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Chothani et al evaluate ribosome-mRNA interactions across six cell types and five tissues
and reveal 7,767 small regions outside of the protein-coding genome that are actively
translated in humans. These include specifically expressed and highly conserved small open
reading frames. Integration of proteomics reveals more than 600 small proteins.

Highlights (3–4 full sentences as bullet points. Each no more than 85 characters in
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- Ribo-seq in 11 human primary cells and tissues reveals 7,767 high-confidence
smORFs

- smORFs exhibit cell-type/tissue specificity and 603 SEPs were detected in MS-data
- Dynamic changes in TE of uORF and mainORF pairs are mostly homodirectional
- An interactive browser for this study can be found at: smorfs.ddnetbio.com
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Summary

Translated small open reading frames (smORFs) can have important regulatory roles and
encode microproteins, yet their genome-wide identification has been challenging. We
determined the ribosome locations across six primary human cell types and five tissues and
detected 7,767 smORFs with translational profiles matching those of known proteins. The
human genome was found to contain highly cell-type- and tissue-specific smORFs and a
subset encodes highly conserved amino acid sequences. Changes in translational efficiency
of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly
occur in the same direction. Integration with 456 mass spectrometry datasets confirms the
presence of 603 small peptides at the protein level in humans and provides insights into the
subcellular localisation of these small proteins. This study provides a comprehensive atlas of
high-confidence translated smORFs derived from primary human cells and tissues in order
to provide a more complete understanding of the translated human genome.

Introduction
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Human molecular studies typically focus on proteins encoded in annotated open reading
frames (ORFs). Ribosome profiling (Ribo-seq) (Ingolia et al., 2009) data has shown that
ribosome density in ORFs affects protein levels in cellular (Chothani et al., 2019a) and
genetic models of disease (Schafer et al., 2015), as well as in patients (van Heesch et al.,
2019). The definition of ORFs is typically based on sequence analysis that considers long
stretches between in-frame start and stop codons as a coding region. This approach has
historically limited our studies to proteins longer than 100 amino acids. However, recent
studies revealed that shorter small open reading frames (smORFs) can be translated and
encode small peptides (SEPs) (Couso and Patraquim, 2017; D’Lima et al., 2017; Ho et al.,
2017; Lee et al., 2021; Makarewich and Olson, 2017; Matsumoto et al., 2017; Pueyo et al.,
2016; Ruiz-Orera et al., 2014). SEPs are implicated in a variety of cellular processes, such
as DNA repair or myogenesis (Bi et al., 2017; Quinn et al., 2017; Slavoff et al., 2014; Zhang
et al., 2017b), and constitute therapeutic targets (Ho et al., 2017; Lee et al., 2021).
Translation of smORFs in the 5’ UTR (uORFs) may also serve as a regulatory process for
canonical ORFs (Couso and Patraquim, 2017), and their perturbation can cause disease
(Whiffin et al., 2020).

Ribo-seq can greatly aid in the identification of translated smORFs (Hao et al., 2017; Hsu et
al., 2016; Olexiouk et al., 2018; Wan and Qian, 2014; Xie et al., 2016) and studies have
described translation beyond the annotated protein-coding genes as pervasive (Dunn et al.,
2013; Ingolia et al., 2011, 2014). However, Ribo-seq protocols are not standardised, and
data can vary greatly in depth and quality (Hsu et al., 2016). Computational smORF
detection tools (Bartholomäus et al., 2021; Calviello et al., 2020; Ji et al., 2015; Tjeldnes et
al., 2021) also differ in their estimates of smORF abundance. Existing repositories range
from 100,000s (Hao et al., 2017) to more than a million Ribo-seq smORFs (Olexiouk et al.,
2018). Most tools and databases focus on the 3-nucleotide pattern, so called periodicity, of
ribosomes translating codons to predict smORFs. To improve their predictions, these tools
either model noise in the available data (PRICE, (Erhard et al., 2018)), incorporate multiple
data sources (RiboTISH, (Zhang et al., 2017a)) or limit smORFs to canonical start codons
(Ribotaper, (Calviello et al., 2016)). Together with the shallow depth of datasets, this has
made it difficult to estimate the overall prevalence of translated smORFs in humans and
characterise them on a global level. Currently, only 770 smORFs have been incorporated in
Ensembl, although there are now efforts to systematically incorporate Ribo-seq smORFs into
public gene databases (Mudge et al.). A further major limitation of the existing smORF
annotations is that most human Ribo-seq studies have been performed on cell lines. These
immortalized cells are not an accurate representation of human physiology (Gillet et al.,
2013; Liu et al., 2019). Out of 102 studies profiling human samples currently listed in RPFdb
(Xie et al., 2016), only 10 use primary biological material. Our understanding of smORF
translation in primary cells or tissues in humans is still very limited.

To address this, we have generated an ultra-high depth RNA- and Ribo-seq dataset across
six human primary cell types and five human tissues (Fig. 1A) that is quality-matched and
can be analysed in its entirety. We then developed a tailored smORF pipeline to identify
smORFs. Combining this with the integration of sequence analysis, amino-acid conservation
and mass spectrometry has allowed us to identify and characterise thousands of human
smORFs. We here provide the first comprehensive atlas of smORFs derived from multiple
primary human cells and tissues.

Results

An ultra-deep collection of primary human Ribo-seq

At the ribosomal peptidyl site (P-site), the ribosome matches the transfer-RNA (tRNA) to the
codon located in the coding frame. Only high-quality Ribo-seq data reveals P-sites at
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single-nucleotide resolution, resulting in a prominent 3-nt periodicity signature within the
coding sequence (CDS) (Fig. 1B). smORFs are also short and thus contain few P-sites
compared to long annotated ORFs (Ensembl-ORFs). Thus only very deep and high-quality
Ribo-seq data is suitable for accurately distinguishing active translation from background
noise (Hsu et al., 2016).

To address this, we generated an ultra-deep, global Ribo-seq compendium of public and
newly generated data that allows analysis of translation across multiple primary human
samples. We first screened published Ribo-seq datasets and filtered each read length within
each dataset for 3nt-periodicity, retaining samples with a periodicity of >60% in the CDS of
Ensembl-ORFs. Only a small subset of data curated on RPFdb (Xie et al., 2016) was
derived from primary human material (10 out of 102 datasets) and quality is highly variable.
Only 3 out of 10 datasets passed our filter criteria (Table S2). We next processed our
recently published atrial fibroblast (Chothani et al., 2019a) and heart tissue (van Heesch et
al., 2019) datasets, which resulted in a total of 10.9B publicly available Ribo-seq reads with
suitable 3nt-periodicity. To extend our dataset, we performed matched RNA-seq and
Ribo-seq profiling of human embryonic stem cells (ESCs), primary human atrial fibroblasts
(AFs), primary human coronary artery endothelial cells (HCAECs), primary human
hepatocytes, primary human vascular smooth muscle cells (VSMCs), human umbilical vein
endothelial cells (HUVECs), brain (thalamus) tissue as well as human visceral and
subcutaneous fat tissue (Fig. 1A). We processed all samples uniformly and filtered as
above, resulting in a total of 16.7B high-quality Ribo-seq reads which could be taken forward
for analysis (Fig. S1, Table S3, Table S4).

After removal of abundant RNA species (mtRNA, tRNA, rRNA) and multi-mapping reads, we
obtained a global snapshot of RNA translation across multiple primary human cell types and
snap-frozen tissues consisting of a total of 1.3B P-sites (Fig. 1C). Ribo-seq reads were
predominantly ~29nt in length and located within the CDS of Ensembl-ORFs (Fig. S2). On
average, the 3nt-periodicity was 85% across all datasets (Fig. 1D, Fig. S3A). As expected,
P-sites, which are inferred from Ribo-seq reads (also called ribosome pretected fragments
(RPFs)), were enriched at known start codons, predominantly occupied the first frame in the
CDS and were absent after the stop codon (Fig. 1D, Fig. S3B, Fig. S4A). Known smORFs
such as those encoding MYMX, MOCCI and SEHBP (Bi et al., 2017; Koh et al., 2021; Lee et
al., 2021; Zhang et al., 2017b) were well represented (Fig. 1E, Fig. S4B-E). Across our
combined dataset, we found that more than 79% of codons within Ensembl-ORFs were
covered. Taken together, these data show that our global P-site compendium covers a large
fraction of the annotated human translatome with high resolution and substantial depth.

Translational signatures inferred from Ribo-seq data guide systematic de novo ORF
discovery

We detected ~7% of inferred P-sites (91M) outside of Ensembl-ORFs. To identify potential
novel translated smORFs we first ran state-of-the-art Ribo-seq tools Ribotaper (Calviello et
al., 2016), RiboTISH (Zhang et al., 2017a) and PRICE (Erhard et al., 2018). We then
concatenated all human smORFs in sORFs.org (Olexiouk et al., 2018) to create a
comprehensive set of 2,621,576 putative smORFs in humans (see Methods, Fig. S5). In
part, this large number of putative smORFs is a reflection of permissive filtering employed by
existing methods that have been tailored to analyse relatively shallow Ribo-seq data. Given
the high depth of our compiled human Ribo-seq compendium, we have been able to refine
this set of putative smORFs by applying stringent filters and assessing metrics that were not
previously possible.

To robustly identify bona fide translated regions from this set of putative smORFs we sought
to find candidates that mirror the ribosome occupancy in Ensembl-ORFs by considering
three criteria: Firstly, we determined the fraction of P-sites in frame 1 (PIF), a metric that has
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been utilised commonly for Ribo-seq-based smORF detection. Secondly, we calculated the
fraction of codons occupied by P-sites predominantly in frame 1 (Uniformity). The presence
of 3nt-periodicity across the entire length of the ORF has not been widely implemented by
previous methods, likely due to a lack of high-depth data. Thirdly, we established a score
that quantifies the efficient release of translating ribosomes at the stop codon of the smORF
(Drop-off) (Fig. 2A, Fig. S5, S6). To better understand how these three scores reflect active
translation in our dataset, we first determined the distribution of PIF, Uniformity and Drop-off
scores across all expressed Ensembl-ORFs. The 95th percentile and mean for each of these
scores was determined and subsequently used as a threshold for deciding high-quality
evidence of translation. For a putative smORF to be considered actively translated with high
confidence, it had to pass these thresholds in all three scores. If a smORF had multiple
alternative starts in the coding frame, a single start site was determined based on the
uniformity score (see Methods). This resulted in the identification of a total of 7,767
high-confidence smORFs, filling a gap in the current annotations for ORFs shorter than
100aa. (Fig. 2B, Fig. S7A, Table S5). These smORFs were located at diverse locations
within the transcriptome, but a large proportion (68%, N=5308) of them are within the 5'
untranslated regions (UTRs) of known protein-coding genes, making upstream ORFs
(uORFs) the most prevalent smORF type. Beyond uORFs, we found a further 1,652
smORFs in transcripts previously annotated as ‘non-coding’ and will be referred to as novel
unannotated ORFs (nuORFs). Less common were the 773 downstream ORFs (dORFs)
located in the 3’ UTR of known protein-coding genes (Fig. 2C, Fig. S7B).

Globally these 7,767 novel smORFs appear indistinguishable from existing protein-coding
genes. For instance, plotting of P-sites around the start and stop codons of all
high-confidence smORFs showed strong evidence of 3nt-periodicity only within the coding
region but not before or after (Fig. 2D). We found that 49.9% of all smORFs had a cognate
start-site (AUG), with near-cognate start codons CUG (14.9%) and GUG (8.9%) being the
next most common (Fig. 2E, Fig. S7C). This frequency distribution confirms previous
observations on translation initiation sites (Gao et al., 2015; Ingolia et al., 2011; Lee et al.,
2012). Further mirroring Ensembl-ORFs, we also observed the Kozak motif sequence
(Kozak, 1986) around the smORF start sites (Fig. 2F). Since the smORF detection pipeline
is agnostic to both the start codon type and its sequence context, identification of sequence
motifs known to improve both start codon recognition and translation initiation in eukaryotes
provides independent confirmation of the smORF set.

Expression of smORFs in human cell types and tissues

Having identified this novel set of smORFs, we next quantified their transcription (RNA-seq
TPM), translation (Ribo-seq TPM) and translational efficiency (TE, see (Chothani et al.,
2019b)) levels for Ensembl-ORFs, uORFs, nuORFs and dORFs across all the assayed cell
and tissue types. Different datasets with the same cell type or tissue were merged. On
average, 4037 uORFs, 878 nuORFs and 432 dORFs are translated in each cell type/tissue
(Fig. 3A). Comparing the Ribo-seq TPM distributions between smORF subtypes shows that
the level of translation varies significantly. We find that uORFs tend to be as highly translated
as Ensembl-ORFs, but despite also being located on the same transcript class, dORFs are
translated at a significantly lower rate. Similarly, nuORFs, which are encoded on transcripts
that have previously been annotated as long non-coding RNAs (lncRNAs), are more lowly
translated than both uORFs or Ensembl-ORFs (Fig. 3B in fibroblasts, Fig. S8 and Table S6
across all other cell types). Overall, the translation efficiency (TE) of smORFs were
comparable to the known ORFs with dORFs having lower TE as compared to other types
(Fig. 3C, Fig. S9).

To extend our understanding of the expression profile of these smORFs beyond the cell
types from which Ribo-seq was generated we utilised the FANTOM catalogue which
contains gene expression information across 436 cell and tissue types (Abugessaisa et al.,
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2017; FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014). To identify
specifically expressed smORFs we integrated gene expression information from these
samples with the 162 samples from our translation atlas data and grouped these into 48
clusters (see methods). For each cluster, we then calculated the Jensen-Shannon
divergence (JSD) for each gene, with a smaller JSD signifying higher specificity to that
cluster. This analysis reveals cell-type-specific Ensembl-ORFs such as PLIN1, a gene
encoding Perilipin which coats lipid storage droplets in adipocytes, as being specific to
adipocytes in line with previous literature (Greenberg et al., 1991). Similarly, this analysis
also highlights several nuORFs, and genes with uORFs/dORFs, that are highly specific for
particular cell types (Data S2, Table S7). For instance, CATG00000072615 encodes a
translated nuORF, which is highly specific (JSD = 0.47) and highly expressed in endothelial
cells (Fig. 3D). Revisiting the Ribo-seq data confirms this: we only detect evidence for the
translation of this nuORF in both the human umbilical vein endothelial cells and human
coronary artery/aortic endothelial cells (Fig. 3E) and not in any other cell types. Overall, we
identify 240 nuORFs that are highly specific in their gene expression pattern and, as a result,
may serve important roles for cell and tissue function and which make them more likely to
harbour disease-causing mutations (Magger et al., 2012) or be dysregulated in disease (Lee
and Young, 2013).

Upstream open reading frames in translational regulation
Unique transcriptomes establish distinct functional roles of primary human cells (Hon et al.,
2017) and tissues (GTEx Consortium et al., 2017). Differential translation efficiency of RNA
can also contribute to proteome diversity and disease regulation (Chothani et al., 2019a;
Schafer et al., 2015). uORFs may act as translational regulators and have been shown to
reduce the protein expression of the main ORF (Calvo et al., 2009). In this case,
upregulation of the uORFs should result in the downregulation of the main ORFs and vice
versa. To test whether this mechanism contributes to cell or tissue identity, we first identified
differentially translated main ORFs in fibroblasts compared to all other cell types using the
deltaTE method (Chothani et al., 2019b). Translationally regulated genes in fibroblasts were
enriched for the presence of uORFs (P = 8.62e-89) and also enriched for differentially
translated uORFs (P = 2.88e-67) (Fig. 4A). However, only a minor fraction of genes showed
opposing regulation of the uORF and main ORF, whereas in 91.55% of cases, both the
uORF and the main ORF were regulated in the same direction (Fig. 4B, Table S8). This
trend was also confirmed for Brain tissue, Heart tissue, Kidney tissue and Coronary artery
endothelial cells (Fig. S10). We have shown previously that TGFB1 leads to translational
regulation in fibroblasts (Chothani et al., 2019a). We integrated the smORF annotation and
re-analyzed the Ribo-seq time-series experiment of cardiac fibroblasts stimulated with
TGFB1. The change in translation efficiency of both uORFs/mainORFs and associated
significance p-value was quantified using deltaTE (Chothani et al., 2019b). Genes that are
translationally regulated by TGFB1 in fibroblasts were enriched for the presence of uORFs
(P = 8.99e-52) and mirroring the previous analysis only a minor fraction of genes showed
opposing regulation of the uORF and main ORF. In 92.31% of cases, both the uORF and the
main ORF were regulated in the same direction where the uORF and mORF were changing
in-tandem across the dynamic transition (Fig. 4C-G, Fig. S11A). Splicing junctions in the
UTR were found to be covered by RPFs, but a lack of 3nt-periodicity suggests these rarely
translate uORfs or dORFs (Fig. S11B, C).

Evolutionary conservation of smORF-encoded peptide sequences

Transcript UTRs and lncRNAs are, to a certain degree, conserved across species and serve
critical regulatory roles (Siepel et al., 2005). Within these previously thought non-coding
genomic regions, we have identified a set of actively translated smORFs. If these give rise to
biologically relevant smORF-encoded proteins (SEPs), it is expected that the encoded amino
acid sequence would be more conserved than a matched background. To test this
hypothesis, we obtained multiple sequence alignments across 100 vertebrates (Kent et al.,
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2002) for smORFs that pass our filtering criteria (see Fig. 2A, B) and also for a background
set of smORFs which had low PIF, Uniformity and Drop-off scores (see Fig. 2A, B). The
backgrounds are GC and expression matched and we treat uORFs, dORFs and nuORFs
independently in order to ensure that bias from these aspects is minimised. As a measure of
AA conservation, we determined the percentage of identical amino acids (AA) across the
length of a given smORF for each of the 99 species with respect to humans. The AA
sequences of all three classes of smORFs: uORFs, dORFs and nuORFs were significantly
(p < 2.2e-16) more conserved than their matched background in Primates, Rodents and
Carnivores. Overall, uORFs and dORFs were more conserved compared to nuORFs (See
Table S9), and we observed a sharp decrease in conservation in more distant clades like
Fish or Birds (Fig. 5A, Fig. S12).

We found 7,596 of the 7,767 newly identified smORFs had more than 60% AA-conservation
in primates, with 2,807 of these with more than 60% AA-conservation in rodents. For
example, the uORF, located in the 5’UTR of the RAS Guanyl Releasing Protein 3 gene
(RASGRP3), is highly conserved at the amino acid level in rodents. This is confirmed by the
analysis of Ribo-seq P-sites generated from rat heart and liver tissue (Schafer et al., 2015),
in which we found clear evidence of translation for the orthologue in the rat. Furthermore, the
Ribo-seq scores (PIF, Uniformity and drop-off) were comparable between rats and humans
(Fig. 5B). We also found 925 smORFs with a positive decibans score according to
PhyloCSF (Lin et al., 2011) and 313 smORFs with a significant p-value (<0.1) according to
RNAcode (Washietl et al., 2011). These results show that some smORFs are conserved,
remain translated across species and encode peptide sequences that are under evolutionary
pressure.

Revisiting mass-spectrometry datasets reveals proteins encoded by smORFs

The conservation analyses presented above suggest that the amino acid sequence encoded
by some smORFs is important (Fig. 5A). One potential explanation for this is that a subset of
smORFs encodes stable and biologically relevant small peptides. To identify SEPs on a
large scale, we first obtained 26 different mass-spectrometry datasets that match the tissues
and cell types profiled in this study. These include the proteome of 16 heart regions (Doll et
al., 2017), embryonic stem cells (Shekari et al., 2017) and data generated from the
cytoplasm, nucleus and extracellular space of human fibroblasts and endothelial cells (Slany
et al., 2016). The latter datasets reveal the subcellular localisation of peptides (Fig. 6A).

This data was processed to identify SEPs with matching peptide-spectrum using a two-step
approach (see Methods). First, using a target decoy approach, the spectra with
peptide-spectrum matches (FDR<1%) to the human Uniprot database were removed.
Second, the remaining peaks were tested for peptide-spectrum matches to SEP sequences
(FDR<1%). We detected a total of 614 SEPs encoded by 281 uORFs, 47 dORFs and 286
nuORFs with at least one peptide-spectrum match in at least one sample. These included
the verification of previously highlighted endothelial cell-specific nuORF in
CATG00000072615 (Fig. 3F) and conserved uORF in the RASGRP3 gene (Fig. 5B). Of the
603 SEPs detected, 111 SEPs had at least 10 different hits, 62 SEPs were found in at least 5
different cell types or regions, and 56 were also found to have multiple unique sequence hits
in a given sample. Despite being more lowly expressed and less common than uORFs,
nuORF-encoded peptides were more frequently detected using proteomics (Fig. 6B).
Moreover, we found that smORFs which had a positive deciban score according to
PhyloCSF were enriched (p<6.18x10-5, hypergeometric test) among those for which MS
evidence could be retrieved.

We detected SEPs predominantly in the cytoplasm (n=138) and interestingly, we also
identified 131 SEPs in the nuclear compartment, which included a disproportionately large
number of uORF-encoded SEPs (Fig. 6C, Table S10). The host genes of these SEPs
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encode transcription factors and other proteins known to be important for nuclear functions
(see Table S10), such as Histone Deacetylase 5 (HDAC5) and activating transcription factor
2 (ATF2). Lastly, we also found 27 smORFs in the extracellular region, suggesting secretion
of these SEPs after translation (Table S10).

Discussion

It is clear that there are many short coding regions of the genome that remain to be
uncovered and which may hold important links to our understanding of human health and
disease. Many previous efforts to annotate smORFs in humans have focused on
immortalised cell lines such as HEK293, which, due to genomic instability, may contain
artificial transcripts and spurious translation events that are not relevant for human
physiology. In addition, smORF detection has been limited due to lower-depth and low
3nt-periodicity in the available datasets. Compounding this, the way in which smORFs have
been identified varies greatly between studies making comparisons between them
impossible. Here we combined Ribo-seq datasets from multiple primary human cell types
and tissues to create a global P-site repository of high-quality and depth. We then developed
a tailored bioinformatics pipeline that can identify distinct characteristics of the translational
footprint of coding regions in order to define high-confidence smORFs, with Ensembl-ORFs
serving as internal controls. We find that only a small fraction of smORFs currently listed in
public databases show signatures of active translation similar to known protein coding
regions. However, we do find that translation of smORFs is common and expand the
annotated coding genome with 7,767 high-confidence ORFs (Fig. 2). This dataset covers
~80% of the known human coding genome and thus also 80% of uORFs and dORFs located
on the same transcripts. nuORFs are often encoded on highly specific lncRNAs, which may
result in them being slightly less represented in our smORF atlas. Despite this, with our
integrative pipeline, we were able to find 1,652 nuORFs located on lncRNAs and which have
translational signatures equivalent to Ensembl-ORFs. Our results show that community
efforts to integrate Ribo-seq smORFs into genome annotations (Mudge et al.) are necessary
but should employ strict quality control measures and uniform processing. To facilitate the
future discovery and characterisation of smORFs specific to other cell types, disease states
or developmental stages, we provide our analytical approach and all datasets used in this
manuscript in raw and processed form for integration with future projects and an interactive
online browser at smorfs.ddnetbio.com.

Of the 7,767 smORFs found in this study, we find that 5,347 are translated in all assayed
conditions, whilst some are highly specific to certain cell types or tissues. uORFs are the
most common subtype and are also the most highly expressed. They have previously been
regarded as negative regulators of main ORF translation, however, we find that uORFs and
their associated main ORF tend to be regulated in the same direction (Fig. 4B, E) in the
context of cell- and tissue-specific translation and during fibroblast activation. This suggests
either a prominent role for uORFs as positive regulators of translation or that uORFs and
their associated main ORF are subject to the same external regulatory mechanisms. If some
uORFs encode peptide subunits important for the function of the main ORF-encoded protein,
their expression patterns should mirror each other.

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that triggers
the decay of transcripts with premature stop codons (Hentze and Kulozik, 1999). After
splicing, an exon junction complex (EJC) is bound to the transcript, which triggers NMD
unless translating ribosomes remove the EJC. Premature stop codons initiate early ribosome
release, leaving downstream EJCs intact, activating the NMD pathway (Fig. S11B). To date,
it is unclear why splicing of untranslated regions does not trigger NMD. It has been
suggested that NMD cannot be triggered close to the 3’ end of the transcript (Hilleren and
Parker, 1999; Muhlrad and Parker, 1999). We find that spliced regions are always occupied
by ribosome footprints (Fig S11C). It thus may be possible that ribosomes prevent NMD in
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the UTR. However, we find that most splicing junctions are covered by ribosomes that do not
appear to actively translate RNA and move along the transcript without clear 3nt-periodicity.
This suggests scanning ribosomes, at least in some instances, might be sufficient to prevent
NMD. Ribo-seq bulk data does not reveal whether all splice junctions in all transcripts are
covered by ribosomes and translation-unrelated mechanisms that prevent NMD may exist.

Apart from regulatory functions, smORFs can also encode functional peptides. This has
been shown for individual SEPs, which act in processes such as DNA repair (Slavoff et al.,
2014), myogenesis (Bi et al., 2017; Quinn et al., 2017; Zhang et al., 2017b), inflammation
(Lee et al., 2021), cancer (Pang et al., 2020) and metabolism (Chugunova et al., 2019;
Friesen et al., 2020; Makarewich et al., 2018; Stein et al., 2018). A stringent conservation
analysis revealed that the amino acid sequence encoded in smORFs is significantly more
conserved compared to a matched background, with 97.7% of human smORFs having more
than 60% of amino acids identical in primates. Furthermore, using Ribo-seq from rat tissues,
we found evidence that these conserved smORFs are translated, making rodents a suitable
model to explore smORF function in vivo. This suggests that many SEPs may be biologically
relevant, warranting further follow-up exploration. Functional screens may offer a
high-throughput route to provide additional insights into smORF biology when a suitable
phenotypic readout is available. However, given the diverse and often highly specific roles of
known SEPs, in-depth single gene functional studies are required to better understand the
relevance of individual smORFs and SEPs.

It is very challenging to detect short peptides using traditional proteomics approaches, which
typically detect less than 100 SEPs that can be confirmed at the protein level (Ma et al.,
2016; Slavoff et al., 2013). A more recent approach utilising HLA-I proteomics data was able
to verify 320 SEPs at the protein level (Martinez et al., 2020). The integration of our
improved smORF annotation and 26 human mass spectrometry datasets confirmed 603
SEPs at the protein level. Further advances in proteomics are needed to better understand
how many smORFs encode stable SEPs. Subcellular resolution proteomics revealed that
many SEPs are transported into the nucleus. Often these peptides are encoded in the 5’
UTR of well-known transcription factor transcripts, and therefore could potentially function as
cofactors. A recent study has identified a SEP that regulates more than 15% of the active
transcriptome (Koh et al., 2021). Our results suggest that transcriptional regulation by SEPs
may be a more common physiological role than previously anticipated.

This comprehensive map of human smORFs generated using primary human cell types and
human tissues gives insights into an overlooked part of the genome, revealing potentially
new players in health and disease and provides a resource for the scientific community to
accelerate discoveries. Overall, we have identified over 7000 new ORFs, many of which are
conserved and over 600 of which we have validated at the protein level. Having compiled
this resource, it will now be possible for the community to expand on our analysis and utilise
the identified smORFs as a starting point for further functional, mutational or evolutionary
studies. For example, understanding the rate at which they mutated across the human
population will help elucidate their role in disease or understanding the rate at which they
acquired or lost in evolution will give a clearer role of these short open reading frames within
the wider context of evolutionary dynamics. Our results suggest that smORFs and SEPs are
common, have diverse functional roles and provide new opportunities for understanding
mammalian physiology and disease.

Limitations of the study

Whilst this resource represents the first comprehensive atlas of human smORFs derived
from high-quality and high-depth primary cells/tissues, there are a number of aspects that
can be further developed. Firstly, despite our efforts to collect a broad range of samples as
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possible, the number and diversity of samples is limited by constraints in access to human
primary cells and tissues. Further investigation of additional cell types, disease-specific
translation would require profiling of other systems. For instance, the current version of the
study cannot exclude that there may be other conditions where uORF translation represses
main ORF TE levels. Future versions of this resource could also include translation initiation
mapping, using drugs such as harringtonine, lactimidomycin to more accurately identify the
most used alternative start-site of a given smORF. Although the combined data included in
this study has high-depth, lowly translated smORFs, which may or may not be functionally
relevant, could have been missed. As our pipeline focuses on identifying ORFs that have
high periodicity, uniform coverage and clear dropoff of ribosomes, it may miss ORFs that
have overlapping translation with another ORF in a different frame thereby leading to lower
periodicity. Functional characterization of individual smORFs is beyond the scope of this
study, which is intended to serve as a global resource of translated small ORFs. As a result,
beyond providing tissue specificity, conservation and (where possible) identification in mass
spectrometry more detailed studies will be required to investigate the role of individual
smORFs, or indeed the act of translation that generates them, as functional parts of human
physiology. This resource provides a high-confidence set of smORFs that have translation
signatures identical to known ORFs, which can be further investigated to answer such
questions.
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Main Figure titles and legends

Figure 1: A high-depth and high-resolution dataset of mRNA translation in primary human cell types and



tissues. A. Schematic of the data (Ribo-seq and RNA-seq) used in this study. In-house: newly generated
datasets. Public: published datasets (Brain (Gonzalez et al., 2014), Atrial fibroblasts (Chothani et al., 2019a),
Heart (van Heesch et al., 2019), Skeletal muscle (Wein et al., 2014) and Kidney (Loayza-Puch et al., 2016)). B.
Schematic illustrating the concepts of RPF (ribosome protected fragment) and relative inferred P-site position,
used to determine the frame being read. Abbreviations: A-site (aminoacyl), P-site (peptidyl) and E-site (exit);
AUG, start codon, UGA, stop codon. C. Bargraph indicating the total amount of sequenced raw reads and the
retained reads (%) following each of the indicated pre-processing steps. D. Trinucleotide (3-nt) periodicity of the
individual datasets, calculated using read lengths of 28-30nt. Data shown as positional heatmap and box and
whiskers plot (line at median, the whiskers extend to the most extreme data point which is no more than 1.5*IQR
(or interquartile range) from the box) E. MYMX transcript expression (RNA-seq: light grey) and translation
(Ribo-seq: dark grey) are displayed together with inferred ribosomal P-site positions dominating the coding-frame
(Frame 1, blue). Abbreviations: 5’UTR (5’ untranslated region), CDS (Coding sequence), 3’UTR (3’ untranslated
region).

Figure 2: Comprehensive and systematic discovery of actively translated ORFs using the human
translation dataset identifies smORFs with robust translation signatures similar to Ensembl-ORFs. A.
Graphic illustrating the filters adopted to select smORFs with a robust mRNA translation signature: P-sites In
Frame (PIF), Uniformity, Drop-off score. For each score, density plots based on the underlying data processed
with different smORF-calling tools are shown to illustrate the rationale for their choice. The dotted line represents
the threshold determined using Mean -2*SD (95 percentile) of fitted normal distributions for PIF and Uniformity
and the Mean for Drop-off score. B Length distribution of Ensembl-ORFs (light blue) and filtered smORFs (dark
blue). C. Bar graph showing smORF classification based on their mapped location. Abbreviations: uORFs
(upstream ORFs; located on the 5’UTR of known protein-coding ORFs). dORFs (downstream ORFs; located on
the 3’UTR of known protein-coding ORFs). NuORFs (novel unannotated ORFs; located on previously annotated
non-coding transcripts). Overlapping CDS indicates cases in which uORFs/dORFs overlapped with the
protein-coding ORF on the same transcript. D. P-site distribution around the Start and Stop codons of the final
combined set of smORFs. E. Relative usage of codon start sites among smORFs. F. Translation initiation context
for Ensembl-ORFs, filtered smORFs and background smORFs. Background smORFs: Randomly selected
smORFs from low scoring smORFs (PIF < 40%, Uniformity < 40% and Drop-off < 90%) to match the set-size of
filtered smORFs. Kozak consensus is given for reference at the bottom, where R stands for Adenine (A) or
Guanine (G), *** denotes the start codon and -3 and +4 positions denote strong Kozak context.

Figure 3: RNA expression and translation of small open reading frames (smORFs) in human cell types
and tissues. A. Stacked bar chart showing the number and type of translated smORFs (Ribo-seq TPM > 1) in
each dataset. Of the 13 datasets, 10 total cell types and tissues were assessed for expression analysis. AEC and
HCAEC merged together as HCAEC; Published and newly generated Brain data merged together; Skeletal
muscle tissue removed failing read-depth QC for expression analysis; B. Ribo-seq TPM (transcript per million)
distribution for each smORF category and known coding ORFs in fibroblasts. uORFs display higher mean
translation levels (0.897) than dORFs (0.425; p-value 1.1e-97) and nuORFs (0.414; p-value 4.6e-55). Statistics:
Student’s t-test. C. TE (Translation efficiency) distribution for each smORF category and known coding ORFs in
fibroblasts. D. Scatterplot of Jensen-Shannon divergence and Endothelial cell gene expression. Blue: Genes with
uORFs and/or dORFs, Yellow: Genes with nuORFs. Genes in the top-right quadrant (e.g. CATG00000072615)
represent genes that are both highly expressed and specifically expressed in endothelial cells. Gene symbols are
displayed for genes (top 20) with the highest expression levels and JSD < 0.5. E. An example of endothelial
cell-specific nuORF, CATG00000072615 encoded in a lncRNA showing Endothelial-specific Ribo-seq read
coverage within the cell-types/tissues in this study.

Figure 4: Upstream Open Reading frames in translational regulation. A. Volcano plot showing translational
efficiency (TE) for all Ensembl-ORFs in fibroblasts vs background. Log2(ΔTE) denotes the log fold change of TE
for the annotated ORF. Log10(adjusted p-value) denotes the significance of the change in TE. Ensembl-ORFs
are marked in blue if they also host an upstream ORF (uORF). A chi-square p-value of 8.62e-89 signified the
preferential presence of uORFs hosted in differential-TE genes. B. A scatter plot showing TE fold-changes for
differential-TE main ORF and uORF pairs in fibroblasts vs background. 91.55% of uORF-main ORF pairs change
in the same direction and 8.45% in the opposite direction. uORF-mORF pairs with absolute log2 ΔTE greater
than 5 were shown on the axis boundary. C. Ribo-seq and RNA-seq of TGFB1 stimulated atrial fibroblasts across
a time-series (Baseline, 45mins, 2hrs, 6hrs, 24hrs) D. Volcano plot showing translational efficiency (TE) for all
Ensembl-ORFs in TGFB1 stimulated fibroblasts (24 hours) vs baseline. Log2(ΔTE) denotes the log fold change
of TE for the annotated ORF. Log10(adjusted p-value) denotes the significance of the change in
TE.Ensembl-ORFs are marked in blue if they also host an upstream ORF (uORF). A chi-square p-value of
8.99e-52 signified the preferential presence of uORFs hosted in differential-TE genes. E. A scatter plot showing
TE fold-changes for differential-TE main ORF and uORF pairs in fibroblasts vs background. 92.31% of
significantly changing uORF-mORF pairs change in the same direction. F-G. Scatter plot for two exemplar
uORF-mORF pairs showing in-tandem change in TE during fibroblast activation. Lines represent median TE
values. Red: uORF, Blue: mORF. Header represents Ensembl gene ID hosting both uORF and mORF. Log2 fold
change of TE and adjusted p-values are printed for the uORF and mORF respectively.

Figure 5: Evolutionary conservation of small open reading frames across 100 vertebrates. A. Difference in
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the average percentage of Amino-Acid conservation for smORFs across 100 vertebrate species with respect to a
matched background. Dark blue: upstream ORF; Light blue: downstream ORF; Yellow: novel unannotated ORF.
Lighter colour: Background smORFs not detected as being actively translated. B. P-site periodicity plot for a
31AA uORF located in the 5’UTR of RASGRP3 (RAS Guanyl Releasing Protein 3), which was detected to have
active translation signature in the human translation dataset (84.55% PIF, 84.38% Uniformity and 99.74%
Drop-off) and found to be conserved in the rat (Ribo-seq data from (Schafer et al., 2015);72.49% PIF, 78.12%
Uniformity and 98.85% Drop-off) as well as other species (C).

Figure 6: Large-scale re-analysis of Mass-spectrometry data reveals 603 smORF encoded peptides. A.
Schematic of the strategy employed for the re-analysis of published mass-spectrometry datasets to identify
smORFs. B. Bubble chart illustrating smORF encoded proteins (281 uORFs, 47 dORFs and 286 nuORFs) having
at least one MS-hit across different samples (Tissues, cell types). Each circle represents an MS-hit for a given
smORF in a given sample type. The colour scale indicates the number of total hits and the circle size represents
the number of unique peptide sequences found to match the smORF. C. MS-evidence of smORF encoded
proteins in different subcellular localisations. Abbreviations: ESC (Embryonic stem cells), HUVEC (Human
umbilical vein endothelial cells), NHDF (N Human dermal fibroblasts), SmoothP1acells (Smooth muscle cells), AF
(Adipose fibroblasts), EC (Endothelial cells), and tissues: AV (Aortic valve), Ao (Aorta), LA (Left atrium), LV (Left
ventricle), MV (Mitral valve), PA (Pulmonary artery), PV (Pulmonary valve), PVe (Pulmonary vein), RA (Right
atrium), RV (Right ventricle), SepA (atrial septum), SepV (ventricular septum), TV (Tricuspid valve); A3689, A17,
CP, KFcells, SV, LH, MK,vcavain as described in Doll et al. (Doll et al., 2017).
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KEY RESOURCES TABLE

Reagent or Resource Source Identifier

Chemicals

20/100 marker IDT 51-05-15-02

Cycloheximide Sigma Aldrich C1988

MicroSpin S400HR
Columns

GE Healthcare 27-5140-01

Novex TBE-Urea Gels,
15%, 10%

Invitrogen EC68855BOX, EC68755BOX

Novex TBE Gels 8% Invitrogen EC62155BOX

Novex TBE-Urea Sample
Buffer (2X)

Invitrogen LC6876

Novex® Hi-Density TBE
sample buffer (5X)

Invitrogen LC6678

O’Range Ruler 10bp ThermoScientific SM1313

Phusion Hi-Fi PCR Master
Mix

NEB M0531S

Sybr Gold Invitrogen S11494

TRIzol Invitrogen 15596018

Critical commercial
assays

TruSeq Ribo Profile
(Mammalian) Library Prep
Kit

Illumina RPHMR12126

HT DNA HiSens Reagent
Kit

Perkin Elmer CLS760672

HT DNA 1K/12K/Hi Sens Perkin Elmer 760517



LabChip

HT RNA Reagent kit and
RNA ladder

Perkin Elmer 760634, CLS960010

HT DNA 5K/RNA/CZE
LabChip

Perkin Elmer 760435

Ribo Zero Magnetic Gold Epicentre Illumina MRZG12324

RNA clean and
concentrator 5

Zymo Research R1015

TruSeq Stranded mRNA
Library preparation

Illumina RS-122-2101/2

NextSeq 500 High Output
kit v2 (150 cycles)

Illumina 20024907

NextSeq 500 High Output
kit v2 (75 cycles)

Illumina 20024906

Qubit DsDNA BR Assay
kit, 500 assays

Life Technologies Q32851

Qubit RNA BR Assay
Kit,500 assays

Life Technologies Q10211

KAPA Library
Quantification Kit Illumina
GA with revised
primers-SYBR Fast
Universal

Roche KK4824

Sample purification beads Beckman coulter A63881

Published data and
annotations

Ensembl ORFs Ensembl hg38 Homo_sapiens.GRCh38.86.ch
r.gtf

FANTOM5 transcript
models and CAGE counts

(Hon et al., 2017) https://fantom.gsc.riken.jp/cat/?
fd=source_data

Kidney Ribo-seq/RNA-seq (Loayza-Puch et al., 2016) SRP044937: SRR1528686-9,
SRR2064424-5

Brain (Gonzalez et al., 2014) SRP031501:
SRR1562539-SRR1562541
SRR1562544-SRR1562546

Skeletal muscle (Wein et al., 2014) SRP040550: SRR1204656,
SRR1204658
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Fibroblasts (Chothani et al., 2019a) GSE123018

Heart tissue (van Heesch et al., 2019) EGAS00001003263

Multiple sequence
alignment

UCSC
https://hgdownload.soe.ucs
c.edu/goldenPath/hg38/mul
tiz100way/maf/

chr#.maf.gz
where #=1:22, X, Y, M

Mass-spec data See methods for details See methods for details

Deposited Data

Raw Ribo-seq data This paper GSE182371

Raw RNA-seq data This paper GSE182372

Website This paper smorfs.ddnetbio.com

Software and Algorithms

Trimmomatic (Bolger et al., 2014) http://www.usadellab.org/cms/i
ndex.php?page=trimmomatic

Bowtie (Langmead et al., 2009) http://bowtie-bio.sourceforge.n
et/bowtie2/index.shtml

STAR (Dobin et al., 2012) https://github.com/alexdobin/S
TAR/

Feature counts (Liao et al., 2014) http://subread.sourceforge.net/

deltaTE (Chothani et al., 2019b) https://github.com/SGDDNB/tr
anslational_regulation

Ribotaper (Calviello et al., 2016) https://ohlerlab.mdc-berlin.de/s
oftware/RiboTaper_126/

RiboTISH (Zhang et al., 2017a) https://github.com/zhpn1024/ri
botish

PRICE (Erhard et al., 2018) https://github.com/erhard-lab/p
rice

Sorfs.org (Olexiouk et al., 2018) http://sorfs.org/database

MS-GF+ (Kim and Pevzner, 2014) http://proteomics.ucsd.edu/soft
ware-tools/ms-gf/

Star Methods
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will
be fulfilled by the Lead Contact: Sebastian Schäfer (sebastian@duke-nus.edu.sg)

Materials availability
This study did not generate new unique reagents.

Data and code availability
● Raw data can be downloaded from GEO superseries GSE182377 (Ribo-seq:

GSE182371, RNA-seq: GSE182372). An interactive browser for all of the identified
smORFS can be found at: smorfs.ddnetbio.com

● This paper does not report original code.
● Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and tissue collection
Cell types and tissues were selected to constitute a rich and diverse experimental resource,
such that most genes would be expressed in at least one cell type, with the assumption that
this would lead to most smORFs being expressed in at least one dataset.

Human primary atrial fibroblasts were prepared from atrial biopsies of patients
undergoing CABG (coronary artery bypass grafting) in keeping with local guidelines
(Singhealth Centralized Institutional Review Board 2013/103/C and 2018/2543) and cultured
as described previously (Chothani et al., 2019a). Fibroblasts were either untreated or treated
with cytokines (5 ng/ml) or antibodies (2 µg/ml) as indicated.

Primary human hepatocytes (5200, ScienCell) were maintained in hepatocyte
medium (5201, ScienCell) supplemented with 2% fetal bovine serum, 1%
Penicillin-streptomycin at 37°C and 5% CO2. All experiments with primary cells were carried
out at low cell passage.

Vascular smooth muscle cells (VSMCs) Experimental protocols involving human
subjects were approved by the SingHealth Centralized Institutional Review Board (CIRB)
(CIRB ref: 2013/103/C) in accordance with the ICH Guidelines for Good Clinical Practice and
all participants gave written informed consent. Patients undergoing coronary bypass grafting
(ages between 21 to 81) at the National Heart Centre Singapore were recruited to the study,
and patients with prior valvular heart disease or previous atrial interventions were excluded.
Human VSMCs were cultured as previously described (Lim et al., 2020). Aortic biopsies and
left internal mammary artery trimmings were used to outgrow primary VSMCs. The tunica
media was isolated under a dissecting microscope and minced into 1-2 mm2 pieces and
explanted onto 60 mm cell culture dishes coated with collagen I (C3867, Sigma-Aldrich) and
maintained in complete M231 medium (M-231-500) with smooth muscle growth supplement
(S-007-25) and 1% antibiotic-antimycotic (15240062) from Life Technologies, in a humidified
atmosphere at 37°C and 95% air/5% CO2. VSMC were negatively selected by magnetic
separation with LD columns (130-042-901, Miltenyi Biotec) to exclude CD90+ fibroblasts
(130-096-253, Miltenyi Biotec) and CD144+ endothelial cells (130-097-857, Miltenyi Biotec)
at passages 1-2.

Pluripotent human embryonic stem cells (hESCs) were seeded and propagated in
vitro on LN-521 to maintain pluripotency. Specifically, the hESC line H1 or HS1001 (sourced
respectively from WiCell Research Institute and Karolinska Institute; NUS-IRB 12-451) were
cultured in monolayer on plates pre-coated with purified human LN isoform overnight at 4°C
at 10 μg/ml according to manufacturer’s instructions (BioLamina) and maintained in
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NutriStem hESC XF (Biological Industries, Israel) medium. Upon confluence, the cells were
sub-cultured by trypsinization using TrypLESelect (GIBCO Invitrogen) for 8 min at 37°C, 5%
CO2.

Human umbilical vein endothelial cells (HUVECs): HUVEC cells were purchased
from Lonza (C2519A, pooled donor) and were cultured with EGM-2 BulletKit medium
(CC3162, Lonza) in a humidified incubator with 5% CO2. HUVECs (P3 to P4) were
harvested at confluence of 80–90% and subcultured into 100 mm petri-dish (Falcon) at the
density of 5,000 cells per cm2.

Human coronary artery endothelial cells (HCAEC): Primary HCAEC (CC2585, Lonza)
were cultured and passaged in EGM-2 MV BulletKit medium (CC3202, Lonza). For
experiments, HCAEC (P3) were seeded into a 100mm dish at a density of 5000 cells/cm2.

Human aortic endothelial cells (HAEC): Primary HAECs (PromoCell® C12271) were
cultured in endothelial cell growth media MV2 (PromoCell® C22022) with changes every two
days. To subculture, HAECS were washed once with PBS, trypsinized (0.25% trypsin; Life
Technologies 25200072), and, following neutralization with EGMV2 media, centrifuged at
500xg for 5 min and seeded at a density of 5000 cells/cm2.

Brain tissue: Brain tissue (thalamus) was obtained from the Victorian Brain Bank and
ethics approval was received for patient tissue banking and consent (University of
Melbourne HREC Approval No.: 1545740) and for molecular analyses (Monash University
MUHREC 2016–0554).

Adipose Tissue: The adipose tissue (visceral and subcutaneous) used in this study
was collected from a volunteer (female, 32yo, Chinese, BMI 42, history of polycystic ovarian
syndrome) during weight loss surgery at Singapore General Hospital, under approval by the
local IRB (Singhealth CIRB 2015-12-14). During surgery, approximately 75 g of visceral and
15g of subcutaneous adipose tissue was removed. The specimens were washed with
normal saline, divided into aliquots and stored at – 80°C.

METHOD DETAILS

Library preparation and sequencing

Generation of Ribo-seq libraries: Ribosome profiling was performed as previously
described (Chothani et al., 2019a; Schafer et al., 2015).

For brain and adipose tissue, 80-100mg of tissue were placed in chilled tubes
containing zirconia beads (11079110zx, Biospec) and 1ml cold lysis buffer supplemented
with 0.1 mg/mL cycloheximide (formulation as in TruSeq® Ribo Profile Mammalian Kit,
RPHMR12126, Illumina) and lysed using the Magnalyser machine (Roche) in pulses of 20s
at 6000g so that the sample would remain cold. Samples were then centrifuged at 20,000g
for 10min at 4°C to pellet debris.

Fibroblasts, hepatocytes, hESCs and endothelial cells were grown to 90%
confluence in a 10cm culture dish, while VSMCs were pooled from 5 wells of a 6-well culture
plate at baseline conditions in basal M231 medium (M-231-500) for 24h, and pelleted before
snap-freezing in liquid nitrogen and stored at -80°C prior to lysis for Ribo-Seq. It was
ensured that primary cells at low passage (≤ passage 4) were used for these experiments.
Cell lysis occurred in the presence of 0.1 mg/mL cycloheximide in 1ml cold lysis buffer
(formulation as in TruSeq® Ribo Profile Mammalian Kit, RPHMR12126, Illumina). After
immediate repeated pipetting and multiple passes through a syringe with a 21G needle,
sample lysates were cleared as described above. 400-800ul of supernatant recovered from
homogenized and cleared lysates were then footprinted with Truseq Nuclease (Illumina).
Ribosomes were purified using Illustra Sephacryl S400 columns (GE Healthcare), and the
protected RNA fragments were extracted with a standard phenol:chloroform:isoamylalcohol
technique. Following ribosomal RNA removal (Mammalian RiboZero Magnetic Gold,
Illumina), sequencing libraries were prepared out of the footprinted RNA according to the
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TruSeq Ribo Profile (Mammalian) Reference Guide, with the additional modification of 8%
PAGE purification following the PCR amplification of the final library.

Generation of RNA-seq libraries: Total RNA was isolated using TRIzol Reagent
(Invitrogen; 15596018) from cell pellets or 5-10 mg of the same tissue processed for
ribosome profiling. Total RNA was DNase-treated and purified using the RNA Clean &
Concentrator-5 kit (Zymo Research; R1013). RNA was quantified using a Qubit RNA BR
Assay kit (Life Technologies) and its quality was assessed on the basis of their RNA integrity
number using the LabChip GX HT RNA Reagent Kit (Perkin Elmer). Per sample, ~1µg was
further processed for library preparation with the Truseq Stranded mRNA kit (Illumina)
according to the manufacturer’s protocols.

Sequencing: The final RNA-seq and ribosome profiling libraries were quantified using KAPA
library quantification kits (Roche); the quality and average fragment size of the final libraries
were determined using a LabChip GX HT DNA HiSens Reagent Kit (Perkin Elmer). Libraries
with unique indexes were pooled and sequenced on a Hiseq / NextSeq 500 Illumina
sequencer using 75-bp paired-end [RNA-seq: NextSeq 500 High Output kit v2 (150 cycles)]
or 50-bp single-end [Ribo-seq: NextSeq 500 High Output kit v2 (75 cycles)] sequencing
chemistry.

Transcript model annotation file construction

Ensembl hg38 transcript models (Yates et al., 2020) and FANTOM5 hg38 robust transcript
models (hg38 liftover version provided by the authors of Hon et al. 2017(Hon et al., 2017))
were downloaded as GTF files. Several compatibility issues were resolved before merging
the two databases of transcript models: First, for transcripts that had different host gene IDs
between hg19 and hg38, their host genes were updated to the latest version (hg38).
Second, transcripts with a strand information mismatch between both databases were
discarded. Third, transcripts with incorrect chromosome annotation with respect to the host
gene were also discarded. After resolving these compatibility issues, the Ensembl transcripts
and FANTOM5 transcripts were merged into one GTF annotation file.

Unique and non-overlapping transcripts across both sources were added to a merged file
without any changes. Common transcripts were combined by extending the Ensembl
transcripts based on FANTOM5 annotation so as to allow maximum search space for
smORF calling (see Fig. S5B-E). The gene biotype information was retained from the
Ensembl annotation file for genes present in Ensembl, whereas for novel genes from the
FANTOM5 annotation catalogue the biotype was derived from the FANTOM5 catalogue. The
resultant annotation file was formatted to be used as a standard GTF file and was tested
with several software for smooth functioning (STAR (Dobin et al., 2012), featureCounts (Liao
et al., 2014) and Ribotaper (Calviello et al., 2016)).

Data pre-processing of Ribo-seq and RNA-seq samples

Ribo-seq and RNA-seq data were pre-processed as described previously (Chothani et al.,
2019a). See Table S1 for computational tools used in this study. Raw sequencing data were
demultiplexed with bcl2fastq V2.19.0.316 to obtain fastq format files. The fastq file was
processed to remove adaptors and low-quality bases using Trimmomatic V0.36 (Bolger et
al., 2014). Demultiplexing and trimming of adaptors were carried out for both Ribo-seq and
RNA-seq reads. Reads that were shorter than 20 nucleotides for Ribo-seq and 35
nucleotides for RNA-seq were discarded. RPFs represent the actively translated mRNA and
the ribosomal RNA (rRNA), mitochondrial RNA (mtRNA) and transfer RNA (tRNA)
sequences are considered contaminant sequences. Trimmed Ribo-seq reads were aligned
using Bowtie2 (Langmead et al., 2009) to sequences present on RNACentral (release 5.0)
database (The RNAcentral Consortium, 2017), a database of known rRNA, mtRNA and
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tRNA sequences. The reads aligned to these contaminant sequences were discarded and
the remaining unaligned reads were retained for further processing. The removal of
contaminant sequences is not carried out for full-length RNA-seq datasets as these
contaminant sequences are not prevalent in RNA-seq sequenced reads. After these
pre-processing steps, both RNA-seq and Ribo-seq reads were aligned using STAR (Dobin et
al., 2012) to the human genome (hg38) using the combined transcript models from Ensembl
and FANTOM5. RNA-seq reads were aligned using the default settings of the tool for
paired-end reads. Ribo-seq reads were aligned as previously described (Chothani et al.,
2019b). Refer Fig. S5F, Supp. Table 1 for processing pipeline and detailed commands.

Quality check filtering using 3nt-periodicity in known ORFs.

Ribo-seq datasets were further screened for their 3nt-periodicity signal across known ORFs
to select high-quality data for smORF detection. RiboTISH (Zhang et al., 2017a) was used to
quantify the transcriptome-wide periodicity near the start-codon and stop-codon in the
Ribo-seq dataset. Samples with less than 60% 3nt-periodicity across all known ORFs for
read lengths between 28nt to 30nt were discarded from any further analysis. High-quality
samples with lower sequencing depth were re-sequenced for increased sequencing depth to
allow detection of 3nt-periodicity signals even for lowly expressed genes. A heatmap around
the start-codon and stop-codon was generated using pheatmap 1.0.8 R package to view the
global 3nt-periodicity across different datasets.

Processing and QC of published Ribo-seq dataset

RPFdb v2.0 (Xie et al., 2016), a database of published Ribo-seq dataset, was used to mine
dataset derived from human primary cells and tissues. Out of the 102 human Ribo-seq
studies, we found 10 that were generated using primary human cells or tissues (See Table
S2). Cell types or tissues that were redundant to in-house generated data or unavailable
published data were not used for further analysis and the remaining four datasets were
downloaded and re-processed. Trimming of adaptors was carried out using the
recommended tool and adaptor sequence as per the methods described in original
publications. The trimmed Ribo-seq and RNA-seq data were processed to obtain alignment
files using the same processing pipeline as for the newly generated data in this study. Each
dataset was evaluated for various quality check metrics including read depth, sequencing
data quality, reads remaining after trimming adaptors or removing rRNA sequences,
alignment and importantly, its average 3nt-periodicity. The 3nt-periodicity for each dataset
was quantified using Ribo-TISH (see Data S1). High-quality datasets with high (60%)
3nt-periodicity were selected for further analysis in this study to obtain high accuracy by
reducing the signal-to-noise ratio for smORF detection. Ribo-seq/RNA-seq data from two of
our recently published human primary cells/tissue studies (Chothani et al., 2019a; van
Heesch et al., 2019) passed QC thresholds and were prepared and processed the same as
the newly generated data in this study.

P-site file construction

The ribosome protected mRNA fragment (RPF) does not directly denote the exact position of
the codon being translated, i.e, the position of the peptidyl site of the ribosome (Refer Fig.
1B). Quantifying P-site positions is required for visualization and quantification of 3-nt
periodicity for smORFs. Sample-wise processing of Ribo-seq was carried out to obtain P-site
positions for each sequencing read. Each alignment file (.bam) was processed to retain only
uniquely mapped reads. They were further processed such that any reads longer than 30nt
and shorter than 27nt were discarded. The offset for the P-site position in each read length
was calculated based on the known ORFs using RiboTISH (Zhang et al., 2017a). To filter
stringently, we tested each read length from 27 to 30 base pairs, the expected length of a
ribosome protected fragment (RPF), for 3nt periodicity across the Ensembl-ORFs and only
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read lengths with more than 60% 3-nt periodicity were retained within that sample.

Each Ribo-seq aligned read was then processed to determine the position of the P-site by
using the determined offset for the given read length and sample. For reads on the positive
strand, the P-site position was determined as the read start + offset and for reads on the
negative strand, the P-site position was determined as read length - offset + 1. Sequencing
reads may have bases that are missing from the reference or bases compared to the
reference. This information is stored as a string of characters called, Concise Idiosyncratic
Gapped Alignment Report (CIGAR). A CIGAR string records whether the base pair is
matched with reference alignment or skipped as a gap. In order to correctly offset the reads
to find the P-site position and base-pair aligned to the reference genome, the CIGAR
information was also incorporated. These P-site positions were quantified generating a
P-site file for each Ribo-seq sample. The calculated P-site positions and sequences were
stored as a .bam file with reads of length 1 including base pair sequenced at the P-site
position (Refer Fig. S5G).

Merging alignment files to obtain maximum depth for smORF detection

Individual cell-type and tissue RNA-seq alignment files, Ribo-seq alignment files and P-site
files were merged together for maximum depth at the nucleotide-resolution for smORF
detection. Samples were merged using samtools V0.1.18 to obtain three files: 1. Merged
RNA-seq alignment file (.bam), 2. Merged Ribo-seq alignment file (.bam) and 3. Merged
P-site file (.bam). These files were used to generate .bedgraph files using
genomeCoverageBed for visualization at the nucleotide resolution (Fig. 1E, 4E).

Detection of small Open Reading Frames

The merged alignment files were used as input to smORF calling tools for maximised depth
in genome-wide P-site coverage thereby increasing the possibility of comprehensive smORF
detection. RNA-seq files were downsampled to 10% for maintaining similar depth to
Ribo-seq data and quicker runtimes. The smORFs identified in this study were based on de
novo identification of smORFs from our dataset and further incorporated with smORFs
detected and listed previously on sorfDB (Olexiouk et al., 2018), a database of smORFs. For
de-novo detection of smORFs, we used three independent tools: Ribotaper, a spectral
analysis method that leverages the 3-nt periodicity exhibited by actively translating
ribosomes (Calviello et al., 2016); PRICE, a computational method that optimizes noise in
the Ribo-seq data to identify smORFs and also is able to detect smORFs overlapping with
known-protein coding ORFs (Erhard et al., 2018) and RiboTISH, a toolkit identifying
smORFs also with non-canonical start-sites (Zhang et al., 2017a). The tools were used in
the default setting on the merged human translation dataset using the Ensembl+FANTOM5
transcript model annotation prepared in this manuscript. The smORF detection was carried
out chromosome-wise for parallel processing.

For ribotaper, the merged P-site alignment file, the merged RNA-seq alignment file and an
annotation index based on Ensembl+FANTOM5 transcript annotation (prepared using
Ribotaper supplementary script: Create_annotations_files.bash) was used. An offset of 0
and read length 1 was used as the P-site alignment file included pre-computed P-site
positions inferred for each length based on the offset quantified. PRICE uses multiple read
lengths to model the noise hence, the merged Ribo-seq alignment file consisting of all read
lengths and an annotation index (prepared using PRICE, gedi) was used. For RiboTISH, the
merged Ribo-seq alignment file, the Ensembl+FANTOM5 GTF file (prepared in this
manuscript), human genome fasta file and parameter file generated by RiboTISH quality
function were used. Lastly, smORFs found in humans as in sorfs.orf (Olexiouk et al., 2018),
a database of detected smORFs based on published Ribo-seq dataset (intergenic smORFs
were removed) were also added to the list of de-novo smORFs identified in this study. There
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was no minimum or maximum length cutoff that was used for identifying high-confidence
smORFs in this study.

Nomenclature for smORFs

In order to understand the overall extent of translation on the transcriptome, we combined
smORFs identified by all three tools and the database. A common nomenclature of smORFs
was defined to allow combining and cross-comparison of smORFs from different sources
with different naming systems. The four smORF result files obtained using the three tools
and the database were each processed to a standard GTF format to allow merging of the
smORFs detected by different methods. The highest level in the hierarchy of the
nomenclature is ORF. An ORF is defined as having a stop-site not shared by any known
protein-coding gene. It is labelled using an ORF id, which is a combination of the host gene
id and the position of the stop-codon, HostGeneID_StopPos. Each ORF is defined to have
several isoform-ORFs or iORFs based on different start codon positions in the coding frame
identified for a given stop codon position. This can be due to different splicing structures or
due to alternative canonical or non-canonical start-codons present in the same coding frame.
The iORF_id was determined from the unique identifier assigned for each smORF identified
by the tools or database that detected the isoform. Similar to Ensembl-ORFs, smORFs may
span over multiple exons. This information was further stored in the form of multiple
orfCDSs, which included positions of smORF covered across different exonic regions.
Grouping of similar and duplicate smORFs was carried out by assigning each detected
smORF, an ORF_id, iORF_id and orfCDS locations and storing them according to the
hierarchical structure of ORF->iORF->orfCDS in a standard GTF file. This is similar to the
previously used structure for Ensembl-ORFs: gene->transcript->CDS (see Fig. S6A).

Translation signature scores

Three scores were developed to decipher actively translating smORFs from likely
false-positive smORFs which are random occurrences of ORFs. All scores were calculated
for each smORF identified by the three tools and the database using their defined start and
stop site and the orfCDS information was used to skip intronic regions while calculating
scores. The high-quality inferred P-sites determined in this manuscript, merged across all
datasets, were used as input for the scores. First, P-sites in frame (PIF) is defined as the
percentage of inferred P-sites in the coding-frame of the iORF across its length. PIF was
quantified for each smORF by calculating the sum of inferred P-sites across the iORF’s
length and dividing by the total number of inferred P-sites in the iORF. Second, Uniformity is
defined as the uniform coverage of the 3nt-periodicity signal across the complete iORF. In
order to quantify uniformity, each codon (3 nucleotides) was tested for the percent inferred
P-sites in the coding-frame and was flagged as PASS if this was found to be larger than
33.33% (random), otherwise as FAIL. Finally, the uniformity was calculated by quantifying
the percentage of codons that were flagged as PASS across the length of the smORF. Third,
Drop-off score is defined as the quantification of ribosome disengagement at the stop-codon.
For each smORF, a 15 nucleotide (exon only) bin before and after the stop-codon was
determined after accounting for splice junctions. Inferred P-sites were quantified in the
coding frame. The drop-off score was quantified as the percentage of the number of inferred
P-sites in the coding frame before the stop codon to the total inferred P-sites in the coding
frame before and after the stop codon. A drop-off of 100%, which means 100% of inferred
P-sites in the coding-frame are before the stop-codon and no inferred P-sites after the
stop-codon, signifies a sharp disengagement of ribosomes at the stop-codon. (Fig. 2A).

The three scores were calculated for Ensembl-ORFs and smORFs. The Ensembl-ORFs
were used as the true-set to establish the properties of the scores. Two normal distributions
were fit to each PIF and Uniformity scores across Ensembl-ORFs using normalmixEM
function from the mixtools package, version 1.2.0. A 95 percentile value (mean - 2*standard



deviations of the normal distribution for Ensembl-ORFs) was calculated and used as a
threshold for high-quality PIF and Uniformity scores (See Fig. S6C-E). For the Drop-off
score, the mean was quantified and used as a threshold for a high-quality score. Each
smORF at the iORF level was tested for PIF, Uniformity and Drop-off and discarded if either
of the three scores were smaller than the threshold values. smORFs which were completely
inside an annotated ORF or had in-frame overlap with an annotated ORF were also
discarded.

Isoform prioritization

Only one copy of iORFs was retained in instances of duplicates, i.e., with exactly the same
start-codon, stop-codon, orfCDS positions and thus exactly the same nucleotide sequence.
All iORFs that failed any of the three translational signature scores were discarded. Each
ORF could have multiple iORFs that pass the three translational signature scores, which are
alternative start-codons in-frame for a given stop-codon. To determine the most actively used
start-site in-frame for the given stop-codon, we used the sequence length and Uniformity
scores. The iORFs were sorted based on their sequence length. The uniformity score of the
iORF with the smallest length was stored and compared iteratively with the next iORF until
the score dropped. The iORF selected before the Uniformity score dropped was prioritized
as the iORF for the given ORF, i.e., the longest iORF before the uniform coverage of P-sites
is dropped.

Categorization of smORFs

ORFs were categorized into nuORFs (smORFs present on previously annotated non-coding
RNA), uORFs (smORFs present upstream of an Ensembl-ORF) or dORFs (smORFs present
downstream of an Ensembl-ORF) based on their location with respect to the current
transcript annotations as described in Fig. S7. Bedtools intersect was used to determine
possible overlaps of given smORFs with any known annotations (Ensembl hg38). ORFs that
overlapped with five_prime_utr or three_prime_utr were assigned as uORFs and dORFs
respectively. Furthermore, as the FANTOM5 catalogue extensions did not include UTR
annotation, we found ORFs that did not overlap with five_prime_utr or three_prime_utr but
were hosted in gene biotypes “coding_mRNA'' or “protein_coding”. These were tested for
their relative position w.r.t to the start codon and stop codon of the host gene’s annotated
ORF. smORFs upstream of the start codon were assigned as uORFs and smORFs
downstream of the stop codon were assigned as dORFs. ORFs present on the 5'UTR but
partially overlapping with the CDS and/or start-codon were considered as overlapping
uORFs. Similarly, ORFs which were located on the 3'UTR but also overlapped with the CDS
and/or stop-codon were categorized as overlapping dORFs. ORFs present on genes that did
not have the gene biotype coding_mRNA or protein_coding and had no overlap with any
known current annotation such as five_prime_utr, three_prime_utr or CDS were assigned as
nuORFs. smORFs overlapping multiple gene annotations spanning multiple genes were
assigned first as uORF or dORF or nuORF and multiple host gene IDs were documented in
Table S5, as alternate Gene IDs.

Sequence-based annotations

Nucleotide sequence for each smORF was obtained using Bedtools getfasta on the human
genome fasta file using the spliced orfCDS locations for each smORF. The nucleotide
sequence of smORFs was used to obtain the amino-acid sequence using the
nucleotide-to-codon translation table. A fasta file for the smORF amino-acid sequences was
generated. SignalP (Armenteros et al., 2019) and NLStradamus (Nguyen Ba et al., 2009)
were run in default settings for the smORF fasta file to detect presence of signal peptide,
nuclear localization signal for each smORF. Nucleotide sequences at a 15bp window around
the start of the smORFs were obtained using bedtools getfasta on human genome fasta file
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downloaded from Ensembl: Homo_sapiens.GRCh38.dna.primary_assembly.fa. The
sequence was plotted using makePWM in R package seqLogo (Bembom O et al,. 2021 R
package version 1.58.0) to observe kozak motifs.

Annotated ORF and smORF expression

The generation of smORF nomenclature and GTF allowed read counting on individual
smORFs which was carried out using Feature Counts (Liao et al., 2014). The counting was
carried out using iORFs and orfCDS as features and meta-features. Read counts were
calculated for each iORF for each Ribo-seq and RNA-seq (full-length and Clipped) sample.
Read counts for Ensembl-ORFs and novel smORFs were combined to quantify Transcripts
per million (TPM) values in each sample. Distributions of Ribo-seq TPM for each cell type
were plotted using the density function in R. Expressed smORFs and annotated smORFs in
each cell-type/tissue within the dataset were determined using a Ribo-seq TPM of larger
than 1. Distribution of TE was plotted using TE values (TPMRibo-seq/TPMRNA-seq)(Schafer et al.,
2015) for all ORFs with RNA-seq TPM larger than 1.

Cell-type specificity analysis

For cell-type/tissue specificity analysis, we considered fibroblasts, artery endothelial cells
(HCAEC and AEC), human umbilical vein endothelial cells (HUVEC), vascular smooth
muscle cells (VSMC), Embryonic stem cells, Hepatocytes, Kidney tissue, Fat tissue, Heart
tissue, Brain tissue (Inhouse and published). Skeletal muscle tissue data were not used due
to low total read depth as it would limit the evidence of expression of a given gene. The
number of cell-types/tissues for each gene where it is expressed (full-length RNA-seq
TPM>1) was determined. The genes were binned into groups from specific to ubiquitous,
ranging from expression in 1 to 10 cell-types/tissues. The genes were segregated based on
whether they hosted an Ensembl-ORF and whether they also hosted uORFs/dORFs, or if
they hosted nuORFs in previously annotated long non-coding RNAs. Similarly, the number of
cell-types/tissues for each smORF and annotated ORF where they were translated
(Ribo-seq TPM>1) was determined. The smORFs/Ensembl-ORFs were binned into whether
they were found specifically or ubiquitously in 1 to 10 cell-types/tissues.

To obtain cell-type-specific genes, we incorporated the FANTOM5 gene expression atlas
(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014) which used the
cap analysis of gene expression (CAGE) technique to profile the transcriptome of more than
500 samples across >170 cell types. Specifically, we used the updated FANTOM5 data
which has been re-processed for the hg38 genome (Abugessaisa et al., 2017). Low-quality
samples, namely samples with zero median expression and biological replicates that do not
cluster together, were removed, resulting in a final dataset of 436 samples. The gene
expression is then normalised using the variance stabilizing transformation (VST) function in
the DESeq2 R package. Hierarchical clustering is then performed on the VST-normalised
expression, resulting in 48 different cell types. For each gene, its expression value based on
full-length RNA-seq counts was normalized across the 436 samples (TPMgene1, sample

1/Sum436_samples(TPMgene1)) such that the values ranged between 0 and 1. Furthermore, the
162 samples in this paper were assigned to each of the 48 clusters by matching the source
cell-type/tissue with the cell types in each cluster. Similarly, for each gene, its expression
value based on full-length RNA-seq counts was normalized across the 162 samples
(TPMgene1, sample 1/Sum162_samples(TPMgene1)) such that the values ranged between 0 and 1. After
normalization, both the FANTOM5 gene expression and RNA-seq gene expression
generated in this paper were combined to finally obtain a matrix of 598 samples over 85,162
genes. For each of the 48 clusters, an ideal vector (Length=598) was created with gene
expression as 1 for samples within the cluster and 0 for samples outside of the cluster, albeit
an ideal scenario of specific gene expression in the given cluster. For a given gene and
cluster, the expression patterns across the 598 samples were compared to its ideal case
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using Jenssen-Shannon divergence (JSD, quantified by R package
https://github.com/tillbe/jsd). The smaller the divergence from the ideal vector, the more the
specificity of the gene’s expression in the given cluster. Gviz (Hahne and Ivanek, 2016) was
used to visualize translation of a Endothelial cell-specific nuORF in the lncRNA
(CATG00000072615) across the 10 different cell-type/tissues in the Ribo-seq data generated
and/or combined in this paper (See Fig. 3E).

Differential translation analysis

A 29bp length clipped RNA-seq dataset was prepared for differential translation analysis as
described previously (Chothani et al., 2019b). Trimmed RNA-seq reads were clipped using
FASTX Toolkit V0.0.14 to 29nt to allow a fair comparison with Ribo-seq reads in translation
efficiency (TE) analysis to minimize technical differences in data analysis. Read counting in
the CDS region was carried out for each gene using Feature Counts (Liao et al., 2014).
Ribo-seq read counts, RNA-seq read counts for the Ensembl-ORFs and smORFs identified
in this manuscript were used. Differentially-TE genes (DTEGs) for each cell type or tissue
were identified individually. For instance, for a given cell-type, fibroblasts, a DTEG was
defined as an Ensembl-ORF or a smORF that had significantly changing TE in fibroblasts as
compared to the background. The background used was all samples from all other cell types
except fibroblasts. The background samples were down-sized by using only two samples per
cell-type which were selected as the two with the highest library size. Cell-type and tissues
were analysed separately. The change in translation efficiency and associated significance
p-value was quantified using deltaTE (Chothani et al., 2019b). Ribo-seq and RNA-seq data
for TGFB1 stimulated fibroblast time-series experiment was processed as described
previously (Chothani et al., 2019a) for differential-TE analysis. Read counting for known
ORFs and smORFs was carried out using Feature Counts (Liao et al., 2014).
Differentially-TE genes (DTEGs) for each time-point (45mins, 2hrs, 6hrs, 24hrs) with respect
to baseline were identified along with quantification of translation efficiency and significance
p-value using deltaTE (Chothani et al., 2019b). Volcano plots were generated using the
EnhancedVolcano function in R (kevinblighe).

Evolutionary conservation analysis

Multiple sequence alignment files (maf) across 100 vertebrates were downloaded from
UCSC (Rosenbloom et al., 2015). Alignments to 100 vertebrate species for the smORF
locations on the human genome (hg38) were obtained using the Bio.AlignIO.MafIO module
in BioPython. The nucleotide sequence was ungapped (ungap(sequence)) and translated
(translate(sequence)) to amino-acid using the Bio.seq module in BioPython and stored as a
multi-specie fasta file for each smORF. The percentage of amino-acid conservation with
respect to the hg38 sequence was quantified for sequences in other species with the same
length as the smORF identified in this paper. A background set of smORFs for each subtype,
namely, uORF, dORF and nuORF were selected from the list of smORFs with low scores in
PIF, Uniformity and Drop-off. AA-sequence fasta and percentage AA conservation were
quantified for the background locations using the same method as for smORFs. The multiple
sequence alignment for a given smORF was visualized using the msaR package (2021) in R
using the multi-species amino-acid sequence fasta file. The evolutionary tree for 100
vertebrates was downloaded in the newick format from UCSC (Kent et al., 2002),
(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/) and plotted using the
ape package in R (Paradis and Schliep, 2019). Rat Ribo-seq data was downloaded (Schafer
et al., 2015) and mapped to Ensembl gene annotations (rn6, Release 86). This was used to
infer P-sites in the same way as described previously for human Ribo-seq data. Read
lengths 28-30 were used and offset was determined using RiboTISH. The generated P-site
alignment file was used to quantify P-sites in Frame, Uniformity and Drop-off scores for the
uORF in RASGRP3 (Fig. 5B) as defined earlier in this study for human data. PhyloCSF and
RNA code were run using default settings using 100 vertebrate phylogeny for all the 7,767
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smORF sequences.

Mass-spectrometry validation

The NHDF and HUVEC processed mgf files from Slany et al. (Slany et al., 2016) were
downloaded from PRIDE (PXD003406 to PXD003417). The ES processed mgf files from
(Shekari et al., 2017) were downloaded from PRIDE (PXD006271). Heart proteome RAW
data files from Doll et al. (Doll et al., 2017) were downloaded from PRIDE (PXD006675). For
the heart proteome RAW data files, the top 100 peaks by intensity from MS level 2 were
centroided and exported to .mgf files with Protowizards msconvert. The database search
and peptide-spectrum matching was then performed with a two-step approach. First, the
peaks were matched to the human Uniprot database (UniProt Reference 2017_4, 21,007
protein entries; http://www.uniprot.org/) using MS-GF+ (Kim and Pevzner, 2014).
Carboxyamidomethylation of cysteine was chosen as a fixed modification, and oxidation of
methionine and proline were chosen as variable modifications. The parent mass tolerance
was set at 10 ppm and an isotope error range was set to -1,2. The number of tolerable
(tryptic) termini was set to 2 and the minimum and maximum peptide lengths were set to 5
and 50, respectively. Using a target-decoy approach, the spectra with peptide-spectrum
matches of an FDR < 1% were removed and the remaining spectra were used in the second
step.

In the second step, the remaining peaks were matched using MS-GF+ to a custom smORF
database developed in this study. Similarly, carboxyamidomethylation of cysteine was
chosen as fixed modification, and oxidation of methionine and proline were chosen as
variable modifications. The parent mass tolerance was set at 10 ppm, the isotope error
range was set to -1,2 and the minimum and maximum peptide lengths were set to 5 and 50,
respectively. For the custom smORF database, the number of tolerable (tryptic) termini was
set to 1. Using a target-decoy approach and a relaxed threshold, the smORFs with at least
one peptide that had a spectrum with peptide-spectrum matches of an FDR < 1% were
deemed to be identified

Shiny web application

The genomic coordinates and scores for smORFs were shared as part of a web application
created using the R Shiny package. A ui.R and server.R file was created to display an R
data-table to browse iORF genomic coordinates, length, peptide sequence, PIF, uniformity
and drop-off scores for filtered smORFs. The header of the datatable was incorporated with
searching and sorting functions. Gene-level and smORF expression information across
cell-types and tissues in this study and testing for presence of smORFs in a given gene ID
list are provided.

Quantification and Statistical analysis
The software tools used in this study have been listed in Table S1 and described in the
respective methods subsections. Details of samples in each cell type or tissue can be
found in Table S3 and S4. The boxplot error bars and centres are defined in figures
and figure legends. Statistical p-values associated with the significance tests are
described in the figure legends.

Supplementary Files

Data S1: Related to Figure 1. RiboTISH quality images for Ribo-seq samples.
Data S2: Related to Figure 3. Jenssen-Shannon divergence and mean expression showing cell-type
specific genes and smORFs.
Table S4: Related to Figure 1. Ribo-seq sample information and processing statistics.
Table S5:  Related to Figure 2. Annotations and metadata for smORFs identified in this study.

https://paperpile.com/c/wobdjo/053s7
https://paperpile.com/c/wobdjo/ly06
https://paperpile.com/c/wobdjo/BBPVp
http://www.uniprot.org/)
https://paperpile.com/c/wobdjo/ZiDJM


Table S6: Related to Figure 3. Transcripts per million based on RNA- and Ribo- seq  for annotated
ORFs and smORFs identified in this study.
Table S7: Related to Figure 3. Cell-type specificity of smORFs quantified by Jenssen-Shannon
divergence score for each gene in the 48 clusters of cell-types.
Table S8: Related to Figure 4. Differential translation of Upstream ORF and main ORF pairs
identified with a significant change in TE in fibroblasts w.r.t a background.
Table S9: Related to Figure 5. Percentage of amino-acids (AA) identical in 99 vertebrates w.r.t
human sequence.
Table S10: Related to Figure 5. SmORF-encoded peptides found in Mass-spectrometry data across
various cell-types/tissues and subcellular localizations.
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Figure 1: A high-depth and high-resolution dataset of mRNA translation in primary human cell types and
tissues. A. Schematic of the data (Ribo-seq and RNA-seq) used in this study. In-house: newly generated
datasets. Public: published datasets (Brain (Gonzalez et al., 2014), Atrial fibroblasts (Chothani et al., 2019a),
Heart (van Heesch et al., 2019), Skeletal muscle (Wein et al., 2014) and Kidney (Loayza-Puch et al., 2016)). B.
Schematic illustrating the concepts of RPF (ribosome protected fragment) and relative inferred P-site position,
used to determine the frame being read. Abbreviations: A-site (aminoacyl), P-site (peptidyl) and E-site (exit);
AUG, start codon, UGA, stop codon. C. Bargraph indicating the total amount of sequenced raw reads and the
retained reads (%) following each of the indicated pre-processing steps. D. Trinucleotide (3-nt) periodicity of the
individual datasets, calculated using read lengths of 28-30nt. Data shown as positional heatmap and box and
whiskers plot (line at median, the whiskers extend to the most extreme data point which is no more than 1.5*IQR
(or interquartile range) from the box) E. MYMX transcript expression (RNA-seq: light grey) and translation
(Ribo-seq: dark grey) are displayed together with inferred ribosomal P-site positions dominating the coding-frame
(Frame 1, blue). Abbreviations: 5’UTR (5’ untranslated region), CDS (Coding sequence), 3’UTR (3’ untranslated
region).
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Figure 2: Comprehensive and systematic discovery of actively translated ORFs using the human
translation dataset identifies smORFs with robust translation signatures similar to Ensembl-ORFs. A.
Graphic illustrating the filters adopted to select smORFs with a robust mRNA translation signature: P-sites In
Frame (PIF), Uniformity, Drop-off score. For each score, density plots based on the underlying data processed
with different smORF-calling tools are shown to illustrate the rationale for their choice. The dotted line represents
the threshold determined using Mean -2*SD (95 percentile) of fitted normal distributions for PIF and Uniformity
and the Mean for Drop-off score. B Length distribution of Ensembl-ORFs (light blue) and filtered smORFs (dark
blue). C. Bar graph showing smORF classification based on their mapped location. Abbreviations: uORFs
(upstream ORFs; located on the 5’UTR of known protein-coding ORFs). dORFs (downstream ORFs; located on
the 3’UTR of known protein-coding ORFs). NuORFs (novel unannotated ORFs; located on previously annotated



non-coding transcripts). Overlapping CDS indicates cases in which uORFs/dORFs overlapped with the
protein-coding ORF on the same transcript. D. P-site distribution around the Start and Stop codons of the final
combined set of smORFs. E. Relative usage of codon start sites among smORFs. F. Translation initiation context
for Ensembl-ORFs, filtered smORFs and background smORFs. Background smORFs: Randomly selected
smORFs from low scoring smORFs (PIF < 40%, Uniformity < 40% and Drop-off < 90%) to match the set-size of
filtered smORFs. Kozak consensus is given for reference at the bottom, where R stands for Adenine (A) or
Guanine (G), *** denotes the start codon and -3 and +4 positions denote strong Kozak context.

Figure 3: RNA expression and translation of small open reading frames (smORFs) in human cell types
and tissues. A. Stacked bar chart showing the number and type of translated smORFs (Ribo-seq TPM > 1) in
each dataset. Of the 13 datasets, 10 total cell types and tissues were assessed for expression analysis. AEC and
HCAEC merged together as HCAEC; Published and newly generated Brain data merged together; Skeletal
muscle tissue removed failing read-depth QC for expression analysis; B. Ribo-seq TPM (transcript per million)
distribution for each smORF category and known coding ORFs in fibroblasts. uORFs display higher mean
translation levels (0.897) than dORFs (0.425; p-value 1.1e-97) and nuORFs (0.414; p-value 4.6e-55). Statistics:
Student’s t-test. C. TE (Translation efficiency) distribution for each smORF category and known coding ORFs in
fibroblasts. D. Scatterplot of Jensen-Shannon divergence and Endothelial cell gene expression. Blue: Genes with
uORFs and/or dORFs, Yellow: Genes with nuORFs. Genes in the top-right quadrant (e.g. CATG00000072615)
represent genes that are both highly expressed and specifically expressed in endothelial cells. Gene symbols are
displayed for genes (top 20) with the highest expression levels and JSD < 0.5. E. An example of endothelial
cell-specific nuORF, CATG00000072615 encoded in a lncRNA showing Endothelial-specific Ribo-seq read
coverage within the cell-types/tissues in this study.



Figure 4: Upstream Open Reading frames in translational regulation. A. Volcano plot showing translational
efficiency (TE) for all Ensembl-ORFs in fibroblasts vs background. Log2(ΔTE) denotes the log fold change of TE
for the annotated ORF. Log10(adjusted p-value) denotes the significance of the change in TE. Ensembl-ORFs
are marked in blue if they also host an upstream ORF (uORF). A chi-square p-value of 8.62e-89 signified the
preferential presence of uORFs hosted in differential-TE genes. B. A scatter plot showing TE fold-changes for
differential-TE main ORF and uORF pairs in fibroblasts vs background. 91.55% of uORF-main ORF pairs change
in the same direction and 8.45% in the opposite direction. uORF-mORF pairs with absolute log2 ΔTE greater
than 5 were shown on the axis boundary. C. Ribo-seq and RNA-seq of TGFB1 stimulated atrial fibroblasts across
a time-series (Baseline, 45mins, 2hrs, 6hrs, 24hrs) D. Volcano plot showing translational efficiency (TE) for all
Ensembl-ORFs in TGFB1 stimulated fibroblasts (24 hours) vs baseline. Log2(ΔTE) denotes the log fold change
of TE for the annotated ORF. Log10(adjusted p-value) denotes the significance of the change in
TE.Ensembl-ORFs are marked in blue if they also host an upstream ORF (uORF). A chi-square p-value of
8.99e-52 signified the preferential presence of uORFs hosted in differential-TE genes. E. A scatter plot showing
TE fold-changes for differential-TE main ORF and uORF pairs in fibroblasts vs background. 92.31% of
significantly changing uORF-mORF pairs change in the same direction. F-G. Scatter plot for two exemplar
uORF-mORF pairs showing in-tandem change in TE during fibroblast activation. Lines represent median TE
values. Red: uORF, Blue: mORF. Header represents Ensembl gene ID hosting both uORF and mORF. Log2 fold
change of TE and adjusted p-values are printed for the uORF and mORF respectively.



Figure 5: Evolutionary conservation of small open reading frames across 100 vertebrates. A. Difference in
the average percentage of Amino-Acid conservation for smORFs across 100 vertebrate species with respect to a
matched background. Dark blue: upstream ORF; Light blue: downstream ORF; Yellow: novel unannotated ORF.
Lighter colour: Background smORFs not detected as being actively translated. B. P-site periodicity plot for a
31AA uORF located in the 5’UTR of RASGRP3 (RAS Guanyl Releasing Protein 3), which was detected to have
active translation signature in the human translation dataset (84.55% PIF, 84.38% Uniformity and 99.74%



Drop-off) and found to be conserved in the rat (Ribo-seq data from (Schafer et al., 2015);72.49% PIF, 78.12%
Uniformity and 98.85% Drop-off) as well as other species (C).

Figure 6: Large-scale re-analysis of Mass-spectrometry data reveals 603 smORF encoded peptides. A.
Schematic of the strategy employed for the re-analysis of published mass-spectrometry datasets to identify
smORFs. B. Bubble chart illustrating smORF encoded proteins (281 uORFs, 47 dORFs and 286 nuORFs) having
at least one MS-hit across different samples (Tissues, cell types). Each circle represents an MS-hit for a given
smORF in a given sample type. The colour scale indicates the number of total hits and the circle size represents
the number of unique peptide sequences found to match the smORF. C. MS-evidence of smORF encoded
proteins in different subcellular localisations. Abbreviations: ESC (Embryonic stem cells), HUVEC (Human
umbilical vein endothelial cells), NHDF (N Human dermal fibroblasts), SmoothP1acells (Smooth muscle cells), AF
(Adipose fibroblasts), EC (Endothelial cells), and tissues: AV (Aortic valve), Ao (Aorta), LA (Left atrium), LV (Left
ventricle), MV (Mitral valve), PA (Pulmonary artery), PV (Pulmonary valve), PVe (Pulmonary vein), RA (Right
atrium), RV (Right ventricle), SepA (atrial septum), SepV (ventricular septum), TV (Tricuspid valve); A3689, A17,
CP, KFcells, SV, LH, MK,Vcavain as described in Doll et al. (Doll et al., 2017).
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