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Abstract: Causally ordered correlation functions of local operators in near-thermal quan-

tum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities.

These can be understood rather simply as the consequence of a topological (BRST) algebra,

called the universal Schwinger-Keldysh superalgebra, as explained in our companion paper

[1]. In the present paper we provide a mathematical discussion of this topological algebra.

In particular, we argue that the structures can be understood in the language of extended

equivariant cohomology. To keep the discussion self-contained, we provide a basic review of

the algebraic construction of equivariant cohomology and explain how it can be understood

in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh

construction can be succinctly encoded in terms a thermal equivariant cohomology algebra

which naturally acts on the operator (super)-algebra of the quantum system. The main ra-

tionale behind this exploration is to extract symmetry statements which are robust under

renormalization group flow and can hence be used to understand low-energy effective field

theory of near-thermal physics. To illustrate the general principles, we focus on Langevin dy-

namics of a Brownian particle, rephrasing some known results in terms of thermal equivariant

cohomology. As described elsewhere, the general framework enables construction of effective

actions for dissipative hydrodynamics and could potentially illumine our understanding of

black holes.
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Part I

Introduction and background

1 Introduction

The Schwinger-Keldysh formalism [2, 3] was developed to enable one to compute temporally

ordered correlation functions in arbitrary states (either pure or mixed) of a relativistic QFT.

One envisages perturbing the state by time dependent classical sources, which by virtue of

relativistic causality, should only affect the correlations to the causal future of the disturbance.

The key question is how does one ensure appropriate causal ordering in the path integral

formalism? The essential idea in the Schwinger-Keldysh formalism is to work directly with

density matrices, which evolve unitarily under the time-dependent Heisenberg evolution. This

is achieved by doubling the state space, viewing the density matrix as a pure state, and thence

writing the path integral as a functional integral over this enlarged Hilbert space.

In the doubled state space one can formulate a set of time-ordering prescriptions that lead

to physical response and fluctuation functions which have been well studied in the literature.

An excellent introduction to these techniques can be found for instance in the reviews [4–7].

Examination of the time-ordered correlation functions reveals certain interesting identities,

see e.g., [8] for a concise summary. One learns that a class of correlation functions involving

only the differences of operators acting independently on each component of the enlarged

Hilbert space vanishes independent of dynamics. Furthermore, such operators are prevented

from being futuremost in the temporal ordering; one may say that the correlators satisfy a

version of the largest time equation [9]. These facts are well known to experts, but the novel

aspect which was first previewed in [10] and reviewed in our companion paper [1] is that one

can understand the results systematically in terms of a symmetry principle (see also [11]).

The essential point is that the Schwinger-Keldysh construction embodies a field redef-

inition symmetry that can be recast as a redundancy on the enlarged configuration space.

Phrased this way it is clear that these redundancies can be understood in terms of a set of

topological BRST charges that act on the Schwinger-Keldysh functionals. The charges being

topological, are nilpotent. The symmetry they generate ensures the constraints on the corre-

lation functions described above. The main message of [1] was to explain this structure and to

demonstrate that one can equivalently recast the Schwinger-Keldysh functional integral into

an elegant superspace formalism. To avoid causing confusion, let us remark at the outset that

when we refer to superspace or supersymmetry we refer to structures governed by topological

BRST symmetries; our supercharges are simply Grassmann-odd generators. In particular,

they transform as scalars under the spacetime Lorentz group. Any Schwinger-Keldysh path

integral ends up having a pair of BRST supercharges QSK and QSK which suffice to enforce

the aforementioned constraints on the physical correlation functions.
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One can abstractly describe the Schwinger-Keldysh functional integral in terms of up-

grading the operator algebra to an operator superalgebra. Each operator Ô in the basic QFT

gets embedded into a topological supermultiplet, which comprises of a quartet of fields. This

structure is naturally realized in terms of a superspace generated by two Grassmann odd

elements; we will use θ, θ̄ to denote the two supercoordinates.

Observables in a generic density matrix are primarily constrained by these supercharges.

It is however interesting to examine the class of Gibbsian density matrices, which describe

the dynamics of a quantum system in a thermal or near-thermal state. Such density matrices

(unnormalized) take the form ρ = e−β(H−µI QI), where we have allowed for the possibility of

turning on chemical potentials for conserved charges QI . The special feature of these mixed

states is that they are further constrained to satisfy the so-called KMS condition [12, 13]. One

can understand this condition from the viewpoint of writing an equilibrium thermal QFT as a

statistical mechanical model with Euclidean time evolution. Periodicity of the Euclidean time

circle demands a certain analytic property of thermal correlation functions in an imaginary

time-strip of width β. This is the physical origin of the KMS condition, which has proven

useful not only in understanding equilibrium thermal dynamics, but also plays an important

role in algebraic formulations of QFT [14].

The KMS condition turns out to provide an interesting upgrade of the Schwinger-Keldysh

BRST symmetry. Consider the difference between an operator and its KMS conjugate, i.e.,

the operator obtained by Hamiltonian evolution by a thermal period around the Euclidean

thermal circle. One may view this operation in terms of a differential operator δ
β

acting on

the algebra of operators. This transformation is a thermal time translation; one is essentially

evaluating departures from the KMS condition by this operation. In fact, it suffices to focus

on the action of an infinitesimal generator of thermal translations which we denote as i∆
β

=

1− (−1)Fe−i δβ . The second term achieves thermal translations taking into account operator

statistics.1 In this paper, we will always work in the high temperature regime such that

∆
β
≈ β d

dt , which acts naturally as a derivation on the operator algebra.

Since the Schwinger-Keldysh construction endows the operator algebra with a grading

structure, it follows that the KMS derivation should also be upgraded into a KMS super-

operation. The Grassmann odd elements correspond to KMS supercharges, while the Grass-

mann even elements comprise of the KMS derivation ∆
β

which we denote as the operator

LKMS and another generator whose origins will become clearer in due course. All told, ther-

mal density matrices end up having a total of six symmetry generating operations which

we chose to denote as {QSK ,QSK ,QKMS ,QKMS ,LKMS ,Q0
KMS
} in [1]. The four Q operators

are Grassmann-odd with the barred operators having opposite ghost number to the unbarred

ones. We refer to this algebraic structure as the SK-KMS superalgebra (or SK-KMS algebra).

In the current paper we explore this algebra and argue that it bears the hallmark of a

well known algebraic structure, viz., the extended equivariant cohomology algebra. While

1 Thermal boundary conditions demand the bosons are periodic around the Euclidean thermal circle, while

fermions are anti-periodic. (−1)F is the Z2 valued fermion number operator.
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the latter structure originally was discovered in the context of understanding cohomological

properties of group actions on manifolds, it has played an important role in physical appli-

cations. As is well known starting from the seminal work of Witten [15], there is a natural

link between cohomological constructions and topological supersymmetry. This has formed

the backbone of investigations in the context of topologically twisted quantum field theories

[16, 17]. These developments are nicely reviewed in [18].

Much of the early discussion focuses on the situation with one topological charge, as

exemplified by the Donaldson-Witten theory. The case of interest to us is the situation

with two topological charges which was first encountered in the context of topological twists

of extended supersymmetric field theories like N = 4 SYM [19]. The algebraic formalism

we require was developed following this work in [20], whose terminology we adopt. More

specifically, we will refer to theories with k topological supercharges as NT = k topological

field theories. We will argue that the Schwinger-Keldysh construction specifically requires

k = 2.2

In our discussion, the concept of equivariance will play a crucial role. Formally, this

alludes to situations where the associated structures are unaffected by a group action. Of

course, in physical terms this simply refers to the familiar notion of gauge invariance. The

natural question we should ask ourselves is: if the SK-KMS algebra admits an interpretation

in terms of an equivariant cohomological algebra, then what exactly is the symmetry group?

To address this question we need to extend considerations beyond the equilibrium Gibbs

density matrix. It will suffice to pay attention to the algebraic structures as we allow small

departures from equilibrium. In fact, all we need to do is to ask how could one implement

KMS transformations if such deviations had non-trivial spatial and temporal profiles. The

former case can be analyzed by considering equilibrium in non-trivial stationary curved space,

with locally varying temperatures (and chemical potentials) following [21, 22]. We argue that

one generically needs to allow for local (continuous) KMS transformations, which has the

effect of gauging thermal translations.

This symmetry, which we call U(1)T KMS symmetry, was first articulated in the context

of analyzing hydrodynamic effective fields theories using standard phenomenological axioms

in [23, 24]. An earlier indication of connection between thermal translations and gauge fields

appeared in the discussion of Lorentz anomalies [25]. Our discussion provides a microscopic

rationale for this structure.3 As explained in [1] the motivation behind our analysis of this

algebraic structure of the Schwinger-Keldysh formalism was to exploit its robustness under

the renormalization group to understand the origins of the low energy dynamics.

For the most part this paper focuses on setting the stage for describing the basic mathe-

matical framework, amplifying on the prose of [10] and filling in some of the essential details

2 As described in [1] the higher NT = 2n algebras with n > 1 appear to be naturally realized by generaliza-

tions of Schwinger-Keldysh construction for computing out-of-time-order (OTO) correlation functions.
3 We have hitherto used the equivariant cohomological algebra based on this U(1)T to construct effective

actions for dissipative hydrodynamics in [26]. Independently, [11] also discovered the supersymmetry structure

to be useful in aiding the construction of hydrodynamic effective actions.
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Schwinger-Keldysh:

doubled QFT (§2,§3 of [1])

NT = 2 superspace (§6 of [1])

NT = 2 equivariant coho-

mology of thermal transla-

tions (§2 and §4,§7 of [1])

Applications

Brownian particle (§7)
Brownian branes,

hydrodynamics [26]
Black holes

...

Group action on man-

ifold: NT = 1 equiv-

ariant cohomology (§3)

NT = 1 superspace (§4)

NT = 2 equivari-

ant cohomology (§5)

unitarity

+thermality doubling
group action:

thermal translations
(§6)

Figure 1. An illustration of the dependencies of various ideas presented here and in [1]. The left hand

side shows how basic ingredients of Schwinger-Keldysh formalism lead to an equivariant cohomology

algebra; these are largely the content of [1] and reviewed here only briefly. The present paper follows

the logic on the right hand side. Part II reviews the mathematical structure of equivariant cohomology

and derives from there the algebras uncovered in [1] as a special case of the general formalism when

the group acts by thermal translations. For a considerably more extensive list of applications, see §11

of [1].

used in our construction of hydrodynamic effective actions [26]. To keep the discussion man-

ageable we have chosen to eschew a more comprehensive analysis of hydrodynamics and other

applications. Rather we describe in some detail the much simpler problem of a Brownian par-

ticle undergoing Langevin dynamics using the machinery of thermal equivariant cohomology.

Our aim is to provide a simple example illustrating all the basic points in the construction

without getting too tangled up in technicalities that are specific to applications. Further

elaborations and applications of this formalism will appear in due course. Readers are also

invited to consult [1] in tandem for an explanation of the physical context and elaboration of

the SK-KMS algebra.

The outline of this review is as follows. Part I is meant to orient the reader by providing

a brief synopsis of our analysis of the SK-KMS algebra derived in [1] in §2. The diagram in

Fig. 1 should help the reader putting this discussion into context. In Part II we put aside

the physics of SK theories and turn to a review of the equivariant cohomology in §3. This

material is quite standard and is well explained in other sources, but we choose to present
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it for completeness in our terms. We emphasize in §4 a superspace construction for the

equivariant cohomology. This superspace structure allows one to immediately generalize the

discussion to multiple cohomology generators; we focus on the case of two generators, and

explain the structure of the extended NT = 2 algebra in §5. This will finish our discussion of

the general mathematical structures.

In Part III we return to SK quantum field theories. The established mathematical frame-

work allows us to give a more precise characterization of the SK-KMS algebraic structures,

and we also explore basic properties of the thermal translational symmetry that is crucial in

this scheme, see §6. At this point, we are ready for physical applications. We have described

elsewhere [26] how these structures help in the construction of hydrodynamic effective field

theories and could naturally segue into that discussion. However, in order to keep the ma-

terial accessible for non-experts, we have chosen to illustrate the general construction using

a very simple system of dissipative dynamics: the stochastic motion of a Brownian particle

as described by Langevin dynamics. This is reviewed in some detail in §7, both from the

traditional viewpoint on the topological supersymmetry as presented in standard textbooks

and in the language of the equivariant cohomology, amplifying our discussion in the Appendix

A of [10]. We conclude with some discussion of other applications and generalizations in §8.

A treatment of thermal equivariant cohomology as applied to other problems is deferred to a

separate publication. The appendices contain some further elaboration of some of the math-

ematical results, in particular, the Mathai-Quillen and Kalkman isomorphisms between the

various algebraic constructions.

2 BRST symmetries in the Schwinger-Keldysh formalism

In §1 we have explained somewhat briefly that the Schwinger-Keldysh formalism is naturally

viewed as an operator superalgebra. The set of operators involved are naturally built out

of the operator algebra by extending them into a cohomological supermultiplet. We will

begin with a short summary of the results explained in [1]. Specifically we review the BRST

symmetries inherent in the Schwinger-Keldysh formalism and elaborate on the cohomological

superalgebra structure. The discussion will be brief, as it is mainly for orientation and setting

up necessary notation; for details we refer the reader to [1].

2.1 The SK-KMS algebra

The Schwinger-Keldysh formalism sets up the computation of time-ordered correlation func-

tions by working with a doubled Hilbert space. Rather than viewing a density matrix as

acting a physical Hilbert space H, we double the latter into HR⊗H∗L, which refer to the space

of ‘kets ’and ‘bras’ respectively. The labels right (R) and left (L) are for reference and useful

to denote the time-ordering prescription. Each element of the operator algebra Ô naively gets

duplicated into a pair, Ô→ {OR,OL}.
The primary object of interest is the generating functional for the time ordered correla-

tors, which is a functional of two sets of sources. Given an initial density matrix ρ̂initial, one
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can write

ZSK [JR,JL] ≡ Tr
(
U [JR] ρ̂initial (U [JL])†

)
,

=

ˆ
[DΦ] exp

(
i S[ΦR]− i S[ΦL] + i

ˆ
JROR − JLOL

) (2.1)

U [JL/R] is the unitary evolution operator with (a priori different) source deformations for

the forward and backward evolution (for the kets and bras) respectively. In the second line

we have given a schematic expression for the functional integral in terms of the fundamental

fields Φ, which have been doubled. The relative sign follows from the forward evolution of

the right copy and the backwards evolution for the left fields. For the rest of our discussion

we will concentrate on Gibbsian density matrices, i.e.,

ρ̂initial = ρ̂T = e−β(H−µI QI) . (2.2)

A path integral that implements (2.1) has to satisfy some constraints arising from unitary

evolution. For one, the alignment of right and left sources, collapses it onto the initial state:

ZSK [JR = JL] = Tr (ρ̂initial). This demands that a host of correlators of Odif = OR − OL

vanishes. This is straightforward to infer from (2.1), but its genericity suggests a deeper

reason. We argued that a natural way to implement this in a manner that is dynamics

agnostic, i.e., does not depend on choice of unitaries U , is to infer the existence of Grassmann-

odd BRST supercharges {QSK ,QSK}. These follow from the fact that the double path integral

comes with field redefinition symmetry, which can be used to construct these BRST charges.

They carry non-vanishing conserved ghost number gh(QSK ) = +1 and gh(QSK ) = −1.

One consequence of this is that we can give a covariant presentation of the Schwinger-

Keldysh formalism, by making this BRST symmetry explicit. Rather than working with

the doubled operator algebra, we upgrade to an operator superalgebra. This entails the

introduction of BRST ghost and anti-ghost degrees of freedom associated with each operator

Ô; we effectively end up with a quadruplet of operators:

Ô −→ {OR,OL,OG ,OG
} . (2.3)

Focusing in particular, on thermal correlation functions, we need to impose KMS con-

dition which demands that correlation functions be analytic in the imaginary time strip of

width β = 1
T . Rather than view this as a statement about observables, we found it convenient

to phrase it directly as an action on the operator algebra. We define a derivation action δ
β

that relates an operator Ô(t) to its KMS conjugate:

e−i δβ Ô(t) = Ô(t− i β) ≡ ρ̂−1
T

Ô(t) ρ̂T . (2.4)

The advantage of introducing this derivation action δ
β

is that we can simply imagine Lie

transporting operators around the Euclidean thermal circle to obtain their thermal KMS

conjugates.
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The KMS condition demands that the operators e−i δβ Ô(t) and Ô(t) be equivalent within

correlation functions, modulo a statistics factor. Recalling that bosons are periodic and

fermions anti-periodic under rotation by a period β, we can write:

∆
β
Ô = 0 , where i∆

β
≡ 1− (−1)Fe−iδβ , (2.5)

where (−1)F denotes the fermion number operator. We will frequently refer to ∆
β

as a

thermal translation operator; it measures deviation from the KMS condition. We also found

it useful to define an operator LKMS which acts through a commutator action on the operator

algebra to implement ∆
β
, viz.,

[
LKMS , Ô

]
±

= ∆
β
Ô.4

The KMS condition leads to a set of Ward identities for thermal correlation functions,

which can be understood in terms of a second pair of BRST charges {QKMS ,QKMS}. These

are nilpotent carrying ghost numbers gh(QKMS ) = +1 and gh(QKMS ) = −1. They generate

imaginary time thermal translations and can be thought of as the Grassmann-odd superpart-

ners of LKMS . Rounding off the structure is a fourth Grassmann-even generator Q0
KMS

.

These four KMS charges are easily understood as a super-derivation extending the opera-

tor ∆
β

to be compatible with the SK BRST symmetry. Indeed, while the four Grassmann-odd

generators {QSK ,QSK ,QKMS ,QKMS} follow from simple considerations of SK path integrals

and the KMS condition, the remaining operators {Q0
KMS

,LKMS} simply ensure closure of

the thus generated algebra. The action of these charges can be understood easily by basis

rotating the quadruplet in (2.3) to define the retarded and advanced combinations

Oadv ≡ OR − OL , Oret ≡
1

1− (−1)FOe−iδβ

(
OR − (−1)FOe−iδβ OL

)
. (2.6)

In this basis, the action of the fermionic supercharges can be summarized schematically as

Oret

OG O
G

Oadv

Q
SK Q

SK

Q
SK

−Q
SK

Oadv

∆
β
OG −∆

β
O
G

∆
β
∆

β
Oret

Q
KMS Q

KMS

Q
KMS

−Q
KMS

(2.7)

where arrows indicate action via graded commutator, e.g., [QSK ,Oret]± = OG etc.. We refer

the reader to [1] for derivations and details.

4 Our conventions are described in [1]. In particular, we will often make use of the graded commutator

defined as [A,B]± = AB − (−)AB BA, where (−)AB denotes the mutual Grassmann parity of the entries A

and B respectively.
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The six operators {QSK ,QSK ,QKMS ,QKMS ,LKMS ,Q0
KMS
} satisfy the following algebra

(which one can deduce from the above diagrams):

Q2
SK

= Q2

SK
= Q2

KMS
= Q2

KMS
= 0 ,

[QSK ,QKMS ]± =
[
QSK ,QKMS

]
±

=
[
QSK ,QSK

]
±

=
[
QKMS ,QKMS

]
±

= 0 ,[
QSK ,QKMS

]
±

=
[
QSK ,QKMS

]
±

= LKMS , (2.8)[
QKMS ,Q

0
KMS

]
±

=
[
QKMS ,Q

0
KMS

]
±

= 0 ,[
QSK ,Q

0
KMS

]
±

= QKMS ,
[
QSK ,Q

0
KMS

]
±

= −QKMS .

We refer to this as the SK-KMS superalgebra. The goal of our present discussion is to obtain

insight into this algebraic structure. We will see that the natural language for this exploration

is terms of a graded algebra, with the grading being provided by the ghost number charge.

This leads us then into the study of equivariant cohomological algebras which arise in this

context, and extend the above structure mildly by making the KMS symmetries act locally.

2.2 A superspace description

An extremely convenient way to view the KMS superalgebra (2.8) is to express the operations

directly in superspace. The superspace we need is a simple one with two Grassmann odd

coordinates denoted θ, θ̄. We will take them to have equal and opposite ghost number, with

gh(θ) = +1.5

The quadruplet of operators {Oret,OG ,OG
,Oadv} associated with a single-copy operator Ô

are encapsulated into a single SK-superfield. Working in the adv-ret basis introduced above,

we define the associated super-operator as:6

O̊ ≡ Oret + θO
G

+ θ̄OG + θ̄θOadv . (2.9)

In the previous subsection we have reviewed the BRST charges {QSK ,QSK} and a quadru-

plet of KMS translation generators {QKMS ,QKMS ,LKMS ,Q0
KMS
}. All these act on the oper-

ator algebra via graded commutators. We will now describe the identical structure in terms

of superspace derivations, which act on components of covariant superfields. As will be-

come clear later, superspace provides a very efficient tool for encoding the relevant algebraic

structures.

• In superspace, the action of {QSK ,QSK} is realized as derivations along the Grassmann-

odd directions; these operators implement super-translations:

QSK −→ ∂θ̄ , QSK −→ ∂θ , (2.10)

5 We emphasize that the BRST symmetries are cohomological in nature. When we refer to superspace or

supersymmetry we refer to such structures and not to standard supersymmetric field theories. Our superco-

ordinates therefore are Lorentz scalars and carry no Lorentz spin labels.
6 Following [26] we will use an accent “̊ ” to denote superfields. We will elaborate on superspace conventions

further in §4 and §5.1.
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which induce the action of {QSK ,QSK} component-wise on superfields; for example, we

have
[
QSK , O̊

]
±

= ∂θ̄O̊ = O
G

+ θOadv. We refer to [1] for more details.

• Similarly, while we can think of {QKMS ,QKMS ,LKMS ,Q0
KMS
} as acting on superfields

component-wise, it will be convenient to lift each of them to a super-operator. To this

end, we introduce the following quadruplet of thermal translation operators:

I̊KMS
0 = Q0

KMS
+ θ̄QKMS − θQKMS + θ̄θLKMS ,

I̊KMS = QKMS + θLKMS ,

I̊KMS
= QKMS + θ̄LKMS ,

L̊KMS = LKMS .

(2.11)

These are defined such that

I̊KMS
0 O̊ = I̊KMS O̊ = I̊KMS

O̊ = 0 . (2.12)

We will see later the rationale behind this choice in terms of constructing gauge invariant

observables.

• This quadruplet of thermal super-translations can be checked to be related by the

following diagram:

I̊KMS
0

I̊KMS −I̊KMS

L̊KMS

∂θ̄ ∂θ

∂θ −∂θ̄

(2.13)

Further, these superspace operators are clearly related to our previous parametrization

as

Q0
KMS

' (I̊KMS
0 )| ≡ IKMS

0 , QKMS ' (I̊KMS)| ≡ IKMS ,

LKMS ' (L̊KMS)| ≡ LKMS , QKMS ' (̊IKMS
)| ≡ IKMS

,
(2.14)

where the symbol “'” means identification in superspace with the understanding that

the action on superfields is component-wise and the vertical slash | refers to projection

onto θ = θ̄ = 0 subspace.

The analogue of the algebra (2.8) can now be written in terms of superspace differentials

– 10 –



as follows:

∂2
θ̄ = ∂2

θ = (I̊KMS)2 = (̊IKMS
)2 = 0 ,[

QSK , I̊
KMS

]
±

=
[
QSK , I̊

KMS
]
±

=
[
QSK ,QSK

]
±

=
[
I̊KMS, I̊KMS

]
±

= 0 ,[
QSK , I̊

KMS
]
±

=
[
QSK , I̊

KMS

]
±

= L̊KMS , (2.15)[
L̊KMS, I̊KMS

0

]
±

=
[
I̊KMS

, I̊KMS
0

]
±

= 0 ,[
QSK , I̊

KMS
0

]
±

= I̊KMS ,
[
QSK , I̊

KMS
0

]
±

= −I̊KMS
.

A more compact way of stating this algebra is simply by regarding the operators (2.14) as

superoperators which can be commuted in the obvious way, and on which {QSK ,QSK} act as

{∂θ̄, ∂θ}. For instance, we have

[QSK , I]± = ∂θ̄I ,
[
QSK , I

]
±

= ∂θI ,
[
I, I′
]
±

= 0 (2.16)

for any superoperators I, I′ ∈ {I̊KMS
0 , I̊KMS, I̊KMS

, L̊KMS}.

While we motivated the above structures purely from an analysis of Schwinger-Keldysh

path integrals in [1], we will now proceed to argue that these algebraic structures are en-

countered in the context of equivariant cohomology. More precisely, we will need to invoke

the notion of an extended equivariant cohomology algebra with two super-generators, often

denoted as NT = 2 following [20].

As we shall see, the idea of equivariance is to look for structures that are compatible with

a group action (such as a gauge symmetry). We review the salient features of such structures

in Part II focusing on explaining the algebraic framework for obtaining cohomological data

in more familiar gauge theoretic language.

Of course, in our above discussion, we never mentioned any group action, but simply found

the structure of a super algebra by studying features of SK theories. If we wish to identify

our KMS superalgebra with that of an extended equivariant cohomology, we not only need to

give an identification of the defining operations and their relations, but also give a physical

rationale for why these structures are appearing and what the associated gauge symmetry

is. In §6 we will provide this missing link and will explain that the KMS superalgebra can

indeed be understood by thinking about a U(1)T group action, which parametrizes thermal

diffeomorphisms. The analog of an infinitesimal ‘gauge transformation’ will turn out to be

the thermal translation parameterized by ∆
β
. For the present, the reader can keep in mind,

the heuristic picture that we aim to upgrade the discrete KMS translations to continuous

local symmetries. This picture works well at high temperatures, and thus is relevant for the

construction of low energy effective actions.

At the end of the day, we will establish the notion of thermal equivariant cohomology,

where the spacetime thermal translations are gauged. Before we get there however, we will
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first provide in Part II the necessary mathematical tools, explaining both the algebraic and

the superspace constructions of equivariant cohomology.
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Part II

Mathematical review: equivariant

cohomology

3 An introduction to equivariant cohomology

In §2 we followed the logic of the Schwinger-Keldysh construction to argue that for thermal

density matrices we have a quartet of fermionic BRST supercharges {QSK ,QSK ,QKMS ,QKMS}
which form an algebra (2.8). These operators are all nilpotent and involve an interesting com-

mutation relation [
QSK ,QKMS

]
±

=
[
QSK ,QKMS

]
±

= LKMS , (3.1)

where LKMS plays the role of a Hamiltonian which commutes with all other operators via

[LKMS , · ]± ≡ ∆
β
. It behooves us to understand better this algebraic structure, which is

obviously reminiscent of supersymmetry. We will argue below that the algebra of these

generators has been previously encountered in the topological field theory literature and goes

by the name of the extended NT = 2 equivariant cohomology algebra.

In the string theory literature the algebra first arose in the context of topologically twisted

N = 4 Super-Yang Mills theory [19] and the name was coined subsequently by [20] who

gave a unified description of such topological symmetries. Further useful analyses which we

will exploit in the course of our discussion can be found in [27, 28]. However, to the best

of our knowledge, first occurrence of these algebraic structures predates its appearance in

the string theory literature; it seems to have been independently discovered in [29] where

the authors were exploiting these structures to present a functional integral formulation of

classical mechanics. The mathematical framework we need is embodied in the notion of

equivariant cohomology which has played an important role in the construction of topological

field theories, cf., [16]. We refer the reader to [18, 30] for good introductory reviews aimed at

physicists and [31] for a clear discussion of the associated mathematical framework.

Before delving into the details let us understand the physical picture. The basic idea is

to examine gauge invariant structures in field theories where the action of the gauge group

naturally leads to the mathematical concept of equivariance. The notion of equivariance refers

to some group action which commutes across maps between topological spaces, so that one

is interested in structures that are suitably immune to the transformation engendered by the

group elements. In physical language we are after gauge invariant structures.

Suppose we have the action of a gauge group on some field theory, and wish to focus

on the space of gauge invariant states. The idea is to work off the gauge invariant subspace

and demand that the configurations of interest satisfy the gauge constraints. The key is to
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implement this covariantly, which immediately requires us to introduce the BRST symmetry

associated with the gauge group. Formally thinking of the configuration space as a manifold

M with a group action G, we wish to induce non-trivial cohomology onM/G. One can then

view the directions normal to the gauge invariant space as gauge orbits and only consider

structures that have neither support along these orbits, nor undergo any variation in these

directions. It is then natural to induce the group action onto differential forms of M and

define a class of gauge invariant forms (called basic forms). This construction can be carried

out explicitly algebraically, and forms the essential basis of equivariant cohomology.

The key point of the above discussion is that we need to identify an appropriate gauge

symmetry that acts on our system. The BRST charges in the equivariant cohomology lan-

guage can be viewed as a combination of ordinary cohomology operators (e.g., the exterior

derivation of de Rham theory) suitably combined with the Faddeev-Popov BRST symmetry

of the gauge sector. This construction was first appreciated in the early works of Weil and

Cartan, who formulated two local models of such construction, which carry their respective

names. The relation between these two models of the cohomology was initially explained in

a seminal work of Mathai and Quillen [32]. Further details along with an interpretation in

the language of topological supersymmetry was explained by Kalkman [33]. We will review

this basic construction first and then proceed to explain the extension we seek. The essential

thesis of our argument will be that at the end of the day {QKMS ,QKMS} should be viewed

as the standard BRST charges of an abelian gauge symmetry, called U(1)T KMS gauge sym-

metry. This was first introduced by us in [23, 24] and its role in constructing hydrodynamic

effective actions was explained in terms of equivariance in [10]. The following can be seen as

an elaboration of our brief discussion in the latter paper.

In the following we review the two local models of equivariant cohomology. First we

discuss the Weil model which is simple to state algebraically, but more involved to work

with if we wish to construct explicitly the space of gauge invariant operators. Then by a

suitable change of basis (the so called Kalkman automorphism) we will pass to the Cartan

model, which makes better contact with familiar constructions in gauge theories. Kalkman

also introduced a third model, called the BRST model, which should be familiar to physicists

from gauge theory literature. We won’t dwell on this construction in the main text, but

provide some basic elements of the discussion in Appendix B.

3.1 The Weil model

Consider a topological space M on which we have the action of a group G. We will need

also the associated algebra g and its dual g∗. The group action means that a point p on

the manifold gets shifted to a new point g(p) under a group element g ∈ G. Since all we

do is permuting the points, we can equivalently view the transformation as a particular

diffeomorphism.7

7 It will be useful for the sake of presentation to pretend that M is a manifold with coordinates Xµ to

build some intuition, despite it being straightforward to work with abstract topological spaces. After all one
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The infinitesimal group elements can be identified with elements of the Lie algebra g

by the usual expansion of the exponential map. Let ti be the generators of the Lie algebra,

satisfying commutation relations,

[ti, tj ] = fkij tk , i, j = 1, 2, · · · ,dim(g) . (3.2)

We can equivalently think of the infinitesimal group action as being generated by vector fields

ξµi ∈ TM. These spacetime vectors satisfy an algebra of Lie derivations consistent with (3.2),

viz.,8

£ξiξ
µ
j = −£ξjξ

µ
i = −fkijξ

µ
k . (3.3)

We are interested in looking at the cohomology of the orbifoldM/G, which may in general

be complicated by the fact that the group action may not be free and one has to deal with

various singularities. The trick to address the general case algebraically is to introduce some

redundancy to make the group action free and induce the cohomology from the larger space.

To this end we need a topological space, which has trivial cohomology and is cognizant only

of the group structure.

The mathematical fact one employs is the existence of a contractible space EG called the

universal G bundle on which G acts freely and the quotient space BG = EG/G (called the

classifying space) which is a manifold that has a universal G-connection on it. The simplest

example of this is to take G = Z whence EG = R and BG = R/Z = S1. A more familiar

physics example is to think of EG as the space of all gauge connections, and BG as the space

of gauge orbits.

In general, we can think of the connection as coming from a Kaluza-Klein style reduction

over EG . This universal connection can be pulled back onto M. The cohomology of the

orbifold M/G can then sensibly be defined as the cohomology of the manifold (EG ×M) /G,

with the equivalence following from contractibility of EG .9

For clarity, we start with a discussion of the relevant structures on the universal G-bundle

EG alone. We will subsequently return to the actual problem of interest and study algebraic

structures on EG ×M. The construction will be phrased in an algebraic fashion, but the

similarities with construction of gauge theories are worth bearing in mind.

of the circumstances of interest for us is to understand similar operations on operator algebras acting on a

quantum Hilbert space.
8 It is straightforward to generalize this to the case where we have further internal structure such as a flavour

symmetry acting on our fields, where the Lie algebra generators would also implement a flavour transformation.

This would be relevant when we consider the action of G on a bundle over M. In fact, our choice of signs

below differs from standard literature; it is engineered to allow interpreting fkij as the structure constants of

the flavour symmetry when G acts as a global symmetry.
9 Thinking of G-action on M by thinking about EG ×M is called the Borel construction of the G-action

on M.
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3.1.1 The Weil complex

To define the space of forms on EG , we employ the so called Weil complex, which involves

the tensor product of the exterior algebra of g∗ with the symmetric algebra of g∗. Recall that

the exterior algebra is generated by the wedge product of forms, while the symmetric algebra

is generated by symmetric polynomials with variates being the elements of the underlying

vector space (here g∗).

From a physical viewpoint (see [15]) it is useful to think of the Weil complex as being

generated by a set of Grassmann-odd ghosts Gi and a Grassmann-even curvature 2-form

called the ghost of ghost φi. We will assign these objects definite ghost number and require

that

gh(Gi) = 1 , gh(φi) = 2 . (3.4)

To define a cohomology we need a nilpotent operator dE

W
acting on forms on EG which

we will take to be Grassmann-odd by virtue of its grading (gh(dE

W
) = 1). Since the action on

EG is supposed to mimic gauge transformations, we define dE

W
action on Gi, φi to be of the

familiar form for a gauge potential and field strength, viz.,

dE

W
Gi +

1

2
f ijkG

jGk = φi ,

dE

W
φi + f ijkG

jφk = 0 .
(3.5)

The dE

W
-cohomology in EG is by construction trivial. The only elements of the Weil

complex which are sensitive to the dE

W
action are of the form P(φi) ∧nk=1 Gik, with P(φi)

being symmetric polynomials of the φs. This is of course consistent with the contractibility

of the space.

To define something interesting we need to isolate forms that are non-trivial in the quo-

tient BG = EG/G. To this end, let us parameterize the space of normals to BG , which is

nothing but the space of fibres normal to the gauge orbits. Define then an operator that

projects us along the kth direction along the fibres. This can be achieved by contracting with

the generator of the dual algebra. One can use this concept to introduce a set of Grassmann

odd operators I E

k which satisfy

δij + I E

j G
i = 0 , I E

j φ
i = 0 . (3.6)

The operator I E

k is simply an interior contraction in the kth direction and we have aligned

the basis of forms to it in (3.6).

Readers familiar with these structures might find our choice of signs unconventional. The

group action on the manifold results in a diffeomorphism by −ξµk which is the vector field

corresponding to the generator tk. Usually the sign is absorbed into the definition of the

interior contraction and one defines (3.6) with an opposite sign. As explained in footnote

8 we wish to adhere to conventions where the group action would correspond to an active

flavour rotation (for global symmetries). Hence w.l.o.g. we have chosen a less familiar sign

convention, which will keep manifesting itself in various formulae, cf., (3.9) and (3.10).
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Once we have an analog of exterior derivation dE

W
and an interior contraction I E

k , we can

immediately use them to construct a Lie derivative on EG ,

LE

j ≡
[
dE

W
, I E

j

]
±
. (3.7)

Using the definitions we can check that

LE

jG
i =

[
dE

W
, I E

j

]
±
Gi = f ijkG

k , LE

j φ
i =

[
dE

W
, I E

j

]
±
φi = f ijkφ

k . (3.8)

Other useful relations are [[
dE

W
, I E

j

]
±
, I E

k

]
±

= −f ijkI
E

i ,[[
dE

W
, I E

j

]
±
,
[
dE

W
, I E

k

]
±

]
±

= −f ijk
[
dE

W
, I E

i

]
±
.

(3.9)

The equations (3.5)-(3.9) define the universal algebra on the Weil complex, involving

the exterior derivative dE

W
, contraction I E

i , curvature form φi and connection form Gi with

gauge group G. We often like to pull-back nice form-like objects (e.g., characteristic classes

and their descendants such as Chern-Simons forms) from EG which have useful geometric or

cohomological interpretation. Such objects are usually made of exterior derivative, curvature

form or connection form in EG , and after pullback they can be written in terms of {dE

W
, φi, Gi}:

the mathematically precise form of this statement is called the Chern-Weil homomorphism.

More pertinently for our discussion, {dE

W
, I E

i ,L
E

i } form a Lie superalgebra with the three

operators having ghost numbers gh(dE

W
) = 1, gh(I E

i ) = −1 and gh(LE

i ) = 0. Formally this

superalgebra can be expressed through the following relations10 which follow from (3.5)-(3.9):[
I E

i , I
E

j

]
±

= 0 ,
[
dE

W
, I E

j

]
±

= LE

j ,[
LE

i , I
E

j

]
±

= −fkij I
E

k ,
[
dE

W
,LE

j

]
±

= 0 ,[
LE

i ,L
E

j

]
±

= −fkij L
E

k ,
[
dE

W
, dE

W

]
±

= 0 .

(3.10)

We will see in the sequel that the algebra of our SK and KMS supercharges is a suitable

extension of such a structure. In Appendix A we give a few details for extending these

structures to involve explicit gauge parameters α = αiti.

Once we have this algebraic structure, it is straightforward to write down the non-trivial

elements generating the cohomology of BG = EG/G. To this end, realize that we would like

no support for objects on BG nor have variations in the normal directions to BG . Since the

normal directions are the gauge orbits we can simply use Gi to parameterize them. As a result

we seek gauge invariant forms, which would be built purely out of invariant combinations of

the field strengths φi. A formal way of saying this is to define:

10 One can w.l.o.g. extend this algebra to include the ghost number operator Gh as well for each of the

other operators carry definite ghost charge.
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• Horizontal forms: belonging to the kernel of I E
, viz., η such that I E

j η = 0 for j =

1, 2, · · · ,dim(g).

• Invariant forms: belonging to the kernel of LE
, viz., η such that LE

j η = 0 for j =

1, 2, · · · ,dim(g).

• Basic forms: forms that are both horizontal and invariant.

Non-trivial elements of the cohomology are defined by basic forms. Using (3.6) one can con-

vince oneself that they have to be built out of the field strengths φi alone, and furthermore the

invariance condition can be solved simply by forming polynomial invariants which correspond

to the group Casimirs. This structure is of course very familiar from the viewpoint of gauge

theories.

3.1.2 Graded Weil algebra on EG ×M

Our interest was, of course, not in the properties of the classifying space BG , but rather in

M/G. We therefore need to extend the discussion above to EG × M. Let us pick some

coordinates Xµ on M and introduce a set of Grassmann-odd vectors ψµ
W

. The latter are

a convenient way to encode the space of one-forms on M as first understood in [15] and

serve to bring out the connection to the physical field theories we will wish to construct quite

efficiently. Essentially the Grassmann nature ensures that ψµ
W

behave effectively as one-forms

dMX
µ as far as the cohomological properties are concerned. The subscript on the fields is to

remind us that these are related to the Weil model. Later when we pass to the Cartan model

we will change basis to a different set of fermions.

The question now is to extend the action of the operators dE

W
and I E

i to also capture de

Rham cohomology of M. We will simply identify the Weil differential dW to act as

dW ≡ (dW)EG×M
≡ dE

W
⊗ 1M + 1EG

⊗ dM , (3.11)

where dM is the standard exterior derivative onM. This allows us to pick contributions from

the differential forms on the manifold of interest. Using the identification of one-forms and

ψµ
W

we simply have

dWX
µ = ψµ

W
, dWψ

µ
W

= 0 . (3.12)

We also view the Lie algebra valued vector fields ξµi as functions of Xµ. The simplest way to

think about these is to view Xµ as coordinates on a target space manifold in the language of

sigma models. We will see explicitly in §7 that this perspective is extremely efficacious.

To finish the characterization of the algebra we need to define the action of the extended

interior contraction

Ik ≡ (Ik)EG×M
≡ I E

k ⊗ 1M + 1EG
⊗ (Ik)M , (3.13)

where (Ik)M denotes interior contraction on forms onM along the vector field ξµk . This may

be done by realizing that we wish it to act on forms on the manifold M and pick out the
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gauge directions. This suggests that we should define the action to satisfy:

IkXµ = 0 , IkψµW = ξµk . (3.14)

We can check that this gives the correct action for the Lie derivative Lk ≡ (Lk)EG×M
≡[

dW , Ik
]
±

:

LkXµ = ξµk , LkψµW = dWξ
µ
k = ψσ

W
∂σξ

µ
k , (3.15)

where we used the definition inherent in (3.10), which ensures that the superalgebra acts

nicely on M as well. Indeed, using the isomorphism between the one-form basis dMX
µ and

ψµ
W

we identify p-forms via11

Vψ
W
≡ 1

p!
Vµ1µ2...µp(X) ψµ1

W
ψµ2

W
. . . ψµp

W
. (3.16)

Given the action of the various generators defined above, we obtain by direct evaluation

dWVψW
= (dV )ψ

W
, IkVψ

W
= (iξkV )ψ

W
, LkVψ

W
= (£ξkV )ψ

W
, (3.17)

where iξ denotes the usual interior contraction with a vector field ξ.

The operations {dW , Ik,Lk} defined on forms on EG ×M comprise the so-called Weil

model of equivariant cohomology. With these definitions in place, we once again restrict

attention to the space of G-invariant basic forms to obtain non-trivial elements of the coho-

mology on M/G. The complication we face is that the interior contraction operators Ik act

non-trivially on all the fields on M. Simplifying this action, involves a change of basis, thus

leading to the Cartan construction, which we now turn to. In the language of gauge theory,

the idea of the Cartan construction is to focus on gauge covariant structures.

3.2 The Cartan model

Recall that we are interested in the space of basic forms which are both horizontal and

invariant. While the degrees of freedom introduced to parameterize the gauge sector (the

space EG) have been trivialized by construction, the same is not true for the physical degrees

of freedom which are tensor valued fields inM. To achieve this simplification we realize that

we should modify the Grassmann-odd partners of Xµ so as to annihilate them by the interior

contraction operators. Let us trade ψµ
W

for a new field ψµ
C

via12

ψµ
C
≡ ψµ

W
+Gkξµk = (dW +Gkξσk∂σ)Xµ . (3.18)

The advantage of this shift is apparent when we examine the interior contraction, for now:

IkψµC = 0 . (3.19)

11 It is convenient think of Vψ
W

as an object pulled back onto world-volume in the sigma model sense.
12 Kalkman [33] introduces a one-parameter family of fields ψµt defined to satisfy ψµt = d

W
Xµ + tGk ξµk

which allows for other choices. We have taken the interpolating parameter to unity which corresponds at the

end of the day to the Cartan model. The original Weil model is obtained by setting t = 0.
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We immediately see that in the new basis any combination of ψµ
C

is horizontal. With this

redefinition, the only field not annihilated by Ik would be the ghost Gi and the horizontality

is easily imposed by considering only combinations with no ghosts Gi. So any function of

the coordinates Xµ, their Grassmann partners ψµ
C

, and the field strength φk, can be taken

in an ansatz for non-trivial elements of the cohomology. One can check further that the Lie

derivatives act in this basis as

LkψµC = ψσ
C
∂σξ

µ
k , (3.20)

which we now have to exploit to construct invariant forms.

Note that the action of the cohomology operator dW on p-forms is much more involved.

One can evaluate the action on Vψ
C

, defined in analogy with (3.16), to arrive at:

dWVψC
= (dV )ψ

C
−Gk (£ξkV )ψ

C
+ φk (iξkV )ψ

C
, (3.21)

which as before does satisfy LkVψ
C

= (£ξkV )ψ
C

as expected once we use (3.9).

As explained before, horizontality reduces to removing the ghost fields Gi, and it is hence

convenient to go one step further and define a new cohomology generator, dC , called the

Cartan charge, which amounts to effectively dropping all the ghost contributions from the

Weil charge dW . Its action on the fields that appear in our ansatz for basic forms, viz.,

{Xµ, ψµ
C
, φk} is given as:

dCX
µ ≡ dWX

µ +Gkξµk = ψµ
C
,

dCψ
µ
C
≡ dWψ

µ
C

+Gk(∂νξ
µ
k )ψν

C
= φkξµk ,

dCφ
k ≡ dWφ

k + fkijG
iφj = 0 .

(3.22)

This defines the action of dC on the elements of the symmetric algebra. This precludes

the action of dC on Gk (in gauge theories this is the familiar statement that the covariant

derivative dC does not act on gauge potentials). Eventually, however, we wish to employ a

gauge where Gk = 0. In order for this to be consistent with the dC action, we wish to formally

define dC on the full Weil complex and in particular demand dCG
k = 0. We can summarize

this condition consistently with (3.22) as

dC = dW +Gi Li +

(
1

2
fkijG

iGj + φk
)
Ik , (3.23)

which makes explicit that dC = dW on the subspace of basic forms. From this and (3.21) we

conclude that the Cartan charge acts on p-forms in the Cartan basis as

dCVψC
=

(
dW +Gi Li +

(
1

2
fkijG

iGj + φk
)
Ik
)
Vψ

C
= (dV )ψ

C
+ φk (iξkV )ψ

C
. (3.24)

There is a simple physical interpretation of the new cohomology generator dC : it is a

gauge covariant derivation. If dW represents the ordinary exterior derivative, then dC can

be thought of as a covariant exterior derivative with Gk as the connection. Like any other
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covariant exterior derivative, dC is not nilpotent – in fact, d2
C

generates the group action along

the ‘curvature’ φk:

d2
C

= φk Lk − [G,φ]k Ik . (3.25)

While we still have explicit appearances of Gk in the above equations, we can now pass to

the Cartan model of equivariant cohomology. This amounts to restricting to the symmetric

algebra of g∗ (generated by φk) instead of the whole Weil complex (generated by {Gk, φk}).
Effectively, this means restricting to the subspace generated by φk and setting Gk = 0. Setting

Gk = 0, the above equations yield the following Cartan model expressions:

dC = dW + φkIk ⇒ d2
C

= φk Lk . (3.26)

This is the statement that the Cartan differential squares to a gauge transformation along

φk. more precisely, on restricting to this space dC action takes the form:

dC = 1EG
⊗ dM + φk ⊗ (Ik)M , (3.27)

which algebraically encodes the fact that we have a gauge-covariant exterior derivation op-

erator, since d2
C

= φk ⊗ (Lk)M ≡ Lφ. The standard presentation is to follow this route and

define the Cartan model only on the gauge invariant subspace. We find it useful however to

follow the intuition of Kalkman’s construction [34] and define the Cartan model on the tensor

product of the Weil algebra and exterior algebra on M as in (3.23).

Irrespective of the formalism, within a subset of field combinations which are invariant

under G-action, we have d2
C

= 0. The cohomology on this invariant subset is the invariant

cohomology of dC which in turn, gives the equivariant cohomology we are after. This for-

malism with the horizontality condition built in, is called the Cartan model for equivariant

cohomology. By construction, it is equivalent to the original definition through Weil model

and the equivalence can be explicitly shown by Kalkman automorphism mentioned earlier.13

In physical applications, while dealing with sigma models, in addition to the fields above,

we have a G-connection on the worldvolume which we will denote by Ai
a.

14 To complete the

story we need to introduce its superpartner λia such that

dWAi
a = λia + ∂aG

i + f ijkA
j
aG

k ,

dWλ
i
a = −f ijkGjλka − ∂aφi − f ijkAj

aφ
k.

(3.28)

We will denote the corresponding field strength by Fiab ≡ ∂aAi
b− ∂bAi

a + f ijkA
j
aA

k
b . Note that

Ik annihilates both the worldvolume gauge field and its superpartner, viz.,

IkAi
a = Ikλia = 0 . (3.29)

13 One may argue that d
C

is the natural cohomological charge in topologically twisted gauge theories for the

twisting is cognizant of the underlying BRST structure of the gauge theory. Indeed, in explicit constructions

as in the Donaldson-Witten theory [16] one naturally ends up with the Cartan charge via twisting.
14 Our notation for sigma models is the following: we will continue to use lower-case Greek indices to

correspond to the physical spacetimeM. We assume that there is some worldvolume with intrinsic coordinates

σa with lower-case Latin indices denoting the tangent space indices from the early part of the alphabet (a, b, · · ·
etc). Hopefully our use of intermediate alphabet Latin alphabets i, j, k, · · · to index the generators of g does

not cause confusion.
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This follows from the absence of any ghost number −1 field that these objects can transform

into. The Cartan model analogue of the above equations is

dCA
i
a ≡ dWAi

a − ∂aGi − f ijkGjAk
a = λia ,

dCλ
i
a ≡ dWλ

i
a + f ijkG

jλka = −∂aφi − f ijkAj
aφ

k.
(3.30)

Note that this shows that λia is like a field strength for Ai
a. This analogy can be made precise

in a superspace description of equivariant cohomology which we now turn to.

For completeness, let us also note that there is a third model of equivariant cohomology

called the BRST model. The idea introduced by Kalkman [34] was to parallel the discussion

of BRST symmetries in gauge theories, generalizing the algebra isomorphism of Mathai-

Quillen. We will not need this construction in our discussion, but for completeness discuss

the construction in Appendix B.

4 Equivariant cohomology in superspace

It is useful to rewrite the formalism discussed in the preceding subsections directly in su-

perspace, where all the transformations have a natural interpretation. We will follow the

general framework introduced originally in [35].15 The idea is to combine the various fields

into supermultiplets whose components transform into each other under the action of the

cohomology charge. To this end, we introduce a Grassmann odd coordinate θ̄ such that dW

acts as the nilpotent supertranslation operator ∂θ̄.

As we are eventually going to be interested in sigma models, let us also introduce world-

volume coordinates σa which parameterize the Grassmann even section of the superspace.

The Grassmann odd section is parameterized by θ̄.16 We will promote all the fields to super-

fields, i.e., given a field Φ(σa) we will denote the corresponding superfield as Φ̊(σ, θ̄). We also

denote projection using the notation |, which projects the superfield to its bottom component

by setting θ̄ = 0; to wit,

Φ̊| ≡ Φ̊(σ, θ̄)|θ̄=0 = Φ(σ) . (4.1)

It is also convenient in writing various formulae to use upper-case Latin indices (from the

middle of the alphabet) to denote the superspace directions – we thus let zI = {σa, θ̄}, and

let the index I ∈ {a, θ̄} for simplicity. To keep the discussion simple, we will work with flat

worldvolume superspace and will hence not worry about supercurvatures. It is possible to

extend our analysis to curved superspace following [36]; we defer this to a future discussion.

Let us take stock of the fields we have in the equivariant cohomology construction. The

matter fields parameterizing the target space assemble into a matter superfield X̊µ(σ, θ̄). The

15 Various authors have described elements of the superspace formalism e.g., [20, 27], but there does not

appear to be a single comprehensive discussion readily available in the literature which covers all that we want.

So the discussion here contains some new elements interspersed with the review of known material.
16 We choose to denote the supercoordinate by θ̄ to notationally convey that its ghost number is negative

gh(θ̄) = −1. This is in keeping with the identification with the d
W

action.
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ghost fields {Gi, φi} form a second multiplet, but it is more efficacious to combine them with

the gauge multiplet {Ai
a, λ

i
a} to construct a gauge superfield 1-form Å:

Å ≡ ÅI dz
I = Åa dσ

a + Åθ̄ dθ̄ . (4.2)

These superfields admit a Taylor expansion which is adapted to the definition of the Weil

charge dW ≡ ∂θ̄(. . .)| as follows:

X̊µ ≡ Xµ + θ̄(ψµ
C
−Gkξµk ) ,

Åi
a ≡ Ai

a + θ̄
(
λia + ∂aG

i + f ijkA
j
aG

k
)
,

Åi
θ̄ ≡ G

i + θ̄

(
φi − 1

2
f ijkG

jGk
)
.

(4.3)

The target space coordinates X̊µ are viewed as fields which map points and indices on the

worldvolume superspace to ordinary target space. We effectively work with an RNS like

formalism where the worldvolume supersymmetry is manifest, but the target space super-

symmetry is hidden.

We now should understand the action of various operators, such as the Weil and Cartan

derivatives and the interior contraction operation on the fields in superspace. Let us first

discuss this for covariant adjoint-valued fields and then understand the action on the other

superfields in (4.3) and objects derived therefrom.

4.1 Adjoint superfields

Consider first a superfield F̊ that is adjoint-valued under g. We can write this in terms of its

components along the lines of (4.3) as

F̊ = F + θ̄
(
Fψ − [G,F]

)
=⇒ F̊i = Fi + θ̄

(
Fiψ − f ijkGj Fk

)
. (4.4)

In what follows we will often suppress the Lie algebra index and resort to the usual commu-

tator notation for terms involving the structure constants, e.g., [H, F]i = f ijk Hj Fk etc., as

indicated. We first need to understand how the various operators dW , I, etc., act on these

adjoint superfields. Let us do this in a somewhat elaborate manner, and then try to distill

the essentials into a simple computational algorithm.

The Weil derivative dW as presaged should act on superspace as ∂θ̄. However, this simple

rule of thumb makes sense only for the bottom-component of the superfield. To ascertain the

action on the top component (the coefficient of θ̄), we need to construct a new superfield. Let

us see this explicitly; first we compute

dWF = Fψ − [G,F] . (4.5)

Then requiring that d2
W

= 0, we learn that

dWFψ = dW [G,F] = [dWG,F]− [G, dWF] = [φ,F]− [G,Fψ] (4.6)

– 23 –



where we used (3.5) to evaluate some of the terms.

To represent (4.6) as the action of ∂θ̄, we need to first construct a superfield F̊ψ whose

bottom component is Fψ. We cannot do this by ordinary partial differentiation along the

supercoordinate θ̄, since that does not lead to a covariant superfield. We need to construct

a derivative that maps covariant objects to covariant ones. To do so, we define the gauge

covariant derivative:

D̊I = ∂I +
[
ÅI , ·

]
, (4.7)

which supplements the action of the usual partial derivatives in superspace with the commu-

tator action of the gauge potential.

Now consider the superfield D̊θ̄ acting on F̊, which evaluates to

D̊θ̄F̊ = ∂θ̄

(
F + θ̄

(
Fψ − [G,F]

))
+

[
G+ θ̄

(
φ− 1

2
[G,G]

)
,F + θ̄

(
Fψ − [G,F]

)]
= Fψ − [G,F] + [G,F] + θ̄

(
[φ,F]− 1

2
[[G,G] ,F]− [G,Fψ] + [G, [G,F]]

)
= Fψ + θ̄

(
[φ,F]− [G,Fψ]

)
.

(4.8)

We then see that we can write:

dWF̊| = ∂θ̄F̊ , dW(D̊θ̄F̊|) = ∂θ̄(D̊θ̄F̊). (4.9)

This should hopefully make clear how the Weil differential acts on the superfields that trans-

form covariantly as adjoints under g.

The interior contraction operation I has a very simple action in that it annihilates the

components of the superfield F, viz.,

IαF = IαFψ = 0 , (4.10)

where we recall that Iα = αk Ik as defined in (A.1).

4.2 Gauge and matter multiplets

Having understood the adjoint superfields, we can now turn to the gauge and matter mul-

tiplets. Their superfield expansions have already been described in (4.3). It is useful to get

some intuition for the gauge multiplet which has a four distinct fields. Clearly, Aa and G are

not gauge invariant, as they transform as a gauge potential and gauge transformation param-

eter respectively, with appropriate inhomogeneous pieces. Their superpartners are however

gauge covariant. To see this, let us first define using the gauge covariant derivative the field

strengths. In superspace it is simplest to talk about the super-field strength which can be

defined as

F̊IJ ≡ (1− 1

2
δIJ)

(
∂I ÅJ − (−)IJ ∂J ÅI + [ÅI , ÅJ ]

)
. (4.11)

The factor of half is included to keep normalizations simple in future computations.
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We can now identify various fields using the projection to the θ̄ = 0 slice of superspace.

To wit,

X̊µ| ≡ Xµ , D̊θ̄X̊µ| ≡
(
∂θ̄X̊

µ + Åi
θ̄ ξ

µ
i (X̊)

)
| ≡ ψµ

C
,

Åa| ≡ Aa , F̊θ̄a| ≡
(
∂θ̄Åa − ∂aÅθ̄ +

[
Åθ̄, Åa

])
| ≡ λa ,

Åθ̄| ≡ G , F̊θ̄θ̄| ≡
(
∂θ̄Åθ̄ +

1

2

[
Åθ̄, Åθ̄

])
| ≡ φ .

(4.12)

As advertised earlier, this presentation of our basic fields makes it manifest that all the fields

barring G and Aa are covariantly defined. In particular, the Grassmann partner of the gauge

field λa and the ghost for ghost φ are components of the super-covariant field strength. The

other super-field strength component which is often useful is

F̊ab| ≡
(
∂aÅb − ∂bÅa +

[
Åa, Åb

])
| = Fab . (4.13)

Using these definitions, the action of dW can be worked out via dW = ∂θ̄(. . .)|. As before

to perform this computation, we have to construct the desired superfield before taking the

derivative with respect to θ̄.

The expressions for dWX
µ, dWAa and dWG can then be read of from the superspace

Taylor expansion which reproduces the definitions from before (by construction). For the

remainder, we have to work out the action of two super-covariant derivatives on superfields,

since various components of the transformations as we have seen above involve gauge covariant

expressions.

Let us begin by defining

D̊θ̄(D̊θ̄X̊µ) ≡ ∂θ̄(D̊θ̄X̊µ) + Åk
θ̄ (D̊θ̄X̊ν)∂νξ

µ
k (X̊)

= ∂θ̄(D̊θ̄X̊µ) + Γµνλ(X̊) (∂θ̄X̊
λ)(D̊θ̄X̊ν) + Åk

θ̄ D̊θ̄X̊
ν ∇νξµk (X̊) .

(4.14)

where in the second line, we have covariantized the expression using a Christoffel connection

on M. The equality follows from fact that Γµνλ(X̊) D̊θ̄X̊λ D̊θ̄X̊ν = 0.

A short computation then gives D̊2
θ̄
X̊µ = F̊k

θ̄θ̄
ξµk (X̊). Upon projection down onto the

θ̄ = 0 component, we get

∂θ̄D̊θ̄X̊µ + Åk
θ̄ ∂νξ

µ
k (X̊) D̊θ̄X̊ν | = Fkθ̄θ̄ ξ

µ
k (X̊)|

=⇒ dWψ
µ
C

+Gkψν∂νξ
µ
k = φkξµk ,

(4.15)

reproducing the expression in our previous subsections.

The transformation of λia and φi can similarly be deduced from the super-covariant deriva-

tives acting on the super-field strengths. Based on (4.7) we define:

D̊cF̊ab ≡ ∂cF̊ab +
[
Åc, F̊ab

]
, D̊θ̄F̊ab ≡ ∂θ̄F̊ab +

[
Åθ̄, F̊ab

]
,

D̊cF̊θ̄a ≡ ∂cF̊θ̄a +
[
Åc, F̊θ̄a

]
, D̊θ̄F̊θ̄a ≡ ∂θ̄F̊θ̄a +

[
Åθ̄, F̊θ̄a

]
,

D̊cF̊θ̄θ̄ ≡ ∂cF̊θ̄θ̄ +
[
Åc, F̊θ̄θ̄

]
, D̊θ̄F̊θ̄θ̄ ≡ ∂θ̄F̊θ̄a +

[
Åθ̄, F̊θ̄θ̄

]
.

(4.16)
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Not all of these field strengths are independent. They satisfy super-Bianchi identities of the

form

D̊cF̊ab + D̊aF̊bc + D̊bF̊ca = 0 , D̊θ̄F̊ab −
(
D̊aF̊θ̄b − D̊bF̊θ̄a

)
= 0 ,

D̊θ̄F̊θ̄a + D̊aF̊θ̄θ̄ = 0 , D̊θ̄F̊θ̄θ̄ = 0 .
(4.17)

Using these, D̊θ̄ acting on any super-field strength can be traded for D̊a acting on super-field

strengths. Under the restriction | , D̊a then reduces to ordinary covariant derivative. The

restriction of the last three identities then yields

dWFab + [G,Fab]− (∂aλb + [Aa, λb]− (a↔ b)) = 0 ,

dWλa +
[
Gj , λka

]
+ ∂aφ+ [Aa, φ] = 0 ,

dWφ+ [G,φ] = 0 .

(4.18)

This completes the superspace derivation of expressions we had before.

Cartan model in superspace: While the equations above were derived for the Weil model,

shifting to Cartan model of equivariant cohomology is extremely straightforward. One can

check from the above expressions that the construction would be equivalent to shifting to a

description only in terms of super-covariant derivative D̊θ̄ eschewing the use of ∂θ̄ everywhere.

This is one of the many advantages of the superspace formulation, which makes things a lot

more simple than working with the component fields where the gauge symmetry is not clearly

manifest.

We define dC = D̊θ̄(. . .)|. The non-nilpotence of dC then is simply the familiar non-

nilpotence of covariant exterior derivatives which square to curvatures instead. Going through

the exercise we obtain the expressions quoted earlier, viz.,

dCX
µ = D̊θ̄X̊µ| = ψµ

C
,

dCψ
µ
C

= D̊2
θ̄X̊

µ| = F̊kθ̄θ̄ ξ
µ
k (X̊)| = φkξµk

dCAa = F̊θ̄a| = λa ,

dCλa = D̊θ̄F̊θ̄a| = −D̊aF̊θ̄θ̄| = −∂aφ− [Aa, φ] .

(4.19)

It is then clear from D̊2
θ̄
∼ F̊θ̄θ̄ that d2

C
evaluates to a G-action along φ as expected for the

Cartan supercharge, cf., (3.27).

4.3 Graded operations in superspace

We have thus far understood the superspace counterparts of the various statements reviewed

in §3.1. In particular, we found that on covariant superfields, the Weil and Cartan charges

act as

dW = ∂θ̄ , dC = D̊θ̄ . (4.20)
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It is useful to have an independent discussion of the superspace analog of Lie derivation and

interior contraction, which can be combined in a single Lie super-operator. Consider the

following super-interior contraction and super-Lie derivative:

I̊k ≡ Ik + θ̄Lk , L̊k ≡ Lk , (4.21)

where the operators on the right hand side are understood to act component-wise on super-

fields. This super-operator satisfies

I̊kF̊i = I̊kX̊µ = I̊kÅi
a = 0 , I̊kÅi

θ̄ = −δik . (4.22)

and hence generalizes Ik in a sensible way to superspace. Furthermore, it is immediate to see

the following commutation relations:

d2
W

= ∂2
θ̄ = 0 ,

[
I̊i, I̊j

]
±

= 0 ,
[
dW , I̊k

]
±

= ∂θ̄I̊k = L̊k ,[[
dW , I̊i

]
±
, I̊j
]
±

= −fkij I̊k ,
[
dW ,

[
dW , I̊k

]
±

]
±

= ∂2
θ̄ I̊k = 0 ,

(4.23)

which we recognize as the superspace version of the Weil algebra (A.3).

Further, we can study the algebra involving super-covariant derivatives. It is an easy

exercise to check the following on covariant superfields:[
D̊θ̄, I̊k

]
±

= 0 . (4.24)

4.4 Super-gauge transformations and Wess-Zumino gauge

The passage from the Weil to the Cartan algebra involves eschewing working with gauge

potentials and instead using gauge covariant data which naturally incorporate the space of

basic forms. In terms of the action of various operators the main non-trivial element in the

Weil algebra is the presence of the ghostG, which picks out a direction of gauge transformation

(recall that it has a non-trivial interior contraction). It is efficacious to pass onto a gauge

which fixes this Grassmann odd field to zero, and then work with gauge covariant objects.

We will refer to this gauge fixing choice as the Wess-Zumino (WZ) gauge.

Before explaining the WZ gauge, let us briefly introduce the concept of a super-gauge

transformation. By this we mean the most general gauge transformation allowed by the

superspace structure, i.e., one where the gauge parameter itself is an adjoint superfield. To

this end, let us lift an arbitrary gauge parameter, which has so far played a passive role, to

an adjoint superfield

Λ̊ = Λ + θ̄ (dWΛ) ≡ Λ + θ̄ (Λψ − [G,Λ]) . (4.25)

An infinitesimal gauge transformation along Λ̊ can more formally be defined as simply a Lie

derivative of the form

L̊Λ̊F̊ ≡
[
dW , Λ̊

k I̊k
]
±
F̊ =

[
Λ̊, F̊

]
,

L̊Λ̊Åθ̄ ≡
[
dW , Λ̊

k I̊k
]
±
Åθ̄ =

[
Λ̊, Åθ̄

]
− (−)Λ (Λψ − [G,Λ]) = −(−)Λ D̊θ̄Λ̊ ,

L̊Λ̊Åa ≡
[
dW , Λ̊

k I̊k
]
±
Åa =

[
Λ̊, Åa

]
− (−)Λ ∂aΛ̊ = −(−)Λ D̊aΛ̊ ,

(4.26)
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where we allowed for the possibility of Λ being Grassmann-odd.

It will sometimes be useful to have a version of the commutator relations for Lie deriva-

tives along adjoint superfields as defined above. Clearly, because various operators now act

on the gauge parameter itself, the algebra changes. We give some of the covariant identities

here for reference:

D̊2
θ̄ = L̊

F̊θ̄θ̄
,

[
D̊θ̄, L̊Λ̊

]
±

= L̊D̊θ̄Λ̊ ,
[
L̊Λ̊1

, L̊Λ̊2

]
±

= L̊[Λ̊1,Λ̊2] . (4.27)

Transformation of adjoint superfields: Let us consider such gauge transformations in

more detail for the case of an adjoint superfield F̊. Under a super-gauge transformation as

above, it transforms as

F̊ 7→ F̊ +
[
Λ̊, F̊

]
= F̊ +

[
Λ + θ̄ (Λψ − [G,Λ]) ,F + θ̄ (Fψ − [G,F])

]
= F + [Λ,F] + θ̄

{
Fψ − [G− Λψ,F]− [G, [Λ,F]] + (−)Λ [Λ,Fψ]

}
.

(4.28)

Clearly, if we pick a super-gauge parameter with vanishing bottom component (Λ = 0), then

the transformation can be expressed as

F̊ 7→ F̊
{
G 7→ G− Λψ

}
,

(
F

Fψ

)
fixed (4.29)

i.e., we simply replace G by G−Λψ in the superspace expansion F̊ = F+ θ̄(Fψ− [G,F]). Thus

the super-gauge transformed superfield can be obtained by absorbing the gauge transforma-

tion into the ghost field G keeping the fundamental components fixed.

We find it intuitive to adopt standard language and think of G as a Faddeev-Popov (FP)

gauge parameter field. The subset of gauge transformations which shifts this field and leaves

the fundamental components intact can then we viewed as FP boosts. These are generated

by Λ̊ = θ̄Λψ. On the other hand, the class of non-trivial gauge transformations that leave G

invariant, but change the building blocks of F̊ can then be called as FP rotations. Geomet-

rically this is analogous to the usual decomposition of the Poincaré group on massive spin

fields as comprising of a little group of inertial frame rotations combined with translations and

boosts that help choose the rest frame. More precisely, we can think of the transformations

of superfields using the method of induced representations whereby FP rotations that leave

G invariant can be used to induce the whole group G of gauge transformations.

While the above describes infinitesimal gauge transformations, we will shortly need finite

gauge transformations, as well. These are obtained by exponentiation:

F̊ 7→ exp
(
LΛ̊

)
F̊ = F̊ +

[
Λ̊, F̊

]
+

1

2!

[
Λ̊,
[
Λ̊, F̊

]]
+

1

3!

[
Λ̊,
[
Λ̊,
[
Λ̊, F̊

]]]
+ . . . , (4.30)

which is the usual adjoint action. For a FP boost with vanishing bottom component Λ = 0,

this truncates at first order and yields

F̊ 7→ F̊ +
[
Λ̊, F̊

]
. (4.31)
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Hence, for adjoint superfields, infinitesimal FP boosts are the same as finite boosts. This will

not be quite true for other cases, as we will see below.

Transformation of the gauge field: Similar discussions apply to the gauge and matter

superfields, with the inhomogeneous transformation being important in the case of the gauge

potentials. A finite transformation of the gauge field now reads

ÅJ 7→ exp
(
LΛ̊

)
ÅJ = ÅJ − (−)Λ D̊θ̄Λ̊−

1

2!

[
Λ̊, (−)Λ D̊θ̄Λ̊

]
+

1

3!

[
Λ̊,
[
Λ̊, (−)Λ D̊θ̄Λ̊

]]
+ . . . ,

(4.32)

In particular, for the FP boost generated by Λ̊ = θ̄Λψ this truncates at second order. The FP

boost again induces a simple transformation, which only shifts the ghosts, but leaves fixed

the covariant components of the gauge superfield one-form:

Å 7→ Å
{
G 7→ G− Λψ

}
,

(
Aa

λa

)
& φ fixed (4.33)

Wess-Zumino gauge: We can now use these insights to fix a gauge by performing a boost

transformation along the ghost G, i.e., we pick a gauge parameter Λ̊FP = θ̄ G. According

to Eqs. (4.29) and (4.33) this has the effect of setting the ghost to zero. The superfield

expansions for various fields in the WZ gauge are simple:

(̊F)WZ = F + θ̄ Fψ ,

(Å)WZ = (Åa)WZ dσ
a + (Åθ̄)WZ dθ̄ =

(
Aa + θ̄ λa

)
dσa +

(
θ̄ φ
)
dθ̄ ,

(X̊µ)WZ = Xµ + θ̄ ψµ
C
.

(4.34)

The passage to the WZ gauge (analogous to the inertial frame choice) makes it clear that it

is sufficient to restrict attention to covariant building blocks F,Fψ of F̊ or the corresponding

elements in the other fields. Once we know how they transform we can always obtain the

contribution to the θ̄ term arising from ghosts as above. We can use this to introduce some

convenient notation, where we give the action of various operations on superfields as maps

between covariant building blocks.

Component maps: To give a simple representation of various operations as maps between

covariant components of superfields, we first assume WZ gauge as explained above. To dis-

tinguish these maps from the operators introduced so far, we use a slightly different notation.

Schematically, we replace the maps {dW , dC , Ik,Lk} defined hitherto by a set of equivalent

operations as follows:

dW −→ dSK , dC −→ DSK , Ik −→ ιk , Lk −→ `k . (4.35)

The label ‘SK’ does not have a particular meaning at this point. The logic behind this name

will become clear later. To define the action of these operators, we use a convenient nota-

tion where we abbreviate any superfield by a component vector of its covariant components.
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For instance, the superfield F̊ would just be abbreviated as a column vector

(
F

Fψ

)
. The

Weil/Cartan derivatives, interior contraction, and the Lie derivation can now be represented

as maps from covariant superfields to covariant superfields, which act on the building blocks

of as follows:

dSK :

(
Fi

Fiψ

)
7→

(
Fiψ
0

)
, DSK :

(
Fi

Fiψ

)
7→

(
Fiψ

f ijkφ
jFk

)
(4.36a)

ιk :

(
Fi

Fiψ

)
7→

(
0

−f ikjFj

)
, `k :

(
Fi

Fiψ

)
7→

(
f ikjF

j

f ikjF
j
ψ

)
, (4.36b)

In Wess-Zumino gauge, these maps simply implement the action of {dW , dC , Ik,Lk} component-

wise. We can similarly write down expressions for the rest of the fields.17 We note the following

useful relations:

DSK = dSK − φ
k ιk , D2

SK
= φk `k . (4.37)

For the standard NT = 1 equivariant cohomology that we have been discussing, we don’t

seem to gain much with this presentation. The pay-offs are greater in the case of extended

equivariant cohomology when the WZ gauge allows much simpler treatment of the algebraic

construction. We turn to this subject now.

5 Extended equivariant cohomology

We have thus far seen the construction of the equivariant cohomology algebra with a single

supercharge dW or equivalently dC . While this suffices for some physical problems, we have

seen that the Schwinger-Keldysh construction equips us with a bigrading, since for every

supercharge like QSK we have a conjugate operation QSK with opposite ghost number. The

natural setting for such a graded algebra is the so-called extended equivariant cohomology

algebra, which has more than one generator. We will now review aspects of this story for a

pair of generators which corresponds to the case of interest.

5.1 Basic field content

Let us start by attempting to double the number of BRST generators in equivariant coho-

mology construction of §3. We would like a pair of Weil supercharges dW and dW which are

individually nilpotent and anti-commuting with each other. To get a sense of the structure

and the algebra of the generators we will work with the gauge sector first, i.e., construct

appropriate representatives for the fields we wish to use in the universal G-bundle EG and

subsequently add in the various matter fields. The main difference from the earlier presenta-

tion is that we are going to directly pass onto superspace where the action of the charges is

17 The difference between {d
W
, d

C
, Ik,Lk} and {dSK ,DSK , ιk, `k} becomes only clear if one computes com-

mutation relations: since the maps in (4.36a), (4.36b) implement a ‘left’ action, their commutators will differ

by an overall sign from those of {d
W
, d

C
, Ik,Lk}, which act from the ‘right’. For example, `k = − [dSK , ιk]±.
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much simpler to explain. The algebraic construction underlying our description is explained

quite clearly in the original discussion of [20]. The superspace discussion we employ below

for motivating this construction was described in [27] building on their earlier work. We also

refer the reader [28] for a useful perspective on the algebraic construction.

Since we have a natural interpretation of the action of dW in superspace, as the derivative

along the super-coordinate θ̄, it follows that inclusion of a second supercharge necessitates

enlarging the superspace to include another Grassmann-odd direction. We will coordinatize

the second direction by θ so that

dW = ∂θ̄(. . .)| , dW = ∂θ(. . .)| . (5.1)

Thus our superspace has two Grassmann-odd directions and so we upgrade all superfields

to be functions of the Grassmann-even coordinates σa as well as θ, θ̄. We then require by

obvious extension of the notation introduced in §4 that our superfields satisfy:

F̊(z) = F̊|+ θ (dWF̊)|+ θ̄ (dWF̊)|+ θ̄θ (dWdWF̊)| (5.2)

where we have upgraded z = {σa, θ, θ̄} and will use upper-case mid-alphabet Latin indices

I, J, · · · to take values in {a, b, · · · } ∪ {θ, θ̄}.
Given this superspace we can now proceed to analyzing the gauge sector of the theory, i.e.,

find a useful parameterization of the universal G-bundle EG . We will proceed algebraically and

construct local representatives for the Weil and Cartan models. A necessary consequence of

the doubling of the supercharges is that we have many more component fields. In particular,

if we consider the super-gauge field which is the primary character in the construction of

equivariant cohomology, we have a dodecuplet of fields, since the full gauge superfield one-

form can be written as18

Å = ÅI dz
I = Åa dσ

a + Åθ dθ + Åθ̄ dθ̄ . (5.3)

Each of the ÅI admits a superfield expansion as in (5.2) with four components, which alto-

gether gives us the desired dodecuplet.

To understand the structure it is useful to once again introduce the gauge covariant

derivative which allows the definition of the field strength. Firstly, as earlier, we pick the

gauge covariant derivative to act as

D̊I = ∂I + [ÅI , · ] , (5.4)

which implies that the field strength is given by

F̊IJ ≡ (1− 1

2
δIJ)

(
∂I ÅJ − (−)IJ ∂J ÅI + [ÅI , ÅJ ]

)
. (5.5)

In addition it is also convenient to define the following non-covariant object:

B̊θθ̄ ≡ ∂θÅθ̄ +
1

2
[Åθ, Åθ̄] . (5.6)

18 To keep notational clutter to a minimum we are suppressing the Lie algebra index in the following.
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This will be useful to pick out a particular non-gauge covariant field. Our definition explicitly

breaks the symmetry between θ and θ̄, for under an exchange of these super-coordinates we

have B̊θθ̄ 7→ F̊θθ̄ − B̊θθ̄.

As in our discussion of NT = 1 superalgebra, the covariant derivatives along the super-

coordinates {θ, θ̄} can be treated as the Cartan charges: dC = D̊θ̄(. . .)| , dC = D̊θ(. . .)|. This

enables us to use the field strengths to define the covariant fields that we will employ to

parameterize the extended cohomological structure. Paralleling that analysis the bottom

component of the superfields Åθ and Åθ̄ will be taken to be ghost fields (with opposite ghost

numbers). The other components of the gauge multiplets can be filled out in terms of the

field strengths.

We find it useful to parameterize the super-components (the ghosts and ghosts for ghosts)

in the following fashion. First we pick out the gauge non-invariant combinations and use them

to define the various ghost fields (i.e., ghost valued connection forms):

Åθ̄| ≡ G , Åθ| ≡ Ḡ , B̊θθ̄| ≡ B . (5.7)

We will refer to these fields as the Faddeev-Popov ghost triplet. These fields will be gauge

parameters, generalizing the single Faddeev-Popov ghost field of the NT = 1 superalgebra.

The remaining five fields which make up the superfields Åθ and Åθ̄ are captured and

denoted as follows:

F̊θ̄θ̄| ≡ φ , F̊θθ| ≡ φ , F̊θθ̄| ≡ φ0 ,

D̊θ̄F̊θθ̄| ≡ η , D̊θF̊θθ̄| ≡ η . (5.8)

We will henceforth refer to them as the Vafa-Witten ghost of ghost quintet following [19] where

this structure was first described. Finally, we have four more (vector) fields in the gauge

potential Åa, making up the vector quartet which we parameterize in a covariant fashion as

Åa| ≡ Aa , F̊θ̄a| ≡ λa , F̊θa| ≡ λa , D̊θF̊θ̄a| ≡ Fa . (5.9)

The ghost charge assignments for these fields can be worked out once we pick a convention

that assigns

gh(θ) = +1 , gh(θ̄) = −1 , (5.10)

which leads to the following ghost numbers as indicated in Table 1.

This collection of fields parameterizes for us the extended gauge multiplet (5.3) which

embodies the action of the two supercharges, and can be thought of as the algebraic parame-

terization of the classifying space subject to such a bi-grading. We will work out the complete

parameterization for the superfields once we understand the superalgebra structure.
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ghost Faddeev-Popov Vafa-Witten ghost Vector

charge ghost triplet of ghost quintet quartet

2 φ

1 G η λa
0 B φ0 Aa Fa
-1 Ḡ η̄ λ̄a
-2 φ̄

Table 1. Dodecuplet of basic fields in the NT = 2 superalgebra and their respective ghost number

assignments.

5.2 The NT = 2 superalgebra

We are now in a position to describe the so calledNT = 2 superalgebra which generalizes (3.10).

Firstly, realize that we would a-priori expect to have two interior contraction operators Ik
and Ik which would be required to satisfy (reinstating the Lie algebra index):

IkGj = −δjk , IkḠj = −δjk , (5.11)

generalizing (3.6) in an obvious manner. These two interior contraction operators are as

before Grassmann odd and we choose to give them ghost charge gh(I) = −1 and gh(I) = +1

respectively.

However, among the dodecuplet of fields introduced in the gauge superfield ÅI we also

encounter a third gauge parameter, which we have captured in the gauge non-covariant field

B. We therefore have a third interior contraction operator which we will denote as I0 which

we choose to act non-trivially on the B fields, viz.,

I0
kB

j = −δjk , I0
kG

j = 0 = I0
kḠ

j . (5.12)

We also find that the other two interior contractions act non-trivially on the field B:

IkBj = −1

2
f jk` Ḡ

` , IkBj =
1

2
f jk`G

` . (5.13)

One can check that these definitions lead to the expected identity

LiBk ≡
[
dW , Ii

]
±
Bk ≡

[
dW , Ii

]
±
Bk = fkijB

j . (5.14)

The triplet of operators {I, I0, I} together generate an sl(2) algebra. Our parameteri-

zation of the fields is not quite sl(2) covariant, but this can easily be achieved by a simple

change of basis.19

19 The description of the extended equivariant cohomology algebra in an sl(2) covariant fashion can be

found in [20, 27, 28]. Our choices are dictated by simplifying some of the analysis in the context of physical

applications. For example, in §7 we will argue that dissipative effects arise when the ghost number zero field

in the Vafa-Witten quintet picks up a vacuum expectation value which is easier to implement in the sl(2)

non-covariant presentation; cf., footnote 36.
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Weil model of NT = 2 algebra: With the interior contraction operators at hand we can

generate the Lie derivation Lk as in (3.7) by commuting with the Weil charges (which as

always act as exterior derivatives). This then generates the NT = 2 extended equivariant

cohomology algebra which we can abstractly write as

d2
W

= d
2

W
=
[
dW , dW

]
±

= 0[
dW , Ij

]
±

=
[

dW , Ij
]
±

= Lj , [dW , Ij ]± =
[

dW , Ij
]
±

= 0[
dW , I

0
j

]
±

= Ij ,
[

dW , I
0
j

]
±

= −Ij
[dW ,Lj ]± =

[
dW ,Lj

]
±

= 0[
Ii, Ij

]
±

= fkij I0
k[

Li, Ij
]
±

= −fkij Ik , [Li, Ij ]± = −fkij Ik ,
[
Li, I0

j

]
±

= −fkij I0
k .

(5.15)

While the last two lines simply describe the sl(2) structure of interior contractions and the

obvious action of Lie derivatives respectively, we find it again quite useful to illustrate the

first four lines (i.e., the cohomology of Weyl charges) in a diagrammatic form:

Lj

Ij Ij

I0
j

d
W

d
W

d
W −d

W

(5.16)

where the action of operators on arrows is understood to be via graded commutators. The

reader can ascertain that the structure of (5.15) closely resembles that of the original con-

struction in (3.10) with the increased supercharges and interior contractions. Generalizations

to higher number of topological supercharges is straightforward and are discussed in [20].

Extended equivariant algebra in superspace: Let us now encode all of the above rela-

tion in a compact superspace notation. We start by defining the super-contraction operators

(in analogy with (4.21)):

I̊0
k ≡ I0

k + θ̄ Ik − θ Ik + θ̄θLk ,
I̊k ≡ Ik + θLk ,

I̊k ≡ Ik + θ̄Lk ,
L̊k ≡ Lk .

(5.17)

– 34 –



We have the following identities:[
dW , I̊

0
k

]
±

= ∂θI̊0
k = −I̊k ,

[
dW , I̊

0
k

]
±

= ∂θ̄I̊0
k = I̊k ,[

dW , I̊k
]
±

= ∂θ̄I̊k =
[
dW , I̊k

]
±

= ∂θI̊k = L̊k ,[
dW , I̊k

]
±

=
[
dW , I̊k

]
±

=
[
I̊0
j , I̊0

k

]
±

= 0 ,

(5.18)

which could also be organized in a diagram similar to (5.16). By expanding out these relations

component-wise, we can easily verify the algebra (5.15).

Cartan model of NT = 2 algebra: With these definitions of the NT = 2 algebra we can

pass onto the Cartan construction, which eschews the gauge connections, parameterized here

by the Faddeev-Popov triplet {Ḡ, B,G} in favour of the physical fields in the vector quartet

and ghost of ghost quintet respectively. In analogy with Eq. (3.27), we start by defining

Cartan differentials on the full Weil complex:20

dC = dW +

(
φk +

1

2
[G,G]k

)
Ik +

(
(φ0)k −Bk +

1

2

[
G,G

])
Ik

+

(
ηk −

[
φ+

1

2
[G,G] , G

]k
+
[
G,B − φ0

]k) I0
k +Gk Lk ,

dC = dW +

(
φ
k

+
1

2

[
G,G

])
Ik +

(
Bk +

1

2

[
G,G

]k) Ik
+

([
φ+

1

2

[
G,G

]
, G

]k
+
[
G,B

]k) I0
k +G

k Lk .

(5.19)

such that dC = D̊θ̄(. . .)| and dC = D̊θ(. . .)|. We can now again pass to the Cartan model by

restricting the full Weil complex to the symmetric algebra of g∗. This amounts to setting

Gk = Bk = G
k

= 0 and the Cartan differentials then simply read

dC = dW + φk Ik + (φ0)k Ik + ηk I0
k ,

dC = dW + φ
k Ik .

(5.20)

Given the algebra (5.15) we can immediately check that dC and dC are no longer nilpotent,

but rather generate gauge transformations as before along φ and φ respectively:

d2
C

= φk Lk , d
2

C
= φ

k Lk . (5.21)

This can be stated most compactly by passing to superspace, where we have the following

relations:

D̊2
θ̄ = L̊

F̊θ̄θ̄
, D̊2

θ = L̊
F̊θθ

,
[
D̊θ̄, D̊θ

]
±

= L̊
F̊θθ̄

. (5.22)

20 These expressions can most easily be derived by demanding the consistency condition d
C
Gk = d

C
G
k

=

d
C
Bk = d

C
Gk = d

C
G
k

= d
C
Bk = 0.
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We can extend these relations to involve the action of super-gauge transformations along

arbitrary superfields in the spirit of (4.27):[
D̊θ, L̊Λ̊

]
±

= L̊D̊θΛ̊ ,
[
D̊θ̄, L̊Λ̊

]
±

= L̊D̊θ̄Λ̊ ,
[
L̊Λ̊1

, L̊Λ̊2

]
±

= L̊[Λ̊1,Λ̊2] . (5.23)

Generalities: A few words about this algebraic structure are in order. We have indicated

that in general we can associate with any Lie algebra g a Lie superalgebra ĝ which is simply

a graded structure with elements having grading {0,±1}, via the identification

ĝ = gI−1 ⊕ gL0 ⊕ g
d
W

1 , (5.24)

where the generators of g−1 are the interior contraction operations, the Lie derivations gener-

ate g0, and g1 is thence generated by some nilpotent exterior derivation. This is the structure

of the NT = 1 algebra (3.10).

This algebraic structure is being refined in the NT = 2 case with a further sub-grading of

the Grassmann-odd elements. To wit, one may formally think of the NT = 2 algebra defined

in (5.15) as an iterated superspace construction (cf., [20])

ˆ̂g = gI,I
0,I

(−1,0,1) ⊕ gL0 ⊕ g
d
W
,d

W

(−1,1) , (5.25)

where we have indicated in order the gradings of the interior contractions, the Lie derivation,

and finally the cohomological charges.

From this formal viewpoint any algebraic structure to which we can associate such a

grading of generators allows an interpretation in terms of the extended equivariant cohomol-

ogy algebra. In §6 we proceed to argue that this is indeed the case for the Schwinger-Keldysh

BRST algebra based on the field redefinition redundancies and the KMS conditions, as re-

viewed earlier in §2.

5.3 NT = 2 superfields

We have already indicated that we can express the fields of the NT = 2 superalgebra in

superspace parameterized by θ and θ̄. What remains for us to describe is the explicit compo-

nent forms of these fields. We will first do this explicitly without any gauge fixing and then

indicate the simplifications engendered by passing onto the WZ gauge. The discussion for the

most part will parallel our story in §4; the main novelty is the possibility of moving into two

distinct (anti-commuting) super-directions.

Let us start with a gauge covariant superfield, whose general form is given in (5.2).

We would like to identify the fundamental building blocks of this superfield and isolate the

contributions which arise from the Faddeev-Popov ghost triplet. For the θ and θ̄ components,

one can pretty much guess at the behaviour based on two independent Grassmann directions.

The new ingredient is to ascertain the contribution to the θ̄θ term at the top level. We can

a-priori decide to designate the labels {Fψ,Fψ, F̃} for the covariant components carrying ghost

charge {1,−1, 0} respectively. We can write:

Fψ = D̊θ̄F̊| , Fψ = D̊θF̊| , F̃ = D̊θ̄D̊θF̊| . (5.26)
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By examining our definitions of the FP triplet fields and a bit of algebra one can verify that

the superfield expansion of such a covariant adjoint superfield takes the form:

F̊ = F + θ̄
{
Fψ − [G,F]

}
+ θ
{
Fψ −

[
Ḡ,F

]}
+ θ̄θ

{
F̃− [B,F] +

[
G,Fψ

]
−
[
Ḡ,Fψ

]
+

1

2

[
Ḡ, [G,F]

]
− 1

2

[
G,
[
Ḡ,F

]]}
.

(5.27)

Basically, all terms with the correct ghost number involving the FP triplet appear in the

above expression. One however needs to go through the algebra to ascertain the coefficients.

This exercise can be automated using symbolic packages; we have found it useful to carry out

the exercise in Mathematica (using Matthew Headrick’s Grassmann package).

One can similarly work out the expressions for the gauge potentials. This requires com-

puting not just the curvatures but derivatives of the curvature since the fields that appear

at the top level involve two covariant derivatives on the gauge field. A longer computational

exercise results in (nb: we define the gauge covariant derivative Da ≡ ∂a + [Aa, ·] )

Åa ≡ Aa + θ̄ {λa +DaG}+ θ
{
λ̄a +DaḠ

}
+ θ̄θ

{
Fa +DaB +

[
G, λ̄a

]
−
[
Ḡ, λa

]
+

1

2

[
G,DaḠ

]
− 1

2

[
Ḡ,DaG

]}
, (5.28a)

Åθ̄ ≡ G+ θ̄

{
φ− 1

2
[G,G]

}
+ θ

{
B − 1

2

[
Ḡ,G

]}
− θ̄θ

{
η +

[
Ḡ, φ

]
− [G,B] +

1

2

[
G,
[
Ḡ,G

]]}
, (5.28b)

Åθ ≡ Ḡ+ θ

{
φ̄− 1

2

[
Ḡ, Ḡ

]}
+ θ̄

{
φ0 −B − 1

2

[
Ḡ,G

]}
+ θ̄θ

{
η +

[
G, φ̄

]
−
[
Ḡ, φ0 −B

]
+

1

2

[
Ḡ,
[
Ḡ,G

]]}
. (5.28c)

We won’t write out the position multiplet for the present; the reader can find explicit expres-

sions later in §7 for a one-dimensional target space.

5.4 Wess-Zumino gauge and component maps

Now that we have the superfields we can work out the gauge transformations. We will be brief

since everything works in complete analogy to the discussion in §4.4. On an adjoint superfield

we find the analog of (4.28), which now has a more elaborate expansion in components.

Despite their intricacy it nevertheless follows that a general gauge transformation can be

decomposed as before into Faddeev-Popov boosts and rotations. The gauge transformation

by superfield Λ̊ (generically expanded as in (5.27)) with vanishing bottom component would

act on covariant objects as

F̊ 7→ F̊

{ G 7→ G− Λψ
Ḡ 7→ Ḡ− Λψ

B 7→ B − Λ̃ + 1
2

[
Λψ, G

]
− 1

2

[
Λψ, Ḡ

]
}
,


F

Fψ
Fψ
F̃

 fixed. (5.29)
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Similarly we can check that

ÅJ 7→ ÅJ


G 7→ G− Λψ,

Ḡ 7→ Ḡ− Λψ,

B 7→ B − Λ̃ + 1
2

[
Λψ, G

]
− 1

2

[
Λψ, Ḡ

]
 with


Aa

λa
λ̄a
Fa

&


φ

η

φ0

η

φ̄

 fixed.

(5.30)

Therefore by choosing a gauge parameter

Λ̊FP = θ̄ G+ θ Ḡ+ θ̄θ B (5.31)

we can eliminate the contribution of the FP triplet {G, Ḡ,B} appearing in the superfield

expansions.

Thus as indicated we can absorb the gauge transformation by superfields with no bottom

component into shifts of the FP triplet. Once again we may pass onto the WZ gauge by picking

an appropriate gauge parameter to annihilate the FP triplet, based on the transformations

above. As one can readily appreciate modulo extra fields, the picture here is completely

analogous to the discussion at the end of §4.3. In the WZ gauge, a generic covariant superfield

and the connection 1-form take the simple forms

(̊F)WZ = F + θ Fψ + θ̄ Fψ + θ̄θ F̃ ,

(Å)WZ ≡ (Åa)WZ dσ
a + (Åθ)WZ dθ + (Åθ̄)WZ dθ̄

=
(
Aa + θ λa + θ̄ λa + θ̄θFa

)
dσa +

(
θ φ+ θ̄ φ0 + θ̄θ η

)
dθ +

(
θ̄ φ− θ̄θ η

)
dθ̄ .

(5.32)

It is helpful write these out in component notation as a column vector as depicted in (5.29).

The field strength superfields: For instance the building blocks of superfields which

encode the vector quartet can be captured in the connection and field strength superfields as

Åa :


Aa

λa
λ̄a
Fa

 D̊θF̊θ̄a :


Fa[

φ0, λa
]
−Daη −

[
φ, λ̄a

][
φ̄, λa

][
φ0,Fa

]
+
[
φ̄,Daφ

]
+ [η, λa]

 (5.33a)

F̊θ̄a :


λa
−Daφ

Fa
Daη +

[
φ, λ̄a

]
 F̊θa :


λ̄a

−Daφ
0 −Fa

−Daφ̄[
φ0, λ̄a

]
−Daη −

[
φ̄, λa

]
 (5.33b)
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while the Vafa-Witten quintet fits into the super-components of the field strengths and deriva-

tives thereof:

F̊θ̄θ̄ :


φ

0

−η
0

 F̊θθ̄ :


φ0

η

η[
φ, φ̄

]
 F̊θθ :


φ̄

−η
0[

φ0, φ̄
]
 (5.34a)

D̊θ̄F̊θθ̄ = −D̊θFθ̄θ̄ :


η[

φ, φ0
][

φ, φ̄
]

[φ, η]−
[
η, φ0

]
 D̊θF̊θθ̄ = −D̊θ̄F̊θθ :


η

−
[
φ, φ̄

][
φ̄, φ0

]
−
[
φ̄, η
]
 (5.34b)

Finally the field strength itself has the component decomposition

F̊ab :


Fab

2D[aλb]
2D[aλ̄b]

2D[aFb] +
[
λa, λ̄b

]
−
[
λ̄a, λ

]
 (5.35)

These expressions should suffice for any further computation, since we can again encode the

action of the derivations as maps on the component fields directly.

Component maps for graded operators: We give here the maps that allow the evalua-

tion of the Weil, super-Lie and Cartan operators on covariant superfields. As in §4.4, we wish

to carefully distinguish the operator algebra of {dW , dW , dC , dC , Ik, Ik, I0
k ,Lk} from their rep-

resentation as maps between covariant components of superfields. To this end we introduce

equivalent avatars of these operators, which act more conveniently on superfields via

dW −→ dSK , dW −→ d̄SK , dC −→ DSK , dC −→ DSK ,

I0
k −→ ι0k , Ik −→ ιk , Ik −→ ιk , Lk −→ `k .

(5.36)

The action on component fields of all the right hand side maps is just the one induced by the

left hand side operations. For instance:

dSK :


F

Fψ
Fψ
F̃

 7→


Fψ
0

F̃

0

 , DSK :


F

Fψ
Fψ
F̃

 7→


Fψ
[φ,F]

F̃[
φ,Fψ

]
− [η,F]

 ,

d̄SK :


F

Fψ
Fψ
F̃

 7→


Fψ
−F̃
0

0

 , DSK :


F

Fψ
Fψ
F̃

 7→


Fψ[
φ0,F

]
− F̃[

φ̄,F
][

φ0,Fψ

]
−
[
φ̄,Fψ

]
+ [η,F]

 .

(5.37)
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Note that the superfield maps {DSK ,DSK} are simply representations of the covariant deriva-

tives {D̊θ̄, D̊θ}. In a similar spirit, we can write down the component map representation of

D̊a, which we denote as follows:

Da :


F

Fψ
Fψ
F̃

 7→


DaF

DaFψ + [λa,F]

DaFψ +
[
λ̄a,F

]
DaF̃ + [Fa,F] +

[
λ̄a,Fψ

]
−
[
λa,Fψ

]
 , (5.38)

Similarly, the interior contraction and Lie derivation are captured by the maps:

ιk :


Fi

Fiψ
Fi
ψ

F̃i

 7→


0

−f ikjFj

0

−f ikjF
j

ψ

 , ι0k :


Fi

Fiψ
Fi
ψ

F̃i

 7→


0

0

0

f ikjF
j



ιk :


Fi

Fiψ
Fi
ψ

F̃i

 7→


0

0

−f ikjFj

f ikjF
j
ψ

 , `k :


Fi

Fiψ
Fi
ψ

F̃i

 7→

f ikjF

j

f ikjF
j
ψ

f ikjF
j

ψ

f ikjF̃
j


(5.39)

These relations encode all the transformations of covariantly defined objects (including the

Vafa-Witten quintet and the vector quartet via the definitions (5.8) and (5.9)) and hence

complete our discussion of the NT = 2 algebra. To summarize, the algebra (5.15) now

reads21

d2
SK

= d̄2
SK

=
[
dSK , d̄SK

]
±

= 0

[dSK , ιj ]± =
[
d̄SK , ιj

]
±

= −`j , [dSK , ιj ]± =
[
d̄SK , ιj

]
±

= 0[
dSK , ι

0
j

]
±

= −ιj ,
[
d̄SK , ι

0
j

]
±

= ιj

[dSK , `j ]± =
[
d̄SK , `j

]
±

= 0

[ιi, ιj ]± = −fkij ι0k
[`i, ιj ]± = fkij ιk , [`i, ιj ]± = fkij ιk ,

[
`i, ι

0
j

]
±

= fkij ι
0
k

(5.40)

The algebra itself can be succinctly summarized by writing the gauge covariant derivations

as combinations of ordinary (Weil) derivations and super-Lie derivations along the connec-

tion superfield in the WZ gauge. The analog of (4.37), which defines the component map

representation of the covariant (Cartan) differentials, now takes the form

DSK = dSK − φ
k ιk − ηk ι0k ,

DSK = d̄SK − (φ0)k ιk − φ
k
ιk + ηk ι0k .

(5.41)

21 Note again opposite signs in commutators due to right vs. left action.
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These relations encode the same information as the Cartan differentials in (5.20).22

However, composing various maps to compute covariant derivatives is now much easier:

we simply take the maps as defined above and compose them in the obvious way. As a simple

example, we immediately find the following relations for the covariant differentials:23

D2
SK

= φk `k − ηk ιk , D2

SK
= φ

k
`k − ηk ιk +

[
φ0, φ

]k
ι0k ,[

DSK ,DSK

]
±

= (φ0)k `k + ηk ιk + ηk ιk +
[
φ, φ

]k
ι0k .

(5.43)

This is equivalent to (but much easier to verify than) the operator algebra relations (5.22).

Once more, we recognize this as the statement that covariant derivatives square to gauge

transformations along {φ, φ, φ0} on the subspace of horizontal forms.

22 Note, however, that (5.41) appears to differ from (5.20) at a superficial level. The difference is, of course,

again due to (5.20) giving a relation on the operator algebra (i.e., operators with a ‘right’ action), while (5.41)

relates component maps on superfields (i.e., operators with a ‘left’ action).
23 In writing these expressions we have to pass the Grassmann-odd fields η and η outside the superfield they

act on. This results in a change of sign, so we can mnemonically think of

ηk ιk :


Fi

Fiψ
Fi
ψ

F̃i

 7→


0

0

[η,F]

[η,Fψ]

 (5.42)
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Part III

Thermal equivariant cohomology

6 SK-KMS thermal equivariant cohomology algebra

Now that we have extensively reviewed the well-known framework of equivariant cohomology,

the time has come to demonstrate our basic claim: The SK-KMS superalgebra (2.8) or equiv-

alently (2.15) encoding symmetries of thermal Schwinger-Keldysh theories can be understood

as a special instance of an extended equivariant cohomology algebra.

Rather crucially, the equivariant gauge symmetry, which acts on the algebra of quantum

operators and their low energy realizations, acts differently from the action on spacetime co-

ordinates Xµ as introduced in (3.15). The distinction lies in the fact that the usual discussion

gauges the group action in target space, whereas we will end up gauging a worldvolume action

in thermal equivariant cohomology.

6.1 Identifying SK-KMS symmetries as NT = 2 algebra

The operators involved are the BRST charges arising from the SK field redefinitions and

KMS conditions, {QSK ,QSK ,QKMS ,QKMS} which are all Grassmann-odd, along with the

Grassmann-even generators of thermal translations {LKMS ,Q0
KMS
}. While the SK super-

charges naturally behave as super-derivations, we have also explained how the KMS oper-

ations can be combined to act as superspace operators (2.11), which express the action of

{QKMS ,QKMS ,LKMS ,Q0
KMS
} conveniently. We picked a rather suggestive notation for these

which we reproduce here for convenience:

I̊KMS
0 = Q0

KMS
+ θ̄QKMS − θQKMS + θ̄θLKMS ,

I̊KMS = QKMS + θLKMS ,

I̊KMS
= QKMS + θ̄LKMS ,

L̊KMS = LKMS .

(6.1)

The SK-KMS superalgebra we have seen has the following defining graded commutation

relations:

Q2
SK

= Q2

SK
=
[
QSK ,QSK

]
±

= 0[
QSK , I̊

KMS
]
±

=
[
QSK , I̊

KMS

]
±

= L̊KMS ,
[
QSK , I̊

KMS

]
±

=
[
QSK , I̊

KMS
]
±

= 0[
QSK , I̊

KMS
0

]
±

= I̊KMS ,
[
QSK , I̊

KMS
0

]
±

= −I̊KMS[
QSK , L̊

KMS

]
±

=
[
QSK , L̊

KMS

]
±

= 0[
I̊KMS

, I̊KMS

]
±

=
[
L̊KMS, I̊KMS

]
±

=
[
L̊KMS, I̊KMS

]
±

=
[
L̊KMS, I̊KMS

0

]
±

= 0 .

(6.2)
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where {QSK ,QSK} are understood to act component-wise on the superoperators (which is

equivalent to their acting as {∂θ̄, ∂θ}).
Inspection of the SK-KMS superalgebra (6.2) suggests an analogy with the general equiv-

ariant cohomology algebra (5.15). More precisely consider the superspace version involving

the operators (5.17), which reads

d2
W

= d
2

W
=
[
dW , dW

]
±

= 0[
dW , I̊j

]
±

=
[

dW , I̊j
]
±

= L̊j ,
[
dW , I̊j

]
±

=
[

dW , I̊j
]
±

= 0[
dW , I̊

0
j

]
±

= I̊j ,
[

dW , I̊
0
j

]
±

= −I̊j[
dW , L̊j

]
±

=
[

dW , L̊j
]
±

= 0[
I̊i, I̊j

]
±

= fkij I̊0
k ,

[
L̊i, I̊j

]
±

= −fkij I̊k ,
[
L̊i, I̊j

]
±

= −fkij I̊k ,
[
L̊i, I̊0

j

]
±

= −fkij I̊0
k .

(6.3)

The similarity between (6.2) and (6.3) is quite obvious now. Let us record some salient

features:

• Clearly we should identify the SK BRST charges with the Weil differentials.

• The KMS charges conspire to become the super-interior contractions and super-Lie

derivative operation.

• The first four lines of the algebras obviously agree, while the last lines seems to constrain

the structure constants fkij .

Thus we schematically we have the obvious identifications:

NT = 2 algebra | SK-KMS symmetries

{dW ' ∂θ̄, dW ' ∂θ} ↔ {QSK ' ∂θ̄,QSK ' ∂θ} ,

{I̊k, I̊k} ↔ {I̊KMS, I̊KMS} ,
{L̊k, I̊0

k} ↔ {L̊KMS, I̊KMS
0 } ,

(6.4)

By restriction to ordinary space, it is clear that there is a canonical map between the two

sets of operations, which respects the bigrading structure:

NT = 2 algebra | SK-KMS symmetries

{dW , dW} ↔ {QSK ,QSK} ,
{Ik, Ik} ↔ {QKMS ,QKMS} ,
{Lk, I0

k} ↔ {LKMS ,Q
0
KMS
} .

(6.5)

As we can readily see the KMS supercharges {QKMS ,QKMS} along with the bosonic generator

Q0
KMS

make up the interior contraction operations, while the SK supercharges {QSK ,QSK}
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Im(t)

Re(t)

xi

Figure 2. Illustration of the spacetime picture as it emerges from the proposed KMS gauge invariance.

We upgrade the spacetime manifold on which our quantum system resides to a thermal fibre bundle.

The grey manifold represents a Lorentzian spacetime with a typical Cauchy slice indicated in red.

We assume local thermal equilibrium (as in, e.g., hydrodynamics) at each spacetime point which

guarantees a thermal vector βµ. Geometrically we encode this vector field as a circle fibration with a

thermal circle whose size is set by the local temperature. The KMS transformations we seek implement

equivariance with respect to thermal translations along this local imaginary time circle. Restricting

to a gauge slice corresponds picking a Lorentzian section of this fibration. Note that the size of the

thermal circle is exaggerated; our arguments are clean in the high temperature limit where the size of

the thermal circle is much smaller than the fluctuation scale.

are the standard exterior derivations (the Weil charges). Finally, the Lie derivation can be

naturally identified with LKMS , consistent with our observation that the operator provides a

means of ascertaining the deviation from the exact KMS condition.

Having established this algebra isomorphism, let us address the next question: what

is the SK-KMS algebra equivariant with respect to? We should identify the gauge algebra

to complete the specification of the symmetry of the thermal QFTs. Naively, based on the

vanishing of the structure constants one might conclude that the symmetry algebra is Abelian.

However, before we rush to this conclusion we should be aware that we obtained the SK-KMS

algebra as acting on the operator superalgebra of our quantum system, which is analogous

to M in our discussion of equivariant cohomology. We know from our review in Part II that

the interior contraction operations do not act non-trivially on the topological spaceM. So it

is not entirely clear at this stage whether we should declare the algebra to be Abelian. More

precisely, the superoperators (6.1) annihilate the usual covariant superfields. Effectively, we

appear to have managed to construct the overall algebraic operations without any information

about the underlying gauge structure. Nevertheless, we can recover the requisite information

if we examine the role played by the Lie derivation carefully.

The operator LKMS generates infinitesimal gauge transformations. It acts on Hilbert

space operators O and takes them around the thermal circle; its action is to compute the
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deviation between an operator and its KMS conjugate, for

L̊KMSO̊ = ∆
β
O̊ . (6.6)

As described so far we are considering a single traversal of the thermal circle. While we have

also pretended for the most part to be in global thermal equilibrium, as argued in [1] we

will actually be interested in local thermal equilibrium where the temperature changes from

spacetime-point to spacetime-point. In general we can view a non-equilibrium setting with a

local temperature profile, as a thermal circle bundle over the spacetime manifold, cf., Fig. 2

for an illustration.

The picture may be understood as follows. At each spacetime point we have a local

thermal vector βµ which picks out a local inertial frame and whose magnitude gives us the

local temperature (see [23, 24] for details). If the variations are purely spatial, then we

really have a direct product of Lorentzian time with a Euclidean geometry where the thermal

circle is fibred over the spatial sections, as is appropriate for global thermal equilibrium.

More generally, we simply have a non-trivial thermal fibration over the spacetime manifold

where the QFT resides.24 We tend not to view finite temperature non-equilibrium QFT

geometrically as described above, except in equilibrium, but we will argue that this perspective

offers fresh and useful insight.

Given this set-up, the KMS Lie derivation LKMS takes the operators around the fibres

of the thermal fibration. A-priori we only have discrete transformations along this circle.

One can physically view ∆
β
O as comparing O(t) against O(t − i β), with the latter as the

consequence of the group action, see (2.5).25 While we initially infer the KMS operations by

action along a single thermal period, we can upgrade the traversal of operators around this

circle to involve a local winding number, i.e., consider Ô(t, x)→ Ô(t−im(t, x)β, x) for integer

valued m(t, x). The gauge group we seek for the microscopic theory is the one implementing

these discrete thermal translations. Since there is a simple operation of discrete winding it is

not surprising that the gauge algebra is Abelian.

6.2 Low energy implementation of SK-KMS superalgebra

While it would be instructive to explore this discrete KMS structure in greater detail, we

found it simpler to contemplate the limit where the local temperatures are high compared

to other physical scales of interest. This is the case for instance, if we are interested in the

low energy dynamics of quantum systems at frequencies and momenta low compared to the

thermal scale ω T , k T � 1. In such a limit, the local thermal circle of size β is small since we

24 We make no attempt here to define a pseudo-Riemannian fibre bundle, except to note that we want the

sections to admit Lorentz signature metrics for physical applications.
25 In defining ∆β we have taken care to incorporate the quantum numbers of O, e.g., spin, flavour etc. by

associating with δβ a Lie derivative along a time-like vector field βµ; see [1] for further details. In the Euclidean

formulation of the theory thermal boundary conditions on operators involve twists along the thermal circle

depending on the chemical potential for the flavour charge etc.. The action of ∆β is cognizant of these facts

and we can think of it as a generalized Lie derivation along the Euclidean thermal circle.
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equivalently can imagine being at β � 1, ensuring that there is a local realization of the SK-

KMS superalgebra generators. In particular, the originally non-local operator ∆
β

becomes

local in this limit, i.e., ∆
β
≈ δβ (on bosonic fields).

We physically imagine that the high-temperature limit corresponds to allowing the dis-

crete KMS transformations to become continuous. In other words we propose to gauge

thermal translations; identifying configurations on different Lorentzian sections of the local

thermal fibration. The gauge symmetry we are after is then just the group of thermal trans-

lations along the Euclidean thermal circle. Said differently, we seek to implement the notion

of thermal equivariance and assert that the low energy dynamics is governed by invariance

under an emergent KMS gauge symmetry. The associated gauge group we shall call U(1)T, to

both capture the origins from a circle action and the thermal nature. This structure appears

to play very well in the context of hydrodynamic effective field theories as we explain at the

end.

U(1)T gauge transformations: At this point, it is useful to take this physical picture of

thermal translations as a gauge symmetry and work out the consequences. Firstly, we will

shortly see that it is very useful here to consider explicit gauge parameters. Note that for a

typical Lie derivative in generic equivariant cohomology, the presence of a gauge parameter

yields an anti-symmetric Lie derivation:

LΛ̊ F̊k ≡ Λ̊i Li F̊k = fkijΛ̊
iF̊j ≡

[
Λ̊, F̊

]k
. (6.7)

We will view the action of the KMS Lie derivative (6.6) as the fundamental action of the U(1)T
gauge transformation, which we can upgrade to involve an infinitesimal gauge parameter and

write

LΛ̊O̊ = Λ̊ ∆
β
O̊ ≈ Λ̊ δ

β
O̊ . (6.8)

We have also accounted for the high temperature limit, and will now think of O as quantum

Hilbert space operators in the low energy theory. However, we will continue to write ∆
β

as

the derivation operation below, leaving implicit the approximation ∆
β
≈ δ

β
.

Given this action, it is then easy to work out the adjoint action of U(1)T which encodes

the gauge algebra. On adjoint valued covariant superfields F̊ the U(1)T action can then be

inferred to be

L̊KMS

Λ̊
F̊ = Λ̊ ∆

β
F̊− F̊∆

β
Λ̊ ≡ (Λ̊, F̊)β , (6.9)

where we defined a thermal commutator ( · , · )β, which is anti-symmetric if evaluated on

adjoint superfields, and will play the role of the Lie commutator. One can easily check that

this anti-symmetrization is very sensible as it will, for example, lead to the familiar statement

that the commutator of successive gauge transformations yields a gauge transformation along

the (thermal) commutator:26 [
L̊KMS

Λ̊1
, L̊KMS

Λ̊2

]
±
F̊ = L̊KMS

(Λ̊1,Λ̊2)β
F̊ . (6.10)

26 In fact we could have derived (6.9) by commuting two gauge transformations and reading off the commu-

tator action of one adjoint gauge parameter acting on the other one.
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We summarize these findings by making the following schematic identification:

NT = 2 algebra | SK-KMS symmetries[
F̊1, F̊2

]k
= fkij F̊1F̊2 ↔ (̊F1, F̊2)β = F̊1 ∆

β
F̊2 − F̊2 ∆

β
F̊1

(6.11)

for adjoint superfields F̊1,2.

Thus, while the microscopic discrete KMS symmetry ends up Abelian, the continuum

version displays non-Abelian characteristics. This can be intuited from the fact that the

underlying set of transformations are diffeomorphisms along the thermal circle. At some

heuristic level we should view U(1)T as a deformation of diff(S1). Relations of the KMS

conditions to deformation quantization have indeed been explored in the past [37–40] without

incorporation of the extended symmetry structure we are exploring here. Note also that as

remarked earlier, the above discussion hides the fact that in general ∆
β

compares operators

which are non-locally separated in Euclidean time (see the definition (2.5)). Per se, we

therefore expect that the NT = 2 algebra is realized with a non-local action on the physical

Schwinger-Keldysh theory. These ideas may help us unveil the discrete structure valid outside

the low energy limit.

Returning to our main line of development, we can now take the existence of U(1)T in

the low energy limit to its logical conclusion. The simplest way to proceed is to introduce

a gauge field for the U(1)T symmetry of gauged thermal translations. The construction

of the thermal gauge superfield one-form proceeds exactly as in the general discussion of

equivariant cohomology. That is, we introduce a dodecuplet of fields and arrange them into

gauge field components as in (5.28a)-(5.28c). In the following we will denote the ‘thermal

U(1)T dodecuplet’ by the same letters as in Table 1, but give them a subscript “T” in order

to distinguish them from the general discussion of Part II.27

As an illustration, we can, for example, define now covariant Cartan differentials of the

thermal SK-KMS equivariant theory:

Q ≡ QSK + φ
T
QKMS + φ0

T
QKMS + η

T
Q0
KMS

,

Q ≡ QSK + φ
T
QKMS .

(6.12)

This follows from translating the definition of Cartan differentials as in (5.20) to SK-KMS

context using the identifications in (6.5). From their naturalness in the theory of equivariant

cohomology, we would expect these linear combinations to play a role in the physics of SK

theories. As we will see later, this is indeed the case.28

27 It is amusing to note that the authors of [20] presciently labeled the number of topological symmetries

with a subscript T which does allow a dual interpretation as ‘topological’ or ‘thermal’ depending on one’s

inclination.
28 See also Eq. (A.15) of [10], where the operators {Q,Q} have appeared before in this context. For detailed

comparison, note the following difference in convention between here and reference [10]:

[QKMS ]here = i[QKMS ][10] , [Q
KMS

]here = −i[Q
KMS

][10] , [Q0
KMS

]here = i[Q0][10] . (6.13)
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U(1)T interior contractions: To see the full equivariant structure emerge, we will now

change perspective: instead of thinking about the SK superfield formalism as being one

where all gauge field dependence has been dropped, we will think of the latter actually just

being hidden. The identification of {QKMS ,QKMS ,Q0
KMS
} with interior contractions in (6.5)

forces us to demand that the covariant components of a SK superfield be annihilated by these

operators. To implement this, let us re-write the basic SK superfields (2.9) of the low energy

Hilbert space operators as follows:

O̊ = Oret + θO
G

+ θ̄OG + θ̄θOadv

≡ Oret + θ
{

Ocov.
G
− (G

T
,Oret)β

}
+ θ̄

{
Ocov.
G
− (G

T
,Oret)β

}
+ θ̄θ

{
Ocov.adv − (B

T
,Oret)β +

(
G

T
,Ocov.

G

)
β
−
(
G

T
,Ocov.

G

)
β

+
1

2

(
G

T
, (G

T
,Oret)β

)
β
− 1

2

(
G

T
,
(
G

T
,Oret

)
β

)
β

}
(6.14)

where the covariant components (with superscript ‘cov.’) are annihilated by the interior

contractions:

[QKMS ,O
cov.]± =

[
QKMS ,O

cov.
]
±

=
[
Q0
KMS

,Ocov.
]
±

= 0 (6.15)

for all Ocov. ∈ {Ocov.ret ≡ Oret,Ocov.G
,Ocov.

G
,Ocov.adv }. We can therefore now interpret the operators

{QKMS ,QKMS ,Q0
KMS
} as genuine interior contractions, which annihilate covariant superfield

components and only act non-trivially on the ghost triplet:[
QKMS , GT

]
±
≡ IKMS G

T
= −1 ,

[
QKMS , GT

]
±
≡ IKMS

G
T

= −1

[QKMS , BT
]± ≡ I

KMS B
T

=
1

2
,

[
QKMS , BT

]
±
≡ IKMS

B
T

= −1

2
,[

Q0
KMS

, B
T

]
±
≡ IKMS

0 B
T

= −1 .

(6.16)

We are thus suggesting that the FP triplet of U(1)T ghosts is already hidden in the superfield

structure. We merely have to disentangle covariant and non-covariant pieces, such as OG ≡
Ocov.
G
− (G

T
,Oret)β etc.. After this shift in our point of view, the KMS symmetry generators

have become genuine interior contractions of an equivariant cohomology. Note the following

intriguing feature of this point of view: the non-locality of the ∆
β

action (away from the

high temperature limit) is now hidden within the SK superfield expansion itself. The interior

contractions {QKMS ,QKMS ,Q0
KMS
} have become simple algebraic operators which act locally

on a (slightly non-local) field.

For completeness we note that the computationally most efficient representation of the

various operators in extended equivariant cohomology are the superfield maps described in

§5.4. They all have a natural SK-KMS realization. This gives a third (and, again, equivalent)
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version of the correspondences (6.4), (6.5):

NT = 2 algebra | SK-KMS symmetries

{dSK , d̄SK} ↔ {dSK , d̄SK} ,
{ιk, ιk} ↔ {ιKMS, ιKMS} ,
{`k, ι0k} ↔ {`KMS, ιKMS

0 } .

(6.17)

Given our discussions above, we can view this last diagram as the definition of the SK-KMS

component map operators on the right hand side. The way they act on covariant superfields

should now be clear and can be read off from the general discussion in §5.4.

Hydrodynamic effective field theories: As argued above the structure of thermal equiv-

ariant cohomology appears to be simplest in the high energy limit, whence we obtain the

U(1)T gauge symmetry. We can think of this as being emergent in the low energy limit. As

initially proposed in [23, 24] this thermal gauge symmetry ensures that the theory respects

the microscopic unitarity constraints. We explain these concepts in greater detail in [1], but

it is useful to record here a few salient facts in the context of hydrodynamics.

The dynamical infra-red variables of hydrodynamic effective field theories are Nambu-

Goldstone bosons corresponding to spontaneously broken global diffeomorphism and flavour

symmetries of the doubled Schwinger-Keldysh theory to their diagonal (average). Such a

breaking pattern leads to a set of vector Goldstone modes for diffeomorphisms and scalar

Goldstones for the flavour symmetry. These naturally admit an interpretation in the hydro-

dynamic theory as the velocity rescaled by temperature, βµ = uµ/T , called thermal vector in

[24] and thermal twists Λβ = µ/T − βµAµ which encode the chemical potentials for flavour.

In this sense the low energy dynamics naturally comes equipped with the data that allows us

to use the intuition suggested in Fig. 2.

The hydrodynamic effective field theory is then simply a Landau-Ginzburg sigma model

for the these light modes. The construction of the theory proceeds naturally in terms of a

worldvolume theory (with coordinates σa) analogous to the Nambu-Goto or the RNS model

for the string. On this worldvolume we have a reference thermal vector βa which keeps track

of the local thermal vector, and the physical fields are maps Xµ(σ) from the worldvolume to

the target space (the physical thermal vector is given as the push-forward of the worldvolume

data). On the worldvolume we have a realization of the NT = 2 algebra, which means that in

addition to the dodecuplet of fields in ÅI dz
I we have a matter quartet X̊µ which extends Xµ

in an appropriate manner. In particular the superfield X̊µ(z) transforms in the fundamental

representation of U(1)T, viz., (Λ̊, X̊µ)β = Λ̊ ∆
β
X̊µ.29 We will see a detailed example of this

in §7.

29 This behaviour is different from the transformation of the coordinate field Xµ in standard equivariant

cohomology which transforms as a vector LkXµ = ξµk , see (3.15). The distinction lies in the fact that the

usual discussion gauges the group action in target space, whereas in hydrodynamics we gauge the worldvolume

action of the KMS U(1)T gauge symmetry.
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In [26] we have sketched a construction of the topological sigma model necessary to de-

scribe dissipative hydrodynamics.30 We will give a detailed discussion of the full equivariant

construction in a separate paper, opting for now to describe a much simpler system, a Brow-

nian particle, demonstrating in this classic textbook example the general principles of the

Schwinger-Keldysh theory.

7 Textbook example: Langevin dynamics

We now turn to studying Brownian motion in a thermal background as a paradigmatic exam-

ple, which illustrates the Schwinger-Keldysh structures in a clean and simple fashion. Such

dynamics is described by the Langevin equation for stochastic motion in a medium with fric-

tion. It is well-known that Langevin theory naturally can be written in a form manifesting the

topological symmetries. This was understood in the early analysis of Martin, Siggia, and Rose

(henceforth MSR) [41]. Similar techniques used in this analysis were also employed in the

discussion of disordered systems by Parisi and Sourlas [42] who then went on to demonstrate

that these topological symmetries appear in stochastic systems [43]; their names are usually

associated with the class of structures we describe. Readers unfamiliar with the subject can

find a comprehensive discussion in the textbook [44].31 While these discussions appreciate

the topological BRST charges inherent in the system and make the connection to the super-

symmetric quantum mechanics discussion of [15] manifest, they do not attempt to utilize the

language of the extended equivariant cohomology algebra.

Our rationale for employing the extended NT = 2 algebra is that this system provides

a simple toy model for the more complicated setting of hydrodynamics. As explained in

[10] we can imagine immersing into the fluid probe branes of various codimension. These

probes are buffeted by the thermal and quantum fluctuations undergoing as a consequence a

generalized Brownian motion in the fluid. We therefore have chosen to call them Brownian

branes in recognition of this fact. The worldvolume theory of Brownian branes is an NT = 2

topological sigma model. The simplest of these is the theory of a Brownian particle (a 0-

brane) which undergoes Langevin motion. We will focus on this special case elaborating on

the discussion presented in Appendix A of [10] to illustrate our point. The discussion of the

space filling Brownian brane which is the hydrodynamic effective theory is described in [26].

To keep the discussion simple and not get bogged down in technicalities of the target space

in which the Brownian particle navigates we are going to consider motion in one spacetime

direction. This allows us to write down the effective action without worrying about various

curvature couplings which are present for higher dimensional target space.32

30 For an alternate construction which eschews the idea of thermal equivariance and treats the KMS condition

as a discrete Z2 transformation see [11]. As we discuss elsewhere in the high temperature limit relevant for

hydrodynamics, the two formalisms agree on the supersymmetry algebra of import.
31 These statements are also well known in the topological field theory literature, see [18, 45].
32 Readers familiar with discussions of supersymmetric interpretations of Morse theory [15] will immediately

realize that the theory we are after is given by Witten’s construction.
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With these motivations in mind, consider a Brownian particle which is characterized by

a single degree of freedom, viz., its position X(t). The parameter t should be viewed as the

worldline proper time coordinate, and serves to define an intrinsic clock for the particle. We

will assume that this particle is subject to a time independent (conservative) force, arising

from a potential U(X), in addition to the drag it encounters from the fluid medium it is

immersed in. The stochastic Brownian motion is then described by the Langevin equation:

m
d2X

dt2
+
∂U

∂X
+ ν ∆

β
X = N , (7.1)

where m is the mass, and ν is the viscous friction coefficient responsible for the dissipation

of the particle subject to the forces of the fluid. The right hand side of (7.1) describes

a particular realization of (X-independent) stochastic white noise, drawn from a Gaussian

ensemble, viz.,

P(N) = exp

(
−
ˆ
dt

1

4 ν
N2

)
. (7.2)

We have also written the friction term with the benefit of some hindsight in terms of the

Lie derivative operator ∆
β
. For the most part we will restrict to the high temperature limit,

where

∆
β
≡ −i

(
1− e−iδβ

)
≈ δβ ≡ β

d

dt
. (7.3)

We can think of ∆
β

and β d
dt as being interchangeable, but for the most part work with the

former since it allows a cleaner connection with the algebraic structures we wish to unearth.

An explicit solution of the model would involve solving (7.1) for various different N
and finally taking a statistical average over all the noise realizations in the given ensemble.

Through the fluctuation-dissipation theorem, the width of the Gaussian ensemble will be

linked to the viscosity ν, which has already been incorporated in (7.2). We will now try

to construct an effective action for this dissipative system and show how the fluctuation-

dissipation relation arises as a consequence of the Schwinger-Keldysh supersymmetry.

7.1 The MSR effective action for Langevin dynamics

We first turn to arguing from an alternative perspective that a natural description of the

Brownian particle should have NT = 2 symmetry. The logic we employ is to give a simple

argument that dates back many decades to the work of Martin-Siggia-Rose [41] (see also

[46, 47] and the Parisi-Sourlas construction [43]) who construct a Schwinger-Keldysh effective

action whose dynamics is captured by (7.1).

We will first argue using a familiar trick due to Faddeev-Popov that the canonical effective

action for the Brownian particle involves a quadruplet of fields, {X,Xψ, Xψ, X̃} from an

effective action perspective. As may be envisioned based on our superspace discussions, we

aim to assemble these fields into a single NT = 2 supermultiplet in due course.

We will first construct the effective action following the aforementioned references (see

also [44]) which will allow us to infer the action of the SK and KMS supercharges. To motivate
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this, imagine computing correlation functions for the position at different time instances. This

can be done, for example, by solving the equation (7.1) for a particular noise realization N,

taking the on-shell values of XN(t) and multiplying them out to obtain the correlator. We

then use the given noise probability distribution to evaluate the ensemble average. In other

words we would write:

G(t1, t2, , · · · tm) ≡ 〈X(t1)X(t2) · · ·X(tm)〉N

=

ˆ
[dN]P(N)

(
m∏
i=1

XN(ti)

)

=

ˆ
[dN]P(N)

ˆ
[dX]

(
m∏
i=1

X(ti)

)
δ(X −XN) .

(7.4)

Using the standard identity for delta functionals we can we write delta functional implement-

ing the on-shell condition in terms of the equation of motion (7.1). Writing the Langevin

equation of motion by separating out the non-noise part

EX ≡ −m
d2X

dt2
− ∂U

∂X
− ν∆

β
X , (7.5)

we may re-express our observable as the functional integral:

G(t1, t2, , · · · tm) =

ˆ
[dN]P(N)

ˆ
[dX]

(
m∏
i=1

X(ti)

)
δ (EX + N) det

(
δEX
δX

)
. (7.6)

We are now in a position to introduce the quadruplet. Following the classic Faddeev-

Popov trick we can exponentiate the delta-function with a Lagrange multiplier or Nakanishi-

Lautrup field X̃, and rewrite the determinant in terms of a pair of Grassmann valued scalar

ghosts {Xψ, Xψ} to functionally represent the determinant:

G(t1, t2, , · · ·tm) =

ˆ
[dN]P(N)

ˆ
[dX][dX̃][dXψ][dXψ](

m∏
i=1

X(ti)

)
exp

(
i

ˆ
dt

[
X̃ EX + X̃ N +Xψ

δEX
δX

Xψ

])

≡
ˆ

[dX̊]

(
m∏
i=1

X(ti)

)
exp

(
i

ˆ
dt

[
X̃ EX + i ν X̃2 +Xψ

δEX
δX

Xψ

])
.

(7.7)

To obtain the second line we have performed the integral over the noise field using the Gaus-

sian distribution and also abbreviated the functional integral measure [dX̊] = [dX dX̃ dXψ dXψ].

We can now read off the Lagrangian density for the Langevin dynamics (as obtained by

the MSR construction), which as noted earlier involves the quadruplet of fields:

L
(MSR)
B0 = X̃ EX + i ν X̃2 +Xψ

(
δEX
δX

)
Xψ

= −
[
X̃

∂U

∂X
+Xψ

∂2U

∂X2
Xψ

]
−m

[
X̃

d2X

dt2
+Xψ

d2Xψ

dt2

]
− ν

[
X̃ ∆

β
X −Xψ ∆

β
Xψ

]
+ i ν X̃2 .

(7.8)
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We have used the subscript B0 to alert the reader that the Langevin particle should be thought

of as a Brownian 0-brane. As presaged we have the quadruplet of fields. What remains to be

seen is that they transform in an appropriate fashion under the NT = 2 algebra, which we

now proceed to explain.33

By Taylor expanding (7.8) in the difference field X̃ and expressing the result in terms of

the left-right basis

XR ≡ X −
1

eiδβ − 1
X̃ , XL ≡ X −

(
1 +

1

eiδβ − 1

)
X̃ . (7.9)

we can rewrite L
(MSR)
B0 in terms of the left-right basis and infer the Feynman-Vernon influence

functional (i.e., the part of the Lagrangian which is not of a left-right factorized form). While

it is in principle straightforward to do this for an arbitrary potential U(X), for simplicity we

restrict to the case U(X) = λX2. In this case we find:

L
(MSR)
B0 =

[
m

2

(
dXR

dt

)2

− λX2
R

]
−

[
m

2

(
dXL

dt

)2

− λX2
L

]

− λ (XR −XL)
1− e−iδβ
1 + e−iδβ

(XR −XL)

+ ν

{
−1

2
(XR −XL)

[(
∆

β
− 2i

)
XR +

(
∆

β
+ 2i

)
XL

]}
−mXψ

d2Xψ

dt2
− 2λXψXψ + νXψ ∆

β
Xψ ,

(7.10)

which can be further simplified by using (1 − e−iδβ )(1 + e−iδβ )−1 ≈ iβ
2
d
dt in the second line,

and ∆
β
≈ β d

dt in the third and fourth lines. This Lagrangian consists of the following parts:

(i) the first line denotes the standard Schwinger-Keldysh action of the form L[XR]−L[XL],

(ii) the second and third lines contain the influence functional LIF[XR, XL] which couples

left and right fields in a non-trivial way and is crucial for dissipation (note that we

discarded a total derivative term which derives from rewriting the kinetic terms for

XR,L),

(iii) the last line gives the ghost couplings. As we will see below, these are precisely such

that they render the Lagrangian supersymmetric.

7.2 Equivariance 1: the SK and KMS charges

In this subsection we set up the basic notation for naive transformation rules under the SK

and KMS supercharges. We will defer the issue of gauge covariance to the next subsection.

33 We note in passing that [48] attempt to construct hydrodynamic effective actions by similarly exponen-

tiating the conservation equations. While this is fraught with some subtleties (cf., [24]), it does capture the

general structure, as our analysis will make clear below.
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All expressions in the present subsection should be understood as gauge non-covariant in the

sense that we implicitly set the gauge superfield Å = 0. In §7.3 we will properly define the

gauge transformation in question and covariantize all formulae correspondingly.

Our first task is to introduce the position supermultiplet, which we write as:

X̊(t, θ, θ̄) ≡ X(t) + θ̄ Xψ(t) + θXψ(t) + θ̄θ X̃(t) . (7.11)

The fields {X, X̃} are interpreted as the retarded and advanced fields respectively which turns

out to be the natural basis to describe Langevin dynamics. We can of course relate back to the

Schwinger-Keldysh right/left basis by (7.9), or equivalently by the usual set of (differential)

equations:

∆
β
X ≡ −i (XR − e−i δβ XL) , X̃ ≡ XR −XL . (7.12)

With this structure in mind, we are now in a position to analyze the symmetries of the

Langevin effective action (7.8). From a superspace point of view, all the symmetries are

encapsulated in the simple actions of {QSK ' ∂θ̄, QSK ' ∂θ} on the superfield (7.11) and on

the top interior super-contraction

I̊KMS
0 = Q0

KMS
+ θ̄QKMS − θQKMS + θ̄θLKMS . (7.13)

For completeness we will now nevertheless give the action of the individual Hilbert space

operators.

Firstly, we see using the MSR construction that one can immediately motivate the action

of the SK charges as in Eq. (2.7):

[QSK , X]± = Xψ, [QSK , Xψ]± = 0 ,
[
QSK , Xψ

]
±

= −X̃ ,
[
QSK , X̃

]
±

= 0 ,[
QSK , X

]
±

= Xψ ,
[
QSK , Xψ

]
±

= 0 ,
[
QSK , Xψ

]
±

= X̃ ,
[
QSK , X̃

]
±

= 0 .
(7.14)

Likewise one can argue that the KMS charges ought to act on the fields consistent with (2.7),

viz.,

[QKMS , X]± = 0, [QKMS , Xψ]± = 0 ,
[
QKMS , Xψ

]
±

= ∆
β
X ,

[
QKMS , X̃

]
±

= ∆
β
Xψ ,[

QKMS , X
]
±

= 0 ,
[
QKMS , Xψ

]
±

= 0 ,
[
QKMS , Xψ

]
±

= ∆
β
X ,

[
QKMS , X̃

]
±

= −∆
β
Xψ .

(7.15)

While this takes care of the two interior contractions and the Weil charges, we also need

the third interior contraction. Following the logic outlined in §6 we define the Grassmann-even

supercharge Q0
KMS

to have the following action:[
Q0
KMS

, X
]
±

= 0,
[
Q0
KMS

, Xψ

]
±

= 0 ,
[
Q0
KMS

, Xψ

]
±

= 0 ,
[
Q0
KMS

, X̃
]
±

= ∆
β
X .

(7.16)
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Finally, LKMS simply realizes the democratic action of thermal translations:

[LKMS ,X ]± = ∆
β
X for X ∈ {X,Xψ, Xψ, X̃} . (7.17)

This then completes the quartet of thermal super-translations {QKMS ,QKMS ,LKMS ,Q0
KMS
}.

These fully characterize all translations in the Grassmann-odd and thermal directions, re-

spectively.

7.3 Equivariance 2: the gauge multiplet

What we have uncovered in the previous subsection is the canonical action of the NT = 2

generators on the position multiplet. While this is interesting, the construction there is not

yet fully covariant, as it appears to eschew the gauge multiplet that is canonically present in

the algebra. After all, we have not yet quite spelled out what symmetry we are equivariant

with respect to. The fact that the Lie derivative operator LKMS generates thermal super-

translations is the key to unraveling the structure of the gauge group and writing down a

fully NT = 2 covariant effective action.

We use the observation that in the present (0+1)-dimensional example the Lie derivation

simply acts as ∆
β

= β d
dt and ought to generate the gauge transformations. We can thence

understand the gauge symmetry as being induced by the thermal diffeomorphisms. Following

our previous discussion we will refer to this as the U(1)T KMS gauge invariance. To describe

the algebra we find it convenient to make use of the thermal bracket, which acts to gauge

transform all the matter fields, c.f., §6. Given a gauge parameter Λ̊ (which we take to be

an adjoint superfield here, for the sake of generality) we denote a gauge transformation of a

matter multiplet X̊ via

(Λ̊, X̊)β = Λ̊ £βX̊ = Λ̊ ∆
β
X̊ = Λ̊β

d

dt
X̊ . (7.18)

One may view this as the action of the gauge symmetry on the fundamental representation.

We can work out the analog of the adjoint representation by examining the Wess-Zumino

commutator of the successive gauge transformations as in §6. The Jacobi identity, for instance,

fixes the action of the thermal bracket on another adjoint superfield Λ̊′, so that under an

infinitesimal U(1)T transformation Λ̊′ 7→ Λ̊′ + (Λ̊, Λ̊′)β with

(Λ̊, Λ̊′)β = Λ̊£βΛ̊′ − Λ̊′£βΛ̊ . (7.19)

We are now in a position to remedy the lack of explicit action of the U(1)T symmetry

in §7.2 by incorporating the gauge dodecuplet into the construction. We introduce the gauge

superfield one-form as in (5.3) and the similarly associated field strength and covariant deriva-

tive. The main change from Eqs. (5.4) and (5.5) is that the gauge algebra is generated by

the thermal bracket (7.19) as appropriate for adjoint-valued gauge fields.

While it is possible to write down the full gauge field one-form, to keep the present

discussion under control we are going to exploit the following fact. The Brownian particle
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has a one-dimensional worldline which means that any gauge field associated with it can be

trivially gauge fixed to zero. This implies that we can w.l.o.g. set the temporal component

Åt = 0. Then we are only required to deal with the octet of fields in the Åθ and Åθ̄ superfields.

The structure of the Weil charge action discussed in §6 leads to the construction

Åθ̄ ≡ G
T

+ θ̄

{
φ

T
− 1

2
(G

T
, G

T
)β

}
+ θ

{
B

T
− 1

2
(G

T
, G

T
)β

}
− θ̄θ

{
η
T

+ (G
T
, φ

T
)β − (G

T
, B

T
)β +

1

2
(G

T
, (G

T
, G

T
)β)β

}
Åθ ≡ G

T
+ θ

{
φ

T
− 1

2
(G

T
, G

T
)β

}
+ θ̄

{
φ0

T
−B

T
− 1

2
(G

T
, G

T
)β

}
+ θ̄θ

{
η
T

+ (G
T
, φ0

T
)β − (G

T
, φ0

T
−B

T
)β +

1

2
(G

T
, (G

T
, G

T
)β)β

}
(7.20)

In writing the above we have given a subscript T to the gauge multiplets to denote their

origin from the thermal KMS invariance. The thermal bracket acts on the Grassmann-odd

parameters as in (7.19), but with the usual extra sign; to wit,

(Â, B̂)β ≡ Â∆
β
B̂− (−)AB B̂∆

β
Â (7.21)

for the FP ghosts {G
T
, B

T
, G

T
} as well as the adjoint operators such as the Vafa-Witten

quintet {φ
T
, η

T
, φ0

T
, φ

T
, η

T
}.

With the gauge superfield Å at hand, we can immediately define a gauge invariant field

strength in complete analogy with the field strength in generic extended equivariant coho-

mology, cf., Eq. (5.5):

F̊IJ ≡ (1− 1

2
δIJ)

(
∂IÅJ − (−)IJ∂JÅI + (ÅI , ÅJ)β

)
. (7.22)

The identities of §5.1 (in particular Eq. (5.8)) of course hold for this field strength with the

commutator action given by the thermal bracket.

To construct covariant objects with nice U(1)T transformation properties, we should also

rewrite the position multiplet approrpiately to account for the gauge transformation (7.18).

As explained in §6, the components of the position superfield X̊ as written in Eq. (7.11)

should be decomposed into covariant and curvature pieces. This is necessitated by the idea

that {QKMS ,QKMS ,Q0
KMS
} should act as interior contraction operators and hence annihilate

the covariant components of the superfield. Explicitly, we write this split as follows:

X̊ = X + θ̄ Xψ + θXψ + θ̄θ X̃

≡ X + θ̄

{
Xcov.
ψ −G

T
β
dX

dt

}
+ θ

{
Xcov.
ψ
−G

T
β
dX

dt

}
+ θ̄θ

{
X̃cov. +G

T
β
d

dt

(
Xcov.
ψ
−G

T
β
dX

dt

)
−G

T
β
d

dt

(
Xcov.
ψ −G

T
β
dX

dt

)
−B

T
β
dX

dt
−G

T
G

T
β
d

dt

(
β
dX

dt

)}
.

(7.23)
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The interior contractions {QKMS ,QKMS ,Q0
KMS
} annihilate all the covariant parts, and only

act on the Faddeev-Popov ghost triplet {G
T
, B

T
G

T
} as usual (see (6.16)).

It is now clear that there are some Cartan charges Q and Q, which act as covariant

derivatives:

QF ≡ D̊θ̄ F̊| ≡
(
∂θ̄ F̊ + (Åθ̄, F̊)β

)
| ,

QF ≡ D̊θ F̊| ≡
(
∂θ F̊ + (Åθ, F̊)β

)
| ,

(7.24)

for any superfield F̊ with bottom component F. Here, {Q,Q} are the SK-KMS Cartan

charges, defined via the above equation. Note that this definition of {Q,Q} on any given

field F requires the construction of a superfield F̊ whose bottom component is F̊| = F. Their

corresponding ordinary space expansion in terms of Weil differentials and interior contractions

can be read off from Eq. (5.19); we will, however, not need the latter. We will give a gauge

fixed version of them below.

Partial gauge fixing to Wess-Zumino gauge: We can now continue to work directly

with the multiplets (7.20) and (7.23), but a partial gauge fixing allows for a cleaner pre-

sentation. We realize that in the construction of gauge invariant data we do not need the

Faddeev-Popov ghost triplet. By a procedure completely isomorphic to the discussion in §5.4,

we can perform a Wess-Zumino gauge fixing, where {G
T
, B

T
, G

T
} are set to zero. With this

choice, the field content of our theory simplifies enormously:

(X̊)WZ = X + θ̄ Xcov.
ψ + θXcov.

ψ
+ θ̄θ X̃cov. ,

(Å)WZ = Åt dt+ Åθ dθ + Åθ̄ dθ̄

≡
(
θ φ

T
+ θ̄ φ0

T
+ θ̄θ η

T

)
dθ +

(
θ̄ φ

T
− θ̄θ η

T

)
dθ̄ .

(7.25)

In the following, we will always assume WZ gauge and hence drop the explicit subscript

“WZ” in expressions such as the above. This also means, we can drop the superscript “cov.”,

for the full components agree in WZ gauge with their covariant parts: (Xψ)WZ = Xcov.
ψ etc..

In this Wess-Zumino gauge we can easily evaluate the Cartan charge action. We would

write as before

Q = QSK + φ
T
QKMS + φ0

T
QKMS + η

T
Q0
KMS

,

Q = QSK + φ
T
QKMS ,

(7.26)

so that on the position multiplet the action by SK-KMS Cartan charges {Q,Q} is given by

[Q, X]± ≡ D̊θ̄X̊| = Xψ ,
[
Q, Xψ

]
±
≡ D̊θ̄D̊θX̊| = −X̃ + φ0

T
∆

β
X ,

[Q, Xψ]± ≡ D̊θ̄D̊θ̄X̊| = φ
T
∆

β
X ,

[
Q, X̃

]
±
≡ D̊θ̄D̊θD̊θ̄X̊| = φ0

T
∆

β
Xψ − φT

∆
β
Xψ + η

T
∆

β
X ,[

Q, X
]
±
≡ D̊θX̊| = Xψ ,

[
Q, Xψ

]
±
≡ D̊θD̊θX̊| = φ

T
∆

β
X ,[

Q, Xψ

]
±
≡ D̊θD̊θ̄X̊| = X̃ ,

[
Q, X̃

]
±
≡ D̊θD̊θD̊θ̄X̊| = φ

T
∆

β
Xψ .

(7.27)
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This set of equations was previously written down in [10]. Similarly, (7.24) defines also the

action on the ghost of ghost quintet. Using the superfield expansions (5.34) for gauge invariant

field strength components and acting on them with the covariant derivative maps (5.38), one

can readily verify the following relations:[
Q, φ0

T

]
±
≡ D̊θ̄F̊θθ̄| = η

T
,

[
Q, φ0

T

]
±
≡ D̊θF̊θθ̄| = η

T
,

[Q, φ
T
]± ≡ D̊θ̄F̊θ̄θ̄| = 0 ,

[
Q, φ

T

]
±
≡ D̊θF̊θ̄θ̄| = −ηT ,[

Q, φ
T

]
±
≡ D̊θ̄F̊θθ| = −ηT

,
[
Q, φ

T

]
±
≡ D̊θF̊θθ| = 0 ,

[Q, η
T
]± ≡ D̊

2
θ̄ F̊θθ̄| = (φ, φ0

T
)β ,

[
Q, η

T

]
±
≡ D̊θD̊θ̄F̊θθ̄| = (φ

T
, φ

T
)β ,[

Q, η
T

]
±
≡ D̊θ̄D̊θF̊θθ̄| = (φ

T
, φ

T
)β ,

[
Q, η

T

]
±
≡ D̊2

θ F̊θθ̄| = (φ
T
, φ0

T
)β .

(7.28)

Note that all these transformations ensure that Q2, Q2
,
[
Q,Q

]
±

are pure gauge, i.e., they

generate time translations with gauge parameters φ
T
, φ

T
, φ0

T
respectively. We have now all

the ingredients to formulate the Schwinger-Keldysh effective theory of Langevin dynamics,

using equivariant language.

7.4 Effective worldline action with U(1)T gauge invariance

Our philosophy is to write down a worldvolume theory of the Brownian particle that explicitly

makes manifest the full NT = 2 symmetry. To this end we have already identified the various

fields and their transformation properties in the preceding subsections. We now should simply

enumerate the allowed terms in the worldvolume action that respect the symmetries and

confirm that the resulting Lagrangian describes Langevin dynamics. More precisely, the

resulting Lagrangian should coincide in a suitable sense with the Lagrangian obtained in the

MSR construction, Eq. (7.8).

Following the usual discussion of cohomological field theories we realize that all we need

are terms that areQ andQ exact to appear in the Lagrangian. Since we have already identified

the action of the Cartan supercharges with the superspace covariant derivatives in (7.24), we

can equivalently write down an action that is a superspace density with vanishing ghost

number. The integrals over the supercoordinates {θ, θ̄} would then allow us to reconstruct

the Q and Q action. To wit, the general form of the superspace action should take the form

S
B0

=

ˆ
dt dθ dθ̄ L̊

B0
=

ˆ
dt

[
Q,
[
Q, L̊

B0
|
]
±

]
±

, (7.29)

with total ghost number gh(L̊) = 0.

Having identified that we need to construct a superspace density function L̊
B0

, we can

immediately intuit the set of allowed terms. We have

• Inertial term: These are simply the kinetic terms for the superfield X̊, which for

instance can be m
2

(
dX̊
dt

)2
. More generally, this term can be written in as a functional

of the pullback of the target space metric onto the worldvolume as one expects for sigma

model kinetic terms.
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• Potential term: To account for the external potential felt by the particle in target

space we can introduce a superpotential term U(X̊). Such a term breaks target space

diffeomorphisms, but preserves all the worldline symmetries.

• Friction term: In addition to the superfield X̊ we also have its gauge covariant deriva-

tives D̊θX̊ and D̊θ̄X̊. While neither of these can appear in isolation owing to the fact

that they have non-trivial ghost number, their product is indeed an allowed operator of

ghost number zero. This means that we can include contributions of the form D̊θX̊D̊θ̄X̊
in the action.

These three classes of terms exhaust the possibilities for cohomologically trivial terms as

can be inferred from [20], cf., their Theorem 2.1 (and also the discussion of section 4.3 there).

One can also understand these in terms of the supersymmetric quantum mechanics theory as

in [15]. For the Brownian particle to reproduce the dynamics of the Langevin equation (7.1)

we should simply make some specific choices for the three classes of allowed terms, leading to

S
B0

=

ˆ
dt dθ dθ̄

m2
(
dX̊

dt

)2

− U(X̊)− iν D̊θX̊ D̊θ̄X̊


=

ˆ
dt

[
Q,

[
Q, m

2

(
dX

dt

)2

− U(X)− iν XψXψ

]
±

]
±

.

(7.30)

We now turn to a discussion of various features that can be derived from the action (7.30).

Relating back to MSR construction: We start by relating the action (7.30) back to the

MSR construction, which led to the Lagrangian (7.8). It is straightforward to either perform

the superspace integral, or implement the action of Q, Q in order to obtain the real space

Schwinger-Keldysh action from (7.30). Doing either of these exercises, we find

S
B0

=

ˆ
dt

{
−m

(
X̃
d2X

dt2
+Xψ

d2Xψ

dt2

)
−
(
X̃
∂U

∂X
+Xψ

∂2U

∂X2
Xψ

)
− i ν

[
− X̃2 + φ

T
Xψ∆

β
Xψ + φ0

T
X̃∆

β
X − φ

T
φ

T
(∆

β
X)2

+ (η
T
Xψ + η

T
Xψ)∆

β
X − (φ0

T
Xψ − φT

, Xψ)∆
β
Xψ

]}
,

(7.31)

where we discarded some total derivative terms. Structurally, this is similar to the MSR

Lagrangian constructed earlier in (7.8) but there are various additional contributions from

the ghost of ghost quintet as expected. To truncate to the MSR action, we can consider gauge

fixing the above Lagrangian with the choice:

φ
T

= η
T

= η
T

= φ
T

= 0 , 〈φ0
T
〉 6= 0 , (7.32)
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where we are eliminating all the ghost of ghost fields carrying non-vanishing ghost number and

are only allowing the possibility for the single field φ0
T

to acquire a non-vanishing expectation

value. With this choice we find

S
B0

∣∣∣∣
fixed

=

ˆ
dt
{
−m

(
X̃
d2X

dt2
+Xψ

d2Xψ

dt2

)
−
(
X̃
∂U

∂X
+Xψ

∂2U

∂X2
Xψ

)
− i ν

(
− X̃2 + 〈φ0

T
〉 X̃∆

β
X − 〈φ0

T
〉Xψ∆

β
Xψ

)}
,

(7.33)

where ‘fixed’ refers to the gauge fixing (7.32). At this point we can decouple the interactions

between the difference field X̃ and the rest of the multiplet by using a Hubbard-Stratonovich

noise field N. This allows us to absorb the terms quadratic in the fluctuation field X̃ and

write (7.33) in the form

S
B0

∣∣∣∣
fixed

=

ˆ
dt

{(
−m d2X

dt2
− ∂U

∂X
− i ν 〈φ0

T
〉∆

β
X + N

)
X̃

−Xψ

(
m

d2

dt2
+
∂2U

∂X2

)
Xψ + i ν 〈φ0

T
〉Xψ∆

β
Xψ +

i

4ν
N2

}
.

(7.34)

From this form of the Lagrangian, we can immediately see that we have achieved our

goal: variation with respect to the difference field X̃ gives exactly the dissipative Langevin

equation of motion (7.1), if we choose φ0
T
’s vev to be:

〈φ0
T
〉 = −i . (7.35)

With this choice, we recognize the gauge fixed action (7.33) as being precisely the MSR

effective action (7.8). In effect the origin of dissipative term in the Langevin dynamics can

be associated with a ghost condensate. Note that of the various fields in the gauge multiplet,

φ0
T

has a distinguished role; it is a covariant field strength of the underlying gauge symmetry

(5.8) and has vanishing ghost number. We will argue momentarily that the vev (7.35) should

be viewed as arising from spontaneous breaking of microscopic CPT invariance in the system.

For completeness, we can write down the equations of motion for the remaining fields by

varying, for example, Eq. (7.34):

m
d2X

dt2
+
∂U

∂X
+ ν ∆

β
X = N ,

m
d2Xψ

dt2
+
∂2U

∂X2
Xψ − ν∆

β
Xψ = 0 ,

m
d2Xψ

dt2
+
∂2U

∂X2
Xψ + ν∆

β
Xψ = 0 ,

m
d2X̃

dt2
+
∂2U

∂X2
X̃ +

∂3U

∂X3
(XψXψ)− ν∆

β
X̃ = 0 ,

(7.36)

where we used (7.35). One can immediately make various simple consistency checks of the

BRST supersymmetry structure; e.g. all fields of the position multiplet have the same mass.
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We note that the convergence of the path integral with action (7.34) forces a sign on

the viscous coefficient ν; indeed, inspection of the ghost kinetic term requires that ν ≥ 0

for the action to be well-defined. This is the first sign for a second law statement. As a

consequence, we realize the following intriguing feature of (7.36): while the fields X and Xψ

are damped (i.e., they dissipate with a friction +ν), the ghost Xψ and the fluctuation field

X̃ are anti-damped, i.e., they anti-dissipate (they come with a coefficient −ν).

Superspace dynamics: Instead of performing the superspace integral in (7.30) and work-

ing in real space, we could also just work in superspace to check that (7.30) is indeed the

correct Lagrangian for Langevin dynamics. To wit, we can compute the Lagrangian equations

of motion for X̊. Varying the action with respect to X̊, we find

δX̊ SB0
=

ˆ
dt dθ dθ̄

{(
−m d2X̊

dt2
− ∂U

∂X̊
+ i ν (D̊θD̊θ̄ − D̊θ̄D̊θ) X̊

)
δX̊ + · · ·

}
, (7.37)

where the ellipses indicate total derivatives terms of the form D̊θ(. . .), D̊θ̄(. . .), or d
dt(. . .).

Since we will eventually set φ
T

= η
T

= η
T

= φ
T

= 0 and φ0
T

= −i, it is clear that none of

these total derivatives will contribute to equations of motion. If we use

(D̊θD̊θ̄ + D̊θ̄D̊θ) X̊ = (F̊θθ̄, X̊)β = (φ0
T

+ . . .) ∆
β
X̊ , (7.38)

where . . . denotes terms vanishing in the limit (7.32), we see that the equation of motion in

(7.37) gives:

−m d2X̊

dt2
− ∂U

∂X̊
− i ν 〈φ0

T
〉∆

β
X̊ = −2i ν D̊θD̊θ̄X̊ . (7.39)

If we now project down to real space, using the identity D̊θD̊θ̄X̊| = X̃, this gives a real space

equation of motion:

m
d2X

dt2
+
∂U

∂X
+ i ν 〈φ0

T
〉∆

β
X = 2i νX̃ . (7.40)

With the identification (7.35), this is precisely the Langevin equation (7.1) where the noise is

realized by the difference field. This relation can be confirmed by comparing the real space

action with Hubbard-Stratonovich noise (7.34) with the previous (7.33), where we can indeed

identify N ' 2i ν X̃ up to a constant renormalization of the path integral measure. This again

establishes the basic idea of the fluctuation dissipation theorem and the fact that X̃ should

be thought of as the fluctuation field.

7.5 Fluctuation-dissipation theorem and Jarzynski work relation

The fluctuation-dissipation theorem gives a relation between the friction coefficient responsi-

ble for the latter and the stochastic or thermal fluctuations. It is immediate to see this from

the effective action; indeed, the dissipative coefficient ν determines the width of the Gaussian

of the statistical noise fluctuations in (7.34). More precisely, the action tells us that the noise
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correlations are Gaussian with 〈N N〉 ∼ ν as presaged in (7.2). It is rather remarkable that all

these features are encoded in the simple and elegant superspace Lagrangian (7.30). In fact,

below we will derive further consequences and a precise version of the fluctuation-dissipation

theorem from the symmetries of the Lagrangian.

We also should highlight the fact that φ0
T

takes a non-zero expectation value as in (7.35) is

a tantalizing feature of the formalism. As indicated this expectation value can be seen as the

order parameter for dissipation through a spontaneous breaking of CPT invariance. The rich

phenomenology of such a symmetry breaking pattern is briefly mentioned in [26], following

earlier observations in the statistical physics literature; we sketch some of its consequences

below.

As an application and as a demonstration of the power of the supersymmetric formulation

of SK Langevin dynamics, we will now derive a second law statement in the form of Jarzynski’s

non-equilibrium work relations [49, 50]. We remind the reader that these relations encode a

general form of out-of-equilibrium fluctuation-dissipation results. They can equivalently be

stated in terms of the ratio of probability distributions of work done under a given dynamical

protocol and its time-reversed counterpart, which go by the name of Crooks relations [51].

To understand these statements let us allow for an explicitly time-dependent potential

U(X(t), t). We assume that at initial time ti, the system is in thermal equilibrium. During

ti < t < tf the external potential drives the system away from equilibrium and does work

on our system. At t = tf the sources are switched off and we let the system relax back

to some new equilibrium state (characterized by a different free energy) which is attained

asymptotically. What we are interested in is to characterize the work done by the source in

the time it is turned on, averaging over various protocols to go from the chosen initial state to

the instantaneous state at the end of the period of the sourcing. As such we expect to generate

some free energy, which we can take to be the difference between the instantaneous value at

t = tf (which we note differs from the asymptotic late time free energy after re-equilibration)

and the initial free energy. This difference only depends on the instantaneous data at the two

times corresponding to the start and end of the disturbance. The key insight of Jarzynski

was to relate this quantity to the ensemble average of the work done, cf., (7.51), which then

effectively tells us about the entropy generated in the process of driving the system, cf., (7.52).

One can essentially view the relation as a formalization of the second law of thermodynamics

with a suitable notion of averaging over protocols.

We will now derive Jarzynski’s theorem as the supersymmetric Ward identity associated

with CPT transformations following the discussion of [52]. A very nice discussion of CPT

transformations an their implications for driven systems is given in [53, 54]. We will adapt

their language to our Schwinger-Keldysh and superspace discussion.34

Let us start by defining time reversal in our formalism. Let us first recall the definition

34 The discussion below has been modified in version 3 to make clear the role of CPT transformations and

U(1)T thermal symmetries. We also refer the reader to discussions of KMS transformations and its inter-

relation with the Schwinger-Keldysh formalisms in the discussion of [52] and [55] quite useful in the following.
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of SK time-ordering in generic correlation functions:

〈TSK O(1)
R · · ·O

(n−k)
R O(n−k+1)

L · · ·O(n)
L 〉 = Tr

{
T
(

Ô(1) · · · Ô(n−k)
)
ρT T̄

(
Ô(n−k+1) · · · Ô(n)

)}
,

(7.41)

where T and T̄ denote standard time ordering and anti-time ordering, respectively, and we

abbreviate O(q) ≡ O(q)(tq). Effectively, we will be considering a CPT transformation. As

explained in §8 of [1] we can implement CPT on the SK path integral via an exchange of

sources:

CPT : ZSK [JR,JL] 7→ ZSK [JL,JR]∗ . (7.42)

This means that we can define a reversed SK time ordering, T SK defined as35

〈T SK O(1)
R · · ·O

(n−k)
R O(n−k+1)

L · · ·O(n)
L 〉 = Tr

{
T
(

Ô(n−k+1) · · · Ô(n)
)
ρT T̄

(
Ô(1) · · · Ô(n−k)

)}
,

(7.43)

In this implementation of CPT time does not actually get reversed. Instead we effectively

traverse the SK contour in the opposite direction. To make contact with the supersymmetric

formulation of the theory, we now focus on the generating functional with explicit sources

from which correlators such as the above can be computed by taking functional derivatives.

To write this down, let us first introduce some notation for the coupling of the Langevin

theory to external sources:

ZSK [J̊ ] ≡ Tr

{
ρT TSK exp

(
iS

B0
[X̊, D̊θX̊, D̊θ̄X̊]− i

ˆ
dt dθ dθ̄ J̊ X̊

)}
. (7.44)

At the level of the generating functional, CPT then acts as follows:

CPT : ZSK [J̊ ] 7→ Tr

{
ρT T SK exp

(
iS

B0
[X̊, D̊θ̄X̊, D̊θX̊]− i

ˆ
dt dθ dθ̄ J̊ X̊

)}
. (7.45)

Note that the sign in front of the action does not change as the sign flip of i is compensated

for by a sign flip in the measure of the superspace integral.

To probe the spontaneous breaking of CPT in our dissipative system, we now consider a

particular U(1)T transformation in the CPT transformed theory. The U(1)T transformation

we will be considering corresponds to choosing a U(1)T gauge parameter Λ̊ = −θ̄θFθθ̄ ≡
−θ̄θ φ0

T
,36 which has the effect of shifting top components of superfields by a time derivative.

This is a useful symmetry transformation to consider because it allows us to probe the spon-

taneous breaking of (7.45) by giving a CPT breaking expectation value to φ0
T
. Further, it is

35 For simplicity, we assume that operators are real here.
36 We recall that we made a choice in the presentation of the NT = 2 equivariant cohomology algebra

where we chose representatives that were not manifestly covariant with respect to the sl(2) automorphism,

c.f., footnote 19. The reason was to ensure a simple action of CPT symmetry along one of the generators φ0
T
.
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simple enough to lead us to Jarzynski’s equality. If we combine this U(1)T transformation

with the action of CPT as described above, we end up with the following Z2 transformation:

U(1)T ◦ CPT :
{
φ

T
, η

T
, φ0

T
, η

T
, φ

T

}
7→
{
φ

T
, η

T
, φ0

T
, η

T
, φ

T

}
,{

i; θ, θ̄; TSK , T SK
}
7→
{
−i; θ̄, θ; T SK , TSK

}
,

X̊ 7→ X̊ − θ̄θ φ0
T

∆
β
X ,

D̊θX̊ 7→ D̊θ̄X̊ − θ̄θ φ0
T

∆
β
Xψ ,

D̊θ̄X̊ 7→ D̊θX̊ − θ̄θ φ0
T

∆
β
Xψ .

(7.46)

We have chosen to not indicate the superfields in the last terms of the r.h.s. since the explicit

θ̄θ ensures that we end up only with the bottom component of the corresponding superfield.37

Given the symmetry transformation, we can compute the change in the action (7.30).

The fact that we are shifting the entries by a term proportional to θ̄θ is now helpful. We find

that the change can be expressed quite simply as

U(1)T ◦ CPT : iS
B0
7→ i S

B0
− i〈φ0

T
〉β
(
Gf −Gi +W

)
. (7.47)

We have expressed the change in terms of quantities appearing in the Jarzynski relation. The

difference in free energy G between initial time (at t = ti) and the instantaneous final state

(at t = tf ), and the total work done W , are respectively given by

Gf −Gi =
[m

2
(∆

β
X)2 − U(X(t), t)− i ν XψXψ

]tf
ti
,

W =

ˆ tf

ti

dt
∂U(X(t), t)

∂t
.

(7.48)

By giving explicit time dependence to the potential, we essentially mean that the system is

coupled to an external source, for instance:

ˆ tf

ti

dt
∂U(X(t), t)

∂t
≡
ˆ tf

ti

dt
dJ (t)

dt
X(t) = −

ˆ tf

ti

dt J (t)
dX(t)

dt
, (7.49)

where J = J̊ | is the “retarded” source. Note that the free energy difference takes a very

intuitive form: it is simply the free energy density defined by the Lagrangian (7.30) evaluated

at the initial and final times of the evolution protocol. Similarly, the work done is just the

non-conservative part of the potential integrated along the evolution protocol.

From (7.47) we see that if 〈φ0
T
〉 = 0, then the system S

B0
is just invariant. However, as

described before, this choice is not consistent with the usual picture of thermal fluctuations.

Following (7.35), we therefore set 〈φ0
T
〉 = −i. We now see that this choice is associated with

a spontaneous breaking of CPT symmetry.

37 We note that we could combine U(1)T with a different discrete symmetry to derive similar results. We

will elaborate on this briefly at the end of the present section.
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As a Ward identity for the U(1)T+CPT symmetry, we conclude the following from (7.47):

Tr
{
ρT TSK ei(SB0

−
´
J̊ X̊)e−i φ

0
T
βW
}

= e−β(Gf−Gi) Tr
{
ρT T SK ei(SB0

−
´
J̊ X̊)

}
. (7.50)

By choosing not to take any functional derivatives, we find the Jarzynski equation:〈
e−βW

〉
= e−β (Gf−Gi) . (7.51)

The right hand side of this equation describes the difference in free energy between the

two equilibrium states at times t = ti and t = tf . The left hand side then corresponds

to the work done as a statistical average over all protocols going between these equilibrium

configurations. We therefore have a remarkable relation between the work done (averaged over

generic non-equilibrium protocols) on one hand, and difference in free energies of equilibrium

configurations on the other hand. This relation should be thought of as a Ward identity in

the CPT broken phase, associated to the supersymmetry of the system.

The equality (7.51) is known to be the appropriate version of the second law in statistical

systems out of equilibrium (even far from equilibrium): while both entropy producing and

entropy destroying processes are in principle allowed, the former are exponentially more likely

to occur. Indeed, we can apply the standard Jensen inequality 〈ex〉 ≥ e〈x〉 to (7.51) and find

〈W 〉 ≥ Gf −Gi , (7.52)

which is, of course, the familiar statement that the second law of thermodynamics is respected

in a statistical sense. We hence see that in a modern path integral formulation, the second

law of thermodynamics is fundamentally not an inequality, but should be thought of as an

equality relating statistical quantities.

Finally, let us derive a set of off-equilibrium thermal sum rules. By this we mean cer-

tain correlator identities which are enforced by the symmetries of the system. By taking n

functional derivatives of (7.50) with respect to J , we find:〈
TSK

n∏
k=1

(
X̃(tk) + iβ

dX(tk)

dt

)
e−WJ

〉
= 0 , (7.53)

where we used the fact that 〈T SK
∏n
k=1 X̃(tk)〉 = 0 due to unitarity. The vanishing of these

correlators encodes non-equilibrium Ward identities of the equivariant cohomology underlying

the thermal physics. We give an alternative derivation of this identity in Appendix C, using

only the action of the supersymmetry generators Q, Q.

Addendum: In the previous version of this review, we used a slightly different symmetry

to derive the Jarzynski relation. Instead of the implementation of CPT as defined by (7.42),

we chose to consider the linear time reversal transformation38

T : t 7→ −t , θ 7→ θ̄ , θ̄ 7→ θ . (7.54)

38 Note further that the previous versions of this paper had a typo: time reversal as used here is linear, in

particular it does not involve mapping i 7→ −i.
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Combined with the U(1)T transformation advocated above, this leads to the transformation

U(1)T ◦ T :
{
φ

T
, η

T
, φ0

T
, η

T
, φ

T

}
7→
{
φ

T
, η

T
, φ0

T
, η

T
, φ

T

}
,

X̊(t) 7→ X̊(−t)− θ̄θ φ0
T

∆
β
X(−t) ,

D̊θX̊(t) 7→ D̊θ̄X̊(−t)− θ̄θ φ0
T

∆
β
Xψ(−t) ,

D̊θ̄X̊(t) 7→ D̊θX̊(−t)− θ̄θ φ0
T

∆
β
Xψ(−t) .

(7.55)

This transformation can also be used to derive the Jarzynski relation, by following the same

arguments as in [52].39 This ambiguity can be traced back to the fact that implementation

of CPT in Schwinger-Keldysh formalism is not unambiguous (see §8 of [1]). With the benefit

of hindsight, we find it most natural in the superspace formalism to work with the CPT

symmetry as in (7.46).

8 Discussion

In this paper we have reviewed both the supersymmetric algebraic structure underlying any

Schwinger-Keldysh theory with a KMS condition, and the language of equivariant coho-

mology. We have then shown that the SK-KMS symmetries generate precisely the algebra

relevant for an NT = 2 equivariant construction. We used these insights to formulate a world-

line theory of Brownian motion as a gauged sigma-model. The main physical insight is that

the symmetry which is being gauged is a U(1)T invariance under thermal translations. This

structure is then tight enough to constrain the set of possible worldline theories consistent

with the symmetries to correspond precisely to the Brownian particle theory.

We believe that the scope of this formalism extends far beyond the simple example

of Langevin dynamics. As explained in [1] there is a wide range of problems, which one

can address using the SK formalism. The reformulation of standard SK rules in terms of

BRST supercharges and the associated algebraic structures might be extremely useful in

addressing certain problems such as renormalization group flow in SK theories. The most

direct generalization of ideas presented in the present paper, was initiated in [26], where

we upgraded the construction of the dissipative 0-brane (i.e., the Brownian particle) to the

dissipative sector of the sigma-model of a space-filling brane (i.e., hydrodynamics).40 In case

of the 0-brane we saw explicitly in the present paper that the number of all possible terms in

the supersymmetric Lagrangian is highly constrained. In a similar spirit, the dissipative sector

of hydrodynamics was exhaustively explored in [26], with the main new ingredient being the

non-linearity introduced by generic dissipative transport coefficients. A similarly exhaustive

analysis of the adiabatic transport in hydrodynamics will be an important future problem.

Eventually, the most general higher dimensional non-linear generalization of our B0-brane

39 The symmetry (7.55) is also relevant in other recent discussions of dissipative effective field theories. It

corresponds to the ‘dynamical KMS symmetry’ discussed in [11].
40 A related discussion for construction of dissipative hydrodynamic effective actions appears in [11]. We

also note that [48] directly attempt to use the MSR construction on the hydrodynamic equations of motion.

We will explain the connections between these approaches elsewhere.
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action (7.30) should reproduce all of hydrodynamic transport as classified exhaustively in

[23, 24].

Finally, our discussion was restricted to thermal correlation functions computed in the

Schwinger-Keldysh formalism, which leads to NT = 2 equivariant cohomological structures.

In the classification of balanced topological field theories [20] argue for natural generaliza-

tions to higher numbers of topological charges. We argue in [1] that these the extended

algebraic structures are relevant for the computation of out-of-time-order correlation func-

tions in thermal and near-thermal systems. It is interesting to speculate that the NT = 2k

thermal equivariant cohomology theory could shed light on k-fold out-of-time-order corre-

lation functions, which appear to be useful probes to understand chaos and scrambling in

quantum systems. In particular, perhaps constraints arising from NT = 4 thermal equivariant

cohomology directly give the chaos bound [56]. We hope to report on these issues in the near

future.
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A Algebra with explicit gauge parameters

We can extend the algebraic relations of §3 to involve a gauge transformation parameter αj

(which may depend on the coordinates ofM) and consider the Lie derivation and contraction

along α = αjtj ∈ g.

Graded algebra discussion: Let us define first the contraction operator I E

α ≡ αj ⊗ I E

j ,

to act as

I E

αG
i = −(−)α αi , I E

αφ
i = 0 . (A.1)

where we have allowed for the possibility of α being Grassmann odd and incorporated its

intrinsic Grassmann parity into the definition. The Lie derivation operation then follows by
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taking the definition in terms of the graded commutator between the Weil differential and

the interior contraction, viz., we get

LE

αG
i =

[
dE

W
, I E

α

]
±
Gi = f ijkα

j Gk ,

LE

αφ
i =

[
dE

W
, I E

α

]
±
φi = f ijkα

jφk .
(A.2)

We recognize these as the correct gauge transformation for the connection and curvature.

Note that the algebra (3.10) is equivalent to[
I E

α , I
E

β

]
±

= 0 ,
[
dE

W
, I E

α

]
±

= LE

α ,[
LE

α, I
E

β

]
±

= −I E

[α,β] ,
[
dE

W
,LE

α

]
±

= 0 ,[
LE

α,L
E

β

]
±

= −LE

[α,β] ,
[
dE

W
, dE

W

]
±

= 0 ,

(A.3)

where [α, β] ≡ (fkijα
iβj)tk.

Superspace discussion: Similar arguments lead to a generalization of the superspace op-

erations to involve an explicit gauge parameter. For instance, the super-contraction operator

of §4.3 reads

I̊α ≡ Iα + θ̄Lα ≡ αk
(
Ik + (−)αθ̄Lk

)
, (A.4)

This super-operator has the expected action our fundamental field content:

I̊αF̊ = 0 , I̊αÅJ = −(−)α δJθ̄ α , I̊αX̊µ = 0 . (A.5)

B Mathai-Quillen conjugation and the BRST model

In this appendix we establish a third model of equivariant cohomology, viz., the BRST model

[20], which is useful in some instances.

Mathai-Quillen conjugation in NT = 1 equivariant cohomology: To obtain the BRST

model, one defines the BRST differential via the following ‘Mathai-Quillen conjugation’:

dBRST ≡ e
−Gi⊗(Ii)M dW eG

i⊗(Ii)M = dW −G
k ⊗ (Lk)M + φk ⊗ (Ik)M . (B.1)

The interior contraction, Lie derivative and Cartan differential can be conjugated in a similar

fashion:

(Ik)BRST ≡ e
−Gi⊗(Ii)M Ik eG

j⊗(Ij)M = I E

k ⊗ 1M ,

(Lk)BRST ≡ e
−Gi⊗(Ii)M Lk eG

j⊗(Ij)M = Lk ,

(dC)BRST ≡ e
−Gi⊗(Ii)M dC e

Gi⊗(Ii)M = dBRST +Gi (Li)BRST +
1

2
fkijG

iGj (Ik)BRST .

(B.2)
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On various fields, the differentials dBRST and (dC)BRST act the same way as dW and dC with

the following exceptions:

dBRSTX
µ = ψµ

W
−Gkξµk , (dC)BRST X

µ = ψµ
W
,

dBRSTψ
µ
W

= φkξµk −G
k ψσ

W
∂σξ

µ
k , (dC)BRST ψ

µ
W

= φkξµk .
(B.3)

Finally, we can easily infer that the conjugation map acts on p-forms as a basis change between

Weil and Cartan bases:

e−G
i⊗(Ii)M Vψ

C
eG

i⊗(Ii)M = Vψ
W
, (B.4)

using the notation of (3.16).

A similar construction can be made for NT = 2 algebras.

C Off-equilibrium sum rules as supersymmetry Ward identities

In this section we elaborate on the Ward identities associated with the Langevin action S
B0

and its invariance under Q and Q. These can be stated as n-point correlation function

identities which include the off-equilibrium version of the fluctuation-dissipation theorem as

a special case for n = 2. We will also give an alternative derivation of the correlator identities

(7.53). The content of this appendix is essentially a review of the discussion of [52] (see their

section III) to make the connection with our superspace formalism precise.

Working to linear order in an infinitesimal parameter ε (with Grassmann parity 1), in-

variance of S
B0

under the supersymmetry generator Q implies:

ZSK [J̊ ] = Tr

{
ρT TSK exp

[
i S

B0
[X̊ + ε D̊θX̊]− i

ˆ
dt dθ dθ̄ J̊ X̊

]}
= Tr

{
ρT TSK exp

[
i S

B0
[X̊]− i

ˆ
dt dθ dθ̄ J̊ (X̊ − ε D̊θX̊)

]}
= Tr

{
ρT TSK

(
1− ε

ˆ
dt dθ dθ̄ J̊ D̊θX̊

)
exp

[
i S

B0
[X̊]− i

ˆ
dt dθ dθ̄ J̊ X̊

]}
.

(C.1)

Using that ε was an arbitrary parameter, we infer:

0 = Tr

{
ρT TSK

(ˆ
dt dθ dθ̄ J̊ D̊θX̊

)
exp

[
i S

B0
[X̊]− i

ˆ
dt dθ dθ̄ J̊ X̊

]}
=

ˆ
dt

{
J̃ δZSK

δJψ
− Jψ

(
δZSK
δJ

− φ0
T
∆

β

(
δZSK
δJ̃

))
+ J φ0

T
∆

β

(
δZSK
δJψ

)}
.

(C.2)

where we only keep track of φ0
T
, but not of the other fields of the Vafa-Witten quintet (which

we will eventually set to zero).

Repeating the same argument with Q instead of Q, we conclude analogously:

0 =

ˆ
[DX̊]

(ˆ
dt dθ dθ̄ J̊ D̊θ̄X̊

)
exp

{
i S

B0
[X̊]− i

ˆ
dt dθ dθ̄ J̊ X̊

}
=

ˆ
dt

(
J̃ δZSK

δJψ
− Jψ

δZSK
δJ

)
.

(C.3)
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To relate the Ward identities (C.2) and (C.3), we now act with δ2

δJψ(t)δJ̃ (t′)
on (C.2) and

subsequently set the sources to zero. This gives:

0 =
δ2ZSK

δJψ(t)δJψ(t′)
− δ2ZSK
δJ (t)J̃ (t′)

+ φ0
T

δ

δJ̃ (t′)
∆

β

(
δZSK
δJ̃ (t)

)
. (C.4)

Similarly, we can act with δ2

δJ̃ (t)δJψ(t′)
on (C.3) and find

0 =
δ2ZSK

δJψ(t′)δJψ(t)
− δ2ZSK
δJ (t′)δJ̃ (t)

. (C.5)

Equating the ghost correlators that appear in both (C.4) and (C.5), we find

φ0
T

δ

δJ̃ (t′)
∆

β

(
δZSK
δJ̃ (t)

)
=

δ2ZSK
δJ (t)J̃ (t′)

− δ2ZSK
δJ (t′)δJ̃ (t)

. (C.6)

Or, as a correlator statement, and after setting 〈φ0
T
〉 = −i:

iβ 〈TSK
dX(t)

dt
X(t′)〉 = 〈TSK X(t)X̃(t′)〉 − 〈TSK X̃(t)X(t′)〉

= 〈
[
X̂(t), X̂(t′)

]
〉 ,

(C.7)

where X̂ denotes the physical single copy operator. We recognize this as the equilibrium

fluctuation-dissipation relation.

We can also derive a more general off-equilibrium sum rule from the supersymmetry Ward

identities. To this end, we act on (C.2) with the following operator:

δ

δJψ(t)

n∏
k=1

(
δ

δJ (tk)
− φ0

T
∆

β

δ

δJ̃ (tk)

)
. (C.8)

Acting with this on (C.2) and setting sources to zero afterwards, we find:〈
TSK

n∏
k=1

(
X̃(tk) + iβ∆

β
X(tk)

)〉
= 0 . (C.9)

This relation holds for time independent potentials.

Let us now generalize (C.9) away from equilibrium. Since (C.9) follows from the QWard

identity, we need to address the fact that the action S
B0

coupled to a time-dependent potential

is not entirely invariant under shifting fields by Q. Schematically, we can see this as follows:

S
B0

[X̊ + εD̊θX̊] =

ˆ
dt dθ dθ̄ L̊

B0
[X̊ + εD̊θX̊]

= ε

ˆ
dt D̊θ D̊θ̄ D̊θ L̊B0

[X̊]
∣∣∣

= ε φ0
T

ˆ
dt D̊θ ∆

β
L̊

B0

∣∣∣+ . . .

= ε φ0
T
β

ˆ
dt

(
d(D̊θL̊B0

|)
dt

+
∂2U(X(t), t)

∂X ∂t
Xψ

)
+ . . .

(C.10)
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where we discard terms that are proportional to Vafa-Witten quintet ghosts other than φ0
T
.

To go from the second to the third line, we used
[
D̊θ̄, D̊θ

]
±

= F̊θ̄θ∆β
. In the final line, the

first term is a total derivative and hence does not pose a problem for the current argument.

However, the second term corresponds to work done by the time dependent potential. We

remedy this non-invariance by adding a Jarzynski work term to the action such that its

invariance under Q is restored:

iS
B0

[X̊]− i φ0
T
βWJ with WJ ≡

ˆ
dt
∂U(X(t), t)

∂t
(C.11)

is clearly invariant under X̊ → X̊ + εD̊θX̊. Therefore, the modified action (C.11) satisfies

the Ward identity (C.2) and we can repeat the derivation of the sum rule for this case. This

leads to the following off-equilibrium generalization of (C.9):

〈
TSK

n∏
k=1

(
X̃(tk) + i∆

β
X(tk)

)
e−βWJ

〉
= 0 . (C.12)

The same identity was derived in §7.5 using slightly different techniques.
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