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Purpose 

To investigate the effects of 12 weeks of omega-3 fatty acid supplementation during endurance 

training on Omega-3 index (O3I) and indicators of running performance in amateur long-

distance runners. 

 

Methods 

26 amateur male long-distance runners aged ≥ 29 years supplemented omega-3 fatty acid 

capsules (OMEGA group, n=14; 2234 mg of EPA and 916 mg of DHA daily) or medium chain 

triglycerides capsules as placebo (MCT group, n=12; 4000 mg of MCT daily) during 12-week 

of endurance training. Before and after intervention, blood samples were collected for O3I 

assessment and an incremental test to exhaustion and 1500-m run trial were performed. 
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Results 

O3I was significantly increased in the OMEGA group (from 5.8% to 11.6%, P < 0.0001).                  

A significant increase in VO2peak was observed in the OMEGA group (from 53.6 ± 4.4 ml*kg-

1*min-1 to 56.0 ± 3.7 ml*kg-1*min-1, P = 0.0219) without such change in MCT group (from 54.7 

± 6.8 ml*kg-1*min-1 to 56.4 ± 5.9 ml*kg-1*min-1, P = 0.1308). A positive correlation between the 

change in O3I and change in running economy was observed when data of participants from 

both groups were combined (-0.1808 ± 1.917, P = 0.0020), without such an effect in OMEGA 

group alone (P = 0.1741). No effect of omega-3 supplementation on 1500-m run results was 

observed.  

 

Conclusions 

12 weeks of omega-3 fatty acid supplementation at a dose of 2234 mg of EPA and 916 mg               

of DHA daily during endurance training resulted in improvement of O3I and running economy 

and increased VO2peak without improvement in the 1500-m run trial time in amateur runners. 

 
Clinical registry 

The study was registered at https://www.clinicaltrials.gov/ with identifier NCT04780451 
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Abbreviations 

AA, arachidonic acid 

ALA, α-linolenic acid 

CRP, C-reactive protein 

DHA, docosahexaenoic acid 

EPA, eicosapentaenoic acid 

HR, heart rate 

HRR, heart rate reserve 

LT, lactate threshold 

MCT, medium-chain triglycerides 

O3I, omega-3 index 

PUFA, polyunsaturated fatty acids 

RE, running economy 

RER, respiratory exchange ratio 

Ve, pulmonary ventilation  

VO2, volume of oxygen uptake 

VCO2, volume of carbon dioxide  

VO2peak, peak oxygen uptake 

VT1, first ventilatory threshold  

VAT, ventilatory anaerobic threshold 
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INTRODUCTION 3 

Omega-3 fatty acids include α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and 4 

docosahexaenoic acid (DHA), characterized by the first double bond on the third carbon atom 5 

from the methyl end of the fatty acyl chain. There is growing evidence that synthesis de novo 6 

of EPA and in particular DHA is limited in the human body and sources of preformed EPA and 7 

DHA e.g. seafood, especially fatty fish or supplements should be consumed (1,2). Despite this, 8 

athlete’s intake of sources of omega-3 fatty acids is often inadequate (3,4). Harris and von 9 

Schacky proposed the so-called omega-3 index (O3I) as a valid indicator of omega-3 PUFA 10 

status, reflecting both intake of these fatty acids and their biological and health effects (5). O3I 11 

is the sum of EPA and DHA expressed as a percent of total fatty acids in erythrocytes. It is 12 

proposed that values > 8% are associated with the greatest cardioprotection, whereas values            13 

< 4% are associated with the least (5). O3I has been recognized as the best marker of omega-3 14 

PUFA status associated with many health indicators and outcomes in the general population 15 

(6); however it’s relation with physical performance indicators in athletes is poorly understood. 16 

Observations on amateur and competitive athletes confirm low O3I values. For example, in 106 17 

German elite winter endurance athletes, only one had an O3I in the target range of  >8% and 18 

the average O3I value of the others was 4.97 ± 1.19% (7). Analysis conducted on collegiate 19 

athletes, professional basketball players and trained, but not professional, endurance athletes 20 

confirm low values of the O3I and its increase after supplementation with omega-3 PUFAs 21 

(8,4,9). A recent systematic review summarizing randomized placebo-controlled trials in 22 

athletes revealed that omega-3 PUFA supplementation improved cognitive function (e.g. 23 

reduction of reaction time and improvement of mood state), promoted skeletal muscle recovery 24 

and attenuated proinflammatory cell responses (10).  25 
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The effect of omega-3 fatty acid supplementation on exercise performance is unclear, although 28 

several studies show positive effects on oxygen kinetics: cycling efficiency or maximal oxygen 29 

uptake (10). To date, the longest study where physical performance parameters were analyzed 30 

lasted 10 weeks with the applied dose of 1.60 g of EPA and 1.04 g of DHA daily (11). The 31 

length and dose of omega-3 fatty acid supplementation seem to be crucial due to the 32 

incorporation of EPA + DHA into target tissues, which would be reflected in erythrocyte 33 

membranes and O3I. Maximal incorporation of EPA and DHA into erythrocytes is related to 34 

erythrocyte turnover: in a twelve-month controlled intervention trial conducted on healthy 35 

individuals, Browning and co-authors revealed that it takes 55 and 136 days for EPA and DHA 36 

respectively, to achieve peak incorporation into erythrocytes in the case of a supplementation 37 

dose of 3.27 g of EPA + DHA for 4 days a week (12).  38 

Given the paucity of long-term studies using omega-3 fatty acid supplements in athletes 39 

showing relation between O3I values and physical performance indicators, there is a need for 40 

further work in this area. Accordingly, we determined the effects of 12 weeks of EPA+DHA 41 

supplementation (2234 mg and 916 mg a day respectively) compared with medium-chain 42 

triglycerides (MCT) as placebo in dose 4000 mg a day during endurance training on O3I and 43 

physical performance indicators in amateur runners. We hypothesize that this duration and 44 

dosage of omega-3 PUFAs will result in significant incorporation of EPA and DHA into 45 

erythrocytes membranes and increase O3I to values considered as a target range (i.e. > 8%). 46 

Moreover, using the longest duration and the highest dose of supplementation of the studies 47 

conducted so far, we hypothesize that this will increase VO2peak and improved running economy 48 

(RE) to a degree that will translate into better running performance. 49 

 50 
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METHODS 53 

Ethical approval  54 

The study was approved by the Bioethical Committee of Regional Medical Society in Gdańsk 55 

(NKBBN/628/2019) and conducted according to the Declaration of Helsinki. After 56 

comprehensive details of the study protocol were explained orally and in writing, all 57 

participants provided their written informed consent. 58 

 59 

Participants 60 

40 amateur male long-distance runners were recruited through advertisements on the internet. 61 

Inclusion criteria included age between 29 and 42 years, and completion of an official 10 km 62 

race over the 2016 and 2020 time period with a time result between 37 and 57 min. The 63 

exclusion criteria included chronic diseases, cigarette smoking, or use of prescribed 64 

medications or dietary supplements, including omega-3 fatty acids. On the day of 65 

familiarization with the laboratory conditions and the treadmill test, participants were allocated 66 

sequential numbers that were then used as the identifiable characteristic. Assignment to each 67 

group (OMEGA or MCT) using an online randomizer (http://www.randomizer.org) took place 68 

on the first day of the actual exercise tests. All participants agreed to carry out only the training 69 

courses included in the programme and were instructed to continue with their habitual dietary 70 

patterns for the duration of the intervention. 71 

 72 
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Overview of study design 75 

The trial was conducted in the Laboratory of Physical Exercise and Department of Biochemistry 76 

of the Academy of Physical Education and Sport in Gdansk. After inclusion, participants were 77 

randomly assigned to one of the two groups: OMEGA or MCT providing either omega-3 fatty 78 

acids or MCTs. All participants completed a progressive endurance training supervised by a 79 

track and field coach. The paralell, randomized trial consisted of 3 four-week phases, for a total 80 

of 12 weeks together with simultaneous supplementation. A graded exercise test to exhaustion 81 

with assesement of VO2 peak, running economy and a 1500-m run trial were carried out before 82 

and after completion of the exercise training programme. Each test was preceded by a 83 

standardized breakfast for all participants consumed 1 hour before the test began. Blood 84 

collection and weight assessment were performed when participants were in a fasting state.   85 

Fig. 1 outlines the experimental protocol.  86 

 87 

  88 
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Omega-3 PUFA supplementation 91 

 92 

Throughout the study all participants took 4 identical-looking capsules each day (2 in the 93 

morning and 2 in the evening) containing either omega-3 fatty acids or MCTs. The omega-3 94 

capsules provided 2234 mg of EPA and 916 mg of DHA daily (Omega-3 double plus, NAMED 95 

SPORT, Italy), whereas the MCT capsules contained 4000 mg of MCTs (MCT Oil, Now Foods, 96 

USA). The dose of omega-3 fatty acids is consistent with the dosage applied in the study of 97 

Browning and co-authors (12). To maintain certainty of the amount of each fatty acid and the 98 

general quality of the supplements containing omega-3 fatty acids, an International Fish Oil 99 

Standard (IFOS) certified product was selected. The IFOS programme verifies the amount of 100 

each fatty acid and the content of heavy metals, dioxins and rate of oxidation. A publicly 101 

available batch report of the supplements used in the study indicated that the amounts of 102 

individual acids were in accordance with the manufacturer's claims, and content of heavy 103 

metals, dioxins and rate of oxidation did not exceed accepted standards. Moreover, both 104 

supplements were certified by the informed-sport programme, under which products are tested 105 

for substances banned by the World Anti-Doping Agency. To avoid a potential recognition of 106 

supplements, participants were informed that they were all taking omega-3 fatty acids in one of 107 

two chemical forms. On the day of arrival at the laboratory, 1 hour prior to the graded exercise 108 

test and the 1500-m run trial, participants consumed the same standarized breakfast. Breakfast 109 

was a replication of a typical pre-start meal and consisted of wheat roll with butter and jam and 110 

half a banana.  111 

 112 

 113 
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Total energy value and amount of carbohydrate, protein and fat was 290 kcal, 49 g, 5 g and         116 

8 g, respectively. Dietary intake over 3 days (2 days from week and 1 day from weekend) was 117 

recorded in the first and the last week of the programme. Participants used the 118 

MyFitnessPal mobile application to record the meals they consumed. Before using the app for 119 

the first time, the basic functions were demonstrated to all participants. Moreover, the 120 

website ilewazy.pl was presented to participants, so they could more easily estimate the 121 

portions they consumed when kitchen scales were not available. If recorded meals were not 122 

precise, participants were asked to clarify the information. Collected dietary records where then 123 

analysed using nutrition analysis software (Kcalmar.pro, Poland). Every food item in meals, 124 

with the consumed amount, was entered to the nutrition analysis software and total dietary 125 

energy, carbohydrate, protein and fat content was calculated. 126 

 127 

Exercise testing 128 

Before (week 0) and after completion (week 13) of the exercise training programme, 129 

participants were submitted to a graded exercise test to exhaustion on a motorized treadmill 130 

(h/p Cosmos, Saturn, Germany) to determine whether omega-3 fatty acids combined with 131 

endurance training might positively affect the endurance potential of runners. Prior to the 132 

intervention, the participant’s body weight and height were measured (analyzer InBody 720 133 

and stadiometer Seca 213 respectively), then they were familiarized with the laboratory 134 

conditions and the treadmill test.  135 

 136 

 137 
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First, participants stood on the treadmill for 2 minutes to make sure the measuring equipment 140 

was ready and to measure the resting values. Thereafter, runners walked for 5 min at 5 km/h 141 

speed and with a 1.5% inclination as a warm-up prior to starting the test. Every next stage lasted 142 

3 min aimed to reach steady-state VO2 (13), and the treadmill belt was accelerated starting from 143 

8 km/h by 1 km/h per stage up to 12 km/h. Then, the inclination of the treadmill was increased 144 

to 5%, 10% and 15% at 12 km/h speed until volitional exhaustion. During both tests, heart rate 145 

(HR) was monitored (Polar RS400 Kempele, Finland) to define the highest value (HRmax) 146 

during each test. Pulmonary ventilation (Ve), oxygen uptake (VO2), carbon dioxide output 147 

(VCO2) and respiratory exchange ratio (RER) were continuously measured using a breath-by-148 

breath analyzer (Oxycon Pro, Jaeger, Germany) which was calibrated before each test following 149 

the manufacturer’s recommendations. Measurements were averaged in 10-second intervals. 150 

VO2peak was obtained as the highest 30 s mean value recorded during the test. Running economy 151 

was measured as an oxygen cost from last 50 seconds of each stage to 12 km/h speed and was 152 

expressed as ml*kg-1*min-1 (14), and RE analysis was performed up to RER <1. All 153 

measurements were performed at similar time of day ± 2 h and constant environmental 154 

conditions (18-20oC and humidity 40-45%). Additionally, participants were informed to avoid 155 

strenuous exercise for 24 h before and caffeine and alcohol consumption for 12 h before 156 

laboratory tests. 1 week after the graded exercise test, participants took part in a 1500-m run 157 

time trial on an indoor 200-m track. The time was recorded with a handheld stopwatch to the 158 

nearest 0.1 s. During both tests, participants received strong verbal encouragement.  159 

 160 
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Training Protocol 163 

The training protocol lasted 12 weeks and was built based on undulatory load manipulation 3:1 164 

which was suggested to be effective to prevent overtraining and stress due to oscillations 165 

between volume/intensity according to Costa et al. (15) with slight modifications. Hence, 166 

participants performed endurance training 3 times per week. One additional training per week 167 

aimed to strengthen core muscles to reduce the risk of lower extremity injuries was also 168 

included in protocol (16). Training intensity was prescribed according to the first ventilatory 169 

threshold and ventilatory anaerobic threshold (VT1 and VAT) respectively and their associated 170 

HR values obtained during the laboratory testing. The threshold-based method was described 171 

as better than the heart rate reserve (HRR)-based method to design more individualized exercise 172 

prescriptions that will enhance training efficacy and limit training unresponsiveness (17). 173 

Consequently, participants trained in three HR zones: [Z1: ≤HR@VT1+5 bpm; Z2: 174 

(>HR@VT1+5 bpm) to (≤HR@VAT-5 bpm); Z3: >HR@VAT-5 bpm] and their average 175 

training times spent in every mesocycle were (~80%-15%-5%) in zones (Z1-Z2-Z3) 176 

respectively, accordingly to previous authors (18) with slight modifications. On the last, 12th 177 

week, the tapering procedure was performed, whereby the training load was reduced to 70% 178 

from the volume obtained in the 11th week to reduce accumulated fatigue. Participant’s training 179 

activity - training volume, intensity and energy expenditure were monitored by a Polar M430 180 

wristwatch and a H9 heart rate chest sensor. All running tests and training procedures were 181 

supervised by a track and field coach. 182 

 183 
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Erythrocyte fatty acid analysis 186 

Fasting blood samples were collected from participants by a nurse into 4 mL sodium citrate 187 

vacutainer tubes (BD Vacutainer®, Franklin Lakes, NJ, USA) and centrifuged at 4oC (4000 x 188 

g for 10 min). After centrifugation, erythrocytes were collected with a disposable pasteur pipette 189 

and transferred into eppendorfs, which were stored in a −80oC freezer until further analysis. 190 

Erythrocyte EPA and DHA were assesed using gas chromatography as described elsewhere 191 

(19). Briefly, erythrocyte lipids were extracted into chloroform:methanol and fatty acid methyl 192 

esters (representing the erythrocyte fatty acids) were formed by heating the lipid extract with 193 

methanolic sulphuric acid. The fatty acid methyl esters were separated by gas chromatography 194 

on a Hewlett Packard 6890 gas chromatograph fitted with a BPX-70 column using the settings 195 

and run conditions described elsewhere (19). Fatty acid methyl esters were identified by 196 

comparison with run times of authentic standards. Data are expressed as weight % of total fatty 197 

acids. O3I was calculated by summing the percentages of EPA and DHA according to Harris 198 

and von Schacky (5). 199 

 200 

Statistical analysis 201 

The sample size calculation was based on changes in oxygen consumption during graded 202 

exercise test to exhaustion assessed as VO2peak, as this was the primary outcome of the study. 203 

A typical value for VO2peak in population of recreational long-distance runners is about 54 204 

ml*kg-1*min-1 with a SD of about 5 (20).  205 
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 206 

It is considered that a 8% increase in VO2peak is meaningful in amateur runners (21). A sample 207 

size of 18 participants per group (i.e. 36 participants in total) would give 70% power to detect 208 

this difference as significant with alpha = 0.05. In order to account for a dropout rate of 10%, 209 

40 participants were recruited. Statistical analysis was performed using the tools of GraphPad 210 

Prism 7. Arithmetic means, standard deviation (SD), and significance levels of differences 211 

between means were calculated. Two-way analysis of variance (ANOVA), with repeated 212 

measures, was used to investigate the significance of differences between groups and time. 213 

Significant main effects were further analyzed using the Bonferroni corrected post hoc test. 214 

Changes (delta) in both groups were compared using an independent samples t-test. 215 

Correlations between variables were evaluated using the Pearson correlation coefficient. All 216 

analyses used a significance level of P < 0.05. 217 

 218 

RESULTS 219 

Participant flow through the study 220 

Participants excluded from the final analysis completed insufficient (<80%) training sessions 221 

(n=3) or withdrew from the study for health (n=9) or personal reasons (n=1). Moreover, one 222 

participant from MCT group increase intake of omega-3 fatty acids during study, therefore he 223 

was also excluded from statistics. Participant flow through the study is presented in Figure 2. 224 

From the 40 participants enrolled, 26 completed the entire study and their characteristic is 225 

shown in Table 1. 226 

 227 
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 229 

Erythrocyte EPA, DHA and O3I 230 

The percentage values of erythrocyte EPA, DHA and O3I pre- and post-intervention in the 231 

OMEGA and MCT groups are presented in Figs. 3 and 4. There was no difference in baseline 232 

values of either omega-3 PUFA or O3I between the groups (OMEGA group: 1.1% EPA, 4.7% 233 

DHA, 5.8% O3I; MCT group: 1.2% EPA, 4.4% DHA, 5.6% O3I, all P > 0.9999). 12 weeks of 234 

omega-3 fatty acid supplementation during endurance training increased both omega-3 PUFAs 235 

and O3I in the OMEGA group (to 4.9 ± 1.1% EPA, 6.7 ± 0.8% DHA, 11.6 ± 1.7% O3I, all P < 236 

0.0001) without significant changes in the MCT group (to 1.1% EPA, 4.5% DHA, 5.6% O3I, 237 

all P > 0.9999). At the end of the intervention period EPA, DHA and O3I were significantly 238 

higher in OMEGA group than in MCT group (all P < 0.0001). 239 

 240 

VO2peak, running economy and 1500-m run trial 241 

There was no significant difference between groups in change in VO2peak over the 12-week 242 

intervention period (P = 0.6764) (Fig. 5B). However, a significant increase in VO2peak from 243 

pre- to post-intervention in OMEGA group was observed (from 53.6 ± 4.4 ml*kg-1*min-1 to 56.0 244 

± 3.7 ml*kg-1*min-1, P = 0.0219) with no significant change in MCT group (from 54.7 ± 6.8 245 

ml*kg-1*min-1 to 56.4 ± 5.9 ml*kg-1*min-1, P = 0.1308) (Fig. 5A). Increase in VO2 peak was seen 246 

in 13 out of 14 (93%) participants in the OMEGA group while in the MCT group improvements 247 

were visible in 9 out of 12 (75%) runners.  248 

 249 

 250 
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Moreover, oxygen uptake at 12 km/h changed in both groups: the running economy increased 253 

significantly in the OMEGA group (from 47.6 ± 1.8 to 46.5 ± 2.4 ml*kg-1*min-1, P = 0.0295), 254 

while it decreased in the MCT group (from 47.7 ± 3.3 to 48.7 ± 2.9 ml*kg-1*min-1, P = 0.1127) 255 

(Fig. 5C). The change in oxygen uptake over the 12-week intervention period was significantly 256 

different between groups (P = 0.0033) (Fig. 5D). When results pre- and post- 12-week 257 

intervention from all participants were combined, correlation highlighted the relationship 258 

between O3I and oxygen cost of submaximal running (Fig. 6A, P = 0.0338 and Fig. 6 B, P = 259 

0.0020). There was significant improvement in completion of the 1500-m run trial in both 260 

groups from pre- to post-intervention, however, results did not differ between groups over the 261 

study period (OMEGA group from 356.3s to 344.9s, P = 0.0002 and MCT group from 362.1s 262 

to 347.3s, P < 0.0001; post- to post- between groups, P > 0.9999).  263 

  264 

Physiological and nutritional variables 265 

Table 2 summarises physiological and nutritional variables obtained from the participants at 266 

the beginnning and after completing the intervention programme. There was no difference in 267 

weekly training volume (P = 0.7399), energy expenditure (P = 0.1828) and HRmax (P = 268 

0.4624) between the groups. However, in both groups there was a significant increase in HR 269 

max at VAT [%] post-intervention compared to pre-intervention (OMEGA group from 91.7 ± 270 

2.6 to 93.9 ± 2.8, P = 0.0331 and MCT group from 90.8 ± 3.9 to 95.2 ± 3.7, P = 0.0001).  Total 271 

energy (kcal/d), carbohydrate and protein (g*kg−1*day−1) intake did not differ pre- to post-272 

intervention within either group (OMEGA group P > 0.9999, P = 0.5442, P = 0.5777; MCT 273 

group P =0.1973, P > 0.9999, P = 0.7721 respectively).  274 
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There was a statistically significant difference in fat intake between the two groups with a 276 

significantly higher fat intake in the OMEGA group (from 83.4 ± 25.9 to 91.9 ± 25.9 g, P = 277 

0.0321) and lower, however not significant fat intake in the MCT group (P = 0.0943). 278 

Moreover, a significant decrease in body mass during the study was observed in the MCT group 279 

(-1.225 kg; P = 0.0265). 280 

 281 

DISCUSSION 282 

 283 

The main finding of the study is that 12 weeks of supplementation with omega-3 fatty acids at 284 

a dose of 2234 mg of EPA and 916 mg of DHA daily shifts erythrocyte O3I to values considered 285 

as a target range for cardiovascular health. Moreover, this duration and dose of supplementation 286 

during endurance training increased VO2peak and improved running economy at velocity                   287 

12 km/h with no effect on 1500-m run trial results. Insufficient values of O3I in active 288 

individuals are well described. In a study including vegan and omnivorous endurance athletes, 289 

Cradock et al. (8) showed suboptimal O3I in both groups: 4.13% in vegans and 5.40% in 290 

omnivores respectively. Similarly, O3I below the desirable values was demonstrated in German 291 

national elite winter endurance athletes (4.97 ± 1.19%), professional basketball players from 292 

NBAG-League (5.02 ± 1.19%) and collegiate athletes, representing diverse disciplines 293 

throughout the U.S. (4.33 ± 0.81%) (7,4,22). Our observations are in agreement with these 294 

reports, indicating that amateur runners had mean baseline O3I of around 5.7% (5.8% and 5.6% 295 

in OMEGA and MCT groups, respectively).  296 

 297 

 298 
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12 weeks with omega-3 fatty acid supplementation at a dose of 2234 mg of EPA and 916 mg 300 

of DHA daily during endurance training increased O3I in all but one participant in OMEGA 301 

group to mean of 11.4%, which is considered to be well within the O3I target range (5). 302 

Moreover, an increase in O3I correlated with an increase in running economy at velocity 12 303 

km/h when results post minus pre 12-week intervention of participants from both groups were 304 

combined. Improvements in exercise economy as an effect of supplementation with omega-3 305 

fatty acids have previously been shown in both amateur and competitive athletes (9,23,24). In 306 

an 8-week double-blind, parallel design study in well trained cyclists, Peoples et al. (23) showed 307 

that 3.2 g/day of omega-3 fatty acids reduced whole-body O2 consumption throughout 60 308 

minutes of sustained submaximal cycling. Contrary to our observations, peak oxygen 309 

consumption in these cyclists was not changed, which may be related to their high level of 310 

training status or quite high compared to other data (above 9%) baseline O3I values (23). 311 

Improved economy of cycling during the physiologically demanding time-trial in trained 312 

cyclists and runners was also revealed by Hingley et al. after 8 weeks of supplementation with 313 

a dose of 560 mg of DHA + 140 mg of EPA a day. Despite an elevation in O3I (from 4.7±0.2 314 

to 6.3±0.3%) the values did not achieve the recommended O3I > 8% (9), which may be related 315 

to the low dose of EPA + DHA used. A study conducted by Kawabata et al. (24) with 316 

recreational players of American football, rugby, baseball, and basketball is consistent with 317 

other observations in trained individuals: 8-week of daily supplementation with 914 mg of EPA 318 

and 399 mg of DHA increased exercise economy during a steady-state submaximal 319 

cycloergometer test. In one cross-over study with trained cyclists, researchers observed an 320 

increase in VO2max after 3 weeks of supplementation with a daily dose of 660 mg of EPA and 321 

440 mg of DHA (25).  322 

 323 
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In contrast to this report, an earlier study conducted by Raastad et al. (11) showed no changes 326 

in VO2max and running performance in well-trained soccer players receiving 1.60 g of EPA and 327 

1.04 g of DHA a day through 10-week period. Exercise economy together with VO2max, lactate 328 

threshold and critical power are all strongly related to endurance exercise performance (26). 329 

Therefore, studies showing increased exercise economy, VO2max or VO2peak provide a rationale 330 

to further explore this topic together with the potential underlying mechanisms. 331 

Supplementation with omega-3 fatty acids reduces exercise-induced inflammation in athletes 332 

through decreasing in pro-inflammatory omega-6 fatty acids (27) and AA:EPA ratio (28). 333 

Given the large cross-sectional study indicating that inverse relationship between VO2 max and 334 

C-reactive protein (CRP) is modified by omega-3 fatty acid levels (29) this may be the case. 335 

Moreover, an increase in insulin sensitivity due to unsaturation of skeletal muscle membranes 336 

(30), improved calcium handling by skeletal muscle sarcoplasmic reticulum (23) and improved 337 

endothelial function via increase in NO release (25) should be taken into account in searching 338 

for potential mechanisms of action. Of note, in the present study 13 out of 14 participants in the 339 

OMEGA group showed an improved VO2peak compared to a variable response in the MCT 340 

group, in which only 9 out of 12 runners improved their results. This may suggest better 341 

adaptation to endurance training in response to omega-3 fatty acid supplementation, as has been 342 

observed with several other dietary supplements (31). Still, neither our nor previous reports 343 

support the hypothesis that long-term supplementation with omega-3 fatty acids enhances 344 

exercise performance. Duration and dose of omega-3 supplementation are crucial factors 345 

determining the amount of fatty acids incorporated into erythrocyte membranes and more than 346 

4 months are needed to reach the highest concentration of DHA in case of a supplementation 347 

dose of 1.5 g of EPA and 1.77 g of DHA for 4 days a week (12).  348 
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 350 

Compared to previous studies in which performance indicators were assesed, our 351 

supplementation protocol (2234 mg of EPA and 916 mg of DHA daily for 12 weeks) was a 352 

higher dose over a longer supplementation period (9, 23–25). However, what values of O3I are 353 

sufficient for amateur and competitive athletes to optimize athletic performance remains a 354 

question to be answered in future studies. 355 

 356 

Our study has some limitations that must be highlighted. Running economy is typically 357 

determined by measuring the consumption of oxygen when the steady-state of VO2 is observed 358 

(13). We recognized steady-state conditions when runners had RER < 1 during treadmill 359 

running (13, 32); however the concentration of lactic acid was not assessed. Considering that 360 

lactate threshold (LT) is one of the indicators of disturbance in VO2 steady-state (26,33),               361 

it should be included in future research. Animal studies showed that DHA is incorporated into 362 

the membranes of fast-oxidative glycolytic fibres (type IIA) of skeletal muscle (34). These 363 

muscle fibres have both a high oxidative and glycolytic capacity and due to their increased 364 

activation during moments of high energy demand (35) we decided to perform a 1500-m run 365 

trial. Our participants typically perform distances from 10 km to a marathon, therefore lack of 366 

experience and unfamiliarization at such a short distance as 1500-m may influence the outcome 367 

of the run trial and this must be taken into consideration when interpreting our findings. Future 368 

studies with omega-3 supplementation should also consider pre-screening, during which 369 

individuals with similar baseline omega-3 index should be selected (36).  370 

 371 

 372 

 373 
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 374 

 375 

In conclusion, 12 weeks of omega-3 fatty acid supplementation at a dose of 2234 mg of 376 

EPA and 916 mg of DHA daily during an endurance running programme increased O3I to 377 

values currently considered as a target range. This duration and dose of supplementation 378 

combined with endurance training increased peak oxygen consumption and improved running 379 

economy in amateur runners without affecting their performance. 380 

 381 
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CAPTIONS FOR FIGURE 

FIGURE 1. General experimental design. 

 

FIGURE 2. Flow of participants through the study. 

 

FIGURE 3. Effect of supplementation with omega-3 PUFAs or MCTs on individual values of 

O3I pre- and post-12-week intervention *P < 0.0001. 

 

FIGURE 4. Effect of supplementation with omega-3 PUFAs or MCTs on erythrocyte A) EPA 

and B) DHA pre- and post-12-week intervention and change from baseline in C) EPA and D) 

DHA compared between the two groups. Data expressed as mean.   

Error bars indicate ± SD, *P < 0.0001. 

 

FIGURE 5. Effect of training and supplementation on A) peak oxygen consumption (ml*kg-

1*min-1) pre- and post-12-week intervention B) change in peak oxygen consumption (ml*kg-

1*min-1) in the two groups over the 12-week intervention C) oxygen utilisation (ml*kg-1*min-1) 

during submaximal treadmill running at 12 km/h pre- and post-12-week intervention and D) 

change in oxygen utilisation (ml*kg-1*min-1) in the two groups over the 12-week intervention  

Data expressed as mean. Error bars indicate ± SD, *P <  0.05. 

 

 

FIGURE 6. Correlation between O3I and oxygen cost of submaximal running when: 

 A) OMEGA and MCT groups were combined pre- and post-12-week intervention  

 B) Results post minus pre (delta) in OMEGA and MCT groups were combined 
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