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Rotations are often used for panel surveys, where the observations remain in the sample for a
predefined number of periods and then rotate out. The information of previous waves can be
exploited to improve current estimates. We propose a multivariate regression estimator which
captures all information available from both waves. By adding additional auxiliary variables
describing the information of the rotational design, the proposed estimator captures the
sample correlation between waves. It can be used for the estimation of levels and changes.
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1. Introduction

Repeated socioeconomic surveys are often the basis for evaluating changes and levels over

time (e.g., Smith et al. 2003). Estimates are usually based on repeated or rotational

surveys, which involve rotations, that is, units remain in a survey for a predefined number

of waves and then are replaced by new sampled units (e.g., Gambino and Silva 2009;

Kalton 2009; Eurostat 2012). There are different rotation schemes. In an in-for-x rotational

design the units remain in the sample for x consecutive waves and then are replaced by

new sampled units. In an x-(y)-z rotational design, the units remain in the sample for x

consecutive waves, leave the sample for y waves and then return for z consecutive waves.

Then they are dropped from the sample completely and replaced by new sampled units

(e.g., Bonnéry et al. 2020, 170). We shall consider two waves, but the proposed approach

can be extended to more than two waves (see Subsection 3.1).

Rotational designs give partially overlapping samples between waves. Thus, between

two consecutive waves, we have units sampled at both waves (the overlapping units), units

sampled only at the first wave (units that rotate out) and units sampled only at the second

wave (units that rotate in). The sample information from the previous wave can be used to

improve the current wave estimates. We expect to have more efficient estimates when the

variables are correlated over time (Steel and McLaren 2008).

We propose a “multivariate generalised regression” (GREG) estimator that exploits the

sample overlap between two waves, as well as the non-overlapping samples containing the

units observed in only one of the waves. The proposed estimator includes “extended design

variables” as additional auxiliary variables, which capture the sample correlation between

the variables and the sample rotation. Thereby, it borrows strength from all available sample

information on the variables of interest and the auxiliary variables from both waves. This

may provide efficient change and levels estimates. Furthermore, the extended design
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variables capture the sample design information, such as stratification and unequal

probabilities. The proposed estimator can be applied for rotational samples of any rotation

scheme or for the simultaneous estimation of two or more consecutive waves; for example,

impact evaluation surveys with a baseline and a post-intervention data collection.

The idea of including the sample information on variables of interest from previous

waves is not new. Hansen et al. (1953) and Gurney and Daly (1965) introduced a class of

composite estimators that exploit the sample overlap between two consecutive waves. The

“modified regression estimator” of Singh et al. (1997) includes additional auxiliary

variables based on the variables of interest from previous waves. However, for the new units

that rotate in, the values of these additional variables are unknown and usually imputed. The

control totals of the additional variables are also unknown and have to be estimated, which

leads to a variance inflation of the current wave estimate. In contrast, the proposed estimator

neither relies on imputation nor the estimation of unknown control totals.

The article is organised as follows. Section 2 introduces the basic framework on

rotational surveys and GREG estimators. In Section 3, we derive the proposed multivariate

GREG estimator and its properties. Asymptotic optimality and variance estimation is

investigated in Section 4. Alternative estimators considered in the literature such as the

modified regression estimator are discussed in Section 5. In Section 6, a Monte Carlo

simulation study compares the proposed multivariate GREG estimator with the modified

regression estimator. Section 7 summarises our results.

2. Rotation Design and Generalised Regression Estimator

Let U ¼ {1, : : :, i, : : :, N} be a population of N units. Without loss of generality, we

consider two waves (t ¼ 1 and t ¼ 2). The proposed estimator introduced in Section 3, will

be extended to more than two waves in Subsection 3.1. We assume that the population

units are the same in both waves. In practice, a change in a population can be handled by

adjusting the weights and the sampling frame in the cases of birth, death and emigration.

Let s1 be the first wave sample of size n1 selected without-replacement from U. The

first-order inclusion probability of unit i for wave 1 and 2 are denoted respectively by

pi1 ¼ Pr(i [ s1) and pi2 ¼ Pr(i [ s2), where Pr(·) denotes the probability with respect to

the design. We assume that both sample sizes n1 and n2 are fixed. The common sample is

s12 ¼ s1 > s2, with a sample size n12 ¼ #s12, where 0 # n12 # n1. We assume that n12 is

fixed, because this is a common feature of rotational designs. It is common practice to

assume that the units that rotate out cannot rotate in; that is, Pr{i [ (s2 \ s1)ji [ s1} ¼ 0.

Stratification is often used in practice. We suppose that the population U is stratified into

H strata Uh, such that <H
h¼1Uh ¼ U. We assume that stratification is the same at both

waves. Let st,h be the t-th wave sample of size nt,h selected without-replacement from the

population Uh, where t ¼ 1 or 2. At wave t, the overall sample is st ¼ <H
h¼1st;h with a total

sample size nt ¼
PH

h¼1nt;h. We assume that we have a rotation within strata, that is, the

common sample within Uh is denoted by s12;h ¼ s1;h > s2;h, with a sample size

n12;h ¼ #s12;h, fixed by design. The ratio uh ¼ n12;h=n1;h is the fraction of the overlap

within Uh. The quantities uh are allowed to vary between strata.

The objective is to estimate unknown population totals of a variable of interest y, for

different waves. The total of wave t is
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tyt
:¼

i[U

X
yit;

where yit is the value of y for a unit i [ U at wave t. The Horvitz and Thompson (1952)

estimator

t̂yt
:¼

i[st

X yit

pit

is a design-unbiased estimator of tyt
. For estimation of a domain of interest, we impose

yit ¼ 0 for the units i outside the domain.

The efficiency can be improved by incorporating auxiliary information in the estimation

process. A widely used model-assisted estimator based on auxiliary information, is the

generalised regression (GREG) estimator (Hansen et al 1953; Cassel et al. 1977; Särndal,

1980; Isaki and Fuller 1982; Wright 1983). Let xit be the Qt-vector of auxiliary variables

for a unit i at wave t. Suppose that the vector of population totals txt ¼
P

i[U xit at wave t,

is known from census, registers, or other reliable sources. The customary GREG estimator

is defined by

t̂ g
yt
:¼ t̂yt

þ B̂
`

t ðtxt
2 t̂xt

Þ ð1Þ

where

t̂xt
:¼

i[st

X xit

pit

; ð2Þ

B̂t :¼
i[st

X xitx
`
it

pit

0

@

1

A

21

i[st

X xityit

pit

: ð3Þ

The estimator (1) is motivated by the linear regression model

yit ¼ x`
it bt þ 1it; ð4Þ

specifying the relationship between yit and xit, where E(1it) ¼ 0, V (1it) ¼ s 2 and E(1it1jt) ¼ 0

for all i – j. If V(1it) ¼ y its
2, a weighted least-squares estimator can be used instead of

Equation (3) to reflect heteroscedasticity. In order to simplify the notation, we shall assume

y it ¼ 1. Nevertheless, when y it – 1, they can be easily added to the regression coefficient (13)

of the proposed estimator. The use of y it is more relevant for business surveys.

Homoscedasticity (y it ¼ 1) is often assumed in household surveys (Steel and Clark 2007, 52).

The asymptotic design-unbiased estimator (1) does not depend on whether the model (4)

holds or not. Its efficiency is driven by the predictive power of the model (cf. Särndal et al.

1992, 227, 239). Hereafter, we shall use a design-based approach, that is, the model (4)

shall not be used for inference.

3. Proposed Multivariate Regression Estimator

Let us consider the “combined sample” defined by the set sb ¼ s1 < s2 comprising all units

from both waves. The corresponding sample size of sb is denoted by nb ¼ #sb ¼ n1 þ n22

n12: Let the “extended weighted variable of interest” be defined by
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�yit :¼
yit

pit

d{i [ st} for all i [ sb and t ¼ 1; 2; ð5Þ

where d{i [ st} ¼ 1 if i [ st, and d{i [ st} ¼ 0 otherwise. Note that �yi2 ¼ 0 for all units

i [ sb \ s2 that rotates out. We also have �yi1 ¼ 0 for all units i [ sb \ s1 that rotates in.

Figure 1 is a visual representation of two waves, with units on the horizontal axis and the

two waves on the vertical axis.

The “extended weighted auxiliary variables” are defined by

�xit :¼
xit

pit

d{i [ st} for all i [ sb and t ¼ 1; 2: ð6Þ

The set of auxiliary variables used at t ¼ 1 can be different from the one used at t ¼ 2. The

set of auxiliary variables can also be the same. This is usually the case for panel surveys.

Note that Equation (2) can also be re-written as t̂xt
¼
P

i[sb
�xit. We also consider

“extended design variables” given by

zit :¼ ðzit;1; : : : ; zit;h; : : : ; zit;HÞ
`d{i [ st} for all i [ sb and t ¼ 1; 2

with zit,h ¼ 1 if the unit i belongs to stratum h in wave t, and zit,h ¼ 0 otherwise. The vector

zit represents the sampling design information given by the stratification. The Hadamard

product zi1+ zi2 will play a key role. It reveals the information induced by the rotation,

because it identifies the units within the common sample. Indeed, the h-th component of

zi1+ zi2 is equal to one if and only if the unit i belongs to the common sample of strata h.

This component equals zero if and only if the unit i rotates in or out. Thus, zit can be used to

describe the sample information given by the rotation and the stratification.

It can be verified that

i[st

X
zit ¼ nt and

i[sb

X
zi1+ zi2 ¼ n12; ð7Þ

where

nt :¼ ðnt;1; : : : ; nt;h; : : : ; nt;HÞ
`;

n12 :¼ ðn12;1; : : : ; n12;h; : : : ; n12;HÞ
`:

Wave t = 1

Wave t = 2

Rotate out Rotate in

Combined sample sb = s1 ∪ s2

Overlap s12 = s1 ∩ s2

Sample s1

Sample s2

yi2 = 0
xi2 = 0
zi2 = 0

yi1 = 0
xi1 = 0
zi1 = 0

Fig. 1. Visual representation of two waves. The vertical axis represents the two waves: t ¼ 1 and t ¼ 2: The

horizontal axis represents the units of the combined sample sb ¼ s1 < s2: The sample s1 and s2 are given in two

different gray scales: for the sample s1 and for the sample s2.
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Equations (7) hold, because we have stratified design and we have a rotation within strata.

Let �yi ¼ ð�yi1; �yi2Þ
` be the “combined extended variable of interest” of wave 1 and wave

2. We also pool together the extended weighted auxiliary variables and the extended

design variables into a single vector gi of dimension (Q1 þQ2 þ3H), given by

gi :¼ {�x`
i1 ; �x

`
i2 ; z

`
i1 ; z

`
i2 ; ðzi1+ zi2Þ

`}`: ð8Þ

This new auxiliary variable gi contains the original auxiliary variables xit, the stratification

variables zit and the variables zi1+ zi2 which specify the rotation within strata.

Berger et al. (2003) proposed using the stratification variables as auxiliaries within a

GREG estimator, when we have a single-stage stratified sampling designs. This has the

merit of achieving asymptotic optimality. The resulting estimator is easy to implement and

does not rely on joint-inclusion probabilities. The proposed multivariate GREG estimator

(9) is based on a similar idea, except that we use the additional variables zi1+ zi2 to capture

the rotation.

The proposed multivariate GREG estimator for the unknown vector ty ¼ ðty1
; ty2
Þ` of

totals, is defined by

t̂greg
y :¼ t̂y þ B̂

`

g ðtg 2 t̂gÞ; ð9Þ

where

t̂y :¼ ðt̂y1
; t̂y2
Þ`; ð10Þ

tg :¼ ðt`
x1
; t`

x2
; n`Þ`; ð11Þ

t̂g :¼ ðt̂`
x1
; t̂`

x2
; n`Þ`; ð12Þ

B̂g :¼
i[sb

X
cigig

`
i

0

@

1

A

21

i[sb

X
cigi �y

`
i ; ð13Þ

n :¼ ðn`
1 ; n

`
2 ; n

`
12Þ

`; ð14Þ

ci :¼ 1 2 Prði [ sbÞ: ð15Þ

The matrix (13) is a regression coefficient matrix of dimension (Q1 þQ2 þ3H) £ 2.

We introduce the ci to achieve asymptotic optimality (see Section 4). Since sb ¼ s1 < s2,

we have Pr(i [ sb) ¼ pi1 þpi22Pr(i [ s12). Now, since s12 ¼ s12 > s1; Prði [ s12Þ ¼

Prði [ s1ÞPrði [ s12ji [ s1Þ: Thus,

Prði [ sbÞ ¼ pi1 þ pi2 2 pi1Prði [ s12ji [ s1Þ: ð16Þ

The conditional probability Pr(i [ s12 j i [ s1) depends on the design and can be

approximated by uh ¼ n12;h=n1;h where Uh ] i. Therefore, hereafter we shall use

ci ¼ 1 2 pi1 2 pi2 þ pi1uh; where h : Uh ] i: ð17Þ

Exact computation of Pr(i [ s12 j i [ s1) is of little use. With large sampling fractions,

the ci are less than 1 and can be interpreted as finite population corrections within Equation

(13). They should not affect the consistency of Equation (9), because they are weights used
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only within Equation (13). Note that with negligible sampling fractions ci < 1: The ci will

be also used for variance estimation (see Equation (27)).

Because of nonresponse, we could have units within the overlapping sample, which are

not available at both occasions. Re-weighting should be used to compensate for the

missing observations. In this case, within Equations (5) and (6), the basic weights p21
it

should be replaced by weights that takes the missingness into account.

Theorem 1 gives an alternative expression for the proposed estimator which will be used to

show its asymptotic optimality in Section 4.

Theorem 1. An alternative expression for t̂greg
y is

t̂greg
y ¼ t̂y þ B̂

`

x ðtx 2 t̂xÞ; ð18Þ

where

B̂x :¼ ð �X`CMz
�XÞ21 �X`CMz �y; ð19Þ

Mz :¼ I 2 ZðZ`CZÞ21Z`C; ð20Þ

�X :¼ ð�x`
1 ; : : : ; �x

`
nb
Þ`;

�y :¼ ð�y`
1 ; : : :; �y

`
nb
Þ`;

Z :¼ ðz`
1 ; : : :; z

`
nb
Þ`;

C :¼ diag{c1; : : : ; cnb
}; ð21Þ

�yi :¼ ð�yi1; �yi2Þ
`;

�xi :¼ ð�x`
i1 ; �x

`
i2Þ

`;

zi :¼ {z`
i1 ; z

`
i2 ; ðzi1+ zi2Þ

`}`; ð22Þ

tx :¼ ðt`
x1
; t`

x2
Þ`;

t̂x :¼ ðt̂`
x1
; t̂`

x2
Þ` ð23Þ

and I is the nb £ nb identity matrix.

The proof can be found in the Appendix (Section 8) and is based on the fact that the

Horvitz-Thompson estimators of the totals of the design variables are equal to their

population totals, that is, tg 2 t̂g ¼ {ðtx 2 t̂xÞ
`; 0`}`.

The underlying multivariate model that leads to Equation (18) is

yi ¼ x`
i bx þ 1i;

where yi :¼ ðpi1 �yi1; pi2 �yi2Þ
` and xi :¼ ðpi1 �x

`
i1 ;pi2 �x

`
i2Þ

`. This model takes the

correlation between waves into account, because variables of both waves are included

within yi and xi: Furthermore, t̂x contains the totals of both waves.

The proposed estimator borrows strength from both waves, by using both waves

auxiliary variables. Furthermore, it takes the stratification into account, because of the

extended design variables zi1 and zi2: In addition, the variable zi1+ zi2 exploits the rotation

between s1 and s2 induced by the sample overlap. In contrast, the regression coefficient of

the wave specific GREG estimator, given by Equation (3), does not involve design variables

or information about the rotation. It does not take into account the correlation between the

waves for the auxiliary variables and the variable of interest.
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3.1. Extension to More than Two Waves

The proposed estimator can be easily extended for more than two waves. Suppose we have

three consecutive waves. At wave 2, the multivariate GREG estimator produces two estimates:

t̂greg
y1

for wave 1 and t̂greg
y2

for wave 2, where t̂greg
y2

borrows strength from the information of

wave 1. At wave 3, we obtain a new estimate t̂gregð2Þ
y2

for wave 2 and an estimate t̂greg
y3

for wave

3. Therefore, we have two estimates for wave 2: t̂greg
y2

and t̂gregð2Þ
y2

. In official statistics, due to

the need for up-to-date information, the estimate t̂greg
y2

is immediately published at wave 2. The

second estimate t̂gregð2Þ
y2

is not published and should not be viewed as a revised estimate for the

second wave total. It is only used to produce t̂greg
y3

. Furthermore, there is no reason for t̂gregð2Þ
y2

to

be more precise than t̂greg
y2

, since both are based on the same controls and correlations. The

estimates t̂greg
y2

and t̂gregð2Þ
y2

are not used as controls to produce t̂greg
y3

, as with the modified

regression estimator (see Section 5).

The proposed estimator is flexible, because it can be also use to borrow strength over

more than two waves. In this case, the dimension of the vectors t̂greg
y and �yi is the number

of waves. The vectors �yi and �xi contain the variables of the waves considered. In this case,

the vector (22) may need to include additional components depending on the design. For

simplicity, we recommend to use ci ¼ 1 in this case.

For example, suppose we have three waves, the sample sizes of the overlapping sets

between the three samples from the same stratum can be fixed by design; i.e n12,h, n23,h, n13,h

and n123,h may be fixed, where ntl,h denotes the sample size of st,h > sl,h within stratum Uh.

Here, n123,h is the sample size of s1,h > s2,h > s3,h. This situation occurs when we use the

customary rotation group method. In this case, we need to include within zi: (i) zi1+ zi2 for the

fixed sample size of s1,h > s2,h, (ii) zi2+ zi3 for the fixed sample size of s2,h > s3,h, (iii) zi1+ zi3

for the fixed sample size of s1,h > s3,h, (iv) zi1+ zi2+ zi3 for the fixed sample size of

s1,h > s2,h > s3,h; that is, the vectors (8) and (14) should be replaced respectively by

gi ¼ {�x`
i1 ; �x

`
i2 ; �z

`
i1 ; �z

`
i2 ; ðzi1+ zi2Þ

`; ðzi2+ zi3Þ
`; ðzi1+ zi3Þ

`; ðzi1+ zi2+ zi3Þ
`}`;

n ¼ ðn`
1 ; n

`
2 ; n

`
12; n

`
23; n

`
13; n

`
123Þ

`;

with n23 :¼ ðn23;1; : : : ; n23;HÞ
`; n13 :¼ ðn13;1; : : :; n13;HÞ

` and n123 :¼ ðn123;1; : : :;

n123;HÞ
`:

4. Asymptotic Optimality and Variance Estimation

In this section, we show the asymptotic optimality when we have two waves; The

asymptotic optimal GREG estimator (Montanari 1987) of the vector of totals ty ¼

ðty1
; ty2
Þ` is

t̂opt
y :¼ t̂y þ B̂

`

optðtx 2 t̂xÞ; ð24Þ

where

B̂
`

opt :¼ V̂ðt̂xÞ
21dCovCov ðt̂x; t̂yÞ: ð25Þ

See Guandalini and Tillé (2017, 3) for more details. By using the Horvitz and Thompson

(1952) variance and covariance estimators, the expression (25) reduces to
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B̂opt ¼ ð �X
`D �XÞ21 �X`D�y; ð26Þ

where

D :¼ {ðpij 2 pipjÞp
21
ij ; i; j [ sb}:

Here, pij ¼ Pr(i, j [ sb) denotes the joint-inclusion probability of units i and j for the

sample sb. These are different from the joint probabilities of s1 and s2, because pij takes

the rotation into account. Since the probabilities pij are unknown, we propose to use the

asymptotic approximation of Hájek (1964), based on the assumption that the rotation

design is asymptotically rejective according to the design constraints (7). This

approximation is given by D<CMz, where C and Mz are defined respectively by

Equations (20) and (21) (Hájek 1981 chap. 14; Berger et al. 2003; and Deville and Tillé

2005). Now, by replacing this approximation of D within Equation (26), we obtain

Equation (19). Thus, the proposed estimator t̂greg
y is indeed optimal asymptotically.

A variance of the estimator (9) can be derived, based on principle that the variance

under Poisson sampling of the regression estimator (9) based on the auxiliary and design

variables, is asymptotically the same as the variance of the regression estimator (18) under

a rejective design (Hájek 1964; Berger 2004) with the design constraints (7). Thus, the

variance estimator of (9), assuming that sb is a Poisson sample with inclusion probabilities

(16), is given by the variance-covariance matrix

V̂ðt̂greg
y Þ :¼ ðMG �yÞ

`C MG �y; ð27Þ

where

MG :¼ I 2 GðG`CGÞ21G`C;

G :¼ ðg1; : : : ;gnÞ
`:

Note that (27) is a residual variance as in Särndal et al. (1992, 235), because MG �y

are residuals. Note that the variance estimator takes the stratification into account, because

the information about the strata is included within MG: However, if within Equations (5)

and (6), the basic weights p21
it are substituted by weights which take the missingness

into account, the variance estimator (27) may be biased, because nonresponse is not

accounted for.

5. Alternative Approaches

Composite estimators also use the information from previous waves. Hansen et al. (1953)

introduced the K-composite estimator for levels and change between two waves. The AK-

composite estimator (Gurney and Daly 1965) takes the difference between the common

sample s12 and the unmatched sample s2 into account. The optimal choice of the weighting

factors A and K, within the AK-composite estimator, depends on the variables of interest

(Kumar et al. 1983). This dependency may result in an inconsistency, in the sense that the

sub-group total estimates may not add up to the overall total (Gambino et al. 2001, 66).

Singh (1996) and Singh et al. (1997) introduced the modified regression estimator,

abbreviated MR hereafter. The idea is to extend the auxiliary variables in the current wave

by an additional artificial auxiliary variable, which contains the information on the
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variable of interest from the previous wave. The definition of this variable depends on

whether the primary interest lies on levels or change. If the main focus lies on levels, the

artificial variable refers to the variable of interest yi1 from the previous wave. However,

due to the rotation, yi1 is only known for i [ s12. Singh (1996) suggested to use mean

imputation for the unknown values for the units i [ s2 \ s12. Thus, in this case, the artificial

variable is

~xMR1
i2 :¼

yi1 for i [ s12

m̂y1 for i [ s2ns12;

(

ð28Þ

where m̂y1
is an estimator for the mean of y1. The control total of the variable (28) is

unknown and can be estimated by Nm̂y1
(Fuller and Rao 2001, 47). Hence, the modified

regression estimator for ty2
¼
P

i[U2
yi2 is given by

t̂MR1
y2

:¼ t̂y2 þ B̂
`

x~xð ~tx~x 2 t̂x~xÞ; ð29Þ

with

B̂x~x :¼ ðB`
x2
; B̂~x2
Þ`;

~tx~x :¼ ðt`
x2
;Nm̂y1

Þ`;

t̂x~x :¼ ðt̂ `
x2
; t̂~x2
Þ`:

If the primary interest is to estimate a change, the artificial variable refers to the variable of

interest yi2 from the current wave. The variable recommended by Singh (1996) and Singh

et al. (1997) is

~xMR2
i2 :¼

yi2 þ
n2

n12

ð yi1 2 yi2Þ for i [ s12;

yi2 for i [ s2ns12:

8
><

>:
ð30Þ

The MR2 estimator may suffer from a drift in levels estimates over a long period

(Gambino et al. 2001, 65; Fuller and Rao 2001, 50). In order to overcome this problem,

Fuller and Rao (2001) introduced the regression composite estimator (RC) given by

~xRC
i2 :¼ ð1 2 aÞ~xMR1

i2 þ a~xMR2
i2 ; ð31Þ

where a [ [0, 1] is a tune-in parameter which reflects the importance given to levels or

change estimates. The advantage of the regression composite estimator compared with

MR1 and MR2 is the fact that it is a compromise between levels and change estimation. An

alternative estimator could be based on Definitions (28) and (30). However, the increased

number of auxiliaries and control totals may lead to a distortion in the final weights

(Gambino et al. 2001, 65).

Singh et al. (2001) suggested a jackknife variance estimator that takes the estimation of

the control totals into account. Indeed, ignoring the additional source of randomness

would lead to an underestimation of the true variance. Berger et al. (2009) proposed a

linearised variance estimator that takes the estimation of the controls into account.

The optimal BLUE estimator is based on a time series of the variable of interest

(Yansaneh and Fuller 1998; Bell 2001; Australian Bureau of Statistics 2007). This estimator
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requires that the variances and covariances of the rotation group estimates are known (Bell

2001, 56). If they were substituted by their estimates, it is no longer guaranteed that the

BLUE estimator is optimal. Bonnéry et al. (2020) showed that the BLUE with an estimated

variance-covariance matrix is less efficient than the composite estimators. Some

disadvantages are discussed in Fuller (1990) and Steel and McLaren (2009). Since the

BLUE estimator is based on a time series, it is less comparable with the proposed estimator

and the modified estimators, which are both based on regression estimation.

6. Simulation Study

We consider three waves (t ¼ 0, 1, 2), because the estimators (9) and (29) at wave t ¼ 1,

require the sample information from wave t ¼ 0. The results are reported for levels at

waves t ¼ 1 and t ¼ 2, and changes between waves t ¼ 1 and t ¼ 2.

Consider N population values of yit and xit (t ¼ 1, 2, 3) generated from a multivariate

normal distribution; that is,

ð yi0; yi1; yi2; xi0; xi1; xi2Þ
` , Nðm;SÞ:

Here,S denotes a covariance matrix with an heterogeneous exchangeable structure, that is,

S :¼ diagðsÞ{rJ6 þ ð1 2 rÞI6}diagðsÞ:

where diag(s) is the diagonal matrix with s ¼ ðsy0; sy1, sy2, sx0, sx1, sx2Þ
` as its diagonal.

The matrices J6 is 6 £ 6 matrix of ones and I6 is the 6 £ 6 identity matrix. Thus, the

correlations corðyit; yit 0 Þ ¼ corðxit; xit 0 Þ ¼ corðyit; xit 0 Þ ¼ r; with t – t 0: Let sy0
¼ 10,

sy1
¼ 15, sy2

¼ 20, sx0
¼ 30, sx1

¼ 40 and sx2
¼ 50. The correlations considered are

r ¼ 0:1; 0.5 and 0.9. Two values for the vectorm ¼ ðmy0;my1;my2;mx0;mx1;mx2Þ
` are used:

mI :¼ ð59; 60; 61; 99; 100; 101Þ`;

mII :¼ ð40; 60; 80; 100; 150; 200Þ`;

that is, we have a small change with mI and a large change with mII.

For each wave t, we have stratified samples of size nt ¼ 1,000. We consider four strata

formed by the quantile classes of the population distribution of yi1þyi2. The same fraction

of common samples between waves is used within strata, that is, uh ¼ u ¼ n12=n1 ¼

n01=n0; where u ¼ 0.25, u ¼ 0.5 or u ¼ 0.75. Rotation groups sampling is implemented.

Within each strata Uh, q units are randomly allocated into P rotation groups of same size

p ¼ bq/Pc. The sample s0,h contains the units of the first bnh p 21c groups. At wave t ¼ 1, we

obtain the sample s1,h by rotating out the first group and replacing it by the (bnh p 21c þ 1)-

th group. At wave t ¼ 2, the second group rotates out and (bnh p 21c þ 2)-th group rotates

in. For u ¼ 0.25, we use q ¼ 625 and P ¼ 10. With u ¼ 0.5, we use q ¼ 400 and P ¼ 4

and with u ¼ 0.75, we set q ¼ 300 and P ¼ 6. We consider 1,000 iterations.

In the first simulation setup, we consider equal allocation for all strata with nt,h ¼ 250

and N ¼ 100,000. Thus, the inclusion probabilities are the same across the strata and the

sampling fractions are small. In the second simulation setup, unequal probabilities with

large sampling fractions are used. Consider n1,h ¼ 50, n2,h ¼ 200, n3,h ¼ 350, n4,h ¼ 400

and N ¼ 4,000. The resulting within strata inclusion probabilities are 0.05, 0.2, 0.35 and
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0.4. In the second simulation setup, the population size is N ¼ 4,000, to allow for large

sampling fractions.

The estimators considered are the proposed multivariate regression estimator (9)

(PROP), the customary regression estimator (1) (GREG) and the modified estimator (29)

with (28) as auxiliaries (MR1) and with (30) as auxiliaries (MR2). For MR1 and MR2, we use

t̂greg
y0

as the estimated control total of the previous wave t ¼ 1.

In order to explore the efficiency of point estimates, we compare the empirical ‘relative

root mean squared errors’ (RRMSE). Let t̂r be an estimate for the r-th iteration with

r ¼ 1; : : : ; 1; 000: The RRMSE is defined as

RRMSEðt̂Þ :¼
1

jt j

1

1;000

X1;000

r¼1

ðt̂r 2 tÞ2

( )1=2

;

where t denotes the population total.

The RRMSE £ 100% for different values of r, g and u, are reported in Tables 1 and 2. For

Table 1, we have equal strata sizes with the same inclusion probabilities across strata and

small sampling fractions. For Table 2, the inclusion probabilities differs between strata

and some sampling fractions are large. The proposed PROP estimator outperforms GREG

and MR1 under all scenarios. For all estimators under consideration, the RRMSE decreases

with the correlation r between the variables.

We observe slightly smaller RRMSE for MR1 with u ¼ 0.75, when r ¼ 0.1, because the

higher the overlap, the less values have to be imputed. The amount of overlap u has little

Table 1. Equal strata sizes. equal probabilities and small sampling fractions. RRMSE X 100% of levels

estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR1

t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2

0.1 mI 0.25 1.21 1.49 0.62 0.69 1.00 1.14
0.50 1.26 1.44 0.63 0.68 0.99 1.12
0.75 1.24 1.40 0.62 0.67 0.92 1.06

mII 0.25 1.21 1.12 0.62 0.53 1.37 1.27
0.50 1.26 1.08 0.63 0.52 1.29 1.15
0.75 1.24 1.06 0.62 0.51 1.16 1.04

0.5 mI 0.50 1.03 1.26 0.48 0.54 0.78 0.84
0.50 0.99 1.27 0.49 0.58 0.80 0.90
0.75 0.99 1.25 0.50 0.56 0.80 0.90

mII 0.50 1.03 0.92 0.48 0.41 1.06 0.83
0.50 0.99 0.93 0.49 0.44 1.09 0.89
0.75 0.99 0.91 0.50 0.43 1.09 0.91

0.9 mI 0.25 0.49 0.60 0.28 0.35 0.39 0.46
0.50 0.49 0.61 0.27 0.35 0.40 0.45
0.75 0.48 0.60 0.28 0.33 0.37 0.43

mII 0.25 0.49 0.43 0.28 0.27 0.51 0.37
0.50 0.49 0.43 0.27 0.27 0.53 0.38
0.75 0.48 0.42 0.28 0.25 0.53 0.41

Konrad and Berger: Regression Estimator for Survey Over Time 37



impact on the precision of the proposed estimator. However, for MR1, we observe some

slight differences in the RRMSE between different values for u. For small correlation

(r ¼ 0.1), we indeed have a larger RRMSE for MR1 with u ¼ 0.25. For larger correlation,

the differences are negligible for MR1. With MR1, we notice differences between the

RRMSE of t̂y1
for small (mI) and large changes (mII). There are hardly any differences for the

proposed estimator. These observations are the same for Tables 1 and 2, except that the

RRMSE are higher for all estimators in case of unequal strata sizes.

The RRMSE of the proposed estimator does not seem to be affected by the amount of

overlap u, because we can see from the expression (18) that the precision is driven by the

correlations between the variables of interest and the auxiliary information for both waves,

which is not affected by u. This can also be seen from the variance (27), where the

residuals MG �y do not depend on u. The information about the rotation is implicitly

included within the vector zi given by Equation (22), and used for the weights within the

regression coefficient (19) (see Equation (20)). These weights ensure efficiency (see

Section 4). On the other hand, the precision of MR1 is related to u, because u has an impact

on the precision of the control totals with MR1. With the proposed method, we use different

control totals unaffected by u.

Let e ¼ ty2
2 ty1

be the change between waves t ¼ 1 and t ¼ 2. We propose

estimating e by ê ¼ t̂y2
2 t̂y1

, where t̂y1
and t̂y2

are the corresponding cross-sectional

estimators. Tables 3 and 4 give the RRMSE £ 100% of the estimators of changes, for equal

and unequal strata sizes. As expected, the RRMSE decreases with r. The proposed estimator

PROP significantly outperforms GREG and MR2. The efficiency gain compared with MR2

Table 2. Unequal strata sizes. unequal probabilities and some large sampling fractions. RRMSE X 100% of

levels estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR1

t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2

0.1 mI 0.25 1.51 1.61 0.84 0.89 1.26 1.21
0.50 1.51 1.58 0.87 0.88 1.24 1.26
0.75 1.53 1.58 0.87 0.90 1.23 1.20

mII 0.25 1.51 1.26 0.84 0.68 1.67 1.29
0.50 1.51 1.24 0.87 0.67 1.60 1.27
0.75 1.53 1.24 0.87 0.68 1.53 1.14

0.5 mI 0.25 1.29 1.51 0.70 0.77 0.98 0.98
0.50 1.32 1.42 0.71 0.74 1.03 0.99
0.75 1.26 1.48 0.69 0.74 1.04 1.04

mII 0.25 1.29 1.14 0.70 0.59 1.30 0.93
0.50 1.32 1.07 0.71 0.56 1.38 0.98
0.75 1.26 1.11 0.69 0.56 1.42 1.07

0.9 mI 0.25 0.72 0.83 0.38 0.50 0.53 0.61
0.50 0.70 0.85 0.40 0.49 0.53 0.60
0.75 0.71 0.84 0.40 0.48 0.53 0.59

mII 0.25 0.72 0.59 0.38 0.38 0.69 0.50
0.50 0.70 0.60 0.40 0.37 0.73 0.51
0.75 0.71 0.59 0.39 0.37 0.78 0.58
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Table 3. Equal strata sizes. equal probabilities and

small sampling fractions. RRMSE £ 100% of change

estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR2

0.1 mI 0.25 120.28 60.60 100.83
0.50 125.23 67.39 90.90
0.75 118.08 69.03 82.45

mII 0.25 5.86 2.98 5.40
0.50 6.10 3.31 5.05
0.75 5.76 3.39 4.37

0.5 mI 0.25 98.04 46.96 79.61
0.50 99.73 51.67 71.26
0.75 94.29 52.56 64.99

mII 0.25 4.76 2.34 4.42
0.50 4.85 2.57 4.12
0.75 4.59 2.61 3.60

0.9 mI 0.25 46.14 27.00 37.37
0.50 45.38 26.22 32.06
0.75 43.62 26.43 28.95

mII 0.25 2.23 1.36 2.15
0.50 2.19 1.32 2.01
0.75 2.11 1.32 1.74

Table 4. Unequal strata sizes. unequal probabilities and

some large sampling fractions. RRMSE £ 100% of change

estimates under different scenarios for 1,000 iterations.

r m u GREG PROP MR2

0.1 mI 0.25 140.96 79.27 123.09
0.50 138.27 86.79 109.39
0.75 144.61 93.57 110.40

mII 0.25 6.90 3.83 6.43
0.50 6.76 4.19 5.79
0.75 7.06 4.51 5.75

0.5 mI 0.25 114.65 61.44 95.13
0.50 113.51 61.60 81.51
0.75 109.77 62.43 74.85

mII 0.25 5.95 3.20 5.48
0.50 5.89 3.21 4.92
0.75 5.69 3.25 4.37

0.9 mI 0.25 64.40 37.30 48.98
0.50 61.67 36.67 41.70
0.75 60.04 35.11 36.51

mII 0.25 3.16 1.91 2.96
0.50 3.03 1.88 2.61
0.75 2.95 1.80 2.20
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ranges from 5% to 53%. Since the relative RMSE is considered, it is not surprising to

observe larger RRMSE for a small change (mI). The RRMSE of MR2 decreases with u. In

contrast, the RRMSE of PROP increases slightly with u except for large vales of r.

Table 5 shows the relative bias (RB) of the variance estimator (27) for PROP. The RB is

defined by

RB{V̂ðt̂Þ} :¼ Vðt̂Þ21 1

1;000

X1;000

r¼1

V̂ðt̂rÞ2 Vðt̂Þ

( )

;

where

Vðt̂Þ :¼
1

1;000

X1;000

r¼1

ðt̂r 2 tÞ2:

Here, t̂r and V̂ðt̂rÞ are respectively the point and variance estimate for the r-th iteration.

The RB are within an acceptable range. We observe larger RB for t̂greg
y2

when r ¼ 0.9 and

u ¼ 0.75, because the variance is small in this case.

The biases of the variance estimates in the case of unequal strata sizes is larger than the

biases of equal strata sizes. The reason is the small sample size for two strata in the unequal

strata size scenario. The residuals of the smallest strata vary much more and thus have a

larger contribution towards the variance than the residuals of the large strata. The negative

bias can also be caused by small sample sizes, because the Taylor linearization method has

a tendency to underestimate the true variance in this case (Särndal et al. 1992, 176).

Table 5. RB%100 of variance estimates for the proposed estimator under different scenarios for

1,000 iterations.

r m u Equal strata sizes Unequal strata sizes

t ¼ 1 t ¼ 2 t ¼ 1 t ¼ 2

0.1 mI 0.25 1.5 27.4 216.3 215.3
0.50 23.4 25.1 218.1 212.1
0.75 1.5 0.0 215.4 211.9

mII 0.25 1.5 27.4 216.4 215.3
0.50 23.4 25.1 218.1 212.1
0.75 1.5 0.0 215.2 211.9

0.5 mI 0.25 5.7 4.9 221.0 219.3
0.50 1.8 28.8 218.3 212.9
0.75 20.0 21.4 212.2 27.6

mII 0.25 5.6 4.9 220.8 219.3
0.50 1.8 28.8 218.3 212.9
0.75 20.0 21.4 211.5 27.6

0.9 mI 0.25 22.7 0.3 216.1 222.0
0.50 4.0 21.4 218.5 218.7
0.75 22.0 10.1 215.1 213.7

mII 0.25 22.7 0.3 215.7 222.0
0.50 4.0 21.4 218.5 218.7
0.75 21.9 10.1 214.3 213.7
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7. Conclusion

We propose a multivariate GREG estimator for estimation of levels and changes. It has the

advantage of involving the information from both waves, and takes into account the

correlations between the variables of interest and the auxiliaries within and between the

waves. Additionally, it also takes the sampling design into account, in terms of

stratification, rotation and sampling fractions.

The simulation study shows that the proposed estimator may outperform its

competitors, in particular with respect to change estimates. Nevertheless, the advantages

of the proposed estimator over the modified estimator are manifold. It does not require any

imputation and does not suffer from a drift, unlike the composite estimator. It can be easily

implemented using existing statistical software. The variance estimator is simpler than the

variance estimator of composite estimators, because neither estimated totals nor

imputation is required. It also takes the auxiliary variables and the variables of interest

from both waves into account.

Nonresponse and panel attrition are important issues with repeated surveys. It is beyond

the scope to tackle these problems fully. Previous wave imputation can be used for the

auxiliary variables �xit which suffer from attrition. Re-weighting could be used to

compensate for nonresponse and panel attrition for the variable of interest. In this case the

new weight should replace the basic weights 1/pit within Equations (5) and (6). In this

case, st would be the sample of respondents at wave t. The proposed estimator (9) can be

directly used in this case. It is approximately unbiased, as long as a proper re-weighting

technique has been used. However, in this case, the vectors nt and n12 are random.

Consequently, we may lose the asymptotic optimality, because the asymptotic

approximation of Hájek (1964) for the joint-inclusion probabilities are based on fixed nt

and n12. The variance estimator (27) should be used cautiously, because it does not

incorporate nonresponse adjustments. A possible solution would be to incorporate the re-

weighting variables within �xit and use �xit within Equations (9) and (27). It would be useful

to investigate this idea further.

8. Appendix

Proof of Theorem 1:

Since gi ¼ ð�x
`
i ; z

`
i Þ

`, we have

i[sb
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cigig

`
i

0
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�X
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 !`
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 !8
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`
i ¼

�X

Z

 !`

C �y;

where

Gxx ¼ ð �X
`CMz

�XÞ21;

Gzz ¼ ðZ
`CMxZÞ21;

Gxz ¼ 2Gxx
�X`CZðZ`CZÞ21
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and Mx is defined by

Mx ¼ I 2 �Xð �X`C �XÞ21 �X`C: ð32Þ

Now, we have

B̂g ¼
B̂x

G`
xz
�X`C�yþ GzzZ

`C�y

0

@

1

A; ð33Þ

because

Gxx
�X`C�yþ GxzZ

`C�y ¼ Gxx
�X`C{I 2 ZðZ`CZÞ21Z`C}�y

¼ Gxx
�X`CMz �y

¼ ð �X`CMz
�XÞ21 �X`CMz �y

¼ B̂x:

Finally, Equations (11) and (12) imply that tg 2 t̂g ¼ {ðtx 2 t̂xÞ
`; 0}` Thus, by using

Equation (33), we obtain Equation (18).
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