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ABSTRACT Internet services are essential to our daily life in these days, and user accounts are usually
required for downloading or browsing for multimedia contents from service providers such as Yahoo,
Google, YouTube and so on. Attackers who perform malicious actions against these services use fake user
accounts to hide their identity, or use them to continue malicious actions even after being caught by the
service’s detection system. Using a random string generation algorithm for user identification (ID) string is
one of the common method to create and obtain a large number of fake user accounts. To detect IDs and to
defend against such attacks, some researchers have proposed the models that detect randomly generated IDs.
Among these detection models, the n-gram-based using term frequency-inverse document frequency model
is regarded as a state-of-the-art model to detect randomly generated IDs, but n-gram-based approaches have
the problem of the curse of dimensionality because the sparsity of feature vector increases exponentially
with the increase of size n. As a result, the improvement of the detection accuracy is limited since size n
cannot be increased. This paper proposes two methods to detect randomly generated IDs more accurately.
The first is to avoid the curse of dimensionality with the compression of feature dimension size. The second
is a technique to reduce false positives by using pattern matching and Bhattacharyya distance. We tested our
method with about 3 million normal user IDs collected from the real portal service, 1 million IDs generated
by a random string generation algorithm, and 8,541 IDs found after being used for malicious behavior in real
portal services. The experimental results showed that the proposed method can improve detection accuracy
as well as inference performance.

INDEX TERMS Authentication, computer crime, identity management systems, web sites.

I. INTRODUCTION user ID, a large amount of access logs are left in proportion to

Fake user accounts are used for multiple bot operations,
Social Network Service (SNS) manipulation, and contents
piracy. Examples of malicious behavior using these fake
accounts include a case where a botnet was constructed and
used to manipulate Twitter public opinion [1]. In case of
contents piracy, there are piracy sites that generate revenue
by uploading copyright contents without permission of the
owner [2]. If a malicious user downloads content with a single
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the number of accessed content. A service provider can detect
the malicious ID simply by examining the access logs and can
find the ID that is not in normal range [3]. To circumvent
the ID detection, attackers need to generate and register a
larger number of IDs to access and download multimedia
contents. There are attackers generate a number of IDs using
arandom string generation algorithm to register IDs as many
as possible, so suspicious IDs can be detected by examining
whether an ID contains a random string.

Various methods have been proposed to detect suspicious
IDs and the previous approaches can be divided into two
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categories. The first category is featureless methods which
analyzes strings directly through a deep learning model with-
out a feature extraction process. A common problem with
these techniques is that it is difficult to explain the causes of
the results of deep learning models. The other is feature-based
methods which extract features to detect suspicious IDs. One
of the latest methods is the n-gram-based randomly generated
ID detection method using term frequency—inverse document
frequency (TF-IDF), proposed by Beskow and Carley [22].
However, their method suffers from the curse of dimension-
ality because the feature dimension increases exponentially
with increasing » in n-gram-based approaches.

This paper proposes a new method that compresses TF-IDF
term vectors to avoid the problem of the curse of dimen-
sionality. We also found that benign user IDs with rare ID
strings are being detected falsely as randomly generated IDs,
even after solving the curse of dimensionality. To reduce
such false positives, this paper proposes another feature that
compares the alphabetical distributions of user IDs using the
Bhattacharyya distance [4].

The contributions of this paper are as follows:

o We solve the sparsity problem by compressing the
information for the TF-IDF term vector. Through this,
we propose a technique that does not have the disad-
vantages of featureless models while overcoming the
limitations of existing feature-based models.

« We propose a new feature by using the difference in the
alphabetical distribution of randomly generated user IDs
and normal user IDs.

o Experimental results on a real dataset compromising
more than 3 million normal IDs and 8,541 randomly
generated user IDs that were discovered after actually
engaging in malicious behavior confirmed the proposed
algorithm achieved 99.15% accuracy with 1.5 % false
positive rate.

The rest of this paper is organized as follows: Section II
presents the literature review and Section III discusses the
problems of the state of the art. Section IV proposes our
method that tackles the problems. Section V describes our
evaluation and analyzes the results. Section VI concludes the

paper.

Il. RELATED WORK

Cyber security defense systems often include a mechanism
for detecting randomly generated strings which are used in
cyber attacks. Botnets equip with domain generation algo-
rithms (DGASs) that produce a set of domain names to stay
hidden behind a different domain name at a different time.
Malicious users use random strings for user IDs to create
massive fake accounts.

Various detection mechanisms allow cyber security
defenders to locate where cyber attacks happen and trigger
further action(s). In this section, we categorize machine
learning based methods into two approaches: featureless
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and feature-based approaches and describes strengths and
weaknesses of each approach.

Our proposed technique belongs to the feature based
approach category. However, this technique overcomes the
limitations of the feature based approach category by solving
the curse of dimensionality problem.

A. FEATURELESS APPROACHES
Featureless approaches have no feature extraction step and
directly analyze the string of domain names to identify
if it is malicious. Woodbridge et al. [5] proposed the first
deep learning approach and showed that character level
long short-term memory networks (LSTMs) could effectively
identify DGAs. Yu et al. [6] proposed the first convolu-
tional neural networks (CNNs) based approach and a sub-
sequent study [7] showed that a parallel CNN architecture
improved the detection accuracy. Berman et al. [8] proposed
a new architecture with a capsule neural network (Cap-
sNet) and Qiao et al. [9] investigated attention mechanisms
in LSTM. Yang et al. [11] proposed a heterogeneous deep
neural network framework comprising an improved parallel
CNN (IPCNN) and self-attention based bidirectional LSTMs.
Ma et al. [12] proposed a new detection method based on
Doc2vec and hybrid network (LSTM-RNN).

This deep neural network-based featureless methods has
a problem in terms of interpretability. As Feng ef al. [10]
pointed out, deep learning methods have an unexplainable
nature that works as a black box model. Identifying Fake
User Accounts may lead to blocking and legal measures.
Therefore, it can be a fatal disadvantage the fact that the
grounds of identification cannot be explained can be a fatal
disadvantage.

B. FEATURE BASED APPROACHES

Feature based approaches extract features from the string
of domain names to model benign and malicious domain
names with machine learning algorithms. N-gram extracts
consecutive subsequences from a given string and has
been widely adopted in many string analysis methods.
Yadav et al. [13] extracted uni and bi-grams from domain
names and measured Kullback-Leibler (KL) divergence, Jac-
card coefficient, and edit distance to characterize domain
names that share the same IP address. Cucchiarelli ef al. [14]
extracted bi and 3-grams, and measured KL divergence
and Jaccard coefficient. Antonakakis et al. [15] extracted up
to 4-grams and compute the median, average and stan-
dard deviation of n-gram frequency distributions to compare
domain names in unsuccessful domain name service requests.
Schiavoni et al. [16] extracted up to 3-grams and counted
their occurrence in a language dictionary to capture the pro-
nounceability of domain names; defining domain names with
a low count as probably DGA generated. Selvi ef al. [17]
converted every character of domain names into a symbol
representing its type: a consonant ‘c’, a vowel ‘v’, a digit
‘n’, and any other ‘s’. N-grams, up to 4-grams, are extracted
from the converted domain names and these special n-grams
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are defined as masked n-grams. This technique reduces the
number of extracted n-grams and also reduces the compu-
tational complexity significantly. Xu et al. [18] extracted
uni- and bi-grams and adopted CNNs instead of similarity
or distance measures such as Jaccard coefficient and edit dis-
tance. Alaeiyan et al. [19] extracted n-skip-grams, which are
extracted from (n+2)-grams by discarding » center characters
of the (n+2)-grams. For an example string ’string’, 1-skip-
grams are ’sr’, ’ti’, 'rn’ and ’ig’, and 2-skip-grams are ’si’,
’tn’ and 'rg’. N-gram has been used in many DGA detection
methods but such n-gram-based methods have a scalability
issue that the amount of data increases exponentially by the
value of n. Although Selvi et al. [17] reduce the number of
n-grams by a masking technique, information from original
characters is discarded which might be still useful. Many
DGA detection methods cannot be directly used for detecting
fake user accounts because domain names and user IDs are
not the same.

Freeman [20] proposed a Naive Bayesian model to detect
spamming IDs in social networks. N-gram is used to extract
features from letters of users’ first and last names. The model
was evaluated with different values of n, up to 5, and there
was a trade-off between the accuracy and the computational
costs. When a higher value of n was used, the model was
more accurate for detecting spamming IDs but it took a
longer time. Beskow and Carley [22] proposed a randomly
generated user ID detection method based on its random-
ness of strings in user IDs. Many fake user accounts are
randomly generated and such randomly generated IDs are
likely to have rare combinations of characters. TF-IDF is
employed to analyze how popular or rare each “term” is
in user IDs. If a term appears in many other user IDs, TF-
IDF will be a larger value and the term will be considered as
popular and vice versa. N-gram is also employed to analyze
variable lengths of terms in user IDs. By combining TF-
IDF and n-gram, the popularity or rareness of terms with a
variable length can be measured and used for characterizing a
given string. The proposed method showed a good detection
accuracy however the detection accuracy decreased when a
higher value of n was used. N-gram with a higher value of n
not only requires high computational costs but also leads to
the curse of dimensionality [21] in machine learning-based
solutions.

This paper investigates the effectiveness of n-gram with
different values of n for randomly generated user ID detection
and proposes a method to overcome the curse of dimension-
ality when a higher value of n is used. Through this approach,
our methods overcomes the curse of dimensionality problem
of the feature-based method without having an interpretabil-
ity problem of the featureless method.

lll. PROBLEM DEFINITION

This section defines the problems that this paper aims to
tackle. Following subsections will discuss two problems: the
curse of dimensionality and rare normal IDs.
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(a) String “abc-abc”

(b) 3-gram [“Yabc”, “bc-", “c-a”, “-ab”]

(c)3—gram TF-IDF [13.98, 12.75, 13.34, 12.87]

Y

abc” Npo-"
(d) 3—-gram Term ¥ s
TF-IDF vector [0+0,13.98,0:0,12.75,

0:0,13.34,00,12.87,00]

“e—a” “_ab”

FIGURE 1. N-gram TF-IDF vector from an example string.

A. CURSE OF DIMENSIONALITY
The model proposed by Beskow and Carley [22] has a high
false positive rate due to the curse of dimensionality when
calculating the TF-IDF vector. Beskow’s work extracts n-
grams from a user ID string and applies TF-IDF to compute
term vectors for the n-grams. Figure 1 shows an example user
ID “abc-abc”, where:
o 3-grams for the string = { abc’, ’bc-’, ’c-a’, ’-ab’ };
o term vectors for the 3-grams = [13.98, 12.75, 13.34,
12.87];
o and a TF-IDF vector, setting elements to the TF-IDF
value of the corresponding n-gram or 0 if the corre-
sponding n-gram do not appear in the string.

This process can cause the following two problems. First,
the number of all possible n-grams increases exponentially as
n increases. For example, if we applies Beskow’s work to a set
of 38 characters as the set, hence the number of all possible bi,
3 and 4-grams is 1,444; 54,872; and 2,085,136; respectively.
Second, the array for a n-gram sub-string is sparse since user
ID strings are relatively short. Suppose an ID string includes
20 characters, then 3-grams for 18 elements length arrays, i.e.,
only 18 among 54,872 elements have values. Similarly, only
17 of 2,085,136 elements have values for 4-gram arrays.

Therefore, using n-gram based TF-IDF values as a feature
can leads to exponentially increasing feature dimensionality
and sparse arrays with increasing n. Scalability also becomes
problematic, with larger n requiring considerably more com-
puting resources, including Central Processing Unit (CPU)
time, memory, training time, etc.

B. RARE BUT NORMAL ID

ID detection methods with n-gram and TF-IDF assume that
rare strings are generated by generation algorithms. However,
a normal user ID still can be composed of rare strings (e.g.
emoji from combinations of numbers and symbols). Such
user IDs include strings which do not appear in many other
user IDs and popularity based approaches could detect these
normal user IDs as randomly generated. This is why extra
features are required in order to capture other properties
beside the popularity.
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FIGURE 2. CIMP Model Structure.

IV. PROPOSED METHOD

This paper proposes Cumulative IDF Mean with Pat-
tern mapped Bhattacharyya distance (CIMP), an efficient
and accurate ID detection method using cumulative IDF
mean (CIM) and pattern mapped Bhattacharyya distance
(PMBD). The included techniques tackle the curse of dimen-
sionality and rare normal IDs, respectively. CIM reduces
dimensionality using mean rather than raw values to repre-
sent ID string randomness while reducing dimensionality;
whereas PMBD measures pattern randomness in ID strings.
The Bhattacharyya distance [4] represents how similar two
different distributions are. Patterns extracted from the ID
string, and the pattern distribution compared with a uniform
distribution by Bhattacharyya distance to measure pattern
randomness.

Figure 2 shows the structure of CIMP model. n-grams are
extracted (n=2,3,4) from the user ID string and IDF mean
is calculated from IDF values for the extracted n-grams.
Section IV-A2 discusses why IDF is used instead of TF-IDF.
The user ID is converted into patterns and the Bhattacharyya
distance from a random distribution calculated.

Following two subsections describes the proposed two
techniques in detail and explain how the techniques tackle
the problems: the curse of dimensionality and the rare normal
IDs, respectively.

A. LIFT OF THE CURSE OF DIMENSIONALITY

Broadly, TF-IDF measures a word s (term s) importance
to a document in a collection of documents and n-gram
extracts fixed-length consecutive sub-sequences from a given
string. Both have been widely used in text mining and
text-related security applications. As discussed in III-A, n-
gram based TF-IDF suffers from the curse of dimensionality
as the dimension increases exponentially by n. We propose a
method to compress the size of feature dimensions by using
statistical features instead of raw TF-IDF values of extracted
n-grams. This will reduce the size of required memory and
computational cost, while improving the detection perfor-
mance.

1) TF-IDF
Figure 3 shows an example user ID “abc-abc’, where we
used the entire user ID set to compute TF-IDF values for this
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(a) String “abc-abc”

(b) 3-gram [“abc”, “bc-", “c-a”, “-ab”]
(c) 3-gram TF-IDF [13.98, 12.75, 13.34, 12.87]

(d) TF-IDF Mean 13.235

FIGURE 3. Feature candidates and examples (a) user ID string,
(b) 3-grams for the string, (c) TF-IDF values for the 3-grams, and (d) mean
TF-IDF (d) is the TF-IDF vector of the string.
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FIGURE 4. Accuracy Comparison between TF-IDF versus TF-IDF Mean.

preliminary analysis. The TD-IDF vector size is the number
of possible n-grams where each vector element represents the
TF-IDF value for the corresponding n-gram. The vector is
initialized to zero and only relevant elements have TF-IDF
values for the specific n-grams in the string. A TF-IDF vector
is generated for each sample and Beskow’s work [22] used the
vectors as features.

However, as discussed above, the TF-IDF vector size
increases exponentially with increasing n, lead to the curse
of dimensionality and the vector will be sparse since any
given user ID will only include a few n-grams. Hence larger
n cases achieved lower accuracy [22]. Therefore, we propose
using statistical TF-IDF measures rather than the raw TF-IDF
vector to represent all possible n-grams. For example, TF-IDF
mean is the mean over all TF-IDF values for the n-grams in a
user ID.

Figure 4 shows that the method with TF-IDF mean has
better accuracy than the method with TF-IDF vector. Exper-
iments were performed with 2-grams and 3-grams, and
the accuracy was measured as the size of training dataset
was changed from 1,000 to 20,000. Experimental results of
3-gram TF-IDF vector showed only up to 16,000 because
memory overheads were too heavy to finish the experiments.
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Figure 4 compares TF-IDF vectors and TF-IDF mean for
detection accuracy, confirming that TF-IDF mean achieves
significantly better accuracy than TF-IDF vectors. Experi-
ments were performed with 2 and 3-grams, and accuracy was
measured as the training dataset size increased from 1,000 to
20,000. Experimental results for 3-gram TF-IDF vectors only
shows up to 16,000 cases because memory overheads were
too heavy to finish the experiment. TF-IDF means provided
similar accuracy to TD-IDF for 2 and 3-gram cases with train-
ing dataset size < 3, 000; but 3-gram TF-IDF means provided
considerably improved accuracy when training dataset size
> 4,000. In contrast, the TF-IDF vectors approach achieves
superior accuracy using 2-grams than 3-grams.

This improved accuracy confirms the feasibility for n-gram
TF-IDF means to distinguish between generated and normal
IDs. Thus, Section IV-A1l uses TF-IDF mean to avoid the
curse of dimensionality.

2) TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY
AND INVERSE DOCUMENT FREQUENCY COMPARISON
TF-IDF was originally designed to statistically measure a
words (terms) importance to a document in a collection of
documents. A word is considered to be more important than
other words if it appears in the document more often than the
other words, but if the word often appears in other documents
then it is considered to be less important since it has less
information to distinguish between the documents. However,
the proposed CIMP approach uses TF-IDF to measure n-gram
randomness rather than importance. Word or term frequency
is a positive factor for importance, but it is not yet clear
what affect it may have for randomness. We compare TF-IDF
and IDF (excluding TF) performance in terms of detection
accuracy, computing TF-IDF mean and IDF mean from the
same samples.

Figure 5 shows that IDF mean outperforms TF-IDF mean
for user ID detection, verifying that term frequency (TF) is
less important (or poor) information for measuring random-
ness. Therefore, we only use IDF for the remainder of this

paper.

B. PATTERN MAPPED BHATTACHARYYA DISTANCE

We also propose PMBD to reduce false positives from corner
cases (see Section III-B). Since a random user ID generator
chooses each character randomly, character distribution will
be similar to uniform, i.e., the same occurrence probability for
every character. This makes it difficult to compare individual
character occurrences. Therefore, we proposed a mapping
method to convert each character into its type: alphabet, digit
and symbol.

For example, the experiments considered here let user ID
be generated from 26 alphabet, 10 digit, and 2 symbol char-
acters. Hence occurrence probabilities = 26/38, 10/38, and
2/38 respectively; assuming a generator creates the user ID
randomly. The proposed method calculates the Bhattacharrya
distance between the random distribution and measured user
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—— Random ID
1,200,000 Normal ID
1,000,000
M
=1
%5 BO0,000
T
£
£
=
=
600,000
400,000
200,000 +
05 06 07 08 09 10

FMED

FIGURE 6. Pattern mapped Bhattacharrya distribution.

ID distribution,

> Vp) x q(x) 6]

xeX

where <define x, X, p(x) and q(x)>; PMDB €< 0, 1; and
smaller PMDB means the distributions are less similar.
Figure 6 shows the PMBD distribution for benign (orange)
and randomly generated (blue) user IDs. Randomly generated
user IDs have higher PMBD, with mean PMBD = 0.97.
In contrast, although many benign user IDs also have large
PMBD, a significant number of benign user IDs occur with
0.8 < PMBD < 0.85. For example the benign user ID ““-_-
_-_-vv0” looks like a randomly generated ID but it contains
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text emojis. This user ID has 3-gram mean IDF = 11.32 and
PMBD = 0.72. If we use just mean IDF alone, this user ID
would be classified as a randomly generated user ID. How-
ever, including PMBD can successfully classify the user IDs
as benign. PMBD can also provide a stand-alone classifier for
randomly generated user IDs, which have very high PMBD.

C. PROPOSED CIMP MODEL

The CIMP model adds PMBD features to the CIM model as
extra features for detecting the corner cases of normal IDs
which might be detected as by the CIM model. The CIM
and PMBD try to identify its rareness of user IDs based
on different aspects. The CIM is based on the assumption
that sub-strings of IDs are not popular in other IDs as many
IDs are randomly generated. PMBD is based on another
assumption that the distribution of each item in user ID string
will be different between normal and IDs. By comparing the
distribution of an user ID with the expected distribution of
randomly generated IDs, a distance can be computed and
used as a measure of showing its randomness of an user ID.
The CIMP model captures the randomness of user IDs in
two different perspectives which complement each other for
classifying normal and IDs.

1) CUMULATIVE IDF MEAN MODEL

By using IDF Mean we can use larger n by solving the curse
of dimensionality, and as the range of usable 7 is expanded,
it is also possible to use various n-based IDF Mean features
in model construction. We designed a model structure that
cumulatively expands the range of n that used for IDF Mean
to test the effect of the range of n against accuracy. We pro-
pose the CIM to computes multiple IDF means for n-gram
extraction where 2 < n < N to evaluate how the range of
n effect the detection performance. For example, if we set
N = 4, the CIM model computes three IDF means for 2,
3, and 4-grams respectively. Hence we called the proposed
model the cumulative model. The evaluation results will be
described in Section V.

2) CUMULATIVE IDF MEAN MODEL WITH PMBD

The CIMP model adds PMBD features to the CIM model for
detecting normal ID corner cases that might be detected as
random IDs by the CIM model. The CIM and PMBD try to
identify user ID randomness based on different aspects. CIM
assumes that less popular ID sub-strings are randomly gener-
ated; whereas PMBD assumes the distribution for each item
in a user ID string will differ between normal and random
IDs. Thus, a distance can be computed to compare normal
and randomly generated ID distributions, and hence identify
random user IDs. Thus, the proposed CIMP model captures
user ID randomness from complementary perspectives to
classifying normal and random IDs.

V. EVALUATION
This section evaluates the proposed CIMP model with real-
world data. We first describe the settings and datasets for two
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experiments to compare ID detection performance between
the proposed model and Beskow’s work [22].

A. DATASETS AND EVALUATION SETTINGS
In our evaluation, we used three raw datasets as described
below.

e (A) Real normal ID set: 3 million IDs of real normal
users;

« (B) Randomly generated ID set: 3 million IDs that are
generated randomly by our ID generation tool;

¢ (C) Captured illegal ID set: 8,541 IDs that were used in
illegal activities at a real system.

(A) Real normal ID set and (C) Captured illegal ID set
are real-world user datasets, obtained from a commercial web
service, i.e. Naver Webtoons .! (B) Randomly generated ID
set is a generated dataset using our random string generation
algorithm. With these raw datasets, we made three datasets
that are disjoint:

1) Train set: A dataset sampled randomly from (A) and
(B), each 10,000 for model training.

2) Artificial evaluation set: A dataset sampled randomly
from (A) and (B), each 10,000 for evaluation.

3) Captured evaluation set: A dataset of 8,541 random
samples from (A) and 8,541 total from (C) for evalu-
ation.

In the first evaluation, the real normal ID set and the ran-
domly generated ID set are used. Randomly selected 10,000
samples from each set construct a training set of 20,000
samples. Another randomly selected 10,000 samples from the
rest of each set construct a test set of 20,000 samples. In the
second evaluation, we construct another test set of 17,082
samples: 8,541 captured illegal IDs and randomly selected
8,541 real normal IDs. Note that we use the entire 3 million
samples of the real normal ID set for computing IDF values
and we implemented the Beskow’s work to compare with our
proposed models.

B. EVALUATION WITH ARTIFICIAL DATA

In this section, we evaluate our proposed models with the
randomly generated IDs to find the optimized value of n and
to compare our proposed models with Beskow’s work.

1) CUMULATIVE IDF MEAN MODEL

In order to find the optimized value of n, we compare the
detection performance of our CIM model with different val-
ues of n.

Figure 7 shows receiver operating characteristic (ROC)
curves for the CIM model where 2 < n < 6. CIM®4)
achieved highest area under the ROC curve, AUC = 0.9969,
reducing for n > 5. CIM(6) exhibits steep reduction due
to overfitting. Since the n increases, the number of n-gram
substrings appearing in the entire user ID set decreases. In our
case, when n reached 6, the number of appearances of the

1 https://webtoonscorp.com/en/
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TABLE 1. Detection performance comparison.

Beskow | CIM(4) | CIMP(4)
Accuracy 0.9490 0.9812 0.9829
Error Rate | 0.0510 0.0188 | 0.0171
Precision 0.927 0.9765 0.9789
Recall 0.9747 0.9862 | 0.987
F1-Score 0.9503 0.9813 0.9829

corresponding substring converges to 0 or close to 1, which
leads to overfitting as the feature directly reflects whether the
user ID is normal.

This experiment shows that our CIM model can achieve a
better detection performance when we use different lengths of
n-grams together. However, the detection performance starts
decreasing at some point so we need to optimize the value of n
for the best performance. The best value of n can be different
in different settings but the value of the best n was 4 in our
setting.

Now, we compare our CIM model with Beskow’s work
with the optimized value of n, which is 4. Beskow’s work also
uses the best setting, TF-IDF values of 2-grams and 3 grams.
Figure 8 shows the ROC curves of two models. Our CIM
model outperforms Beskow’s work. The AUC of two models
were 0.9969 and 0.9879 respectively.

2) CUMULATIVE IDF MEAN WITH PMBD (CIMP) MODEL
Although our CIM model outperforms Beskow’s work,
we have noticed that our CIM model detects rare normal
IDs as malicious. To reduce these false positives, PMBD is
introduced with our CIM model and it constructs our CIMP
model.

Figure 9 shows ROC curves for CIM and CIMP models,
with n = 4 for both two models. It is expected that the CIMP
model works better when a detection system requires a low
false positive.
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FIGURE 9. PMBD model.

Table 1 shows performance metrics for Beskow, CIM
and CIMP. CIM(4) and CIMP(4) achieved the best perfor-
mance for all metrics, with significantly reduced error rate =
0.0171 compared with Beskow (0.0510). 66% of the errors
were reduced by CIMP(4).

C. EVALUATION WITH CAPTURED ILLEGAL ID DATASET

This experiment used the proposed model with a real dataset
that containing 8,541 captured illegal IDs, along with 8,541
real normal user IDs, i.e., 17,082 total samples in the dataset.
Table 2 that CIMP outperforms CIM for all metrics for this
dataset. In particular, CIMP reduced error rate by 33.7%.
Thus, PMBD reduces the false positives on rare user ID cases.
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TABLE 2. Model performances with real data.

CIM(4) | CIMP4)
Accuracy 0.9872 0.9915
Error Rate | 0.0128 | 0.0085
Precision 0.9792 0.9852
Recall 0.9973 0.9980
F1-Score 0.9882 | 0.9916

VI. CONCLUSION AND FUTURE WORK
Malicious users using fake user accounts put services and
normal users at risk through auto-generated random IDs.
We investigated detecting fake user accounts through iden-
tifying randomly generated IDs. Current conventional meth-
ods are insufficient for this application. We optimized the
technique using n-gram appearance frequency, which has
been employed previously, on the basis of n compared to
ID string length. Subsequently, we proposed CIMP, a new
feature extraction method to analyze user ID string pattern
and identify random IDs. The proposed CIMP model signif-
icantly improved detection, reducing false positive outcomes
in particular, and is applicable to various user ID patterns.
As for future work, we intend to explore ways to broaden
the scope of fake account detection by integrating static and
dynamic features. For example, using user profile informa-
tions such as user email address, number of friends and
followers or user’s behavioral informations such as languages
and topics that included in postings which written by each
accounts. References [23] [24] [25] can be used to determine
whether the account is fake or not.

APPENDIX A
The following pseudo code is implementation of IDF Mean
feature. The CIM model consists of IDF features with differ-
ent n_sizes.
class IDFMean:
def make_ngram_set(self , user_id):

result = list ()

user_id_len = len(user_id)

ngram_len = user_id_len — self.n_size + 1

for i in range(ngram_len):
n_gram_part = user_id[i:i+self.n_size]
result.append(n_gram_part)

return set(result)

def make_dict(self , user_id):
ngram_set = self.make_ngram_set(user_id)

for ngram_part in list(ngram_set):
if n_gram_part not in self.parts:

self.parts[n_gram_part] = 0

self . parts[n_gram_part] += 1
self .ngram_part_total_count += 1

return ngram_set

def gen_dict(self, df_raw_info):
user_id .apply (lambda x: self.make_dict(x))

for p in self.parts:
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total_doc_cnt = df_raw_info.shape[0]

r = total_doc_cnt / (1 + self.parts[p])
idf = math.log(r)

self.info_dict[part] = idf

self .minimum = math.log(total_doc_cnt)
return self.info_dict
def preproc(self, user_id):
ngram_set = self.make_dict(user_id)
idf_list = list()
for n in list(ngram_set):
r = self.info_dict.get(n, self.minimum)
idf_list.append(r)

return stat.mean(idf_list)

The following pseudo code shows the implementation of
PMBD.

class PatternBhat (Feature):
def __init__(self):
self.info_dict = {

"ascii": 26/38,
"digit": 10/38,
"bar": 2/38

}

def preproc(self, user_id):
def cp(user_id, pattern_list):
result = 0
for char in user_id:
if char in pattern_list:
result += 1

return result

len_id = len(user_id)

list_a = list(string.ascii_lowercase)

list_d = list(string.digits)

user_id_info = {
"ascii": cp(user_id, list_a) / len_id,
"digit": cp(user_id, list_d) / len_id,
"bar": cp(user_id, ["—=", "_"1) / len_id

}

result = 0

for char_type in self.info_dict.keys ():
c_type = user_id_info[char_type]
occ = self.info_dict[char_type]
type_root = math.sqrt(c_type = occ)
result += type_root

return result
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