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Abstract: We outline a universal Schwinger-Keldysh effective theory which describes

macroscopic thermal fluctuations of a relativistic field theory. The basic ingredients of our

construction are three: a doubling of degrees of freedom, an emergent abelian symmetry

associated with entropy, and a topological (BRST) supersymmetry imposing fluctuation-

dissipation theorem. We illustrate these ideas for a non-linear viscous fluid, and demonstrate

that the resulting effective action obeys a generalized fluctuation-dissipation theorem, which

guarantees a local form of the second law.
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1 Introduction

Out of equilibrium quantum dynamics is relevant for a multitude of physical phenomena in

many-body physics, quantum fields theories (QFTs), and in quantum gravity. While the

microscopic framework for studying this physics was pioneered in the 1960s by Schwinger,

Keldysh [1, 2] and others [3], a satisfactory theoretical derivation of the macrophysics remains

elusive.

Hydrodynamics, which is the universal low-energy physics of near-equilibrium thermal

systems, exemplifies this status quo. Phenomenological aspects of fluid dynamics are well

understood [4], but a first principles derivation is lacking to date. This is despite significant

recent progress in understanding the essence of the hydrodynamics axioms [5–13] and attempts

to write down a effective field theory for the same [13–24]. Such an effective theory is crucial

to formulating a Wilsonian theory of (low-energy) fluctuations, complementing more phe-

nomenologically oriented studies of macroscopic fluctuations based on large-deviation func-

tionals [25].

Quantum gravity provides yet another motivation for seeking an effective low-energy

formalism for mixed states. A SK-like doubling structure has been suggested to be crucial

in understanding semiclassical physics of AdS black hole interiors (and the experience of an

infalling observer) [26]. Such proposals can be sensibly tested against (better-understood)

fluid dynamics which, via AdS/CFT, is the correct nonlinear effective theory of the lowest

quasinormal mode of the black hole [6, 27]. We then need to understand in detail, not only

how to embed fluid dynamics in the SK formalism at a non-linear level, but also how various

ingredients in such a description get rephrased on the gravity side. This work should be

viewed as a preliminary step towards such an endeavour.
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In both black hole physics, as well as in the fluid dynamics of the dual QFT, a major

obstacle to writing down a unitary low-energy theory is the macroscopic non-unitarity and

concomitant entropy production. This precludes a canonical effective field theory, for a type

of UV-IR mixing below thermal energies obstructs the usual unitarity-preserving Wilsonian

RG. AdS/CFT as usual geometrizes this: the scale/radius duality [28] breaks down as one

approaches the horizon (or probes sub-thermal scales in the QFT). This is also the crucial

reason why the interior of the black hole cannot be given a simple interpretation via holo-

graphic renormalization. Any low-energy theory should have a clear strategy to deal with

this effective non-unitarity.

We recall that unitarity at the level of correlators is a twofold statement [29]: (i) the

correlators should factorize according to Cutkosky cutting rules (or more generally Veltman’s

largest time equation) and (ii) no ghosts should appear as the intermediate particles in the

cutting rules. The properties of SK path integral demand that the first structure be preserved

in the low-energy effective theory, whereas the decoupling of ghosts may only happen after

the effective theory is UV completed to a unitary theory. This idea is exemplified explic-

itly by Langevin theory in a Martin-Siggia-Rose [30] path integral description (for a review

cf., [31]).1 The cutting rule structure along with the fluctuation-dissipation relations and

macroscopic second law heavily constrain the admissible effective non-unitarity (see [32] for

details). Microscopically, these constraints originate from the Kubo-Martin-Schwinger(KMS)

conditions which impose Euclidean periodicity on the SK correlators in the thermal limit.

The structural consequences of the second law in hydrodynamics are now well-understood

[10–13]. This was used in [12, 13, 32] to propose a general framework for an autonomous ef-

fective theory of hydrodynamics. The macroscopic degrees of freedom were a thermal vector

and twist (for flavour), {βµ ≡ uµ

T , Λβ = µ
T −β

αAα} respectively, dynamics was the statement

of current conservation (up to work terms), and a local form of the second law of thermody-

namics was required to hold. A complete (eightfold) classification of hydrodynamic transport

compatible with these axioms was derived in [12, 13] and an effective action capturing seven

of the eight classes (the adiabatic part) was constructed, aided by the observation of an emer-

gent gauge symmetry, KMS invariance. The latter was postulated to be the macroscopic

manifestation of the microscopic KMS conditions.

These statements were further bolstered in [32], where we argued that the SK construction

and its concomitant KMS condition can be encapsulated in terms of a set of nilpotent BRST

charges {QSK ,QSK ,QKMS ,QKMS}, leading to an NT = 2 balanced topological theory. Such

theories were first constructed in [33] by topologically twisting N = 44d SYM; the general

formalism was described in [34]. We now present a theory of dissipative hydrodynamics in

this framework and realize our theory as a deformed, topologically twisted sigma model,

1 We should clarify here that we are considering Langevin theory in a manifestly CPT invariant stochastic

regularization, viz., Stratonovich regularization. In a simple theory like Langevin theory with an external

(quenched) noise, one could decouple the ghosts by passing on to a CPT breaking regularization (Itō regular-

ization) and then changing the rules of differentiation to Itō calculus. While this is frequently done in order

to avoid the ghosts, we would like to adhere here to standard QFT with the usual rules of calculus.
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with the hydrodynamic fields being the Goldstone modes for spontaneously broken difference

diffeomorphism and flavour symmetries. For simplicity, we will only realize three of the eight

classes (including dissipation) in the eightfold classification of [13]. We also will demonstrate

the validity of the second law, by deriving the generalized fluctuation-dissipation result of

Jarzynski [35, 36] and Crooks [37, 38], invoking spontaneous breaking of microscopic time-

reversal as envisaged beautifully in [39–41]. The construction we describe in the main text

explicitly illustrates that the broad principles laid out in [32] suffice to construct an effective

field theory of dissipative hydrodynamics.

The rest of the paper is organized as follows: in §2 we outline the basic fields and

symmetries, arguing that a superspace functional is the easiest route to our goal. We explain

how these connect to the microscopic perspective in §3 and proceed to exhibit an explicit

construction for dissipative fluids in §4. We then demonstrate how to recover the generalized

fluctuation-dissipation statement in §5 and end with some comments in §6. We only sketch

the basic principles here; full details of the construction will appear elsewhere [42].

Note: Following [32], as this work was in progress, we received [43] who also construct an

action for dissipative hydrodynamics based on principles of SK path integrals.

2 Symmetries in SK description

We begin by examining the fundamental symmetries of a SK path integral. Given an initial

density matrix ρ̂initial of a QFT, we define the SK generating functional

ZSK [JR, JL] ≡ Tr
{
U [JR] ρ̂initial (U [JL])†

}
. (2.1)

U [J ] denotes the unitary evolution of the QFT, deformed by a source J . This form of SK

functional immediately leads to a set of essential properties which should be satisfied by any

SK effective theory [32].

Features for generic mixed states: First, when we align the sources JR = JL = J , the

SK functional localizes to ρ̂initial, viz.,

ZSK [JR = JL = J ] ≡ Tr
{
ρ̂initial

}
. (2.2)

This is a simple consequence of the unitarity of the underlying QFT. At the level of correlators,

this implies that the difference operators, OR − OL, form a protected topological subsector

of the theory. This statement is equivalent to the largest time equation/cutting rule for the

corresponding correlator in the single copy theory. Thus imposing (2.2) in the low-energy

effective theory ensures the cutting rule structure for its correlators.

This feature can be implemented in the SK effective theory by demanding that when

sources align appropriately, the theory should exhibit topological invariance. Equivalently,

any SK effective theory should be a source-deformed topological theory (TQFT). Such a

TQFT has two nilpotent, mutually anti-commuting, Grassmann odd topological charges
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{QSK ,QSK}, such that the difference operators are {QSK ,QSK}-exact and SK effective ac-

tion is {QSK ,QSK}-closed, modulo source terms proportional to JR−JL. When JR = JL, this

theory naturally localizes as in (2.2).

It is convenient to implement the topological invariance by working in superspace [44].

We introduce two Grassmann odd coordinates {θ, θ̄}, identify {QSK ,QSK} ∼ {∂θ̄, ∂θ}, and

promote fields to superfields:

Y → Y̊ = Y + θYψ̄ + θ̄Yψ + θ̄ θ Ỹ ≡ YL + YR

2
+ θYψ̄ + θ̄Yψ + θ̄ θ (YR − YL) . (2.3)

The top (θ̄θ) component of the superfields represent the difference operators while the Yψ,Yψ̄
are the ghost super-partners of Y. Note that they carry the same spin as the field Y but

opposite Grassmann parity. We can always recover the basic field by projection:

Y = Y̊| ≡ Y̊
∣∣
θ=θ̄=0

, Ỹ = ∂θ∂θ̄Y̊| ≡ ∂θ∂θ̄Y̊
∣∣
θ=θ̄=0

. (2.4)

We will henceforth adhere to the convention that the circle˚accent will denote the superfield

corresponding to a field and tilde picks out the difference field in the SK construction.

Denoting spacetime coordinates by {σa} and superspace coordinates by zI ≡ {σa, θ, θ̄},
we demand invariance under super-reparameterizations zI 7→ f I(z) for both (aligned) sources

and fields. Once a TQFT has been constructed in the superspace, we can unalign the sources

by shifting the θ̄θ components of the sources thus breaking the topological invariance to get

the required SK effective theory.

The second symmetry we implement is CPT, which implies that the SK path integral is

invariant under the combined CPT transformation of the initial state and the sources. Using

the anti-unitary nature of CPT, we can translate this into a reality condition for the SK path

integral. It should satisfy the identity (where ∗ represents complex conjugation)

Z∗SK [JL, JR] = ZSK [JR, JL] . (2.5)

This identity follows simply from the definition in (2.1) along with hermiticity of ρ̂initial.

As expected CPT acts anti-unitarily with a complex conjugation; it exchanges the left and

the right sources. Apart from the usual action on σa, CPT exchanges θ̄ ↔ θ and hence

acts as an R-parity on the superspace. This is necessitated by our requirement that the θ̄θ

component of the superfields be identified with difference operators. It is further natural

to extend these symmetries by including ghost number conservation with θ̄ and θ having

opposite ghost numbers (wlog ∓1). The super-reparametrization invariance, CPT invariance

and ghost number conservation form the basic set of symmetries to be imposed on any SK

effective theory.2

2 Thus in particular, these structures should also be present when we consider reduced density matrices for

some spatial region of a QFT as is usually done in the context of entanglement entropy.
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Features of near-thermal density matrices: We now move on to symmetries specific

to near-equilibrium situations. For thermal ρ̂initial, SK correlators can be obtained by analyt-

ically continuing Euclidean thermal correlators. Under this continuation, Euclidean thermal

periodicity translates into a set of non-local KMS conditions [45–47]. They characterize the

UV-IR mixing inherent in thermal states, with the scale of non-locality being the thermal

scale. Any effective theory of near-equilibrium fluctuations should efficiently encode these

conditions non-linearly. This problem is well-studied (but without clear resolution) for non-

relativistic systems in macroscopic fluctuation [25] and mode-coupling theories. The issue

is one of implementing fluctuation-dissipation relations at the non-linear level. One may of

course impose the KMS relations directly on the correlators by hand, but it is unclear how

to maintain them under renormalization.

Inspired by our previous studies of the structural consequences of the second law in

relativistic fluids, we had advocated a solution to this conundrum in terms of an emergent

U(1)T gauge invariance [12, 13, 32]. This KMS symmetry acts on the fields by thermal

translations. In particular:

(a). It ensures the correct localization of the SK path integral satisfying Euclidean period-

icity, by extending the cohomology of {QSK ,QSK} into an equivariant cohomology of

thermal translations.

(b). It gives rise to a macroscopic entropy current thus intimately linking the emergence of

entropy with the microscopic KMS invariance.

In the gravitational description, this statement is then dual to Wald’s construction of black

hole entropy as a Noether charge [48, 49].

To describe our macroscopic gauge theory at a certain temperature we introduce a

background timelike superfield βa(σ). It can be viewed as a vector superfield β̊I(z) with

β̊θ = β̊θ̄ = 0 = ∂θβ̊
a = ∂θ̄β̊

a. We will consider below only that subset of superdiffeomor-

phisms which respect this gauge choice for the background thermal supervector β̊I . Similarly

for charged fluids we introduce a thermal twist Λβ(σ) which encodes the chemical potential.3

These background fields play a fundamental role in the gauge theory describing thermal

fluctuations.

The supergauge U(1)T transformations are parameterized by an adjoint superfield Λ̊.

They act on a general superfield Y̊ by Lie dragging it along Λ̊βa. Such transformations can

be succinctly represented by introducing a special type of Lie bracket which we christen as a

thermal bracket,

(Λ̊, Y̊)β = Λ̊ £βY̊ , (2.6)

where £β denotes the Lie-derivative along βa. The infinitesimal gauge transformation is thus

given by

Y̊ 7→ Y̊ + (Λ̊, Y̊)β . (2.7)

3 This is the phase entering the thermal periodicity conditions in a particular flavour symmetry gauge.
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For scalar Y̊scalar this is just a thermal translation4

(Λ̊, Y̊scalar)β = Λ̊ βa∂aY̊scalar . (2.8)

The Jacobi identity then fixes the action of thermal bracket on adjoint superfields, so that

under U(1)T transformation Λ̊′ 7→ Λ̊′ + (Λ̊, Λ̊′)β with

(Λ̊, Λ̊′)β = Λ̊£βΛ̊′ − Λ̊′£βΛ̊ . (2.9)

We introduce a gauge superfield one-form as a triplet ÅI(z) ≡ {Åa(z), Åθ(z), Åθ̄(z)}, i.e.,

ÅI(z) dz
I = Åa(z) dσ

a + Åθ(z) dθ + Åθ̄(z) dθ̄ (2.10)

whose gauge transformation is like an adjoint superfield except for an inhomogeneous term,

viz.,

ÅI 7→ ÅI + (Λ̊, ÅI)β − ∂IΛ̊ , (2.11)

with the thermal bracket as in (2.9). One can further define as usual a covariant derivative

D̊I = ∂I + (ÅI , · )β , (2.12)

and an associated field strength

F̊IJ ≡ (1− 1

2
δIJ)

(
∂I ÅJ − (−)IJ ∂J ÅI + (ÅI , ÅJ)β

)
, (2.13)

where (−)IJ is the mutual Grassmann parity of the two indices involved. Given the low-energy

superfields Y̊, the theory of macroscopic fluctuations is given as the general superspace action

invariant under U(1)T gauge transformations. We have sketched in [32] how this construction

works for Langevin dynamics – the full symmetry algebra can be found in Appendix A therein.

In what follows we will suppress the details of the gauge sector for the most part, quoting

only the key statements we need to write down the results. Thus, in our work the gauge

sector will only appear as minimally coupled and we will systematically ignore the non-

minimal couplings and the detailed dynamics of the gauge sector in this work. A complete

story involves explaining how the equivariant construction of U(1)T dynamics works and will

appear soon in our companion paper [42].5

4 If the superfield is also charged under flavour, this generalizes to (Λ̊, Y̊)β = Λ̊
(
£βY̊ − [Λβ, Y̊]

)
where

[ · , · ] denotes flavour adjoint action.
5 The astute reader will also recognize that the U(1)T gauge symmetry despite being abelian has to act

non-linearly, owing to its origin in thermal translations. Indeed the U(1)T gauge theory has many features

of a non-commutative abelian gauge theory. Heuristically this may be motivated from our earlier statements

about UV/IR mixing below the thermal scale.
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3 Fields and symmetries

Thus far we have argued that the symmetries needed to describe any theory of thermal

fluctuations are:

1. Superdiffeomorphisms

2. CPT

3. Ghost number conservation

4. U(1)T gauge invariance

We now would like to implement these to study fluctuations in fluid dynamics.

We start with the intuition that degrees of freedom are Goldstone modes for sponta-

neously broken off-diagonal diffeomorphism (and flavour) in the SK description [13] (see also

[14, 20]). The relevant Landau-Ginzburg sigma model is that of a space-filling Brownian

brane introduced in [32]. These are brane like objects of various codimension which, when

immersed in the fluid, undergo generalized Brownian motion.

Focusing on energy-momentum transport in neutral fluids, the pion fields of the sigma

model are vectors Xµ(σ) corresponding to the broken difference diffeomorphisms of the SK

construction.6 They map the points in the worldvolume of the brane, parametrized by σa, to

the physical target spacetime where the fluid lives. The fluid velocity and temperature are

then described by a push-forward of the worldvolume βa to the fluid dynamical spacetime

using Xµ(σ). Further, we obtain a worldvolume metric gab by pulling back the source gµν
from the physical spacetime.7

Our proposal is to take this set-up and make it consistent with the symmetries given in §2.

This can be achieved by enhancing the pull-back fields Xµ(σ) to superfields. Not only do the

bosonic hydrodynamic pions get upgraded to a superfield, but we also obtain their Grassmann

odd counterparts. This leads to a triplet of spacetime superfields {X̊µ(z), Θ̊(z), ˚̄Θ(z)} on

which super-diffeomorphisms, CPT, and ghost number symmetries act naturally. The action

of U(1)T is given as:

(Λ̊, X̊µ)β = Λ̊βa∂aX̊
µ , (3.1)

6 The analogy with chiral symmetry breaking is quite apposite here. Note that the symmetry being broken

is ‘universal’ for any QFT – thus our discussion at the structural level is agnostic of the actual QFT dynamics,

which is what we expect for hydrodynamics. The details of the QFT start to matter if we actually ask for the

precise values of the hydrodynamic transport data, which are the analog the pion coupling constants in the

effective field theory.
7 A clarification is in order here. We constructed a Landau-Ginzburg sigma model for adiabatic hydrody-

namics in [13]. There the physical fields were argued to be maps from physical spacetime onto a reference

manifold (whose coordinates etc., were denoted by blackboard bold characters), cf., Figs. 3 and 4 therein. We

call the reference manifold as the worldvolume here to make the analogy with D-branes more explicit. This

change of perspective makes generalizations to Brownian branes simpler. To keep the notation from getting

out of hand, we have consequentially swapped the blackboard bold font used for reference fields in [13], for a

simpler sans serif version here.

– 7 –



and similarly for {Θ̊(z), ˚̄Θ(z)}. The worldvolume metric gab gets upgraded to superfields g̊IJ
using the U(1)T covariant D̊IX̊µ:

g̊IJ(z) = gµν(X̊(z)) D̊IX̊µ D̊JX̊ν . (3.2)

Deformations away from the topological limit involve dealigning the sources for the left and

right fields; for the energy-momentum tensor this can be achieved by turning on a difference

source hIJ , i.e.,

g̊IJ(z) → g̊IJ(z) + θ̄ θ hIJ(σ) . (3.3)

Once we have an appropriate superspace Lagrangian, varying it with respect to the source

deformation hab will give us the (worldvolume) fluid dynamical stress tensor Tab
wv, which can

subsequently be pushed-forward to the physical target space to get Tµν .

A natural consequence of enhancing the target space fields to superfields is that the target

space diffeomorphisms, CPT and flavour symmetry get enhanced to

A. Target space super-diffeomorphisms of {X̊µ, Θ̊, ˚̄Θ}.

B. Target space CPT acting on {X̊µ, Θ̊, ˚̄Θ}.

These two symmetries, particular to fluid dynamics, along with the four symmetries enumer-

ated above constitute the complete set of symmetries to describe the macroscopic thermal

fluctuations in fluid dynamics. In what follows, we will exploit a part of the target space

super-diffeomorphisms to set {Θ̊ = θ, ˚̄Θ = θ̄}. The reader may find the analogy with the

superstring worldsheet theory useful. The picture we portray above is the Ramond-Neveu-

Schwarz formalism for the space filling Brownian brane. As discussed in [32] the worldvolume

TQFT can be similarly constructed for higher codimension Brownian branes, with the Brow-

nian particle (or zero brane) theory leading to a description of Langevin dynamics.

We simply note in passing that the above discussion can be extended to include other

conserved charges. For flavour symmetry with source Aµ in the physical spacetime, the Gold-

stone modes include a flavour group element c(σ), which map points on the flavour bundle

of the worldvolume onto the physical flavour bundle. The chemical potential is defined by

pushing-forward the worldvolume thermal twist Λβ. Moreover, incorporating the desired su-

pertransformations one upgrades c(σ) to a superfield c̊(z). This gives a worldvolume pull-back

flavour gauge field Åa defined by the map {X̊µ, c̊} which may further be deformed by dealign-

ing sources (i.e., introduce αa(σ)). The crucial item to note is the U(1)T transformation on

the flavour superfield, which is given by

(Λ̊, c̊)β = Λ̊ c̊
(

Λβ + βaÅa
)
.

Finally, we should append to the list of symmetries A and B, the target space flavour symmetry

acting on c̊.
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4 Non-linear dissipative fluids

With the basic fields and symmetries in place, we are now in a position to construct an effective

action. The symmetries 1-4 can be manifestly implemented by working in superspace. We

then have focus on the target space symmetries A and B of §3.

We begin by noting that the target space diffeomorphism invariance forbids a standard

superpotential term, i.e., a function of the fields X̊µ. Consequentially, the simplest allowed

term is a worldvolume scalar density superpotential, L̊ [̊gab,β
a], which is a functional of the

pull-back metric superfield g̊IJ . Such terms (up to on-shell equivalence) comprise the Landau-

Ginzburg Class L (HS ∪HS) in the classification of [13]. They however are adiabatic and do

not capture dissipative dynamics.

To see dissipation, consider the superfields D̊θg̊ab and D̊θ̄g̊cd which carry non-zero (and

opposite) ghost number. While neither of them can individually appear in the Lagrangian

given our symmetries 1-4, we can combine them with an intertwining tensor, η̊(ab)(cd), of

vanishing ghost number. In general this intertwiner may be taken to be a tensor valued

differential operator, η̊(ab)(cd) [̊gab,β
a, D̊I ] as in [13] but we will focus on simple examples

where it will suffice to think of it as a worldvolume tensor superfield.

We therefore claim that the following worldvolume superspace action functional captures

dissipative hydrodynamic effective field theories:

Swv ≡
ˆ
ddσLwv , Lwv =

ˆ
dθ dθ̄

√
−̊g

1 + βeÅe

(
L̊− i

4
η̊(ab)(cd) D̊θg̊ab D̊θ̄g̊cd

)
, (4.1)

where the measure is dictated by U(1)T invariance.8 CPT invariance forces the tensor η(ab)(cd)

to satisfy the generalized Onsager reciprocity relations [50, 51]:

η̊(ab)(cd) = [η̊(cd)(ab)]CPT , (4.2)

where the superscript CPT on the right hand side denotes taking the CPT conjugate.

Let us first recover the familiar form of the hydrodynamic constitutive relations. To this

end, we begin by defining

Tab
L ≡

2√
−g

δ

δgab
[
√
−g L] ,

Na
L ≡ −

(1 + βeAe)√
−g

δ

δAa

[ √
−g

(1 + βfAf )
L
]
,

(4.3)

8 Note that the extra factor in the measure is just what is expected when working with a U(1)T covariant

pulled-back metric, for

ddσ

√
−̊g

1 + βaÅa
= ddσ

√
−̊g det [∂aX̊

µ]

det [D̊aX̊µ]
= ddX̊

√
−g .
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where L ≡ L̊| and we treat {βa, g̊IJ , ÅI} as independent fields for the purposes of functional

differentiation. Performing the superspace integral in (4.1) in a convenient gauge, we obtain

Lwv =

√
−g

1 + βeAe

{
1

2

[
Tab

L −
i

2
η(ab)(cd) (Fθθ̄, gcd)β

]
g̃ab

+
i

8

(
η(ab)(cd) + η(cd)(ab)

)
g̃ab g̃cd −Na

LÃa + . . .

}
, (4.4)

where we have elided over the terms involving bilinears in ghosts (and in general, terms that

are products of two combinations with opposite ghost number) and introduced the SK partner

of the worldvolume metric. We remind the reader of notational convention (2.4), viz.,

Aa ≡ Åa| , g̃ab ≡ D̊θD̊θ̄ g̊ab| , Ãa ≡ D̊θF̊θ̄a| , η(ab)(cd) ≡ η̊(ab)(cd)| . (4.5)

This is also structure seen by [20] who derived it via the MSR construction [30] adopted to

relativistic fluid dynamics.9 It is thus very satisfying that a Wilson-type symmetry based

construction of the action for an effective field theory, as given above, naturally reproduces

the answer from an MSR like construction in [20] which assumes the equations of motion

beforehand.

The hydrodynamical stress tensor is obtained by varying with respect to the difference

source hab introduced in (3.3). Thus we define the hydrodynamic stress tensor

Tab
wv =

2(1 + βeAe)√
−g

δLwv

δhab
. (4.6)

We will however adapt a trick to obtain the desired answer in a more straightforward manner.

First let us introduce a Hubbard-Stratonovich noise field Nab to rewrite (4.4) in a more

suggestive form as

Lwv =

√
−g

1 + βeAe

{
1

2

[
Tab

L −
i

2
η(ab)(cd) (Fθθ̄, gcd)β −

1

2

(
η(ab)(cd) + η(cd)(ab)

)
Ncd

]
g̃ab

+
i

8

(
η(ab)(cd) + η(cd)(ab)

)
NabNcd −Na

L Ãa + . . .

}
. (4.7)

The first line above along with the last term in the second line, we then recognize as comprising

Class LT Lagrangian postulated in [12, 13]. The extension of the adiabatic Lagrangian to

include dissipative terms naturally comes with the noise field Nab. The second line gives a

Gaussian measure with zero mean and an Avogadro suppressed variance of O
(
η−1
)

to various

realizations of the noise field Nab. To wit, the noise field is taken to be a random variate

drawn from an ensemble with

〈Nab〉 = 0 , 〈NabNcd〉 ∼
(
η−1

)
abcd
∝ 1

η
. (4.8)

9It was an oversight on our part to not draw this connection in the previous versions of this article. We

thank Hong Liu for alerting us to this fact.
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Note that for this interpretation to work (and for the path integral to converge), the symmetric

part of η-tensor should be a positive operator acting on the space of symmetric 2-tensors.

This will later turn out to be the tensor that controls dissipation and its positive definiteness

will translate into the statement of the second law. That the same tensor controls the width

of the noise is natural from the point of view of the fluctuation-dissipation theorem.

The full fluid dynamical stress tensor can now be read off directly by varying with respect

to g̃ab itself using the earlier results from [13]10

Tab
wv ≡

2(1 + βeAe)√
−g

δLwv

δg̃ab

∣∣∣∣
g̃ab=0

= Tab
L −

i

2
η(ab)(cd) (Fθθ̄, gcd)β −

1

2

(
η(ab)(cd) + η(cd)(ab)

)
Ncd .

(4.9)

Varying X̃µ inside g̃ab then yields the conservation law for Tab
wv as the equations of motion.

Finally, the U(1)T gauge field Åa couples to the (negative of the) correct entropy current.

To see this, we first observe that once g̃ab is written in terms of the elementary fields, Ãa

appears in it as g̃ab 3 βaÃb+βbÃa+O(A2). This ensures that the g̃ab part of the action couples

to the negative of the canonical entropy current with Ãa via a term of the form βa Tab
wv Ãb.

It remains to show that Na
L gives the correct non-canonical part. In particular, we want

Na = −Ga

T with Ga being the grand canonical free-energy current and T =
(
−gab βaβb

)−1/2

being the temperature field.

The contributions to Na
L come from the measure and the covariant derivatives Da acting

on gab inside L . When Åe = 0, Na
L is the Noether current associated with thermal translations

which is the correct non-canonical part of the entropy current. This coupling is precisely

what is expected from the Class LT construction of [13]. Note that there are naturally ghost

contributions to the free energy (and hence entropy) current. This ensures that the full

entropy current being a conserved symmetry current does not contradict the fact that its

bosonic part satisfies a second law inequality.

In order to get dissipation, the CPT Z2 should be broken spontaneously. We claim

that the order parameter of this spontaneous symmetry breaking is the expectation value of

Fθθ̄. Thus, the dissipative fluid is a phase with 〈Fθθ̄〉 6= 0 and for convenience, we will choose

i 〈Fθθ̄〉 = 1.11 With this understanding, the Class LT Lagrangian has been extended to include

dissipative terms. The second line we claim has to do with the fluctuations engendered by

such dissipation. At this stage we can immediately see that the correct constitutive relations

10 We are skirting a technical subtlety here: g̃µν used in [13] is not the push-forward of g̃ab here. The

variables used here are more naturally adapted to the SK average and difference fields, so would correspond to

linear combinations of the pull-backs of gR
µν and gL

µν introduced in equation (15.1) of that work. The difference

matters not only from the additional U(1)T gauge field pieces, but also for the noise contributions. We are

quoting here the physical average stress tensor in Tab
wv, while the Class LT stress tensor of [13] is for TµνR . The

distinction is inconsequential for non-noise terms, but one needs to be careful with the identifications to obtain

the noise contribution correctly.
11 Note that we have taken the U(1)T covariant derivatives to be ∂I + (ÅI , · )β where the U(1)T generator

is anti-hermitian. Thus expectation values of ÅI or F̊IJ have to be purely imaginary.
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are obtained for we can now port the results of Class LT of these works. To illustrate this

abstract formalism, let us compute two explicit examples of interest.

Viscous neutral fluids (first order): First order neutral fluids are described by a Landau-

Ginzburg type pressure and two Class D coefficients, viz., shear and bulk viscosities η, ζ. The

effective action describing these three kinds of transport is parametrized by plugging the

following data into (4.4) (or equivalently into (4.1))

L(1) = p(T) , η
(ab)(cd)
(1) = ζ(T)TPab Pcd + 2 η(T)TPc〈a Pb〉d . (4.10)

We use the standard conventions for the fluid tensors on the worldvolume. To wit,

Pab = gab + ua ub , T =
(
−gab βaβb

)−1/2
, ua = Tβa ,

∇a ub = σ(ab) + ω[ab] +
1

d− 1
ϑ (gab + ua ub)− ab ua ,

x〈ab〉 = Pac P
b
d x

(cd) − 1

d− 1
Pab Pcd x

cd .

(4.11)

Plugging this into (4.1), we can do the relevant superspace integral to obtain (4.4). This when

varied with respect to the difference metric leads to the familiar viscous fluid hydrodynamic

stress tensor

Tab
(1) = ε(T) ua ub + p(T)Pab − ζ(T)ϑPab − 2 η(T)σab

− T
(
ζ(T)Pab PcdNcd + 2 η(T)N〈ab〉

)
, (4.12)

where we identified the energy density ε(T) = T dp
dT −p. The second line can be interpreted as

the stochastic noise contribution to the stress tensor which is consistent with the linearized

expressions obtained in [20]. Note that we also obtain the correct free energy current from

the variation with respect to the U(1)T gauge field

Ge
(1)

∣∣
bosonic

= −p(T) ue , (4.13)

where we dropped the ghost contributions for simplicity.

The worldvolume stress tensor (4.12) can be pushed-forward to the physical target space

using ∂aX
µ to obtain the fluid dynamical energy-momentum Tµν (which will take exactly the

same form).

Conformal neutral fluid (up to second order): The second example we turn to is the

well understood case of conformal fluids. The zeroth and first order data is as in (4.10) with

the tracelessness of the stress tensor following from scale invariance demanding that ζ = 0.

At second order there are 5 transport coefficients [27, 52]: 3 in Class L, 1 in Class B12 and

12 We remind the reader that Class B terms include more familiar transport such as Hall viscosity and

conductivity in three dimensional parity-violating systems. Their presence in parity-even fluids has not been

fully explored.
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1 in the dissipative Class D, using the basis of [13]. We claim that the non Class B second

order constitutive relations follow from the superspace Lagrangian:13

LW
(2) = − κ

2(d− 2)
WR +

(κ− τ)

2
σab σab +

(λ3 − κ)

4
ωab ωab ,

η
(ab)(cd)
(2,D) = −(λ1 − κ)T

(
σc〈aPb〉d − 1

d− 1
σabPcd

)
. (4.14)

In writing this expression we have introduced some notation specific to conformal fluids. As

originally explained in [53] it is useful to work with a Weyl covariant connection Wa that

preserves homogeneity under conformal rescaling. In particular, this leads to the following

curvature tensors that appear here:

Wa = aa −
ϑ

d− 1
ua ,

WR = R + 2(d− 1)

(
∇aWa − d− 2

2
W2

)
.

(4.15)

Explicitly, varying the action in (4.1) using (4.10) and (4.14) leads to the conformal fluid

energy-momentum tensor:

WTab = WTab
(1) + WTab

(2) + WTab
noise

WTab
(1) = ε(T) ua ub + p(T)Pab − 2 η(T)σab

WTab
(2) = (λ1 − κ)σ〈acσb〉c + τ

(
ucDW

c σ
ab − 2σ〈acω b〉

c

)
+ λ3 ω

〈acω b〉
c + κ

(
Cacbd uc ud + σ〈ac σb〉c + 2σ〈acω b〉

c

)
,

WTab
noise = −2 ηT N〈ab〉 + (λ1 − κ)T

(
σc〈aNb〉

c −
1

d− 1
σab PcdNcd

)
.

(4.16)

The free energy current also takes the expected form; the bosonic part which is a bit involved

can be read off from [13] (Appendix F).

13 The fifth Class B transport coefficient usually denoted λ2, contributes to the constitutive relations (4.16)

as Tab
(2,B) = (λ2 + 2 τ − 2κ) σ〈acω

b〉
c . Naively, an intertwiner [13]

η
(ab)(cd)

(2,B) = −(λ2 + 2τ − 2κ)
T

2

(
ωc〈aPb〉d − [(ab)↔ (cd)]

)
,

which is antisymmetric under the pairwise index exchange will give such a contribution, but this term is

forbidden by the CPT invariance (4.2). To be compatible with the generalized Onsager relation (4.2) we then

need η(ab)(cd) = [η(cd)(ab)]CPT = −η(cd)(ab). This requires an imaginary intertwiner that is in tension with the

convergence of the path integral.

A choice consistent with CPT which does not destroy the convergence of the path integral can be obtained

if we are willing to include a non-minimal coupling of the form

η
(ab)(cd)

(2,B) = −iFθθ̄ (λ2 + 2τ − 2κ)
T

2

(
ωc〈aPb〉d − [(ab)↔ (cd)]

)
.

This does give the required Class B term. We thank Amos Yarom for pointing this to us.
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As written the energy-momentum tensor (4.16) includes three distinct classes of transport

in the eightfold classification of [13], which appear in a neutral conformal fluid. The pressure

p in L(1), the curvature WR and ω2 terms in L(2) are the hydrostatic terms (Class HS) which

were first discussed in [8, 9]. The σ2 term in L(2) is the Landau-Ginzburg Class HS term

described in [13]. These terms combine to form the Class L terms that are present in a neutral

conformal fluid. If we restrict to hydrostatic equilibrium only the Class HS terms are allowed;

everything else vanishes. The SK path integral constructed above localizes to the Euclidean

path integral. The remaining terms involve the intertwining tensor: the contributions from

η
(ab)(cd)
(1) and η

(ab)(cd)
(2,D) , which involve tensors symmetric under (ab) ↔ (cd), are clearly the

dissipative Class D terms. They are purely real, and thus consistent with the requirements

of Onsager reciprocity as demanded by (4.2).

It is instructive to adapt these results for a holographic conformal fluid for which the

transport data is readily available from [54] and [27, 52]. For fluids dual to Einstein gravity,

we have the aforementioned Lagrangian density parameterized by

p(T) = ceff

(
4πT

d

)d
, η = ceff

(
4πT

d

)d−1

,

κ = λ1 = 2 ceff

(
4πT

d

)d−2

, λ2 = 2(κ− τ) , λ3 = 0 ,

τ = 2 ceff

(
4πT

d

)d−2 [
1 +

1

d
Harmonic

(
2

d
− 1

)]
,

(4.17)

where ceff is the effective central charge of the QFT.14 This can be succinctly written as a

superspace integral

Lwv = ceff

ˆ
dθ dθ̄

√
−̊g

1 + βe Åe

{(
4π T̊

d

)d(
1− i d

8π
P̊c〈aP̊b〉d D̊θg̊ab D̊θ̄g̊cd

)

−

(
4π T̊

d

)d−2 [ WR̊

d− 2
+

1

d
Harmonic

(
2

d
− 1

)
σ̊2 +

1

2
ω̊2

]}
.

(4.18)

This expression generalizes the bosonic Class L Lagrangian given in [12, 13] for the adiabatic

part of the constitutive relations, cf., equation (14.35) of the latter.

Holographic fluids described by Einstein-Hilbert gravity thus do not give the most general

conformal fluid; as noticed in [13] they miss out on the Class B term (owing to the λ2 relation

derived first in [55]) and pick out the value of λ1 that makes the second order dissipative

contribution vanish. We have conjectured hitherto that this has to do with holographic fluids

being optimal dissipators [12].

It is worth noting that the dissipative transport coefficients scale with the central charge

ceff. This means that the noise terms are suppressed by a factor of c−1
eff . In familiar holographic

14 For holographic theories it is convenient to normalize ceff =
`d−1
AdS

16πGN
, so as to get a simple result for the

Bekenstein-Hawking entropy. For SU(N), N = 44d SYM we obtain ceff = N2

8π2 .
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systems the dissipative energy-momentum tensor has thus two contributions: a leading O(ceff)

term from the non-noise contributions and a subleading O(1) term from the noise. This

is indeed what one should expect in systems at large N (or large central charge). The

fluctuations which lead to macroscopic noise should be Avogadro suppressed by the total

number of degrees of freedom.

5 Fluctuation-Dissipation & Jarzynski relation

A central assumption in conventional formulation of hydrodynamics is the existence of an

entropy current with non-negative divergence. Obtaining such a sign-definiteness constraint

from an effective action, especially for a derived object such as entropy, a-priori appears

difficult. However, one can use the underlying supersymmetry to obtain a Ward identity

which leads immediately to the apposite convexity statement for entropy. This result is

basically the statement of the Jarzynski relation [35] applied to hydrodynamics.

To explain these statements we now turn to examining carefully the consequences of the

spontaneous symmetry breaking that we postulated in §4 to get dissipation. Using the Z2

invariance of Swv in (4.1), we now argue for an interesting relation for the fluctuations in the

broken phase. We will necessarily be brief and refer the reader to [40] for a more detailed ex-

amination of the phenomenology of such a discrete symmetry breaking. In fact, the situation

here is analogous to spontaneous symmetry breaking in the Abelian-Higgs model, where if

we gauge fix the phase of the (complex) Higgs field, then we end up with a Stückelberg mass

term for the vector boson. The Ward identity for the broken abelian gauge transformation in

this gauge is the London equation for the current. Our claim here is that the corresponding

statement for spontaneous CPT breaking in the presence of external sources is the Jarzynski

fluctuation-dissipation relation.

To begin with, note that under a general U(1)T gauge transformations, our hydrodynamic

fields transform as

δX̊µ = Λ̊ £βX̊
µ = Λ̊βa∂aX̊

µ ,

δ̊gab = Λ̊ £β g̊ab ,

δÅa = (Λ̊, Åa)β − ∂aΛ̊ = −D̊aΛ̊ .

(5.1)

The key point we want to note here is that for super-gauge parameters that only have a top,

i.e., θ̄θ component, the gauge transformation shifts the top component of the superfield by a

Lie drag of its bottom component, i.e., for Λ̊ = θ̄ θ Λ̃ the transformations simplify to

δX̃µ = Λ̃βa∂aX
µ , δg̃ab = Λ̃ £β gab , δÃa = −DaΛ̃ . (5.2)

We now make the following claim: CPT transformations are achieved by just performing

particular U(1)T gauge transformations. Choosing to work in a particular gauge15 the spon-

taneously broken CPT symmetry can be probed by Λ̊CPT = −θ̄θFθθ̄. Then from (5.2) we

15 All statements below refer to a particular supergauge fixing; we use the Wess-Zumino gauge. Furthermore,

we also set Aa = 0 at the end of the variation (details will appear in [42]).
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conclude that the transformation we seek shifts the fluid variables as:

g̃ab 7→ g̃ab −
(
Fθθ̄, gab

)
β
, Ãa 7→ Ãa +DaFθθ̄ . (5.3)

Implementing this we see that the worldvolume Lagrangian density transforms with an inho-

mogeneous piece (as expected due to the gauge fixing)

Lwv 7→ Lwv +
δLwv

δg̃ab
δg̃ab +

δLwv

δÃa

δÃa (5.4)

= Lwv − Fθθ̄

(
1

2
Tab

wv £β gab −DaNa

)
+ boundary terms . (5.5)

The boundary terms above get contributions from the various integrations by parts performed

in doing the transformations and superspace integrals.

We now invoke the expectation value of 〈Fθθ̄〉 = −i and write the change in the action

functional Swv ≡
´
ddσLwv suggestively as

i Swv 7→ i Swv − T−1 (Gf −Gi +W ) . (5.6)

We introduced here the free energy difference and total work done by the external source:

Gf −Gi ≡ −T
ˆ
ddσ

√
−g

1 + βeAe
DaNa = −T

[ˆ
ΣE

Na dd−1Sa

] ∣∣∣∣tf
ti

, (5.7)

W ≡ T

ˆ
ddσ
√
−g

(
1

2
Tab

wv £β gab

)
, (5.8)

with the assumption that the boundary terms will conspire to cancel out of this analysis.

The integral in Gf −Gi over worldvolume time has been performed such as to localize onto

a hydrostatic integral over the Euclidean base manifold ΣE with volume element dd−1Sa
evaluated in the equilibrium configurations at initial and final times ti, tf . Note in particular

that this integral is independent of the (generically non-adiabatic) protocol which takes the

system from the initial to the final configuration and it includes contributions from the ghost

superpartners of the fields.

From equation (5.6) we can get the hydrodynamic fluctuation-dissipation result we seek

following [39]. The underlying topological symmetry implies the following Ward identity

〈e−
W
T 〉 = e−

1
T(Gf−Gi), (5.9)

i.e., the expectation value of the exponential of the work done is the exponential of the free

energy difference. Using Jensen’s inequality on the above we obtain

〈W 〉 ≥ Gf −Gi , (5.10)

which asserts that entropy is produced in the system. In other words the generalized work

relation (5.9) implies the second law of thermodynamics, ensuring that our construction is

consistent with the axioms of hydrodynamics.
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6 Discussion

Obtaining an effective action for dissipative hydrodynamics, as we have presaged in §1, is inter-

esting not only for understanding the dynamics of quantum fields in generic non-equilibrium

settings, but has also implications for other areas of physics. The advantage hydrodynamics

has is that the phenomenological theory is very well understood and one has a clear tar-

get to attain to declare success. We have outlined here a series of general principles which

enshrine the symmetries that such an effective field theory should respect. Crucial to the dis-

cussion are the topological symmetries inherent in the SK path integral construction and an

emergent gauge symmetry which is the macroscopic manifestation of the KMS invariance of

near-equilibrium systems. We have also identified a particular superspace component of this

emergent field strength as the relevant order parameter for spontaneous symmetry breaking

of CPT.

Equipped with the symmetries outlined in §3 we have constructed a simple topological

sigma model for the hydrodynamic modes. The construction naturally makes contact with

the empirically obtained Class LT effective action in [13] with the added feature of having

various ghost contributions (which we have suppressed) to ensure that the theory has the

correct topological symmetries. We have shown that this action reproduces correctly the

known constitutive relations for neutral fluids.

Furthermore, the conserved current associated with the KMS gauge symmetry is the en-

tropy current which satisfies the requirements of the second law of thermodynamics. Inspired

by earlier work on non-equilibrium work relations [35–38] we have argued that the natural

way to view the second law is in terms of the Jarzynski equality. This has been argued to

follow by carefully monitoring the invariances of the topological action under CPT [39, 41]

and our analysis for the hydrodynamic effective actions respects similar constraints. The

hydrodynamic work relation implies that over the period of time that the fluid is driven out

of equilibrium by an external source, entropy is produced in the system.

The key hydrodynamic question we have refrained from addressing here is whether all

known constitutive relations can be obtained from our effective action. To claim that our con-

struction is comprehensive, we should establish that the set of allowed terms in the topological

sigma model is in one-to-one correspondence with the eightfold classification of hydrodynamic

transport [13]. We have seen clearly that three classes, viz., hydrostatic (HS), hydrodynamic

(HS) and dissipative (D) are naturally encompassed in our formalism. These are the only

ones encountered were we to study neutral conformal fluids which are holographically dual

to large AdS black holes in Einstein-Hilbert gravity.

The remaining five classes of transport involve three finite classes, viz., anomalous trans-

port (A), hydrostatic vectors (HV ), and conserved entropy (C), in addition to two more

infinite classes: Berry-like (B) and hydrodynamic vectors (HV ). Of these, neutral fluids ad-

mit only Class B terms at second order; to see any of the other four classes we need to turn

on flavour charges. As we have indicated at the end of §3 it is not too difficult to generalize

our considerations to incorporate flavour symmetries. While there remain some details to be
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worked out, the fact that we land precisely on the Class LT Lagrangian, which we recall was

cognizant of the seven adiabatic classes, lends us confidence that the topological sigma model

will be compatible with the eightfold classification. We will give a detailed account of how

this works elsewhere.

Perhaps the most intriguing aspect of hydrodynamics is the lessons is holds for gravita-

tional systems involving black holes. Via the fluid/gravity correspondence we know that the

hydrodynamic description of holographic CFTs is given by the dynamics of large black holes

in AdS – the classical partial differential equations of fluid dynamics are a subset of Einstein’s

equations. One should however expect the correspondence to extend to include hydrodynamic

fluctuations, which after all, go hand-in-hand with dissipation. For the hydrodynamic theory,

getting the noise terms in (4.7) correctly is contingent on the topological symmetries. While

we have elided in our presentation over the ghost fields contained in the supermultiplets for

simplicity, it is their presence that ensures the correct coupling between the noise and the dis-

sipative terms. Moreover, in our formalism, while we recover the familiar entropy current by a

Noether construction analogous to the story for black holes, the discussion in the text should

make it clear that the current that is conserved includes non-trivial ghost contributions. This

allows the bosonic part of the entropy to be non-conserved and produced consistent with the

second law, provided the ghost entropy flux compensates for the same.

We suggest that herein lies a crucial moral that ought to extend to black hole physics.

The origin of dissipation in the classical theory stems from field modes disappearing behind

the black hole horizon. Since it is this dissipation that leads to entropy growth, one may

naturally link this statement with the ghost degrees of freedom becoming more relevant at

the thermal scale. This picture is consistent with the breakdown of the scale/radius duality

on horizon scales, and furthermore suggests that any description of the interior of the black

hole should involve understanding of these ghosts more throughly. As a natural corollary

one may want to view the black hole interior as comprised of a ghost condensate of sorts.

Further, the statement that 〈Fθθ̄〉 6= 0 on the fluid dynamical side should have a corresponding

counterpart in the gravity description and understanding its phenomenology is likely to be

crucial in characterizing the apparent non-unitarity in black hole physics. Heuristically, this

picture suggests potential resolutions to various puzzles encountered in the subject over the

years, but to make clear statements, one needs to construct the topological supergravity

theory, i.e., the closed string dual of the hydrodynamic theory. This theory in particular has

to reproduce the noise contribution of (4.16). We leave this fascinating issue as an interesting

challenge for our formalism to reproduce in the future.
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