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Abstract

Rotations are often used for panel surveys, where the observations
remain in the sample for a predefined number of periods and then
rotate out. The information of previous waves can be exploited to
improve current estimates. We propose a multivariate regression esti-
mator which captures all information available from both waves. By
adding additional auxiliary variables describing the information of the
rotational design, the proposed estimator captures the sample corre-
lation between waves. It can be used for the estimation of levels and
changes.
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1 Introduction

Repeated socioeconomic surveys are often the basis for evaluating changes
and levels over time (e.g. Smith et al., 2003). Estimates are usually based
on repeated or rotational surveys, which involve rotations, i.e. units remain
in a survey for a predefined number of waves and then are replaced by new
sampled units (e.g. Gambino & Silva, 2009, Kalton, 2009, Eurostat, 2012).
There are different rotation schemes. In an in-for-x rotational design the
units remain in the sample for x consecutive waves and then are replaced by
new sampled units. In an x-(y)-z rotational design, the units remain in the
sample for x consecutive waves, leave the sample for y waves and then return
for z consecutive waves. Then they are dropped from the sample completely
and replaced by new sampled units (e.g. Bonnéry et al., 2020, 170). We
shall consider two waves, but the proposed approach can be extended to
more than two waves (see Section 3.1).

Rotational designs give partially overlapping samples between waves. Thus,
between two consecutive waves, we have units sampled at both waves (the
overlapping units), units sampled only at the first wave (units that rotate
out) and units sampled only at the second wave (units that rotate in). The
sample information from the previous wave can be used to improve the
current wave estimates. We expect to have more efficient estimates when
variables are correlated over time (Steel & McLaren, 2008).

We propose a ‘multivariate generalised regression’ (greg) estimator that
exploits the sample overlap between two waves, as well as the non-overlap
samples containing the units observed in only one of the waves. The pro-
posed estimator includes ‘extended design variables’ as additional auxiliary
variables, which capture the sample correlation between the variables and
the sample rotation. Thereby, it borrows strength from all available sample
information on the variables of interest and the auxiliary variables from both
waves. This may provide efficient change and levels estimates. Furthermore,
the extended design variables capture the sample design information, such
as stratification and unequal probabilities. The proposed estimator can be
applied for rotational samples of any rotation scheme or for the simultaneous
estimation of two or more consecutive waves; for example, impact evaluation
surveys with a baseline and a post-intervention data collection.

The idea of including the sample information on variables of interest from
previous waves is not new. Hansen et al. (1953) and Gurney & Daly (1965)
introduced a class of composite estimators that exploit the sample overlap
between two consecutive waves. The ‘modified regression estimator ’ of Singh
et al. (1997), includes an additional auxiliary variables based on the variables
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of interest from previous waves. However, for the new units that rotate in,
the values of these additional variables are unknown and usually imputed.
The control totals of the additional variables are also unknown and have
to be estimated, which leads to a variance inflation of the current wave
estimate. In contrast, the proposed estimator neither relies on imputation
nor the estimation of unknown control totals.

The paper is organised as follows. Section 2 introduces the basic frame-
work on rotational surveys and greg estimators. In Section 3, we derive
the proposed multivariate greg estimator and its properties. Asymptotic
optimality and variance estimation is investigated in Section 4. Alternative
estimators considered in the literature such as the modified regression esti-
mator are discussed in Section 5. In Section 6, a Monte Carlo simulation
study compares the proposed multivariate greg estimator with the modified
regression estimator. Section 7 summarises our results.

2 Rotation design and generalised regression esti-
mator

Let U = {1, . . . , i, . . . , N} be a population of N units. Without loss of
generality, we consider two waves (t = 1 and t = 2). The proposed estimator
introduced in Section 3, will be extended to more than two waves in Section
3.1. We assume that the population units are the same in both waves. In
practice, a change in a population can be handled by adjusting the weights
and the sampling frame in the cases of birth, death and emigration.

Let s1 be the first wave sample of size n1 selected without-replacement
from U . The first-order inclusion probability of unit i for wave 1 and 2
are denoted respectively by πi1 = Pr(i ∈ s1) and πi2 = Pr(i ∈ s2), where
Pr(·) is the probability with respect to the design. We assume that both
sample sizes n1 and n2 are fixed. The common sample is s12 = s1 ∩ s2, with
a sample size n12 = #s12, where 0 ≤ n12 ≤ n1. We assume that n12 is
fixed, because this is a common feature of rotational designs. It is common
practice to assume that the units that rotate out cannot rotate in; that is,
Pr{i ∈ (s2 \ s1)|i ∈ s1} = 0.

Stratification is often used in practice. We suppose that the population U
is stratified into H strata Uh, such that ∪Hh=1Uh = U . We assume that
stratification is the same at both waves. Let st,h be the t-th wave sample of
size nt,h selected without-replacement from the population Uh, where t = 1
or 2. At wave t, the overall sample is st = ∪Hh=1st,h with a total sample

size nt =
∑H

h=1 nt,h. We assume that we have a rotation within strata,
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i.e. the common sample within Uh is denoted by s12,h = s1,h ∩ s2,h, with
a sample size n12,h = #s12,h, fixed by design. The ratio θh = n12,h/n1,h is
the fraction of the overlap within Uh. The quantities θh are allowed to vary
between strata.

The objective is to estimate unknown population totals of a variable of
interest y, for different waves. The total of wave t is

τyt :=
∑
i∈U

yit,

where yit is the value of y for a unit i ∈ U at wave t. The Horvitz &
Thompson (1952) estimator

τ̂yt :=
∑
i∈st

yit
πit

is a design-unbiased estimator of τyt . For estimation of a domain of interest,
we impose yit = 0 for the units i outside the domain.

The efficiency can be improved by incorporating auxiliary information in the
estimation process. A widely used model-assisted estimator based on aux-
iliary information, is the generalised regression (greg) estimator (Hansen
et al., 1953, Cassel et al., 1977, Särndal, 1980, Isaki & Fuller, 1982, Wright,
1983). Let xit be the Qt-vector of auxiliary variables for a unit i at wave
t. Suppose that the vector of population totals τxt =

∑
i∈U xit at wave t,

is known from census, registers, or other reliable sources. The customary
greg estimator is defined by

τ̂ g
yt

:= τ̂yt + B̂>t (τxt − τ̂xt), (1)

where

τ̂xt :=
∑
i∈st

xit
πit
, (2)

B̂t :=

(∑
i∈st

xitx
>
it

πit

)−1∑
i∈st

xityit
πit
· (3)

The estimator (1) is motivated by the linear regression model

yit = x>itβt + εit, (4)

specifying the relationship between yit and xit, where E(εit) = 0, V (εit) =
σ2 and E(εitεjt) = 0 for all i 6= j. If V (εit) = vitσ

2, a weighted least-
squares estimator can be used instead of (3) to reflect heteroscedasticity. In
order to simplify the notation, we shall assume vit = 1. Nevertheless, when
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vit 6= 1, they can be easily added to the regression coefficient (13) of the
proposed estimator. The use of vit is more relevant for business surveys.
Homoscedasticity (vit = 1) is often assumed in household surveys (Steel &
Clark, 2007, 52).

The asymptotic design-unbiased estimator (1) does not depend on whether
the model (4) holds or not. Its efficiency is driven by the predictive power
of the model (cf. Särndal et al., 1992, 227, 239). Hereafter, we shall use a
design-based approach, i.e. the model (4) shall not be used for inference.

3 Proposed multivariate regression estimator

Let us consider the “combined sample” defined by the set sb = s1 ∪ s2

comprising all units from both waves. The corresponding sample size of sb
is denoted nb = #sb = n1 +n2−n12. Let the ‘extended weighted variable of
interest ’ defined by

y̆it :=
yit
πit

δ{i ∈ st} for all i ∈ sb and t = 1, 2, (5)

where δ{i ∈ st} = 1 if i ∈ st, and δ{i ∈ st} = 0 otherwise. Note that y̆i2 = 0
for all units i ∈ sb \ s2 that rotates out. We also have y̆i1 = 0 for all units
i ∈ sb \ s1 that rotates in. Figure 1 is a visual representation of two waves,
with units on the horizontal axis and the two waves on the vertical axis.

The ‘extended weighted auxiliary variables’ are defined by

x̆it :=
xit
πit

δ{i ∈ st} for all i ∈ sb and t = 1, 2. (6)

The set of auxiliary variables used at t = 1 can be different from the one
used at t = 2. The set of auxiliary variables can also be the same. This is
usually the case for panel surveys.

Note that (2) can also be re-written as τ̂xt =
∑

i∈sb x̆it. We also consider
‘extended design variables’ given by

zit := (zit,1, . . . , zit,h, . . . , zit,H)>δ{i ∈ st} for all i ∈ sb and t = 1, 2,

with zit,h = 1 if the unit i belongs to stratum h in wave t, and zit,h = 0
otherwise. The vector zit represents the sampling design information given
by the stratification. The Hadamard product zi1 ◦ zi2 will play a key role.
It reveals the information induced by the rotation, because it identifies the
units within the common sample. Indeed, the h-th component of zi1 ◦ zi2
is equal to one if and only if the unit i belongs to the common sample of
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Wave t = 1

Wave t = 2

Rotate out Overlap s12 = s1 ∩ s2 Rotate in

Combined sample sb = s1 ∪ s2

Sample s1

Sample s2

y̆i1 = 0
x̆i1 = 0
zi1 = 0

y̆i2 = 0
x̆i2 = 0
zi2 = 0

Figure 1: Visual representation of two waves. The vertical axis represents
the two waves: t = 1 and t = 2. The horizontal axis represents the units of
the combined sample sb = s1 ∪ s2. The sample s1 and s2 are given in two
different gray scales: for the sample s1 and for the sample s2.

strata h. This component equals zero if and only if the unit i rotates in or
out. Thus, zit can be used to describe the sample information given by the
rotation and the stratification.

It can be verified that∑
i∈st

zit = nt and
∑
i∈sb

zi1 ◦ zi2 = n12, (7)

where

nt := (nt,1, . . . , nt,h, . . . , nt,H)>,

n12 := (n12,1, . . . , n12,h, . . . , n12,H)>·

Equations (7) hold, because we have stratified design and we have a rotation
within strata.

Let y̆i = (y̆i1, y̆i2)> be the ‘combined extended variable of interest ’ of wave 1
and wave 2. We also pool together the extended weighted auxiliary variables
and the extended design variables into a single vector γi of dimension (Q1 +
Q2 + 3H), given by

γi :=
{

x̆>i1, x̆
>
i2, z

>
i1, z

>
i2, (zi1 ◦ zi2)>

}>
· (8)

This new auxiliary variable γi contains the original auxiliary variables xit,
the stratification variables zit and the variables zi1 ◦ zi2 which specify the
rotation within strata.
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Berger et al. (2003) proposed using the stratification variables as auxiliaries
within a greg estimator, when we have a single-stage stratified sampling
designs. This has the merit of achieving asymptotic optimality. The re-
sulting estimator is easy to implement and does not rely on joint-inclusion
probabilities. The proposed multivariate greg estimator (9) is based on a
similar idea, except that we use the additional variables zi1 ◦ zi2 to capture
the rotation.

The proposed multivariate greg estimator for the unknown vector τy =
(τy1 , τy2)> of totals, is defined by

τ̂
greg
y := τ̂y + B̂>γ (τγ − τ̂γ), (9)

where

τ̂y := (τ̂y1 , τ̂y2)>, (10)

τγ := (τ>x1 ,τ
>
x2 ,n

>)>, (11)

τ̂γ := (τ̂x1
>, τ̂x2

>,n>)>, (12)

B̂γ :=
(∑
i∈sb

ciγiγ
>
i

)−1∑
i∈sb

ciγiy̆
>
i , (13)

n := (n>1 ,n
>
2 ,n

>
12)>, (14)

ci := 1− Pr(i ∈ sb)· (15)

The matrix (13) is a regression coefficient matrix of dimension (Q1 +Q2 +
3H)× 2. We introduce the ci to achieve asymptotic optimality (see Section
4). Since sb = s1 ∪ s2, we have Pr(i ∈ sb) = πi1 + πi2 − Pr(i ∈ s12). Now,
since s12 = s12 ∩ s1, Pr(i ∈ s12) = Pr(i ∈ s1)Pr(i ∈ s12 | i ∈ s1). Thus,

Pr(i ∈ sb) = πi1 + πi2 − πi1Pr(i ∈ s12 | i ∈ s1). (16)

The conditional probability Pr(i ∈ s12 | i ∈ s1) depends on the design and
can be approximated by θh = n12,h/n1,h where Uh 3 i. Therefore, hereafter
we shall use

ci = 1− πi1 − πi2 + πi1θh, where h : Uh 3 i· (17)

Exact computation of Pr(i ∈ s12 | i ∈ s1) is of little use. With large
sampling fractions, the ci are less than 1 and can be interpreted as finite
population corrections within (13). They should not affect the consistency
of (9), because they are weights used only within (13). Note that with
negligible sampling fractions ci ≈ 1. The ci will be also used for variance
estimation (see (27)).

Because of nonresponse, we could have units within the overlapping sample,
which are not available at both occasions. Re-weighting should be used to
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compensate for the missing observations. In this case, within (5) and (6), the
basic weights π−1

it should be replaced by weights that takes the missingness
into account.

Theorem 1 gives an alternative expression for the proposed estimator which
will be used to show its asymptotic optimality in Section 4.

Theorem 1. An alternative expression for τ̂
greg
y is

τ̂
greg
y = τ̂y + B̂>x (τx − τ̂x), (18)

where

B̂x :=
(
X̆>CMz X̆

)−1
X̆>CMz y̆, (19)

Mz := I− Z(Z>CZ)−1Z>C, (20)

X̆ := (x̆>1 , . . . , x̆
>
nb

)>,

y̆ := (y̆1, . . . , y̆nb
)>,

Z := (z1, . . . , znb
)>,

C := diag{c1, . . . , cnb
}, (21)

y̆i := (y̆i1, y̆i2)>,

x̆i := (x̆>i1, x̆
>
i2)>,

zi :=
{
z>i1, z

>
i2, (zi1 ◦ zi2)>

}>
, (22)

τx := (τ>x1 ,τ
>
x2)>,

τ̂x := (τ̂x1
>, τ̂x2

>)>

(23)

and I is the nb × nb identity matrix.

The proof can be found in the Appendix and is based on the fact that the
Horvitz-Thompson estimators of the totals of the design variables are equal
to their population totals, i.e. τγ − τ̂γ = {(τx − τ̂x)>,0>}>.

The underlying model that leads to (18) is

yi = x>i βx + εi,

where yi := (πi1 y̆i1, πi2 y̆i2)> and xi := (πi1 x̆>i1, πi2 x̆>i2)>. This model takes
the correlation between waves into account, because variables of both waves
are included within yi and xi. Furthermore, τ̂x contains the totals of both
waves.

The proposed estimator borrows strength from both waves, by using both
waves auxiliary variables. Furthermore, it takes the stratification into ac-
count, because of the extended design variables zi1 and zi2. In addition,
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the variable zi1 ◦ zi2 exploits the rotation between s1 and s2 induced by the
sample overlap. In contrast, the regression coefficient of the wave specific
greg estimator, given by (3), does not involve design variables or infor-
mation about the rotation. It does not take into account the correlation
between the waves for the auxiliary variables and the variable of interest.

3.1 Extension to more than two waves

The proposed estimator can be easily extended for more than two waves.
Suppose we have three consecutive waves. At wave 2, the multivariate greg
estimator produces two estimates: τ̂

greg
y1 for wave 1 and τ̂

greg
y2 for wave 2,

where τ̂
greg
y2 borrows strength from the information of wave 1. At wave 3, we

obtain a new estimate τ̂
greg(2)
y2 for wave 2 and an estimate τ̂

greg
y3 for wave 3.

Therefore, we have two estimates for wave 2: τ̂
greg
y2 and τ̂

greg(2)
y2 . In official

statistics, due to the need for up-to-date information, the estimate τ̂
greg
y2 is

immediately published at wave 2. The second τ̂
greg(2)
y2 is not published and

should not be viewed as a revised estimate for the second wave total. It is
only used to produce τ̂

greg
y3 . Furthermore, there is no reason for τ̂

greg(2)
y2 to

be more precise than τ̂
greg
y2 , since both are based on the same controls and

correlations. The estimates τ̂
greg
y2 and τ̂

greg(2)
y2 are not used as controls to

produce τ̂
greg
y3 , as with the modified regression estimator (see Section 5).

The proposed estimator is flexible, because it can be also use to borrow
strength over more than two waves. In this case, the dimension of the
vectors τ̂

greg
y and y̆i is the number of waves. The vectors y̆i and x̆i contain

the variables of the waves considered. In this case, the vector (22) may need
to include additional components depending on the design. For simplicity,
we recommend to use ci = 1 in this case.

For example, suppose we have three waves, the sample sizes of the overlap-
ping sets between the three samples from the same stratum can be fixed by
design; i.e n12,h, n23,h, n13,h and n123,h may be fixed, where nt`,h denotes the
sample size of st,h∩s`,h within stratum Uh. Here, n123,h is the sample size of
s1,h ∩ s2,h ∩ s3,h. This situation occurs when we use the customary rotation
group method. In this case, we need to include within zi: (i) zi1 ◦ zi2 for
the fixed sample size of s1,h ∩ s2,h, (ii) zi2 ◦ zi3 for the fixed sample size of
s2,h∩s3,h, (iii) zi1◦zi3 for the fixed sample size of s1,h∩s3,h, (iv) zi1◦zi2◦zi3
for the fixed sample size of s1,h ∩ s2,h ∩ s3,h; i.e. the vectors (8) and (14)
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should be replaced respectively by

γi =
{

x̆>i1, x̆
>
i2, z

>
i1, z

>
i2, (zi1◦zi2)>, (zi2◦zi3)>, (zi1◦zi3)>, (zi1◦ zi2◦zi3)>

}>
,

n = (n>1 ,n
>
2 ,n

>
12,n

>
23,n

>
13,n

>
123)>,

with n23 := (n23,1, . . . , n23,H)>, n13 := (n13,1, . . . , n13,H)> and
n123 := (n123,1, . . . , n123,H)>.

4 Asymptotic optimality and variance estimation

In this section, we show the asymptotic optimality when we have two waves.

The asymptotic optimal greg estimator (Montanari, 1987) of the vector of
totals τy = (τy1 , τy2)> is

τ̂
opt
y := τ̂y + B̂>opt(τx − τ̂x), (24)

where

B̂>opt := V̂(τ̂x)−1Ĉov(τ̂x, τ̂y)· (25)

See Guandalini & Tillé (2017, 3) for more details. By using the Horvitz &
Thompson (1952) variance and covariance estimators, the expression (25)
reduces to

B̂opt = (X̆>∆X̆)−1X̆>∆y̆, (26)

where

∆ :=
{

(πij − πiπj)π−1
ij ; i, j ∈ sb

}
.

Here, πij = Pr(i, j ∈ sb) denotes the joint-inclusion probability of units i
and j for the sample sb. These are different from the joint probabilities of s1

and s2, because πij takes the rotation into account. Since the probabilities
πij are unknown, we propose to use the asymptotic approximation of Hájek
(1964), based on the assumption that the rotation design is asymptotically
rejective according to the design constraints (7). This approximation is given
by ∆ ≈ CMz , where C and Mz are defined respectively by (20) and (21)
(Hájek, 1981 chap.14, Berger et al., 2003 and Deville & Tillé, 2005). Now,
by replacing this approximation of ∆ within (26), we obtain (19). Thus,
the proposed estimator τ̂

greg
y is indeed optimal asymptotically.

A variance estimator of (9) can be derived, based on principle that the
variance under Poisson sampling of the regression estimator (9) based on the
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auxiliary and design variables, is asymptotically the same as the variance of
the regression estimator (18) under a rejective design (Hájek, 1964, Berger,
2004) with the design constraints (7). Thus, the variance estimator of (9),
assuming that sb is a Poisson sample with inclusion probabilities (16), is
given by the variance-covariance matrix

V̂(τ̂greg
y ) := (MΓ y̆)>C MΓ y̆, (27)

where

MΓ := I− Γ(Γ>CΓ)−1Γ>C,

Γ := (γ1, . . . ,γn)>·

Note that (27) is a residual variance as in Särndal et al. (1992, 235), because
MΓ y̆ are residuals. Note that the variance estimator takes the stratification
into account, because the information about the strata is included within
MΓ . However, if within (5) and (6), the basic weights π−1

it are substituted
by weights which take the missingness into account, the variance estimator
(27) may be biased, because nonresponse is not accounted for.

5 Alternative approaches

Composite estimators also use the information from previous waves. Hansen
et al. (1953) introduced the K-composite estimator for levels and change
between two waves. The AK-composite estimator (Gurney & Daly, 1965)
takes the difference between the common sample s12 and the unmatched
sample s2 into account. The optimal choice of the weighting factors A and
K, within the AK-composite estimator, depends on the variables of interest
(Kumar et al., 1983). This dependency may result in an inconsistency, in
the sense that the sub-group total estimates may not add up to the overall
total (Gambino et al., 2001, 66).

Singh (1996) and Singh et al. (1997) introduced the modified regression es-
timator, abbreviated mr hereafter. The idea is to extend the auxiliary vari-
ables in the current wave by an additional artificial auxiliary variable, which
contains the information on the variable of interest from the previous wave.
The definition of this variable depends on whether the primary interest lies
on levels or change. If the main focus lies on levels, the artificial variable
refers to the variable of interest yi1 from the previous wave. However, due
to the rotation, yi1 is only known for i ∈ s12. Singh (1996) suggested to use
mean imputation for the unknown values for the units i ∈ s2 \ s12. Thus, in
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this case, the artificial variable is

x̃MR1
i2 :=

{
yi1 for i ∈ s12

µ̂y1 for i ∈ s2 \ s12,
(28)

where µ̂y1 is an estimator for the mean of y1. The control total of the variable
(28) is unknown and can be estimated by Nµ̂y1 (Fuller & Rao, 2001, 47).
Hence, the modified regression estimator for τy2 =

∑
i∈U2

yi2 is given by

τ̂MR1
y2

:= τ̂y2 + B̂>xx̃(τ̃xx̃ − τ̂xx̃), (29)

with

B̂xx̃ := (B>x2 , B̂x̃2)>,

τ̃xx̃ := (τ>x2 , Nµ̂y1)>,

τ̂xx̃ := (τ̂x2
>, τ̂x̃2)>·

If the primary interest is to estimate a change, the artificial variable refers to
the variable of interest yi2 from the current wave. The variable recommended
by Singh (1996) and Singh et al. (1997) is

x̃MR2
i2 :=

yi2 +
n2

n12
(yi1 − yi2) for i ∈ s12,

yi2 for i ∈ s2 \ s12·
(30)

The mr2 estimator may suffer from a drift in levels estimates over a long
period (Gambino et al., 2001, 65, Fuller & Rao, 2001, 50). In order to over-
come this problem, Fuller & Rao (2001) introduced the regression composite
estimator (rc) given by

x̃RC
i2 := (1− α)x̃MR1

i2 + α x̃MR2
i2 , (31)

where α ∈ [0, 1] is a tune-in parameter which reflects the importance given
to levels or change estimates. The advantage of the regression composite
estimator compared with mr1 and mr2 is the fact that it is a compromise
between levels and change estimation. An alternative estimator could be
based on (28) and (30). However, the increased number of auxiliaries and
control totals may lead to a distortion in the final weights (Gambino et al.,
2001, 65).

Singh et al. (2001) suggested a jackknife variance estimator that takes the
estimation of the control totals into account. Indeed, ignoring the additional
source of randomness would lead to an underestimation of the true variance.
Berger et al. (2009) proposed a linearised variance estimator that takes the
estimation of the controls into account.
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The optimal BLUE estimator is based on a time series of the variable of in-
terest (Yansaneh & Fuller, 1998, Bell, 2001, Australian Bureau of Statistics,
2007). This estimator requires that the variances and covariances of the ro-
tation group estimates are known (Bell, 2001, 56). If they were substituted
by their estimates, it is no longer guaranteed that the BLUE estimator is
optimal. Bonnéry et al. (2020) showed that the BLUE with an estimated
variance-covariance matrix is less efficient than the composite estimators.
Some disadvantages are discussed in Fuller (1990) and Steel & McLaren
(2009). Since the BLUE estimator is based on a time series, it is less com-
parable with the proposed estimator and the modified estimators, which are
both based on regression estimation.

6 Simulation study

We consider three waves (t = 0, 1, 2), because the estimators (9) and (29)
at wave t = 1, require the sample information from wave t = 0. The results
are reported for levels at waves t = 1 and t = 2, and changes between waves
t = 1 and t = 2.

Consider N population values of yit and xit (t = 1, 2, 3) generated from a
multivariate normal distributions; i.e.

(yi0, yi1, yi2, xi0, xi1, xi2)> ∼ N(µ,Σ)·

Here, Σ denotes a covariance matrix with an heterogeneous exchangeable
structure, i.e.

Σ := diag(σ)
{
ρJ6 + (1− ρ)I6

}
diag(σ)·

where diag(σ) is the diagonal matrix with σ = (σy0 , σy1 , σy2 , σx0 , σx1 , σx2)>

as its diagonal. The matrices J6 is 6 × 6 matrix of ones and I6 is the
6 × 6 identity matrix. Thus, the correlations cor(yit, yit′) = cor(xit, xit′) =
cor(yit, xit′) = ρ, with t 6= t′. Let σy0 = 10, σy1 = 15, σy2 = 20, σx0 = 30,
σx1 = 40 and σx2 = 50. The correlations considered are ρ = 0.1, 0.5 and
0.9. Two values for the vector µ = (µy0, µy1, µy2, µx0, µx1, µx2)> are used:

µI := (59, 60, 61, 99, 100, 101)>,

µII := (40, 60, 80, 100, 150, 200)>,

i.e. we have a small change with µI and a large change with µII .

For each wave t, we have stratified samples of size nt = 1000. We consider
4 strata formed by the quantile classes of the population distribution of

13



yi1 + yi2. The same fraction of common samples between waves is used
within strata, i.e. θh = θ = n12/n1 = n01/n0, where θ = 0.25, θ = 0.5 or
θ = 0.75. Rotation groups sampling is implemented. Within each strata
Uh, q units are randomly allocated into P rotation groups of same size
p = bq/P c. The sample s0,h contains the units of the first bnh p−1c groups.
At wave t = 1, we obtain the sample s1,h by rotating out the first group
and replacing it by the (bnh p−1c+ 1)-th group. At wave t = 2, the second
group rotates out and (bnh p−1c + 2)-th group rotates in. For θ = 0.25, we
use q = 625 and P = 10. With θ = 0.5, we use q = 400 and P = 4 and with
θ = 0.75, we set q = 300 and P = 6. We consider 1000 iterations.

In the first simulation setup, we consider equal allocation for all strata with
nt,h = 250 and N = 100, 000. Thus, the inclusion probabilities are the
same across the strata and the sampling fractions are small. In the second
simulation setup, unequal probabilities with large sampling fractions are
used. Consider n1,h = 50, n2,h = 200, n3,h = 350, n4,h = 400 and N = 4000.
The resulting within strata inclusion probabilities are 0.05, 0.2, 0.35 and 0.4.
In the second simulation setup, the population size is N = 4000, to allow
for large sampling fractions.

The estimators considered are the proposed multivariate regression estima-
tor (9) (prop), the customary regression estimator (1) (greg) and the mod-
ified estimator (29) with (28) as auxiliaries (mr1) and with (30) as auxiliaries
(mr2). For mr1 and mr2, we use τ̂ greg

y0 as the estimated control total of the
previous wave t = 1.

In order to explore the efficiency of point estimates, we compare the empir-
ical ‘relative root mean squared errors’ (rrmse). Let τ̂r be an estimate for
the r-th iteration with r = 1, . . . , 1000. The rrmse is defined as

RRMSE(τ̂) :=
1

| τ |

{
1

1000

1000∑
r=1

(τ̂r − τ)2

} 1
2

,

where τ denotes the population total.
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Table 1: Equal strata sizes. Equal probabilities and small sampling
fractions. RRMSE×100% of levels estimates under different scenarios for
1000 iterations.

ρ µ θ greg prop mr1
t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

0.1 µI 0.25 1.21 1.49 0.62 0.69 1.00 1.14
0.50 1.26 1.44 0.63 0.68 0.99 1.12
0.75 1.24 1.40 0.62 0.67 0.92 1.06

µII 0.25 1.21 1.12 0.62 0.53 1.37 1.27
0.50 1.26 1.08 0.63 0.52 1.29 1.15
0.75 1.24 1.06 0.62 0.51 1.16 1.04

0.5 µI 0.50 1.03 1.26 0.48 0.54 0.78 0.84
0.50 0.99 1.27 0.49 0.58 0.80 0.90
0.75 0.99 1.25 0.50 0.56 0.80 0.90

µI 0.50 1.03 0.92 0.48 0.41 1.06 0.83
0.50 0.99 0.93 0.49 0.44 1.09 0.89
0.75 0.99 0.91 0.50 0.43 1.09 0.91

0.9 µI 0.25 0.49 0.60 0.28 0.35 0.39 0.46
0.50 0.49 0.61 0.27 0.35 0.40 0.45
0.75 0.48 0.60 0.28 0.33 0.37 0.43

µII 0.25 0.49 0.43 0.28 0.27 0.51 0.37
0.50 0.49 0.43 0.27 0.27 0.53 0.38
0.75 0.48 0.42 0.28 0.25 0.53 0.41
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Table 2: Unequal strata sizes. Unequal probabilities and some large
sampling fractions. RRMSE×100% of levels estimates under different
scenarios for 1000 iterations.

ρ µ θ greg prop mr1
t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

0.1 µI 0.25 1.51 1.61 0.84 0.89 1.26 1.21
0.50 1.51 1.58 0.87 0.88 1.24 1.26
0.75 1.53 1.58 0.87 0.90 1.23 1.20

µII 0.25 1.51 1.26 0.84 0.68 1.67 1.29
0.50 1.51 1.24 0.87 0.67 1.60 1.27
0.75 1.53 1.24 0.87 0.68 1.53 1.14

0.5 µI 0.25 1.29 1.51 0.70 0.77 0.98 0.98
0.50 1.32 1.42 0.71 0.74 1.03 0.99
0.75 1.26 1.48 0.69 0.74 1.04 1.04

µII 0.25 1.29 1.14 0.70 0.59 1.30 0.93
0.50 1.32 1.07 0.71 0.56 1.38 0.98
0.75 1.26 1.11 0.69 0.56 1.42 1.07

0.9 µI 0.25 0.72 0.83 0.38 0.50 0.53 0.61
0.50 0.70 0.85 0.40 0.49 0.53 0.60
0.75 0.71 0.84 0.40 0.48 0.53 0.59

µII 0.25 0.72 0.59 0.38 0.38 0.69 0.50
0.50 0.70 0.60 0.40 0.37 0.73 0.51
0.75 0.71 0.59 0.39 0.37 0.78 0.58

The rrmse×100% for different values of ρ, g and θ, are reported in Tables
1 and 2. For Table 1, we have equal strata sizes with the same inclusion
probabilities across strata and small sampling fractions. For Table 2, the
inclusion probabilities differs between strata and some sampling fractions
are large. The proposed prop estimator outperforms greg and mr1 under
all scenarios. For all estimators under consideration, the rrmse decreases
with the correlation ρ between the variables.

We observe slightly smaller rrmse for mr1 with θ = 0.75, when ρ = 0.1,
because the higher the overlap, the less values have to be imputed. The
amount of overlap θ has little impact on the precision of the proposed esti-
mator. However, for mr1, we observe some slight differences in the rrmse
between different values for θ. For small correlation (ρ = 0.1), we indeed
have a larger rrmse for mr1 with θ = 0.25. For larger correlation, the
differences are negligible for mr1. With mr1, we notice differences between
the rrmse of τ̂y1 for small (µI) and large changes (µII). There is hardly
any differences for the proposed estimator. These observations are the same
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for Tables 1 and 2, except that the rrmse are higher for all estimators in
case of unequal strata sizes.

The rrmse of the proposed estimator do no seems to be affected by the
amount of overlap θ, because we can see from the expression (18) that the
precision is driven by the correlations between the variables of interest and
the auxiliary information for both waves, which is not affected by θ. This
can also be seen from the variance (27), where the residuals MΓ y̆ do not
depend on θ. The information about the rotation is implicitly included
within the vector zi given by (22), and used for the weights within the
regression coefficient (19) (see (20)). These weights ensure efficiency (see
Section 4). On the other hands, the precision of mr1 is related to θ, because
θ has an impact on the precision of the control totals with mr1. With the
proposed method, we use different control totals unaffected by θ.

Let 4 = τy2−τy1 be the change between waves t = 1 and t = 2. We propose

estimating 4 by 4̂ = τ̂y2 − τ̂y1 , where τ̂y1 and τ̂y2 are the corresponding
cross-sectional estimators. Tables 3 and 4 give the rrmse×100% of the
estimates of changes, for equal and unequal strata sizes. As expected, the
rrmse decreases with ρ. The proposed estimator prop significantly outper-
forms greg and mr2. The efficiency gain compared with mr2 ranges from
5% to 53%. Since the relative rmse is considered, it is not surprising to
observe larger rrmse for a small change (µI). The rrmse of mr2 decrease
with θ. In contrast, the rrmse of prop increase slightly with θ except for
large vales of ρ.
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Table 3: Equal strata sizes. Equal probabilities and small sampling
fractions. rrmse×100% of change estimates under different scenarios for
1000 iterations.

ρ µ θ greg prop mr2

0.1 µI 0.25 120.28 60.60 100.83
0.50 125.23 67.39 90.90
0.75 118.08 69.03 82.45

µII 0.25 5.86 2.98 5.40
0.50 6.10 3.31 5.05
0.75 5.76 3.39 4.37

0.5 µI 0.25 98.04 46.96 79.61
0.50 99.73 51.67 71.26
0.75 94.29 52.56 64.99

µII 0.25 4.76 2.34 4.42
0.50 4.85 2.57 4.12
0.75 4.59 2.61 3.60

0.9 µI 0.25 46.14 27.00 37.37
0.50 45.38 26.22 32.06
0.75 43.62 26.43 28.95

µII 0.25 2.23 1.36 2.15
0.50 2.19 1.32 2.01
0.75 2.11 1.32 1.74
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Table 4: Unequal strata sizes. Unequal probabilities and some large
sampling fractions. rrmse×100% of change estimates under different
scenarios for 1000 iterations.

ρ µ θ greg prop mr2

0.1 µI 0.25 140.96 79.27 123.09
0.50 138.27 86.79 109.39
0.75 144.61 93.57 110.40

µII 0.25 6.90 3.83 6.43
0.50 6.76 4.19 5.79
0.75 7.06 4.51 5.75

0.5 µI 0.25 114.65 61.44 95.13
0.50 113.51 61.60 81.51
0.75 109.77 62.43 74.85

µII 0.25 5.95 3.20 5.48
0.50 5.89 3.21 4.92
0.75 5.69 3.25 4.37

0.9 µI 0.25 64.40 37.30 48.98
0.50 61.67 36.67 41.70
0.75 60.04 35.11 36.51

µII 0.25 3.16 1.91 2.96
0.50 3.03 1.88 2.61
0.75 2.95 1.80 2.20

Table 5 shows the relative bias (rb) of the variance estimator (27) for prop.
The RB is defined by

RB{V̂ (τ̂)} := V (τ̂)−1

{
1

1000

1000∑
r=1

V̂ (τ̂r)− V (τ̂)

}
,

where

V (τ̂) :=
1

1000

1000∑
r=1

(τ̂r − τ)2.

Here, τ̂r and V̂ (τ̂r) are respectively the point and variance estimate for the
r-th iteration. The rb are within an acceptable range. We observe larger
rb for τ̂

greg
y2 , when ρ = 0.9 and θ = 0.75, because the variance is small in

this case.
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Table 5: RB%100 of variance estimates for the proposed estimator under
different scenarios for 1000 iterations.

ρ µ θ Equal strata sizes Unequal strata sizes
t = 1 t = 2 t = 1 t = 2

0.1 µI 0.25 1.5 -7.4 -16.3 -15.3
0.50 -3.4 -5.1 -18.1 -12.1
0.75 1.5 0.0 -15.4 -11.9

µII 0.25 1.5 -7.4 -16.4 -15.3
0.50 -3.4 -5.1 -18.1 -12.1
0.75 1.5 0.0 -15.2 -11.9

0.5 µI 0.25 5.7 4.9 -21.0 -19.3
0.50 1.8 -8.8 -18.3 -12.9
0.75 -0.0 -1.4 -12.2 -7.6

µII 0.25 5.6 4.9 -20.8 -19.3
0.50 1.8 -8.8 -18.3 -12.9
0.75 -0.0 -1.4 -11.5 -7.6

0.9 µI 0.25 -2.7 0.3 -16.1 -22.0
0.50 4.0 -1.4 -18.5 -18.7
0.75 -2.0 10.1 -15.1 -13.7

µII 0.25 -2.7 0.3 -15.7 -22.0
0.50 4.0 -1.4 -18.5 -18.7
0.75 -1.9 10.1 -14.3 -13.7

The biases of the variance estimates in the case of unequal strata sizes is
larger than the biases of equal strata sizes. The reason is the small sample
size for two strata in the unequal strata size scenario. The residuals of the
smallest strata vary much more and thus have a larger contribution towards
the variance than the residuals of the large strata. The negative bias can also
be caused by small sample sizes, because the Taylor linearization method has
a tendency to underestimate the true variance in this case (Särndal et al.,
1992, 176).

7 Conclusion

We propose a multivariate greg estimator for estimation of levels and
changes. It has the advantage of involving the information from both waves,
and takes into account the correlations between the variables of interest and
the auxiliaries within and between the waves. Additionally, it also takes
the sampling design into account, in terms of stratification, rotation and
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sampling fractions.

The simulation study shows that the proposed estimator may outperform its
competitors, in particular with respect to change estimates. Nevertheless,
the advantages of the proposed estimator over the modified estimator are
manifold. It does not require any imputation and does not suffer from a
drift, unlike the composite estimator. It can be easily implemented using
existing statistical software. The variance estimator is simpler than the
variance estimator of composite estimators, because neither estimated totals
nor imputation is required. It also takes the auxiliary variables and the
variables of interest from both waves into account.

Nonresponse and panel attrition are important issues with repeated sur-
veys. It is beyond the scope to tackle these problems fully. Previous wave
imputation can be used for the auxiliary variables x̆it which suffer from
attrition. Re-weighting could be used to compensate for nonresponse and
panel attrition for the variable of interest. In this case the new weight should
replace the basic weights 1/πit within (5) and (6). In this case, st would
be the sample of respondents at wave t. The proposed estimator (9) can
be directly used in this case. It is approximately unbiased, as long as a
proper re-weighting technique has been used. However, in this case, the
vectors nt and n12 are random. Consequently, we may lose the asymptotic
optimality, because the asymptotic approximation of Hájek (1964) for the
joint-inclusion probabilities are based on fixed nt and n12. The variance
estimator (27) should be used cautiously, because it does not incorporate
nonresponse adjustments. A possible solution would be to incorporate the
re-weighting variables within x̆it, and use x̆it within (9) and (27). It would
be useful to investigate this idea further.

8 Appendix

Proof of Theorem 1:
Since γi =

(
x̆>i , z

>
i

)>
, we have

(∑
i∈sb

ciγiγ
>
i

)−1
=

{(
X̆
Z

)>
C

(
X̆
Z

)}−1

=

(
Γxx Γxz
Γ>xz Γzz

)
,

∑
i∈sb

ciγi y̆
>
i =

(
X̆
Z

)>
C y̆,

21



where

Γxx =
(
X̆>CMz X̆

)−1
,

Γzz =
(
Z>CMx Z

)−1
,

Γxz = −ΓxxX̆
>CZ(Z>CZ)−1

and Mx is defined by

Mx = I− X̆(X̆>CX̆)−1X̆>C· (32)

Now, we have

B̂γ =

(
B̂x

Γ>xzX̆
>Cy̆ + ΓzzZ

>Cy̆

)
, (33)

because

ΓxxX̆
>Cy̆ + ΓxzZ

>Cy̆ = ΓxxX̆
>C{I− Z(Z>CZ)−1Z>C}y̆

= ΓxxX̆
>CMz y̆

=
(
X̆>CMz X̆

)−1
X̆>CMz y̆

= B̂x·

Finally, (11) and (12) imply that τγ − τ̂γ = {(τx − τ̂x)>,0}>. Thus, by
using (33), we obtain (18). �

References

Australian Bureau of Statistics (2007) Forthcoming changes to labour force
statistics. Catalogue number 6292.0, Australian Bureau of Statistics, Can-
berra, Australia. URL https://www.abs.gov.au/ausstats/abs@.nsf/

mf/6292.0 (accessed July 2022).

Bell, P. (2001) Comparison of alternative labour force survey estimators.
Survey Methodology, 27, 53–63.

Berger, Y. G. (2004) Variance estimation for measures of change in prob-
ability sampling. Canadian Journal of Statistics, 32, 451–467. URL
https://doi.org/10.2307/3316027.
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