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Abstract— We study identifiability for linear, continuous
time-invariant systems. We state sufficient conditions on an
input trajectory û and a finite number of its derivatives, in
order to be able to deduce all differential equations describ-
ing the data-generating system from any corresponding
input-output sequence (û, ŷ) on a finite interval.

Index Terms— Persistency of excitation, identifiability,
continuous-time linear time-invariant systems

I. INTRODUCTION

We consider solutions of systems of constant-coefficient lin-
ear differential equations, called linear differential systems in
the following. We illustrate some results related to persistency
of excitation, parallel to those established for discrete-time
systems in [15] and [14]. We answer the following question:

Let (û, ŷ) : R→ Rm+p be an inputs-output (i-o) trajectory
generated by a linear differential system.
Under which conditions on (û, ŷ) is it possible to recover
from it all differential equations that describe the system?

Our solution to this problem is based on state-space repre-
sentations, and we closely follow the technique used in [14]
for the discrete-time case. In this adaptation we exploit two
analogies: that between differentiation in the continuous-time
domain, and shift in the discrete-time one; and that between
vector of functions and their annihilators, and Hankel matrices
and their left annihilators. In [15] the same problem was
solved in discrete-time using only higher-order polynomial
difference operators (i.e. adopting the tenets of the “behavioral
approach”).

Notwithstanding the technical analogies, a fundamental
conceptual difference exists between the results presented
here and those of [14]. The authors of [14] aimed at stating
sufficient conditions for the parametrization of the restrictions
of all trajectories generated by a linear, time-invariant discrete-
time system. They used the fact that linear combinations of
the time-shifts of restrictions of a given system trajectory
provide a convenient representation to generate (restrictions
of) other system trajectories. This has important consequences
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in simulation and data-driven control (see e.g. [1], [7], [9] and
the more recent literature on the subject).

A continuous-time analogue to the results of [14], [15]
appears in [5], where a parametrization of restrictions of
admissible continuous-time trajectories is obtained solving a
system of linear, time-varying differential equations deter-
mined from the data (û, ŷ) (see Theorem 2 therein).

The problem we solve in this paper is dual to that analysed
in [5], [14]: we aim at finding sufficient conditions for the
parametrization of all dynamical laws (differential equations)
that describe the system, rather than at generating all system
trajectories. Instead of a descriptive point of view (parametriz-
ing finite-length system trajectories in terms of a given one),
we adopt a prescriptive one (parametrizing all annihilators of
the system trajectories). We solve an identifiability problem:
how “rich” must a given system trajectory be in order for a
unique model of the system to be computed from the data.
Our point of view is analogous to that adopted in [6], and to
some of the results in [15]. We discuss these relations more
extensively in Section IV.

The paper is organized as follows. In Section II we define
the property of persistency of excitation, and we state some
preliminary results. In Section III we state a sufficient condi-
tion for identifiability, based on the concept of persistency
of excitation and controllability. In Section IV we discuss
the relation of our conditions with those for discrete-time
systems. In Section V we illustrate an application of our results
to continuous-time system identification. Section VI contains
some final remarks.

II. PRELIMINARY RESULTS

In the rest of this paper, given a j-times continuously
differentiable function f : R → Rq and j ∈ N, the notation
f (j) denotes the j-th derivative of f .

The following is a fundamental definition.
Definition 1 (Persistency of excitation): Let I = (t0, t1) ⊆

R. f : I→ Rm is persistently exciting of order k if

a) f is (k − 1)-times continuously differentiable in I;
b) For every v :=

[
v0 . . . vk−1

]
∈ R1×km it holds that

v


f(t)
f (1)(t)

...
f (k−1)(t)

 = 0 ∀ t ∈ I

=⇒ vi = 01×m , i = 0, . . . , k − 1 . (1)



It is straightforward to verify that if f is persistently exciting
of order k, then it does not satisfy any constant-coefficient
differential equation of order less than or equal to k − 1.
For example, if m = 1 a linear combination of k linearly
independent exponential functions is persistently exciting of
order k on every interval I ⊆ R.

We establish a consequence of this property.
Proposition 1: Let (x, u) be a state-input trajectory gener-

ated by a controllable continuous-time input-state system

d

dt
x = Ax+Bu , (2)

where u is m-dimensional and x is n-dimensional.
Let I = (t0, t1) ⊆ R; assume that u is persistently exciting

of order at least n + L in I. Then for every ζ ∈ R1×n, η :=[
η0 . . . ηL−1

]
∈ R1×mL the following implication holds:

[
ζ η

]


x(t)
u(t)
u(1)(t)

...
u(L−1)(t)

 = 0 for all t ∈ I (3)

=⇒ ζ = 0 , ηi = 0 , i = 0, . . . , L− 1 .

Proof: Let ζ ∈ R1×n, η ∈ R1×(n+L)m, t ∈ I be such that
(3) holds. Differentiating this expression i times, i = 0, . . . , n
one obtains

[
ζ η

]


x(i)(t)
u(i)(t) u(i+1)(t)

...
u(L−1+i)(t)

 = 0 , i = 0, . . . , n .

Differentiating i times the state equation d
dtx = Ax + Bu,

one obtains the expression x(i) = Aix+
∑i−1
j=0A

i−1−jBu(j)

for i = 1, . . .. It follows that for every t ∈ I the following
equation holds:

[
ζ η

]


x(i)(t)
u(i)(t) u(i+1)(t)

...
u(L−1+i)



=
[
ζ η

]

Aix(t) +

∑i−1
j=0A

i−1−jBu(j)(t)

u(i)(t)
u(i+1)(t)

...
u(L−1+i)(t)

 = 0 .

Consequently for i = 1, . . . , n it holds that

0 =
[
ζAi . . . ζB η0 . . . ηL−1

]


x(t) u(t)
...

u(i)(t)
...

u(L−1+i)(t)

 .

Define

w0 :=
[
ζ η0 . . . ηL−1 0nm

]
w1 :=

[
ζA ζB η0 . . . ηL−1 0(n−1)m

]
...

wn :=
[
ζAn . . . ζB η0 . . . ηL−1

]
.

From the equations (4) conclude that the wi’s are left-
annihilators on I of the (n + (n + L)m)-dimensional vector
of functions[

x> u> u(1)> . . . u(n+L−1)>
]>

. (4)

Because of property b) in Def. 1, this vector-valued function
has at most n annihilators on I, and consequently the n +
1 vectors wi are linearly dependent. Given the structure of
the wi’s, i = 0, . . . , n, i.e. the presence of zeros in the last
components, we conclude that ηL−1 = 01×m, then ηL−2 = 0,
and so on until η0 = 0. This proves η = 0.

It follows that

w0 =
[
ζ 01×(n+L)m

]
w1 =

[
ζA ζB 01×(n+L−1)m

]
...

wn =
[
ζAn ζAn−1B . . . ζB 01×Lm

]
,

are annihilators of (4). Denote by αi, i = 0 . . . , n the
coefficients of the characteristic polynomial of A, and observe
that

∑n
i=0 wiαi equals

ζ
[∑n

i=0A
iαi

∑n
i=1 αiA

i−1B . . . B 01×Lm
]

= ζ
[
01×n

∑n
i=1 αiA

i−1B . . . B 01×Lm
]

;

note that the first n entries of
∑n
i=0 wiαi are zero since∑n

i=0A
iαi = 0. By construction, ∀ t ∈ I it holds that

ζ
[∑n

i=1 αiA
i−1B . . . αnB

]


u(t)
u(1)(t)

...
u(n−1)(t)

 = 0 ;

given the assumption (1), we conclude that

ζ
[∑n

i=1 αiA
i−1B

∑n
i=2 αiA

i−2B . . . αnB
]

= 0 .

It follows from the last m equations that αnζB = 0; since
the highest coefficient αn of the characteristic polynomial of
A equals 1, we conclude that ζB = 0. The previous m-
dimensional block-entry of the vector is αn−1ζB+αnζAB =
0 + αnζAB = 0. We conclude that ζAB = 0. The same
argument can be used to prove ζAiB = 0, i = 0, . . . , n − 1.
Given the controllability of the pair (A,B) we conclude that
ζ = 0.

Remark 1: As in the case of discrete-time systems, under
the controllability assumption persistency of excitation is not
necessary for (3) to hold: condition (3) also depends on the
initial conditions of the system, which may excite all system
dynamics even in the case of an insufficiently rich input signal.
Consider for example the controllable system with n = 1
described by ẋ = αx + u, with α ∈ R. Let u(t) = eλt



for t ∈ [0,+∞), λ 6= α and x(0) = c; straightforward
computations show that x(t) =

(
c+ 1

α−λ

)
eαt− 1

α−λe
λt. Let

L = 1. Then for every c 6= − 1
α−λ statement (3) holds; since

λ 6= α it holds that if ζ
((
c+ 1

α−λ

)
eαt − 1

α−λe
λt
)

+ηeλt =

0, then ζ = 0 , η = 0. However, u satisfies the equality[
−λ 1

] [ u
u(1)

]
= 0, and u is not persistently exciting of

order 2.
We state a straightforward consequence of Proposition 1.
Corollary 1: Let (x, u) be a state-input trajectory generated

by a controllable continuous-time system (2). If u is persis-
tently exciting of order at least n, then

ζ ∈ R1×n and ζx(t) = 0 for all t ∈ I =⇒ ζ = 0 .

III. MAIN RESULTS

We illustrate a consequence of condition (1) of Proposition
1 on vectors[

u> . . . u(L−1)> y> . . . y(L−1)>
]>

, (5)

computed from i-o trajectories (u, y) of a linear differential
system.

Theorem 1: Let

d

dt
x = Ax+Bu

y = Cx+Du , (6)

be an i-s-o representation with m inputs, p outputs, and n
state variables. Let (û, x̂, ŷ) satisfy (6). Assume that (A,B) is
controllable, and that û is persistently exciting of order at least
n+ L on I. Let η ∈ R1×m [s], ξ ∈ R1×p [s], deg η,deg ξ ≤
L− 1. The following statements are equivalent:

a)
[
η
(
d
dt

)
ξ
(
d
dt

)] [û
ŷ

]
= 0 on I;

b) The differential operator
[
η
(
d
dt

)
ξ
(
d
dt

)]
annihilates ev-

ery continuously differentiable i-o trajectory of (6) on I.
Proof: Evidently statement b) implies statement a).

To show that a) =⇒ b), we introduce some notation. Define
the k-th observability matrix, the k-th controllability matrix,
and the Markov matrix, respectively, of (6) by

Ok :=


C if k = 0[
Ok−1
CAk

]
if k ≥ 1

,

Ck :=

{
B if k = 0[
AkB Ck−1

]
if k ≥ 1

,

Tk :=


D if k = 0[
Tk−1 0

CCk−1 D

]
if k ≥ 1

. (7)

Let (u, x, y) be an arbitrary trajectory of (6), with u contin-
uously differentiable at least (L − 1) times. Use successive
differentiations of ẋ = Ax+Bu and y = Cx+Du to conclude

that 

u
...

u(L−1)

y
...

y(L−1)


=

[
0 ImL
OL−1 TL−1

]
x
u
...

u(L−1)

 . (8)

Denote the coefficients of η(s) and ξ(s) by ηi and ξi, i.e.
η(s) =

∑L−1
i=0 ηis

i and ξ(s) =
∑L−1
i=0 ξis

i, and define q by

q :=
[
η0 . . . ηL−1 ξ0 . . . ξL−1

]
∈ RL(m+p) .

From statement a), using (8) on (û, x̂, ŷ), conclude that

q



û
...

û(L−1)

ŷ
...

ŷ(L−1)


= q

[
0 ImL
OL−1 TL−1

]
x̂
û
...

û(L−1)

 = 0 . (9)

Under the assumptions (1) on û and its derivatives, the result
of Proposition 1 holds and zero is the only left annihilator of[
x̂> û> . . . û(L−1)>

]>
. Consequently, (9) holds if and

only if

q

[
0 ImL
OL−1 TL−1

]
= 0 . (10)

Now let (u′, x′, y′) be an arbitrary input-state-output trajectory
of (6), with u′ at least (L−1)-continuously differentiable; then

q



u′

...
u′(L−1)

y′

...
y′(L−1)


= q

[
0 ImL
OL−1 TL−1

]
x′

u′

...
u′(L−1)

 = 0 .

Rewrite this equation as[∑L−1
i=0 ηi

di

dti

∑L−1
i=0 ξi

di

dti

] [
u′

y′

]
= 0 ,

to conclude that statement b) holds.
In the following corollary we formalize a partial answer to

the question posed in Section I.
Corollary 2: Let (û, x̂, ŷ) be a trajectory satisfying (6).

Assume that (A,B) is controllable and that û is persistently
exciting of order at least L + n on I. Let η(s) ∈ R1×m[s],
ξ(s) ∈ R1×p[s], with deg(η),deg(ξ) ≤ L− 1.

The following two statements are equivalent:

1) (u, x, y) satisfy (6) =⇒
[
η
(
d
dt

)
ξ
(
d
dt

)] [u
y

]
= 0 on I;

2)
[
η
(
d
dt

)
ξ
(
d
dt

)] [û
ŷ

]
= 0 on I.

Corollary 2 states that under controllability and sufficiently
high persistent excitation of the input trajectory û, the set of



all differential equations of order up to L satisfied by all i-
o system trajectories coincides with the set of all differen-
tial equations of order up to L satisfied by the particular
trajectory (û, ŷ). This result provides only a partial answer
to the question in Section I, since it does not state how
much persistently exciting an input trajectory needs to be to
determine all differential equations satisfied by the system
trajectories. To fully answer this question we need to introduce
some additional concepts and notation.

Definition 2 (System lag): Define Ωk by (7). The system
lag, denoted by `(C,A), is defined by

`(C,A) := min{k ∈ N | rank Ωk = rank Ωk−1} . (11)
It follows from Definition 2 that `(C,A) ≤ n, and that if
(C,A) is observable, then `(C,A) is the observability index of
the pair. We denote by B the space consisting of all infinitely-
differentiable i-o trajectories (u, y) for which there exists a
state-trajectory x such that (u, x, y) satisfies (6):

B :=
{

(u, y) ∈ C∞(R,Rm+p) | ∃ x : R→ Rn

such that (u, x, y) satisfies (6)} . (12)

The set of annihilators of B, denoted by N (B) is defined by

N (B) :=
{[
η(s) ξ(s)

]
∈ R1×(m+p) [s] | (13)

η

(
d

dt

)
u+ ξ

(
d

dt

)
y = 0 ∀ (u, y) ∈ B

}
.

N (B) is a module of R1×(m+p) [s]: if
[
ηi(s) ξi(s)

]
∈

N (B), i = 1, 2, then for every p1, p2 ∈ R[s] also

p1(s)
[
η1(s) ξ1(s)

]
+ p2(s)

[
η2(s) ξ2(s)

]
∈ N (B) .

We denote by N (B)L the set of annihilators of B with degree
less than or equal to L:

N (B)L :=
{[
η(s) ξ(s)

]
∈ N (B) |

deg
[
η(s) ξ(s)

]
≤ L

}
,

and by 〈N (B)L〉 the module generated by its elements:

〈N (B)L〉 :=
{
p1(s)

[
η1(s) ξ1(s)

]
+ p2(s)

[
η2(s) ξ2(s)

]
|[

ηi(s)ξi(s)
]
∈ N (B)L and pi ∈ R[s] , i = 1, 2

}
.

Note that since there is no restriction on the degree of pi,
i = 1, 2, 〈N (B)L〉 contains elements of degree larger than L.

We state the following straightforward consequence of The-
orem 1, fully answering the question posed in Section I.

Corollary 3: Let (û, x̂, ŷ) : R → Rm+n+p be a trajectory
of (6). Assume that (A,B) is controllable and that û is
persistently exciting of order at least `(C,A) +n on I. Define

N (û, ŷ)`(C,A) :=
{[
η(s) ξ(s)

]
∈ R1+(m+p)[s] |

η

(
d

dt

)
û+ ξ

(
d

dt

)
ŷ = 0 on I

and deg
[
η(s) ξ(s)

]
≤ `(C,A)

}
.

Then the module 〈N (û, ŷ)`(C,A)〉 of R1×(m+p) [s] satisfies the
equality 〈N (û, ŷ)`(C,A)〉 = N (B).

Proof: The proof makes use of the following fact (see
statement viii. of Theorem 6 p. 570 of [16]): the system lag
`(C,A) is such that
a) N (B) = 〈N (B)`(C,A)〉; and
b) `(C,A) = min

{
L ∈ N | N (B) = 〈N (B)L〉

}
.

It follows that N (B) is finitely generated: there exist g ∈ N
and ri(s) ∈ R1×(m+p)[s], i = 1, . . . , g such that deg ri(s) ≤
`(C,A) and the module 〈r1, . . . , rg〉 generated by the ri(s)
equals N (B). Now apply Corollary 2 to conclude that[
η(s) ξ(s)

]
∈ N (û, ŷ)`(C,A) if and only if it has degree

≤ `(C,A) and it annihilates all trajectories in B:

N (û, ŷ)`(C,A) = N (B)`(C,A) .

This equality implies that 〈N (û, ŷ)`(C,A)〉 = 〈N (B)`(C,A)〉.
Consider a set of generators {ri(s)}i=1,...,g of N (B) such
that deg ri(s) ≤ `(C,A); note that ri ∈ N (B)`(C,A), i =
1, . . . , g. Conclude that 〈N (B)`(C,A)〉 = N (B), from which
the claim follows.

Corollary 3 gives a full answer to the question posed
in Section I: under the controllability assumption, if û is
persistently exciting of order at least n+`(C,A), then any i-o
trajectory (û, ŷ) corresponding to it is sufficiently informative
about the system dynamics.

IV. RELATION WITH DISCRETE-TIME APPROACHES

We discuss how our approach relates to the discrete-time
ones of [6], [14], [15]. Two conceptual analogies between
discrete- and continuous-time underlie our results.

The first one is the correspondence between the data Hankel
matrix in discrete-time, and the vector of continuous time
functions (5). Dynamical laws satisfied by the data correspond
to left annihilators of the Hankel matrix in the discrete-time
case, and to annihilators of the vector of functions (5) in the
continuous-time case.

The second crucial analogy between the discrete- and the
continuous-time case is that between time-shift and differentia-
tion. This correspondence is ultimately based on the “injective
cogenerator property” (see [8]) that allows to translate state-
ments and properties established on suitable solution spaces
of linear differential or difference equations, into properties
expressed in terms of modules of differential or difference
operators. For discrete-time systems, the i-th shift of a state
trajectory can be written as a linear combination of the k-
th shift of the input trajectory, k = 0, . . . , i − 1, and the
state trajectory itself. In continuous time, the i-th derivative
of the state can be written as a linear combination of the k-th
derivative of the input, k = 0, . . . , i− 1, and the state.

With the first conceptual analogy in mind, and considering
that if L > `(A,C) then 〈N (û, ŷ)`(C,A)〉 = N (B) (see
Corollary 3), it is straightforward to verify the following
analogies between our results and those of [15]:
• Corollary 1 is equivalent to statement (i) in Corollary 2

p. 328 in [15];
• Corollary 2 is the continuous-time equivalent to equation

(K) in Theorem 1 p. 327 in [15].
Regarding the relations between our results and those in

[14], we observe the following:



• The argument used in proving Proposition 1 exploits
the analogy between left annihilators of the data Hankel
matrix and of (5); and the consequences of the correspon-
dence between time-shift and differentiation;

• The result of Proposition 1 is dual (in the sense illustrated
in Section I) to that of Theorem 1 p. 603 in [14];

• The argument used in proving Theorem 1 exploits the
standard relation (8) between Markov parameters and
input-state-output trajectories to relate left annihilators of
(5) with annihilators of (10).

Finally, we discuss connections with relevant results in
[6]. The setting therein is more general: neither knowledge
of an i-o partition of the measured variables, nor of the
number of input or output variables, are postulated. Moreover,
controllability is not assumed a priori, and the data may consist
of multiple finite time-series. Some of the conditions provided
in [6] (see Theorem 15 p. 8) are also necessary, not only
sufficient for identifiability.

Algorithm 1 p. 7 of [6] iteratively constructs a basis for the
module of annihilators of the most unfalsified model (MPUM)
(see Definition 11 p. 6 therein) for the data, in the process
computing also an i-o partition of the variables. Theorem 14
p. 7 of [6] states two sufficient conditions for identifiability,
based on the outcome of such algorithm.

The first condition (see the first formula in (ID1)) is that
the system lag is smaller than the depth of the Hankel matrix.
In our notation, this is equivalent to the requirement that the
order of differentiation L in (5) satisfies L > `(A,C). This
requirement is implied by Definition 1 and the condition in
Corollary 3 that û is persistently exciting of order at least
`(C,A) + n.

The second condition is that the number of outputs of
the MPUM computed by the algorithm equals the number
of outputs of the data-generating system (see the second
formula in (ID1)). In our setting, this corresponds to the
condition that the set of left-annihilators of (5) is equal to
the set of annihilators of the data-generating system. Under
the assumptions of controllability and persistent excitation of
order at least n + `(A,C), this is precisely the statement of
Corollary 3.

V. APPLICATION TO IDENTIFICATION

The design of identification algorithms that, under the
assumption of persistent excitation, start from an i-o trajectory
and identify the continuous-time system that generated it, is
beyond the scope of the present article. In this section we
briefly sketch one of the possible approaches to continuous-
time system identification opened up by the results presented
in this paper, we put it in the context of continuous-time
identification, and we discuss some of its evident limitations.

The following is an instrumental result.
Proposition 2: Let (û, x̂, ŷ) satisfy (6). Assume that (A,B)

is controllable, that (A,C) is observable, and that û is persis-
tently exciting of order n+L on I. Assume that L ≥ `(C,A);

then there exist s ∈ N and ti ∈ I, i = 1, . . . , s, such that

rank



û(t1) û(t2) . . . û(ts)
û(1)(t1) û(1)(t2) . . . û(1)(ts)

...
... . . .

...
û(L−1)(t1) û(L−1)(t2) . . . û(L−1)(ts)
ŷ(t1) ŷ(t2) . . . ŷ(ts)
ŷ(1)(t1) ŷ(1)(t2) . . . ŷ(1)(ts)

...
... . . .

...
ŷ(L−1)(t1) ŷ(L−1)(t2) . . . ŷ(L−1)(ts)


= mL+n .

(14)
Proof: Denote the matrix on the left-hand side of (14) by

H{ti}i=1,...,s
(û, ŷ). Denote by H{ti}i=1,...,s

(x̂, û) the matrix
x̂(t1) x̂(t2) . . . x̂(ts)
û(t1) û(t2) . . . û(ts)
û(1)(t1) û(1)(t2) . . . û(1)(ts)

...
... . . .

...
û(L−1)(t1) û(L−1)(t2) . . . û(L−1)(ts)

 ,

and use (8) to conclude that

H{ti}i=1,...,s
(û, ŷ) =

[
0 ImL
OL TL

]
H{ti}i=1,...,s

(x̂, û) .

Since L ≥ `(C,A), it follows that

rank
[

0 ImL
OL TL

]
= mL+ rank OL = mL+ n ,

and rank H{ti}i=1,...,s
(û, ŷ) = rank H{ti}i=1,...,s

(x̂, û). Now
consider the one-parameter family of (Lm + n)-dimensional
vectors defined by

vt :=
[
x̂(t)> û(t)> . . . û(L−1)(t)>

]
, t ∈ I .

Since û is persistently exciting of order Lm+n, it follows from
Proposition 1 that the family {vt | t ∈ I} is not contained in
any fixed, non-trivial hyperplane of RLm+n. Consequently, s
and {ti}i=1,...,s ⊂ I exist, such that rank H{ti}i=1,...,s

(x̂, û) =
n+mL; note that necessarily s ≥ Lm+ n.

The same integer s ∈ N and choice of sampling instants
ti ∈ I, i = 1, . . . , s is such that rank H{ti}i=1,...,s

(û, ŷ) =
mL+ n, as was to be proved.

To state our next result we need to introduce the concept of
(algebraic) genericity. Let L be a d-dimensional linear space
over R, with a basis {`i}i=1,...,d. If ` ∈ L, then there exist xi ∈
R, i = 1, . . . , d, such that ` =

∑d
i=1 xi`i. A map p : L → R is

a polynomial if p(`) is a polynomial in the coefficients xi’s. An
algebraic variety is a subset V of L consisting of all solutions
to a system of algebraic equations defined by polynomials pi,
i = 1, . . . , g. A subset S ⊂ L is called generic if there is
a proper algebraic variety V ( L such that S ⊃ (L \ V). If
a generic set S consists of all point in L that have a certain
property, then the property is called generic.

Proposition 3: Let (û, x̂, ŷ) satisfy (6). Assume that (A,B)
is controllable, that (A,C) is observable, and that û is per-
sistently exciting of order n + L on I, that L ≥ `(C,A)
and that s ≥ Lm + n. Then generically for every choice of
{ti}i=1,...,s ⊂ I rank H{ti}i=1,...,s

(û, ŷ) = mL+ n.



Proof: Use the argument in Proposition 2 to conclude
that for every choice of the ti, i = 1, . . . , s, the equality
rank H{ti}i=1,...,s

(û, ŷ) = rank H{ti}i=1,...,s
(x̂, û) holds.

Consider the one-parameter family of (Lm+n)-dimensional
vectors {vt} introduced in the proof of Proposition 2. Since
û is persistently exciting of order Lm + n, {vt | t ∈ I} is
not contained in any fixed, non-trivial hyperplane of RLm+n.
Consequently, generically any choice of s ≥ Lm + n values
ti of the parameter t yields s vectors that do not all lie on any
hyperplane. Conclude that rank H{ti}i=1,...,s

(x̂, û) = Lm+n,
from which the claim follows.

Based on the result of Proposition 3 we sketch the follow-
ing procedure to identify a set of i-o differential equations
describing the generating system.

Assume that upper bounds on the system lag `(C,A) and the
state dimension nmin of any observable and controllable i-s-o
representation of the generating system are known. Choose ar-
bitrarily s ≥ `(C,A)m+nmin time instants ti ∈ I, i = 1, . . . , s;
then generically rank H{ti}i=1,...,s

(û, ŷ) = `(C,A)m + nmin

(see Proposition 3). Assume that such rank condition holds for
the particular choice of {ti}i=1,...,s, and compute a basis for
the subspace of R1×L(m+p) consisting of all left-annihilators
of H{ti}i=1,...,s

(û, ŷ). Each element of this basis corresponds
to a (m + p)-dimensional polynomial row-vector associated
with a differential operator annihilating all system trajectories
(see Corollary 3). A basis for the module N (B) of anni-
hilators can be computed using standard polynomial matrix
computations (e.g. see Theorem 6.3.2 p. 375 of [4]). From
such module basis, an i-s-o representation of the system can
be straightforwardly computed; see [11] for details.

We conclude setting our conceptual approach in the context
of continuous-time system identification (see [2], [3], [10],
[13]), and discussing its limitations and some of the challenges
to make it viable. Our abstract procedure is based on the
unrealistic assumption that higher derivatives of inputs and
outputs are measured. Consequently, a solution must be found
to the “time-derivative measurement problem” (see section
2 of [2]), i.e. the computation or approximation of such
derivatives. To be theoretically consistent with our approach,
the solution must also be compatible with the algebraic theory
establishing the conceptual equivalence between modules of
differential operators and spaces of signals. We discuss some
issues and opportunities that arise in connection with standard
approaches.

Approximate differentiation based on difference schemes,
and low-pass filtering are among the solutions adopted to solve
the time-derivative measurement problem (see [2], [13]). In
both cases the end result is that one associates with samples
of the original trajectories, samples of other ones unrelated
to them by differentiation. Consequently, in a behavioral
framework such trajectories may be considered to be auxiliary
variables ones. To adopt such solutions in our setting, the
relation of the original behavior with such augmented set of
trajectories should be put on a sound theoretical footing, to fit
into the exact modelling framework of [17].

Some recent work by the authors (see [12]) exploited or-
thogonal basis function (OBF) representations for data-driven
continuous-time control in a state-space setting (OBFs are

also used in continuous-time system identification, see [13]).
Differentiation and integration of signals are formalized as the
product of an (infinite) vector of coefficients times an (infinite)
differentiation or integration matrix. Depending on the OBFs,
the derivative is exactly computable even from a finite number
of coefficients; in this case, the original system parameters can
be associated to a “transformed” system operating on OBF
representations of signals. It is a matter of current investigation
whether the use of OBFs, successful in data-driven control
applications, can be extended to our conceptual procedure to
provide a more realistic one, consistent with the basic tenets
of behavioral identification.

VI. CONCLUSIONS

In Corollary 3 of Section III we established a sufficient
condition on an input trajectory û and a finite number of its
derivatives, to generate “sufficiently informative” i-o trajecto-
ries (û, ŷ), from which all differential equations relating inputs
and outputs can be deduced. In Section IV we connected our
results and techniques to the literature on identifiability for
discrete-time systems. In Section V we used our results to
devise a conceptual procedure that generically computes a set
of i-o differential equations for the generating system.
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