissipation. The latter mechanism
depends on the thermal expansivity of the fluid.

• The quadrupole term 𝑞𝜙𝜙 is equivalent, in the present approximation with 𝑀2 ≪ 1 and 𝜀 ≪ 1, to a centrifugal body force
field 𝑔𝑟 = 𝑢2𝜙∕𝑟; it is a nonlinear (second order) source, quadratic in the vorticity-mode velocity field. Likewise the monopole
dissipation term is also a second-order source, equivalent to a heat input distribution 𝐷̇ per unit volume.

• For the special case of a fluid with 𝐵0 = 0, where 𝐵 is the dimensionless quantity 𝛼𝑐2∕𝑐𝑝 based on the thermal expansivity
𝛼, sound speed 𝑐, and constant-pressure specific heat 𝑐𝑝, only the first mechanism operates. This was effectively the case
considered by Lauvstad [9], who modelled the fluid as an ideal gas with density changes occurring isothermally, corresponding
to a specific heat ratio 𝛾 = 1.

• For a general fluid, the sound power output due to the viscous-dissipation mechanism is greater by a factor 𝐵2
0𝑆 than that due

to the quadrupole mechanism.
• The acoustic analogy calculations of Lauvstad and Meecham [5] and Meecham [19] were not restricted to fluids with 𝐵0 = 0.

However only the quadrupole mechanism was considered.
• The attempt by Lauvstad and Meecham [5] to calculate the radiated quadrupole field at large Stokes numbers 𝑆 using

surface and volume terms based on Curle’s free-field formulation [2] was unsuccessful, because to lowest order in 𝑆−1∕2 the
two contributions cancel as demonstrated in Section 5.8. It appears that for the present problem the formulation in [5] is
ill-conditioned, whereas the Neumann formulation used in Section 5 is much less sensitive to large-𝑆 approximations.

• It is interesting to note that Doak [23], writing at the same time as Powell [3], was already making the point that one can
choose any of a wide range of Green’s functions to represent sound radiation in the presence of boundaries, and not just the
free-field Green’s function implicit in Curle’s formulation of Lighthill’s theory [2]. Thus the split between surface and volume
contributions to the radiated sound is to a large extent arbitrary.
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Appendix. Stability of the oscillatory boundary layer

The transition to turbulence in an oscillatory boundary layer has been studied experimentally by Akhavan et al. [24] for the
special case of incompressible rectilinear flow, corresponding to 𝑆 → ∞, 𝑀 → 0 in the present problem where 𝑆 is the Stokes number
𝛺𝑟20∕𝜈0 and 𝜈0 is the kinematic viscosity. They showed that in pulsatile fully-developed pipe flow, with a sinusoidally-oscillating
olume flowrate proportional to sin𝛺𝑡 and zero mean flow, bursts of turbulence appear in the boundary layer when the amplitude

𝑈 of the cross-sectional mean velocity reaches 𝑈 ≈ 350(𝛺𝜈0)1∕2. Their experiments used two pipe diameters, 16 and 30 times the
1∕2 1∕2
16

iscous length scale (𝜈0∕𝛺) = 𝛿, with no significant difference in the onset of turbulent flow. The criterion 𝑈crit ≈ 350(𝛺𝜈0)
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for laminar flow breakdown corresponds to a value of 350 for the parameter 𝑁 = 𝜉max∕𝛿, where 𝜉max is the relative displacement
amplitude between the wall and the fluid outside the boundary layer.

In a second paper, Akhavan et al. [25] carried out numerical simulations of oscillatory two-dimensional flow in a plane channel
of width 28𝛿. The results were consistent with the findings from the pipe-flow experiments, and showed that the onset of turbulence
was due to the nonlinear growth of three-dimensional disturbances, rather than to linear instability. We conclude that for the present
cylinder problem with 𝑆 ≫ 1, the oscillatory boundary layer remains stable as long as 𝑁 is less than around 300.
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